
0

Development of a High-Level Design Space
Exploration Methodology

Joachim Gerlach Wolfgang Rosenstiel

WSI 98-13

November 23, 1998

Wilhelm-Schickard-Institut
Universität Tübingen

D-72076 Tübingen, Germany

e-mail: gerlach@informatik.uni-tuebingen.de

© WSI 1998
ISSN 0946-3852

1

Research Project Report

Development of a High-Level Design Space
Exploration Methodology

1 Motivation and Project Outline

Since a few years the increasing complexity of digital circuits represents the main problem in
digital circuit design, existing methodologies which allow a specification of the design on
higher levels of abstraction and therefore support a homogeneous design process are getting
more and more important (system design automation). Catchwords in this domain are hard-
ware software codesign, rapid prototyping, and embedded systems. But the increasing level of
abstraction (which can be thought of as a vertical axis) also leads to an expansion of design
space, and for this to an increase of optimization potential (imaginable as a horizontal axis)
available on that level of abstraction (figure 1). Therefore, besides of the design process itself,
the process ofdesign space exploration should also start on upper design levels.

In our methodology, design space exploration is done onbehavioral levelby applying optimi-
zation steps calledhigh-level transformations. If, like most of the conventional tools using
high level transformations do, an evaluation of designs is performed by explicitly executing
many (or even all) design steps of lower levels, the resulting design loop covers a large number
of design activities and therefore a single cycle of the design loop is quite expensive to perform
(referred to assynthesis design loopin figure 2). Our approach for realizing a design loop
which is close and settled on high levels of abstraction bases on the integration of a high-level

Wolfgang Rosenstiel
rosenstiel@informatik.uni-tuebingen.de

University of Tübingen
Department of Computer Engineering

Sand 13 • D-72 076 Tübingen • Germany

Joachim Gerlach
gerlach@informatik.uni-tuebingen.de

University of Tübingen
Department of Computer Engineering

Sand 13 • D-72 076 Tübingen • Germany

Forschungszentrum Informatik (FZI) Karlsruhe
Haid-und-Neu-Str. 10-14

D-76131 Karlsruhe • Germany

and

Figure 1. Abstraction level and optimization potential.

design space

ab
st

ra
ct

io
n

le
ve

l

layout level

behavioral level

register-transfer level

logic level

optimization potential

2

cost estimation step into the design loop (calledestimation design loopin figure 2). Therefore,
an evaluation of transformation quality is already donewithin behavioral synthesis. Figure 2
shows the integration of our methodology into the classical design level view.

Figure 3 gives an overview on the entire design environment developed at the University of
Tübingen [GeEiHa96] and shows the integration of the high-level transformation task in the
design flow. Starting point of our investigations is a specification of a system in terms of
ANSI-C code, outcome is a register-transfer level implementation of the design parts identified
for hardware realization. There exist several backends which allow to pass the register-transfer
level design to several commercial and non-commercial lower-level synthesis tools. Regarding
the entire design process, the high-level transformation task can be understood as a successor
instance of hardware/software codesign and a predecessor instance of high-level synthesis.

Figure 2. Design space exploration methodology.

layout

level

level

level

level

behavioral

register-
transfer

logic

hardware

-behavioral

high-level
synthesis

high-level
transformations

layout synthesis

logic synthesis
estimation
design loop

synthesis
design loop

high-level
estimation

description

Figure 3. Design environment and interfaces.

VHDL BLIF KISS

+
datapath

controller

CDFG

HW/SW codesign

high-level synthesis

repartitioning / resynthesis

hardware debugging

C

high-level transformations

3

Within a project initiated by Mentor Graphics Inc.™, in which several american and european
universities are involved, the applicability of our transformation methodology to the commer-
cial design system Monet™ was proved.1 The Monet™ system corresponds to a high-level
synthesis tool, which comfortably supports an interactive variation of resource and timing
restrictions, and for this, allows to (manually) perform an architectural exploration of the
design space. The first project period includes conceptual work in the domain of transforma-
tion analysis (phase-1) as well as an elaboration of the ability of or requirements for Monet™
to support our high-level transformation and estimation tasks (phase-2). This includes the
implementation of an experimental format converter, which allows us to pass several designs
from Monet™ to our transformation environment. In addition, an experimental evaluation of
the Monet™ system was done (phase-3). Table 1 shows the project plan of the first project
period.

The report is organized as follows: Chapter 2, 3, and 4 describe the work spend and the results
achieved in phase-1, phase-2, and phase-3 of the first project period. Based on those results,
chapter 5 proposes an outline of a project plan for a second project period.

2 High-Level Transformations and Transformation-Analysis

Figure 4 shows an abstract view on our transformation environment, in which three activities
can be identified on highest level of abstraction:

• Application of transformations (transformations).

• Evaluation of transformation quality, including the step of cost estimation (transformation
analysis).

• Control of the transformational exploration process, including the identification of transfor-
mation candidates and initiation of exploration cycles (transformation control).

1. Mentor Graphics Inc.™ and Monet™ are registered trademarks.

project period 1

contents time schedule

phase-1 :
• realization of several cost heuristics
• integration into prototype system
• examination of combinations/parameterizations of cost heuristics
• derivation of efficient cost estimation mechanisms
• experimental validation of the cost estimation mechanisms

8 / 98

phase-2 :
• implementation of experimental format converter from Monet™ to prototype

system
• elaboration of requirements for Monet™-internal design representation to

support high-level transformation and estimation tasks

12 / 98

phase-3 :
• experimental evaluation of Monet™

12 / 98

Table 1: Project plan for project period one.

4

2.1 High-Level Transformations
The termhigh-level transformationscovers optimization techniques settled on behavioral
level. High-level transformations often (but not always) correspond to optimization-steps
known from the theory of software compilers [AhSeUl86]. However, the preconditions of their
applicability (e.g., target architecture, optimization goals, restrictions) significantly differ from
software domain. In the current state of implementation, the transformation task comprises a
set of thirty-four basic transformation types (see table 2). All transformation types are scalable
in terms of their application (for example, application to particular circuit nodes, basic blocks,
designs or entire design hierarchies). In addition, most of the transformation types are scalable
in terms of their functionality (for examples, the transformation typeloop unrollingcovers the
complete unrolling of a loop as well as the partial unrolling of a loop by a given unrolling fac-
tor, often referred to asloop tiling in the literature).

array contraction elimination of empty paths

array scalarization elimination of unreachable paths

optimization of memory accesses normalization of branch conditions

constant propagation manipulation of branch conditions

constant folding merging of branch constructs

common subexpression elimination normalization of loop index variables

common subexpression expansion extraction of loop-invariant basic-blocks

elimination of intermediate data loop-invariant code motion

optimization of boolean expressions loop unrolling

optimization of comparator calculations loop partitioning

algebraic optimizations loop merging

strength reduction loop reversal

word size reduction loop interchange

optmimization of swap-scenarios loop pipelining

basic-block partitioning function inlining

basic-block merging function cloning

basic-block shifting elimination of unreachable functions

Table 2: Implemented high-level transformation types.

Figure 4. Transformation environment.

CDFG

hi
gh

-le
ve

l
sy

nt
he

si
s

...
.

tr
an

sf
or

m
at

io
n

an
al

ys
is

transformation
control

transformations

Restrik-

Restrik-

Restrik-optimization
goals

target

restrictions
step 1

step 2

step narchitecture

5

Our approach for realizing a design loop which is close and settled on high level of abstraction
bases on a tight coupling of high-level transformation and high-level synthesis tasks. There-
fore, high-level transformations immediately act on the internal high-level synthesis design
representation, an attributed control-/dataflow graph [HoEiHa94]. Evaluation of transforma-
tion quality is done by trial execution of particular steps of the high-level synthesis process,
followed by an analysis of the resulting intermediate synthesis result. At this point, heuristics
come into view, which allow to estimate design characteristics starting from a high level of
abstraction, and for this, to cover expensive design steps of lower design levels. By this, proof
of transformation applicability, transformation application itself, and analysis of the transfor-
mation result (including the step of cost estimation) is completely performed on the high-level
design representation. For this, a complete cycle of the design loop can be executed efficiently
without leaving the high-level design representation. For derivation of efficient cost evaluation
heuristics, several estimation methodologies fixed on different states of the high-level synthe-
sis process are examined with respect to their aptitude on controlling the transformational
exploration process. Based on those examinations, efficient evaluation heuristics for several
design criteria are derived and experimentally validated. In the following, those investigations
are reported in detail.

2.2 Transformation-Analysis
The application of a cost estimation heuristic within our transformational design space explo-
ration methodology leads to a set of specific demands:

• To allow cost evaluation within high-level synthesis, the execution stage of the synthesis
process has to become a parameter of the cost estimation heuristic. The cost estimation heu-
ristic should be applicable to different execution states of the high-level synthesis process
(and for this, is calledscalable) and should be able to identify and utilize all design infor-
mation which is available in this state of synthesis.

• In spite of the high level of abstraction, on which cost estimation acts, the heuristic has to be
able to estimate design costs in a fine-grain fashion, because designs resulting from high-
level transformations possibly differ in a very slight way only (e.g., because a transforma-
tion only affects very local parts of the design).

• In regard of applying the cost estimation heuristic within transformational design space ex-
ploration, the ability to quantifyrelative dependencies of design characteristics (and for
this, tocomparedesign alternatives) is much more important than the ability to captureab-
solutevalues. To quantify this characteristic, we apply thefidelity measure [GaVaNa94]
proposed by Gajski:

The fidelity measure supplies for a given set ofn reference valuesR(1),...,R(n)andn esti-
mation valuesE(1),...,E(n)a number describing the quality of the estimation with respect to
its ability to quantify relative dependencies of pairs of reference/estimation values.

Our cost estimation methodology bases on the common application of two contrary principles,
specializationandabstraction. Therefore, two levels of estimation heuristics have to be distin-
guished:

Fidelity 100 2
n n 1–()--------------------- µij

j i 1+=

n

∑
i 1=

n 1–

∑••= µij
1 if

R i() R j()< E i() E j()<∧

R i() R j()> E i() E j()>∧

R i() R j()= E i() E j()=∧





0 otherwise









=

6

• Techniques to estimate the costs of the entire design, referred to aslevel-1 cost heuristics.

• Techniques to estimate the costs of isolated register-transfer component cells, referred to as
level-0 cost heuristics.

Figure 5 shows an overview on our cost estimation methodology. In a level-1 cost heuristic, as
much as possible of register-transfer information (depending on the execution state of the syn-
thesis process) is identified (components as well as interconnection structure). This corre-
sponds to the specialization step. The identified register-transfer components are passed to a
level-0 cost heuristic, which performs an estimation of the particular component cell costs. The
cost values are propagated back into the level-0 cost heuristic and used there for the calculation
of an entire estimation value, corresponding to the abstraction step.

Objective of this methodology is to utilize all design information for calculation of an estima-
tion value, which is available in the current state of the synthesis process. In our investigations,
level-1 cost heuristics are applied to five execution stages of the high-level synthesis process,
referred to asestimation depths (see table 3).

estimation depth state of high-level synthesis

1 after module scheduling and allocation

2 after module binding

3 after register allocation and binding

 4 after interconnection binding

5 after netlist generation

Table 3: Evaluation depths of level-1 cost heuristics.

transformation

analysis

specialization abstraction

level-1 cost heuristic

.

st
ep

n

st
ep

2

st
ep

1

st
ep

3

.

identification of
RT components

identification of
RT interconnection

design

high-level

synthesis

partially synthesized design

calculation of
estimation value

estimation depth
level-1 cost heuristic
level-0 cost heuristic
design criteria

Figure 5. Evaluation of designs.

estimation of
RT components

level-0 cost heuristic

estimation
value

7

In estimation depth 5, high-level synthesis is carried out completely, and for this depth 5 is
equivalent to register-transfer level. By dividing the estimation step in level-1 and level-0 cost
heuristics, the estimation methodology becomes „high-level“: generation of level-0 cost heu-
ristics has to be done only once for a given target architecture, design style and high-level syn-
thesis process (and for this, can be regarded as a precomputation step). A single estimation
request only requires the evaluation of level-1 cost heuristics. In our investigations, several
level-1 and level-0 cost heuristics were realized. Combinations of level-1 cost heuristics, level-
0 cost heuristics, and estimation depths were experimentally extracted which lead to evaluation
heuristics that can be efficiently applied in our transformational design methodology. In the
following, the implemented level-0 and level-1 cost heuristics are presented in detail, and the
results of some experiments are summarized.

2.2.1 Level-0 cost heuristics

Level-0 cost heuristicsbase on an explicite determination of costs of elementary register-trans-
fer cells (of the generic component-library of the high-level synthesis process, which is actu-
ally in use). Typical examples of such elementary cells are full adders, logic-gates or 1-bit 2:1-
multiplexors. Those elementary cells are explicitly synthesized and design characteristics are
extracted. By this, characteristics of the applied synthesis tools and target architecture are
taken into consideration.

A first level-0 cost heuristic,GenCost, determines the costs of complex register-transfer com-
ponents by cost formulas. Those cost formulas are derived by analyzing the generic generators
of the high-level synthesis process, which is actually in use. Arguments of the cost formulas
are given by parameters of the generic generators, for example, word length, number of inputs
or sign status. Figure 6 shows an example: for deriving area and delay cost formulas of a rip-
ple-carry adder,areaFA anddelayFA of an elementary full adder cell are explicitly determined
(applying the concrete synthesis process). Regarding the generic generator of an arbitraryn-bit
adder, it can be found that area can be approximated byn • areaFA. Same formula holds for
delay, taking into account that the critical path touches all full adder cells.

In a second level-0 cost heuristic,FuncCost, costs of particular instances of a register-transfer
components are explicitly determined, too, but in contrast toGenCost, not only elementary
cells of the parameter space are regarded. The evaluated cost values are used to generate a
piecewise linear approximating function, which is applied for a cost function of the corre-
sponding register-transfer component type. For example, figure 7 shows in (a) the delay cost
function of dimension one of a adder cell (parameter is word length) and in (b) the delay cost

Figure 6. Level-0 cost heuristicGenCost.

Out-1[0] Out-1[1] Out-1[n-1]

0
FA

FA

FA

In-1[0] In-2[0] In-1[1] In-2[1] In-1[n-1] In-2[n-1]Carry-in In-1 In-2

Out-1 Carry-out

FA

area FA
delay FA

(explicitly determined)
(explicitly determined)

area = n • area FA
delay= n • delay FA

full ad der: n-bit ad der:

8

function of dimension two of a multiplexor component (parameters are word length and num-
ber of inputs).

2.2.2 Level-1 cost heuristics

Level-1 cost heuristicsidentify as much as possible of register-transfer information in the
given design (which corresponds to an intermediate result of the high-level synthesis process).
Then, level-0 cost heuristics are applied to perform estimates of the isolated register-transfer
components and the results are used for calculation of an estimation value for the entire design.

A first level-1 cost heuristic,DPApprox, analyzes the current design representation and identi-
fies connected datapath segments of maximum size. By this strategy, all information which is
available in the current state of high-level synthesis is utilized to perform an estimation value.
Figure 8 shows an example: In (a), only information concerning functional units and registers
is available. In (b), estimation is performed in a more advanced stage of the synthesis process,
which results in more accurate predictions.

A second level-1 cost heuristic,ProbDPApprox, acts in very similar fashion, but in addition, a
weighting of datapath segments (or sub-segments) corresponding to the maximum intercon-
nection structure which can be identified in the current state of the design process, is per-
formed. Thereby, a uniform distribution is assumed in branching nodes, which leads, as the
experiments will show, to satisfactory results. Figure 9 shows the example design of figure 8
(b) with weighting factors given at each circuit arc.

Figure 7. Level-0 cost heuristicFuncCost.

adder:

parameter: word length

multiple xor:

parameter: word length
number of inputs

word length

delay

in
puts

word length

delay

(a) (b)

Figure 8. Cost heuristicDPApprox.

c5
c3
c2c1

c4

In2
Out1

In1

+

*

+

a1/d1

a5/d5

a4/d4

a3/d3

a2/d2
a6/d6

a9/d9

a8/d8

a7/d7

c3

c2c1

+

*

+

a1/d1

a5/d5

a4/d4

a3/d3

a2/d2

area

delay

area

delay
d6 + d1 + d2 + d8 + d4

 d7 + d3 + d9 + d5

d7 + d3 + d8 + d4
d4
d5

= a1 + a2 + a3 + a4 + a5

= max + max

= a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9

= maxd1+ d2
d3

{ } { }{ }
(a) (b)

9

A third cost heuristic,CPApprox, considers costs produced in the controller part of the design.
This is done by regarding several static characteristics of the controller (e.g., number of states,
transitions, input/output lines). Applying a set of standard high-level synthesis benchmark
designs, we were able to show a good correlation (fidelity > 80%) of an estimation based on
such static characteristics. For example, figure 10 shows the correlation of the absolute values

for the number of states of the finite state machine and the area consumption of the controller
part for some benchmark designs. For a common consideration of datapath and controller, cor-
relation factors describing the ratio of datapath costs (heuristics DPApprox and DPApprox) to
controller costs (heuristic CPApprox) are derived in a statistical way. For more details see
[GeRo97].

2.2.3 Experiments

Objective of our investigations is to derive combinations of level-0 cost heuristics, level-1 cost
heuristics and estimation depths which result in estimation mechanisms of maximum quality/
effort trade-off with respect to their application in transformation control. In the following, the
design criteria area, delay, and power are considered in detail. Other design criteria (e.g.,
response-time, FSM size) were regarded, too, but the methodologies differ from those pre-
sented above, and for this, are not regarded here. To evaluate the quality of our estimation
methodology, heuristics resulting from several combinations of level-0 cost heuristics, level-1
cost heuristics, and estimation depths were applied to multiple applications, and the results
were compared with the synthesis results. In our experiments, high-level synthesis is per-
formed by the PMOSS system [GeEiHa96], logic synthesis is done by the SIS system, and
mapping the design to a concrete target architecture bases on the MCNC library [SeSiLa92].

In the following, our methodology is demonstrated in terms of the following three types of
applications:

• Fidelity: The methodology is demonstrated in terms of the algorithm for computing the fi-
delity measure. For this, the evaluation algorithm itself becomes an application.

Figure 9. Cost heuristicProbDPApprox.

c5
c3
c2c1

c4

In2
Out1

In1

+

*

+
1/3

1/2
1/3

1/2

1/3 1

1

1

1
1

1
1

1
p1 power = 1 • (p 4 + p8)

p5

p4

p3

p6

p9p7

+ 1/3 • (p2 + p1 + p6)

+ 1 • (p5 + p9)
+ 1/3 • (p3 + p7)

+ 1/2 • (0)

+ 1/3 • (0)

+ 1/2 • (p3 + p7)

p2
p8

Figure 10. Cost heuristicCPApprox.

area
#states

10

• High-level transformation benchmark suite: The heuristics derived from the fidelity exam-
ple are validated via a set of high-level transformation benchmark designs.

• GSM: For an application of high complexity and industrial relevance, a submodule of the
GSM fullrate speech transcoder [DIN94], integrated in mobile telecommunication systems
for real-time compaction of human speech, is regarded.

Application-1: Fidelity Algorithm

The fidelity algorithm was transformed into a set of nine alternative design versions by apply-
ing high-level transformations (for the transformations sequence, see figure 11). In figure 12,

combinations of level-0 and level-1 cost heuristics, which lead to estimation mechanisms with
maximum fidelity (marked by „←“ in figure 12) are shown. Like mentioned before, thefidelity
of estimation heuristics is of primary interest, and for this, theshapeof the curves, not the
absolute values has to be considered (the absolute values generated by the heuristics don‘t cor-
respond to any physical unit, only the relative relations are of interest). As figure 12 indicates,
e.g. combination of the generic level-0 cost heuristicGenCostand level-1 cost heuristics
DPApprox(non-probabilistic datapath approximation) and CPApprox (controller approxima-
tion) results starting with estimation depth 4 in area estimation mechanisms of maximum fidel-
ity of 86%. Regarding the speedup applying our high-level estimation methodology with
respect to generating corresponding values by explicitly performing lower level synthesis
steps, speedup factors from 0.5•102 up to 1.1•106 can be obtained (depending on design crite-
ria and estimation depth). The results are summarized in table 4. For details see [GeRo97].

Figure 11. Transformation sequence for the fidelity application.

optimization of constant propagation
elimination of temporary data

algebraic

loop unrolling
array accesses

optimizations

(inner loop)
merging of
basic-blocks

loop unrolling
(outer loop)
merging of
basic-blocks

constant propagation
elimination of temporary data

constant propagation
elimination of temporary data

constant propagation
elimination of temporary data

D0 D2D1 D3 D5D4 D6 D8D7

Figure 12. Comparison of estimation and synthesis results.

area:

L-0 cost heuristic: GenCost
L-1 cost heuristic: DPApprox

CPApprox

fidelity:

estimation depth 1: 83,3 %
estimation depth 2: 83,2 %
estimation depth 3: 80,6 %
estimation depth 4: 86,1 % (←)
estimation depth 5: 86,1 % (←)

delay:

L-0 cost heuristic: FuncCost
L-1 cost heuristic: DPApprox

CPApprox

fidelity:

estimation depth 1: 91,6 % (←)
estimation depth 2: 91,6 % (←)
estimation depth 3: 91,6 % (←)
estimation depth 4: 91,6 % (←)
estimation depth 5: 91,6 % (←)

power:

L-0 cost heuristic: FuncCost
L-1 cost heuristic: PropDPApprox

CPApprox

fidelity:

estimation depth 1: 83,3 %
estimation depth 2: 83,2 %
estimation depth 3: 80,6 %
estimation depth 4: 86,1 %
estimation depth 5: 91,6 % (←)

D0
D2

D6
D8

D4
D0

D2

D6
D8

D4
D0

D2

D6
D8

D4

Synthesis
Estimation Depth 5

Estimation Depth 4
Estimation Depth 3

Estimation Depth 2
Estimation Depth 1

design

es
tim

at
io

n

estimation
depth

va
lu

e

version

11

Application-2: High-Level Transformation Benchmark Suite

For validation of the estimation heuristics derived in the previous experiment, alternative
design versions of ten benchmark designs (of different applications, for example, filters, sort-
ing algorithms, mathematical computations, DSPs) were generated via high-level transforma-
tions. Then, the design criteria area, delay, and power were estimated applying the heuristics
extracted in the fidelity example. The resulting fidelity values are summarized in table 4. All
speedup factors have similar magnitudes as the ones presented in the fidelity example.

Application-3:GSM Fullrate Speech Transcoder

In scope of a project under grant of Deutsche Forschungsgemeinschaft, the GSM fullrate
speech transcoder was treated by a hardware/software codesign step, wherein a real-time criti-
cal module was identified and efficiently realized in hardware [ScFeMo97]. This module was
optimized applying our transformational design space exploration methodology. Figure 13

shows the corresponding transformation tree. Here, the estimation heuristics derived in the
fidelity application also decide the quality/effort trade-off in an optimal way. The resulting
fidelity values are summarized in table 4, the speedup disposes of similar dimensions as the
ones given in the fidelity example. By rerunning the design space exploration process applying
the synthesis loop instead of the estimation loop (see figure 2), the identical design version was
identified for cost minimum design. Thus we were able to show that in the GSM application
our estimation methodology leads to an acceleration of the design process by orders of magni-
tudes without any loss of design quality.

Table 4 summarizes the results of the experiments described above and for this, suggests esti-
mation mechanisms for several design characteristics. In all applications, the proposed combi-
nations of level-0 and level-1 cost heuristics and estimation depths lead to rapid estimation
heuristics of high fidelity (80 %), which points to a high stability of our methodology. For
all applications and design characteristics, our estimation heuristics were able to reliably fore-
cast the design version with minimum cost. All speedup factors have similar magnitudes as the
ones presented in the fidelity example, and for this lead to a significant acceleration of the
design space exploration process.

elimination of
temporary data

constant
propagation

strength

algebraic
optimizations

optimization of
array accesses

loop unrolling
(partially, factor 2)

loop unrolling
(partially, factor 4)

loop unrolling
(completely)

merging of
basic-blocks

merging of
basic-blocks

constant
propagation

dead path
elimination

reduction

strength
reduction

Figure 13. Transformation tree for the GSM application.

x x≥

12

3 Elaboration of the Monet™-Internal Design Representation

Objective of the second phase of project period one is the elaboration of the ability of or
requirements for the Monet™-internal design representation to support high-level transforma-
tion and estimation tasks in the way presented in chapter 2. This includes the implementation
of an experimental format converter, which allows to pass several Monet™ designs into our
prototype system and there to perform transformation and cost evaluation steps (figure 14).
This enables us to take a look at Monet™‘s internal design representation, and evaluate, if it‘s
practicable and ingenious to, for example,connectour prototye system to Monet™ (to perform
the transformation and estimation task within the prototype system), or tore-implementhigh-
level transformation and high-level estimation concepts in Monet™ (to disconnect Monet™
from the prototype system).

First of all, a brief overview on the internal design representation in Monet™ and in our proto-
type system is given:

• Monet™ design activities base on an internal design representation calledSIF (which
stands forSynthesis Internal Form). Intention of the SIF design representation is to define
an intermediate synthesis format which allows to manage multiple synthesis methodolo-
gies, which is independent of hardware description language, and which is able to handle
multiple levels of abstraction (from system downto logic level). SIF is composed of a set of

design
criteria

estimation heuristic fidelity result

level-0
cost

heuristic

level-1
cost

heuristic

es
tim

at
io

n
de

pt
h

fid
el

ity
 (

in
 %

)

tr
an

s-
be

nc
h-

1
(in

 %
)

tr
an

s-
be

nc
h-

2
(in

 %
)

tr
an

s-
be

nc
h-

3
(in

 %
)

tr
an

s-
be

nc
h-

4
(in

 %
)

tr
an

s-
be

nc
h-

5
(in

 %
)

tr
an

s-
be

nc
h-

6
(in

 %
)

tr
an

s-
be

nc
h-

7
(in

 %
)

tr
an

s-
be

nc
h-

8
(in

 %
)

tr
an

s-
be

nc
h-

9
(in

 %
)

tr
an

s-
be

nc
h-

10
 (

in
 %

)

G
S

M
 (

in
 %

)

G
en

C
os

t

F
un

cC
os

t

D
PA

pp
ro

x

D
P

P
ro

bA
pp

ro
x

C
PA

pp
ro

x

area X X X 4 86.1 97.2 80.0 100 82.2 86.7 89.3 91.7 93.9 93.3 97.2 89.1

delay X X X 1 91.7 86.1 90.0 100 86.1 88.9 96.4 91.7 86.4 100 91.7 81.8

power X X X 5 91.6 83.3 80.0 89.3 80.1 88.9 96.4 94.4 89.4 93.3 91.7

Table 4: Results of estimation heuristic evaluation.

synthesis
timeout

Figure 14. Format converter and design flow.

VHDL

Monet™ design

Monet™
synthesis

VHDL - frontend

prototype system

transformationsestimation
synthesis

C - frontend

C

design

fo
rm

at
 c

on
ve

rt
er

design
flow

13

(about two-hundred) object-oriented C++ classes. The SIF synthesis database is the lan-
guage synthesis data repository which uses SIF objects (C++ object instances of SIF class-
es) as its internal design representation. By this, SIF covers a collection of graph-based
synthesis oriented object models, for example a control-/dataflow graph, finite state ma-
chine, and netlist representation. In addition, SIF allows to specify timing and structure
constraints. There exists a frontend, which allows to convert VHDL design descriptions into
SIF, as well as a backend which allows to generate a VHDL output out of a synthesized SIF
structure. VHDL generation can be applied to different execution stages of the high-level
synthesis process. Details concerning the SIF design representation can be found in
[Wu97].

• In our prototype system, design representation bases on an attributed control-/dataflow
graph (CDFG), which is annotated with design information during the synthesis process
step by step. The graph representation bases on the object-oriented C++ class library LEDA
[MeNaSe98], which provides a collection of elementary data types (for example sets, lists,
graphs, dictionaries) and member functions for data manipulation. There exists a frontend,
which allows to convert ANSI-C specifications into the internal CDFG representation.
There also exist several backends which allows to convert the annotated CDFG structure
into register-transfer level representations (VHDL, BLIF, KISS) to be passed into several
commercial and non-commercial lower level synthesis tools. Details concerning the CDFG
design representation can be found in [HoEiHa94].

3.1 Realization strategies for format conversion
Figure 15 shows three realization strategies for connecting Monet™ and prototype system.
The alternatives were worked out in cooperation with the Monet™ developer team. Strategy-1
and -2 uses an existing backend, which converts the SIF-representation into a textual form.
Based on those textual SIF-file, strategy-1 plans to implement a complete SIF-parser plus
CDFG-generator. Strategy-2 also bases on the textual SIF-file, but takes advantage of an exist-
ing lex/yacc parser for SIF. In this approach, callback procedures have to be added to generate
a CDFG-structure. Strategy-3 does not base on a textual SIF-file, but takes advantage of an
existing procedural SIF-interface. In this solution, an analysis of the SIF-structure can be done
directly by running through the hierarchy of SIF class instances. In table 5, some characteris-

Figure 15. Realization strategies for SIF to CDFG format conversion.

CDFG

transformationsestimation
synthesis

CVHDL

SIF

Monet™
synthesis

VHDL - frontend C - frontend

lex/yacc
SIF

parser
SIF -

backend

2

1

3SIF -
procedural
interface

te
xt

ua
l

S
IF

analysis
of SIF

structure

callbacks

SIF
parser

format converter

14

tics of the realization alternatives are summarized. Since strategy-2, the extension of an exist-
ing lex/yacc parser, seemed to be optimally (because of the medium realization effort for
writing callback procedures and the weak coupling of the systems via a textual file), our first
investigations were focussed to this solution. Main drawback of this strategy turned out to be
the fact, that there is no documentation concerning the textual-SIF format available up to now.
Because of this, we have to concentrate on strategy-3, the procedural interface solution. At this
point, the term procedural interface covers access to the C++ hierarchy of class instances pre-
senting the SIF structure.

Main drawback of strategy-3 is, that the coupling of Monet™ and prototype system is very
tight (an analysis of the hierarchy of SIF class instances is done directly via member functions
of the SIF C++ classes). Because of the fact, that there exist no documentation concerning the
class interfaces, parts of the Monet™ source code has to be made available for analysis. Those
parts are the SIF database modul plus the SIF generate module (assuming VHDL input) or the
SIF database modul plus the SIF read module (assuming textual SIF input). In coordination
with the Monet™ developer team, the later alternative was selected (see figure 16 for a brief
overview on the Monet™ modules and their interaction).

3.2 SIF to CDFG format conversion
According to realization strategy-3 identified for most practicable in the previous section, the
conversion of a SIF structure into a prototype system CDFG structure is done by

• running through a Monet™ designs hierarchy of SIF class instances,

• identifying SIF information which is relevant for CDFG generation, and

• creating of a corresponding CDFG structure.

In the following, details concerning the format converter and its implementation are given.

strategy realization effort documentation strength of coupling

textual-SIF parser high not available weak

lex/yacc
textual-SIF parser

medium not available weak

procedural
SIF interface

high restricted available tight

Table 5: Evaluation of realization strategies.

1

2

3

Figure 16. Monet™ modules and interaction.

...

scheduling

allocation

VHDL

VHDL

SIF
generate

SIF
write

Netlist

SIF database

te
xt

ua
l

S
IF

SIF
read

15

Objective of the format conversion from SIF to CDFG is the elaboration of requirements and
methodologies to make high-level transformation and high-level estimation activities available
in Monet™. The implemented format converter has anexperimentalcharacter, which means
that only a subset of the SIF expressive domain can be transformed into CDFG structures. Rea-
sons for that restriction are:

• Input of SIF is a description of a hardware design given in ahardware description language
(VHDL), since input of CDFG is a description of a hardware design given in asoftware lan-
guage(C). Intention of SIF is to support the whole VHDL language, in the ideal case, since
intention of CDFG is to examine approaches to use software language descriptions for the
specification of hardware behavior. This concludes that SIF is, on principle, more suited for
describing hardware, because CDFG is focussed on coming out of a software language (and
for this, is restricted in some features to the expressiveness of software language descrip-
tions). With respect to the format conversion, this means, that only those SIF designs can be
successfully converted to CDFG, which fall into the expressive range of CDFG (see
figure 17).

• An important feature of SIF is the support of multiple levels of abstraction. According to
the methodology presented in chapter 1, high-level transformations are settled on behavior-
al level. Because of this, a conversion of SIF designs into a CDFG structure is limited to up-
per (behavioral) level SIF descriptions (see also figure 17). In particular, synthesis
information generated by Monet™ cannot be adapted to the CDFG structure.

• In regard of the fact, that a complete documentation of the SIF structure does not exist up to
now (the existing SIF documentation unfortunately gives only a superficial and incomplete
overview on SIF in terms of a set of examples), informations concerning SIF have to be
generated by inspection of source code and by analysis of benchmark designs. For bench-
mark designs, we orientate on the standard examples which were part of the Monet™ pack-
age and a set of inhouse high-level benchmark designs of different size, complexity, and
application domain.

• In Monet™, some conversion steps for optimization (for examples, propagation of constant
values) and for representation simplification (for example, representation of the≠0 opera-
tor, see below) areinseparablycoupled to the SIF generation process. The problematic na-
ture of those built-in conversions is shown in terms of the≠0 operator: Figure 18 shows in
(a) a segment of VHDL code, which is transformed by the SIF generation process into an
internal SIF representation corresponding to VHDL code segment (b). As figure 18 indi-
cates, no „high-level“ representation of the≠0 operator exists in SIF, but the≠0 construct is

Figure 17. Description domains and expressiveness.

hardware software

le
ve

l o
f a

bs
tr

ac
tio

n

description domain VHDL

expressiveness SIF

expressiveness CDFG

description domain C

SIF-to-CDFG
convertible
range of SIF

16

automatically mapped to a „low level“ sequence of bit operations. However, the high-level
representation is much more suited for high-level transformation purpose (for example, ap-
plication of algebraic simplifications), and for this, has to be reconstructed out of the low-
level representation.1

For the implementation of an experimental SIF to CDFG format converter, the SIF database
modul plus the SIF read module was isolated by the Monet™ developer team and made avail-
able in source code format to University of Tübingen. Figure 19 shows realization strategy-3
which was identified for implementation in section 3.1 (according to figure 15).

In figure 20, an overview on the implementation details are given:

• The availability of the SIF database and SIF read modules allows an integration of the pro-
cedural interface into the format converter. By this, the strength of coupling of Monet™ and
format converter (which was found to be a drawback in section 3.1) can be decreased. Com-
munication between Monet™ and format converter takes place viatextual SIF format(in
the same way like in realizations strategy-1 and -2 in figure 15), but the defacto conversion
is performed bydirectly analyzing the hierarchy of SIF class instances via the procedural
interface (according to realization strategy-3).

1. For the presented example of the≠0 construct, this reconstruction is performed by the SIF to CDFG format converter auto-
matically, but leads to high conversion effort and is possibly not supported for other examples (because of the absence of a
complete SIF documentation).

Figure 18. Representation of≠0 constructs in SIF.

(a) (b)

variable xvar : unsigned (7 downto 0);
variable yvar : unsigned (7 downto 0);
....

if (((xvar(7) or xvar(6) or xvar(5) or xvar(4)
or xvar(3) or xvar(2) or xvar(1) or xvar(0))

and
(yvar(7) or yvar(6) or yvar(5) or yvar(4)

or yvar(3) or yvar(2) or yvar(1) or yvar(0))
) = ’1’) then
....

variable xvar : unsigned (7 downto 0);
variable yvar : unsigned (7 downto 0);
....
if (xvar /= 0) and (yvar /= 0) then

....

SIF
generation

Figure 19. Realization strategy-3 for SIF to CDFG format conversion.

CDFG

transformationsestimation
synthesis

C

C - frontend

SIF to CDFG format converter

VHDL

SIF

Monet™
synthesis

VHDL - frontend

SIF -
procedural
interface

generation
of CDFG
structure

analysis
of SIF

structure

identific.
of CDFG

infos

17

• Inside the converter, a generation of the CDFG structure is not done directly, but takes ad-
vantage of the existing ANSI-C frontend. Therefore, C-format is produced out of the SIF
structure and passed to the prototype system C-frontend (to be translated into CDFG). The
resulting C-code is extended by specific frontend commands which allows to pass hard-
ware-related information (for example, word lengths or port attributes of signals and vari-
ables) into the prototype system CDFG structure. By this, the strength of coupling of format
converter and prototype system can also be decreased. This results in a format converter,
which acts for an isolated instance (binary) to transform textual SIF input into extended C-
code output. In particular, the C output can be made available for the designer to be used for
test and validation purpose (see section 3.3).

3.3 Experiments
Objective of the implementation of an experimental format converter was to pass several
designs from Monet™ into the prototype system and there to perform high-level transforma-
tion and high-level estimation steps. The applicability of the methodology can be shown in
terms of a set of high-level synthesis and high-level transformations benchmark designs.
Table 6 shows some characteristics of the benchmark designs and the conversion process.

According to the methodology described in section 3.2, Monet™ was applied for creation of
textual SIF format out of behavioral level VHDL design descriptions. Those textual SIF files
were used for input of the experimental format converter which generates (extended) C code.
The C code files were then passed to the prototype system using the existing C-frontend. As
table 6 shows, most of the SIF benchmark designs can be successfully transformed into CDFG
structures without any problems. Inside the prototype system, the design can be treated by
high-level transformation and high-level estimation activities.

Figure 20. Implementation of realization strategy-3.

CDFG

transformationsestimation
synthesis

SIF

Monet™
synthesis

SIF
write

te
xt

ua
l

S
IF

SIF
database

format converter

procedural
interface

SIF

SIF to C
conversion

SIF
read

VHDL

VHDL - frontend C - frontend

C

C

18

Furthermore, the experimental format converter can optionally be induced to produce an out-
put file, which includes non-extended C code (and for this, can be compiled and executed).
This feature can be used by the designer for test and validation purpose, for example, the iden-
tification of a bug in the Monet™-internal constant propagation algorithm: Figure 21 shows in
(a) a segment of behavioral-level VHDL code (taken from the fibonacci benchmark design).
During the conversion of the VHDL description into a SIF structure, Monet™ performs a
propagation of constant values. Applying the C-output feature of the experimental format con-
verter, there results C code segment (b), in which the illegal propagation of constant value 1

design description
conversion

OK ?
lines of VHDL
(behav. level) SIF a

a. Complexity of SIF representations approximated by the number of controlflow/dataflow class instances.

CDFG b

b. Complexity of CDFG representations approximated by the number of nodes of the controlflow-/dataflowgraph.

lines of C
CFG DFG

Monet™ benchmark designs

gcd greatest common devisor factorization yes 37 45 13 64 31

memlab memory lab exercise yes 53 265 53 403 155

loop13 simple loop yes 20 10 2 14 6

loop13_pipe simple loop for pipelining yes 26 70 11 67 33

simple_math simple mathematical calculation yes 25 36 2 30 18

matmult matrix multiplication noc 54 - - - -

complx_mult complex multiplication yes 46 33 2 28 16

memlab_ram memory lab exercise noc

c. Not working with reference version of SIF database and SIF read module (no dualport memory supported).

56 - - - -

matmult_kl matrix multiplication noc 54 - - - -

benchmark designs from University of Tübingen

gcd greatest common devisor factorization yes 30 30 9 39 21

bubblesort bubblesort sorting yes 32 152 71 298 103

kmp Knuth-Morris-Pratt pattern matching yes 63 440 214 910 318

diffeq differential equation yes 35 71 6 68 40

ellip elliptical wave filter yes 64 139 2 102 78

kalman Kalman filter nod

d. Design too large for prototype system.

78 3384 - - -

fancy simple mathematical calculations yes 80 159 38 207 99

traffic traffic lights control yes 57 137 34 177 85

fibonacci fibonacci numbers yes 30 34 6 38 20

vectoradd vector addition yes 40 51 19 91 34

matrixmult matrix multiplication noe

e. Internel Monet™ error during generation of textual-SIF format.

54 - - - -

sum sum calculation yes 35 25 6 31 15

sum (2) sum calculation and test yes 44 38 10 48 25

exponent exponent calculation yes 54 38 10 49 25

determinant determinant calculation yes 42 41 2 35 14

binomial coefficients of binomial expansion yes 81 91 19 105 52

Table 6: Benchmark designs and results.

19

into the inner loop condition block can be easily backtracked (or identified by executing the C
code).

3.4 Conclusion
The experiments spent with the experimental format converter show, that on principle the
application of the transformation and evaluation methodology described in chapter 2 to
Monet™ designs is practicable and ingenious. For the coupling of Monet™ and transforma-
tion/evaluation tasks, two different realization strategies are imaginable:

1. Transformation of Monet™ SIF designs into CDFG representation by applying the SIF to
CDFG format converter. Based on those CDFG structure, a transformation and evaluation
of designs can be done within the prototype system. After finishing the transformational
optimization process, a backward conversion of the CDFG structure into SIF representation
has to done (by applying a CDFG to SIF format converter to be implemented). The optimi-
zed SIF representation is then treated by Monet™ synthesis (see figure 22).

Figure 21. Identification of a bug in Monet™-internal constant propagation algorithm.

...
i = 1 ;
while (i <= 10)
{

j = 10;
while (1 < j)
{

j = j - 1;
...

}
i = i + 1;

}
...

...
i := 1;
n := 10;
...
while (i <= n) LOOP

j := n;
while (i < j) LOOP

j := j - 1;
...

end LOOP;
i := i + 1;

end LOOP;
...

VHDL C

Monet™-internal
constant propagation

(a) (b)

Figure 22. Strategy-1 for transformation/estimation integration into Monet™.

VHDL

SIF

Monet™
synthesis

VHDL - frontend

CDFG

transformations
estimation

synthesis

C

C - frontend

SIF to CDFG

format converter

CDFG to SIF

format converter

design
flow

20

2. (Partially) reimplementation of transformation and evaluation concepts of the prototype
system in Monet™. According to the methodology presented in chapter 2, the transforma-
tion/evaluation mechanisms immediately act on the internal high-level design representa-
tion, in case of Monet™ the SIF datastructure (see figure 23).

After careful analysis of the SIF design representation and strategies for SIF to CDFG conver-
sion, we advise to favor the second realization strategy (reimplementation of transformation/
evaluation concepts in Monet™). The decision bases on following arguments:

• Due the fact, that SIF allows to handlehardwaredesigns coming out of ahardwaredescrip-
tion language in a more accurate and detailed way than CDFG does (see section 3.2), the
round trip including SIF to CDFG conversion, transformation/evaluation within the proto-
type system, and CDFG to SIF backward conversion leads to a loss of design information
and compactness of representation (for examples, because of the fact that for specific SIF
constructs there exist no directly corresponding CDFG construct). This leads to an alter-
ation of the transformational behavior as well as a reduction of accuracy of the cost evalua-
tion mechanisms. Another implication is, that CDFG to SIF backward conversion will be
much more difficult to realize than SIF to CDFG conversion (because of the fact that design
information has to be added during conversion, which means that CDFG to SIF translation
represents more than a pure format conversion step).

• SIF corresponds to a well-devised and well-organized object oriented design representation
and, for this, is well suited for supporting high-level transformation activities. There exist a
set of transformation steps (for example, constant propagation and loop unrolling), which
can be used for an object of analysis to understand how transformations manipulate the SIF
structure. Some of the basic transformation steps (for example, constant propagation) are
inseparably integrated into the SIF generation module. A first step will be to disconnect
them from SIF generation and make them available in an isolated interactive manner (in
combination with a correction or replacing of the algorithms, see section 3.2). The next step
will be the extension of the basic transformation set by adapting and reimplementing CDFG
transformation algorithms to/in SIF.

Figure 23. Strategy-2 for transformation/estimation integration into Monet™.

VHDL

SIF

VHDL - frontend

transformationsestimation

Monet™
synthesis

CDFG

transformations
estimation

synthesis

C

C - frontend

transformationsestimation

design
flow

21

• SIF is also well suited for supporting high-level cost evaluation activities in the way pre-
sented in section 2.2: Similar to the prototype system, Monet™’s high-level synthesis steps
are realized by isolated algorithms which immediately manipulate the internal SIF design
representation. So, an analysis of the design representation can be applied to different exe-
cution stages of the high-level synthesis process, which is an important demand of our two
level estimation approach. For a first approximation, existing cost estimation concepts for
design criteria area and delay can be utilized for generation of level-1 cost estimation val-
ues. The Monet™ library concept provides cost estimation values corresponding to the ones
produced by the prototype system level-0 cost heuristics (for design criteria area and delay).
Level-0 cost estimation values for design criteria power can be received by the power mac-
ro-modeling approach of Barocci, Benini, Bogliolo, et al. [BaBeBo98]. So, an integration
of the cost evaluation methodology outlined in section 2.2 can be realized in a step-by-step
fashion.

4 Experimental Evaluation of Monet™

Project phase-3 of the first project period also includes an evaluation of the Monet™ high-level
synthesis process. This chapter presents our designer‘s results and experiences in applying
Monet™, and can be regarded independently of the previous chapters.

4.1 Application-1: Kohonens self-organizing map
A first application passed to Monet™ was part of an algorithm from the domain of neuronal
networks, Kohonens self-organizing map (SOM). The problem to be (quickly) solved is: for a
given input vectorX, identify those neuron of the competition layer, whose weighting vectorW
is most similar toX (see figure 24).

To solve this problem, the euclidean distance ofX andW has to be calculated for each of the
4096 neurons of the competition layer. Table 7 shows the number of non-comment lines of
behavioral VHDL code (noc-lc) and some characteristics of the synthesis results For this appli-
cation, the ability of Monet™ to explore design alternatives (and for this, to aim at the fastest
solution) turned out to be very important.

Figure 24. Kohonens self-organizing map (SOM).

neuron neighborhood

neuron

competition

input

weight vector

(neurons j=1,...,4096)

j

input vector
X=(x1,x2,x3,x4)

wj
1

wj
2

wj
3

wj
4

Wj=(wj
1,wj

2,wj
3,wj

4)

x1

x2

x3

x4

layer

layer

D j w k
j x k–()

2

k 1=

4

∑=

euclidean distance:

(for j=1,...,4096)

22

4.2 Application-2: ATM switch controller
Another application treated by Monet™ is an ATM switch controller [Pr94]. On highest level
of abstraction, the controller can be split into seven VHDL modules of different size and com-
plexity (see figure 25).

For Monet™ synthesis, the lca_300k_comp_dc and lca_300k_dmag_dc libraries were used,
and the superstate scheduling mode, a cycle time of 25 ns as well as the generation of a syn-
chronous reset were selected. Since the application underlies realtime constraints, the alloca-
tion process was focussed on generating the fastest solution. Table 8 summarizes the results of
the synthesis processes: all of the seven modules (containing altogether eleven processes) were
able to be successfully synthesized by Monet™. Some of the modules (marked by brackets
around „OK“ in the „Monet™ synthesis“ column in table 8) produce errors during the first
synthesis attempts, which can all be successfully eliminated in cooperation with the Monet™
developer team. Details concerning the synthesis of the ATM switch controller modules can be
found in [LaRo97] [LaRo98].

process nc-loc Monet™
synthesis

synthesis results

fa
st

es
t

sm
al

le
st

ar
ea

[g
rid

 u
ni

ts
]

de
la

y
[n

s]

#c
st

ep
s

#o
ps

S
O

M euclidean distance 70x
OK x 2142 46.7 8 58

OK x 4180 27.0 6 58

Table 7: Synthesis results of distance calculation in SOM.

Figure 25. VHDL modules of the ATM switch controller.

Clk_xmit

rbuffer_full

rcell_fetch

rcell_bus - 32

rcell_rdy

Clk_xmit

Cell_Bus

Cell_fetch

Data_in

Hd_rdy

Hd_bus

Hd_fetch

Clk_com

RT

Reset

Cell_read

Cell_write

Cell
Buffer_full

Cell_Sync_In

CC

SRC

Hd_wr

Header

Hd_read

RC

Clk_AHT_In

A
H

T
_I

N

S
w

itc
h

rcell_read

Cell_Presync

Data_out - 8

Chan_bsy A
H

T
_O

U
T RD

HT

Clk_AHT_In

Cell_Sync_out

Cell_rdy

Clk_aht_out

rcell_data - 32

rcell_write rcell_data

FIFO_Out

CELL_FIFO

HEAD_FIFO

AHT_IN input module

HT header translator

RC routing control

SRC shift register control

CC connection control

RD receive data

AHT_OUT output module

23

4.3 Application-3: synthesis and transformation benchmark designs
This section summarizes the results of applying Monet™ to the synthesis and transformation
benchmark design suit used for evaluation of the experimental SIF to CDFG format converter
(see section 3.3). The benchmark design suit includes designs of different size, complexitie
and application domain.

The synthesis process was performed twice for each module, focussed on the fastest and on the
smallest solution. Again, lca_300k_comp_dc and lca_300k_dmag_dc component libraries
were used, and the free scheduling mode as well as a cycle time of 25 ns were assumed.
Table 9 summarizes the synthesis results for the benchmark designs which are not part of the
Monet™ example set.

Regarding the functionality and handling of Monet™ it can be captured, that the ability to
manually intervent into the synthesis process (for example, to reschedule local parts of the
design under varying constraints) was found by the designers to be a very powerful way for
optimizing critical parts of the design, in particular in combination with the existence of pow-
erful tools for visualization and cross-probing, which allows a comfortable backtracking of
bottlenecks through designs and design levels.

module process nc-loc Monet™
synthesis

synthesis results

fa
st

es
t

sm
al

le
st

ar
ea

[g
rid

 u
ni

ts
]

de
la

y
[n

s]

#c
st

ep
s

#o
ps

FSM

#s
ta

te
s

ar
ea

[g
rid

 u
ni

ts
]

AT
M

AHT_IN
ahtin 60 OK x

1843 18.0
10 32 9 905

payload 31 OK x 52 238 51 15809

HT htproc 89 OK x 1243 2.3 7 46 7 430

RC
rcin 155 (OK) x

1689 6.9
17 172 18 3590

rcout 48 (OK) x 6 39 7 517

SRC shiftproc 153 OK x 7121 7.0 17 710 16 2093

CC ccin 178 OK x - - 17 352 - -

RD
rdin 204 OK x

14381 10.1
10 701 10 1042

rdout 33 OK x 6 29 5 357

AHT_OUT
ahtout 71 OK x

1338 23.4
29 197 30 7676

ahtout_t 47 OK x 52 162 57 19266

Table 8: Synthesis results of ATM switch controller.

24

process nc-loc Monet™
synthesis

synthesis results

fa
st

es
t

sm
al

le
st

ar
ea

[g
rid

 u
ni

ts
]

de
la

y
[n

s]

#c
st

ep
s

#o
ps

FSM

#s
ta

te
s

ar
ea

[g
rid

 u
ni

ts
]

be
nc

hm
ar

k
de

si
gn

s

gcd 30
OK x 1510 13.9 2 22 3 117

OK x 1219 14.6 3 22 4 146

bubblesort 32
OK x 13105 19.5 6 98 3 207

OK x 16835 24.6 8 98 5 207

kmp 63 binding
error

x - 70.9 6 553 6 -

x - 35.0 15 553 15 -

diffeq 35
OK x 22234 22.6 4 31 5 180

OK x 12209 15.9 13 31 14 359

ellip 64
OK x 13285 44.3 3 57 3 69

OK x 6731 8.6 52 57 52 2444

kalman 78 binding
error

x - 61.6 14 1423 15 -

x - 29.1 31 1423 32 -

fancy 80
OK x 1859 10.5 2 101 3 207

OK x 2326 19.3 13 101 13 1505

traffic 57
OK x 464 4.2 1 68 0 0

OK x 464 4.2 1 68 0 0

fibonacci 30
OK x 531 4.1 2 19 3 117

OK x 476 7.3 2 19 3 117

vectoradd 40
OK x 963 4.2 2 37 3 117

OK x 925 8.9 2 37 3 117

sum 35
OK x 401 4.1 2 16 3 117

OK x 362 5.6 2 16 3 117

sum (2) 44
OK x 432 3.9 3 24 3 117

OK x 389 5.7 3 24 3 117

exponent 54
OK x 601 6.3 3 23 3 117

OK x 496 6.7 3 23 3 117

determinant 42
OK x 7975 25.1 2 33 2 44

OK x 1980 14.1 10 33 10 310

binomial 81 allocation
error

x 1089 - - 53 - -

x 680 - - 53 - -

Table 9: Synthesis results of benchmark designs.

25

5 Submitted Outline for Project Period Two

This chapter includes a proposal for a second project period. According to the discussion in
section 3.4, SIF was found to be well qualified for supporting our transformation and evalua-
tion methodology. The following proposal takes as a basis the approach ofdirect integration of
transformation and evaluation mechanisms into Monet™ (corresonding to strategy-2 in section
3.4). The realization of a high-level transformation environment in Monet™ can be split into
three phases:

• As motivated in section 3.2 by the example of the≠0 construct , the SIF generation process
includes built-in conversion rules for representation simplification, which map high level
constructs to lower level representations. Those lower level constructs will possibly be well
suited for synthesis purpose, but increase complexity of high-level transformation steps sig-
nificantly. For this, a first project phase includes the adaption of those conversion rules to
our high-level transformation methodology. This can be done by an extension of the SIF
data structure by corresponding high-level SIF constructs (combined with an adaption of
SIF generation and handling) or by spending additional effort inside the high-level transfor-
mation algorithms itself (for identification of low-level segments corresponding to high-lev-
el constructs). The decision for a strategy depends on the number of built-in conversion
rules and the tightness of coupling of the low-level SIF constructs to the Monet™ synthesis
process (corresponding to the effort to be spent for an integration of high-level extensions to
SIF). Because of the absence of a complete SIF documentation, those discussion has to be
done in tight cooperation with the Monet™ developer team.

• Some of the existing SIF transformations (for example, the propagation of constant values)
are closely integrated into the SIF generation process. On the other hand, the applicability
of those transformation steps during the transformational optimization process is not re-
stricted to the initial design version (but may possibly be the result of former transformation
steps). For this, a very important demand is the availability of those transformation steps in
the optimization process in isolated form. The second project phase includes the isolation
(and correction, see section 3.3) of those transformation steps, which allows an adaption of
existing SIF transformations to the methodology presented in chapter 2.

• The third project phase covers the implementation of new transformation algorithms on top
of the SIF data structure. Basis of those implementations are existing CDFG transformation
algorithms of our prototype system, which have to be adapted to the SIF environment. A
fixation of number and types of transformation steps to be realized has to be done in close
cooperation with the Monet™ developer team. For decision help, work which is currently
spent at University of Tübingen into a classification of transformation steps in regard of ap-
plicability, could be utilized. Precondition of this phase will probably be the implementa-
tion of a pool (class) of basic SIF manipulation methods.

According to the discussion in section 3.4, an integration of our cost evaluation mechanisms
into Monet™ can be done step by step. Starting point could be the application of existing
Monet™ cost estimation mechanisms for design criteria area and delay as well as the integra-
tion of power estimation heuristics of a project partner [BaBeBo98]. Corresponding to the
Monet™ philosophy of interactive architectural design space exploration, we propose to focus
project period two on a realization of transformation algorithms in Monet™ (combined with
application of existing cost evaluation mechanisms). By this, interactive algorithmic level opti-
mization steps are added to Monet™, which expands the set of optimization mechanisms
available in Monet™ upwards (relative to level of abstraction). Problematic turned out to be

26

the fact, that no complete documentation of the SIF data structure is available up to now. For
implementation of transformation algorithms and evaluation mechanisms based on the SIF
data structure, deep insights into the SIF data structure are indispensable. Therefore, we pro-
pose a tight cooperation with the Monet™ developer team, for example coupled with a stay at
the Mentor™ research laboratory. It is planned that a Ph.D. student from University of Tübin-
gen will spend several weeks at Wilsonville.

Table 10 proposes a project plan for project period two. Outcome of project period two will be
a joint WSI report (corresponding to project period one) as well as implemented extensions to
the Monet™ system.

Further outlook : In Monet™, architectural exploration of design alternatives is performed in
an userinteractiveway. Contents of some work currently spent at the University of Tübingen
is the development and evaluation of algorithmic approaches onautomatedcontrol of the
transformational optimization process (based on the transformation and evaluation methodol-
ogy presented in chapter 2) [GeRo98]. For this, a longer-termed cooperation goal (based on the
work spent in project period one and two) could be the integration of mechanisms for auto-
mated transformation control into Monet™ (see figure 26).

project period 2

contents time schedule

phase-1 :
• analysis of SIF data structure details
• high-level extension of SIF data structure or extension of high-

level transformation algorithms

6 / 99

phase-2 :
• isolation/correction of existing Monet™ transformations
• implementation of methods for high-level SIF manipuation
• experimental validation of transformation algorithms

9 / 99

phase-3 :
• adaption of new transformation algorithms to SIF requirements
• imlementation of new transformation algorithms in Monet™
• experimental validation of transformation algorithms

12 / 99

Table 10: Proposed project plan for project period two.

estimation

Monet™
synthesis

Figure 26. Integration of tranformation control into Monet™.

SIF

transformation
transformations

control
SIF

transformationsestimation

Monet™
synthesis

transformation
control

27

6 References
[AhSeUl86] A.V. Aho, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques and Tools, Addison Wesley,

1986.

[BaBeBo98] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, D. De Micheli. Lookup Table Power Macro-Models
for Behavioral Library Components. Technical Report at University of Bologna, Stanford Univer-
sity, 1998.

[DIN94] European Digital CellularTelecommunications Systems, Phase 2: Full Rate Speech Transcoding.
DIN Norm ETS 300580-2, DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH, 10772
Berlin., 1994.

[GaVaNa94] D.D. Gajski, F. Vahid, S. Narayan, J. Gong. Specification and Design of Embedded Systems.
Prentice Hall, Englewood Cliffs, 1994.

[GeEiHa96] J. Gerlach, H.-J. Eikerling, W. Hardt, W. Rosenstiel. Von C nach Hardware: ein integratives En-
twurfskonzept. In GI/ITG/GMM-Workshop Allgemeine Methodik von Entwurfsprozessen, Pad-
erborn, March 1996 (in german).

[GeRo97] J. Gerlach, W. Rosenstiel. Ein skalierbarer Ansatz zur Kostenabschätzung für die Steuerung von
High-Level Transformationen. Technical Report WSI-97-5 at University of Tübingen, September
1997 (in german).

[GeRo98] J. Gerlach, W. Rosenstiel. Transformationale Entwurfsraum-Exploration. In 43rd International
Scientific Colloquium Ilmenau (IWK’98), Ilmenau, Germany, September 1998 (in german).

[HoEiHa94] A. Hoffmann, H.-J. Eikerling, W. Hardt, R. Genevriere. PSF - Paderborn Synthesis Format. Tech-
nical Report SFB 358 - B2 - 6/94. University of Paderborn, Technical University of Dresden, 1994
(in german).

[LaRo97] W. Lange, W. Rosenstiel. Modellierung einer ATM-Switch-Steuerung. Technical Report WSI-97-
6, University of Tübingen, 1997 (in german).

[LaRo98] W. Lange, W. Rosenstiel. High-Level Synthese einer ATM-Switch-Steuerung. Technical Report,
University of Tübingen, 1998 (in german) (to appear).

[MeNaSe98] K. Mehlhorn, S. Näher, M. Seel, C. Uhrig. The LEDA User Manual. University of Saarbrücken,
Universität Halle-Wittenberg, Algorithmic Solutions GmbH Saarbrücken, www.mpi-sb.mpg.de/
LEDA/MANUAL/MANUAL.html, Saarbrücken, 1998.

[Pr94] M. de Pryker. Asynchronous Transfer Mode: Die Lösung für Breitband-ISDN. Prentice Hall, 1994
(in german).

[ScFeMo97] W. Schwarz, G. Fettweis, A. Mögel. Sonderforschungsbereich 358: Automatisierter Syste-
mentwurf - Synthese, Test, Verifikation, dedizierte Anwendungen. In Wissenschaftliche Zeitung
der Technischen Universität Dresden 46 (1997), Heft 2, pp. 31-46 (in german).

[SeSiLa92] E.M. Sentovich, K.J. Singh, L. Lavagno, et al. SIS: A System for Sequential Circuit Synthesis.
Technical Report Memorandum No. UCB/ERL M92/41, Department of Electrical Engineering
and Computer Science, University of California at Berkeley, May 1992.

[Wu97] Y. Wu. ALH SIF Design Specification. Internal Report, Mentor Graphics Inc.™, 1997.

Acknowledgments

This work was funded by Mentor Graphics Inc.™. The authors would like to thank the
Monet™ developer team, in particular Mr. P. Gutberlet for helpful support and discussion, as
well as Mr. W. Lange and Mr. X. Fang, both University of Tübingen, for their investigations in
experimental evaluation of Monet™.

