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aus Gäufelden
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Zusammenfassung
Ziel dieser Arbeit war es, Algorithmen zu entwickeln und zu verbessern, die es ges-

tatten, große geographische und andere geo-bezogene Datens¨atze mithilfe computer-
graphischer Techniken visualisieren zu k¨onnen.

Im ersten Kapitel der Arbeit wird kurz diese Aufgabenstellung beschrieben. An-
schließend werden die einzelnen zur Verf¨ugung stehenden Datenarten und Daten-
quellen spezifiziert. Weiterhin wird ein Abriß der historischen Entwicklung der Kar-
tographie und des Vermessungswesens gegeben und notwendige Definitionen wie Ko-
ordinatensysteme erkl¨art.

Ein Haupteil dieser Arbeit war die Entwicklung neuer kamera-adaptiver Daten-
strukturen für digitale Höhenmodelle und Rasterbilder.

Im zweiten Kapitel wird zun¨achst ein neuartiges Multiresolutionmodell f¨ur
Höhenfelder definiert. Dieses Modell braucht nur sehr wenig zus¨atzlichen Speicher-
platz und ist geeignet, interaktive Update-Raten zu gew¨ahrleisten. Es verwendet
einen beobachter-abh¨angigen Pixelfehler um das zun¨achst beobachter-unabh¨angige
Multiresolutionmodell an die aktuelle Betrachterposition anzupassen. Dieser Anpas-
sungsvorgang nutzt die perspektivische Verk¨urzung, um die Menge darzustellender
Daten drastisch zu reduzieren. Weiterhin kann dieses Modell auch f¨ur andere Daten-
arten, zum Beispiel CAD-Modelle, verwendet werden.

Kapitel drei diskutiert Ans¨atze zur schnellen Bestimmung sichtbarer und verdeck-
ter Teile einer computergraphischen Szene, um die Bewegung in großen und aus-
gedehnten Szenen wie Stadtmodellen und Geb¨auden zu beschleunigen. Hierzu wurde
ein neuartiger Algorithmus entwickelt, der nur den Bildspeicher des Graphiksystems
nutzt, um diese Fragen zu beantworten. Da der Bildspeicher integraler Bestandteil
jeder Graphikhardware ist, kann dieser Ansatz auf eine große Zahl von Computer-
systemen ¨ubertragen werden. Dieser Ansatz kann sehr einfach mit einer Hardware-
Implementierung realisiert werden und speichert dabei die zum Zeitpunkt der Rasteri-
sierung bekannte Verdeckungsinformation mithilfe spezieller Z¨ahlereinheiten.

In Kapitel vier werden einige Problemstellungen im Zusammenhang mit Tex-
ture Mapping diskutiert. Zun¨achst wird eine neue beobachterabh¨angige Datenstruk-
tur für Texturdaten beschrieben. Dieser Ansatz erlaubt es, auf einfache Art und
Weise, sehr große Texturen zu verwenden, die weit gr¨oßer als der zur Verf¨ugung ste-
henden Texturspeicher sein k¨onnen. Wiederum folgt aus der Ausnutzung perspekti-
vischer Verkürzung, daß nur ein kleiner Teil der Bilddaten f¨ur eine korrekte Darstel-
lung der Textur notwendig ist. Als n¨achstes wird ein Verfahren zur Textur-Selektion
beschrieben, das es erlaubt, ein beliebiges Quadrilateral innerhalb eines Bildes als Tex-
tur zu verwenden. Das Kapitel wird mit der Beschreibung eines neuartigen Verfahrens
zur Texturfilterung abgeschloßen. Dieser Filter liefert weit bessere Ergebnisse als die
bisherigen Verfahren, l¨aßt sich aber weiterhin in Hardware realisieren.

Die meisten dieser Algorithmen und Verfahren wurden in ein interaktives System
zur Geländevisualisierung integriert, das den ProjektnamenFlyAway hat und in Kapi-
tel fünf beschrieben wird. Dieses System kann verschiedene Arten von Geodaten visu-
alisieren. Ein wesentliches Entwicklungsziel war es, die Portierung auf verschiedene
Plattformen zu erm¨oglichen. Dies ist gelungen undFlyAway wird heute sowohl in der
Unix Welt wie auch auf PC-Plattformen verwendet.
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Chapter 1

Introduction

In this thesis, several approaches and developments are described, which arose
from the question, if and how currently available midrange graphic systems are suit-
able for use in the area of geographical, geological, and other terrestrial visualization.
Today, there exist many interesting and important data sets of different dimensions and
scientific content.

The size of these data sets can be arbitrarily large, since modern mapping- and sur-
vey technology produces with the help of modern scanning and raster procedures very
detailed measurements describing our globe. In contrast to this, graphical visualization
capabilities have developed much slower. A simple example explains this discrepancy:

The federal state of Baden-W¨urttemberg, a part of the Federal Republic
Of Germany, extends over an area of approximately 40.000km2. It is cov-
ered with a so called digital elevation model, which is a rectangular grid
having a height measurement stored at each grid point. This height value
is measured in meters over sea level with a grid cell size of 50m. About 16
millions of measurements are contained in this grid. If these points are vi-
sualized using classical computer graphics techniques, they produce about
32 millions of triangles, describing the surface of the landscape. Modern
graphic systems are not able to deal with such large amounts of data. A
graphic workstation is able to visualize approximately 2 millions of trian-
gles per second (Hewlett Packard Kayak FX 4), graphic supercomputers
are capable of crunching 10-20 millions of triangles (Silicon Graphics In-
finite Reality). If we now propose a frame rate of only 5 frames per second
to have an interactive feeling during motion, this means that the system
has to visualize these 32 millions of triangles 5 times per second. This
results in 160 millions of triangles per second. The described workstation
would be overwhelmed with this amount by8000 percent, since this sys-
tem would need 16 seconds for one visualization of the triangle data given
the optimal case (enough memory, thus no interaction with the hard disk
to reload data).

The rest of this chapter describes shortly which data sets and data sources are
available today. In the following chapters, some ideas and approaches will be described
to resolve some of these divergences.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Nubic gold mine map, see [45].

1.1 Survey and Cartography

The following description of the above topics is an outline of [61] and [45], since
these references are standards in this field.

The science ofSurveyconcerns itself with measuring the surface of the earth and
builds models for representing the measured data. The results are digital elevation
models and all kinds of maps.

Cartography or Map Makingis the discipline of collecting, storing, processing,
and visualizing terrestrial data with the help of maps. One especially important part
of map making is the question of how to get a three-dimensional earth model with the
help of a projection onto a two dimensional map.

1.1.1 History of Map Making

Early Map Making Approaches

Some historical sources describe the existence of cartographic activities in Baby-
lon, China, Greece, and Rome during the high time of these cultures. Despite this
knowledge, only a few maps have survived until today.

The oldest map seems to be a map made in Babylon 3800 b.C. which is engraved
into a piece of clay. It shows the north of Mesopotamia. A very old and important map
is also the nubic gold mine map which was drawn on papyrus. (1300 b.C., see figure
1.1).

For the Greece scientists, cartography was the question of how to define a model
of the earth. The first earth maps depicted our planet as being a flat tile, surrounded
by the seas. The impression of the earth being a sphere was developed by the school
of Pythagoras (approximately 500 b.C.) and was made popular by Aristotle’s proof
(approximately 350 b.C.). He argued in this proof that since the shadow of the earth is
always a circle during a moon eclipse then the earth must be spherical to cause such a
shadow. Erastothenes measured in 200 b.C. the radius of this sphere for the first time
by measuring the so called zenith angle of the sun at two different places at noon time.
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With this knowledge, new approaches in map making were possible. The method
of map making by using sets of parallel latitude or longitude lines was developed.
Dikarchos (350-290 b.C.) showed in his maps only one line going from east to west.
But Erastostenes (276-195 b.C.) already used a set of parallel lines. Hipparch (190-
125 b.C.) subdivided the equator in 360 degrees and developed the stereographic and
the orthographic projections. Marinus of Tyros (approximately 100 a.C.) developed
projections using cylinders, Ptolem¨aus (87-150 a.C.) added conic projections.

The Romans had a completely different opinion in using and making maps. They
didn’t use maps to document new geographic results as the people in Greece, but to
declare the borders, the roads or the counties of their empire. Therefore they only used
existing techniques from their time and contributed no overall improvements. Their so
called ”Itinaria” were not correctly scaled and stored only coarse geographic relations.
They were used as road maps for military purposes, and later for documenting trading
roads.

The only antique globe and therefore the oldest globe in existence today, the globe
of Farnese in Neapels, is a sky globe and made as a Roman copy of Greek work which
is dated at 100 b.C. .

Medieval Cartography

The Islamic cultures used and improved the geographic knowledge of Greece. In
Europe, the church dominated all scientific developments which were mostly done in
monasteries. The earth maps developed there should not only show real geographic
properties, but should also demonstrate and explain the content of the Bible. The earth
is mostly depicted as a flat, circular disk (so called wheel map), directing with east to
the upper side of the map. The continents are ordered in the form of the letterT with
Asia above the horizontal dash of theT, Europe to its left side below the dash and
Africa to the right of Europe.

Mountains were shown in such maps in a very schematic way using side or bird-
eye views, eventually also as a ribbon with ornaments or integrated small drawings.

This lasted until the late Middle Ages, when the improved level of geographic
knowledge freed the cartography of their religious bindings imposed by the church.
Then some new earth maps with improved accuracy were made, for example the earth
map of Genua (1457) or the circular ”mappa mundi” of the munch Fra Mauro (1459),
having a diameter of 7 meters.

Change of Cartography up to now

Two important events had a major impact on the development of cartography dur-
ing the 15th and 16th century: the geographic discoveries made and the advent of the
printing process. The discovery of new continents introduced a huge amount of new
geographic knowledge, in the same time new map material was necessary for new ex-
peditions. The printing process using encarved wood or copper plates replaced the
expensive manual copying which was also prone to introducing copying failures into
the maps. This was the beginning of the use of mass produced maps for navigation.

The effort being spent on collecting and processing geographic information re-
sulted in a great growth of cartography. Real cartographic centers were founded, first
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in Italy, Spain, and Portugal and later on in the Netherlands and in Germany. The main
interest was in land and sea maps, and also the first globes and regional maps were
produced. The demand for a geometrically correct representation, which was imposed
by the sailors and other nautical people, resulted in the first intensive use of map grids
and the development of new mapping projections.

A cartographic highlight was the life and work of Gerhard Kremer, called ”Merca-
tor” (1512-1594 a.C.) who lived in the German town Duisburg. After a great number
of regional maps and globes, in 1569 he produced a famous world map, intended to be
used on the sea. This map was produced in a new projection technique developed by
Meractor and this projection is used to this day to produce the map grid of most sea
maps.

The usage as a source of information, but also the wish to represent knowledge
and wealth, led to an increase in the production of globe models. One of the most fa-
mous producers was V. Coronelli who produced around 1700 many small globes and
also some huge ones with diameters between two and four meters. The interwoven de-
velopment of geography, business trading and discoveries was responsible, as already
described, for an increasing demand and also an increasing production of earth and sea
maps, but also for maps describing regional topics of smaller areas. The cartographic
techniques of those days were not able to produce topographic measurements as we
know them today.

Therefore, the first versions of regional oriented maps were based on coarse geo-
graphic orientations, the evaluation of travel times and scheme-like approaches. Later
on, compass, measurement ropes and footstep counting were used as additional input.
The determination of a geographic position with respect to a system of longitude and
latitude circles was still not known. The measurements tried to depict the countryside
along roads or trading routes with a more or less accurate scheme. The cartographic de-
tails consisted of the most important roads, rivers and towns which where often drawn
in an arbitrary projection not related to the map itself. Mountains and other landscape
variations were drawn with the help of side or bird-eye views with increasing detail.
The mapmakers tried to get a more realistic look of their mountain drawings by using
shading as an artistic means to get a more intuitive feeling of steepness and angles (see
figure 1.2).

The further development of cartography was determined by the improvement of
topographic scanning methods and by the slowly happening conversion from image
based ways of map making to using more abstract paradigms. The topographic works
were heavily influenced by two new developments: the first triangulation, used in 1617
by Willibrord Snellius in the Netherlands (more well known because of his optical
laws for refraction) and by the invention of the so called measuring table, a device for
accurately doing measurements. This table was invented by Johannes Pr¨atorius about
1600 in Zürich in Switzerland.

Given more detailed regional measurements, it was possible to use more and
more an exact orthographic view (parallel projection) from above for drawing topo-
graphic details. The birdseye like town views (the most famous ones were produced
by Matthäus Merian in his ”Topographien” - about 1640) were replaced by the exact
geometric outline of roads and buildings which are much more suitable for their use
in maps. Small objects were for the first time substituted by symbols, so called signa-
tures. One example of this is the city map of the German town Esslingen, which was
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Figure 1.2: Side view in an individual way (example of Apians ”Great map of Bayern”
(mountain part of Germany)), see [45].

drawn by the well known German map maker and mathematician Tobias Mayer at the
age of only sixteen (1739 - see figure 1.3).

The side view of mountains was not very suitable, since much of the countryside
was obscured by itself in these kinds of projections. Therefore, in this area of map
making, new projections were applied and were named as ”Kavalier”, or military, or
half perspective mostly due to military reasons. The Kavalier perspective is a parallel
projection where the projection direction and the normal of the projection plane form
an angle of 45 degree. With this, lines perpendicular to the view plane are not shortened
and have the original size (see figure 1.4 and [60] in chapter three).

Finally, the orthographic view from above was used in the same way as it is for
producing city maps and this has not changed since then.

The usage of triangulation for the survey of a whole country as the standard pro-
cedure began, after French scientists had used it successfully in their numerous ap-
proaches to measure the exact degree of longitude (between 1669 and 1741). Cassini
covered France after 1750 with a mesh consisting out of 2000 triangles and used this
as the foundation for a nationwide survey. Furthermore, instruments for high precision
angle measurements were developed which are absolutely crucial for using triangula-
tion. As an example, the sextant of the English scientist Hadley (about 1750) and the
”full circle mirror” of Tobias Mayer (1754) shall be cited (see also figure 1.5).

The development of these approaches was also emphasized, since for military op-
erations a comprising topographic mapping of high quality and meaningful content is
very valuable. By the middle of the 19th century contour lines for coding the height
above sea level and the angle of hill slopes were replacing the so called ”Schraffen”
technique, which had dithered the hills with small pen strokes according to their slope.
To be able to evaluate these contour lines at a large number of measuring points in
short time, new height measurement tools and techniques were developed using differ-
ent principles like barometric air pressure evaluation or trigonometric calculus.

The triangulation procedure is still used today for topographic and geographic sur-
vey. The survey itself is stored with the help of the so called ”fixed point fields” (see
figure 1.6).
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Figure 1.3: City map of Esslingen by Tobias Mayer, see [45].
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Figure 1.4: Kavalier perspective, see [60].

Figure 1.5: Historic measurement tools, here some old versions of angle measurement
tools in the form of some sextants and so called ”full circle mirrors”, see [45].
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Figure 1.6: German major fixed point field (1969), see [61].

The fixed points were often realized with the help of the tip of a tower or a similar
noticeable point in the landscape. Today, usually artificial markers are set since they
can be placed more appropriately and with higher precision. The point set itself is
sorted hierarchically and builds up a hierarchy of triangulations with decreasing trian-
gle size. In Germany, the triangle size of 30-50km for the first level is reduced down
to approximately 1-3km for the finest level.

Other topographic fix point fields store further information. There exists, for ex-
ample, a special fix point field which stores height values above sea level.

Also in the area of cartographic reproduction techniques, several improvements
were made which were mainly due to developing the printing process further and
further. In 1796, Alois Senefelder invented the lithography, which enabled the map
makers to produce maps faster and with higher reproduction numbers. Photographic
procedures and the autotypic rasterization enabled a quick reproduction process from
the original model to the reprint and also to reproduce colored maps. Rotation printing
presses and the 1904 invented offset printing were the necessary technical develop-
ments for an industrial map production process.

The youngest revolution in the cartography and map making discipline is domi-
nated by the massive use of computer systems during the whole process of map mak-
ing. This technological development introduces the greatest methodic change in car-
tography and map making up to now.

1.1.2 Survey

In the discipline of survey, three-dimensional models and two-dimensionally accu-
rate schemes of the earth’s surface or parts of it shall be produced. To achieve this, the
choice of a suitable coordinate system is of great importance. The user has to decide,
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whether to use a Cartesian coordinate system addressing the three-dimensional space,
or a coordinate system on the earth’s surface, using a longitude/latitude scheme, is
more suitable. The first ones are used in modern navigation and survey technologies,
for exampleGPS (Global Positioning System- will be described shortly), the latter
ones are used for cartographic projections and map making. It is of special interest to
define a suitable three-dimensional model of the earth which can be used as the basis
for all these applications.

Sphere, Ellipsoid, Geoid - a Model of the Earth

As mentioned before, the scientists of Greece were already aware of the earth be-
ing a sphere due to their experiments and observations. Newton introduced in 1670 the
laws of gravitation which caused some uncertainty about the earth’s spherical form.
The gravitational force on the earth’s surface is a composition of the earth’s attrac-
tional force due to gravitation directed towards the earth’s center and the centrifugal
force caused by the rotation of the earth which has the opposite direction. The latter
one is stronger at the earth’s equator and gets smaller when coming towards the poles.
Due to the centrifugal forces, the earth is squeezed in the north-south direction produc-
ing an ellipsoidal shape in three-dimensional space. With the increasing accuracy of
measurement technology, these ellipsoids and their parameters (major and minor axes
or alternatively a flattening factor) where defined again and again, often for special
parts of the earth’s surface or for only one country. In figure 1.7, the most important
definitions are summarized. TheWGS84ellipsoid (World Geodetic System, defined in
1984) is the actual reference ellipsoid for most technical uses like the GPS system. It
is remarkable, that the flattening of the ellipsoidal earth models compared to a sphere
model with radius 6371km having nearly the same volume and surface area is approx-
imately 20km at the poles. Also the choice of a suitable ellipsoidal data set, a so-called
geodetic datum, is crucial for survey and cartographic purposes, since otherwise devi-
ations of hundreds of meters can result in a map due to choosing the wrong geodetic
datum (see figure 1.8).

Even using ellipsoids as earth models are not that perfect in resembling the earth
as they seem to be. Due to density variations in the earth’s surface and topographically
caused mass collections (mountains), scientists today tend to deform the ellipsoid’s
surface locally with the help of an offset surface. The resulting surface, called geoid,
can be thought of as the average water level which would result if the seas could flow
beneath the continents with the help of a connected pipe system (see figure 1.9 and 1.10
for the offset surface). This offset surface can be produced with the help of physical
simulations and the known density distributions of the earth’s surface. The geoid’s
surface is then the base of all local height measurements, since it defines the local sea
level. Usually, these offset surfaces are rather coarse and therefore the deviation of
geoid and ellipsoid is normally smaller than 50m.

1.1.3 Map Projections and Coordinate Systems for Map Making

Map projections project a mapping grid superimposed on a three-dimensional earth
model onto a plane. The result of this projection should be a suitable base for produc-
ing maps or for building planar digital elevation models. To achieve this, a variety
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Figure 1.7: Different ellipsoids (flattening factor f: measure for the squeezing of the
earth in north-south direction,f =

(a�b)
a

anda is the major,b the minor axis of the
ellipsoid).

Figure 1.8: Deviations due to using different geodetic datums.
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Figure 1.9: Ellipsoid and geoid.

Figure 1.10: Geoid Offset Surface for the WGS84 Ellipsoid.
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Figure 1.11: Map projection with the help of a light source, see [92].

of map projections were defined, each having different properties useful for special
application areas. In the following section only basic principles of doing such projec-
tions and the most widely used map coordinate system (UTM - Universal Transversal
Mercator) will be summarized.

Properties of Map Projections

Whether one treats the earth as a sphere, an ellipsoid or as a geoid, its three-
dimensional surface must be transformed to create a flat map sheet. This transforma-
tion, usually achieved through utilizing a mathematical function, is commonly referred
to as amap projection. One easy way to understand how map projections alter spa-
tial properties is to visualize the projection as a light shining through the Earth onto a
surface, called the projection surface (see figure 1.11).

The projection of a map involves the use of coordinates as defined by the projection
formulas. These formulas transform an input coverage into an output coverage and
have different properties and invariants.

The following enumeration briefly describes the most important properties of map
projections:

� Conformal Projections: Conformal projections preserve local shape due to con-
serving the angles between lines. The drawback is that area enclosed by a series
of arcs may be greatly distorted in the process. No map projection can preserve
shapes of larger regions due to the flattening imposed on the three dimensional
earth surface.

� Equal-area Projections: Equal-area projections preserve the area of displayed
features. To do this, the properties of shape, angle, scale, or any combination
of these may be distorted. Thus, in such projections the meridians and parallels
may not intersect at right angles. In some instances, especially maps of smaller
regions, it will not be obvious that the shape has been distorted, and distinguish-
ing an equal-area projection from a conformal one may prove difficult unless
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documented or measured.

� Equidistant Projections: Equidistant maps preserve the distances between cer-
tain points. Scale is not maintained correctly by any projection throughout an
entire map; however, there are, in most cases, one or more lines on a map along
which scale is maintained correctly.

� Direction Preserving Projections: The shortest route between two points on a
curved surface such as the Earth is along the spherical equivalent of a straight
line on a flat surface; that is, the great circle on which the two points lie. Di-
rection preserving orazimutalprojections are used to rectify some of the great-
circle arcs, giving the directions or azimuths of all points on the map correctly
with respect to the center. There are projections of this type that are also confor-
mal, or equal-area, or equidistant.

Projection types

As already defined, a map projection is a mathematical expression that system-
atically projects locations from the surface of a sphere or an ellipsoid/geoid to the
representative position on a planar surface.

Because maps are flat, many map projections are made onto geometric shapes that
can be flattened without stretching their surfaces. Common examples of shapes that
meet this criterion are cones, cylinders, and planes. Actually, cylinders and planes are
limited forms of a cone.

The first step in projecting from one surface to another is to create one or more
points of contact. Each point is called apoint of tangency. As illustrated below,
a planar projection is tangential to the globe at one point only. Tangential cones and
cylinders contact the globe along a line. If the surface of projection intersects the globe
instead of merely touching its surface, the resultant projection conceptually involves a
secant calculation rather than a tangential calculation. Whether the contact is a tangent
or a secant, the location is significant because it defines the point of lines of zero
distortion. This line of true scale is often referred to as astandard line. In general,
projection distortion increases with distance from the point of contact.

Many common map projections can be classified according to the projection sur-
face used for each: conic, cylindrical and planar. In figures 1.13, 1.12, and 1.14 the
respective approaches are briefly depicted.

The UTM system

The so calledinternational ellipsoidWGS84 (see 1.7) is the basis for theUni-
versal Transversal Mercatorprojection (UTM). The UTM is a transversal cylindrical
projection.

This system covers the earth between 84th degree latitude in the north and 80th
degree in the south with 60 so calledmeridian stripeseach having an extension of 6
degree longitude. It was originally defined for making military maps for the U.S. forces
and NATO, but is nowadays also used for civil purposes. To reduce the stretching of
length at the vertical stripe borders, the middle meridian is scaled by a factor of 0.9996.
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Figure 1.12: Cylindrical projections, see [92].

Figure 1.13: Conic projections, see [92].
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Figure 1.14: Planar projections, see [92]. The bottom figures show, how the placement
of the projection center affects the projection properties.

Figure 1.15: Scheme of all UTM zones.

Most European countries today use conformal cylindrical projection systems. One
famous exception is Switzerland, where an oblique cylindrical projection is used for
map making having the origin and the tangent circle going through a point in the capital
Bern.

In figure 1.15, the scheme of the UTM zones is depicted. Figure 1.16 shows one
single zone.

The Gauß-Krüger system

The famous German mathematicianC.F. Gaußdeveloped a projection which uti-
lized ellipsoids for transversal cylindrical projections and not only spheres. This pro-
jection was established by Kr¨uger between 1912 and 1919 in the German cartographic
community and therefore in Germany the UTM coordinates are called Gauß-Kr¨uger
coordinates.

A system of meridian stripes was established in 1927 initially on the basis of the so
calledBesselellipsoid. Today, the WGS84 ellipsoid is used for this coordinate system
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Figure 1.16: Single UTM zone 14.

(see figure 1.7). The meridian stripes for the system have an extension of 3 degrees in
longitude and are defined along themain or middle meridians6th,9th,12th, and 15th
degrees of longitude.

For a coordinate pair(x; y), the valuex is called theRightvalue, and the valuey
is called theUp value. The right value is defined by adding the distance from the main
meridian to 500,000m to prevent the right value from becoming negative. Finally, the
value of the main meridian divided by 3 is added. The up value simply measures the
distance to the equator in meters.

A value of (3; 600; 000:00m; 5; 000; 000:00m) describes a point, lying in the
meridian stripe around the 9th degree 100km to the east of the middle meridian and
5,000 km to the north of the equator.

1.1.4 Modern Survey Technologies - GPS

One of the most exciting new survey technologies isGlobal Positioning System -
GPSintroduced at the end of the eighties.

Since the fifties scientists have been able to launch satellites with rockets and to
position them on stationary orbits around our globe. These satellites are used for many
purposes, transmitting signals, taking pictures and also for navigation and cartographic
purposes.

The first navigation system was theTransit Navigation Systemof the U.S. Navy,
built up during the fifties. It consisted of five satellites which could be used for position
determination using the Doppler frequency shift of signals sent by the satellites. This
Doppler shift occurs because the satellites have a defined velocity as a moving signal
source. Out of the known orbit parameters and with the measured frequency shift, the
position of the receiver could be calculated.

The next generation of navigation systems, GPS and GLONASS in the former
Sowjet Union influence area, rely on detecting differences in time stamps compared to
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Figure 1.17: Schematic of the GPS satellite constellation, see [61].

a global system time.
The system itself consists of 24 satellites (3 are held as spare devices in orbit), see

figure 1.17. 4 satellites share a common orbit, 6 of these orbits are placed in space
in such a way, that at any time at almost every point on the earth’s surface there are
at least three satellites visible. Each satellite has an atomic clock built in and all the
clocks of the satellites are held in synchronization ensuring a global GPS system time.

The satellites are constantly sending data records consisting of their position in
space and the current GPS system time. The user has a GPS receiver, which has also a
built-in clock which is synchronized with the GPS system time. The distance between
a satellite and the user can be determined by detecting the time shift between the time
the user receives the GPS signal of a satellite and the time which is contained in the
signal itself as data. Furthermore, the data sent by the satellite contains the satellite’s
position in space in the WGS84 coordinate system. If a user on earth can receive at
least three of these signals, he can determine his position in 3D uniquely as the inter-
section of three spheres in space (see figure 1.18). Normally, only electronic clocks
with crystal oscillators are built into the GPS receivers for common users. With the
help of a forth satellite, the inaccuracy due to frequency shifts in these low cost clocks
can be compensated. The signals of the GPS satellites contain additional information
to compensate other time shifts due to the different atmospheric layers. The satellite’s
signals sent down to earth are refracted between these layers. This can increase the
time shift measured by the user.

The accuracy of the GPS position measurements depends on several factors. First
of all, it is very important that the viewable satellites are suitably placed. This means,
the angles between them should be maximal. The best situation is having a satellite
in the zenith and the three others in 120 degree angles positioned at the horizon. With
this constellation, the maximal deviation of normal GPS measurements is 16m (PPS
- precise positioning service). Due to the military origin of the GPS system, the data
sent by the satellites has noise added to decrease the accuracy of the system for normal
users (AS - anti spoofing). Only special receivers are able to decrypt these signals to
allow the use of the full PPS accuracy. Normal receivers can only use the standard
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precision service (SPS), which allows an accuracy higher than 100m. For normal pur-
poses like car navigation this is sufficient, but using GPS for survey purposes requires
more accuracy.

This can be achieved in different ways:

� Relative Positioning: The coordinates of a new point are determined with the
coordinates of a known point and two GPS measurements, one at the new and
one at the known point. Combining the two measurements with a subtraction
results in an offset vector, which can be used to calculate the new position from
the known one. The subtraction eliminates systematic errors from the two GPS
measurements.

� Repetitive Measuring: With the help of long measurement cycles, errors can be
reduced with the help of statistical methods. Measurement times can increase to
several hours.

� Modeling of Atmospheric Errors: The better the atmospheric influences are
modeled in the equation systems used for calculating, the more accurate the
results will be. Therefore, additional atmospheric information and data can be
used besides the data already available in the satellite’s signals.

With these approaches, the accuracy of the measurements can be increased to be
higher than 2mm. Using such systems, a fast, but very precise survey can be realized,
since the survey reduces itself to establishing the GPS receivers and collecting and
processing the data. Furthermore, some survey tasks are only possible using this very
high precision of GPS. One example is the long time measurement used to control the
potential damage of huge structures under high pressure like bridges or dams.

1.2 Data Sources and Data Acquisition

This section describes briefly, where to get data and what kinds of data are cur-
rently available as a raw material and input for ”virtual geography”.

1.2.1 Remote Sensing

Nowadays, flying at different heights and with various devices one can collect geo-
related information of the landscape. The devices range from low altitude planes and
balloons to satellites in orbit either positioned stationary or dynamic. This is described
by the term remote sensing, a discipline driven also by military intelligence, for which
such data is crucial.

Digital Elevation Models

When modern raster scanners scan the earth’s surface, different kinds of data of all
parts of the frequency spectrum are produced. Infrared frequencies can for example
provide valuable hints on the health of forest trees. Some sensors carried on planes or
satellites are able to scan the earth’s surface in an active way. For this, they use laser or
radar scanners (SAR: synthetic aperture radar). The result of this scanning is a regular
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Figure 1.18: Determination of a user’s position from 3 GPS satellites, see [61].

rectangle grid with height values at the corner points. These grids are called digital
elevation model (DEM) or digital height model (DHM) (see figure 1.19).

Such a DEM can also be digitized from contour height lines already stored in
topographic maps, see figure 1.20.

These DEMs are nowadays available of most parts of the earth. Their resolution
ranges from 1km down to 30m. Some of these data sets are public domain. For
example theUSGS(U.S. Geological Survey) offers two models:

� USGS 7.5 minute DEM:

– 30m x 30m resolution

– coordinates are projected and are given in UTM (universal transversal mer-
cator)

– maximum error in height is +/- 15m

– available for the whole USA

� USGS 1 Degree DEM, see figure 1.21:

– 90m x 90m resolution (3 arc seconds in square)

– public domain - download viaftp

– coordinates are defined in a 3D system (WGS72 or WGS84), not projected

– maximum error +/- 30m in 90

– available for the whole USA

– originally created by the DoD (Department of Defense)
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Figure 1.19: Digital Elevation Model.

Aerial Photography

Photography by airplanes flying over the terrain provides us with high-resolution
images, which are made with a camera respecting central projection and taking the
picture not perpendicular to the earth’s surface. To use these photos and to combine
them with map data, they have to be geo-coded, that means converted to a common
coordinate system, for example Gauß-Kr¨uger, and to an orthographic projection.

This can be achieved with the help of a DEM. The picture is virtually reprojected
back onto the DEM from the point where it was taken in a central perspective projec-
tion. Then it is resampled from a new point of view with an orthographic projection
(see figure 1.22). This task can easily be performed with the help of projective textures
(see chapter 3).

The resulting orthographic, geo-coded images (see 1.23) can have very high
ground resolutions. They are taken in regular intervals by the mapping authorities
for documentation purposes and to improve existing maps.

Satellites and their Usage

Several satellite systems of different nations are permanently observing the earth.
Usually, they perform a multi-spectral scanning and often the data is available via ftp
or http. These satellites are also used for purposes like weather forecasts or flood
prevention. Well-known systems areSPOTand theLandsatsystem ofNASA. These
satellites are launched in regular intervals since 1972 and circle around the earth in sun
synchronous, polar orbits. Their most important sensor, theThematic Mapper, has 7
spectral channels and a pixel resolution of 30m x 30m. The produced data is stored
and distributed via national services like theUSGSin the US or theESAand theDLR
in Europe, see figures 1.24, 1.25, and 1.26.
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Figure 1.20: Topographic map with contour lines, see [3].

Figure 1.21: Structure of aUSGS1 degree digital elevation model, see [102].
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Figure 1.22: Conversion of central projected aerial photos to orthographic, geo-coded
images, see also [39]. On the upper left, the original image is shown, which is pro-
jected in the lower image with a central projection on a digital elevation model (DEM).
From this, the orthographic, geo-coded image on the upper right is produced with an
orthographic projection.
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Figure 1.23: Orthographic aerial photography, having an original ground resolution of
25cm, see [3].

Figure 1.24: Scheme of theLandsat7 satellite, see also [83].
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Figure 1.25: Landsat satellite in space, see [83].

Figure 1.26: Table describing the properties of theLandsatsatellites, see [83].
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Figure 1.27: An isosurface extracted from a ground water simulation.

1.2.2 Other Data Sources

Several other data sources provide geo-related information, which gives additional
content to the already mentioned data.

Data from Simulation and other Scientific Processes

Due to advent of modern computers in all scientific areas, complex processes in the
natural environment can be modeled with the help of computers. Geo-related data re-
sults are available especially from geological or atmospherical simulations, see figure
1.27 and figure 1.28. But also new measurement technologies like seismic resonance
measurements enable the scientists to produce data representing structures in the earth
or the atmosphere, which have to be visualized to be understood and interpreted cor-
rectly.

CAD and Other Artificial Data

In the context of geo-related information, ”virtual” data, which is not measured or
simulated, but planned artificially plays an important role in visualization. These data
sets range from three-dimensional CAD models of houses to models of whole bridges,
dams or freeways. The visualization of such models is able to show the impact of the
planned constructions on the natural environment in which they shall be integrated,
see figure 1.29 and figure 1.30.
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Figure 1.28: Three dimensional model of ground water pollution. The building is a
model of the factory where this pollution occurred.

Figure 1.29: Model of a freeway.
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Figure 1.30: Model of a planned industrial area.

1.3 Motivation For The Following Chapters

In this chapter, the available geo-related data-sources were described. Most of
their data-sets can not be visualized directly due to their size and special algorithms
are necessary to perform this task.

In chapter two, a multiresolution algorithm is described that defines a very storage
efficient multiresolution model for storing and reconstructing terrain and landscape
surfaces. In the introduction of this chapter was already described, that the regular
sampling of terrain surfaces can produce a huge amount of sampling data, see 1. Mul-
tiresolution techniques utilize the data reduction possible by exploiting perspective
foreshortening to adopt such huge data sets to a certain viewer position. This adapta-
tion process decreases the amount of data that has to be visualized significantly.

Another approach to reduce the amount of data processed and visualized is the
fast determination of scene parts that are either outside the visible area, called view
frustum, or inside but occluded and therefore also invisible. Imagine for example a
landscape consisting of valleys and hills that obscure each other. Another example
is a walkthrough of a extended architectural model like a city which is also a geo-
related data set. Many houses are possibly visible in the view frustum, but they obscure
each other and therefore, only a small part of the scene geometry is needed for the
visualization. Chapter three deals with culling algorithms, that are quickly able to
detect the visible parts of extended scenes or complex models. A new occlusion culling
algorithm is defined, that does not rely on a special machine architecture. Furthermore,
this algorithm can be implemented very nicely in hardware.

Texture mapping is a very popular way of visualizing information on surfaces. Un-
fortunately, very large textures like aerial photographs or maps are too big to be used
directly as texture maps. Considering aerial photography, textures of a size of several
Gigabytes (GB) are possible, since such photographs are taken with pixel resolutions
of up to 25 centimeters, which means one pixel equals 25 centimeters of the original
landscape. With this resolution, a terrain of 10km� 10km would require a texture of
approximately 1.5 GB to texture it (40000� 40000 pixels). Since the whole state of
Baden-Württemberg (approximately 40000 km2, one of the federal states of Germany)
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is represented in pictures of this resolution, one can imagine what order of magnitude
of texture data is common today. The handling of data sets in this Gigabyte-area is even
on modern workstations a rather resource consuming problem, since these machines
are able to handle operations on Megabytes, but not Gigabytes of data. Therefore,
again reduction mechanisms offer the solution to enable these moderate equipped ma-
chines to use such data sets. Chapter four describes a camera adaptive texture data
structure that performs this task.

Furthermore, an algorithm for the hardware accelerated selection of an arbitrary
quadrilateral part of a texture is described. Such selections have to be performed for
example when using maps for texturing, since they are usually distorted due to carto-
graphic mapping.

Finally, a new texture filtering approach is described. Texture filtering is necessary
during rasterization to ensure a correct texture mapping on all parts of a perspectively
projected surface. The new filter uses precalculated weighting masks to perform the
filtering operation. With this, a much better quality than using available filters can be
achieved without giving up the possibility of an easy hardware integration.
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Chapter 2

Geometric Multiresolution Models
for Terrain Modeling

2.1 What is Multiresolution?

One essential key idea of data reduction is the paradigm ofadaptivity. This means,
that only parts of the available data are processed and the amount of processed data is
dynamically adapted depending on a criterion which governs this adaptation process.
One kind of criterions that allows adaptation is to exploit a viewer’s position in a
computer graphics scene. Depending on the distance to the viewer, differentlevels
of detail (LOD) of the data can be used, since in the background almost no detail
is necessary due to perspective foreshortening. Data structures, that store such LOD
descriptions and are able to reconstruct and eventually combine different levels, are
calledMultiresolution Models.

Camera adaptive data structures andMultiresolution Modelsmust have two basic
properties to be useful and effective:

� Real time update must be possible.

� The criterion should apply no heuristics to govern the adaptation process but use
instead exact calculations relying on known constants like screen resolution.

The advantages of adaptivity can be explained with the following example which
describes the data setGrand-Canyon-Eastfrom theUSGS(US Geological Survey):

� 120km x 120km landscape

� unzipped: 9839616 bytes

� gzipped : 1687238 bytes

� regular grid with 1453252 points, 2906504 triangles

As already depicted in the introduction in chapter 1, theseDEMs(digital elevation
models) are too huge to be rendered interactively. If the above DEM is converted into
a multiresolution model as described in the following sections, approximately 15000
to 60000 triangles are necessary to render the model, depending on the actual position
of the camera. Though, an interactive handling of this data set can be realized.

29
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2.2 Description of Already Existing Multiresolution Ap-
proaches for Terrain Modeling

Triangular meshes are currently the most widely-used representation of terrain
models in computer graphics. Planar polygons and triangles in particular are standard
rendering primitives of common graphics workstations that can rapidly render poly-
gons. Terrain data is usually reconstructed by photogrammetric modeling techniques
and other acquisition techniques which produce many more triangles than necessary
to visualize the terrain. The literature is rich on algorithms for reducing the number of
triangles, by removing redundant vertices such that the simplified mesh satisfies some
error tolerance [48].

In applications which require high fidelity visualization of a terrain, millions of
triangles are needed. Even with recent progress in graphics hardware performance, it
is impossible to achieve real-time rendering rates of such a large number of triangles.
Efficient use of the number of triangles that are fed into the geometric pipeline is an
important consideration [96]. Clipping out triangles which fall beyond the viewing
frustum is necessary, as well as the use of hierarchical levels-of-detail (LOD) [24, 29,
112]. Low levels of a LOD hierarchy approximate the model more coarsely with fewer
details, while higher levels contain finer details. The appropriate level is rendered
according to the distance of the terrain section from the view point. Since coarse
approximations contain fewer triangles, a large terrain area can be rendered faster with
no visible penalty.

Usually the levels-of-detail are generated off-line in a preprocessing stage [22,
28, 112, 20, 95]. Since in general the distance of the observer to the terrain is less
than the extends of the terrain itself, different levels-of-detail are necessary in different
areas of the terrain. Such a multiresolution representation of the terrain should main-
tain spatial continuity, that is, the combination of different levels of detail should be
seamless and leave no gaps or holes. In addition, triangles with sharp angles (slivers)
should be avoided in all levels of the hierarchy. Usually, such triangles can induce
numerical problems either when triangulating or when using the resulting mesh for
other purposes. Thus, a Delaunay terrain triangulation [22, 30] is considered to be a
guaranteed-quality mesh since it maximizes the minimal angles of its triangles. De
Berg and Dobrindt [20] proposed a hierarchy of levels of detail that uses Delaunay
triangulation at each level. Their method allows the different levels of detail to be
combined in the same scene. Cohen-Or and Levanoni [12] have modified their method
to form a tree structure which enables a top-down traversal of the Delaunay hierarchy
with a fast culling mechanism. The major drawback with this approach is the usage
of an explicit hierarchy that has to be stored and this hierarchy is approximately four
times the size of the input vertices. Furthermore, the approximation error requirements
for combining the different levels of detail are not calculated by exploiting perspective
foreshortening and are therefore heuristics.

Hoppe [51] introduced another multiresolution scheme, theprogressive meshes,
which can also be used for terrain modeling (but not for Delaunay terrain triangula-
tions). The basic idea of this approach is to simplify the original meshes by successive
edge collapse transformations. The edge collapse transformation unifies two adjacent
vertices into a single vertex and the two adjacent faces vanish in the process. The origi-
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nal mesh can be restored by a sequence of vertex split operations (the reverse operation
of edge collapse). For a vertex split operation only the vertex to be split and pointers
to two of its neighboring vertices are necessary. In this way the whole hierarchy of
intermediate levels of detail can be stored in a space-efficient way. As reviewed in
[71], a selective refinement cannot be combined directly with the mesh compression
described in the paper, since during selective refinement the whole topology informa-
tion is needed which increases the amount of storage considerably. Furthermore, as
Hoppe pointed out, a less restrictive hierarchy allows triangle foldings and weakens
the control of the approximation error. This approach was tailored to the special needs
of terrain surfaces in [52], where the storage requirements could be reduced by refin-
ing the data structure which separates the data into a static and dynamic part. The
latter encodes the connectivity of the so called active mesh. The selective refinement
may still produce, as pointed out by Hoppe, thin and near-degenerated triangles. Such
triangles are prone to numerical problems which can occur during rendering or when
the extracted mesh shall be used for other purposes.

Puppo [23] describes a general model for the multiresolution decomposition of
planar domains into triangles. His method is based on a collection of fragments of
plane triangulations arranged into a partially ordered set. Different levels of detail
can be obtained by combining different fragments of the model. A similar method
is used by Cignoni et al. [9]. In both approaches the topology of the hierarchy is
stored explicitly, with no data compression. Since typical terrain models are extremely
large, data compression is vital to enable storage of the model in the main memory of
a workstation.

In the approach proposed by Lindstrom et al. [95], the original mesh is simpli-
fied in an on-line process during the rendering stage. In each simplification step, a
viewer-dependent screen-space error resulting from the simplification is computed.
This screen-space error controls the adaptation of the multiresolution data structure.
It depicts, what error can be allowed at a certain position in the landscape between
original data set and reconstruction while respecting after perspective projection a de-
viation of a user defined pixel number. Despite the fact that errors may accumulate the
authors claim that for empirical data this effect is negligible. Interactive frame rates
can be achieved by a compact and efficient quadtree. The simplicity of this data struc-
ture however has a drawback. To approximate an arbitrary straight line the quadtree
has to be subdivided along the line up to the maximum level. For example, if the terrain
contains small cliffs, just higher than the allowed error, numerous redundant triangles
are generated.

In the next section, a new multiresolution Delaunay triangulation will be presented
that can be generated on-the-fly by an incremental algorithm. As opposed to the
data structures proposed in the above approaches, on-line multiresolution triangula-
tion avoids the storage requirements of the hierarchy and the explicit determination of
the number of levels. This approach was first presented in [68, 67] and extended in
[66]. The terrain triangulation is updated dynamically as a function of the camera po-
sition and camera parameters, and is thus called aview-dependent triangulation. The
proposed method inserts and deletes vertices based on an incremental Delaunay trian-
gulation of points in the plane [73]. In [67] abottom up strategyis used, where sim-
ilarly to Puppo [95], the computation of the view-dependent triangulation starts with
the coarsest triangulation. Then, for each triangle a screen-space error is computed.
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If this error is larger than one pixel, an additional point of the Delaunay hierarchy
is inserted to refine the proximity of the triangle. This process is repeated until the
screen-space error of all triangles is small enough and therefore visually negligible.
Although in a realistic fly-through there are regions where the triangulation doesn’t
change, this approach necessarily requires all the triangles to be checked.

Dynamic triangulation is not a new concept. Independent from this work described
in [68, 67], other authors, see for example [24, 95, 95, 93], have used a view-dependent
triangulation. However, they do not guarantee a geometric approximation error, and
their approximation to the optimal triangulation is crude. One rather new approach
uses a restricted quadtree data structure with fixed level of details (LOD) for the
quadtree tiles, see [110]. To prevent cracks between the quadtree tiles, so calledseams
are precalculated that can bridge the detail gap between tiles of different LOD. One
drawback of this approach can be visual artifacts due to toggling from one LOD to
another. To prevent this, the algorithm has to switch very conservatively to the next
LOD. Unfortunately, [110] does not adress this question of when to switch correctly
to the next level. Therefore, the models available in this format show all significant
’popping’ artifacts.

2.3 A new Multiresolution Model for Parametric Surfaces
The Multiresolution Delaunay Approach

2.3.1 The Multiresolution Delaunay Approach and its Application to Ter-
rain Modeling

In this Section, a view-dependent multiresolution triangulation algorithm is pre-
sented for a real-time flythrough. The triangulation of the terrain is generated incre-
mentally on-the-fly during the rendering time. It will be shown, that since the view
changes smoothly only a few incremental modifications are required to update the
triangulation to a new view. The resulting triangles form a multiresolution Delaunay
triangulation which satisfies a predetermined view-dependent error tolerance. The pre-
sented method provides a guaranteed-quality mesh since it has control over the global
geometric approximation error of the multiresolution view-dependent triangulation.
This approach will be called theMultiresolution Delaunayapproach.

2.3.2 A View-dependent Error Function

A terrain is described mathematically by a bivariate elevation functionh : D �

IR2
! IR defined over a rectangular domainD in theXY plane. This function is sam-

pled at a finite set of pointsP = fp1; : : : ; png � D, forming the vertices of a triangu-
lation approximation. This piecewise linear representation is known as atriangulated
irregular network(TIN). A simple and common measure of the approximation error
between the elevation functionh and the approximating TIN is the maximum vertical
distance between the two representations. In the following, this error is calledgeomet-
ric approximation error. The maximum geometric approximation error that cannot
be perceived by an observer is calledallowable error. This error is view-dependent
and a function of the camera position and camera parameters. For its computation not
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only the distance between camera position and a location in theXY -plane has to be
considered but also the height of the terrain at that position. In a number of previ-
ous approaches the terrain topology was ignored. Due to the allowable error in pixel
space, a geometric approximation error� can be used whose projection onto the screen
is smaller than one pixel (see also [95, 68]). Denoting the pixel size on the viewing
plane by� , the relation between� and� is then expressed by the following calculation
(see the Figures in 2.1, 2.2, and 1.19):

�

r
=

f

f + dv
=) r = �

f + dv

f
(2.1)

s

�
= cos(90� � + �) = sin(� � �) (2.2)
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r
= cos(�) =) s = cos(�) r (2.3)
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Figure 2.1: The maximum allowed error tolerance� for the approximation of the topo-
graphic surface depends on the distance between the surface and the observer, on the
angle� between the viewing directiond and the vectorv between a surface point and
observer, on the pitch angle�, and on the pixel size� in the viewing plane.

This leads to

� =
cos(�) (f + dv) �

sin(� � �) f
: (2.4)

(� denotes the angle between the viewing directiond andv (as in Figure 2.1), the
pitch angle is�, f is the focal distance, anddv the distance between a terrain pointp

and the viewing plane, see Figure 1.19)
This expression defines the allowable approximation error for each sample point

pi 2 P as a function of its heighth(pi), the camera position, and camera parameters,
see Figure 1.19.
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Figure 2.2: Schematic of the angles used.

2.3.3 The Algorithm

In a preprocessing step, a view independent approximation of the terrain is com-
puted, yielding a Delaunay triangulation of the entire set of points. This approach was
first described by [33]. Afterwards, the “history” of the triangulation is used by the
on-line algorithm to compute the view-dependent triangulations.

The Off-Line View Independent Triangulation
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Figure 2.3: The insertion of a single point during the insertion process does not neces-
sarily cause a decrease in the global geometric approximation error.

Let � � 0 be a global tolerance value for the whole data set,P be a finite set of
points in theXY -plane, andh be the terrain elevation function, see Figure 1.19. Start-
ing point is an initial constrained Delaunay triangulation, denoted by�0 (a constrained
Delaunay triangulation is a special form of Delaunay triangulation where edges can be
marked as unremovable during point insertion or removal). The borders of this first
triangulation�0 of an arbitrary initial set of vertices are such constraints and remain
static throughout the on-line process. This initial set of vertices contains at least the
four corner points of the rectangular array. It may also include vertices and edges that
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should be present in all the levels of details. For example, ridges of mountains, coasts
of rivers or the borders of highways. The initial static triangulation is refined by an
iterative insertion of new points, one at a time. The insertion is based on an incre-
mental Delaunay algorithm in theXY domain [33, 73]. At each iteration, the point
p which improves the maximum global geometric approximation error is inserted as
a new point and the triangulation is updated accordingly. This error is measured be-
tween the actual refined triangulation andh. After the insertion ofm points, the corre-
sponding triangulation is denominated as�m, indicating that it containsm additional
vertices. The refinement process continues until the global geometric approximation
error is less than the predefined�. The corresponding final triangulation is called�N .
As illustrated in Figure 2.3, the insertion of a single point during the insertion process
does not necessarily cause a decrease in the approximation error. However, the conver-
gence of the method guarantees that the approximation improves after some additional
vertices have been inserted1.

TheN inserted points transforming�0 into�N are stored in a sorted listL ordered
by the insertion time. In addition, for each pointpn in the list the maximum geometric
approximation error of the reduced triangulation�n is recorded at the insertion time.
Thus, each pointpn corresponds to a global geometric approximation error�n. In other
words, if all vertices of the listL up to a certain pointpn are inserted into the initial
triangulation, the global geometric approximation error of�n is �n. LetG�(pn) be the
function which maps a given pointpn to its associated global geometric approximation
error�n.

Given the initial Delaunay triangulation�0 and the sequence of points
(p1; p2; : : : ; pN ), all the unique Delaunay triangulations�1; : : : ;�N can be recon-
structed via incremental point insertions. Therefore, the multiresolution representa-
tion of a terrain requires only an initial Delaunay triangulation�0 of the domain in
theXY -plane and the sequence of points transforming�0 into the model�N at full
resolution. The topology of the triangulation is given implicitly by the use of the De-
launay triangulation and does not have to be stored explicitly. This leads to a massive
reduction in the storage costs of the multiresolution model. It is important to point out
that, with respect to the storage requirements, the storage cost is superior to all other
techniques described above, including the progressive meshes. These techniques may
considerably reduce the storage requirements for the representation of the topology,
but they still have to store it explicitly.

During the on-line process the geometric error of each point needs to be translated
to its allowable view-dependent error by Eq. 2.4. One way to achieve this is to com-
pute the allowable error for each triangle in the current triangulation�i and to refine
the triangulation locally in the neighborhood of the triangle. This approach is used
in [67] and in [95]. However, this necessarily requires that for every frame, even for
small camera movements, all the triangles have to be considered. This causes many re-
dundant checks since for small camera changes the allowable error of the vast majority
of the triangles does not change.

To reduce the number of dispensable checks and to accelerate the computation of
the allowable error the pointsp1; : : : ; pn are partitioned into cells. The minimum and

1A promising approach to smoothen the error curve in Figure 2.3 is to replace the insertion algorithm
by a removal algorithm [64]. This will also reduce the variation of the frame to frame update times.



36 CHAPTER 2. MULTIRESOLUTION MODELS

maximum elevation values of all points in a cell define a bounding box which is used
to compute an allowable error� for the whole cell, (see Figure 2.4). As depicted in
Eq. 2.4,� at a positionp in the direction of the heightz depends on the given focal
sizef , on the angle�, the difference between the angles� and�, and the distance to
the viewing plane. For� � �, the allowable error is unbounded. Increasing� while
keeping constant the distancedv to the viewing plane, decreases the allowable error.
Therefore, to find an estimate for the representative error of the bounding box, the
distancedv of the cell’s bounding box to the viewing plane and the maximum angle
�(pi) � � of all corner pointspi of the bounding box are needed. The distancedv
and the maximum angle�� � are computed by projecting the corner pointspi of the
bounding box to the viewing plane and taking the minimum of the distances between
the original pointspi and the projected ones and the maximum of the angle�(pi)� �,
respectively. Note that since all bounding boxes have the same orientation, the same
corner of the bounding boxes has the minimum distance to the viewing plane. As a
byproduct, partitioning into cells also accelerates the access to the points and offers a
fast culling mechanism, see also 3.1.11.

The number of cells depends on the local density of the points and also on the
bandwidth parameters of the graphics system. Furthermore, hierarchically organized
cells, see 3.1.11, can be used that are much better suited for using culling algorithms.
For the Grand-Canyon example described later in this Chapter, a cell grid of70 � 70

cells was used, whereas for the smaller ’Teck’ data-set25 � 25 cells were sufficient
on small systems like PCs or SGIO2. This constant has to be determined empirically,
since it depends on many internal system parameters. This is no drawback, since a
reconfiguration can be done at runtime and the multiresolution model itself has not to
be recalculated. Furthermore, such a reconfiguration is a very fast process even for
large models since it is only a sorting of points into cells.

The preprocessing stage can be summarized by the following steps:

1. Define an initial triangulation�0.

2. Start with�0 and insert, one at a time, the point improving the maximum ge-
ometric error. The point and its associated error are stored in the listL. This
continues until the maximum geometric approximation error of the reduced tri-
angulation is zero, or another prescribed user-defined error.

3. Choose an appropriate regular grid (see above) which bounds all the sample
pointsp 2 P . Distribute all the pointsp 2 P into the grid cells according to
their XY coordinates.

4. Sort the points in each grid cell according to their corresponding global geomet-
ric approximation error and store them in local lists.

The On-Line View-Dependent Triangulation

The computation of the view-dependent triangulation is based on the ordered listL,
the view-independent global geometric approximation errors, and the view-dependent
global geometric approximation errors of the grid cells. For a given frame, first, the
view-dependent global geometric approximation errors for the grid cells are computed.
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Then in the second step, the points of each grid cell which have a corresponding global
geometric approximation error that exceeds the view-dependent error of the cell itself
are inserted into the current constrained Delaunay triangulation. This can be done
very efficiently since the points in each grid cell are sorted according to their global
geometric approximation error. In practice, in most of the cells, no further points are
inserted into the triangulation.

Unfortunately, the resulting constrained Delaunay triangulationT may contain tri-
angles that do not belong to any of the triangulations�0; : : : ;�m. Since in the prepro-
cessing step only for triangles of the intermediate triangulations�0; : : : ;�m a global
geometric approximation error was computed, the geometric approximation in the area
of these new triangles is unknown. Note that in the worst case the amount of this error
is in the same order of magnitude as the height of the terrain. Therefore, in a following
correction stepfurther points of the listL are inserted into the triangulation until all
triangles of the resulting triangulation belong to one of the triangulations�0; : : : ;�N :

This further insertion step is based on a special observation: Let�(pi; pj; pk) be
a triangle of the triangulationT . If the circumcircle of�(pi; pj; pk) does not contain
any points with corresponding insertion index less thanm = max(i; j; k), then the
triangle is contained in the intermediate triangulation�m and approximates the terrain
surface up to an approximation error�m; (see Figure 2.5).

Proof: Since none of the points already contained in the constrained Delaunay
triangulationT with corresponding insertion index greater thanm = max(i; j; k)

belongs to the circumcircle of triangle�(pi; pj; pk); their removal fromT will not
influence the triangle itself. Furthermore, due to the assumption that none of the points
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with corresponding insertion index less thanm belongs to the circumcircle of triangle
�(pi; pj ; pk); inserting all these points with corresponding insertion index less thanm

will also not influence the triangle. Therefore, this triangle has to belong to the unique
constrained Delaunay triangulation containing all points up topm, i.e., to�m. Due to
the first observation above this triangulation approximates the initial triangulation with
an approximation error less than or equal to�m:

The above implies that the circumcircle of each new triangle has to be checked
to insert more points if needed. It also shows that a new triangle can cause points to
be inserted only in its proximity. In practice this locality leads to a small number of
vertices (about 20 percent of all inserted vertices, see table 2.1) inserted during the
correction step. Furthermore, practical experience shows that the correction step is not
absolutely necessary during motion. Instead it is sufficient to utilize it when coming
again to a stop.

P2

P3

P4

P5

P6

P8

P11

P12

P7

P10

P1

P13
P9

Figure 2.5: Since the circumcircle of the triangle�(p13; p11; p2) does not contain any
other point with corresponding insertion index less than13; the triangle is contained in
�13 and it approximates the terrain surface up to an approximation error�13, see [68].

The on-line view-dependent triangulation is based on the above and can be stated
as follows:

1. For each grid cellCj compute the maximum allowed approximation error�j by
Equation 2.4. This defines a threshold for each point. During error calculation,
some sort ofView Frustum Culling(see 3.1.6) is already performed. Boxes
outside the view frustum have no projection covering a part of the camera win-
dow on the viewing plane. They get an infinite error and are excluded from the
update process. This culling can be accelerated with a hierachically organized
bounding box structure.

2. Remove from the current constrained Delaunay triangulation all pointspk 2 Cj

with G�(pk) < �j .

3. Insert into the constrained Delaunay triangulation all pointspk 2 Cj with
G�(pk) > �j.
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Figure 2.6: In a bottom up strategy the insertion process stops regardless of whether
further insertion of points would increase or decrease the geometric approximation
error. Thus, it achieves the minimum number of required points. In this approach all
points of a grid cell whose geometric approximation error exceeds the allowable error
computed for the cell itself are inserted.

4. Start with the pointpm which has the greatest indexm among all corner points
of the new triangles generated during the second and third step. Check if the tri-
angles adjacent topm contain points in their circumcircle that have an insertion
index less thanm. If such points are found, insert all pointspl that are adjacent
to pm with respect to the triangulation�m into the current triangulation. This
guarantees that all triangles adjacent topm will belong to the triangulation�m.

Note that the global geometric approximation error is independent of the view
direction. Furthermore, this global geometric approximation error is also a local error:
Before inserting the pointpn into the triangulation the maximum global geometric
approximation error�n�1 was caused by a point in the interior of the influenced area
of pn. The influenced area ofpn consists of the set of triangles which are deleted and
replaced by a new set of triangles during the insertion ofpn.

Although this approach accelerates the update process between two consecutive
frames compared with the bottom up strategy described in [67], it may happen that
by this algorithm a small number of points are inserted into the resulting triangulation
that are not necessary to guarantee the view-dependent allowable error. This is because
the insertion of a single point during the insertion process in the processing stage does
not necessarily cause a decrease in the global geometric approximation error. Using a
bottom up strategy [67, 95], the insertion of points stops regardless of whether further
insertion of points would increase or decrease the geometric approximation error. In
this approach in each grid cell all the points whose geometric approximation error
exceeds the geometric approximation error of the cell itself are inserted (see Figure
2.6).

The algorithm is advantageous for real-time rendering due to the frame-to-frame
coherence in the temporal domain. Only a very small number of vertices has to be
inserted and removed from frame-to-frame, and the triangulation can be updated in-
crementally on-the-fly (see Section 2.3.5).
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2.3.4 Real-Time Performance

Temporal Continuity

Real-time rendering of levels of detail causes a noticeable temporal aliasing when
the transition between different levels is sharp. Therefore, the transition between dif-
ferent triangulations has to be handled in a way that appears to be smooth, so that the
temporal alias effect will not be noticed [11]. Hoppe [51] coined the termgeomorph
for the continuous transition between different geometries. In his method the transition
between two triangulations is a split of a vertex and its continuous transformation to
an edge, or an edge collapse into a vertex. This elegant solution cannot be adopted for
the incremental insertion of a vertex into a Delaunay triangulation. In [12], a method
based on object blending visually softens the transition between two levels of the De-
launay triangulation. The transition between two Delaunay triangulations consists of a
series of edge collapse transformations. The method can also handle the insertion and
removal of multiple vertices simultaneously.

Minimum Frame Rate

In visual applications there is always a need to balance the imaging quality and the
frame rate. In interactive on-line systems one is required to maintain a user-specified
minimal frame rate. In [35, 77] algorithms were proposed to adjust the image quality
adaptively by choosing the level-of-detail and rendering algorithm according to its
estimated rendering cost.

Since this multiresolution triangulation is incremental, in most cases the mesh gen-
eration time is insignificant in comparison to the rendering time. If the available ren-
dering hardware is not fast enough to render a given triangulation in real-time, it is easy
to adjust the error tolerance and trade the mesh accuracy for a coarser and “lighter” tri-
angulation.

However, there is a need to guarantee that the new frame requires only a small
incremental update of the mesh. For most practical flying trajectories the image foot-
print does not change much, unless there is a sharp rotational transition of the viewing
direction (the yaw angle). A fast rotation of the yaw angle causes the image footprint
to cover large areas which need to be refined for the new frame. The new areas can be
displayed coarsely for a few frames until the mesh is updated. Instead it is preferable
to maintain a wider footprint around the viewer location which can “absorb” fast ro-
tational changes of the viewing direction [13]. Although the footprint is wider, not all
its triangles are fed into the graphics pipeline, but only those which are in the viewing
frustum. Maintaining a wider footprint increases the storage cost of the dynamic mesh,
but this size is usually insignificant.

Storage and Traffic

A real-time flythrough has also to deal with other important issues, i.e., storage
space and traffic overhead. In most real-world applications the terrain size is very
large and cannot be loaded entirely in the main memory. Moreover, the access time
to and from the memory may become a bottleneck unless some culling mechanism is
employed which avoids redundant data movement.
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Figure 2.7: Camera dependent TINs of the Grand Canyon area. In the right picture,
the viewpoint has moved in the direction of the canyon.

Figure 2.8: Camera dependent TINs with different camera positions.

In the off-line stage the terrain data is converted to a linear list of vertices and
error values. As introduced above, it avoids the explicit storage of the mesh topology,
and the data storage is thus compact. Assuming the list is stored on the disk and the
dynamic mesh in main memory, the traffic between the disk and the memory is slight.
Note that the access to the vertices in the list is fast due to the regular partition of the
domain into cells. Since each cell contains a relatively short list the search is fast.
Moreover, since the list is sorted by the error values, adjacent accesses in time are
likely to be close along the list. Thus, for each list, a pointer is maintained to the most
recently accessed vertex to further reduce the search.

2.3.5 Results

As a first test data-set, the elevation data of the Grand Canyon area was used. The
original data set contains 1.440K vertices. Starting with an initial triangulation of four
corner vertices of the original rectangular data, the rest of the sampled points were
inserted as described above up to a geometric error of 5 meters. This results in an
initial triangulation of about 490K vertices, and about 950K triangles.

For the flythrough, a velocity of about 700 km/h was assumed. At this velocity
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Figure 2.9: Camera dependent TINs with different camera positions.

image resolution (pixel) 200 x 200 400 x 400 720 x 576
vertices inserted per frame 2.5 3.5 10
vertices removed per frame 4 5 12

vertices inserted(correction step) per frame 1 1.5 2.5
triangles 6200 20500 42500

insertion (msec) 17 22 65
removal (msec) 20 30 50

correction step (msec) 6 14 40

Table 2.1: Update statistics for a part of the flight over the Grand Canyon area with
about 700 km/h. All numbers presented are averaged for the whole flight.
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Figure 2.10: The flight path over the Teck-area in southern Germany.

it would take about 13 minutes to fly from one corner to the opposite corner of the
terrain area. To realize a frame rate of 25 frames/sec at this velocity, the triangulation
has to be updated every 7.6 meters. The focal size of the camera is 50 mm, which is
equivalent to a camera with standard objective. The height of the flight over the terrain
was between 700m and 5000m. Different levels of approximation are shown in Figure
2.7.

The two images in Figure 2.8 show the camera over the adaptive TIN of the Grand
Canyon area. The eyepoint is visualized with a sphere, the two bars mark the bound-
aries of the viewing volume. Note that due to the dependencies in the hierarchy be-
tween different levels of detail in the multiresolution triangulation, there is still an
excess of some triangles behind the camera.

The two images in Figure 2.9 show the Grand Canyon area with a simple texture
calculated based on the height field from the same positions as in Figures 2.7 and 2.8.

As a second test data set, data of a small area in southern Germany was used. The
data was provided by the ’Landesvermessungsamt, Baden-W¨urttemberg, Germany’.
The original data set contains about 30K vertices and 60K triangles. Figure 2.10 shows
the path of the fly. It is 15.7 km long and the flight time with a velocity of 700 km/h is
about 1 min 18 sec. Figure 2.11 shows the time needed to adapt the triangulation from
one frame to the next one. It is clearly visible, that the update is nearly always possible
with rates between 25 and 50 Hz.

For this data-set, aerial orthographic photographs are available. For the number of
polygons achieved by the algorithm real time texturing becomes feasible. Figure 2.12
shows two example shots with texturing. Further considerations concerning texturing
will be discussed in Chapter 4.

The frame-to-frame update rate for the TIN depends on the velocity of the camera,
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Figure 2.11: Time needed to adapt the triangulation from one frame to the next one
during the flight over the Teck-area. The flight path is shown in Figure 2.10.

Figure 2.12: Images of the Teck-area. Left textured with an aerial photograph and on
the right with a topographical map.
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the distance between the camera and the terrain, the focal size, and the resolution of
the image. In Table 2.1 the average data for the frame-to-frame update time and the
number of inserted and removed vertices between two frames are listed for a small part
of the flight at a height of about 1900 meters over the terrain. The update times were
measured on an SGIO2 with a 175MHz R10000 Processor. At an image resolution of
200x200, an update rate of 25 updates/sec (without rendering) can be achieved. At this
resolution, only about 6000 triangles are necessary to represent the terrain. Assuming
a frame rate of 25 frames/sec only 150000 triangles/sec should be rendered. Such a
rendering performance is already available on small workstations or even on low cost
PCs.

2.3.6 Comparison with Other Approaches

It is very difficult to compare the performance measurements of the different pub-
lications, since each author has his own data-sets that are usually not public domain
and there exists no set of benchmarking data for heightfields and terrain. Furthermore,
older publications are often not usable since the machines used there to produce the
results can not be compared to the actual much faster computers. Therefore, two recent
publications, [89] and [52], were used as comparison candidates.

It can be clearly stated that the Multiresolution Delaunay approach is equivalent
in performance to [89] for small data sets up to 50,000 triangles. Unfortunately, no
values of memory consumption or the application to bigger models are given in [89].

For another recent approach described in [52], it is much harder to make a com-
parison. First of all, this approach uses a varying error tolerance for the screen space
error up to several pixels whereas the approach described in this chapter maintains
and respects the screen space error criterion. Interestingly, also a part of the Grand-
Canyon area was used for performance measurements. First of all, the data-set used
was pre-simplified from 16,777,216 to 1,453,154 triangles before calculating the mul-
tiresolution model. To store the multi-resolution model, [52] needs 50 MB whereas
the Multiresolution Delaunay approach stores a multiresolution model with 2,800,000
triangles of the Grand-Canyon area in 23 MB. Therefore, a much better storage effi-
ciency can be claimed. To compare performance is nearly impossible. [52] uses not
only a variable screen space error up to four pixels but the results were calculated on
a SGI Octane MXE 195 MHz having a much higher internal system bandwidth com-
pared to theO2. Both algorithms realize approximately 20-30 frames per second for
the Grand Canyon, but there is not enough data available for a detailed comparison.

Looking at a completely different approach, in [13] a heightfield was converted
to a highly oversampled voxel data-set and visualized with a ray-casting algorithm on
a special parallel hardware prototype. This approach needs 32 processors to achieve
a framerate of 11-17 frames per second but can not be realized on current graphics
systems. Furthermore, the original sampling of the terrain data-set was not mentioned
in the publication , where a 55km�80km piece of landscape was visualized. Sampling
this with a widely used 50m grid, one gets a height field consisting of approximately
1,700,000 sample points or approximately 3,400,000 triangles. Therefore, the data-set
dimensions can be compared to the Grand Canyon example used in this chapter. The
voxel data-set itself needs 17.6 GB of disk storage. Together with the additional needed
hierarchy levels, a total amount of 23.5 GB storage is needed for the model. This is a
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tremendous amount of memory compared to the storage needs of the Multiresolution
Delaunay approach.

Some older approaches that use also Delaunay triangulations are interesting candi-
dates for a comparison. In [21], a Delaunay triangulation was used to combine differ-
ent levels of detail (LOD). Unfortunately, no correct screen space error was evaluated
and no performance measurements for dynamic updates during a flythrough were mea-
sured. Therefore, this paper can not be compared to the approaches cited above or the
Multiresolution Delaunay approach. Nevertheless, it was one of the first papers that
showed the usefulness of triangulations for terrain modeling.

In [12], this approach was improved to prevent aliasing due to the transition be-
tween different levels of detail while evaluating the precalculated levels of a Delaunay
hierarchy. Again, no correct screen space error was calculated and the paper claims
a framerate of approximately 10 frames by having three distinct levels of detail and
adopting a mesh containing 5,000 triangles in average.
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2.4 Further applications of the Multiresolution Delaunay
approach

2.4.1 Approximation of NURBS Surfaces

Trimmed NURBS surfaces are a very popular way to represent the surfaces of
objects in current available CAD-systems. Examples of such surfaces are ship hulls,
the outer surfaces of airplanes, or the interior of cars. For visualization purposes,
the surfaces are approximated by triangles. Even for small parts like the door of a
car, thousands of triangles are needed for such approximations. The IRIS InventorTM

built-in approximation tool e.g. uses 434,107 triangles to visualize the car door of
Figure 2.13.

Figure 2.13: Triangle net of a car door approximation generated by IRIS InventorTM .

This approximation is independent from the viewing parameters and, therefore,
independent from the door size in pixel space. The real-time visualization of a whole
car in such a way is difficult even on high-performance graphics workstations.

In [69] is described how a CAD-model given as a set of trimmed NURBS patches
can be approximated by a position dependent discrete multiresolution model resulting
from an application of the Multiresolution Delaunay Approach described in the last
section.

This discrete model consists of a coarse initial triangle mesh, a set of vertices, and a
rule on how to insert these vertices into the initial triangulation in order to get different
levels of detail (LOD). The main idea is to compute different LODs, instead of using
special data structures to store them. This way storage capacity and storage access time
are traded for computing power. In addition, only a few points of the actual triangle
mesh have to be removed or inserted in order to switch between different LODs.

The algorithm is easy to implement and fast enough to achieve real-time updates
for the visualization of common CAD models. Examples from real data illustrate the
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power of this approach.
CAD models of a car door and a car felly were used as test cases. The original

data set of the door consists of 446 trimmed NURBS patches and is approximated
by IRIX InventorTM by a triangle net of 434,107 triangles, see Figure 2.13. The car
felly containing 36 trimmed NURBS patches is approximated by IRIX InventorTM by
164,586 triangles.

The insertion time for one vertex is� 0.45 msec and the time for removing one
vertex� 0.35 msec on a Silicon Graphics Workstation with R8000 processor and 150
MHz, see tables 2.2 and 2.3, which means real-time operation in practice.

Car door:

number of number of approximation
vertices triangles error in mm
16,133 19,817 0.1
9,848 12,318 0.5
6,870 7,962 1.0
3,652 3,254 4.0

InventorTM :
unknown 434,107 unknown

Car felly:

number of number of approximation
vertices triangles error in mm
48,524 88,671 0.1
47,018 75,106 0.5
40,658 86,828 1.0
11,135 19,513 4.0

InventorTM :
unknown 164,586 unknown

Table 2.2: Number of vertices and triangles needed to achieve the corresponding ap-
proximation error of the car door and the car felly.

User-defined Approximation Error

The following Figures 2.14-2.16 show three different levels of a car door in the
resolutions of 0.1mm, 1.0mm and 4.0mm.
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approximation number vertices update time
error in mm to insert in msec
4.0! 1.0 3,218 1,320
1.0! 0.5 2,978 1,260
0.5! 0.1 6,285 2,940

approximation number vertices update time
error in mm to remove in msec
0.1! 0.5 6,285 2,230
0.5! 1.0 2,978 1,020
1.0! 4.0 3,218 1,130

Table 2.3: The update time for changing the approximation error of the car door by
inserting vertices (top table) or by removing vertices (bottom table). The resulting time
for inserting one vertex is� 0.45 msec and� 0.35 msec for removing one vertex.

Figure 2.14: Triangle mesh of a car door with approximation error 4.0mm with 3,254
triangles .
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Figure 2.15: Triangle mesh of a car door with approximation error 1.0mm with 7,962
triangles .

Figure 2.16: Triangle mesh of a car door with approximation error 0.1mm with 19,817
triangles .
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Approximation Error Dependent on Viewing Parameters

The following pictures 2.17, 2.18 and 2.19 show a car felly in different distances
from the observer. It has a length and height of 0.41m and a depth of 0.25m.

Figure 2.17: Car felly in a distance of 0.5 m from the observer with image size 150x150
and the corresponding wireframes with 14,489 points and 25,661 triangles.

Figure 2.18: Car felly in a distance of 0.5 m from the observer with image size 81x81
and the corresponding wireframes with 7,344 points and 12,606 triangles.

Figure 2.19: Car felly in a distance of 0.5 m from the observer with image size 47x47
and the corresponding wireframes with 4,035 points and 6,641 triangles.
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2.4.2 Approximation of Radiosity Functions on Surfaces

Global illumination approaches are essential for getting a realistic impression of
a virtual reality (VR) scene to increase the user’s acceptance. These approaches try
to simulate the lighting distribution in a scene by approximating it with the help of
a simulation model. The models are constructed with the help of the physical laws
governing the distribution of light, for example reflection and refraction principles.
Two well-known approaches are the raytracing approach and the radiosity approach.

One problem of global illumination in VR scenes is the costly calculation of the
illumination solution due to the great amount of data that has to be handled. To cal-
culate and visualize the illumination solution in a radiosity approach, the tessellation
of the geometry is usually not sufficient and has to be refined to represent illumination
changes steadily.

The Multiresolution Delaunay approach can be used to reduce the amount of tes-
sellation data to be able to visualize these solutions in real-time. Radiosity methods are
widely used for realistic walkthroughs of static architectural scenes, since the radios-
ity solution is viewer independent. It is therefore important to maintain interactivity
also on small systems. This can be achieved with adaptive data structures like the
Multiresolution Delaunay approach.

Current research efforts try to enable radiosity methods to be able to handle dy-
namic scenes, where objects or light sources can move around. Non static scenes
require a fast update possibility of the radiosity solution to maintain interactivity, see
[32]. These approaches are not yet fully applicable and in the following only static
scenes will be discussed.

In [70] is described, how a remeshing of the radiosity meshes can be performed
by using the Multiresolution Delaunay approach. The result of this remeshing is an
adaptive data structure, which has the advantages of viewer adaptivity (see the previous
sections) and the possibility of incremental transmission, see Section 2.5.

Due to strict bandwidth limitations, approaches for a distribution of VR applica-
tions over the Internet are difficult to realize, see [90]. In this context, factors like
scene size and the ability to transmit the data incrementally gain importance. The
Multiresolution Delaunay approach is very well suited for this, see Section (2.5).

Data Reduction for Radiosity Meshes

Usually, triangle meshes are utilized during the solving process of the radiosity
equation. If piecewise constant basis functions approximate the radiosity function, the
triangle mesh used for the calculation can be directly used for the visualization.

The generation of these triangle meshes can be done with different approaches:

� Regular Subdivision:
Regular subdivision schemes aren’t adaptive at all. Therefore the surface is sam-
pled with the sampling resolution imposed by the finest detail of the radiosity
function. This oversampling can produce great amounts of additional, but un-
needed triangle data.

� Adaptive Subdivision:
With adaptive subdivision, only surface areas, where changes of the the radiosity
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function occur, are tessellated with more triangles. These tessellation schemes
have to be able to cope with fine structures, since otherwise the problem of figure
2.20 can occur, where fine structures are lost due to a coarse initial triangulation.

Figure 2.20: The shadow of the chair’s right leg is not represented correctly.

� Hierarchical Subdivision:
Hierarchical subdivision schemes usually utilize quadtrees. Quadtrees can be
easily adapted to a needed resolution. Naive ways of triangulating a quadtree
would result in T-vertices, which can produce cracks and other artifacts like
holes during rendering.

To prevent this, so-calledrestrictedquadtrees are used. The subdivision depth
of cells being neighbors are restricted in these quadtrees to one level. Therefore,
only a restricted number of possible subdivisions exist which can be triangulated
with a set of fixed schemes, see [107] and [5]. In figure 2.21, one disadvantage
of restricted quadtrees is shown. Small structures tend to extend themselves due
to the subdivision limitation for adjacent cells over a greater area. They impose
a finer triangulations on areas, where this resolution is not needed.

Figure 2.21: On the left side, a standard quadtree is shown, whereas the quadtree on
the right side is restricted.

The following sections will describe, how a remeshing of the resulting triangle
mesh can be done by using the Multiresolution Delaunay approach. The result of this
remeshing is an adaptive data structures, which has the advantages of viewer adaptivity
(see the previous sections) and the possibility of incremental transmission, see Section
2.5.
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Definition of the Radiosity Function

Let F : 
 �! IR3 be a parameterized surface patch with its parameter space
.
The radiosity function

B: 
 �! IRd;

is a vector valued function. The dimensiond depends on the number of color channels.
Usually,d = 3 is utilized for the three channels red, green, and blue.

By using the Multiresolution Delaunay approach, the radiosity functionB can be
approximated on the patchF by a piecewise linear functionB0: 
 �! IRd with the
following properties:

� The global approximation error is smaller than a user defined error limit�.

� The geometry of patchF is also well approximated by the piecewise linear
approximationF 0.

� A fast change between different approximation qualities is possible.

Definition of the Approximation Error

As depicted in the last paragraph, the approximating triangle mesh has to respect
on one hand the surface geometry ofF and on the other hand, the radiosity function
B shall be well approximated.

Let
G(u; v) = (F (u; v); B(u; v))

be a function combiningF andB.

G: 
 �! IRd+3

is approximated by a function

G0: 
 �! IRd+3

with
G0(u; v) = (F 0(u; v); B0(u; v))

By using RGB color space, an approximation error can be defined by a modified
supreme norm, where the color channels red, green, and blue are weighted by their
human’s eye sensitivity:

jjG�G0 jj =

sup
(u;v)2


(

jFx(u; v)� F 0
x
(u; v)j +

jFy(u; v) � F 0
y
(u; v)j +

jFz(u; v)� F 0
z
(u; v)j+

0:3jBr(u; v)�B0
r
(u; v)j +

0:59jBg(u; v) �B0
g
(u; v)j +

0:11jBb(u; v) �B0
b
(u; v)j

)
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Having these definitions, the algorithm described in Section (2.3.3) will produce
a multiresolution model of the radiosity function and will respect the geometry of the
patch.

Figures 2.22-2.32 show some test scenes, where the effect of using an adaptive
data reduction paradigm can be clearly seen.

Figure 2.22: Test scene with point light source and sharp shadows on the floor. The
floor surface was adaptively triangulated during the radiosity calculation. The trian-
gulation contains 836 triangles. By using a regular grid and the resolution needed to
sample the shadows correctly, a triangle mesh with 8192 triangles is produced.
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Figure 2.23: The same test scene as in figure 2.22 contains after data reduction only
234 triangles. There is no loss of visual quality visible.

Figure 2.24: Test scene with an area light source and smooth shadow transitions. The
regular triangulation contains 9760 triangles.
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Figure 2.25: After the reduction step of the meshes shown in figure 2.24 with an ap-
proximation error of� = 0:05 ( R, G, B normalized to 1), there remain 1187 triangles.
Again, no loss of visual quality can be determined.

Figure 2.26: Using an approximation error of� = 0:1 ( R, G, B normalized to 1), only
571 triangles are needed and the reduction rate is nearly twice the one of figure 2.25.
The visual quality is a little bit reduced due to slight machband effects.
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Figure 2.27: More complex radiosity scene, regular subdivisions are used for the ra-
diosity meshes.

Figure 2.28: The radiosity meshes are reduced by the Multiresolution Delaunay ap-
proach.
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Figure 2.29: Room scene with meshing after radiosity-calculation

Figure 2.30: Remeshing with� = 0:075, reduction 44%
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Figure 2.31: Remeshing with� = 0:1, reduction 52%. Please note, that up to now, no
visual difference to the original scene is visible.

Figure 2.32: Remeshing with� = 0:25, reduction 71%
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2.5 Multiresolution Models in Client Server Environments

The current available network bandwidth means, that for the next future a trans-
mission of a complete multiresolution model over the internet will still take some time.
Therefore, it is more suitable to transmit the model incrementally and to integrate this
process in a WWW standard like VRML. There are two possible ways to create a
multiresolution extension in VRML2.0.

First, one can define so-calledPROTOnodes. They rely completely on VRML2.0,
the aspect of sharing the data is not possible and nodes are transferred as an entity. The
only thing which could be used to transfer data incrementally is the so-calledSCRIPT
node, which can contain a Java-like program for execution on the client system. But
implementing the complete algorithm necessary to update the multiresolution model
is not very fast, since script-nodes are realized in Java-Script which is an interpreted
language . Furthermore, the whole communication over the web would be handled by
the Java scripts.

Next there is the concept ofLiving-Worlds, which is a proposal ofMicrosoft to
extend VRML2.0. The structures introduced there would be very suitable to support
the multiresolution model with all the needed information. A so-calledSharedObject
node, thepilot, can distribute its replications, calleddrones, to several clients. The
pilot instance holds one mesh structure for every drone, which is used to determine the
needed update information. The drones themselves have an own mesh structure which
is updated by insertion and removal of the point-information received from the pilot.
The geometry information of the pilot is therefore not duplicated to all the drones
and each drone has only the needed amount of information as a copy. A drone can
evaluate its actual camera position and send this information to the pilot instance of
the node. The pilot instance in turn determines the needed information for updating
the multiresolution model of the drone. This is done with the pilot inserting additional
points into the mesh structure using the Multiresolution Delaunay Approach. Then
these points are transmitted to the drone, which updates its data structures too. This
is necessary, since the drone doesn’t have all points of the entire model and constructs
its mesh of a subset of points. Furthermore, unnecessary points and triangles of the
drone mesh and the pilot mesh are eliminated by the drone and the pilot independently,
since the drone can evaluate also the camera or the avatar-position to decide which
information isn’t necessary any more. So the drone mesh can’t grow bigger and bigger.

Therefore, the Living-Worlds concept would be a good foundation to implement
a distributed multiresolution model for parameterized surfaces. The key idea for this
is to save bandwidth, memory and rendering-power on the drone system by recon-
structing the topology from the geometry with the use of the Multiresolution Delaunay
Approach.
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Chapter 3

Visibility Algorithms

In the previous Chapter, geometrical scene adaptation methods were described that
allow a reduction of a scene’s complexity by reducing the scene geometry.

Another paradigm of scene adaptation is the determination of the visible and in-
visible parts of a scene. These parts don’t have to be rendered, since they will not
contribute anything to the rendered result.

Usually, only a small part of a large and extended scene is visible. The rendering
time for such a scene can be reduced significantly, if it is possible to figure out invisible
parts more quickly than rendering them. It is inevitable to partition the scene by some
sort of hierarchy for these fast visibility queries. Therefore, also some methods for
scene organization will be described in this chapter.

The determination of the parts of a scene not contributing to the rendering result is
calledCulling. Generally, culling approaches don’t change the geometric scene com-
plexity as the reduction approaches do. Of course, both kinds of adaptation approaches
can be combined. A simple form of culling isBack Face Culling, where back facing
polygons are excluded from rendering. The decision if a polygon is backfacing can
be made without putting it in the graphics pipeline by using the actual viewer posi-
tion and the polygon’s normal. Another well known culling paradigm is the so-called
View Frustum Culling, where the parts of the scene contained in the view-frustum are
determined and all other parts are then discarded for rendering.

Bothering about culling is important for the visualization of geo-related data-sets.
In Chapter one and two, it was already depicted, how huge geographic data sets can
be. Especially for reconstructing city models, a great amount of additional complexity
has to be spend for getting the houses and buildings of such a city to resemble the
original objects. Intelligent and fast culling algorithms enable the user to spend addi-
tional complexity while maintaining a certain frametime in order to have an interactive
feeling.

3.1 A New Approach for Occlusion Culling

View frustum culling enables the user to cut away all parts of the scene not being
contained in the view-frustum of the virtual camera. Nevertheless, a great amount of
data in the view-frustum can be invisible due to occlusion by other structures in front of
it. This occlusion usually is controlled with aHidden Surfacealgorithm, for example a

63
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z-buffer, see [31]. Therefore, rendering time can again be saved by fast determination
of occluded parts of the scene. This special kind of culling is calledOcclusion Culling.

3.1.1 OpenGL-assisted Occlusion Culling

One of the major graphics APIs (application programming interface) for imple-
menting computer graphics software is currentlyOpenGL, which was introduced in
the mid-nineties bySilicon Graphics. Today, it is an independent standard and its
improvements and versions are controlled by an architectural review board of major
companies and developers.

In the following Sections, an OpenGL-assisted occlusion culling algorithm will
be presented to improve the rendering performance of large polygonal models. The
algorithm itself is also usable on a graphic system which does not have OpenGL ca-
pabilities. Since all major suppliers of graphics hardware and operating systems are
supporting OpenGL nowadays, the algorithm is described in an OpenGL environment.

Using a combination of OpenGL-assisted view-frustum culling, hierarchical
model-space partitioning, and OpenGL based occlusion culling, a significantly bet-
ter performance on general polygonal models can be achieved compared to previous
approaches. In contrast to these approaches, only common OpenGL features are ex-
ploited and therefore the algorithm is also well suited for low-end OpenGL graphics
hardware. To show the applicability of the algorithm on low-end graphics worksta-
tions, all measurements were performed on a SGI O2/R10000 workstation.

Furthermore, an extension to the OpenGL rendering pipeline is proposed to add
features for improved and fast general occlusion culling.

3.1.2 Introduction

Hidden-line-removal and visibility determination are among the classic topics in
computer graphics [31]. A large variety of algorithms are known to solve these visibil-
ity problems, including the z-buffer approach [100, 8], the painter algorithm [31], and
many more.

Recently, visibility and occlusion culling had been of special interest for walk-
throughs of architectural scenes [1, 105, 76] and rendering of large polygonal models
[50, 36].

Unfortunately, these approaches are limited to cave-like scenes [50], require not
commonly available hardware support [43], or do not provide interactive rendering
(more than 10 frames/second) of large models on mid-range graphics hardware [114].

The following algorithm, described in [57], is suitable for general occlusion
queries. In a pre-process, the model is subdivided into a sloppy n-ary space-
partitioning-tree (snSP-tree). In contrast to ordinary partitioning-trees, like the BSP-
tree [34], the subdivision is not a precise one; snSP-tree sibling nodes may not be
disjunct. This is to prevent large numbers of small fractured polygons, which can
cause numerical problems and an increase of the rendering load. Since all non-sloppy
tree structures can be also stored in a snSP-tree, the algorithm uses a very flexible data
structure.

During the actual occlusion culling, the OpenGL selection buffer is used to im-
plement a view-frustum culling of the nodes of the subdivision tree. Thereafter, the
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bounding volumes of the remaining nodes of the snSP-tree are rendered into an imple-
mentation of avirtual occlusion bufferto determine the non-occluded nodes. Finally,
the polygons of the snSP-nodes [114] considered not occluded are rendered into the
framebuffer.

Overall, the algorithm’s features are:

� Portability: Only basic OpenGL-functionality is used for the implementation
of the algorithm. No additional hardware support, such as for texture-mapping
[114], or special occlusion queries are necessary. Even low-end OpenGL sup-
porting PC graphics hardware is able to use the proposed occlusion culling
scheme.

� Adaptability: Due to the use of the OpenGL rendering pipeline, the presented
algorithm adapts easily to any OpenGL graphics card. Features that are not
supported in hardware can be disabled, or they are realized in software by the
OpenGL implementation.

� Generality: No assumptions of the scene topology or restrictions on the scene
polygons are made.

� Significant Culling: Although high culling performance is always a trade-
off between culling efficiency and speed efficiency, the algorithm obtains high
culling performance, while keeping good rendering performance.

� Well-balanced Culling: Different computer systems introduce different ren-
dering and CPU performance. The presented algorithm provides an adaptive
balancing scheme for culling and rendering load.

� Non-conservatism: Due to some optimizations, the algorithm provides a non-
conservative approach to occlusion culling. In most cases, this results in no
visual impact.

3.1.3 Related Work

There are several papers which provide a survey of visibility and occlusion culling
algorithms. In [114], Zhang provides a brief recent overview with some comparisons.
Brechner surveys methods for interactive walkthroughs [7]. Occlusion algorithms for
flight simulations are surveyed in [81].

Early approaches are based on culling hierarchical subdivision blocks of scenes to
the view-frustum [36]. Although this is a simple but effective scheme for close-ups,
this approach is less suited for scenes that are densely occluded, but lie completely
within the view-frustum.

In architectural model databases, the scene is usually subdivided into cells, where
each cell is associated with a room of the building. For each potential view point
of the cells, the potential visible set (PVS) is computed to determine the visibility.
Several approaches have been proposed in [1, 105, 76]. However, it appears that the
cell subdivision scheme is not suitable for general polygonal scenes without room-like
subdivision. Therefore, these approaches are of no apparent importance for general
occlusion culling problems.
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Several algorithms have been proposed in computational geometry. A brief
overview can be found in [38]. Coorg and Teller proposed two object space culling
algorithms. In [16], a conservative and simplified version of an

aspect graph is presented. By establishing visibility changes in the neighborhood
of single occluders using hierarchical data structures, the number of events in the as-
pect graph is significantly reduced.

Secondly, by combining a shadow-frustum-like occlusion test of hierarchical sub-
division blocks (i.e., octree blocks), the number of occlusion queries is reduced [17].
However, both algorithms are neither suited for dense occluded scenes with rather
small occluders (resulting in a large increase of queries), nor for dynamic scenes.

Cohen-Or et al. proposed a method called�-Visibility-Culling for distributed
client/server walkthroughs [14, 15, 10]. Computing the shadow-frusta for a series of
local view points and an occluder permits visibility queries on the local client. How-
ever, the algorithm does not seem to scale for very highly occluded scenes.

In [53], an occluder database - a subset of the scene database - is selected. During
the occlusion culling, the shadow-frusta of the occluders are computed and a scene
hierarchy is culled against these shadow-frusta. Overall, the surveyed computational
geometry-based visibility approaches only deal with convex occluders, which limits
their practical use severely.

In 1993, Greene et al. proposed the hierarchical z-buffer algorithm [43, 42, 40],
where a simplified version for anti-aliasing is used in [42]. After subdividing the scene
into an octree, each of the octants is culled against the view-frustum as proposed in
[36]. Thereafter, the silhouettes of the remaining octants are scan-converted into the
framebuffer to check if these blocks are occluded. If they are not occluded, their
content is assumed to be not occluded too; if they are occluded, nothing of their content
can be visible. The occlusion query itself is performed by checking a z-value-image-
pyramid for changes. Unfortunately, this query is not supported by common graphics
hardware and therefore becomes an expensive operation. However, one can consider
this algorithm as the inspiring origin of the approach presented in Section 3.1.6.

In [41], Greene presented a hierarchical polygon tiling approach using coverage
masks. This algorithm improves the occlusion query of a hierarchical z-buffer, due
to the two-dimensional character of the tiling. However, the main contribution of this
algorithm is an anti-aliasing method, as the algorithm has advantages for very high-
resolution images. The strict front-to-back order traversal of the polygons - necessary
for the coverage masks - needs some data structure overhead. Building a hierarchy of
an octree of BSP-trees limits the application of this algorithm to static scenes.

Naylor presented an algorithm, based on a 3D BSP-tree for the representation of
the scene, a 2D BSP-tree as image representation, and an algorithm to project the 3D
BSP-tree subdivided scene into the 2D BSP-tree image [84].

Hong et al. proposed a fusion between the hierarchical z-buffer algorithm [43] and
the PVS-algorithm in [76] for special applications. In this z-buffer-assisted occlusion
culling algorithm, a human colon is first subdivided into a tube of cells in a pre-process.
Thereafter, the occlusion is determined on-the-fly by checking the connecting portals
between these colon cells, exploiting the z-buffer and temporal coherence to obtain
high culling performance [50]. Unfortunately, this approach is closely connected to
the special tube-like topology of the colon and therefore, is not suited for general
occlusion culling problems.
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In [113], a voxel-based occlusion culling algorithm is presented. After classifying
the scene on a grid of samples of the data-set as void-cells, solid-cells and data-cells,
the occlusion is determined in a pre-process for each potential view point. Presumably,
this algorithm achieves good results for cave-like scenes, but has a high memory and
processing overhead for sparse scenes like the forest scene of Section 3.1.9. Therefore,
this algorithm is not suited for a general occlusion culling algorithm.

In [114], occlusion culling using hierarchical occlusion maps was presented Sim-
ilar to [53], an occluder database is selected from the scene database. Using these
occluders, bounding boxes of the potential occludees of the scene database are tested
for overlaps, using the image hierarchy of the projected occluders. Strategies for dy-
namic scenes are presented in [101] and [114]. Sudarsky and Gotsman propose in
[101] a fast update of a hierarchical data structure. Zhang [114] et al. suggest using
each object of a scene as an occluder in the hierarchical occlusion maps algorithm.

3.1.4 Scene Organization

In general, subdivision schemes for general polygonal models are difficult to de-
rive. This results in individual solutions for different data-sets. Hong et al. [50] use a
technique which subdivides a voxel-based colon data-set along its skeleton. The size
of the different subdivision entities depends on the number of voxels belonging to this
entity. In [99], Snyder and Lengyel proposed that the designer of the scene needs to
provide the subdivision. Similarly, Zhang et al. used a pre-defined scene database
[114]. The most general approach is to subdivide a polygonal model into regular spa-
tial subdivision schemes, such as BSP-trees [34, 84, 41] or Octrees [40, 43]. While
these subdivision schemes produce good results on polygonal models extracted by the
Marching Cubes algorithm [75] from uniform grid volume data-sets, which provide a
“natural” subdivision on Marching Cubes cell base, these schemes run into numerous
problems on general models. If a polygon of the model lies on a subdivision boundary,
it must be split into several parts, in order to produce a disjunct representation of the
bounding volumes. Unfortunately, this procedure increases the number of small and
narrow polygons tremendously.

3.1.5 Sloppy N-ary Space Partitioning Trees

In this approach, the use of a sloppy n-ary Space Partitioning tree (snSP-tree) is
proposed. While the leaf nodes of the tree contain the actual geometry of the model,
the upper nodes only represent the bounding volume of their child nodes in the subtree.
The sloppiness is given by the sloppy partitioning of the model, where the bounding
volumes of tree nodes of the same tree level may not be disjunct. Therefore, any given
model can be stored in such a tree. No re-triangulation is necessary, due to a missing
strict subdivision border for the polygons. Nevertheless, polygons which expand over
the entire model, such as floors, should be subdivided into smaller polygons to ensure
a well balanced tree.

Since the tree does not rely on a particular number of child nodes, like i.e., an
Octree, the tree will be calledsloppy n-ary Space Partitioning treeor snSP-tree. Un-
fortunately, using a snSP-tree as subdivision data structure does not solve the actual
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subdivision problem. However, it removes some of the limitations of other subdivision
schemes.

Generating Subdivision Hierarchies

Generally, a polygonal scene can be subdivided into smaller parts, where this sub-
division can be either hierarchical or non-hierarchical. Each part of this subdivision
is asubdivision entity. If information at different multiresolution levels are required,
usually a hierarchical organization is chosen, where different subdivision entities are
combined into one parent entity which contains the whole information of the associ-
ated subdivision entities, or only information with less detail (a lower level-of-detail).
This subdivision can be represented as a tree which is calledsubdivision treeor subdi-
vision graph.

Generating hierarchical subdivisions of very large models can be done in numer-
ous ways. In this Section, two research algorithms will be presented and compared
with a commercial tool. All three approaches generate a subdivision hierarchy start-
ing from an arbitrary model. The first,D-BVS, was developed by the author and Jens
Einighammer,p-HBVOwas developed by Gordon M¨uller at the University of Braun-
schweig, andSGI Optimizer(see [59]) is part of SGI’s OpenGL Optimizer toolkit. All
approaches subdivide general polygonal models.

While good results can be achieved using scenes where additional information
is available (i.e., medical scanner data (octree or BSP subdivision), or pre-subdivided
scenes), the subdivision performance of the available algorithms for general models re-
mains improveable. Consequently, an automatic subdivision scheme of general scenes
is a field of the current research.

Dimension-oriented Bounding Volume Subdivision (D-BVS) The goal of the vol-
ume oriented D-BVS subdivision algorithm is to generate evenly-sized, cube-shaped
bounding boxes, hence minimizing the area of the screen projection of these bounding
boxes. This goal is approached by splitting the bounding boxes multiple times in the
largest dimension. The size of the bounding boxes and the associated sub-models is
controlled by user-specified parameters, such as the minimal number of polygons, see
[27].

Starting with the root subdivision entity — which contains the whole model —
the associated bounding volume is splitnsplit times along its largest dimension such
that each fraction is approximately of the same size as the second largest dimension.
Therefore, the trees generated are sloppy snSP-trees. If cube like volumes have to be
divided, this is done one time in the dimension producing the lowest number of new
polygons.

nsplit =
largest bounding volume dimension

second largest bounding volume dimension
(3.1)

This process continues recursively until the termination criteria are met. These cri-
teria give lower bounds for the number of polygons of the subdivision entities or the
size of the dimensions of the associated bounding boxes. This is necessary to avoid
undersized subdivision entities which increase the occlusion culling overhead and do
not improve the cull rate any more. Occasionally, the split-operation of the subdivi-
sion process splits a polygon which lies across the subdivision boundary into two new



3.1. A NEW APPROACH FOR OCCLUSION CULLING 69

Figure 3.1: Moving subdivision planes to reduce polygon splits. The other planes are
already calculated.

polygons (this is usually not the case for uniform grid data-sets). This can tremen-
dously increase the number of polygons and frequently, these polygons are small and
narrow and are therefore prone to numerical problems. In order to compensate this,
two techniques are applied. First, the subdivision plane is moved along the subdivision
dimension so as to reduce the number of additional polygons (Fig. 3.1). The direction
and value of the movement is controlled by user-specified parameters. Nevertheless,
very large polygons can not be handled by moving the subdivision planes, because
they cover several high-level subdivision entities (i.e., a single polygon factory hall
floor can be divided in this case into a huge amount of triangles). To avoid the genera-
tion of unnecessary additional geometry, the second techniquepulls upthese polygons
into a leaf node close to the tree root. The pull-up is controlled by a user parameter
that specifies the number of subdivision planes a polygon may intersect. If it intersects
more planes, the pull-up is performed. The associated geometry is no longer affected
by split operations in lower tree levels.

In general, this algorithm can handle all types of polygonal scenes without produc-
ing significantly more polygons. It optimizes shape and size of the subdivision entities,
hence their bounding boxes. However, the polygon load is not evenly distributed to the
subdivision entities, possibly resulting in a less balanced subdivision tree.

Polygon-based Hierarchical Bounding Volume Optimization (p-HBVO) The
polygon-based Hierarchical-Bounding-Volume-Optimization (p-HBVO) method re-
cursively subdivides a set of polygons into two subdivision entities. Instead of arbitrar-
ily selecting possible subdivision planes, these planes are induced by the barycenters of
the polygons (triangles). By evaluating a cost-function (see equation 3.2), an optimal
subdivision plane is established. At each subdivision level, the individual polygons are
assigned to exactly one subdivision entity of that level. Consequently, no polygons are
split, hence no new polygons are generated by this method.

Starting from the root node, at each subdivision step, the polygons are sorted along
all coordinate axes, where the barycenter of each polygon serves as sorting key. Based
on these three ordered lists, the potential subdivision planes are evaluated along each
axis for each entry in the respective list by splitting the sorted list of polygons into aleft
andright part. Please note, that no polygons are split as in the previous approach. In-
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stead, the polygons are only reordered. In contrast to pre-defined subdivision planes of
the median cut scheme [62], a cost function is evaluated for each possible subdivision
plane — defined by the entries in the lists — which approximates the costs of rendering
the polygons of one of the two subdivision entities, generated by the respective subdi-
vision plane. By minimizing this cost-function over all possible subdivision planes, an
optimal subdivision plane is obtained that generates two new subdivision entities; one
contains allleft�polygons, the other one contains allright�polygons. The subdivi-
sion process terminates when either the number of polygons or the subdivision depth
exceeds one of the two pre-defined parameters:Max TrianglesPer SubdivisionEntity
or Max SubdivisionDepth. These parameters are specified by the user and supplied at
the start of the subdivision process. It can be again defined, that polygons extending
across the whole subdivided volume can be pulled up in higher level nodes.
In most cases, the cost function is identical to one which has already been successfully
applied in ray tracing environments [82]. Adopting this cost function is possible since
the objective is the same; both algorithms traverse the scene graph in a similar way
to determine visibility. The costs of a subdivision entityH, with childrenHleft and
Hright, is given by:

CH(axis) =
S(Hleft)

S(H)
� jHleftj+

S(Hright)

S(H)
� jHrightj (3.2)

where

� jHj is the number of polygons within hierarchyH,

� S(H) the surface area of the bounding box associated to sub-sceneH, and

� axis 2 fX;Y;Zg.

In the current implementation, the algorithm generates non-sloppy binary trees,
but it can be easily extended to generate also sloppy snSP-trees. Overall, this algo-
rithm generates well balanced subdivision trees with respect to their polygon load.
Furthermore, polygons of individual objects are detected and clustered together.

SGI Optimizer (SGI) SGI’s OpenGL Optimizer is a C++ toolkit for CAD applica-
tions that provides scene graph functionality for handling and visualization of large
polygonal scenes. It includes mechanisms for subdivision of databases as well as for
tessellation, simplification, and others.

Optimizer (depicted in the following sections as “SGI”), which is part of the
toolkit, provides functionality for subdivision of model databases. Since the algorithm
which is used in this product is not described in a publication, one can only guess from
the results obtained what methods are utilized.

All the examples produced with this algorithm were of a regular, non-sloppy tree
structure. The subdivision method realized in SGI seems to be similar to the construc-
tion of an octree; each subdivision entity is split into eight equally sized subdivision
entities. This process is repeated recursively, until a certain threshold criteria for the
iterated subdivisions is reached.
Octree-based spatial subdivision is a simple and efficient subdivision scheme. How-
ever, the SGI subdivision mechanism subdivides space not by simply bisecting edges
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(a) (b) (c)

Figure 3.2: Cathedral data set — subdivided by (a) p-HBVO, (b) D-BVS, and (c) SGI;
the arts and pillars of the cathedral are well detected by p-HBVO and D-BVS. SGI
only used a regular spatial subdivision.

of a cube, as in an octree, but by choosing subdivision planes so that the rendering
loads of the resulting parts are similar. As a result, the amount of geometry in the sub-
division on each sides of the cutting plane is approximately the same. Polygons which
are split due to the subdivision are distributed to the respective subdivision entities.
The main parameters that can be used to control the subdivision are hints for the lowest
and highest amount of triangles(trimin; trimax) in each subdivision entity at the leaf-
level of the subdivision hierarchy. However, the subdivision algorithm only tries to
meet these criteria but is not bound to it. Note, that this tool usually produces triangle
strips to achieve better rendering performance.

In general, SGI generates subdivision hierarchies with a well-balanced polygon
load. However, the bounding boxes of the subdivision entities are less suited for oc-
clusion culling applications, because the cost function determining the subdivision en-
tities is obviously not optimized with respect to the volume of the bounding boxes. It
can be observed that the right-most branch of the subdivision tree frequently contained
large subsets (bounding box volume size) of the model, even in the lower tree levels.
This is a clear disadvantage compared to the two algorithms described above, since this
leads to bounding boxes in high levels of the hierarchy that can contain a great amount
of empty space since they don’t approximate the geometry tightly. For the occlusion
culling approach described in this chapter, such bounding volume hierarchies are not
very suitable.

The interior of a gothic cathedral, designed with a CAD system, was used as a test
data-set. Occlusion is limited to small parts of the model, because a large share of the
polygons is visible from most view points within the model. Figure 3.2 shows a very
fine granular subdivision of the cathedral model. Especially the p-HBVO approach (a)
adapts very nicely to the structures of the model, such as pillars and arcs. In contrast,
the subdivision generated by SGI (c) introduces very large bounding boxes, which do
not adapt properly to the actual geometry.
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Figure 3.3: Survey of the basic algorithm (the schematic on the right shows the effects
of the different culling steps as they are applied to the scene).

3.1.6 The Culling Algorithm

In this Section, a novel solution to the occlusion problem is presented. The algo-
rithm is based on core OpenGL functionality and utilizes the available capabilities of
OpenGL to check for occlusion. The basic strategy is to use a hierarchical spatial sub-
division of the model and cull all occluded subdivision nodes. As mentioned earlier,
a sloppy n-ary Space Partitioning tree (snSP-tree) as a hierarchical representation of a
scene is assumed, which is generated once per scene in a pre-processing step.

For each frame to be rendered, view-frustum culling and occlusion culling are
performed. Figure 3.3 schematically illustrates the pipeline of the culling algorithm.
These individual steps are described in detail in the following Sections.

View-Frustum Culling

In contrast to other approaches, OpenGL is used to perform the view-frustum
culling step. In detail, the OpenGL selection modeis able to detect whether a bounding
volume interferes with the view-frustum. Therefore, the polygonal representation of
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the bounding volume (as convex hull) is transformed and clipped. Once a bounding
volume intersects the view-frustum, it is tested whether the bounding volume resides
entirely within the view-frustum. In this case, all subtrees of the bounding volume can
be marked as not occluded. Otherwise, the testing is continued recursively until the
child nodes of the bounding volume hierarchy are reached.

In rare cases, the bounding volumes can completely contain the view-frustum -
resulting in a invisible bounding volume representation. This can be prevented by
testing if the view point lies within the bounding volume, or if the bounding volume
lies in between the near plane of the view-frustum and the view point.

As a result of the view-frustum culling step, leaves are tagged possibly not oc-
cluded, if they are not culled by the view-frustum culling, or definitely occluded.

Occlusion Culling

The task of an occlusion culling algorithm is to determine occlusion of objects in
a model. A virtual occlusion bufferis defined, which is mapped onto the OpenGL
framebuffer to detect a possible contribution of any object to the framebuffer. In the
implementation of the algorithm on a SGI O2, the stencil buffer is used for this pur-
pose1. Intentionally, the stencil buffer is used for advanced rendering techniques, like
multi-pass rendering.

To test occlusion of a node, the triangles of its bounding volume are sent to the
OpenGL pipeline. The z-buffer test is performed during the scan-conversion of the
triangles, and the output of this test is redirected into the virtual occlusion buffer. Oc-
cluded bounding volumes will not contribute to the z-buffer and hence, will not cause
any trace or footprint in the virtual occlusion buffer.

Although reading the virtual occlusion buffer is fairly fast, it is the most costly
single operation of the algorithm. This is mainly due to the time consumed for the
setup getting a buffer content out of the OpenGL pipeline. For models subdivided into
thousands of bounding volumes, this can lead to a less efficient operation. Further-
more, large bounding boxes require many read operations. Therefore, a progressive
occlusion test was implemented which reads spans of pixels from the virtual occlusion
buffer using a double interleaving scheme, as illustrated in Figure 3.4.

Although, the setup time for sampling2 small spans of the virtual occlusion buffer
increases the time per sample, spans of ten pixels achieved an almost similar speed-up
as sampling entire lines of the virtual occlusion buffer. The compromised setup time
for sampling small spans is amortized by the higher probability of finding footprints,
due to the addition of the in y direction interleaved scheme.

During motion, iterative sampling enables low culling costs without producing
visible artifacts in the scenes used for testing. Once the movement stops, the buffer
will be read progressively until all values are tested. Basically, every samplingth
horizontal line is read from the buffer, where the y-offset is incremented bysampling

2

1Other buffers could be used as well but the stencil buffer, as an integer buffer, is often the least used
buffer and has on many OpenGL implementations, for example on a SGI O2, an empirically measured
better read performance than the other buffers.

2Basically, this scheme implements a samplingof the virtual occlusion buffer, where 1

sampling
th of

each bounding box is read in each iteration. In other words, the algorithm needs samplingiterations to
fully read the entire bounding box.
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Span not read from the buffer
Span read from the buffer

Figure 3.4: Progressive sampling of the virtual occlusion buffer using a sampling value
of 6. Hence, after six sampling iterations, the correct occlusion information will be
retrieved.

for every second column of spans. For the purpose of illustration, Figure 3.4 uses a
sampling factor of six, which is smaller than in the actual implementation.

Please note that sampling introduces a non-conservatism into the approach. In
some cases, bounding boxes are considered occluded, although they are not fully oc-
cluded. However, due to orientation and shape, the actual geometry is usually smaller
than their bounding boxes. After performing some measurements, it turned out that a
sampling factor of ten is sufficient without compromising image quality for the scenes
that were used for testing. Nevertheless, this is a sampling problem and the parameter
is dependent on the scene and has to be chosen accordingly. Therefore, the sampling
value can be adjusted adaptively in the implementation.

3.1.7 Adaptive Culling

For complex models with deep visibility 3, many almost occluded objects con-
tribute only a few pixels to the final image. Knowing whether an object is not occluded
does not introduce a measure of the quantity of contribution. To cull objects which are
almost occluded and therefore, are barely noticeable, adaptive culling is an alternative
to approximate culling defined in [114]. The approach of [114] utilizes the inherent
property of hierarchical occlusion maps, where the combined occluder projections are
available at different levels of detail. With this, a threshold value can be defined for
whole groups of pixels to declare them as opaque even if some pixels are not definitely
covered by an occluder. In contrast to this approach, adaptive culling is described in
this section. It is much more scalable since it can operate with different criteria based
on exact pixel counting whereas approximate culling can only use a fixed threshold.

Each object which generates a footprint on the virtual occlusion buffer needs to be
evaluated. Therefore, the number of footprints of the object on the virtual occlusion
buffer is counted. The distance of the object from the view plane, the size of its 2D
bounding box relative to the view plane, and the number of footprints are used for the
visibility consideration. In other words, the percentage of footprints relative to the size
of the object is calculated and weighted by the distance of the object.

3In scenes with a deep visibility, many objects in the background are visible, due to the sparse scene
geometry. An example for such a scene is the forest scene in Figure 3.12.
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(a) (b)

Figure 3.5: Alley of trees - bounding volumes of culled objects are marked yellow: (a)
Adaptive culling (94% culled). (b) Occlusion culling (88% culled).

Adapcull(Obj) =
SizeOf2DBoundingBox(Obj)

SizeOfV iewplane

�
Dist(Eye) +Dist(Obj)

Dist(Eye)
(3.3)

where Sizeof2DBoundingBox(Obj) returns the number of pixels of the screen pro-
jection of the bounding box, SizeOfViewplane returns the number of pixels of the view
plane, Dist(Eye) returns the distance between view plane and view point, and Dist(Obj)
returns the minimal distance between the Obj and the view plane.

For each potentially not occluded object, Equation 3.3 is evaluated. If
Adapcull(Obj) is smaller than a user defined threshold, the object is considered as
occluded.

Different strategies for dealing with almost occluded objects are possible. First,
as mentioned in the previous section, the actual geometry is usually smaller than the
associated bounding box. A partially not occluded bounding box does not necessarily
mean that the associated geometry is not occluded. Therefore, culling of the object
may not have any visual impact. Secondly, if a small fraction of the actual geometry
might be not occluded, one will probably not see any detail. Consequently, a lower
level of detail representation of this geometry can be used.

In [114] is also mentioned, that a non-conservative culling strategy imposes the
problem of aliasing in the form of flickering or blinking dependent on the scene it is
applied to. This is also true for adaptive culling. On the other hand, adaptive culling
is able to reduce the amount of rendered geometry further. The animation calculated
for Figure 3.12 was very suitable for adaptive culling. No aliasing was visible due to
adaptive culling but the average culling rate could be increased by 11 percent.

Figure 3.5 shows a result of the adaptive culling mode compared to the standard
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occlusion culling mode of the algorithm4.

3.1.8 Further Optimizations

Several optimizations of the proposed approach are possible. In this Section, a few
of them will be discussed.

Interleaved Culling: Clearly, the subdivision tree representing a model can be too
deep to efficiently test every bounding volume for occlusion. In the worst case, each
leave could contain a single polygon. This is circumvented by generating well bal-
anced trees, holding sufficient polygons in each leaf. Additionally, the view-frustum
culling step and occlusion culling step are dynamically interleaved to exploit culling
coherence - an already occluded bounding volume of a tree node does not require any
further culling test for its child nodes.

Cost-adaptive Culling: To obtain a good ratio between the time spent for render-
ing and the time spent for culling, one needs to ensure that only a reasonable fraction
of the rendering time is spent on culling. Therefore, a factor Pgraphics, which repre-
sents the percentage spent on culling, is defined. This factor is hardware dependent and
needs to be determined empirically. On the SGI O2, one can determine Pgraphics =

1
3

as a reasonably good factor.
The cull depth adapts dynamically in order to meet the time budget for culling.

This budget is calculated using Equation 3.4, where Trender is the absolute amount of
time spent for rendering the previous frame.

Tculling = Trender � Pgraphics (3.4)

Once the accumulated culling time of the current frame exceeds Tculling, the remaining
nodes are simply culled against the view-frustum and sent to the rendering pipeline.
Furthermore, once a node is detected to be entirely within the view-frustum, all leaves
of this node can directly be sent to the rendering pipeline without further view-frustum
culling the nodes in between.

Depth Ordered Culling: Front-to-back, or depth sorted order of the occlusion
tests provides a good heuristic for fast filling of the virtual occlusion buffer. Therefore,
it is important to process objects in depth sorted order. The zmin and zmax values
for each bounding volume are returned by the view-frustum test for free. The bound-
ing volumes interfering within the view-frustum are sorted by their zmin value into a
DepthHeap.

The occlusion culling step tags each node as not occludedor possibly occluded.
During motion, those tags have to be generated for every frame. As soon as the cam-
era stops, only bounding volumes in the previous iteration determined as possibly oc-
cluded are progressively refined. Nodes earlier marked not occluded will stay not
occluded and can therefore be skipped. The leaf nodes which contain the actual geom-
etry are directly sent to the rendering pipeline. This scheme changes once a bounding
volume is determined to be not occluded which has previously been marked as pos-
sibly occluded. In this case, occlusion culling has to be performed for all following

4A threshold of 100 (0.02% of view plane) was used on a view plane of 650 by 650 pixels. Average
distance to the objects was 10; their bounding box projection size was on average 423 pixels; the view
point was located 0.002 behind the view plane.
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nodes in the DepthHeap, due to the changed occlusion in the image. As mentioned
earlier, this change of occlusion did not happen in the experiments using a sampling
factor of 10.

Overall Refined Algorithm: To integrate these additional features, the basic al-
gorithm is modified. The DepthHeapis initialized containing at least two uppermost
tree nodes which do intersect with the view-frustum. Unless the time budget is not en-
tirely consumed, the head element of the DepthHeapis transferred to the cull test. In
an interleaved manner, view-frustum culling and occlusion culling for a single frame
are performed as described in the following pseudo-code.

InitDepthHeap();
while (UsedTime < Budget){
Node = DepthHeap->getHead();
if (node == LEAF)

render(Node->polygons);
else if (OccTest(Node) == NOT OCCLUDED)

forall (children(Node))
if (ViewFrustumTest(child) == NOT OCCLUDED)

DepthHeap->add(child);
}

One advantage of this interleaved culling scheme is the reduced cost for sorting. For
the cathedral scene, which is a well balanced snSP-Tree of twelve tree levels, an av-
erage list length of 8 and a maximum of 17 possible not occluded boundary volumes
can be measured.

3.1.9 Performance Analysis of the Algorithm

scene #triangles #objects #triangles
/object

cathedrals 3,334,104 8 416,763
city 1,056,280 300 3521
forest 452,981 12 + 1 28,500 + 110,981
garbage 5,331,146 2,500 about 2,100

Table 3.1: Model sizes.

The algorithm was examined by processing four different scenes. One architectural
scene of a 3D array of gothic cathedrals, a city scene, a forest scene to demonstrate
adaptive culling, and - similar to [114] - the content of a virtual garbage can of rather
small objects.

The cathedral scene was processed with SGI Optimizer to utilize its triangle-
stripping capabilities and then manually reordered to create a better bounding volume
hierarchy, whereas the city model and the forest model were artificial scenes con-
structed and triangle stripped with a CAD tool. In this Section, the performance of the
algorithm applied on the test scenes will be discussed which is described in Table 3.1.
Note, the achieved percentage of the model culled depends on the granularity of the
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snSP-tree. The more the individual objects of a scene are subdivided, the higher is
the potential culling performance. Nevertheless, a higher culling performance does
not imply a higher rendering performance. While a culling rate of up to 99% of many
scenes is possible, the overall rendering performance would drop in most cases due to
the culling costs. All measurements were performed rendering with a framebuffer size
of 650�650 pixels on a SGI O2 workstation with 256 MB of memory and one 175
MHz R10000 CPU.

Cathedral Scene

In this scene, eight gothic cathedrals are aligned on a 2 � 2 � 2 grid, where each
cathedral consists of 416,763 polygons (Figure 3.6).

Figure 3.6: Overview of the cathedral scene.

According to Section 3.1.6, two different culling phases are performed: First, a
view-frustum culling (VFC); secondly, an occlusion culling. Figure 3.8 shows fram-
erate and percentage of model culled by the algorithm on the cathedral scene for a
sequence of about 100 frames. For the performance tests, three different modes were
measured: Direct rendering (DR) - without any culling, view-frustum culling only
(VFC), and view-frustum and occlusion culling (V+O).

The view-frustum only mode culls only small portions of the eight-cathedral
model; for most view points the other cathedrals are still within the view-frustum.
However, occlusion culling is far more successful. Up to 65% of the model is culled
away. Due to occlusion culling, an average speed-up of seven was obtained (Fig-
ure 3.7).
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Cathedral Scene

(a) (b)

Figure 3.7: (a) Interior view of cathedral. (b) Bounding volumes of culled objects are
marked in yellow.
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Figure 3.8: Framerate and percentage of model culled: V+O denotes view-frustum
culling and occlusion culling, VFC denotes view-frustum culling only, and DR denotes
direct rendering without any culling.
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City Model

City Model
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Figure 3.9: Framerate and percentage of model culled: V+O denotes view-frustum
culling and occlusion culling, VFC denotes view-frustum culling only, and DR denotes
direct rendering without any culling.

The city model is constructed out of three-hundred buildings. Each building con-
tains some interior furniture (Figure 3.10).

Figure 3.9 shows framerate and percentage of model culled of the city model.
Three culling modes were measured while rendering a sequence of 100 frames: Direct
rendering (DR) - no culling, view-frustum culling only (VFC), and view-frustum
and occlusion culling (V+O). While the view point is moving near the ground of
the scene, 99.8% of the geometry is culled using the proposed culling scheme. Only
3.9% up to 39.9% of the geometry is culled due to view-frustum culling, where the
remaining geometry is culled due to the occlusion culling algorithm. On average, a
framerate of almost two frames per second was achieved, which represents a speed-up
of about eight against view-frustum culling only.
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City Model

(a) (b)

Figure 3.10: City model is rendered using V+O culling: (a) Visitor’s perspective. (b)
Bird’s perspective of visitor’s view - all yellow bounding volumes are not rendered due
to occlusion culling.
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Forest Scene
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Figure 3.11: Framerate and percentage of model culled: V+O denotes view-frustum
culling and occlusion culling, VFC denotes view-frustum culling only, and AC denotes
adaptive culling.

The forest scene consists of 12 “ tree with leaves” objects - each consists of 28,500
polygons - and one model of ”Castle del Monte” of 110,981 polygons behind the trees
(Figure 3.12). The scattered, yet dense occluded structure of the leaf trees has special
demands for an occlusion culling algorithm. Depending on the subdivision of those
trees, higher additional culling was achieved due to adaptive culling; Figure 3.11 shows
an average additional reduction of 11% of the geometry using adaptive culling (AC),
compared to the usual V+O culling of the algorithm.
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Forest Scene

(a) (b)

(c) (d)

Figure 3.12: The forest scene is rendered using adaptive culling which culled 88% of
the structure: (a) Front view. (b) Overview - all culled bounding volumes are marked
yellow. (c) The forest scene is rendered using V+O culling which culled 77% of the
structure. (d) Overview - all culled bounding volumes are marked yellow.
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Virtual Garbage Can Scene

To cull dynamic scenes, a special mode can be used. Only the leafs of the snSP-tree
are used to check the occlusion. The performance of this mode is shown with a scene
of the content of a virtual garbage can (Figure 3.13). 2,500 independent, potentially
moving objects of an average size of about 2,100 polygons are contained in the scene.
96% of the total 5,331,146 polygons are culled. The average obtained speed-up is still
larger than seven.

Virtual Garbage Can Scene

(a) (b)

Figure 3.13: (a) Front view. (b) Bird’s perspective of front view - all yellow bounding
volumes are not rendered due to occlusion culling. Direct rendering took more than
28 seconds, while rendering using the proposed culling algorithm took less than four
seconds.
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Different Subdivision Strategies

In the tables 3.2 and 3.3, the impact of the different scene subdivision strategies
described in Section 3.1.5 on the performance can be seen. These measurements were
performed on a HP B180/fx4 graphics workstation and a special HP occlusion culling
hardware was used for the occlusion culling test (see [49, 98]) to measure only the
influence of the different subdivision algorithms on the culling results. This time,
the hierarchies of SGI’s Optimizer were not tuned but used as they were produced
by the tool. It can be clearly seen, that a scene subdivision in a more optimal sense
can improve the performance of the occlusion culling algorithm by up to four frames
per second. Furthermore, the polygons in the subdivision nodes were not stripped as
in the performance measurements above. This was necessary, since otherwise SGI’s
Optimizer would have had an unfair advantage over the other two algorithms since
they have currently no stripping capabilities.

Approach: p-HBVO D-BVS SGI

#Subdiv. nodes 9 59 51
#Leaf nodes 10 67 52
Time for vfc [s] 0.0021 0.0077 0.0089
Time for occ [s] 0.0041 0.0322 0.027
Time for ren [s] 0.1361 0.1239 0.1426
Render rate [%] 30.0 25.9 30.1
Frame rate [fps] 12.4 8.8 7.8
Render rate
of vfc only [%] 33.1 25.9 32.2
Frame rate
of vfc only[fps] 12.4 10.8 9.5

Table 3.2: Cathedral data-set: subdivision granularity, average render rates, frame
rates, and time consumed by occlusion culling based rendering.

Comparison with other approaches

After all, these speed-ups are equivalent or much better than the ones presented
in [114], see Table 3.4. The problem of having no well defined set of test data sets
is the same as it was already described in Chapter two. The measurements presented
in [114] are not very detailed and also the models are only roughly the same. The
cathedral scene used in this chapter is five times bigger than the model used in [114].
Some algorithms, for example the hierarchical z-buffer approach described in [43]
or the hierarchical coverage mask approach of [41] use extremely large models that
generate very nice speed-ups but the absolute frame times are far away from being
interactive. Unfortunately was not tested, how this algorithms behave when used for
models with the sizes mentioned in this chapter or used in [114]. Other algorithms are
not implemented at all and therefore exist no results.
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Approach: p-HBVO D-BVS SGI

#Subdiv nodes 2722 266 420
#Leaf nodes 2723 495 420
Time for vfc [s] 0.0189 0.0111 0.0124
Time for occ [s] 0.0541 0.0318 0.0332
Time for ren [s] 0.0073 0.0831 0.0787
Render rate [%] 0.1 4.1 3.6
Frame rate [fps] 14.0 10.9 11.8
Render rate
of vfc only [%] 47.0 50.7 50.4
Frame rate
of vfc only [fps] 1.0 1.4 1.4

Table 3.3: City data-set: Subdivision granularity, average render rates, frame rates, and
time consumed by occlusion culling based rendering.

scene #triangles culling speed-up speed-up of [114]

cathedrals 3,334,104 91.3% 4.2 �2
city 1,056,280 99.8% 4.8 �3
forest AC 452,981 89.0% 3.8 not
forest V+C 452,981 84.7% 2.6 known
garbage 5,331,146 96.0% 7 �5

Table 3.4: Average performance of OpenGL-assisted Occlusion Culling algorithm
(OOC) compared to view-frustum only culling. The forest scene reflects comparison
of adaptive culling (AC) and V+O culling to view-frustum culling.

3.1.10 Limitations

Most occlusion culling algorithms focus on fast determination if rendering of
bounding volumes would change the content of the framebuffer, hence the associated
geometry would be not occluded [43, 50, 114, 76]. In this approach, a virtual occlu-
sion buffer was introduced which contains the occlusion information. Still, similar to
the other approaches, this information has to be read out of the rendering pipeline and
searched for changes.

The measurements were performed on a low-end graphics workstation, the SGI
O2. Similar to PC graphics cards, the O2 performs parts of the rendering pipeline us-
ing the CPU. Only operations associated with the rasterization are executed by special
purpose graphics chips. This leads to a fast accessibility of the framebuffer. However,
this is not true on highly distributed and interleaved graphics subsystems, like the In-
finiteReality graphics of SGI. In these cases, the setup-time for reading the framebuffer
is significantly larger, thus limiting the performance of the occlusion culling algorithm.
Consequently, the scheme works well on low- and mid-end graphics hardware (i.e., HP
fx4, SGI O2, SE, SSE, MXE, and several PC graphic cards).

On highly distributed or highly interleaved graphics systems, the overall speedup
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can be less significant. On these systems, the parameters like the progressive sampling
factor sampling and the cost-adaptive culling Tculling have to be chosen appropriately
to resemble the system’s capabilities5. These factors are very different for the different
systems, since high performance graphic systems are very proprietary. Furthermore the
choice of the virtual occlusion buffer can be essential. Eventually, the stencil buffer is
no longer appropriate as on low-end systems and instead another buffer, for example
the alpha buffer, has to be used.

3.1.11 Using Occlusion Culling with the Multi Resolution Delaunay Ap-
proach

The algorithm presented above is ideally suited to be connected with the Multires-
olution Delaunay Approach described in Chapter two, see 2.3.

In Section 2.3.3 is depicted, how the data is sorted into a bounding box grid in a
preprocessing step before adopting the multiresolution model. These bounding boxes
are suitable bounding volumes for performing view frustum and occlusion culling,
since they contain the sample points and the reconstructed surface in a tight way. The
occlusion information determined for the bounding boxes can then be applied directly
to the triangles that form the landscape surface. Triangles, that are fully included
within an occluded bounding volume can be excluded from rendering. Triangles that
are bigger than a bounding volume have to be processed. This decision can be made
in the first stage of the rendering pipeline and needs no interaction with the graphic
subsystem. It is therefore very fast and will not introduce synchronization problems.

The bounding boxes need not necessarily being aligned in a regular grid struc-
ture. Firstly, they can be organized hierarchically to form a snSP-tree. With this, also
triangles included in more than one bounding volume can be marked as occluded.

Furthermore, the bounding volumes can be constructed in a way that they represent
the form of the actual landscape. It makes sense to divide a hill from a valley by
building special bounding boxes for each of them. With this, hills can obscure parts
of the landscape behind of them. It is even possible to process only the front side of a
bigger hill by dividing it up into a set of bounding volumes.

When viewing landscape scenes, the performance gain that can be realized by
using occlusion culling is very much dependent on the scene. In rather flat scenes,
most culling will be done by view frustum culling. On contrast to that, mountains and
hills that obscure things behind them can introduce excellent occluders into a scene
that make occlusion culling feasible and useful. When using cost-adaptive culling, see
3.1.8, these effects can be brought into account by choosing the coefficients Tculling
and Trender accordingly. In flat scenes, small values of Tculling have to be used that
can be increased depending on the structure of the landscape. The information for
this adaptation is inherently contained in the dimensions of the bounding volumes that
comprise the surface points. Using this information, an automatic adaptation scheme
is possible that reduces the amount of time spent on culling and increases it again when
the viewer turns to parts of the terrain with hills and potentially more occlusion.

5An Infinite Reality system is able to read a buffer of 500�500 pixel 10 times as fast as an O2
(0.00322s vs. 0.0254s). When changing to 100�100 pixels, the O2 needs only 2.1294e-05s compared to
0.0001762s.
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3.2 Embedding Occlusion Queries in the OpenGL pipeline

There are many limiting factors of current OpenGL that hinder real-time occlusion
culling for large scenes on the base of this API. Probably most important is the lack
of a distinct occlusion culling stage in the rendering pipeline and a well defined set of
OpenGL commands that allow the usage of this functionality.

The determination of whether a subdivision node is occluded depends very much
on the actual implementation of the virtual occlusion buffer. In the test implementation
used for the measurements, the stencil buffer was used for this purpose. This buffer
operates with integer values and its read performance is therefore better than the one
of color buffers that store float values. Right now, the relevant part of the stencil buffer
is checked in a special interleaved mode (see Section 3.1.6) for the identifier of the
subdivision node. In many cases, a node is completely occluded. If so, it takes a long
time to establish its occlusion state. Therefore, extensions to OpenGL are necessary to
implement occlusion culling in basically two ways:

� Footprint flag. Most effort is spent checking the buffer for a modification since
the last action. Adding a modification flag to the framebuffer would improve the
performance tremendously.

� Footprint counter. Adaptive culling requires a measurement of how much of
an object is not occluded, i.e. a building through a hole in a wall. The number
of modified footprints of the virtual occlusion buffer could be such a measure.
Extending OpenGL by this feature would simplify this task greatly.

Generally, the strategy for occlusion-driven rendering of a given hierarchically
subdivided scene is based on three steps. For each subdivision entity, first the entity
(e.g. an octree block) is rendered in a special occlusion mode, which does not af-
fect the content of the framebuffer, similar to the OpenGL selection mode. Second,
the occlusion of the individual subdivision entity is established by using the occlusion
extension. Finally, depending on the occlusion information, the actual graphic prim-
itives, which are represented by the not occluded subdivision entity are rendered into
the framebuffer.

Please note, for the correct computation of occlusion, backface culling must be en-
abled, since otherwise hits can be counted twice. Furthermore, the necessary counting
of pixels of the subdivision entities is only correct, if the bounding volumes used are
convex.

In this Section, an extension to the OpenGL API is described. Basically, three
features are provided by the extension.

1. Non-Occlusion Hit Counter (NOHC). This is used to quantify all not occluded
pixels of the scan-converted subdivision entity. This provides simple analysis of
the non-occlusion hits: how many, on which area of the viewport (this is called
a occlusion tile).

2. Projection Hit Counter (PHC). This counts the number of pixels of the projec-
tion of the object to be rendered. Projection hits together with non-occlusion hits
can provide information about the number of pixels that belong to the projection
of an object and are not occluded.
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Further discussion on the use of the PHC can be found in Section 3.3.2.

3. Multiple Occlusion Tiles. The complete viewport can be limited to smaller
portions, or refined into a hierarchy of tiles. Alternatively to run a hierarchy of
occlusion tests, multiple occlusion tiles can split the area of interest into a mul-
tiresolution non-occlusion hit representation, e.g. a quadtree-like representation
of occlusion in a given scene (see Fig 3.14).

As another application of multiple occlusion tiles, visibility of portals in a PVS
(potential visible set) approach can be determined [76].

t0

t1

t2 t3

t4

t5 t8

t6
t9

t10 t11

t12
t7

Figure 3.14: Quadtree of occlusion tiles t0..t12 are used.

3.2.1 OpenGL Commands for Occlusion Queries

In order to exploit hardware extensions as proposed in Section 3.3 within OpenGL,
the OpenGL API has to be extended. Basically, this extension takes place in three
different ways, see also [4]:

Dual-use of already existing OpenGL calls

void glScissor( GLint x, Glint y,
GLint width, Glint height)

To specify the occlusion tile, which limits the viewport for the occlusion test, the
glScissor call is used. Within the viewport, only the tile, starting at x; y with

width width and height height is considered for the occlusion test. This command
is used to limit a test to the neighborhood of a certain area. By default, the whole
viewport is used as occlusion test tile.
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Adding new OpenGL calls

void glScissors( GLint numTiles,
GLint *tiles)

In contrast to glScissor, glScissors specifies multiple tiles as occlusion
test tiles. Depending on the occlusion hardware below, the various occlusion test tiles
are distributed to different Occlusion Engines (see Section 3.3).

The parameter numTiles and tiles specify the number of tiles and a pointer
to an array of numTiles tile specifications. Each of these array entries contains
x; y; width; height of one tile.

void glOcclusionBuffers( GLsizei *sizes,
GLuint **buffers)

Similar to the glSelectBuffer call of OpenGL, buffers for non-occlusion hits
are specified occlusion tile-wise. All non-occlusion hits are stored into the occlu-
sion buffers buffers of the sizes specified in sizes. Minimum size of each occlu-
sion buffer is eight, due to the minimal requirements of the GL_BRIEF_OCCLUSION
mode, which is introduced in the next paragraph.

Adding new parameters to existing OpenGL calls

void glGet(...)

GL_MAX_OCCLUSION_TILES returns the maximal number of occlusion tiles.
This information is important in case multiple occlusion tiles are used.

GLint glRenderMode(GLenum mode)

� GL_BRIEF_OCCLUSION is used to specify a fast occlusion mode. In this
mode, the number of non-occluded hits and the number of projection hits are
returned. Furthermore, to provide information on position and size of the various
not occluded pixels, Xmin, Xmax, Ymin, and Ymax of the screen bounding box,
and Zmin, and Zmax as minimal and maximal depth values of the non-occlusion
hits are returned.

� GL_VERBOSE_OCCLUSION. In addition to the features of the
GL_BRIEF_OCCLUSION mode, a list of the actual not occluded pixels
of the occlusion tiles is returned, up to the maximum size of the occlusion
buffer, specified with glOcclusionBuffer().

If glRenderMode(GL_RENDER) is called, the respective occlusion informa-
tion is returned into the buffers specified with glOcclusionBuffers. The syntax
depends on the previous occlusion mode and enumerates the information tile-wise. If
buffer overflows occur, the number of the respective tile buffers is returned. However,
the buffers are still set with non-occlusion hits up to its maximum size - which is spec-
ified by glOcclusionBuffers - and terminates with a -1 entry. Consequently,
some occlusion measure up to a user controllable limit is returned, without completely
computing the potential costly occlusion information.
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Note, similar to the GL_SELECTmode, all occlusion render modes do not change
the content of the framebuffer,

3.3 Hardware-assisted Occlusion Culling

For interactive rendering of large polygonal objects, fast visibility queries are nec-
essary to quickly decide whether polygonal objects are visible and need to be rendered.
None of the numerous published algorithms provide visibility performance for inter-
active rendering of very large models.

In this Section, the hardware extension proposed in [4] for fast occlusion queries is
described. Added after the depth test stage of the OpenGL rendering pipeline, the ex-
tension provides fast queries to establish occlusion of polygonal objects. Furthermore,
the hardware aspects of this proposal are discussed and possible implementations on
two different graphics architectures are presented.

In addition, Hewlett Packarddeveloped an Occlusion Flag extension to OpenGL
for occlusion queries, see [49, 98]. This flag is already included in their recent fx4 and
fx6 graphics accelerators. Similar to the hierarchical z-buffer approach, graphic primi-
tives, which represent a more complex geometry, are rendered within an occlusion test
mode to determine their visibility. Depending on the result, all underlying geometry is
rendered or skipped. The Hewlett-Packard approach is limited, since only binary vis-
ibility decisions can be made. There is no way to quantify the percentage of visibility
of a certain bounding volume and the geometry it encloses. The extension explained in
this Section provides answers also for these more elaborated visibility queries. Mea-
surements showed that using this flag achieves a significant higher framerate compared
to view-frustum only approaches. So far, this is the only available implementation
of occlusion culling hardware and it underlines the growing importance of occlusion
culling for high-performance rendering of large models.

The implementation of the extension to the OpenGL API proposed in Section 3.2
does require a few modifications within the OpenGL pipeline. To delineate these mod-
ifications, first a brief overview of the OpenGL pipeline will be given.

OpenGL rendering pipeline

OpenGL processes graphic data using a pipeline of several distinct stages [111]. In
Figure 3.15, an abstract, high-level block diagram of this pipeline is given. Commands
enter from the left and proceed through what can be thought of as functional units for
the specific operations. Some commands specify the geometry of objects, while others
control how the objects are processed during the various processing stages.

OpenGL operates in two modes. In immediate mode, all commands are executed
directly when they are stated. Alternatively, a Display List can be used, where com-
mands are compiled and stored for later execution.

In contrast to objects specified by vertices, parametric curves and surfaces are ap-
proximated by the Evaluator unit. Polynomial commands are evaluated to generate a
vertex based description of the objects.

During the next stage, Per Vertex Operations and Primitive Assembly, OpenGL
processes geometric primitives. These are points, line segments, and polygons, all of
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Figure 3.15: Schematic of the OpenGL rendering pipeline. OccU denotes where to fit
in the proposed Occlusion Unit.

which are described by vertices. The vertices of the primitives are transformed and
illuminated. Furthermore, the primitives are clipped to the viewport in preparation for
the next stage.

The Rasterization unit produces framebuffer addresses for rasterizing of the prim-
itives. It interpolates associated values using two-dimensional descriptions of points,
line segments, or polygons. The resulting fragments are then fed into the last stage,
the Per Fragment Operations.

This stage performs the final operations on the data before the fragments are stored
as pixels in the framebuffer. Since the framebuffer update depends on some conditions,
some tests which evaluate arriving and previously stored z-values (for z-buffering)
have to be carried out. Also, blending of incoming pixel colors with stored colors, as
well as masking and other logical operations on pixel values are done in this stage of
the pipeline.

Input can be in the form of pixels rather than vertices to describe two dimensional
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Figure 3.16: Per Fragment Operations and Framebuffer.

image data. This data skips the first stage of processing described above. Instead, it
processes data as pixels in the Pixel Operations stage. The resulting pixels of this
stage are either stored in Texture Memory, for use in the Rasterization stage, or
merged directly into the Framebuffer just as if they were generated from geometric
data.

The New Occlusion Unit

Many per fragment operations exist in the current OpenGL rendering pipeline.
Some of the most important are scissoring, alpha test, stencil test, and depth buffer
test, as shown in Figure 3.16.

Testing for occlusion is a ”per fragment” operation since every pixel has to be
tested. Therefore, the Occlusion Unit is part of the functional Per Fragment Opera-
tions block as illustrated in Figure 3.15.

It will be differentiated between the Occlusion Unit (OccU), which is logically



94 CHAPTER 3. VISIBILITY ALGORITHMS

responsible for the overall occlusion, and the Occlusion Engine, which is the actual
implementation of the Occlusion Unit. In order to accelerate the processing of multiple
tiles, the Occlusion Engine can be replicated within the Occlusion Unit. All Occlusion
Engines of the Occlusion Unit are synchronized at the Occlusion Control (OccU Con-
trol).

To connect the proposed Occlusion Unit, it is provided with the x; y screen space
address of the fragment, its depth value z, and the write enable signal of the depth
buffer test, which is used to write and update the framebuffer with the fragment which
is closer than the so far stored fragment. Therefore, the Occlusion Unit is placed
behind the Depth Buffer Test unit, as it is demonstrated in Figure 3.16.

Inc Inc

addrx

addry

PHC NOHC

write
enable

&

Depth
Buffer
Test

Update
Screen
BBox

Comp

addrz

to Framebuffer

to memory via Occlusion Control

Figure 3.17: Schematical description of one Occlusion Engine.

The Occlusion Unit tests the x; y screen space address of the fragment against
the user defined occlusion tile. If the fragment resides within the tile, the projection
hit counter (PHC) is incremented. Further, the non-occlusion hit counter (NOHC) is
increased, if the depth buffer test was successful, which signifies that the fragment con-
tributes to the framebuffer. To trigger the increment of the non-occlusion hit counter,
an AND operation is used. Besides increasing hit counters, it is tested whether the
screen bounding box defined by the already found non-occlusion hits is increased due
to the newly found hit. So far, the list of hits has yet not been updated. As long as the
number of hits is smaller than the provided entries of the list, the x; y coordinates of the
fragments are stored in the occlusion buffers which resides in main memory. To send
data from the Occlusion Unit to the main memory, the OccU Control is introduced.
This unit operates similar to Selection Control of the OpenGL selection mode. Its
purpose is to synchronize memory access of the Occlusion Unit in case that multiple
Occlusion Engines detect non-occlusion hits.

A schematic overview of an Occlusion Engine is given in Figure 3.17. Note, the
Occlusion Engine shown in this Figure illustrates the schematic structure necessary to
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test for a user defined occlusion tile. Since the user can instantiate multiple tiles, e.g.
a tile hierarchy, the Occlusion Engine has to be capable of updating all by the user
instantiated tiles. This can be accelerated by assigning the tiles to multiple Occlusion
Engines, using a round robin strategy.

3.3.1 Implementing the Occlusion Unit on two different Architectures

In this Section, the integration of the proposal in two existing architectures is in-
vestigated. This is done for two well known and described architectures of Silicon
Graphics (see [79, 63]).

The SGI O2 is an example for a medium performance graphics pipeline, which
is comparable to many current PC graphics accelerators. It has a single rasterizing
unit and a monolithic framebuffer. In Figure 3.18, the details of the Memory and
Rendering Engine of the SGI O2 are shown.

write 
enable

graphic primitives

External 
Main
Memory

Pixel Pipeline

Memory & Rendering Engine

OccU + Control

Rasterizer

Depth/Stencil
Pipeline

Color Pipeline

Figure 3.18: Memory and Rendering Engine of a SGI O2 including the Occlusion
Unit.

This unit is connected to previous pipeline stages and to the main memory of the
system. Its main part is the Pixel Pipeline, which performs all OpenGL rasterization,
texturing, and per-fragment operations. Since no dedicated framebuffer is used, this
implementation of the OpenGL pipeline uses an extensive pre-fetching algorithm to
hide memory latency. The framebuffer itself is located in the main memory of the
system.

To integrate the proposed extension, the Occlusion Unit is placed into the Pixel
Pipeline, where all the information necessary for the occlusion test is present. Address
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information is provided by the Rasterizer, while the write enable signal of the depth
buffer test is provided by the Depth/Stencil Pipeline. Each Occlusion Engine which
processes multiple tiles introduces additional cycles for each further tile.

In contrast to the SGI O2, the InfiniteReality system is used as exponent for a high
end graphics system. Its pipeline has a highly parallel architecture, containing multiple
rasterizing units and an interleaved and distributed framebuffer [79], as it is illustrated
in Figure 3.19.

The pixel operating part of the system is composed of the so called Raster Mem-
ory Boards. Each board has one rasterizer, called Fragment Generator, and an in-
terleaved framebuffer which is accessible via special interfaces, the Image Engines.

Since the extension computes occlusion on a pixel basis, the Occlusion Units need
to be integrated at the Image Engine level. In all Occlusion Units, Occlusion Engines
are configured in the same way as their respective occlusion tile of the viewport. Con-
sequently, each Occlusion Engine handles only hits of the part of the framebuffer to
which its Image Engines belong to. In order to optimize occlusion performance, it is
desirable to have an Occlusion Engine for each occlusion tile.

The evaluation process for an occlusion test has to respect the distributed nature
of the system. Therefore, a two stage synchronization process is proposed. First, the
hits of one Raster Memory Board are synchronized locally. Thereafter, the result of
the different boards are merged to form one occlusion report. During the latter syn-
chronization process, detected non-occlusion hits which belong to the occlusion tile
which is partitioned between different Raster Memory Boards or different Image En-
gines needs to be merged to form a single occlusion report for this tile. This process
can be either implemented in hardware or software.

The integration of the Occlusion Unit has been shown for two different graphic ar-
chitectures. For a rather simple system as the SGI O2, the Occlusion Unit can easily
be integrated into the Pixel Pipeline. Although the integration into a InfiniteReality
system is much more complicated, it is still feasible and not more difficult than the
organization of the Image Engines themselves. Nevertheless, some latency will be
introduced, due to necessary synchronization.

3.3.2 Further Applications

Support for Collision Detection

In virtual environments, it is a non trivial task to detect collisions of the user with
objects. The process is highly demanding, since it requires a collision test with all
objects. In [25], raytracing is used to compute an analytical solution for this problem.
In VRML, one standard API for describing VR scenes, collision can be detected by
introducing collision nodes. Each time the user changes its position, a collision test is
applied to all collision nodes. Due to the time consuming collision test, the frame rate
drops and people tend to switch the collision detection mode off.

The proposed extension for OpenGL can be used for this purpose to a certain
degree. For a given position of the user, an image of the scene is generated. A
mostly valid assumption is that the user changes its position and direction incremen-
tally. Hence, in case the user heads in viewing direction - e.g. straight, straight-left - a
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Figure 3.19: Schematic for implementing the Occlusion Unit on an InfiniteReality
system.

subdivision of screen space can be determined which represents the possible collision
areas within the viewport. This is illustrated in Figure 3.20.

To check whether a certain step will cause a collision, a customized view-frustum
covering the check area of the screen is rendered in GL_BRIEF_OCCLUSIONmode.
The far plane of this view-frustum depends on the step size of the user, near plane is
identical to the view plane. Information whether a step can be taken without causing a
collision is indicated by the non-occlusion hits and the projection hits. If the number
of non-occlusion hits is different from the number of projection hits, some pixels of the
customized view-frustum are occluded, which means that a collision can be expected.
In contrast to the occlusion test, backface culling must be disabled, in order to detect
intersections with the backfacing polygons of the view-frustum. To get more detailed
information, screen space can be subdivided further.

So far, collision detection can only be indicated and depends on the given viewport.
Unfortunately, testing backward stepping does require two-pass rendering since no
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Figure 3.20: Subdivision of screen space into areas which correspond to the heading
direction of the user.

image of the scene behind the user is available in the framebuffer.

Support for Ray Casting

One of the results of the GL_BRIEF_OCCLUSION and
GL_VERBOSE_OCCLUSIONmodes is a list of not occluded pixels of the tested sub-
division entity. Besides usual statements on occlusion or non-occlusion of that entity,
this information can be used to accelerate ray casting in a mixed volume graphics
and polygon model. Considering a hierarchical ray casting approach, the subdivision
entities are rendered in occlusion mode. All computed non-occlusion hits for this
entity mark pixels which are not occluded. Consequently, these pixels are image plane
parts to cast rays through, because the content represented by the subdivision entity
may be still visible. In other words, all pixels without an non-occlusion hit are not
visible, and therefore, rays casted through those pixels of the image plane have no
contribution.



Chapter 4

Texture Mapping

Texture mapping is a popular way of enhancing the realism of three dimensional
scenes without increasing their polygonal complexity. Therefore, texture mapping is
very important for generating high quality renderings of geo-related data-sets.

Furthermore, some kinds of geo-related data are available as two dimensional
raster data (for example maps, see Chapter one). This data can be visualized in a
three-dimensional scene by using texture mapping.

In the rest of this chapter, some texture mapping related problems and possible
solutions will be discussed. First, a camera adaptive data structure for sparse texture
data loading will be explained. Next, an approach for the specific selection of parts of
an image for texturing will be described. The concluding topic will be a new method
for texture filtering.

4.1 Adaptive Texture Data Structures

System memory or dedicated texture memory is restricted by technical or econom-
ical constraints. On an O2 from Silicon Graphics, the texture size of a single texture is
limited to a resolution of 1024 � 1024 texels (texture pixels are called texels). Since
in the field of GIS-applications textures can be maps with 10000 � 10000 texels, the
texturing power of graphic workstations can’ t be directly used to render these textures
on the terrain (see also 1.3).

In the area of texture mapping, filtering techniques like MIPmapping have been
developed to adapt the texel-size used in object-space to the pixel-resolution of the
projected texels in screen-space. With this filtering paradigm, a hierarchy of images is
generated from the original texture, the so called MIPmap pyramid, see [109]. Many
publications describe how to use texture mapping to enhance realism, see [44], [47].
Only a few authors mention the usage of hierarchically organized texture data to save
memory and bandwidth (see [86]). Some architectures, for example the Infinite Reality
graphics system of SGI, are already capable of using larger texture maps than the above
mentioned size of 1024 � 1024 texels. This architecture uses so called Clip-Maps to
adapt the texture resolution to the actual camera position of the viewer, see[103]. The
problem of having not enough memory to store the entire texture in main or texture
memory results in a selection paradigm which reduces the amount of memory neces-
sary. With Clip-Mapping, this problem is solved by clipping the MIPmap pyramid on
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its finest levels. Levels that exceed a texel size of 2048 � 2048 are clipped to a viewer
dependent part of the MIPmap level. This is possible since even in the finest level of a
MIPmap, only a part of the map corresponding to screen resolution must be accessible.
In [80], it is assumed that the size of the clipped area is 2048 � 2048 texels used on a
1024 � 1024 pixel screen with trilinear MIPmap textures. This assumption holds since
1024 � 1024 pixels are nowadays a normal screen resolution. This approach requires
a regular update of the clipped MIPmap levels, if the viewer changes his position. SGI
has solved this problem with a clever update procedure which does not allocate new
memory but reuses the old memory by overwriting the no longer necessary parts of
the level with new information (toroidal loading). The texture access is realized with
offset registers, which can be set accordingly to allow the placement of the coordinate
origin arbitrarily in the MIPmap level.

As a result, the problem of using very large textures on a broad range of modern
graphic workstations has not been solved convincingly. The next sections will propose
a new a framework to support very large textures.

4.1.1 Texture Tiling and MIPmap Precalculation

In contrast to Clip-Mapping, this approach suggests a tiling of the whole texture in
a set of MIPmap pyramids, which are precalculated and stored on disk. Not all levels
are stored, since smaller levels can be recalculated more quickly. This depends on the
hardware of the graphic system and its power to calculate the missing levels at loading
time (e.g. 64 � 64 texels are used on a SGI O2 as a limit).

Each single pyramid can use at its finest level the maximal resolution OpenGL
offers for a single texture. The image is subdivided into an array of texture tiles,
after scaling it to a size that can be divided into tile sizes of a power of two in both
dimensions. The size of a single tile is the biggest tile size possible that increases the
image size in the scaling phase in a minimal way. This means that even if a tile size
of 1024 � 1024 texels would be possible, also a tile size of 1024 � 512 texels may
be chosen if with this tile size the overall scaling of the whole image can be reduced.
This structure is called MIPmap pyramid grid (MP-Grid), see Figure 4.1.

Each of these MIPmap pyramids offers now the possibility to adapt to the viewer’s
position by only loading those levels of the map which are necessary. The question
of which levels are necessary can be answered with the three dimensional bounding
box of the polygons which shall be textured with this pyramid. The projection of this
bounding box onto the viewing plane of the viewer’s camera depicts the maximum
texel number necessary to texture the content of this bounding box correctly. Rounded
up to a power of two the maximum of the dimensions can be used to determine the
maximum level of this MIPmap pyramid which has to be accessible in memory (see
fig. 4.2). This is a conservative estimation of the number of levels needed, since even
worst-case polygons like P which are parallel to the viewing plane can be textured
correctly. With this, the whole MP-Grid can easily be adapted to a changing viewer
position.
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Figure 4.1: The MIPmap pyramid grid (MP-Grid).

B2

B1

B3

B4

P

polygonal model
of terrain

Figure 4.2: The bounding box B1 depicts with its projection the needed MIPmap level
for the texture tile used to texture the polygons of B1.
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4.1.2 Clip-Map Versus MP-Grid

One problem of the Clip-Map approach is the adaptation of the Clip-Map to the
current viewer’s position. To do this, one must find a so called clip center for plac-
ing the clipping window in texture space. Finding a good center can be difficult and
expensive. To solve this correctly, one polygon of all polygons to be textured has to
be determined that contains the point of minimal distance to the viewing plane on one
of its edges. The center is placed at the corresponding point in texture space. If the
center is not placed in this way, it can happen that parts of polygons do not find the
needed resolution for texturing because they are nearer to the viewing plane than the
center of the Clip-Map. The selected map levels with their fixed resolution of 2048
� 2048 texels may then eventually not contain the needed texels. Also in the case of
terrain textures, simple approaches like projecting the center of the Clip-Map directly
beneath the viewer result in wasting half of the finest texture levels, since they lie in
the viewers back and are only useful, if the viewer turns without moving. Especially
when the viewer looks from a higher altitude with a small pitch this simple approach
is not sufficient, since then the center of the Clip-Map must be moved in the viewing
direction.

In Figure 4.3 and Figure 4.4 is shown, that Clip-Maps produce for some special
situations very bad results. The left image of Figure 4.3, a tiled earth texture, is used in
Figure 4.4 to texture a globe. The north pole can be seen from the chosen viewpoint.
Therefore, all the texture tiles that are marked yellow in the right image are invisible. It
is not possible to solve this texturing problem correctly with Clip-Mapping, since each
choice of a center will injure some part of the pole region due to the fixed resolution of
the clipped levels. In this case, the finest resolution has to be maintained over the whole
pole region which is impossible when this finest level is clipped to a fixed number of
texels .

All these considerations can be solved with the approach of MIPmap pyramid grids
presented above more directly and either conservatively or with a controlled approxi-
mation error. This means, that not all of the MIPmap levels have to be loaded if other
considerations like time requirements do not allow this. Nevertheless, the algorithm
always has the possibility to determine very quickly the needed levels.

Another advantage is the sharing of the proposed MP-Grid structure between more
than one viewer. With a Clip-Map, only the non clipped levels of the texture can
be shared between two or more viewers, since the clipped levels of the fixed size of
2048 � 2048 are viewer dependent. Imagine two planes which meet each other while
flying over a terrain. With this approach, the whole MP-Grid can be shared between
the viewers. The grid is locally refined for each viewer, but this refinement can be
reused by the other viewer if he changes his position. In the case of two Clip-Maps,
information which has been present in the Clip-Map of the first plane is reloaded in
the Clip-Map of the second while it has already been in texture memory.

Furthermore, if occlusion culling for a set of polygons and their bounding box
is available (see [4]), the MP-Grid can easily exploit this. If the bounding box is
occluded, the adaptation of the corresponding MP-Grid pyramid is not necessary and
the occupied texture memory can be freed if it is needed for other pyramids. This
integration of occlusion culling assisted texture management is not possible with the
Clip-Map approach.
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Figure 4.3: Tiled earth texture.

Figure 4.4: The left image of 4.3 is used to texture a globe.

Figure 4.5: MP-Grid example: in x and y directions are the extents of the terrain
drawn, in z direction is the needed maximal texture resolution for the single pyramids
depicted.
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As a last consideration, the needed texture memory for texturing with a MP-Grid
will be compared to the one needed for a Clip-Map. A flat area of terrain of the size
5000m � 5000m is used with the viewer sitting at (0; 0; 1000) and looking towards
(2500; 2500; 0). The focal length of the camera is 50 mm and the camera has a pixel
resolution of 1024� 1024 pixels in screen-space and an angle of the field of view of 45
degrees. A texture of 5120� 5120 texels is used which can be subdivided in a MP-Grid
of 5 � 5 pyramids with a resolution of 1024 � 1024 texels in the finest level. Figure
4.5 shows the resulting adaptation of the MP-Grid to this viewer position. The total
amount of memory needed for the adapted MP-Grid is 6,198,605 bytes for a 8 bit grey
scale picture. The original size of the MIPmap is 34,952,550 bytes for this 8 bit grey
scale picture. For constructing a Clip-Map, the same image first has to be converted to
a 8192 � 8192 sized image to have sizes of a power of two. The alternative of reducing
the image size to 4096 � 4096 texels would result in a loss of quality. Then the clipped
MIPmap levels must be constructed covering 2048 � 2048, 4096 � 4096 and 8192 �
8192 texels of the original texture. Each of these clipped levels is 2048 � 2048 texels
in size. The non clipped levels below 1024 � 1024 texels sum together with these
three maps up to 13,981,013 bytes. Since the Clip-Map cannot handle this picture size
of 5120 � 5120 texels efficiently, the rescaling to a power of two consumes memory
while the MP-Grid approach can handle such sizes more economically and only half of
the memory is needed. Such arguments are important in the field of commercially sold
graphic adapters for PC’s or game-stations, since in these machines texture memory
is a rather expensive resource. The image size of this example (5120 � 5120 texels)
is a size which is already widely in use in GIS-systems (see also the result section at
the end). Larger images increase the advantage of MP-Grids with respect to memory
usage even more because of the scaling problem to powers of two. Furthermore, Clip-
Maps must be of a square size in the current implementation. If the texture data has
not a square size, it must be rescaled. This rescaling process consumes additional
memory, otherwise information is lost due to rescaling the data to the smaller side of
the rectangle.

4.1.3 Fast Rendering of MP-Grids with OpenGL

The MP-Grid can be used directly to address the texture mechanism of OpenGL
in its current version 1.1 (see [85]). The MP-Grid shall texture polygonal models.
Without loss of generality, the models are assumed to be triangle meshes. Otherwise,
a triangulation can be generated in a preprocessing step. In OpenGL, textures are de-
scribed with so called texture objects. Furthermore, OpenGL uses a so called current
texture to texture the primitives. This current texture is declared with selecting one of
the texture objects. A texture object is a structure which contains all MIPmap levels
of a texture and allows the user to change the current texture fast, since only pointers
to the texture data in memory have to be changed. A texture object is used in this
approach to represent directly one MIPmap pyramid of the MP-Grid. Before drawing
triangles, the MP-Grid is adapted to the current viewer’s position. For each MIPmap
pyramid, a maximum level is calculated as described above. Depending on the already
loaded levels, the pyramid has to be refined or memory can be freed by deleting levels.
It cannot always be guaranteed that the texture data requested for triangle rendering
will be available at the needed level of detail. In this case, the texturing process must
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Figure 4.6: Once the triangles are inserted in the list L, they are divided and drawn.

use the best resolution of texture data available while the needed data is loaded in par-
allel. Furthermore, the user can control the tile size of the MP-Grid. If it turns out,
that with a specific tile size the peak bandwidth of the system is overtaxed, the tile size
can be reduced to adapt to the system’s capabilities. The algorithm to draw a trian-
gle mesh with a MP-Grid has two steps, since the currently available OpenGL API is
used. In the first step, each triangle is classified to find out which cells of the MP-Grid
are covered by this triangle. For this, a rasterization algorithm is used, well known as
Pineda algorithm (see also [91]). After the classification, there exists a list L which
holds for each grid cell all the covering triangles (see figure 4.6). In the second step,
the triangles are drawn. First the texture object belonging to the grid cell is selected
to be the current texture. Next, the triangles are subdivided to find out which part of
them is exactly covered by the current texture. For this, the GLU utilities integrated in
OpenGL are used, which have a so called tessellator that is able to tessellate polygons
in 2D and 3D. With this tessellator, the tessellation is calculated in 2D texture space.
The tessellation is then mapped with the help of barycentric coordinates determined
during this tessellation into 3D object space. Furthermore, when using the tessellator
of OpenGL, hardware support can be exploited whenever the OpenGL implementation
is able to use this. The tessellation process can be accelerated by using OpenGL dis-
play lists to store the tessellation results. Once a triangle is tessellated, the tessellation
results are stored in a temporary set of OpenGL display lists, one list for each covered
MP-Grid tile. As you can see in 4.1, the rendering speed with this caching and us-
ing a MP-Grid is only 4 times slower than using standard OpenGL texture resolution.
The described approach, first classifying and then filling, makes sense. Otherwise the
current texture would have to be changed for each tessellated part of a triangle. This
would be much more costly than classifying the triangles since each new selection of
a current texture results in a reset of the texturing unit.

4.1.4 Enhancing Hardware for MP-Grids

This approach using MP-Grids can be integrated into a rendering hardware with
little extensions (see figure 4.7). First of all, a register, the current texture register
(CTR), must be integrated into the texturing unit, that holds for each level � of the
MIPmap pyramids a pointer into a three dimensional pointer table (all MIPmap pyra-
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Figure 4.7: Scheme of the needed hardware extension to support MP-Grids.

mids are assumed to have the same number of layers). This table is addressed with the
level denominator � and two indices identifying uniquely the single pyramids of the
MP-Grid. The texture coordinates are no longer in the range [0..1] � [0..1], they are
now defined with a MP-Grid of n � m pyramids in the range [0..n] � [0..m]. The tex-
ture coordinates contain the information of crossing the border between two adjacent
MIPmap pyramids during texturing. If such an event is detected by the logic interpo-
lating the texture coordinates, the pointer to the now needed pyramid level is loaded
into the CTR for the level � by using the truncated texture coordinates as indices into
the table. If not only the pointer, but also an extension size is stored in the table,
MIPmap levels of different MIPmap pyramids but the same level � can be merged to-
gether. With this, lower levels of the MP-Grid which comprise only a few texels, can
be stored at one position in texture memory which prevents gaps in allocation. The in-
terpolation logic now loads the extension sizes into the comparators used for detecting
the border crossing and uses this information for its decision when to change to an-
other pointer. This can prevent ”pointer trashing” , if triangles have to be textured with
low levels of MIPmap pyramids comprising only a few texels. Furthermore, it can be
economical not to remove such low levels from texture memory, since they are small
in size and they are always needed for consistent MIPmap pyramids. With a maximum
of 11 MIPmap levels, sufficient for 1024x1024 tiles, a 100x100 MP-Grid would need
11 � 100 � 100 � (4 + 4) = 880; 000bytes = 860kB for storing the table.

The texture data for the MIPmap pyramids used in the MP-Grid could be supplied
by the user via an extension to the already available OpenGL texturing commands.

4.1.5 Results

The pictures 4.8, 4.9, 4.10, and 4.11 show the usage of high resolution textures in
the system FlyAway used for GIS purposes and described in Chapter five.

For performance measurements, triangle meshes of different fixed triangle counts
and MP-Grids with different tile sizes were used. All pictures and timings were pro-
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duced on a low end graphics workstation SGI O2 with 256MB RAM and a 175 MHz
R10000 processor. The MP-Grid pyramids had all 1024x1024 texels in their finest
level and the texel-size was 24 bit. Screen resolution for all the measurements was
1024 � 1024 texels.

For pictures 4.8 and 4.9, the original texture image had a size of 4096 � 4096
texels. Pictures 4.10 and 4.11 result from a 3200 � 3600 map image which was resized
to a size of 4096 � 4096 texels to calculate the MP-Grid. In picture 4.8 and 4.10, the
textures were reduced to the size of the standard OpenGL texture resolution of 1024 �
1024 texels on a SGI O2. In picture 4.9 and 4.11, the full resolution of 4096 � 4096
texels using a 4 � 4 MP-Grid with 1024 � 1024 texels tiles was used to texture the
terrain.

In table 4.1 and 4.2, some run time results of using MP-Grids with the application
are summarized. The Setup time is needed for intersection and creation of display
lists, the Redraw time for drawing. The performance results show, that this approach
is usable without the proposed hardware extensions and allows us to improve image
quality drastically. Little tessellated surfaces (below 100 triangles) can be drawn in
real time. With high triangle counts above 5000, currently both, the MP-Grid and the
standard OpenGL texture resolution of 1024 � 1024 texels are used. During motion,
texturing is done with the standard resolution and the MP-Grid is used when coming
to a stop.

� 4x4 4x4 2x2 2x2 standard
Setup Redraw Setup Redraw resolution

10,000 2.67s 0.44s 1.8s 0.47s 0.13s
5,000 1.44s 0.21s 0.89s 0.23s 0.6s
2,500 0.88s 0.11s 0.63s 0.09s 0.03s
1,000 0.35s 0.04s 0.20s 0.04s 0.01s
500 0.27s 0.03s 0.11s 0.02s <0.001s
2 0.005s 0.005s 0.005s 0.005s <0.001s

Table 4.1: Performance measurement of MP-Grids.

� 10,000 5,000 2,500 1,000 500

drawn 4x4 9600 4608 2112 880 352
tess. 4x4 1308 1000 847 399 367

drawn 2x2 9950 4940 2400 960 480
tess. 2x2 300 200 251 131 91

Table 4.2: Number of directly drawn and tessellated triangles. Note: triangles can be
tessellated more than once, if they are covered by many MIPmap pyramids.
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Figure 4.8: 1024 � 1024 standard resolution

Figure 4.9: 4096 � 4096 texels using a 4 � 4 MP-Grid with 1024 � 1024 texels tiles



4.1. ADAPTIVE TEXTURE DATA STRUCTURES 109

Figure 4.10: 1024 � 1024 standard resolution

Figure 4.11: 4096 � 4096 texels using a 4 � 4 MP-Grid with 1024 � 1024 texels tiles
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4.2 Texture Cutting with Projective Texture Mapping

The normal way of selecting a part of an image for texturing is to manipulate tex-
ture coordinates accordingly. Unfortunately, the graphics hardware currently available
is only able to perform a bilinear interpolation of texture coordinates on rectangles, but
not on arbitrary quadrilaterals. In this Section, an approach will be explained which
can perform such a bilinear interpolation with the help of a projective mapping on
today’s hardware. It was developed in a cultural heritage project that was realized to-
gether with the University of Padova in Italy. The selection problem is also relevant
for digital maps, if they are applied to digital elevation models as textures. Due to the
cartographic mapping, maps are usually not aligned to the Cartesian coordinate axis
(see Chapter 1).

4.2.1 Virtual Reality for the Conservation of Cultural Heritage

Starting point of this project was the fact, that all over the world rare and ancient
books exist in libraries, which could not be made accessible to the public because of
their uniqueness and their sensibility. One possibility nowadays available to accom-
plish this is an exact three-dimensional reproduction with the help of modern computer
graphics knowledge and the means of Virtual Reality. With this, many people can get
access to such a rare and seldom historic piece. Such a reproduction can furthermore
be used to document the actual condition of those pieces to be able to detect changes
and to serve as a basis for conservation decisions. To build a reproduction of such
a book, one has to construct a polygonal model of it which will be textured. This
model can be constructed for example with a CAD system or can also result from us-
ing a three-dimensional scanner. Constructing the model by hand will usually result
in a model having less polygons than a scan, which is advantageous for the rendering
speed. Texture mapping is a popular way of enhancing realism of three dimensional
scenes without increasing their polygonal complexity. Many publications describe
how to use texture mapping to enhance realism [44],[47].

In the next section, some short description of Andreas Vesalius will be given, who
was a famous medieval doctor and medical researcher. One of his books was used as a
test case for this texture cutting approach.

4.2.2 Andreas Vesalius and his Work

The following characterization of Andreas Vesalius is based on [26], [108], and
[6]. These sources are available on the WWW and are summarized in this Section.

In [108], following description is given: ”Andreas Vesalius (1514-1564) was a
Flemish anatomist who founded the sixteenth century heritage of careful observation
in anatomy characterized by refinement of observation. Vesalius changed the organi-
zation of the medical school classroom, bringing the students close to the operating
table. He demonstrated that, in many instances, the former anatomists as Galen (130-
200) and Mondino de’ Luzzi (1275-1326) were incorrect (the heart, for instance, has
four chambers). He conducted his own dissections, and worked from the outside in
so as not to damage the cadaver while cutting into it. Vesalius also wrote the first
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Figure 4.12: Andreas Vesalius (1514-1564) and the titlepage of his main work, the
Epitome.

anatomically accurate medical textbook, De Humani Corporis Fabrica (1543), which
was completed with precise illustrations.”

He also produced a summary of the Fabrica, called Epitome, less bulky and less
expensive, for the use of medical students and those with little or no anatomical knowl-
edge. In the Epitome the illustrations seem to have been considered more important
then the text and in consequence the format is even larger than that of the Fabrica,
where the figures are about six centimeters shorter. The first Latin edition of the Epit-
ome was printed by Johannes Oporinus, a friend of Vesalius, in Basel simultaneously
with the Fabrica.

In [6], the Epitome is described in the following way: ” The Epitome has 12 un-
numbered leaves signed A-M; two further unsigned leaves are printed on one side only,
containing the figures which were to be cut out and put in place on both the skeleton
and the body representing the nervous system.

There exist copies of the Epitome that have the superimposed flaps with the
anatomical details mounted thus following Vesalius’ own instructions on the prepa-
ration of the two manikins: ”We wish to advise those who obtain unprepared copies,
and put them together by their own efforts and industry, on the method of cutting each
from the superfluous paper and pasting them on, and then of coloring them according
to their ability and desire. In order to provide strength, it will be useful to glue a piece
of parchment to the back of the entire sheet so that it may not in vain be divided into
as many pieces as there are figures comprising it. ” There are only a few copies of
the Epitome with unmounted flaps, one is located at the institute of medical history of
the University of Padova, where Vesalius worked for five years as a research assistant.
This book was the basis for this work.

One last remark of [108] summarizes very well the importance of Andreas Vesal-
ius for modern medicine: ” Vesalius’s careful observation, his emphasis on the active
participation of medical students in dissection lectures, and his anatomically accu-
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rate textbooks revolutionized the practice of medicine. Through Vesalius’s efforts,
medicine was now on the road to its modern implementation, although major modi-
fications and leaps of understanding were, of course, necessary to make its practice
actually safe for the patient.”

An object like the Epitome is very sensitive. The only way to reproduce its content
is to take photographs of the single pages. Scanning, for example, is impossible, since
such books may not be folded up that wide without possible damage. The data basis
were 25 slides of all the pages plus slides of front and back cover. These slides were
scanned with an resolution of 2:000 � 3:000 pixels. This results in 6 mega pixels per
image or 18 MB storage capacity using truecolor and no compression. The polygonal
model of the book itself was produced with standard modeling tools and is stored in
a CAD format. The measurements for this model can be taken directly with the help
of standard measuring tools. The book model is not static, but can be animated. It is
possible to ” turn” single pages just as with a real book. The geometry necessary for
this task is already contained in the model and activated when it is needed.

4.2.3 Texture Cutting

Due to the generation process of the images, only a part of the images can be used
as textures. Usually, it is not possible to fold up and photograph the book in a way, that
the pages are aligned exactly in the camera window. Therefore, a part of the image has
to be selected for texturing. Texture selection can be easily achieved with manipulating
the texture coordinates of a mesh.

There exist many approaches for generating texture coordinates for a given mesh.
In [72], a comprehensive summary of techniques and solutions for this problem is
given. All these techniques calculate texture coordinates 
 for a set of vertices of
a surface, which form a triangulation and therefore a discrete approximation of this
surface.

Figure 4.13: Photographed image of a book page.

The selection process is demonstrated in figure 4.13, figure 4.14, and figure 4.15.
In figure 4.13, a cover page of a historic book can be seen. Figure 4.14 shows the part
of the image which shall be used for texturing as the quadrilateral [X0;X1; X2;X3].
The result can be seen in figure 4.15.

Similar selections have to be made, if digital maps shall be applied to digital eleva-
tion models. Due to the cartographic mapping, the map is not aligned to the Cartesian
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Figure 4.14: Part of the image selected for texturing.

Figure 4.15: Virtual book model with this texture.

coordinate axis (see Chapter 1).
Current rasterization hardware is only able to perform normal linear interpolation

along the two Cartesian axis during the rasterization and texture mapping process of
a triangle. A projective transformation M can be calculated, which allows a bilinear
interpolation on the quadrilateral [X0; X1; X2;X3]. This approach has several advan-
tages:

1. It is very simple to define the quadrilateral [X0; X1; X2;X3] directly in image
coordinates.

2. This approach utilizes the capabilities of modern OpenGL graphics hardware,
since the four-dimensional texture coordinates are available and can be interpo-
lated linearly during rasterization. Originally, they were defined for projective
textures and real-time shadow and lighting effects, but they are also usable in this
way. Other, possibly non linear, remappings of texture coordinates during ras-
terization on a per pixel basis are currently not possible in the available graphics
hardware and can only be realized with approaches like ray tracing.
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The remapping of the texture coordinates to four dimensions with the help of
M can be done in most graphic systems in hardware and therefore on the fly,
since the OpenGL API has a special four-dimensional transformation matrix for
transforming texture coordinates before the rasterization. Therefore, the matrix
M can be transmitted to the graphics subsystem to transform the set of texture
coordinates 
 of a given mesh temporarily during rasterization into the set 
M
usable for the texture image M was calculated for.

When the texture changes to another texture image to which the matrix M0 be-
longs, M is replaced by M0 in the graphics subsystem.

3. Using traditional image processing tools like Photoshop for cutting the texture,
the image may be resampled up to three times:

(a) Texture selection and rectification.

(b) Rescaling for texture filtering during MIPmap calculation.

(c) Texture mapping during rasterization.

The number of resamplings can be reduced greatly with this approach to only
one resampling process taking place during texture mapping.

� The first resampling of the selection is not needed due to the transformation
M .

� With the idea explained in figure 4.16, the rescaling of the input image
during the MIPmap calculation can be avoided: The right/upper border
of the image can be extended to image dimensions of a power of two by
clamping the right/upper texel row (see figure 4.16). The filtering of the
border texels during MIPmap calculation will be correct, since they are
averaged with the clamped extension texels having the same value.

Figure 4.16: Clamping the borders of an image to prevent rescaling during texture
filtering.

For the purpose of demonstration, some cartographic image examples are used,
since there the blurring due to too much resampling can be demonstrated more clearly.
The effect of this can be seen in the figures 4.17, 4.18, and figure 4.19. The original
image, a part of a digital map is shown in figure 4.17. A conventional cropping, recti-
fying, filtering and texture mapping process produces figure 4.18. The mapping with
M results in figure 4.19.
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Figure 4.17: Original image for texturing.

Figure 4.18: Three resampling processes during texture mapping.

It can be clearly seen, that figure 4.19 conserves more from the original sharp
image than can be realized with using multiple resamplings in figure 4.18. This is no
dramatic improvement, but doing high quality texture mapping means also to preserve
details in the texture during texture mapping and to avoid things from getting blurry.
This is what shall be done with the systems available today to realize the intended
visualization goals for the virtual book.

The next paragraph will now explain, how the transformation matrix M can be
computed. It is not possible to define an affine two-dimensional mapping A

A [0; 0] = [x0; y0]

A [1; 0] = [x1; y1]

A [0; 1] = [x2; y2]

A [1; 1] = [x3; y3] (4.1)

which transforms bilinearly as depicted in equation (4.1) the input coverage [0::1]�
[0::1] into the output coverage [X0;X1;X2;X3].

In a four-dimensional projective space, a projective transformation M can be de-
termined for this calculation. The calculation is described in four dimensions due to
the four-dimensional matrix in the hardware texturing unit M is loaded into.



116 CHAPTER 4. TEXTURE MAPPING

Figure 4.19: Projective texture cutting avoids resampling processes.

First [X0;X1; X2; X3] is extended to the projective space. This results in

fX0 = [x0 ; y0 ; 0; 1]fX1 = [x1 ; y1 ; 0; 1]fX2 = [x2 ; y2 ; 0; 1]fX3 = [x3 ; y3 ; 0; 1] : (4.2)

The matrix M has 16 coefficients

M =

2664
a b c d

e f g h

i j k l

m n o p

3775 (4.3)

M can be calculated with the following 4 equations

M [0; 0; 0; 1] = fX0

M [1; 0; 0; 1] = fX1

M [0; 1; 0; 1] = fX2

M [1; 1; 0; 1] = fX3 : (4.4)

Some trivial considerations eliminate a couple of coefficients which are set as

c = 0

d = x0

g = 0

h = y0

i = 0

j = 0

k = 0
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l = 0

o = 0

p = 1 : (4.5)

The other coefficients can be calculated using symbolic linear equation solving and
result to

a =
x0 x3 y2 + x0 x2 y1 � x0 x2 y3 � x0 x3 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

+

�x2 x1 y0 + x1 x3 y0 � x1 x3 y2 + x2 x1 y3

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

b = �
x0 x1 y2 � x0 x1 y3 � x0 x3 y2 + x0 x3 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

�

�x2 x1 y0 + x2 x3 y0 + x2 x1 y3 � x2 x3 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

e =
�y0 x1 y2 + y0 x1 y3 + y0 x3 y2 � y0 x2 y3

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

+

�y3 x0 y1 + y2 x0 y1 � y2 x3 y1 + y3 x2 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

f = �
�y0 x1 y3 � y0 x2 y1 + y0 x2 y3 + y0 x3 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

�

y2 x0 y1 � y2 x0 y3 + y2 x1 y3 � y2 x3 y1

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

m =
x2 y1 � x3 y1 + x3 y0 + y2 x0

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

+

�x1 y2 � y0 x2 � x0 y3 + x1 y3

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

n = �
�x1 y0 + x1 y2 + x3 y0 � x3 y2

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

�

x0 y1 � x0 y3 � x2 y1 + x2 y3

x1 y2 � x1 y3 � x3 y2 � x2 y1 + x2 y3 + x3 y1

:

(4.6)

All the calculations were made with Maple. This has the advantage, that Maple can
convert its calculations into an optimized C source code which can be directly copied
into the OpenGL implementation.

4.2.4 Tiled Textures

As already depicted, the approach of Section 4.1 is used to extend the texture
capabilities of OpenGL to handle arbitrarily large textures.

To use the texture cutting approach from the last section also for MP-Grids, a
tessellation of the texture in the original Cartesian coordinates has to be produced that
respects the tile boundaries. Only in the original Cartesian coordinate space, the proper
texture coordinates for the temporary points can be calculated which will then again
be transformed by M (see figure 4.20).
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Figure 4.20: A MP-Grid with projective texture cutting.

4.2.5 Results

In this Section, some screenshots will be presented in Figure 4.21 - Figure 4.23
produced with the prototype implementation. It is called showBook and its only re-
quirement is the existence of an OpenGL runtime environment for a specific system. It
runs therefore already on a broad range of computer system, ranging from a small lap-
top up to a SGI Infinite Reality system. The amount of texture which can be displayed
depends of course on the actual executing system. On a laptop with 32MB RAM,
the number and the resolution of the textures has to be reduced to be able to navigate
around the book, since the whole graphic system is emulated by the CPU (Pentium
166). The screenshots were taken on a SGI O2 with 384 MB RAM and 180 MHz.
On this system, the textures for several book pages with the full scanning resolution
of 2:000 � 3:000 pixels can be handled interactively and the pages can be turned in
real-time. The application performs even better on modern Pentium II systems running
with more than 300 MHz.
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Figure 4.21: Bird eye view of the book.

Figure 4.22: Turning a page.
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Figure 4.23: First page of the book.
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Figure 4.24: Detail of the first page. Someone has written a remark beside the original
text.
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Figure 4.25: Detail of the front page.

Figure 4.26: Going even more into the detail. This is the maximum that can be
achieved with the current scanning resolution of 2:000 � 3:000 pixels.
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Bounding Box of Footprint

T1

T2 T4

T3

Figure 4.27: Summed-Area Table.

4.3 Texture Filtering

4.3.1 Texture Filtering Approaches

During the rasterization process, mapping images onto objects can be considered
as the problem of determining a screen pixel’s projection onto a texture image and
computing an average value which best approximates the correct pixel color. This pro-
jection is usually called footprint and the process of finding its color value is known
as texture filtering. The filtering process is responsible for the visual quality of texture
mapping and unfortunately, there exist no convincing solutions up to now. Therefore,
the visual impression of a textured object can be very blurry. The following sections
(see also [56]) describe a new approach to remedy this which is still feasible for inte-
grating it in hardware.

The notation of [97] was adopted for the following discussion. In real-time en-
vironments, where several tens of millions of pixels per second are issued by a fast
rasterizing unit, hardware expenses for image mapping become substantial and al-
gorithms must therefore be chosen and adapted carefully. Thus, the straightforward
approach of taking the mean of all image texels t inside the footprint for the screen
pixel’s color C(x; y)

C(x; y) =
1

M
�

MX
i=1

ti ; (4.7)

or, more generally, defining a filter kernel h, which is convolved over the image
t(�; �) (see also [2])

C(x; y) =

Z Z
(h(x� �; y � �) � t(�; �)) d�d� (4.8)

can be excluded from further discussions due to the long computing times.
Summed-area tables [19] are an attempt to simplify and speed up the above opera-
tion. Instead of the color value, each cell of a summed-area table holds the sum of all
values in a certain region, usually the rectangle defined by the position of the cell and
the origin as indicated in Figure 4.27.

Given the bounding box of a footprint, C(x; y) is then approximated by accessing
the table four times and performing the following operation:

C(x; y) = T4 � T3 � T2 + T1: (4.9)
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However, since the footprint of a pixel is not rectangular, but can be considered as a
quadrilateral in the general case, a potentially large number of texels within the bound-
ing box contributes without reason to the pixel color. Glassner proposes a solution in
[37] to incrementally remove rectangles within the bounding box to best approximate
the footprint at the cost of increased computing time.

For two reasons, summed-area tables are not well suited for direct hardware im-
plementation:

1. For each pixel, four accesses must be made that can have very different loca-
tions, depending on the bounding box of the footprint. This limits the achievable
texturing speed.

2. If the color components are 8-bit quantities, a 1024 � 1024 summed-area table
requires entries as wide as 24 + 4 bits for each color component.

Another approach is to create a set of prefiltered images, which are selected ac-
cording to the level of detail (the size of the footprint) and used to interpolate the final
pixel color. The most common method is to organize these maps as a MIPmap as
proposed by Williams, see [109] and Figure 4.1. In a MIPmap, the original image is
denoted as level 0. In level 1, each entry holds an averaged value and represents the
area of 2� 2 texels of level 0. This is continued, until the top-level is reached, which
has only one entry holding the average color of the whole texture. Thus, in a square
MIPmap, level n has one fourth of the size of level n� 1.

The shape of the footprint is assumed to be a square of size q2, where q is suggested
in [46] as

q = max

0@s�@u
@x

�2

+

�
@v

@x

�2

;

s�
@u

@y

�2

+

�
@v

@y

�2

1A : (4.10)

In equation (4.10), u and v denote texture coordinates and x and y are screen
coordinates.

The MIPmap is accessed by the texture coordinate pair (u; v) of the pixel center
and the level � which in the general case is a function of log2 q. � can be expressed
with its integer part �i and its fractional part �f as

�i = blog2 qc

�f =
q

2�i
� 1 (4.11)

Nearest-neighbor sampling is inadequate due to severe aliasing artifacts. Instead,
the levels � and �+1 are accessed and bilinearly interpolated at (u; v). The final pixel
value is linearly interpolated from the result in both levels according to �f .

MIPmapping is a reasonable candidate for a hardware implementation due to its
regular access pattern. There exist various approaches and architectures (for example
[97]) to implement it directly into logic-embedded memories. Due to the high costs
of chip development and chip productions, these approaches weren’ t realized for a
broad range of systems. Nevertheless, MIPmapping is the classical filtering approach
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used over the last decade in graphics systems and it is nowadays available in nearly
every PC graphics card. But the approximation of the footprint with a square limits the
MIPmap approach severely and people will try to improve it as graphics systems get
more powerful on the one hand and the increasing demand for high quality, but cheap
visualization on the other hand.

One filtering approach, called footprint assembly, is described in detail in [97].
Its basic idea is the approximation of the projection of the pixel on the texture by a
number N of square mipmapped texels. The pixel’s deformation is neglected and it is
approximated with a parallelogram given by

r1 =

�
@u

@x
;
@v

@x

�
and r2 =

�
@u

@y
;
@v

@y

�
(4.12)

The pixel’s center p in the texture map is the intersection point of the diagonals d1
and d2 of the parallelogram. The direction r in which to step from the pixel center to
best approximate the footprint is determined from the larger of the two vectors r1 and
r2 and

q = min(jr1j ; jr2j ;d1 ;d2)

N =
(max(jr1j ; jr2j)

q
; (4.13)

rounded to the nearest power of two as the number of square mipmapped texture
elements for the footprint. A difference vector �r = (�u;�v) is constructed and a
sequence of sample points is generated to cover the footprint.

Footprint assembly is able to produce high quality texture filtering, but it has the
drawback of being computationally intensive. Therefore, [97] proposes a hardware
for a logic embedded memory device, which can perform this filtering method during
memory access.

This approach has been adopted in the TALISMAN architecture which uses a
weighted anisotropic filtering, see [106].

All of these approaches are difficult and costly to be integrated into current raster-
izing hardware, since they either require a great amount of computational power or are
based on very special system architectures.

It is the goal of this approach to develop a method, which provides a filter quality
comparable with footprint assembly but which is more easily integrated into actual
graphics architectures.

4.3.2 Fast Footprint Filtering

Starting from the MIPmap, it can be easily detected that this filtering method
wastes texel information by approximating the footprint by a square, where the foot-
print is an arbitrary quadrilateral.

Improving filtering means to find a trade off between loading more texels to texture
a screen pixel and using the loaded texels more efficiently.

The number of texels that can be loaded for real-time filtering is restricted due to
strict constants like memory bandwidth or bus width. This limit will be called M.
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Figure 4.28: Definition of the footprint.

M has to be respected very strictly, since otherwise system performance will decrease
heavily.

4.3.3 Calculating a MIPmap level

The first problem to be solved is depicted in Figure 4.28 which shows a footprint
[P0; P1; P2; P3]. Its bounding box has in texture coordinates the extension (u; v). It
is now necessary to find a suitable rectangle of a � b texels from MIPmap level � to
cover the footprint and to respect at the same time the limit M.

The following considerations lead to the calculation of a; b, and �.
From (u; v), the aspect ratio f = u

v
of the bounding box can be determined.

Then one can calculate

a � b =M and f =
a

b
)

a2

f
=M) a =

p
M� f : (4.14)

Furthermore, the following settings are made

a0 = a and b0 =
M

a
: (4.15)

These values can be used to calculate two MIPmap levels m and n for a0 and b0

u

2m
= a0 ,

v

2n
= b0 ) m =

log u

a0

log 2
; n =

log v

b0

log 2
: (4.16)

From this, � can be determined as

� = dmax(m;n)e (4.17)

Having �, the level is known that has to be accessed to get the maximum amount
of texture information to cover the footprint and to respect M.
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Figure 4.29: Transformation of corner points to integer positions.

4.3.4 Definition of the weighting table

To do a correct filtering, the contributions of the single texel values to the final
pixel value have to be calculated. This is done with a precalculated lookup table, since
calculating this on the fly would be too expensive.

First, the corner points of the footprint are transformed to the integer positions of
the texel grid in level �. This is shown in Figure 4.29 and generates the quadrilateral
[Q0; Q1; Q2; Q3].

The contribution of a texel to the footprint is now a fixed value. For each possi-
ble footprint, a vector ! can be calculated consisting of M weights which represent
the footprint’s coverage for each texel. Computing the weights is a preprocessing step
and once it is done, the result can be stored in a lookup table. With the help of these
weights, a filtering can be performed, since they represent the coverage of the foot-
print. The texels fetched from memory are stored in a linear array T and the weighting
vectors in a weighting table W .

The filtered pixel value C can then be calculated as

C =

MX
i=1

(T [i] � (![i])) : (4.18)

The weighting vectors allow an easy and efficient computation of the footprint’s cov-
erage, but since a footprint is a quadrilateral having four corner points, a huge amount
of weighting vectors has to be calculated and stored. For the situation in Figure 4.29,
where M = 16 holds, precalculating the weighting vectors for all possible footprints
would result in 25 � 24 � 23 � 22 = 303; 600 vectors, since there are 4 � 4 texels, but
only 5� 5 possible corner positions.

Each vector has 16 entries and one would have to provide storage for 4; 857; 600
weights.

By dividing the quadrilateral [Q0; Q1; Q2; Q3] into two triangles �1 and �2 and
filtering each of them separately, the number of needed weights can be reduced signif-
icantly, see Figure 4.30. For the given example, only 25 � 24 � 23 = 13; 800 vectors
requiring 220; 800 weights are needed.
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Figure 4.30: Divide footprint for table lookup.

This amount can be reduced even further, if the corners are not transformed to
integer positions of the texel grid, but to the mid-points of the texels they lie in. This
is not as accurate as using the integer positions, since if a corner point of a texel lies
on such an integer position, it can be snapped to up to four possible neighboring mid-
points. Therefore, this snapping is no longer a unique solution and one has to use a
heuristic to ensure a consistent snapping if a corner point is snapped more than once
in successive footprints. Always the mid-point to the top and to the right for corner
points on integer positions is chosen. With this, aliasing due to inconsistent mid-point
snapping can be prevented and the error is in maximum the half of a texel. In the
example from Figure 4.28 are 4� 4 mid-point locations possible and this ends up with
16 � 15 � 14 � 16 = 53; 760 weights.

The weighting table W is depicted in Figure 4.31. It is accessed in three stages
with a multi-stage lookup structure, one for each corner point. For the example above,
the lookup structure consists of 16 + 16 � 15 + 16 � 15 � 14 = 3616 pointers for mid-
point snapping. In Figure 4.31, a single byte value in the range [0::255] represents the
weight that will be linearly scaled to [0::1] during the weighting calculation.

Currently, the corner positions are numbered regularly as depicted in Figure 4.30.
Some combinations of corner points can never occur. There lie always more than two
corner points on the borders of T respectively on the mid-points of border texels, since
T can be oriented this way when covering the footprint in level �. By exploiting this
fact, the two corner points on the border can be placed at 12 respectively 11 different
positions in the example above. Therefore, the amount of necessary weights can be
again reduced to 12 � 11 � 14 � 16 = 29; 568 values. Especially when M is small, a
whole series of weighting tables can be calculated in advance for all possible bounding
boxes with a � b =M. For M = 16, the table size needed is 3036 vectors �16 weights
= 48; 576 weights for the table with 4 � 4 texels. The one for 2 � 8 needs 139; 840

weights (2 � 8 and 8 � 2 are the same due to symmetry). With this, elongated and
distorted footprints can be approximated better.

Table 4.3 summarizes the sizes of W and the pointer structures for different values
of M. The values are calculated for integer positions (I) and for mid-point snapping
(MS). Since in current architectures, M is realistically restricted to be � 32, there is
no space problem with having more than one table, since W and the pointer structures
needed to access W have still feasible sizes. But even if M is increased to 64, approx-
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Figure 4.31: Accessing the weighting table.

M size of W pointers
8 (MS 2x4) 8 � 7 � 6 *8=2,688 400
8 (I 3x5) 12*11*13 *8=13,728 2,955

16 (MS 4x4) 12*11*14 *16=29,568 3,136
16 (MS 2x8) 16*15*14 *16=53,760 3,136
16 (I 5x5) 12*11*23 *16=48,576 14,425
16 (I 3x9) 20*19*23 *16=139,840 18,279
32 (MS 2x16) 32*31*30 *32=952,320 30,784
32 (MS 4x8) 20*19*30 *32=364,800 30,784
32 (I 3x17) 36*35*49 *32=1,975,680 127,551
32 (I 5x9) 24*23*49 *32=865,536 87,165
64 (MS 8x8) 28*27*62 *64=2,999,808 254,080
64 (I 9x9) 32*31*79 *64=5,015,552 518,481

Table 4.3: Sizes of the structures needed for fast footprint filtering.

imately 7 MB of memory are needed to store W and the pointer structures (one pointer
is assumed to be 4 byte to address 224 possible values). These sizes of the weighting
table and the pointer structure can be handled with current chip technology. Using the
lookup table W , two weighting vectors !1 and !2 belonging to the triangles �1 and
�2 can be generated. The filtered pixel value C can now be calculated as

C =

MX
i=1

(T [i] � (!1[i] + !2[i])) : (4.19)

4.3.5 Hardware Realization

The algorithm shown above can be realized with standard hardware components
and is organized in a pipeline having the following successive stages:

� Determination of the weighting vector
Here a multi-stage lookup unit is needed consisting of multiplexers and decoders
and a ROM for the vectors. The unit converts the indices of the corner vertices
into an access to the ROM table. As already depicted, not all combinations of
corner indices can occur. This is coded in the structure and saves memory in the
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ROM table. Currently, the symmetry of triangles covering the weighting mask
is not used to further reduce the number of necessary vectors, since this would
mean a reordering of the footprint corners that would need additional hardware.
The design shall be stream-line, only consisting of lookups, texel fetches and the
final evaluation of the convolution in Equation (4.19). This ensures speed and
can be realized more economically.

� Texel Array T
The values that are read from texture memory are stored in T before they are
combined with the weights. The texture memory access itself can be greatly
accelerated by using banking and caching techniques, since adjacent footprints
have a coherent memory access pattern (see [58]).

� Evaluation of Equation (4.19)
This evaluation can be performed with the help of a scalar vector multiplication
unit and a second vector unit for calculating the sum of a vector’s components.

For this approach, no interpolation units are necessary, which are necessary for a
good quality MIPmapping. Instead lookup tables and a unit which calculates the final
pixel value given in equation (4.19) are used. This hardware effort is comparable to
the one needed for MIPmapping and can also deliver a similar performance, since only
basic arithmetic functions are used.

4.3.6 Results

The following measurements were produced with a software prototype of the algo-
rithm built into a ray tracing system. Also the other filters, MIPmapping and footprint
assembly, were implemented.

To compare the approaches not only visually, but also statistically, Figure 4.42,
Figure 4.43 and Figure 4.44, show how the algorithm behaves in selecting MIPmap
levels. The pixels are rendered in this ray tracer from the top row to the bottom row.
Therefore, the switching between MIPmap levels can be reported, since the test scene
consists of a textured, flat plane which is sampled with the ray tracer. In these di-
agrams, the horizontal direction represents the pixel number as the calculation pro-
ceeds. In vertical direction, the used MIPmap level is depicted. It turns out, that the
method switches earlier to lower levels compared to MIPmapping, and a bit later than
foot print assembly. This is mainly due to the effect explained in Figure 4.32. Rather
distorted footprints extend the bounding box as depicted for the left footprint and the
new method is therefore forced to switch to a higher MIPmap level, but will still sam-
ple the footprint correctly with the help of the weighting vectors. It can be seen, that
increasing the tablesize M reduces this behavior and for M = 16 and M = 32, fast
footprint filtering catches up with footprint assembly.

Setting M to 32 is reasonable, since modern graphics chips like the Riva TNT chip
produced by NVidia don’ t load any longer only the 8 texels necessary for a trilinear
MIPmapping. This special chip supports anisotropic filtering and takes up to 8 bilinear
samples from up to two adjacent MIPmap levels and supports anisotropy of up to
2:1. With this, already 32 texels have to be loaded. The current implementation has
following features:
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Figure 4.32: Using two arrays for distorted footprints.

� Anisotropic filtering is only necessary for a small amount of footprints with
heavy distortions. It is therefore possible, to combine MIPmapping and fast
footprint filtering and to use the latter to filter only distorted footprints. This
reduces the amount of texture data accessed, since for trilinear MIPmapping,
only eight texel values have to be loaded.

� There is currently not a fixed limit M for texel fetching, but this limit is adopted
to the footprint characteristics. If footprints with a difficult shape have to be
sampled, the size of M can be raised up to 2 � M which results in a slower
sampling due to two steps of fast footprint filtering, but means also improved
sampling quality. Footprints, that are more isotropic, are sampled with smaller
tables having less than M texels or they are filtered with MIPmapping. Fur-
thermore, normal bilinear interpolation is used to access the first level of the
MIPmap, if the size of a footprint is smaller than the texel size at the finest level.

With this, a better sampling quality can be achieved without increasing the over-
head as much as fixing M on a high level.

When analyzing this for Figure 4.35, the following distribution of texture accesses
can be measured:

Pixels to be filtered 275,334
Pixels that can be MIPmapped 246,678
Pixels with Fast Footprint Filtering 28,656
Pixels with T between M and 2 �M 8,836

Figures 4.33 - 4.41 show the visual behavior of the algorithm compared to the other
two. The images are all calculated with a screen resolution of 600�600 pixels. Setting
M = 16 results in an improvement compared to MIPmapping, but is still a little bit
lower in quality than footprint assembly. M = 32 reaches the quality of footprint
assembly. This can be clearly seen at the checker board pattern, which has a resolution
of 1024�1024 and is therefore a little bit blurry in the foreground due to interpolation,
since its resolution is not sufficient in the foreground area.
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In Figures 4.37 - 4.41, a scene with a map texture having 2048 � 2048 texels was
used. The resolution is sufficient even for the foreground and it turns out, that for
such a ” real-world” texture which is no artificial test pattern like the checker board,
fast footprint filtering with M = 16 is sufficient to get a comparable result as with
footprint assembly. The difference to M = 32 can only be seen in a difference image.
Nevertheless, even with fixing M to eight texels a significant improvement can be
achieved compared to MIPmapping in terms of the image being less blurred, see Figure
4.39. Eight texels is the amount of texture information which has to be fetched for the
actual trilinear MIPmapping.

It is important to mention the smooth, not visible transition between the MIPmap
levels without interpolating between MIPmap levels as it is done using trilinear
MIPmapping. This is necessary to prevent aliasing during animation.

The next step will be to enhance the filtering quality further. It would make sense
not to access only one MIPmap level, but to sample the footprint with a number of
independent and smaller arrays on different levels of the MIPmap. This seems to be
especially useful for pixels which have extended footprints. The loading of texels
which are not needed but are contained in the loaded texel rectangle can be reduced
even further, if T is better adapted to the shape of the footprint, see Figure 4.32. On the
other hand, this will cost additional hardware and introduce latency, since the footprint
has to be divided temporarily. Doing this is therefore a trade-off decision between:

� the cost of the fast footprint structure dictating how much weighting tables and
in which size can be realized

� bandwidth of the texture memory

� additional costs and latency introduced by footprint subdivision.
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Figure 4.33: MIPmap filtering.

Figure 4.34: Footprint assembly.
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Figure 4.35: Fast footprint filtering using M = 16.

Figure 4.36: Fast footprint filtering using M = 32.
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Figure 4.37: MIPmap filtering.

Figure 4.38: Footprint assembly.
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Figure 4.39: Fast footprint filtering using M = 8.

Figure 4.40: Fast footprint filtering using M = 16.
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Figure 4.41: Fast footprint filtering using M = 32.
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Figure 4.42: Selected MIPmap levels, M = 8.
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Figure 4.43: Selected MIPmap levels, M = 16.
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Figure 4.44: Selected MIPmap levels, M = 32.



Chapter 5

FlyAway

5.1 Motivation

Using real geo-related topographic data-sets in a three-dimensional computer-
graphics scene is usually known as Terrain Modeling. Most of the systems used for
Terrain Modeling are not designed especially for this purpose, but are for example
GIS systems or Multi-Media tools. They are often restricted in their ability to visu-
alize very large data sets interactively but can be very useful for example for creating
offline animations. Furthermore, it is difficult to extend them with algorithms like the
multiresolution algorithms described in Chapter 2 and 4, since most of them cannot be
extended at all or only with a kind of restricted scripting language as it is the case for
example for ArcView/ArcInfo. Therefore, it was necessary to design an own Terrain
Modeling tool, since Terrain Modeling applications demand interactivity to enable the
user to move freely in a three-dimensional terrain environment.

5.2 Description of the System

One of the design goals of this tool was the wish of having huge virtual landscape
models under interactive control even if they exceed the machine’s graphics power.
The only way to realize this with moderate machine power is to integrate adaptivity
in the model repre-sentation (see the algorithms of Chapters 2 and 4). Perspective
foreshortening ensures that the user cannot discriminate small details which are far
away. This fact can be exploited and eliminates the rendering of this information with
the help of multiresolution model representations that can be adapted to the properties
of the camera viewing the scene like position, viewing direction or resolution of the
image.

Having fast multiresolution algorithms and the idea of their use in Terrain Model-
ing, the next step was to define a project with the goal of bringing together the different
types of data in an application. This application, called FlyAway, has to integrate the
power of modern graphic systems with the possibility of extension to use new fea-
tures like multiresolution techniques. Furthermore, FlyAway is an environment for
testing new techniques and advanced rendering topics, since the power of these new
approaches needs a verification with real data.

Some other approaches as in [13] use non-polygonal models for representing the
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terrain surface. This requires a system able to render non-polygonal information in
real-time. Since nearly the whole market of computer graphics hardware is dominated
by polygonal render hardware, these approaches are not useful for the concept of Fly-
Away and the idea of having it run on a broad range of computer systems. Nevertheless,
such approaches are interesting and very useful for the development of fast volume-
rendering hardware, since in the near future, hybrid rendering will be the key to high
rendering performance. With this, the graphic system can decide if a volumetric or
polygonal representation of the data is suitable for the current rendering situation.

5.3 The Render Engine of FlyAway

One important idea behind FlyAway is the portability of the application to a broad
range of computer systems enabled for 3D graphics. Therefore, an universal render
engine was designed based on OpenGL and implemented in C++. As platforms for
development are IRIX, Linux and WindowsNT systems in use. All system dependen-
cies are concentrated in libraries that are available in both, the Unix and WindowsNT
world.

Currently, the following libraries and formats are used:

1. ImageMagick, see [18]:
This library is used for all image operations like scaling, filtering or converting.
The libraries for the different image formats (for example, tiff, gif or jpeg) are
used from the different operators of ImageMagick. Therefore, approximately 20
different image formats can be written and read for purposes like texturing. The
algorithms of ImageMagick are implemented in C and are made accessible via
wrapper classes that encapsulate the ImageMagick specific data structures.

2. Glut, Tcl/Tk, Qt, see [94], [88], [104]:
These are toolkits for the system independent management of window function-
ality. Basic operations like the system dependent creation of physical drawing
windows and the handling of user events are covered by these libraries. It is
necessary to encapsulate such system specific functionality, since it differs very
much between the various operating systems. Especially Windows and Unix
are completely incompatible in their window handling, since Unix uses a client-
server based window protocol (X11) whereas WindowsNT integrates this func-
tionality into the operating system kernel.

Glut is used for creating simple output windows which are able to handle user
interaction. Glut is a public domain library that was initiated by Mark Kil-
gard and is nowadays a de facto standard in the OpenGL community to build
small, portable applications. If used with X11, it supports the X11 input ex-
tensions which integrate additional input devices like spaceball, knob box or
graphic tablet.

Tcl/Tk and Qt serve as an abstraction layer for window processing with ex-
tended functionality. Tcl is a public domain scripting language that is the base
of another operation system independent window toolkit which is called Tk. It
is already widely used for building graphical user interfaces (GUI) in the Unix
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world, but its Windows port has the disadvantage of exhibiting the native Win-
dows ’ look and feel’ which is quite different from the one of the Unix world.
Furthermore, Tcl/Tk has to be programmed in a C-style fashion and due to the
scripting kernel, Tcl is not as fast as a compiled solution like Glut or Qt. On
the other hand, scripting is useful for a run-time configuration of the application
which is much more difficult when using a compiled and linked solution.

This is improved in Qt, a toolkit developed by the Linux community and nowa-
days used to implement for example the window manager KDE which is very
widely used in the Linux domain. Qt is object oriented and written completely
in C++. Therefore, no encapsulation is necessary as this is the case for Glut and
Tcl/Tk and the ’ look and feel’ problem is solved much more convincingly than
in Tcl/Tk.

3. OpenInventor, VRML2.0, see [87]:
Currently, OpenInventor and VRML2.0 are used as input format for three-
dimensional data sets. The geological data sets of Figures 5.8 were produced
with the GIS system ArcInfo, where experimental data was triangulated and
exported as polygonal data in VRML2.0 format. The houses and the freeway
of the Figures 5.6 and 5.7 are constructed in the same way from real planning
data. OpenInventor is a graphical data format defined by SGI(formerly Silicon
Graphics). With OpenInventor, it is possible to define hierarchical, scene-graph
based scene representations (see Chapter 3). Furthermore, behavioral elements
like animation engines can be integrated into OpenInventor scenes which can be
coupled to a part of the scene graph to produce for example animations like a
spinning wheel. OpenInventor was the base for VRML(virtual reality markup
language), where special functionality for network transparent graphic scenes
was added. Some implementations of OpenInventor exist, from which the ver-
sion of TGS is most widely developed, since it is able to integrate OpenInventor
based scene graphs as well as VRML scene graphs in its data structures at the
same time.

4. OpenGL, see [85]:
OpenGL is nowadays the most widely used low level graphics API for rendering
polygonal data. It was defined by SGI and was first a proprietary language called
GL(graphics language). Due to its success in the graphics community, it became
a standard and its development is now controlled by the OpenGL architectural
review board, where major suppliers and companies but also university members
try to maintain the standard and to integrate useful and needed functionality.
OpenGL implementations are available on nearly every computer system that is
able to produce a raster graphic output. OpenGL is programmed in C and has
no object oriented functionality. This was one of the main reasons for deciding
to build an own rendering engine using object oriented principles and being
implemented in C++.

It is one of the design goals of FlyAway to reuse existing software packages to
build the desired functionality. All of the above components and libraries are either
available in source code or they are included in the operating system like the OpenGL
library. Therefore, FlyAway is easily portable to different platforms.
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5.3.1 Class Hierarchy

The simplicity of the render engine and the object oriented implementation ensures
on one hand an easy extension of the concept to integrate new features. On the other
hand, a simple design and a class hierarchy with a moderate depth ensure speed. The
render engine is used for the configuration of the OpenGL render context and the
render widgets, since this is rather complicated and operating system dependent.

The OpenGL render context is a finite state machine, that accepts input in form of
OpenGL commands, which can either manipulate the context internal state or trigger
some render action to produce output. The render context itself is encapsulated in the
DispOpenGL class, see Figure 5.1.

Render widgets are structures supplied by the operating system. They are areas on
the screen, in which an OpenGL render context can put its output into. As mentioned
above, the render engine encapsulates the render widgets by using libraries like Glut
or Tcl/Tk.

The central managing class of the render engine is the ViewerWindow class. It
controls the render context (DispOpenGL). Furthermore it has an instance of a Viewer-
class (for example an ExaminerViewer), that controls the user interaction and is re-
sponsible for taking event input coming for example from a mouse and generating
three-dimensional camera movements from this. The Viewer-class detects user inter-
action, evaluates it, and hands over the results to the render context via the Camera-
class.

The render context holds a list of data objects, that will be rendered. They are
called drawables and are derived from the abstract Drawable base class. Each drawable
has to overload a virtual function draw(void). In this function, the OpenGL commands
necessary to draw this drawable are concentrated. Therefore, OpenGL commands can
occur only at two places in the render engine:

1. The functions of the DispOpenGL render context contain the OpenGL calls that
configure things that are common for all the drawables.

2. Each drawable issues its specific OpenGL calls. If it changes the common state
in its draw function, these changes have to be recorded and have to be resolved
before the draw function is finished.

The render engine supports the concept of hybrid rendering. This means, that different
kinds of data, like voxels, polygons or images, can be used and rendered based on
OpenGL. The integration of new data types is realized with the creation of a new
Drawable class, e. g. a MeshDrawable to integrate triangle meshes. Other Drawables
are available for scenegraph based OpenInventor or VRML data.

5.4 Further developments and future work

As mentioned earlier, FlyAway is an environment for many purposes. Therefore,
it is consequently improved and enhanced to integrate new features and functionality.
Some of the topics currently being worked on:

� Multi-Threading:
For the usage of very large terrain models, it will be inevitable to use more than
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Figure 5.1: Scheme of the class hierarchy of the render engine

one processor in parallel. On one hand, independent parts of the landscape can
then be updated independently. On the other hand, only multi-threading will
ensure that the user-interaction and the update-process can be handled in par-
allel. It is intended to use some form of thread abstraction layer to guarantee
portability. The prototype programmed with ACE (adaptive communication en-
vironment) looks very promising.

� VR Setup:
Large scale projection devices are very suitable to make for a group of people an
impressive interactive flight-through with FlyAway without having a VR-cave.
(see Figures 5.2 and 5.3). Currently, a Barco Baron Virtual Table is used for
this purpose. This device can be rotated by an angle and is therefore suitable to
look like a bird on the landscape visible in a stereo projection. The table can
also be used in a horizontal position for displaying the landscape model. This
position will be suitable to interact with the terrain and things like houses placed
on it. The next step will be the integration of additional input devices like grab-
bing pointers to enhance the possibilities of this environment. With stereoscopic
viewing, several users will be able to interact and to place for example models
in the virtual landscape. In this context, completely new user interfaces will be
necessary to control this interaction.

� Hybrid Rendering:
One of the main goals of FlyAway is to bring together different kinds of data
to render them with the common basis of OpenGL. The use of voxel and light-
field data are investigated in this context to enhance the optical richness of the
scenery. Another topic is to integrate different geological, hydrological, and me-
teorological visualization techniques into the landscape models without losing
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interactivity. To this context belongs also one of the current projects which deals
with the visualization of some cave systems in the surroundings of Tübingen.

Figure 5.2: Virtual Table for stereo-
scopic model display.

Figure 5.3: Cooperative work of two
people wearing stereo glasses.

5.5 Results Produced with FlyAway

Figure 5.4: Cartographic map of Tübingen. In the center, one can see the buildings of
the ’Morgenstelle’ university campus.
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Figure 5.5: Map showing the geological layers of the Tübingen area. The viewer looks
in north-east direction, the hill in the centre of the image is the well knownÖsterberg.
The color coding depicts the single geological layers.

Figure 5.6: Visualization of a new industrial area near Tübingen. The planning data
of the buildings was produced with a GIS system and imported into FlyAway. This
visualization was made approximately 8 months before the building construction be-
gan and showed very nicely the visual impact of the planned industrial area on the
surroundings.
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Figure 5.7: Visualization of the freeway constructed from planning data and placed at
its correct geographic position.
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Figure 5.8: Visualization of a geological ground water model beneath the earth’s sur-
face. This structure is produced by a geological simulation process and is the isosur-
face of the flow of the groundwater in the valley of the river Neckar.
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Figure 5.9: Open land management map covering 25km � 25km of landscape around
the city of Aalen in southern Germany.

Figure 5.10: Detail of the open land management map.
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Figure 5.11: Topographic map with superimposed orthographic photograph (see Chap-
ter 1). The orthographic photo has a much higher resolution than the map used as
background texture.

Figure 5.12: Topographic map with superimposed orthographic photograph. The or-
thographic photo is blended with the map below.
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Chapter 6

Summary

The main goal of this work was to develop and to improve algorithms, that allow
a better usage of geo-related data-sets in three-dimensional raster graphics.

Chapter one gives an short introduction to the topic and describes the data sources
and kinds of data that are available. Furthermore, the historic development of survey
and map making are described and the necessary definitions like coordinate systems
are explained.

Major topics under investigation were the development of new camera adaptive
data-structures for heightfield and raster image data. Therefore, the next chapter de-
scribe some new approaches for achieving this.

In the second chapter, the definition of a new multiresolution model for terrain data
is given. This multiresolution model needs almost no additional memory overhead and
it can be updated at interactive rates. It uses a viewer dependent screen space error to
adopt the viewer independent multiresolution model the actual viewer’s position. With
this, very high reduction rates in polygon count can be achieved. Furthermore, this
model can be used for other kinds of data, for example CAD models.

In the next chapter, approaches for the fast determination of visible and occluded
scene objects are studied to accelerate the walkthrough of large and extended building
and city models. A new occlusion culling algorithm was developed that uses only
the framebuffer for culling and can therefore be used on a broad range of computer
systems. This approach can be implemented in hardware which is also described in
chapter three. In hardware, the algorithm utilizes the occlusion information already
available during rasterization by collecting it with the help of special counting units.

In chapter four, some problems related to texture mapping are discussed. A new
camera adaptive data-structure for textures, the MIPmap grid, was developed to store
and to adopt huge texture images beyond the machines scope. This structure is able to
respect the machines internal bandwidth and is therefore applicable to a broad range
of computers. Furthermore, perspective foreshortening ensure here again that only
a small part of the data has to be accessed. Next, a new method for texture cutting is
described that allows the selection of an arbitrary quadrilateral of a texture for texturing
by using graphics hardware. Some recent work was done in the field of texture filtering,
where a new hardware approach was developed that gives much better filtering results
than conventional MIPmapping.

Most of these algorithms were integrated into an interactive terrain visualization
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system, called FlyAway. This system can visualize geo-related data-sets and is already
used for planning purposes and the visualization of scientific data-sets. One of its main
design goals was the easy portability of the system to various platforms. Therefore, it
is currently ported to different Unix platforms and to the Windows world.

An application like FlyAway may give the public the opportunity to gain new in-
sights into the complex behavior of our natural environment and to participate better
in strategic decisions such as global landscape planning.
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[56] T. Hüttner. Fast footprint mipmapping. In to appear in Proc. of Eurograph-
ics/SIGGRAPH workshop on graphics hardware 1999, 1999.
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