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Abstract

Physiological homeostasis is constantly monitored and mediated by neuroregu-
latory mechanisms in the central nervous system (CNS). Deviation from optimal
homeostatic regulation in response to the environment is a major driver of the
prevalence of chronic non-communicable diseases such as hypertension, obesity
and type-2 diabetes in the population. The CNS is the most complex biological
system. It comprises interconnected neural networks operating a high degree
a functional specificity which are regulated by diverse gene expression profiles.
The particular characteristics of the CNS present unique challenges for scientific
evaluation of the distinct biological processes important in health and disease.
Progress made in the field of genetics, for example the identification of func-
tionally distinct gene expression profiles or the identification of robust genetic
associations with disease enriched in the CNS represent major milestones in
how molecular genetic data can improve our fundamental understanding of the
brain.

The goal of this thesis is to explore how genetic analyses in different con-
texts contribute to our understanding of neural processes in health and disease.
First, molecular genetic and Next-generation sequencing technologies are im-
plemented to characterize a transcriptional network underlying the homeostatic
regulation of fluid balance in the brain using a rat animal model. Secondly,
the use of statistical genetics to harness human genetic datasets is explored
in order to investigate relationships between the KRAB-zinc finger family of
transcriptional regulators (which are enriched in the brain) and complex health
outcomes. Lastly, this thesis demonstrates how published population level ge-
netic datasets may be harnessed to isolate neural mediated effects contributing
to complex traits. A demonstration is provided of how such tissue-specific ef-
fects may be integrated into genetic epidemiological analyses to estimate their
effect on disease risk. Overall, this thesis aims to provide a perspective on how
multidisciplinary genetic analyses may contribute to complementary research
paradigms.
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Chapter 1

Introduction

1.1 Introduction

Cardiovascular and cardiometabolic diseases are the leading cause of death

worldwide (WHO 2021a). Healthcare costs attributed to cardiovascular and

cardiometabolic disease are estimated at an annual cost of £9 billion in the UK,

representing a major public health concern (BHF 2022). This is occurring as

a result of elevated rates of multifactorial conditions such as hypertension and

obesity in the population. Blood pressure and metabolic conditions are inher-

ently linked complications (Akholkar, Gandhi, and Shah 2017; Polak-Iwaniuk

et al. 2019) which arise from a combination of genetic, environment and lifestyle

risk factors.

The cardiovascular system ensures that adequate blood supply is maintained

throughout the body. It is influenced by myriad physiological cues including,

but not limited to, changes in blood volume, hormones, metabolites and plasma

osmolarity. All of these processes are largely regulated by the autonomic nervous

system, via multiple mutually interacting systems centered on the hypothala-

mus. The primary function of the hypothalamus is to maintain physiological

homeostasis which is achieved in many ways, including the classic barorecep-

tor/chemoreceptor reflexes and neuroendocrine mechanisms such as the vaso-
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pressin, renin-angiotensin and the leptin-melanocortin pathways (Abboud et al.

1990; Dampney 1994; Nakagawa and Sigmund 2017; Sawchenko and Swanson

1981; Yeo et al. 2021). As such, dynamic mechanisms in the brain are constantly

monitoring physiological needs in order to mediate an appropriate response to

a change in condition.

Variation in the control of these systems plays a key role in the aetiol-

ogy of cardiometabolic conditions such as hypertension (Carmichael and Wain-

ford 2015; Stocker, Kinsman, and Sved 2017) and obesity (Yeo et al. 2021).

These heterogeneous conditions have both environmental and genetic compo-

nents (Levy et al. 2009; Warren et al. 2017; Yengo et al. 2018a). A comprehen-

sive understanding of the genes and neuroregulatory pathways underlying these

conditions is essential for our understanding of how disease susceptibility can be

managed and controlled in the population. Furthermore, this will likely prove

fundamental in gaining an improved understanding on how genetic variation

and neuroregulatory mechanisms interact with the environment and influence

complex traits.

1.1.1 Insight from animal models

There are no non-invasive means of conducting molecular studies on subcortical

regions of the brain in humans. Therefore, much of what we understand about

the neuroregulatory genetic mechanisms underlying homeostatic traits has been

gained from animal models. Neuroendocrine studies provide an advantageous

entry point to investigate the relationship between the central nervous system

(CNS) and complex health traits. Neuroendocrine mechanisms provide insight

on both the behavioural and physiological aspects underlying our response to

stress, thirst, hunger, satiety, metabolism and other biological mechanisms as-

sociated with the release of peptide hormones via the hypothalamic-pituitary

axis (HPA) (Arnett et al. 2016; Yoo, Yu, and Sohn 2021).

This research has benefitted from advances in genetic tools which have al-

lowed for the selective manipulation of particular genes and neural circuitry, in
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combination with detailed physiological and behavioural measurements. The

development of optogenetic and chemogenetic techniques in particular has fa-

cilitated innovative experimental analyses linking the CNS to behaviours (Deis-

seroth 2011; English and Roth 2015). For example, chemogenetic studies of

magnocellular neurons in the hypothalamus have contributed towards the de-

lineation of the hypothalmic-neurohypophyseal system (HNS). The HNS consti-

tutes neuroendocrine cells which synthesise and transport the prominent neu-

ropeptides vasopressin (AVP) and oxytocin (OXT) to axon terminals at the pos-

terior pituitary. Secreted AVP is predominantly linked to roles in maintaining

osmoregulatory balance by promoting water reabsorption in the kidneys, while

oxytocin secretion plays essential roles in lactation and partrition. Chemoge-

netic studies are predominantly based on the application of designer receptors

exclusively activated by designer drugs (DREADDs) (Smith et al. 2016b). Spe-

cific activation of AVP and OXT neurons using chemogenetic tools based on vi-

rally transduced DREADDs or transgenic models have further established roles

for these neurons in diverse behaviours, for example cardiac function (Garrott

et al. 2017), appetite regulation (Pei et al. 2014; Yoshimura et al. 2017) and

social processes (Smith et al. 2016a).

Changes in gene expression dynamics represent the highly rapid and versatile

action of the CNS when mediating a response to a stimulus. While fundamental

insight on central mechanisms has been gained from the application of molec-

ular genetic techniques in vivo, high-throughput sequencing projects offer an

extended view of the molecular mechanisms underlying a particular process.

The activation of complex gene regulatory profiles in the CNS is an essential as-

pect of neuro-biology which is reflected by the higher number of genes expressed

in the brain relative to other tissues (Grange et al. 2010; Ramsköld et al. 2009;

Roth et al. 2006). However, the function of the majority of genes expressed

in the CNS remains poorly understood. An important consideration which re-

mains pervasive in the neuroscience literature relates to a historic gene-specific

bias which has focused on a relatively small proportion of known genes. This
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gap in functional characterization is reflected by the dominant representation of

just 5% of coding genes in neuroscience publications (Pandey et al. 2014). As

such, studies aimed at increasing the functional repertoire of genes expressed in

the CNS are warranted. A more detailed understanding of the dynamic gene

expression profiles underlying vital functions will additionally provide insight on

the study of complex disease traits influenced by a prominent neural component.

1.1.2 Insight from early genetic studies

In order to expand our understanding of the influence of genetic variation in

the CNS, it is useful to consider the technological progress which has facili-

tated our current understanding of complex genetics. The identification of trait

associated genes in early human genetic studies was largely informed by the

findings from animal models and genetic linkage studies. The segregation of

restriction fragment length polymorphisms (RFLPs) provided an initial entry

point which helped narrow down the location of trait associated genes in the

genome (Botstein et al. 1980). RFLPs are molecular markers linked to specific

chromosomal sites which, when digested with specific endonucleases, produce

fragments of varying length. Recording the inheritance of RFLP markers and

their co-segregation with specific traits over multiple generations laid a founda-

tion for the localization and identification of Mendelian disease genes through

positional cloning (Collins 1992; Ramsköld et al. 2009). While this allowed

for an unbiased evaluation of the relationship between genomic regions and a

trait, it required data from large families of affected and unaffected individuals.

Furthermore, this approach proved less efficient at mapping genes underlying

complex traits.

In contrast to linkage studies, candidate gene studies provided an advanta-

geous approach to study the genetic basis of complex traits. Candidate gene

studies involve testing the association between alleles (or sets of alleles) in a se-

lection of genes where there is prior knowledge linking it to the disease or trait.

The early genetic studies on the neuropeptide leptin offer a noteworthy example
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which provided the initial basis establishing the genetic relationship between the

CNS and cardiometabolic outcomes. A recessive mutation in the ob/ob mouse

strain, first identified in the 1950s, caused syndromic obesity and type 2 diabetes

which is phenotypically similar to morbid obesity in humans (Friedman et al.

1991). The gene responsible for this phenotype was not identified until the mid

1990s. A series of physical mapping and positional cloning experiments placed

the ob gene, which encodes leptin, on chromosome 6 in the mouse genome and

helped identify the human homolog (Zhang et al. 1994). The identification of

the ob gene laid the foundation to seminal work in animal models which estab-

lished the important role of the leptin-melanocortin signalling pathway in the

CNS on body-weight regulation. This research provided the strong biological

evidence to inform the multiple successful candidate gene studies which iden-

tified robust genetic associations with adiposity in population studies (Farooqi

et al. 2001, 2003; Lotta et al. 2019; Montague et al. 1997; Wade et al. 2021).

The identification of single nucleotide polymorphisms (SNPs), which are the

most common form of genetic variant, provided a more detailed view of genetic

variation in the genome, and coincided with the development of automated

genotyping techniques (Wang et al. 1998). The technological advances at this

time provided a greater density of mapped genes which ultimately facilitated the

progress towards the completion of the human genome project (HGP). Comple-

tion of the HGP provided the first reference of the whole genome (Lander et al.

2001). This represented a major feat but provided little insight on interindivid-

ual genetic variation. Deciphering the heritable genetic variation which drives

phenotypic variation is essential to the scientific and clinical goals of human

genetics.

1.1.3 The genome-wide association study (GWAS) era

While candidate gene studies offered a reasonable strategy to assess complex

trait variation, they had several disadvantages. A limitation of candidate gene

studies was that they required prior knowledge of the molecular aetiology of
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the trait, which ultimately left a large proportion of the genome not investi-

gated. Retrospectively, many candidate gene studies were likely under-powered

to detect trait associated variants and many associations failed to replicate in

independent samples. Two major breakthroughs, however, greatly facilitated

the study of common genetic variation. Firstly, the HapMap project provided

the first detailed description of genetic architecture, i.e. the frequency and ef-

fect of the genetic variants which contribute to heritable variation (Consortium

2003, 2005).

SNPs are the most abundant type of genetic variant in the genome, and

typically have 2 alleles: a major (common) and minor (less frequent) allele.

Common genetic variants by definition have a minor allele frequency (MAF)

>5% in the population. Segments of the genome which tend to be inherited to-

gether (haplotypes) arise via the non-random assortment of nearby alleles. This

provided important insight on haplotype block structures, which exists because

of the influence of recombination hotpots on meiosis. The correlation between

particular combinations of alleles in a haplotype is known as linkage disequilib-

rium (LD). The HapMap project empirically documented LD relationships by

studying a high density of polymorphisms genome-wide. This description of the

haplotype block structure proved highly valuable because it meant that a mini-

mum number of SNPs could be selected for genotyping in a given assay. Overall,

the HapMap project provided the first systematic description of interindividual

genetic variation. Secondly, high-throughput genotyping was made possible by

the advent of micro-arrays, meaning that hundreds of thousands of variants

could now be affordably assayed in large cohorts of individuals. These break-

throughs marked the beginning of the era of genome-wide association studies

(GWAS) (Hirschhorn and Daly 2005; Topol, Murray, and Frazer 2007), which

have revolutionised our understanding of the genetic architecture of complex

traits.

Lastly, by the mid 2000s, sequencing capabilities had been completely trans-

formed by the development of next-generation sequencing (NGS) technologies.
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Modern sequencing techniques are based on massively parallel short read se-

quencing which can be computationally resolved by mapping to a reference

genome (Behjati and Tarpey 2013), meaning whole genomes could now be

sequenced at single nucleotide resolution cheaply and quickly. The original

HapMap project has been superseded by the 1000 Genomes Project which pro-

vides a detailed reference panel of human genetic variation based on the whole

genome sequences (WGS) of over 1000 healthy individuals (Auton et al. 2015).

The latest SNP arrays informed by this data allow researchers to investigate

millions of SNPs at a time. Moreover, progress in the ability to apply impu-

tation by leveraging low-coverage WGS data provided by haplotype reference

panels like the 1000 Genomes Project (Auton et al. 2015) is facilitating more

accurate estimations of less frequent (MAF ≥1% but <5%) and rare genetic

variants (MAF <1%) (Marchini and Howie 2010). The accumulative result of

each of these technological advances has driven a surge in the discovery of robust

genetic associations for many disease traits (Tam et al. 2019).

Typical GWAS workflow

An overview of a typical GWAS workflow is provided in Figure 1.1
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Figure 1.1: Example GWAS workflow Figure generated using images from
biorender

GWAS studies aim to identify common genetic variants associated with indi-

vidual complex traits. They are a systematic analysis to identify genetic variants

which are significantly more frequent in individuals with a given trait than in

individuals without the trait, for example in a case-control population study or

in population cohorts for continuous traits (Figure 1.1 (1)).

The genotype data used in GWAS studies are typically derived using micro-
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arraay based SNP genotyping (Figure 1.1 (2)). A genotype array consists of

a glass slide with thousands of features at specific positions. Each feature on a

microarray contains many copies of an identical 40-60nt sequence of ssDNA. The

unique fragments of ssDNA are indexed such that their precise location on the

chip is known. The genetic variants on micro-arrays are referred to as tag SNPs.

Tag SNPs are selected because they are in strong LD with neighbouring SNPs

and therefore provide a surrogate measure for a larger region of unmeasured

SNPs. Participants in a GWAS study provide DNA samples which undergo

amplification, fragmentation, labelling and conversion into single stranded DNA.

The participants DNA fragments are then hybridised to the microarray; i.e.

those fragments of participant DNA which are complementary to the feature will

bind, while fragments which don’t bind will be washed away. Fragments bound

to the microarray will fluoresce under UV light. The patterns of fluorescence are

measured computationally. This process allows researchers to determine which

patterns of DNA variation are present in the participants DNA.

The results of GWAS studies are typically presented using a Manhattan plot

(Figure 1.1 (3)). A standard GWAS is based on a relatively simple statistical

model (usually linear or logistic regression) in conjunction with rigid statisti-

cal correction and quality control (QC) protocols. This has driven substantial

progress in the identification of robust associations for myriad traits in highly

powered samples (Uffelmann et al. 2021). Importantly, this research has helped

to reveal the polygenicity and SNP-based heritability of complex traits (Timp-

son et al. 2018).

1.1.4 The impact of GWAS

The identification of common variants, which typically have small effects on

the phenotype (Speed et al. 2017; Yang et al. 2010), requires exceptionally large

sample sizes for discovery. Collaboration and data-sharing are key to the success

of GWAS, which is being achieved via several means. Systematic approaches

to data-sharing have facilitated the growth of well-curated publicly accessible
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repositories (Buniello et al. 2019; Elsworth et al. 2020). The aggregation of

findings by meta-analysing GWAS summary statistics (i.e. the effect size, stan-

dard error and p-value of millions of SNPs) significantly improves the power to

detect more precise SNP estimates, and many GWAS are now conducted in the

context of large-scale consortia with datasets aggregated across multiple cohorts

(Deloukas et al. 2013; Morris et al. 2012; Pulit et al. 2019; Yengo et al. 2018b).

Lastly, open resource biobanks comprising individual level genotype, detailed

phenotypes and linked electronic health data are increasingly playing a role in

the pace of new genetic discoveries (Bycroft et al. 2018; Kurki et al. 2022; Mah-

mood et al. 2014; Nagai et al. 2017). The UK Biobank (UKB) prospective co-

hort study is an influential example; it has published genotype-phenotype data

coupled with extensive health records on approximately 500,000 participants

(Bycroft et al. 2018). The current trends in data collection and infrastructure

are paving the way for continued method development allowing researchers to

harness this data for new biological findings.

1.2 Method development in statistical genetics

The data provided by GWAS have many applications beyond initial genotype-

phenotype associations, and have laid the groundwork for more advanced sta-

tistical genetic analyses. For example, genetic risk can be used to provide indi-

vidual genetic risk estimates for some complex traits, amongst a range of other

applications (Craig et al. 2020; Khera et al. 2018; Wray et al. 2021). Genetic

risk scores (GRS) are calculated by aggregating the effect of multiple common

variants into a single score (Collister, Liu, and Clifton 2022); i.e. by taking the

sum of a collection of effect alleles present in an individual, and weighting them

by the SNP effect estimates. GRS may be implemented to determine aetiologi-

cal sub-types of complex traits, or implemented in the clinic to provide improved

patient outcomes through screening and appropriate recommendation of early

preventative measures (Kuchenbaecker et al. 2017; Liu et al. 2021; Sawyer et al.
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2012).

1.2.1 Mendelian randomization

Another important application for the data obtained from GWAS is Mendelian

randomization (MR) analysis. MR is a statistical paradigm in genetic epidemi-

ology which uses measured genetic variation to investigate causal relationships

between traits (Davey Smith and Ebrahim 2003). A significant limitation in

establishing causal relationships between a risk factor and outcome based on

observational data is that the association is liable to confounding and reverse

causation. MR analyses overcome this limitation by leveraging trait-associated

genetic variation to proxy the effect of a modifiable exposure. The principles of

MR are derived from Mendel’s laws which describe the random and independent

assortment of alleles during meiosis. The inheritance of alleles is independent of

sources of confounding such as socioeconomic or lifestyle factors which can in-

fluence observational associations. Secondly, due to the assignment of alleles at

conception, MR analyses are robust to reverse cause. This natural randomiza-

tion event can be likened to a randomized control trial in which the causal effect

represents the long term effects of lifetime exposure on the outcome (Evans and

Davey Smith 2015). A viable MR analysis is dependent on 3 key assumptions:

• The instrumental variables must be associated with the exposure of inter-

est

• The instrumental variables are only associated with the outcome via their

effect on the exposure

• The association is independent of confounding

Many strategies now exist to test potential violation of the assumptions

in an MR analysis (Bowden, Davey Smith, and Burgess 2015; Bowden et al.

2016; Hartwig, Davey Smith, and Bowden 2017), though ultimately the analysis

is dependent on the strength of the genetic association derived from GWAS
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(Sanderson and Windmeijer 2016; Sanderson, Spiller, and Bowden 2020). A

major advantage of MR is that GWAS data can be leveraged to gain insight

in many settings, for example MR has been widely applied to the prediction

of drug effects (Ference et al. 2016; Ference et al. 2015; Holmes et al. 2021;

Richardson et al. 2022), investigating modifiable physiological factors such as

lipids (Bell et al. 2022; Ference et al. 2012) and for the establishment of causal

effects of molecular traits (Richardson et al. 2020a; Sanderson and Windmeijer

2016).

Figure 1.2: Mendelian randomization directed acyclic graph (DAG)
In a Mendelian randomization analysis, genetic variants are harnessed as instru-
mental variables to evaluate the relationship between a modifiable risk factor
and an outcome. The use of inherited genetic variants ensures the directional-
ity of the relationship is known, and the analysis is robust to confounding and
reverse cause.

1.2.2 Assigning molecular function

The fundamental ambition of GWAS was that they would lead the identification

of causal genes and regulatory elements underlying complex biological traits.

While the growing number of GWAS offer a powerful resource providing regions

of the genome which are reliably associated with individual traits, the results

do not reveal anything about the effect of the variant, or where it may function.

This is further impeded by LD, which limits our ability to directly infer the effect
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of the GWAS identified SNP. The genetic variants tagged by genotype arrays are

not necessarily causally associated with the trait, but highly correlated with the

true causal SNP (Ding and Kullo 2007; Stram 2004). For this reason, further

fine-mapping is required to identify the putatively causal association (Schaid,

Chen, and Larson 2018). The effect of coding variants assigned to a particular

gene are directly interpretable; if a coding variant reliably associates with a

trait then it is clear that a particular gene is associated with it. However, the

majority of GWAS associated hits reside in non-coding or intergenic regions of

the genome, creating a challenge to interpret molecular function (Edwards et al.

2013).

We are yet to fully take advantage of the wealth of information produced by

GWAS. Advances in the field of functional genomics are rapidly addressing this

however, which is reflected in the generation of large-scale multi-omic datasets

(cell and tissue specific transcriptomics, proteomics, epigenomics, metabolomics

etc.) (Hasin, Seldin, and Lusis 2017). The genetic variants associated with

these phenotypes are known as quantitative trait loci (QTL) and are playing an

essential role in linking the genome to molecular phenotypes (Shirai and Okada

2021). The integration of intermediate molecular phenotypes in this way offers

a means to resolve the effect of genetic variants in more detail.

Genetic colocalization

Genetic colocalization is a statistical approach developed in order to improve

the mechanistic interpretation of GWAS associations. Colocalization methods

facilitate pairwise analyses based on summary statistics, and are typically im-

plemented to address whether the genetic associations detected for a trait and

molecular phenotype are distinct or overlapping (Giambartolomei et al. 2014;

Hormozdiari et al. 2016; Wen, Pique-Regi, and Luca 2017). Colocalization anal-

yses are based on a Bayesian statistical framework and aim to help explain the

relationship between two traits by estimating the posterior probability of associ-

ation at a locus for each of five competing hypotheses: no association with either
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trait (PPA0); association with one trait (PPA1, PPA2); association with both

traits but with distinct causal variants (PPA3); association with both traits

with a common causal variant (PPA4). Evidence for colocalization between

two traits provides compelling evidence in support of a causal relationship, and

have been successfully implemented to improve the molecular insights gained in

many complex settings (Franceschini et al. 2018; Korologou-Linden et al. 2021;

Taylor et al. 2019b). A schematic diagram illustrating genetic colocalization is

provided in Figure 1.3.

Figure 1.3: Schematic diagram illustrating the identification of shared
causal variants A illustrates the association signals for two traits with distinct
causal variants which are in linkage disequilibrium (LD). B illustrates two traits
with overlapping association signals indicative of a shared causal variant.

1.3 Genetic architecture of neuroregulatory mech-

anisms

The collaborative and technological advances in recent years illustrate how the

different disciplines within the field of genetics continue to develop analytical

strategies which are helping to overcome the natural limitations within genetic

data. In order to comprehensively investigate the genetic architecture of the

CNS however, special attention needs to be paid to the molecular characteris-
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tics which set it apart from other biological systems. The brain is composed of

functionally diverse neurons which communicate using a coordinated circuitry

which is shaped by a combination of genetic programs, environmental and ac-

tivity dependent processes (Sporns 2013). The CNS inherently exhibits higher

levels of gene expression relative to other biological systems, likely due to high

levels of neural activity in response to dynamic stimuli (Grange et al. 2010;

Ramsköld et al. 2009; Roth et al. 2006). Unlike other tissues and cell types,

the neurons in the CNS lack an intrinsic capacity to regenerate, and the envi-

ronment of the CNS is generally non-permissive to regeneration (Pasterkamp

and Verhaagen 2006; Sami, Selzer, and Li 2020). Most neurons are generated

during embryonic development (Götz and Huttner 2005; Ming and Song 2011;

Paridaen and Huttner 2014). These neurons go on to form intricate connectiv-

ity networks in the brain which undergo activity dependent synaptic pruning

throughout neural development and into early adulthood (Sakai 2020).

The CNS exhibits unique gene regulatory mechanisms so that neurons re-

main adaptable while coping with inherently higher transcriptional activity and

intracellular physiological stress. A robust genetic program ensures that neu-

ral longevity is maintained throughout our lifetimes through the suppression of

apoptosis (Lin et al. 2020). Furthermore, as we uncover more of the genome, it

has become increasingly clear that an abundance of regulatory factors and non-

coding elements are enriched in the CNS (Derrien et al. 2012; Farmiloe et al.

2020; Playfoot et al. 2021; Quan, Zheng, and Qing 2017; Qureshi and Mehler

2012). For example, the majority of the genome produces non-coding RNA

(ncRNA) species. These include small regulatory ncRNA and long ncRNA

(lncRNA) (>200nt) (Consortium 2012; Elling, Chan, and Fitzgerald 2016).

These RNA molecules are most abundantly expressed in the CNS; for exam-

ple, the largest proportion of tissue-specific lncRNAs are enriched in the brain

(Derrien et al. 2012). However, the functional repertoire of these genes in the

CNS remains to be determined.
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1.4 Statement of intent and aims

The aim of this thesis is to explore how genetic approaches may be implemented

to assess the role of gene expression in the CNS on complex traits, with a par-

ticular focus on cardiometabolic outcomes. Rates of cardiometabolic disease

have risen dramatically in recent years, and cardiovascular disease remains the

leading cause of death worldwide (Dalen et al. 2014; WHO 2021a,b). The rapid

rise in cardiometabolic outcomes observed towards the end of the 20th cen-

tury suggests that this is largely due to changes in our modern environments,

lifestyles and diets. However, insight from GWAS have established that individ-

ual susceptibility to cardiometabolic disease is influenced by a strong heritable

component (Atanasovska et al. 2015).

The hypothalamus is the primary area of research when investigating the

role of the brain on cardiometabolic disease due to the essential role of the hy-

pothalamus in mediating vital homeostatic processes and autonomic nervous

system regulation. Interestingly, taking obesity as a prime example, the genetic

predictors of obesity are robustly enriched in the CNS which further establishes

the importance of delineating the role of gene regulatory mechanisms in the

brain. Variation in our neural and behavioural responses to the environment

may therefore represent the focal point of the gene-environment interaction driv-

ing the higher rates of cardiometabolic disease.

Different research techniques will be implemented to help demonstrate how

distinct aspects of the neuroregulatory genetic mechanisms underlying complex

health traits can be studied in the brain. Applied analyses in statistical genetics

can be implemented to incorporate data derived from highly powered multi-omic

sources. This will be leveraged in order to explore how complex data may be

deconvoluted in order to identify neural mediated effects and investigate their

relationship with disease outcomes. While on the other hand, experimental ge-

netic studies conducted in animal models offer a means to gain highly detailed

molecular data regarding the dynamic transcriptional programs which medi-
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ate interactions between the CNS and external environmental and physiological

stimuli. Furthermore, animal models provide a functional platform to deter-

mine the role of individual genes and delineate the molecular consequences of

disrupting complementary or functionally redundant pathways on physiology

and behaviour.

The exploration of research paradigms in this thesis aims to broaden insight

for future research on the relationship between neuroregulatory genetic profiles

and complex health traits. The work aims to provide a perspective on how

multidisciplinary studies may be incorporated into a complementary research

framework. Furthermore, the results are discussed in light of ongoing technolog-

ical advances which are facilitating the derivation of high-throughput datasets

at a cellular level, highlighting future applications for the results presented.

1.4.1 Specific aims

The aims of this thesis will be achieved through the application of multidisci-

plinary genetic techniques.

• In Chapter 1, the molecular characterization of a putative non-coding reg-

ulatory factor will be explored in a hypothalamic model of osmotic stress.

The aim of this work is to demonstrate how molecular genetic techniques

can facilitate novel insight on distinct gene regulatory mechanisms gov-

erning vital homeostatic processes in the CNS.

• In Chapter 2, a multi-omic statistical genetic framework will be imple-

mented with the aim of investigating putative relationships between a

family of transcriptional regulators enriched in the CNS and complex car-

diometabolic health traits.

• In Chapter 3, highly powered multi-omic datasets will be leveraged in a

statistical genetic framework with the aim of deconvoluting neural and

subcutaneous adipose tissue specific effects underlying a heterogeneous

cardiometabolic risk factor.

28



• In Chapter 4, the statistical genetic framework demonstrated in Chapter

3 will be adapted in order to investigate CNS and adipose tissue spe-

cific effects in a wider variety of disease contexts using site-specific cancer

endpoints as an exemplar.
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Chapter 2

Characterization of Giot1

2.1 Abstract

The neural processes mediated by hypothalamic nuclei are central to the main-

tenance of physiological homeostasis. A sensitive and conserved network main-

tains tight homeostatic control over fluid balance (Popkin, D’Anci, and Rosen-

berg 2010). Experimentally induced lesions to the hypothalamic nuclei, includ-

ing the supraoptic nucleus (SON), elicits a dramatic reduction in fluid intake

demonstrating an essential involvement in body fluid balance (Antunes R. and

Covian 1963). The hypothalamic transcription factor Giot1 has emerged as a

potential key regulator of the adaptive and behavioural responses underlying

osmoregulatory balance in the rat model of osmotic stress (Terra Dos Santos

et al. 2021). The aim of this study was to elucidate the functional and molecular

role of Giot1 in the experimental context of osmotic stress.

2.2 Introduction

The brain and central nervous system are the most complex biological systems.

The “Neuron Theory”, pioneered by the work of Santiago Ramón y Cajal at the

turn of the 20th century, provided the first description of the organization of the
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nervous system as we understand it today. Ramón y Cajal demonstrated that

nervous tissue was composed of many distinct neural cells, independently or-

ganized in a network (López-Munoz, Boya, and Alamo 2006). This description

formed the basis of modern neuroscience. We now know the brain consists of

an exceptionally large number of functionally diverse neurons and glia (Azevedo

et al. 2009), and that neural specificity is the result of spatially and developmen-

tally determined differentiation and gene expression profiles (Gräff et al. 2011;

McKenzie et al. 2018; Shen et al. 2008).

While technological advances since the 1980s have paved the way for rapid

progress in our current understanding, molecular studies of the brain remain

uniquely challenging. First, sampling of human brain tissue is restricted to

post-mortem samples, meaning brain region specific analyses are subject to

the technical and logistical challenges associated with post-mortem dissection.

Progress in the development of induced pluripotent stem cell (iPSC) derived

organoid models aim to recapitulate aspects of the spatial, morphological and

functional features of neurons in vitro (Jo et al. 2016; Lancaster et al. 2013;

Paşca et al. 2015). However, the differentiation of iPSC derived neural models to

more mature phenotypes remains a significant technical hurdle for experimental

analysis in many contexts (Arber, Lovejoy, and Wray 2017; Qian, Song, and

Ming 2019). As such, animal models continue to contribute substantially to our

understanding of the physiology of the central nervous system, and the processes

that allow it to function and mediate behaviour.

Central regulation of homeostasis

The integration of external environmental cues and internal physiological need

is mediated by the central nervous system which functions to maintain many

aspects of homeostasis. Neuroendocrine mechanisms constitute just part of the

multicomponent regulatory system which responds to maintain the plethora of

interconnected homeostatic pathways. Dynamic mechanisms in the hypothala-

mus are constantly monitoring physiological needs, converging on the hypothalamic-
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pituitary axis (Engelmann, Landgraf, and Wotjak 2004) which is a major con-

necting pathway for the central and peripheral control of essential processes

such as energy balance (Berthon, MacDonald-Wicks, and Wood 2014; Kublaoui

et al. 2008), sleep (Buckley and Schatzberg 2005), stress (Smith and Vale 2006),

osmoregulation and blood pressure (Phoon et al. 1997). This diversity of phys-

iological and stress-responsive pathways highlights the far-reaching potential of

basic science research activities aimed at characterizing the molecular mecha-

nisms in the hypothalamus.

Osmotic challenge: an experimental paradigm

The hypothalamic system’s well defined functions in regulating processes in-

cluding, but not limited to, blood pressure, stress, energy balance, fluid and salt

balance, combined with its easily identifiable anatomical organization represents

a powerful model from which to begin dissecting functional neural plasticity and

brain circuitry underlying many aspects of health and disease. In this respect,

the neuroendocrine mechanisms activated in response to osmotic challenge offer

a particularly advantageous experimental paradigm.

A response to a physiological stimulus relies on two primary mechanisms: (1)

the ability to integrate central and peripheral information to create a response,

and (2) the behavioural adaptation and feedback mechanisms required to resolve

the response. Body fluid homeostasis and consequently arterial blood pressure

are primarily managed through thirst, salt appetite and neuroendocrine func-

tion by key brain regions including the lamina terminalis, supraoptic nucleus

(SON) and paraventricular nucleus (PVN) of the hypothalamus. This response

is mediated by the neuro-hypophysial system (Figure 2.1). Osmoreceptors

which detect osmotic blood pressure reside in the highly vascularized circum-

ventricular organs of the lamina terminalis, and project to the SON and PVN.

The SON and PVN contain populations of dedicated magnocellular neurosecre-

tory cells (MNCs) involved in the synthesis and secretion of the anti-diuretic

hormone AVP and OXT. AVP is secreted via the posterior pituitary, and follow-
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ing sustained osmotic challenge is released into the circulation and acts on the

kidneys to promote water reabsorption (Brown et al. 2013). Oxytocin also has a

role in the kidney where it has been shown to stimulate natriuresis to maintain

plasma osmolality, complementing the activity of AVP (Verbalis, Mangione, and

Stricker 1991). Subsequent behavioural adaptation is mediated by global gene

expression changes in the hypothalamus influencing salt appetite, aversion, and

fluid intake.

An advantage of this model system is that osmotic challenge is a non-

chemical stimulus, and is therefore not affected by potential confounding or

off-target effects associated with drug-based inhibitors and agonists. Addition-

ally, osmotic challenge induces reproducible and measurable changes in global

transcription in the brain areas involved (Hindmarch et al. 2006; Pauža et al.

2021). Insight on the molecular detail of this response has wider relevance

to our understanding of the role of the central nervous system in many as-

pects of health and physiology. For example, osmoregulatory balance is intrin-

sically linked to the cardiovascular system via the synthesis and secretion of the

hormones which mediate blood pressure and volume (Aoyagi, Koshimizu, and

Tanoue 2009; Fitzsimons 1998). The same hormones also exert central roles

in the brain, where they function to modulate behaviour and general stress

responsiveness (Engelmann et al. 2000; Krause et al. 2011).
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Figure 2.1: Simplified schematic of the hypothalamo-
neurohypophysial system (HNS). The magnocellular neurons in the
hypothalamus are one of the largest cell types in the brain and they are
specially adapted for the production and secretion of the neuropeptides AVP
and OXT. The hormone travels down the axon to be stored in the terminals
in the posterior pituitary. Upon excitation, the stored hormone is released
from the terminals into the circulation where they function in the regulation of
blood pressure and fluid retention in the kidneys.

Gene expression profiling guides functional molecular insight

High-throughput transcriptomic analyses of the rat hypothalamus aimed at pro-

filing the dynamic neural response to chronic dehydration show the profound

effect that physiological stimulation has on gene expression in the SON (Hind-

march et al. 2006; Pauža et al. 2021). This research from the Murphy lab has
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identified 2247 differentially expressed genes (DEGs) (Padj ≤ 0.05) in the rat

SON in response to chronic dehydration. The function of many of these genes

in the central nervous system is poorly characterized, or unknown. Functional

investigation of novel DEGs identified in the SON (for example Creb3l1 (Green-

wood et al. 2014a, 2015a, 2020), Caprin2 (Bárez-López et al. 2022a; Konopacka

et al. 2015; Loh et al. 2017) and Rasd1 (Greenwood et al. 2016)) demonstrates

important progress in our understanding of the central regulation of homeosta-

sis. A phenomenon described several times in the scientific literature is that

a relatively small proportion of catalogued genes have been well characterized

(Haynes, Tomczak, and Khatri 2018; Hoffmann and Valencia 2003; Oprea et al.

2018; Stoeger et al. 2018). Characterization of these poorly understood genes

in the SON aligns with a research model related to the pursuit of “known-

unknowns”, whereby the findings from high-throughput analyses are harnessed

to inform the exploration of novel hypotheses.

The transcription factor Giot1 in the rat hypothalamus

Evaluations of the global gene expression changes in the rat hypothalamus in

response to osmotic challenge have consistently identified Gonadotrophin in-

ducible transcription factor 1 (Giot1 ) amongst the most highly upregulated

genes (Hindmarch et al. 2006; Pauža et al. 2021; Qiu et al. 2007, 2011), sum-

marised in Figure 2.2.
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Figure 2.2: The most significantly differentially expressed genes in
the SON in response to osmotic challenge. A barplot summarising the
top 20 genes with the strongest evidence for differential gene expression in the
SON in response to 72 hours water-deprivation, adapted from the published
reference dataset (Pauža et al. 2021). The red arrow indicates Giot1 on the
plot.

.

The Giot1 gene encodes a 2.6kb linear mRNA containing a putative open

reading frame (ORF) with compositional similarity to the Krüppel-associated

box domain (KRAB)-family of zinc finger proteins (ZFP) (Ecco, Imbeault, and

Trono 2017). KRAB-ZFPs comprise one of the largest classes of transcription

factors in mammalian genomes, and are commonly involved in transcription

repression (Peng et al. 2000; Yang, Wang, and Macfarlan 2017a).

Giot1 mRNA has been detected in hypothalamus, pituitary, adrenal, testis

and ovary (Jopek et al. 2018; Mizutani et al. 2001; Qiu et al. 2007). Given the

dramatic up-regulation of Giot1 in the hypothalamus in response to osmotic

challenge, it has been hypothesized that it may exert a role in fluid homeosta-

sis. Several studies have aimed to establish the function of Giot1 in the SON.

Preliminary data from the Murphy lab has demonstrated that Giot1 may me-

diate an adaptive response in the hypothalamus demonstrated by salt-loading.

Rats are averse to 2% (w/v) NaCl. To maintain fluid balance, animals subjected

36



to a period of salt-loading typically overcome their aversion by drinking the salty

solution when 2% (w/v) NaCl is the only water source (Greenwood et al. 2014b,

2015b). Lentiviral induced Giot1 gene knockdown in the SON and PVN inhibits

this adaptive response, resulting in significantly reduced fluid intake following

salt-loading (Murphy lab) (Figure 2.3). This finding was also replicated in a

recent study; rats underwent a chronic exposure to water-deprivation for 48hrs

exhibited significantly attenuated fluid and salt intake when Giot1 expression

was specifically inhibited in the hypothalamus (Terra Dos Santos et al. 2021).

This was also reflected by reduced levels of circulating levels of AVP and OXT

in these animals.

Figure 2.3: Giot1 knockdown in the SON and PVN blocks adaptive
fluid intake following salt loading. Preliminary data was generated by the
Murphy lab. Bilateral knockdown of SON and PVN Giot1 expression dramati-
cally blocks fluid intake following the onset of salt-loading; n=5; ∗∗ p<0.01 by
Two way ANOVA.

The homeostatic mechanisms orchestrating the response and adaptation to

internal osmotic conditions are essential for survival. The data highlighted above

suggests that Giot1 may play an important role in regulating water and salt

intake, however much remains unknown about how Giot1 functionally mediates
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the response. The identification of genes which participate in the response will

be essential to resolve the putative molecular mechanism regulated by Giot1.

Secondly, visual characterization of Giot1 expression is needed to gain insight

into which cells and cellular compartments Giot1 is functionally active. Lastly,

determining whether Giot1 expression relates to a distinct population of hy-

pothalamic neuro-regulatory cells will help elucidate how Giot1 expressing neu-

rons interact within CNS neural circuitry.

Aims

The aim of this study is to provide a detailed molecular characterization of

the putative neuroregulatory gene Giot1 in the coordinated neuroendocrine re-

sponse to osmotic stress. The study will aim to demonstrate how basic molec-

ular research can provide a powerful starting point to disentangle highly com-

plex neural circuitry and heterogeneous transcriptional profiles within anatomic

brain regions. Taken together, this work will demonstrate an experimental basis

for how interconnecting molecular mechanisms can be explored to improve our

understanding of homeostatic dysfunction in health in disease.

Specific project aims

1. Determine the effect of Giot1 inhibition on the transcriptional profile of

the SON.

2. Characterize Giot1 expression and localization.

3. Describe the role of Giot1 expressing hypothalamic neurons by corrobo-

rating the results from molecular and phenotypic datasets.

2.3 Methods and Materials

A graphical summary of the study design is provided in Figure 2.4. In sum-

mary, to define the role of the transcription factor Giot1 in the rat SON, a
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Giot1 specific shAAV viral transduction knockdown system was designed. Rats

(n=10) received viral injections in bi-lateral nuclei of the SON as follows: injec-

tion of a Giot1 specific shAAV-virus, and a scrambled control shAAV-virus in

the left and right nuclei respectively. Following recovery, animals were divided

into two experimental groups; 48hrs dehydration (Dhy) or euhydration (Euh).

At the end of the experiment, fresh frozen tissue was processed for transcrip-

tomic profiling by RNAseq analysis. The output from the RNAseq analyses

underwent a stringent quality control and analysis pipeline. The Giot1 expres-

sion profile in the context of osmotic stress was determined by cross-evaluation

against findings from the published reference dataset (Pauža et al. 2021). Fur-

ther characterization and validation of the findings were carried out using a

range of molecular tools.

The work process can be summarised by the following steps:

• Generating the shGiot1 and scCntrl viral constructs.

• Surgical procedures to knockdown Giot1 expression using the in vivo

model of osmotic stress.

• Tissue processing.

• Analysis of transcriptomic gene expression data.

• Molecular characterization of Giot1 expression in the SON.
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Study design

Figure 2.4: Study design. Graphical summary of the experimental workflow aimed at characterizing the role of transcription factor
Giot1 in the SON.
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2.3.1 shGiot1 AAV viral production

RNAi mediated gene knockdown

RNA-interference (RNAi) is an important gene regulatory mechanism in eu-

karyotic genomes. It refers to a group of mechanisms characterized by the use

of small double-stranded RNA (dsRNA) molecules which direct gene silencing,

known as small-interfering RNA (siRNA) or microRNA (miRNA). Most siRNAs

and miRNAs are 21nt long. In animals, three key proteins are implicated in the

process; two endonuclease enzymes (Drosha and Dicer), and Argonaut which

uptakes the processed siRNA and is guided toward target mRNA for degrada-

tion. The introduction of artificial small-hairpin RNA (shRNA) molecules via

viral transduction offers an effective method of post-transcriptionally silencing

target gene expression experimentally via the endogenous RNAi pathway. A

summary of the mechanism is provided in Figure 2.5.
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Figure 2.5: Simplified schematic of the shRNA mechanism in eukary-
otic cells. Hybridized shRNA probes form a 60bp duplex with a 5’-overhang.
This comprises a sense and anti-sense strand separated by a non-homologous
linker sequence which gives rise to a hairpin structure. shRNA molecules are
transcribed by RNA polymerase in the nucleus of virally transduced cells, for
example RNA pol III can be directed to transcribe shRNA sequences under
the regulation of the U6 promoter. The shRNAs are first processed in the
nucleus by Drosha creating pre-shRNA, which is then exported to the cyto-
plasm by Exportin-5. The pre-shRNA molecules are cleaved by Dicer, remov-
ing the hairpin loop and releasing a 20-25nt double-stranded siRNA molecule
with 3’-overhangs at either end. The resulting double-stranded siRNA binds
with Argonaut. One strand (the guide strand) remains bound with Argonaut,
combining with additional proteins forming the RNA-induced silencing complex
(RISC) which is guided to the target mRNA for degradation finally resulting in
knockdown of expression. Precision is determined by base-pairing between the
si-guide RNA and the target mRNA.

shGiot1 -AAV viral production

The Giot1 specific and non-targeting scrambled control (scCntrl) shRNA oligos

were designed for use in a lentiviral knockdown vector using the Block-iTTM

shRNAi Designer (ThermoFisher Scientific), a methodology which has been

described previously (Konopacka et al. 2015). The shGiot1 sequence targets a

region in the 5’-UTR of Giot1 with high-specificity to limit non-specific binding
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with homologous genes. The shRNA sequences were designed as if predigested

with the BamHI restriction enzyme on the top strand, and HindIII restriction

enzyme on the bottom. The hairpin loop contains an XhoI restriction site to

allow confirmation of ligation by restriction digest. Custom oligo sequences used

to generate each of the shRNA constructs are outlined in Table 2.1.

Table 2.1: shRNA oligo sequences. Homologous sequences constituting the
hairpin loop are highlighted in blue font. The remaining sequence is composed
of restriction sites and linker sequences

Primer Sequence (5’ → 3’)

shGiot1 -Fw GATCCGGTAAGGTCTTTGCATATCGACTCGAG-
TCGATATGCAAAGACCTTACCTTTTTTA

shGiot1 -Rv AGCTTAAAAAAGGTAAGGTCTTTGCATATCGA-
CTCGAGTCGATATGCAAAGACCTTACCG

scCntrl-Fw GATCCGAGGCTATGGTCTACGTTAATCTCGAG-
ATTAACGTAGACCATAGCCTCTTTTTTA

shGiot1 -Rv AGCTTAAAAAAGAGGCTATGGTCTACGTTAAT-
CTCGAGATTAACGTAGACCATAGCCTCG

The custom DNA oligos (Table 2.1) were obtained from Sigma-Aldrich.

Single strand oligos (ssOligos) were reconstituted to a concentration of 200µM

for increased annealing efficiency. The annealing protocol was based on the

BLOCK-iTTM U6 RNAi Entry Vector Kit (ThermoFischer) protocol. Briefly,

the annealing reaction was performed using 1x Oligo Annealing Buffer (Invitro-

gen: 46-800) mixed with the appropriate oligos and heated for 5 minutes at 95°C

using the Thermal Cycler (DNA Engine DYADTM ). The annealed mixture was

allowed to cool to room temperature, then further diluted 1:10,000 providing a

final concentration of 5nM. The pGFP-A-shAAV plasmid (Origene: TR30034)

was restriction digested overnight with BamHI and HindIII restriction enzymes

at 37°C, creating complementary ends for the shRNA insert. The annealed

samples were ligated with restriction digested pGFP-A-shAAV plasmid at a 3:1

ratio. 10µl of One ShotTM Stbl3TM Chemically Competent E. coli (Invitrogen:

C737303) were transformed with 1µl ligated product. Colonies were selected by

Ampicillin antibiotic resistance. Samples were mini-prepped (Promega: A1223)

and confirmation of the cloned inserts was achieved by restriction digest with

XhoI restriction digest Figure 2.6. Confirmation of successful cloning was
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further assessed by Sanger sequencing.

Figure 2.6: Confirmation of cloning with XhoI restriction digest. Re-
striction digested samples of viral construct were ran on an Agarose gel. The
first lane illustrates a DNA ladder of known molecular size. Due to the intro-
duction of an XhoI restriction site in the shRNA construct, restriction digests
run with the XhoI enzyme produced two DNA fragments in successfully cloned
plasmids. Two bands are evident which are approximately 4kb and 2kb in size,
as expected.

Viral plasmid stock preparation

To obtain sufficient quantities of all viral components, Maxipreps of shGiot1

and scCntrl -pGFP-shAAV shRNA constructs and additional viral components

(RC1, RC2 and Helper capsid) were prepared. Bacterial cultures were collected

by centrifugation at 5000g for 10 minutes and Maxi prepped using the Qiagen

Plasmid Maxi Prep kit (Qiagen: 12162) according to the manufacturers instruc-
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tions. The DNA was cleaned of residual impurities by ethanol precipitation and

stored at -20°C. The DNA concentration was determined using the Nanodrop

(Thermo Scientific NanoDrop 2000c).

Production of virus in HEK293 cells

The transfection protocol for production of the shGiot1 and scCntrl -pGFP-

shAAV viruses was in part based on the protocol (accessible at www.jove.com)

(Fripont et al. 2019) and a calcium phosphate co-precipitation method (Graham

and Eb 1973). Briefly, HEK-293 cells were seeded in 10x 15cm cell culture dishes

prior to transfection to obtain 70-80% confluency at the time of transfection.

Cells were grown under standard culture conditions. Cells were transfected with

250µg of DNA for each virus based on a 1:1:1:1 ratio of each plasmid, outlined

in Table 2.2.

Table 2.2: Mass of each viral plasmid component to achieve appropriate con-
centration for transfection. The total reaction volume was made up to 12.5ml
comprising 2X HEPES buffered saline solution (pH 7.05), 625µl 2.5M CaCl2,
and remaining volume of DNAse/RNAse-free water, for 2.5ml reaction per plate.

DNA Size Mass
RC1 7.3kb 36µg
RC2 7.3kb 36µg
Helper 11.6kb 114µg
shRNA construct 6.6kb 65µg

The calcium phosphate co-precipitation method involved mixing DNA with

CaCl2 in a buffered saline/phosphate solution to generate a calcium-phosphate–

DNA co-precipitate. The method is very sensitive to pH. As the solutions ap-

proach a more alkaline pH the size of the DNA precipitate will increase, or de-

crease as it gets more acidic (or won’t form at all). Therefore, to ensure the DNA

precipitate will efficiently adhere to and enter the cells the pH of all solutions

was adjusted to pH 7.05. First, in a 15ml Falcon tube the appropriate volume of

each viral DNA component was combined and mixed with DNAse/RNAse-free

water by pipetting up and down. Filter-sterilised HEPES-buffered saline was

added next and mixed by pipetting. Lastly, CaCl2 was added, and the trans-
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fection reaction was mixed immediately by vigorously shaking the falcon tube.

The CaCl2 acts by coating the DNA with a charge, allowing transfected cells

to engulf the charged precipitate. The reaction was incubated at room tem-

perature for 12 minutes. The formation of the precipitate could be monitored

under the light microscope by sampling a droplet on a Haemocytometer. 2.5ml

transfection reaction was added to each cell culture plate, and cells were incu-

bated overnight under normal cell culture conditions. The following morning,

the cell-culture media containing the transfection reaction was replaced with

fresh complete media and cells were incubated under normal conditions for a

further 48hrs.

Virus purification

72hrs post transfection the media was removed, and cells were gently washed

with pre-warmed PBS. The cells were resuspended in fresh PBS and collected

in a 50ml Falcon tube. The cells were pelleted by centrifugation at 800g for

10mins. After centrifugation, the supernatant was discarded and the cell pellet

resuspended in 150mM NaCl, 20mM Tris (pH8). Freshly prepared 10% sodium

deoxycholate (final concenreation 0.5%) and benzonase nuclease enzyme (final

concentration 50 units/ml) were added and the samples were mixed thoroughly

by shaking, followed by 1hr incubation at 37°C. To remove cellular debris, sam-

ples were centrifuged at 3000g for 15mins, and the supernatant was transferred

to clean 50ml Falcon tubes.

The viral purification apparatus consisted of HiTrap heparin columns and

peristaltic pump. The purification apparatus was set up such that solutions

would flow through the column at a rate of 1ml/min while ensuring no air

bubbles entered the heparin column. First the columns were equilibrated with

10ml 150mM NaCl/20mM Tris. The solution containing the virus was applied

to the column, followed by a wash with 20ml 100mM NaCl/20mM Tris and

200mM NaCl/20mM Tris. In this process, the virus binds to the column while

the salt washes are eluted. As the concentration of salt increases anything which
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is weakly bound to the column will elute off. The virus was purified from the

column by applying 1.5ml 400mM NaCl/20mM Tris, 3ml 450mM NaCl/20mM

Tris and 1.5ml 500mM NaCl/20mM Tris and collecting the flow-through in a

15ml Falcon tube.

To concentrate the virus, the sample was filtered using Amicon ultra-4 cen-

trifugal filter units with a 100,000 molecular weight cutoff (cat no:UFC8010).

4mls of virus containing sample was loaded to the filter and centrifuged at 2000g

for 2mins. The flow-through was discarded and the step was repeated with the

remaining virus sample. The concentrated volume was 100µl. 130µl sterile PBS

was added and the samples were transferred to an Eppendorf tube and mixed

by pipetting. The sample was additionally filtered through a 13mm diameter

0.2µm syringe filter. The purified virus was immediately aliquoted and trans-

ferred to -80°C for long-term storage.

Virus titration

Virus titre was determined by qPCR using a protocol based on the AAV-

titration protocol provided by addgene (Aurnhammer et al. 2012). Inverted

terminal repeat sequences (ITRs) are cis-acting viral elements required for rAAV

vector generation common to all AAV2-derived vector genomes. Accurate quan-

tification of AAV2-derived genomes can be established on the basis of an ITR

specific qPCR. Briefly, a purified virus sample was thawed and treated with

DNase to eliminate any contaminating plasmid DNA. The following serial dilu-

tions of DNase treated virus sample were prepared in Dnase/RNase free water:

1:20, 1:100, 1:500 and 1:2500. A standard curve was estimated using ITR-

containing AAV reference plasmid stocks containing 2x108, 2x107, 2x106, 2x105,

and 2x104 molecules/µl. The qPCR reaction was performed on all samples in

triplicate using a universal SYBR green master mix and a primer pair for the

ITR sequence. Primer sequences are as follows: 5’→3’, ITR-FW; GGAACCC-

CTAGTGATGGAGTT; ITR-RV; CGGCCTCAGTGAGCGA.
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2.3.2 Animals

Experiments were performed on male Sprague-Dawley rats (supplied by Envigo).

Animals weighed between 250-270g. Animals were housed in environmentally

enriched cages and maintained under a 14:10hr light/dark cycle with food and

water available ad lib for 1 week prior to experiments. A power calculation

based on variability estimates derived from prior data published by the Murphy

lab (Pauža et al. 2021) indicated the minimum required number of biological

replicates in order to detect 90% of differentially expressed genes with a 95%

confidence was 4. An n=5 was selected for experimental groups.

All experiments were performed under Home Office UK licences 30/3278 and

PP9294977 held under, and in strict accordance with, the provisions of the UK

Animals (Scientific Procedures) Act (1986). All work has been approved by the

University of Bristol Animal Welfare and Ethical Review Board.

In vivo stereotaxic injection of shAAV viruses in bilateral SON

Animals were anaesthetized by intra-muscular (im) injection of solution contain-

ing Ketamine (100mg/ml) and Domitor (1mg/ml) prepared in saline. Surgical

procedures were carried out with animals fitted in a stereotaxic frame. The sur-

gical site was coated with an iodine based anti-septic prior to the initial incision

at the midline. The bone sutures on the skull surface were used to determine the

bregma point (the cross-section of the coronal and sagittal sutures on the surface

of the skull). The left and right SON were identified using the following stereo-

taxic coordinates: ±1.2mm rostral-to-caudal, -1.8mm medial-to-lateral and -

8.6mm dorsal-to-ventral (from the dura), based on Paxinos and Watson stereo-

taxic coordinates. A hand-held drill was used to create holes at the appropriate

coordinates. 1µl of virus was administered over the course of 5 minutes using fine

pulled glass needles, as demonstrated previously (Konopacka et al. 2015). The

glass pipette was fixed in position for 5 minutes to minimise back tracking of the

virus. The incision was closed and atipamezole (0.15 mg/kg, Antisedan, Zoetis)

was administered intramuscularly and buprenorphine (0.05 mg/kg, Buprevet,
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Virbac) subcutaneously. As such, animals received bilateral injection of the

shGiot1 and scCntrl shRNA viruses specifically into the left and right SON re-

spectively. Animals recovered for three weeks before they were divided into two

experimental groups: 48hrs water-deprivation/dehydration (Dhy), and control

euhydrated (Euh) group, with water available ad lib. At the end of the study,

fresh frozen tissue was collected from animals which were terminated via cra-

nial strike. Tissue was snap frozen using dry ice and immediately transferred

to -80°C storage.

2.3.3 Tissue processing for RNAseq analysis

SON enriched tissue for RNAseq analysis was obtained by sectioning frozen

brain tissue. Frozen brain tissue was embedded in OCT Embedding Matrix

(CellPath: KMA-0100-00A). 100µm tissue sections were serially sectioned using

a Cryostat maintained at -20°C with an 80mm Microtome Blade (ThermoSci-

entific: 3050835). The SON was identified with reference to the Paxinos and

Watson Rat Brain Stereotaxic Coordinates, and tissue was consistently collected

beginning from the earliest cells belonging to the SON of the hypothalamus as

outlined in Figure 2.7. A total of 12 sections were collected for each SON. Left

and right SON enriched tissue sections were collected separately using a 1mm

diameter micro-punch. Eppendorf tubes for tissue collection were pre-chilled

on dry-ice prior, and immediately transferred to dry-ice following collection to

minimise risk of RNA degradation. Tissue sections were suspended in 1ml phe-

nol (Qiazol lysis Reagent (Qiagen: 79306)) and vortexed for 1 minute, and

immediately transferred to a -80°C freezer for storage.

The following steps were performed under a fume hood. To extract RNA, the

phenol lysis samples were thawed on ice and vortexed for 1 minute. 0.2ml chlo-

roform was added and samples were vortexed for a further 15 seconds. Samples

were incubated at room temperature for 3 minutes, then centrifuged at 4°C at

12,000 x g for 15 minutes. Following centrifugation, 350µl of the aqueous phase

was carefully transferred to a clean Eppendorf tube and mixed with equal parts
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70% ethanol. RNA purification was achieved using the RNEasy kit (Qiagen:

79306) according to the manufacturer’s instructions. RNA concentration was

determined using the Qubit RNA High Sensitivity assay (Invitrogen: Q32855).

Figure 2.7: Stereotaxic coordinates for SON. Stereotaxic coordinates
indicating the beginning of the SON and point to begin tissue collection.

2.3.4 RNAseq Analysis

Sequencing libraries were generated using the Ilumina stranded mRNA library

prep kit by the University of Bristol Genomics Facility. RNA concentrations

for library preparation ranged from 15-30ng/µl per individual unilateral SON

sample. To minimize the variability in gene expression measurements detected

by sequencing (Gallego Romero et al. 2014), the integrity of the purified RNA

samples was first assessed using a High Sensitivity RNA ScreenTape analysis

(Agilent TapeStation: A.02.02 (SR1)). The Agilent system assays the detection

of distinct 28S and 18S ribosomal RNA subunits. A lower 28S:18S ratio is

indicative of higher rates of RNA degradation in the sample, resulting in a lower

RNA integreity (RINe) score. Typically, the lower limit RIN value threshold for

samples derived from mammalian tissues lies between 6.4-7. 9 (Gallego Romero
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et al. 2014). The mean RINe value across all total RNA samples sequenced was

9.12. A representative image of the Agilent bioanalyzer output for samples used

in this study is provided in Figure 2.8. Distinct 28S and 18S ribosomal RNA

bands were observed in all samples.

Figure 2.8: Representative image of tapeStation report The first lane
illustrates an RNA ladder of known molecular size. Distinct 28S and 18S RNA
fragments are detected in the remaining sample lanes. The strong bands high-
light an approximately equal ratio of 28S and 18S RNA species which is indica-
tive of low rates of RNA degradation in the sample.

NGS sequencing was performed by the University of Bristol Genomics Fa-

cility on the Illumina NextSeq 500 platform running NextSeq Control Software

(v4.0.2) and Real-Time Analysis (v2.11.3) in analyses. Sequencing was per-

formed using Illumina NextSeq 500/550 High Out-put Kit v2.5 (150 Cycles)

sequencing reagent kit (Cat: 20024907; Illumina, San Diego, CA, USA) on a

paired-end multiplex mode. Raw sequence files were assigned forward and re-

verse reads for each unique sample. Output was provided in .fastq format.

A summary of the RNA-seq bioinformatic analysis pipeline is provided in

Figure 2.9. At multiple stages throughout the pipeline the data was inspected

using the FastQC quality control software. QC results and output from the

pipeline were graphically summarised using MultiQC. This generates a “Mul-

tiQC report” with a series of graphical metrics , and provides an indication of
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the data quality for each sample.

First, for each input sample, the raw read files generated across multiple

flow cells were merged. Reads were aligned to the most recent rat reference

genome at the time of the study (Rnor 6.0, Ensembl release 104), and genomic

annotations were indexed using the STAR aligner software tools (Dobin et al.

2013). Aligned files (.BAM ) were generated using the STAR aligner and quality

was checked by FastQC analysis.

The data was quantified using the featureCounts command line tools, which

are available through the Rsubread software package (Liao, Smyth, and Shi

2014). Reads were counted with reference to exons (-t exon) using the paired-

end mode (-p) and summarised by selecting “gene id” as the attribute type.

The output from this analysis provided a count matrix for all genes detected

across samples.
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Figure 2.9: Summary of the RNAseq pipeline

Differential gene expression

To investigate evidence of differential gene expression, the count data was anal-

ysed using the “DESeq2” software in R. The statistical procedure is determined

by several characteristics of the RNAseq data. The aim of the model is to test
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whether the differences in count data for each gene are significant, given the

variation amongst biological replicates. A Poisson distribution is used to model

data when the number of observations is high, but the probability of an event

is low. Considering each gene in the sampling process as a binomial, we obtain

a count for each gene amongst the total number of genes. Moreover, a common

feature of RNAseq data is a low number of counts associated with a large propor-

tion of genes, which may be appropriately modeled using a Poisson distribution.

However, the Poisson distribution is based on a single parameter and does not

have the capacity to account for between sample variance. To account for the

increase in variance associated with biological replicates the DESeq2 software

uses a mixed negative binomial model. In this case, the Gamma distribution

is used to account for the proportion of each gene within the group sampling.

The probability distribution of the Gamma and Poisson distributions combined

forms the basis of the negative binomial model used by DESeq2. DESeq2 hy-

pothesis testing is performed using the Wald test by default. The Wald test

is performed by calculating a Z statistic from the shrunken log2 fold change,

divided by the standard error. The Z statistic is used to derive a p-value by

comparing it against a normal distribution.

The count data was formatted for DESeq2 analysis. The count data was

minimally pre-filtered to keep only genes which had at least 1 count. Where

appropriate, shrinkage of the effect estimates (log2 fold change (Log2FC)) was

performed for improved visualization. Separate analyses were ran for each com-

parison of interest (as summarised in Figure 2.10). The false discovery rate

(FDR) threshold (alpha) was set to 0.05 to address the proportion of type I

errors in the results (i.e. false positives). Differentially expressed genes (DEGs)

were identified on the basis of those which survived the adjusted P value (Padj)

threshold < 0.05. Plots were generated using built-in visualisation functions as

part of the DESEeq2 package, for example plotMA, plotCounts and plotPCA.
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Figure 2.10: Summary of RNAseq comparative analyses DESeq2 analyses of differential expression were performed on each of
the 4 comparison groups in turn.

55



Gene Ontology (GO) and pathway analysis

Subsets of differentialy expressed genes were queried against several databases

to gain further insight into the characteristics of the DEGs. Gene-ontology (GO)

(Ashburner et al. 2000), Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto 2000), and Reactome (Jassal et al. 2020) databases were

queried using the clusterProfiler R package (Yu et al. 2012). Over-representation

analysis (ORA) using the clusterProfiler R package is an approach which de-

termines whether known biological functions are enriched in an experimentally

derived gene list (i.e. a set of DEGs) compared to the number of genes associ-

ated with the process expected by chance in the background set (i.e. the total

set of genes expressed). It is a widely used test which calculates a P value using

a hypergeometric distribution. ORA analyses were performed using subsets of

highly differentially expressed genes which survived FDR thresholds (Padj <

0.05) and had >1.5 Log2FC in either direction. This strategy was employed to

identify which processes were most strongly affected by the experimental condi-

tion (i.e. where genes had the largest Log2FC). ORA analyses were performed

using the Benjamini-Hochberg (BH) correction (Padj < 0.05) for multiple com-

parison corrections. Results were visualised using custom plots generated using

the “ggplot2” R package.

qPCR validation of results

A subset of results identified in the differential gene expression analysis were

additionally validated by RT-qPCR. This analysis provides an additional sensi-

tivity to demonstrate whether the RNAseq analysis was prone to false positives.

A selection of genes encoding neuroendocrine hormones and Giot1 were assessed

by qPCR analysis. Primer sequences are provided in Table 2.3.
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Table 2.3: Primer sequences used in qPCR analyses.
Primer Sequence (5’ → 3’)
Pdyn-FW TGGATCGGCCATCCTATCAC
Pdyn-RV GCAGATCTCAAAGCCTGTGG
Giot1 -FW GACACTTCCGGTCCGTCATAG
Giot1 -RV GCCTCACTCAAGCACCCAGT
Rasd1 -FW CCCTCAGCGTTGTGCCTACT
Rasd1 -RV AAAGAGCGCACGGAACATCT
Rpl91 -FW GCGTCTGCAGCCATGAGTA
Rpl91 -RV TGGCATTGGCGATTTCGTTG
Avp-FW TGCCTGCTACTTCCAGAACTGC
Avp-RV AGGGGAGACACTGTCTCAGCTC
Oxt-FW TGCCCCAGTCTTGCTTGCT
Oxt-RV TCCAGGTCTAGCGCAGCCC
Creb3l1 -FW GAGACCTGGCCAGAGGATAC
Creb3l1 -RV GTCAGTGAGCAAGAGAACGC

2.3.5 In vitro assessment of Giot1 subcellular location

and expression dynamics

Giot1 RNA expression in vivo has consistently been detected in the nucleus,

using Giot1 specific in situ hybridization probes designed by Advanced Cell Di-

agnostics (biotechne) for use in the RNAscope® assay. Non-coding regulatory

RNAs are typically retained in the nucleus (Djebali et al. 2012; Li, Notani, and

Rosenfeld 2016; Tong and Yin 2021), where they act to regulate gene expres-

sion. Up-regulation and retention of Giot1 transcripts in the nucleus suggests it

may function as a non-coding regulatory RNA. Antibodies targeting Giot1 have

previously been assessed in the Murphy lab and shown to lack the sensitivity

to detect either endogenous Giot1 protein in vivo or over-expressed Giot1 in

transfected cells, supporting the notion that Giot1 expression is predominantly

untranslated. To further assess Giot1 expression in vitro, an over-expression sys-

tem was designed whereby Giot1 expression could be proxied using a fluorescent

tag. Below, approaches to visualize Giot1 expression in vitro are described.

The complete WT-Giot1 nucleotide sequence and Giot1 nucleotide sequence

with a 6nt conserved nuclear localization sequence deletion (5’-AAGCCC-3’)

had previously been cloned into a pcDNA3.1(+) expression vector by Dr M.P.

Greenwood (University of Bristol). In the present analysis, these two Giot1

clones were used to generate 4 constructs in total. The Giot1 sequence contains

a 5’-untranslated region (UTR) and putative open reading frame (ORF). In the
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following experiments, the WT-Giot1 sequence was tagged with a C-terminal

Spot-tag, or the Giot1 ORF sequence was under the transcriptional regulation

of an N-terminal Spot-tag to assess whether Giot1 protein expression could

be selectively over-expressed. The 6nt deletion served to additionally assess

whether Giot1 localization was affected by this conserved nuclear localization

sequence (NLS).

Molecular cloning of Spot-tagged Giot1 for in vitro characterization

Giot1 -Spot fusion constructs were generated by cloning the relevant Giot1 nu-

cleotide sequences into pcDNA3.1(+) expression vector containing the Spot-tag

under the transcriptional regulation of a CMV promoter, as summarised in Ta-

ble 2.4. The Spot-tag® (Chromotek) is a small 12aa peptide tag (1.4kDa in

size) which has a corresponding small nanobody/VHH. A nanobody/VHH is

the binding domain of an alpaca heavy chain antibody. A nanobody which has

been conjugated to a fluorophore can be used to detect highly specific fluores-

cence signals. The spot-label is a bivalent form of the Spot nanobody/VHH

which has been conjugated to a fluorophore (e.g. ATTO488), and provides a

substrate for the Spot-tag to bind with high affinity and specificity.

Tagging Giot1 expression with Spot over the use of other commonly used

reporter genes (e.g. green fluorescent protein (GFP)) has several advantages for

the present analysis. Several limitations were encountered on initial attempts to

assay GFP-tagged Giot1 in vitro. The first consideration is that Giot1 mRNA

tends to accumulate in the nucleus. In the context of an over-expression ex-

periment, and the use of expression vectors with a high copy promoter, ac-

cumulation of large mRNA transcripts causes a significant amount of cellular

stress. Co-expression with a large reporter gene such as GFP induced high

levels of cytotoxicity, and assay conditions were variable and difficult to repro-

duce. Replacement with a small fluorescent tag, and additional adjustments

to the transfection protocol (i.e. shorter time between transfection and assay)

improved the cytoxicity of the assay conditions.
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Bespoke primers were designed ensuring that following restriction ligation

the Giot1 sequence remained in frame. The complete Giot1 and Giot1 -ORF

sequences were amplified from a pcDNA3.1(+) expression vector by PCR. Giot1

insert DNA was confirmed by gel electrophoresis. pDNA and insert DNA were

restriction ligated and amplified as described in the Molecular cloning section.

Correct ligation of insert and pDNA was confirmed by restriction mapping and

Sanger sequencing.

Table 2.4: Structure of the Giot1 over-expression constructs, where Giot1∗
indicates the Giot1 nucleotide sequence with the 6nt NLS deletion mutation
Structure of Giot1 constructs plasmid Restriction enzymes
5’...UTR Giot1-SpotTag...3’ pcDNA3.1(+) N-terminal Spot NheI, HindIII
5’...UTR Giot1∗-SpotTag...3’ pcDNA3.1(+) N-terminal Spot NheI, HindIII
5’...SpotTag-Giot1 ORF...3’ pcDNA3.1(+) C-terminal Spot-STOP HindIII, KpnI
5’...SpotTag-Giot1∗ ORF...3’ pcDNA3.1(+) C-terminal Spot-STOP HindIII, KpnI

In vitro Giot1 expression assay

Over-expression assays of Giot1 were conducted in HEK239 cells, N2A and rat

IVB cells. Each of the cell models offers a different quality to assess the repro-

ducibility of the results. HEK293s are the robust cell line used and offer the

highest levels of expression of artificial constructs following transfection. N2As

are a murine neural cell line which offers relatively high levels of expression

of transfection in a relevant cell type. Rat derived IVB cells are a neural cell

model and endogenously express Giot1. Despite offering the most relevant cell

model to assess Giot1 behaviour, these cells are sensitive to cytotoxicity follow-

ing transfection with high-copy number plasmids in over-expression analyses.

Therefore, the reproducibility of the results was assessed by corroborating the

results obtained using each cell model.

In brief, cells were grown under standard culture conditions and transfected

with 1µg of the appropriate over-expression construct. 18hrs post transfection,

cells were washed with PBS. Cells were fixed by applying 4% PFA for 15 minutes,

followed by 2 further PBS washes. Cells were assayed by RNAscope and com-

bination with the Spot-tag fluorescence amplification assay. Cells were imaged

by using the Leica SP5-II AOBS confocal laser scanning microscope, equipped
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with “hybrid” GaAsP detectors (Leica Microsystems, Wetzlar, Germany) and

the Leica Application Suite X (LAS X) software.

2.3.6 Standard laboratory protocols

Cell culture conditions

The cells types used in experiments include:

• HEK293 cells (HEKs)

• Neuroblastoma-2A cells (N2As)

• Hypothalamic IVB cells (IVBS)

All cells were grown under standard cell culture conditions, incubated at

37°C in a humidified incubator with 5% CO2. Cells were cultured in DMEM

(Sigma-Aldrich: D6546) cell culture media supplemented with 10% (v/v) fetal

bovine serum (FBS) (Gibco), 2 mM L-glutamine (Gibco) and 100 unit/ml of

penicillin-streptomycin (Gibco).

Transfections

Cells were seeded onto Poly-D-lysine (Gibco: A38904-01) treated glass slides

stored in 12 well cell culture dishes. The following seeding densities were used:

HEKs (1.5x105 cells/well); N2As (1.5x105 cells/well); IVBs (3.5x104 cells/well).

Cells were grown to ∼70% confluence and then transfected. Cells were trans-

fected using LipofectamineTM LTX with PLUSTM Reagent (Thermo Fisher Sci-

entific: A12621) diluted in OPTI-MEM® low-supplement media (Gibco: 31985-

062) according to the manufacturer’s protocols. 18 hrs post-transfection, cells

were washed with PBS and fixed for 30 mins in 4% PFA.

RNAscope®

RNAscope assays were performed using the RNAscope® Fluorescent Multiplex

Reagent Kit (Advanced cell diagnostics (ACD): 320851) according to the man-
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ufacturer’s protocol. Briefly, fixed cells or tissue sections were dehydrated and

rehydrated as indicated. Samples were permeabilised using 0.1% PBS-Tween

detergent, followed by protease treatment. Bespoke and standard RNAscope

probes were designed and provided by the manufacturers based on in-house

algorithms to identify highly gene specific hybridization sequences. Probes be-

ing used for multiplexing are initially incubated at 40°C for 10 mins then di-

luted with probe diluent as required. Samples are hybridized with the probes

by incubating at 40°C for 2 hours in a humidity controlled HybezTM II Oven

(ACD). Probe amplification is performed by sequential incubation with each of

4 RNAscope specific probe amplifiers and sample washes using RNAscope wash

buffer. At the end of the protocol, samples are washed in PBS and counter-

stained with Dapi. Samples were mounted on glass slides using FluorshieldTM

(Sigma: F6182) mounting solution.

RNA extraction

RNA extractions were performed using phenol-chloroform isolated samples. First,

samples were lysed by the addition of 1ml phenol (TRI ReagentTM (invitrogen:

AM9738)) and a 1 minute vortex (to recover RNA from the tissue/cells). Next,

200µl of chloroform was added and samples were vortexed for a further 15 sec-

onds then incubated at room temperature for 3 mins. Samples were centrifuged

at 12,000g at 4°C for 15 mins. When transferring samples care was taken not to

disrupt the phenol/chloroform separated phases. 350µl of the aqueous phase was

transferred to a clean Eppendorf tube and mix with equal volume 70% EtOh.

RNA was then extracted from the samples using the Direct-Zol RNA Miniprep

kit (Zymo Research: R2052) according to the manufacturer’s instructions.

cDNA synthesis

cDNA synthesis was performed on RNA samples normalised by concentration.

cDNA synthesis was performed using the Quantitect Reverse Transcriptase kit

(Qiazol: 205313) according to the manufacturer’s protocol. In brief, samples
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were first incubated with Genomic Wipe-out solution for 2 mins at 42°C to

purify the sample from genomic DNA. Samples were next incubated in a master

mix containing a primer mix and Reverse Transcriptase enzyme and incubated

at 42°C for 30 mins, then heated at 95°C for 3 mins to deactivate the enzyme.

cDNA samples were stored at -20°C unless immediately used in a qPCR assay.

qPCR assays were performed using PowerUPTM SYBRTM Green Master Mix

(applied biosystems: A25742) using the StepOnePlus Real-Time PCR system.

2.3.7 Molecular cloning - standard protocols

Polymerase chain reaction (PCR) amplification of DNA

Bespoke primers were designed for the amplification of specific gene products.

Generally, the primer design consisted an ATA-placeholder sequence for im-

proved primer stability, a restriction site (and overhang) to achieve appropri-

ate insertion within the multiple cloning site of plasmid DNA (pDNA), and

a sequence complementary to the gene sequence. Forward (Fw) and reverse

(Rv) primer oligos were synthesized by Sigma-Aldrich using the Custom & Pre-

designed RNA Oligos service. Primers were reconstituted to create a 100µM

stock concentration upon arrival in DNAse/Rnase-free water and transferred to

long-term storage at -20°C. 10µM working stocks of primers were prepared fol-

lowing a further 1:10 dilution before use. The anneling temperature of primers

was determined using the TM calculator from ThermoFischer Scientific.

PCR reactions were routinely performed using a 50µl reaction volume com-

prising the following reagents: 10µl 5x GC Buffer (ThermoFischer Scientific:

F-519), 1µl dNTP Mix (ThermoFischer Scientific: R0191), 2.5µl DMSO (New

England BioLabs (NEB): B0515A), 28.5µl DNase/RNase free water, 2µl PhusionTM

High-Fidelity DNA Polymerase (ThermoFischer Scientific: F-530S), 2µl Fw-

primer, 2µl-Rv primer, 2µl template DNA.

Following PCR amplification, a 5µl sample of the PCR product was run on

an agarose gel to confirm size. The PCR products were subsequently cleaned
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using the QIAquick PCR Purification kit (Qiagen: 28106). DNA concentration

was determined by loading 2µl PCR product on the Nanodrop.

Bacterial transformation

To amplify plasmid DNA, One ShotTM Stbl3TM Chemically Competent E. coli

(Invitrogen: C737303) or DH5α competent E. coli were transformed with 1-

10ng plasmid DNA using the heat shock method. Cells were transferred from

-80°C storage and thawed on ice. Plasmid DNA was added to the cells and

incubated on ice for 25mins. Samples were heat shocked for 45 seconds in a

42°C water-bath to allow uptake of plasmid DNA, then placed back on ice for

1-2mins to stabilize the reaction. 450µl Super Optimal broth with Catabolite

repression (S.O.C.) medium (InvitrogenTM : 15544034) was added and samples

were placed in a 37°C shaking bacterial incubator at 220 RPM for 1hr.

Pre-prepared sterile agar plates containing either 100µg mL−1 ampicillin or

50µg/mL−1 kanamycin (depending on the desired antibiotic resistance selection)

were transferred from 4°C storage in order to reach room temperature. 100µl

of the transformed cell culture was spread evenly onto an agar plate using a

sterile cell spreader. Samples were left to stand for 30mins, then plates were

transferred and incubated upside-down overnight in a 37°C bacterial incubator.

The presence and abundance of bacterial colonies on plates were evaluated

the following morning. Bacterial cell culture tubes were prepared containing

4ml LB broth supplemented with the appropriate antibiotic for selection. A

selection of isolated colonies were collected using sterile pipette tips and used

to inoculate individual bacterial culture tubes. Bacterial cultures were grown

overnight in a 37°C shaking bacterial incubator.

Plasmid preparation

Plasmid DNA (pDNA) was extracted from 1.5ml of the bacterial cultures using

the PureYieldTM Plasmid mini-prep silica membrane isolation kit (Promega:

A1223) according to the manufacturers instructions. The remaining bacterial
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culture was sealed and stored at 4°C for later use. The concentration of pDNA

was determined by sampling 2µl of DNA on the Nanodrop.

Following confirmation of the desired pDNA by restriction mapping and/or

Sanger sequencing, larger scale plasmid preparation was performed in order to

create a stock of pDNA for experimental use using the Qiagen Maxi-prep kit

(cat no: 12165) according to the manufacturers instructions. Additionally, a

500µl aliquot of the remaining bacterial culture was preserved in 50%Glycerol

and transferred to long-term storage at -80°C.

Restriction digestion

Restriction digestion reactions were routinely performed on purified PCR prod-

ucts or excess pDNA (e.g. 2µg). Restriction digestion enzymes were supplied

by New England Biolabs (NEB), and listed in Table 2.5 . A 50µl restriction

digestion reaction comprised: 43µl DNA + H20, 5µl Cut-Smart Buffer (NEB:

B7204S) and 1µl of each restriction enzyme. Samples were incubated overnight

in 37°C water-bath, followed by heat-inactivation. Plasmid linearization was

confirmed by gel electrophoresis.

Restriction enzyme ref Sequence
NheI-High Fidelity (HF) R3131L 5’...G’CTAGC...3’
KpnI-HF R3142L 5’...GGTAC’C...3’
XbaI R0145S 5’...T’CTAGA...3’
BamHI-HF R3136S 5’...G’GATCC...3’
XhoI R0146S 5’...C’TCGAG...3’
HindIII-HF R3104S 5’...A’AGCTT...3’

Table 2.5: Restriction enzymes used in experiments supplied by New England
BioLabs (NEB)

Ligation of plasmid and insert

The NEBioCalculator (NEB) was used to calculate the optimal quantity of

restriction digested insert DNA to use based on a 3:1 ratio of vector:insert and

50ng vector DNA mass. Ligation reactions were routinely performed in a 20µl

reaction volume comprising 2µl T4 ligase buffer (NEB: B0202A), 1µl T4 DNA

ligase (NEB: M0202L), appropriate volumes of restriction digested plasmid and
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insert DNA and remaining volume made up with H20. Samples were incubated

overnight at 16°C, and heat inactivated at 65°C for 10mins. Additionally, an

empty vector control ligation reactions were performed to provide an indication

of the rate of vector re-ligation.

5µl ligated construct was used to transform 50µl competent DH5α E. coli

cells. Multiple isolated E. Coli colonies were selected and starter cultures were

grown overnight. pDNA was extracted via mini-prep and screened for the pres-

ence of the correct insert DNA by restriction digest mapping and Sanger se-

quencing. If the correct insert sequence was confirmed, a larger scale stock of

pDNA was generated using the Maxi-prep system.

Sanger sequencing

The nucleotide sequence of DNA inserts was confirmed by Sanger sequencing

using the commercial TubeSeq service provided by Eurofins Genomics. 15µl

sample aliquots were provided containing 50-100ng/µl and 1µl DMSO. Samples

were sequenced using a combination of standard primers and custom primers

included during sample submission, ensuring the entire insert was efficiently

sequenced. The returned sequence files were aligned to the reference sequence

using the Benchling sequence alignment tool (benchling.com).

2.4 Results

2.4.1 shAAV-virus mediated knockdown of Giot1 expres-

sion in vivo

Previous studies from the Murphy group and collaborators have demonstrated

efficient knockdown mediated by an shGiot construct using a lentiviral delivery

system (Terra Dos Santos et al. 2021). While both lentiviruses and AAV vectors

each present useful approaches to gene delivery, lentiviruses have several disad-

vantages compared to the AAV system which may affect the reproducibility of

findings. Primarily, lentiviruses are susceptible to inducing an immune response
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upon delivery and have lower specificity at insertion (Zheng et al. 2018). For

this reason, the present study describes shGiot1 mediated knockdown assessed

using an AAV delivery system.

The shGiot1 -AAV and non-targeting scCntrl -AAV knockdown efficiency

were preliminarily assessed in vivo in animals which were dehydrated for 72hrs

(n=2). Upon establishing efficient Giot1 knockdown using the newly generated

shAAV system, a larger-scale animal study was conducted as described below.

Preliminary efficiency assessment

Briefly, the preliminary results were based on an analysis which used n=2 SD

male rats. Rats received bi-lateral stereotaxic injections of shGiot1 and scCntrl

viruses in the left and right SON as described in the General Methods. Following

recovery, all rats underwent 72hrs dehydration prior to tissue collection. The

purpose of this study was to demonstrate efficient integration of the shGiot1 -

AAV viral vector by demonstrating shGiot knockdown in a stimulated system,

and inform future experiments. For this reason no additional control animals

were included and results were obtained from a small sample size. Brain tissue

was collected from 2 animals selected at random, and immediately frozen on

dry-ice and subsequenctly processed for RNAseq analysis.

Viral infectivity in tissue processed for sequencing was initially confirmed by

visualization of GFP in whole pituitary tissue collected from the same animals

(Figure 2.11 A). Additionally, it was confirmed by qPCR analysis that Giot1

was efficiently downregulated (animal 1=89%; animal 2=87%) in the knock-

down relative to control SON samples. High quality RNA samples were used in

analyses (RINe values ranged from 8.3-8.6), and samples passed all subsequent

QC checks as highlighted in the MultiQC report.

The results of principal component analysis (PCA) indicate that 93% of

variance in the data is attributable to differences between the knockdown and

control treated samples, with 5% between-sample variance detected ( Figure

2.11 B). 4.6% of genes were up-regulated (885) and 8.4% (1639) of genes were
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down-regulated in the knockdown compared to control conditions using a heuris-

tic Padj ≤ 0.1.

Figure 2.11: Confirmation of efficient Giot1 knockdown using the
newly constructed shAAV viruses. (A) Confirmation of viral infectivity
was established by the detection of GFP fluoresence in the posterior pituitary
collected from experimental animals; (B) PCA plot indicating shGiot1 knock-
down was the largest source of variation in the preliminary RNAseq dataset.

The preliminary investigation served the purpose of demonstrating the effi-

ciency of the newly generated viruses; additionally the work demonstrated the

ability to obtain high-quality tissue and RNA samples for robust experimental

analyses using the described approach. Due to the small sample size and single

experimental group in the preliminary analysis, no further scrutiny of the data

produced are presented here. Detailed assessment of the results are reserved for

the primary in vivo analysis presented below.

2.4.2 Detailed investigation of AAVmediated shGiot1 knock-

down

The results of the preliminary investigation provided a clear indication that the

newly generated shGiot1 -AAV virus efficiently suppressed Giot1 expression in

a stimulated model system (72hrs Dhy). To investigate this in further detail, a
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larger scale in vivo analysis was designed which compared multiple conditions.

A summary of the in vivo workflow is provided in Figure 2.4 . The output

from this study provided sufficient tissue material to conduct the following:

• Prepare tissue sections for RNAscope analysis to gain insight on the ex-

pression dynamics within the experimental system.

• Obtain high quality RNA purified from SON enriched tissue samples to as-

sess differential expression between shGiot1 knockdown and scCntrl SON

samples from euhydrated (control) (n=5) and 48hrs dehydrated (stimu-

lated) conditions (n=5).

• Validation of findings from transcriptomic analysis by qPCR

• Qualitative assessment of the results by RNAscope

Characterization and visualization of Giot1 expression in the SON of

each experimental condition

Prior to processing the tissue for sequencing, tissue sections were prepared from

an n=1 Euh and n=1 Dhy frozen brain to provide an intial visual represen-

tation of Giot1 expression dynamics in the experimental system. The Giot1

RNA signal was assessed in combination with Avp RNA in the SON using

a multiplex RNAscope approach (Figure 2.12). Minimal Giot1 RNA signal

could be detected in both the scCntrl and shGiot1 treated SON in the Euh

condition. The Avp signal detected in the same Euh sample presented with a

cytoplasmic expression pattern typical of AVP expression in magnocellular neu-

rons under normal conditions. In the Dhy condition, a strong Giot1 RNA signal

was detected in the nuclei of Avp positive magnocellular neurons in the scCntrl

treated SON, indicative of upregulated expression in response to stimulation.

Minimal Giot1 RNA signal could be detected in the shGiot1 treated SON in

the Dhy condition, consistent with efficient suppression of expression as a result

of knocking down Giot1. Furthermore, a weaker Avp RNA signal was detected

in the shGiot1 treated SON in the Dhy condition relative to the scCntrl SON
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which is consistent with the attenuated expression observed in the preliminary

investigation as a result of Giot1 knockdown.

Figure 2.12: Giot1 expression dynamics in experimental system
RNAscope investigation of Giot1 expression in each experimental condition.
Dapi (blue) indicates the nuclear signal, Avp (red) indicates Avp positive neu-
rons, and Giot1 (gray) indicates Giot1 positive neurons. No Giot1 signal is
detected in either SON collected from the Euh sample, consisted with basal
Giot1 expression levels. A strong Giot1 mRNA signal is dected on the scCntrl
treated SON in the Dhy sample (iii). No Giot1 signal detection in the shGito1
treated SON collected from the Dhy sample is indicative of efficient gene silenc-
ing.
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Dissecting the role of Giot1 in magnocellular neurons of the SON by

analysis of RNAseq data

A graphical summary of the study of Giot1 knockdown in the SON is provided

in Figure 2.10. The RNAseq data was initially processed and underwent se-

quential rounds of QC assessment as outlined in the Methods and Materials

section above. To dissect the function of Giot1 in the SON in greater molecular

detail, multiple comparisons of differentially expressed genes were performed

as highlighted below. The results of each comparison facilitate addressing the

following:

1. scCntrl Euh vs scCntrl Dhy: a reference for the hypothalamic gene ex-

pression pathways induced in response to a stimulus (dehydration) in the

present study.

2. scCntrl Euh vs shGiot1 Euh: the effect of the shGiot1 knockdown in the

basal state (Euh).

3. scCntrl Dhy vs shGiot1 Dhy: the effect of the shGiot1 knockdown in the

dehydration state.

4. shGiot1 Euh vs shGiot1 Dhy: a reference for the extent to which sh-

Giot1 knockdown affects the response to the stimulus (dehydration) in

the present study.

Quality control (QC) assessment of the RNAseq derived dataset

Standard RNA workflow metrics were tracked and assessed using the MultiQC

reporting tool. High quality base calling was recorded across all samples (mean

and per sequence quality). Reads were consistent in length and had a very low

rate of unidentified bases, meaning that the starting material was of high quality

and base calls could be made with sufficiently high confidence. The per sequence

GC content is normally distributed as expected. A high duplication rate was

flagged in the FastQC analysis, however in the context of RNA (as opposed
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to DNA) high rates of duplicated reads are expected. Transcripts from the

most highly expressed genes tend to dominate RNAseq datasets. High coverage

of the most highly expressed genes results in an overestimation of the rate of

duplicated reads in the FastQC report. A graphical summary of the QC report

is provided in Figure 2.13.
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Figure 2.13: Graphical summaries of FastQC reports. The graphs pro-
vide an overview of the following metrics; (A) mean quality of base calling
(Phred); (B) mean Phred quality score across reads; (C) average undetermined
bases (N) across reads; (D) average read length; (E) GC content proportion
across reads; (F) average level of read duplication.

Reads were mapped to the rat genome using the STAR RNA-seq aligner. In

total, an average of 19 million reads comprising 86.9% of total reads uniquely

mapped to the reference genome across all samples which is indicative of high
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quality sequence libraries. Mapping rates were comparable across all samples

indicating the sequencing libraries are unlikely to be infleucned by sample bias.

Expression was quantified using the featureCounts tool. Reads were counted

as fragments and annotated using the Rn6 index reference (Ensembl) as de-

scribed in the Methods and Materials section. On average 15 million reads

were assigned to features, equalling 65% of the total uniquely mapped reads.

17.01% of reads were unassigned due to MultiMapping (i.e. reads mapping to

more than one exon), 16.9% were unassigned due to mapping to a location not

containing any features (introns, untranslated regions) and 0.77% of reads were

unassigned due to ambiguity. A graphical summary of the results is provided

in Figure 2.14.

In brief, all samples passed the QC assessments and no additional filtering

was applied to the data prior to progressing to the next stage of the pipeline

(differential gene expression).
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Figure 2.14: Graphical summaries of MultiQC reports. The graphs
provide an overview of the following metrics; (A) the number of raw reads
uniquely mapped to the reference genome; (B) mapping efficiency presented
as the proportion of total reads uniqely mapped in each sample; (C) number
of paired-end read pairs assigned to genes in each sample; (D) efficiency of
featureCounts quantification presented as the proportion of fragments assigned
to a feature out of the total number of uniquely mapped reads.

Differential gene expression analysis

Comparison 1. scCntrl Euh vs scCntrl Dhy (dehydration response)

The analysis of differentially expressed genes between the scCntrl treated Euh

samples (n=5) and scCntrl treated Dhy samples (n=5) provides a reference for

the genes which are either up- or down-regulated in the SON upon osmotic chal-

lenge. In the present study, 344 genes were differentially expressed in response

to dehydration (based on a heuristic Padj <0.05), comprising 2.14% of all genes

in the analysis. The majority of DEGs were up-regulated (84% of DEGs), with

a mean log2 fold-change (log2FC) of 0.76. Giot1 was among the most highly

upregulated genes in response to osmotic challenge (log2FC: 2.40; log2FC stan-
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dard error (lfcSE): 0.19); Padj=4.55x10−34, along with other well characterised

genes in the neuroendocrine response to osmotic challenge such as Caprin2

(log2FC: 1.40; lfcSE: 0.15;Padj=2.98x10−17), Rasd1 (log2FC: 1.30; lfcSE: 0.15;

Padj=1.94x10−14), Creb3l1 (log2FC: 1.66; lfcSE: 0.17; Padj=2.08x10−19) and

Opn3 (log2FC: 1.80; lfcSE: 0.17; Padj=2.35x10−24). A summary of these find-

ings is presented in Figure 2.15. The detailed results of highly differentially

expressed genes (i.e. Padj <0.05 and log2FC> ±1.5) from this analysis are

provided in Table A.1.

The differentially expressed genes (DEGs) identified in respose to osmotic

challenge in the present study were additionally cross-referenced against a previ-

ously published reference dataset, comprising an RNAseq derived transcriptome

of the SON derived from 72hrs dehydrated Wistar rats (Pauža et al. 2021). In to-

tal, 264 of the DEGs identified in the current study were differentially expressed

in the published dataset. Moreover, the effect sizes of the DEGs common to

both studies were directionally consistent, as indicated by a strong positive cor-

relation (Pearson correlation coefficient, r=0.86). Graphical summaries of the

results are provided in Figure 2.15.
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Figure 2.15: Graphical summary of results of comparison 1. Contd.
on next page.

A: Plot illustrating the normalised count data for Giot1 between Dhy and
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Euh conditions; B: Ordered barchart of the top 50 most significantly differ-

entially expressed genes between Dhy and Euh conditions; C: Venn diagram

illustrating the proportion of overlapping DEGs in the current analysis and a

previously published reference dataset; D: Correlation plot illustrating the rela-

tionship between the DEGs in common in the current analysis and the reference

dataset.

Comparison 2. scCntrl Euh vs shGiot1 Euh (basal condition)

The results of the comparison between scCntrl (n= 5) and shGiot1 (n=5) sam-

ples under basal conditions (Euh) identified a total of 1,424 DEGs (Padj <0.05).

55.54% of DEGs were downregulated, with a mean log2FC of −0.58 and the re-

maining DEGs had a mean log2FC of 0.62. An inhibitory effect was observed

for the most highly differentially expressed genes, which included several well

characterized hypothalamic genes such as Caprin2 (log2FC: −2.28; lfcSE: 0.25;

Padj=7.07x10−17), Pdyn (log2FC: −3.01; lfcSE: 0.33; Padj=3.25x10−17), Glp1r

(log2FC: −2.02; lfcSE: 0.21; Padj=9.07x10−19) and Vgf (log2FC: −0.97; lfcSE:

0.09; Padj=1.83x10−19). Giot1 transcripts were similarly lowly expressed in

the comparison between scCntrl and shGiot1 treated samples under basal con-

ditions (log2FC: −0.31; lfcSE: 0.20; Padj=0.37). The mean absolute log2FC in

the top 50 most highly differentially expressed genes was 2.57. A summary of

these results is provided in Figure 2.16. The detailed results of the highly

differentially expressed genes are provided in Table A.2.
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Figure 2.16: Graphical summary of results of comparison 2. A: Plot illustrating the normalised count data for Giot1 between
Euh:shGiot1 and Euh:scCntrl conditions; B: Ordered barchart of the top 50 most significantly differentially expressed genes between
Euh:shGiot1 and Euh:scCntrl conditions
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Comparison 3. scCntrl Dhy vs shGiot1 Dhy (stimulated condition)

An initial assessment of the spread of Giot1 transcript expression in the count

data revealed that Giot1 expression in one shGiot1 treated SON sample was

equivalent to Giot1 expression in the corresponding scCntrl sample. This indi-

cated that viral transduction in the SON was likely missed during the stereotaxic

injection protocol, and the sample was therefore omitted from further analyses.

After omitting the “missed” sample from analysis, the results of differential

expression analysis indicated that the Giot1 transcripts were efficiently down-

regulated in the shGiot1 knockdown samples compared with scCntrl samples

(log2FC: −2.73; lfcSE: 0.21; Padj=5.45x10−34). In total 1,613 DEGs (Padj

<0.05) were identified in the comparison between scCntrl (n=5) and shGiot1

(n=4) in the stimulated condition (Dhy). 55% of DEGs were down-regulated

and had a mean log2FC of −0.77, and the remaining DEGs had a mean log2FC

of 0.68. As before, an inhibitory effect was observed for the most highly dif-

ferentially expressed genes, which included several well characterized hypotha-

lamic genes such as Oxt (log2FC: −5.41; lfcSE: 0.44; Padj)=1.53x10−31, Avp

(log2FC: −4.26; lfcSE: 0.39; Padj)=5.22x10−24, Pdyn (log2FC: −3.68; lfcSE:

0.16; Padj=1.25x10−108), Caprin2 (log2FC: −3.39; lfcSE: 0.18; Padj)=3.11x10−74,

Opn3 (log2FC: −2.48; lfcSE: 0.16; Padj=3.53x10−54) and Vgf (log2FC: −1.58;

lfcSE: 0.14; Padj)=2.74x10−27. The mean absolute log2FC in the top 50 most

highly differentially expressed genes was higher than the previous comparison,

and equalled 3.36.

To assess the role of Giot1 in the dehydration response, the DEGs identi-

fied in this analysis were additionally compared against the published reference

dataset (Pauža et al. 2021). In total 673 common DEGs were identified between

both sets of results, comprising 41.7% of the DEGs indentified in the shGiot1

knockdown sample. Furthermore, the common DEGs were strongly inversely

correlated (Pearson correlation coefficient, r=0.82) indicating that a large pro-

portion of genes which are up-regulated upon dehydration are down-regulated

when Giot1 expression is inhibited in the stimulated condition. Graphical sum-
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maries of the results are provided in Figure 2.17. The detailed results of the

highly differentially expressed genes are provided in Table A.3
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Figure 2.17: Graphical summary of results of comparison 3.Contd.on
next page.
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A: Plot illustrating the normalised count data for Giot1 between Dhy:shGiot1

and Dhy:scCntrl conditions indicating outlier; B: Plot illustrating the nor-

malised count data for Giot1 between Dhy:shGiot1 and Dhy:scCntrl conditions

with outlier removed; C: Ordered barchart of the top 50 most significantly dif-

ferentially expressed genes between Dhy:shGiot1 and Dhy:scCntrl conditions;

D: Venn diagram illustrating the proportion of overlapping DEGs in the cur-

rent analysis and a previously published reference dataset; E: Correlation plot

illustrating the directionality of the relationship between the DEGs in common

in the current analysis and the reference dataset.

Comparison 4. shGiot1 Euh vs shGiot1 Dhy (effect of Giot1 expres-

sion on the dehydration response)

Minimal differential expression was detected in the comparison between shGiot1

treated SON samples collected from Euh animals and shGiot1 treated SON

samples collected from Dhy samples (log2FC: 0.03; lfcSE: 0.21; Padj=0.99). A

total of 6 DEGs genes were identified in this analysis, which had a mean log2FC

of 1.13. This result provides strong evidence for near complete inhibition of

the physiological neuroendocrine response to dehydration in the SON at the

transcript level upon inhibition of Giot1. A graphical summary of the results is

provided in Figure 2.18. The detailed results are provided in Table A.4
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Figure 2.18: Graphical summary of results of comparison 4. A: Plot illustrating the normalised count data for Giot1 between
Dhy;shGiot1 and Dhy:scCntrl conditions indicating outlier; B: Volcano plot illustrating the spread of differential expression in the data.
Legend, points refer to gene transcripts, the dashed line indicates the significance threshold, green indicates transcripts which were up-
regulated 1.5 fold or more, red indicates transcripts were were down-regulated 1.5 fold or more.
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Gene ontology and KEGG pathway analysis

The results of the differential expression analyses provided evidence that in-

hibition of Giot1 in the SON attenuates the expression of hypothalamic genes

which are typically upregulated in response to osmotic challenge. To gain further

insight on the characteristics of the altered transcriptional profile in response

to shGiot1 knockdown, the differentially expressed genes were cross referenced

against Gene ontology (GO), KEGG pathway and Reactome databases. Over-

representation analysis (ORA) was performed on subsets of highly differentially

expresssed genes in each analysis (Padj < 0.05; Log2FC >1.5 in either direction)

with GO terms in the GO:Biological Process (GO:BP), GO:Molecular Function

(GO:MF) and GO:Cellular Component (GO:CC) hierarchies, KEGG pathway

and Reactome pathway databases. The results of the over-representation anal-

yses are summarised below.

Comparison 1. scCntrl Euh vs scCntrl Dhy (dehydration response)

35 highly DEGs were identified based on Padj < 0.05 and >1.5 Log2FC (in

either direction) criteria in the comparison between scCntrl Euh vs scCntrl

Dhy expressed genes. The results of the ORA analyses against gene network

databses identified:

• GO:BP, 84 enriched terms

• GO:MF, 6 enriched terms

• GO:CC, 1 enriched term

• 3 KEGG pathways

• 4 Reactome pathways

• See Table A.5 for detailed results

Comparison 2. scCntrl Euh vs shGiot1 Euh (basal condition)

73 highly DEGs.
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• GO:BP, 48 enriched terms

• GO:MF, 7 enriched terms

• GO:CC, 6 enriched terms

• 3 KEGG pathways

• 7 Reactome pathways

• See Table A.6 for detailed results

Comparison 3. scCntrl Dhy vs shGiot1 Dhy (stimulated condition)

140 highly DEGs.

• GO:BP, 123 enriched terms

• GO:MF, 18 enriched terms

• GO:CC, 9 enriched terms

• 2 KEGG pathways

• 8 Reactome pathways

• See Table A.7 for detailed results

Comparison 4. shGiot1 Euh vs shGiot1 Dhy (effect of Giot1 expres-

sion on the dehydration response)

1 highly DEG.

• GO:BP, no enriched terms

• GO:MF, no enriched terms

• GO:CC, no enriched terms

• No KEGG pathways

• No Reactome pathways
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• See Table A.8 for detailed results

In summary, the highly DEGs identified in each analysis were on average

enriched with more GO:BP terms than any other category. 2 of the 64 en-

riched GO:BP terms identified in comparison 1 (dehydration response) were

enriched in the results of comparison 2 (Giot1 knockdown in basal conditions

(Euh)). In contrast, 20 of the 64 enriched GO:BP terms identified in the dehy-

dration response were enriched in the results of comparison 3 (Giot1 knockdown

in stimulated condition (Dhy)), indicating that a large proportion of the bio-

logical processes affected by dehydration were affected by knockdown of Giot1

expression (Table 2.6). The shared GO:BP terms between comparison 1 and

comparison 3 converge on processes related to magnocellular cellular activity,

including cAMP signalling, hormone secretion, regulation of body fluid levels

and appetite. Moreover, all GO:MF enriched terms identified in comparison 1

(dehydration response) were also enriched in the results of comparison 3 (Giot1

in response to dehydration) (Table 2.7). The “Neuroactive ligand-receptor

interaction” KEGG pathway was enriched in the results for comparison 1 (de-

hydration response; 5 genes; p=0.0005) and comparison 3 (Giot1 knockdown

in Dhy samples; 24 genes; p=2.47x10e-17). The enriched Reactome pathways

shared between comparison 1 (dehydration response) and comparison 3 (Giot1

knockdown in Dhy samples) converge on pathways related to GPCR signalling

(Table 2.8). Of the 123 enriched GO:BP terms identified in response to Giot1

knockdown in Dhy samples, 36 were shared in response to Giot1 knockdown

under basal conditions, however on average an additional 2.5 genes were iden-

tified per GO:BP as a result of stimulation relative to basal conditions. This

indicates a more pronounced effect when Giot1 expression is knocked-down in

the stimulated background.
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Table 2.6: GO:BP terms in common between comparison 1 (dehydration re-
sponse) and comparison 3 (Giot1 knockdown in Dhy samples)

GO ID Description Enriched terms in
Dehydration (Com-
parison 1)

Enriched terms in knock-
down (Comparison 3)

GO:0043950 positive regulation of
cAMP-mediated signal-
ing

Crh/Sctr/Ucn/
Rxfp2

Cd55/Oxt/Arhgdib/
Rxfp1/Crh/Ucn/
Mmp9/Ptger4/Mmp12/
Akap5/Calca/Hmx3

GO:0043949 regulation of cAMP-
mediated signaling

Crh/Sctr/Ucn/
Rxfp2

Pcsk1/Gpx3/Oxt/
Crh/C3/Ucn/Th/
Cps1/Ucn2/Calcr/Npas4

GO:0019933 cAMP-mediated signal-
ing

Crh/Sctr/Ucn/
Rxfp2

Crh/Gal/Th/
Ptger4/Ucn2

GO:0090280 positive regulation of
calcium ion import

Crh/Serpine1/Ucn Pcsk1/Gpx3/Oxt/
Crh/C3/Ucn/
Th/Cps1/Ucn2/Calcr/
Npas4

GO:0019935 cyclic-nucleotide-
mediated signaling

Crh/Sctr/Ucn/
Rxfp2

Sctr/Glp1r/Crh/
Gal/Ucn/Ptger4

GO:0032963 collagen metabolic pro-
cess

Creb3l1/Mmp9/Serpine1/
Ucn

Oxt/Arhgdib/Crh/Ucn/
Mmp9/Ptger4/Mmp12/
Akap5/Calca/Hmx3

GO:0050886 endocrine process Crh/Nox1/Ucn/Ucn2 Slc12a1/Sctr/Rasd1/
Glp1r/Crh/Gal/
Ucn/Ptger4/Akap5/
Lat/Cyp19a1

GO:0090279 regulation of calcium ion
import

Crh/Serpine1/Ucn Cartpt/Crh/Gal/
Ucn/Ucn2/Nmb

GO:0044060 regulation of endocrine
process

Crh/Ucn/Ucn2 Sctr/Crh/Ucn/
Ptger4

GO:0019932 second-messenger-
mediated signaling

Crh/Sctr/Ucn/
Slc12a1/Rxfp2

Sctr/Glp1r/Crh/
Gal/Ucn/Ptger4

GO:0050878 regulation of body fluid
levels

Met/Procr/Sctr/
Serpine1/Ucn

Procr/Oxt/Avp/Sctr/
Btc/C3/Ucn/Ptger4/
Wfs1/Chrm1/Abca12

GO:0046888 negative regulation of
hormone secretion

Crh/Ucn/Ucn2 Oxt/Cartpt/Crh/
Ucn/Ucn2/Chrm1

GO:0032098 regulation of appetite Sctr/Ucn Crh/Dysf/Ucn/
Calcr

GO:0007565 female pregnancy Crh/Mmp9/Serpine1/
Ucn

Sctr/Cartpt/Ucn

GO:0007586 digestion Crh/Ucn/Ucn2 Sctr/Crh/Ucn/
Ptger4

GO:0051384 response to glucocorti-
coid

Crh/Serpine1/Ucn/
Ucn2

Crh/Ucn/Calcr/
Akap5/Wfs1/Cxcl10

GO:0044706 multi-multicellular or-
ganism process

Crh/Mmp9/Serpine1/
Ucn

Crh/Ucn/Calcr

GO:0051928 positive regulation of
calcium ion transport

Crh/Serpine1/Ucn Creb3l1/Rcn3/
Ucn/Mmp9/Mmp12

GO:0031960 response to corticos-
teroid

Crh/Serpine1/Ucn/
Ucn2

Crh/Gal/Ucn/
Ucn2

GO:0035902 response to immobiliza-
tion stress

Crh/Ucn2 Crh/Gal/Nox1/
Ucn/Ucn2
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Table 2.7: GO:MF terms in common between comparison 1 (dehydration re-
sponse) and comparison 3 (Giot1 knockdown in Dhy samples).
GO ID Description Enriched terms in

Dehydration (Com-
parison 1)

Enriched terms in knock-
down (Comparison 3)

GO:0051428 peptide hormone recep-
tor binding

Crh/Ucn/Ucn2 Oxt/Vgf/Avp/Cartpt/Crh
/Gal/Ucn/Ucn2/Nmb/Calca

GO:0051427 hormone receptor bind-
ing

Crh/Ucn/Ucn2 Pdyn/Oxt/Avp/Crh/Gal/C3/
Ucn/Ucn2/Nmb/Akap5/Cxcl10/
Calca/Cxcl6

GO:0071855 neuropeptide receptor
binding

Crh/Ucn/Ucn2 Crh/Gal/Ucn/Ucn2/Nmb

GO:0005179 hormone activity Crh/Ucn/Ucn2 Sctr/Glp1r/Rxfp1/
Mc3r/Ucn2/Calcr/Crym

GO:0042562 hormone binding Sctr/Ucn2/Rxfp2 Crh/Ucn/Ucn2
GO:0001664 G protein-coupled recep-

tor binding
Crh/Ucn/Prok2/
Ucn2

Crh/Ucn/Ucn2

Table 2.8: Reactome terms in common between comparison 1 (dehydration
response) and comparison 3 (Giot1 knockdown in Dhy samples).

ID Description
R-RNO-500792 GPCR ligand binding
R-RNO-372790 Signaling by GPCR
R-RNO-373080 Class B/2 (Secretin family receptors)

Molecular validation of sequencing (RT-qPCR)

To provide an additional demonstration that the differential gene expression

findings derived from the RNAseq data are not susceptible to a high false pos-

itive discovery rate, a selection of neuroendocrine genes were further validate

by RT-qPCR analysis. Differential expression of genes was compared between

scCntrl and shGiot1 treated SON samples. A selection of highly expressed hy-

pothalamic genes with neuroendocrine properties were selected for validation.

Expression was normalised to the Rpl91 housekeeping gene. The results ob-

served by RT-qPCR analyses are concordent with the results observed in the

RNAseq data, indicating the analysis is not likely to be prone to a high false

discovery rate.
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Figure 2.19: Validation of sequencing experiment by RT-qPCR anal-
ysis. Barplot of 2−∆∆Ct values. Significance tested by two-sample t-test and
indicated as follows: ∗ P<0.05, ∗∗ P<0.01. ∗∗∗P<0.001.

Cross evaluation of the Giot1 osmoregulatory response against other

knockdown studies

To provide a detailed insight on the Giot1 specific effects in the osmoregu-

latory response, the results derived in the present study were cross-evaluated

against other hypothalamic gene expression datasets derived in the Murphy lab.

The specific experimental conditions for each dataset is summarised in Table

2.9. Targeted gene knockdown studies conducted in the rat SON have previ-

ously been generated for Creb3l1 (Dr M.P. Greenwood (University of Bristol),

(Greenwood et al. 2022), Opsin3 (Dr. S. Bárez-López (University of Bristol))

(Bárez-López et al. 2022b) and Caprin2 (N. Abu Samah (University of Bristol),

unpublished). A Venn diagram illustrating the proportion of unique and shared

DEGs across transcription profiles is provided in Figure 2.20.
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Table 2.9: Experimental conditions of alternative knockdown studies

shRNA Knockdown Condition Treatment n
Giot1 48hrs Dhy Unilateral SON 5
Caprin2 48hrs Dhy Unilateral SON 5
Creb3l1 Euh Unilateral SON 5
Opsin3 72hrs Dhy Unilateral SON 5

Figure 2.20: Unique and common DEGs identified between datasets
Venn diagram illustrating the proportion of DEGs uniquely identified in each
datasets or shared between studies.

Of note, 72 DEGs are shared between all knockdown datasets in response

to osmotic stress. Interestingly, the absolute Log2FoldChange of the subset of

shared DEGs is relatively high (mean absolute Log2FC=1.3). The majority

(49/72) of these shared DEGs are also implicated in the osmoregulatory re-

sponse (Pauža et al. 2021). Furthermore, the common osmoregulatory genes

differentially expressed in each study are highly correlated both in terms of

magnitude and direction of the effect (as illustrated by in the correlation plots

in Figure 2.21). In contrast, the mean effect of DEGs uniquely identified in

the Giot1 knockdown dataset is much smaller (mean absolute Log2FC=0.60).
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Figure 2.21: Osmoregulatory expression profiles are correlated in
each study. Correlation plots illustrate that the transcriptional profile of DEGs
implicated in the osmoregulatory response and the Giot1 transcription profile
are highly correlated between knockdown studies of other hypothalamic regula-
tory genes, including (i) Caprin2, (ii) Creb3l1 and (iii) Opsin3.

2.4.3 Characterization of endogenous Giot1 expression in

vivo

Giot1 expression is enriched in the nucleus

The intracellular location of Giot1 was quantitatively assessed in vivo. The

following results were collected through a collaboration with a visiting PhD

student, E. Donizete Pereira (São Paulo State University). Tissue was provided

by Dr. S Barez Lopez, University of Bristol. Tissue was collected from animals

which were euhydrated (Euh, n=5), 72hrs dehydrated (Dhy, n=5), 72hrs dehy-

drated and collected 4hrs after rehydration (4hr Rhy, n=5), 72hrs dehydrated

and collected 8hrs after rehydration (8hr Rhy, n=5) and 72hrs dehydrated and

collected 24hrs after rehydration (24hr Rhy, n=4). SON tissue sections were
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processed from frozen brain samples for combined RNAscope and immunohisto-

chemical analyses. Giot1 expression was assessed by RNAscope, in combination

with immunohistochemical analysis of AVP and OXT. Using the modular image

analysis plugin for ImageJ (MIA) (developed by the Wolfson Bio-imaging facil-

ity, University of Bristol), Giot1 signal detection in nuclear and cytoplasmic

compartments was quantitatively assessed in AVP and OXT expressing neu-

rons in SON tissue-sections from each condition. The results of this analysis are

summarised in Figure 2.22.

To address whether the Giot1 RNA signal was differentially localized, a

two-way anova was carried out using the “res.aov2” function in R to assess dif-

ferences in Giot1 signal detection between experimental group conditions and

intracellular compartments. In AVP neurons, the Giot1 signal varied signifi-

cantly between experimental conditions (P<1.39x10−10), specifically due to de-

hydration as indicated by multiple pairwise comparisons using the Tukey HSD

(Honest Significant Differences) test Figure 2.22 (ii). The Giot1 signal var-

ied significantly between nuclear and cytoplasmic compartments (P<0.03), with

significantly more Giot1 detected in the nuclear compartment.

While Giot1 appears to be expressed in both AVP and OXT expressing

MCNs, it is detected at significantly higher levels in AVP neurons (One-way

anova; P<0.01). In AVP MCNs, Giot1 was detected at significantly higher

levels in the Dhy group, compared to all experimental conditions (P<0.001).

Furthermore, Giot1 detection was significantly higher in the nucleus compared

to the cytoplasmic compartments (one-way anova; P<0.01), indicating that

upon up-regulation Giot1 expression is significantly enriched within the nucleus.

While Giot1 expression appears to be minimally upregulated in OXT MCNs,

expression remained low and no significant difference in localization between

intracellular compartments was detected (Figure 2.22).
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Figure 2.22: Giot1 expression is enriched in the nucleus of AVP neu-
rons upon stimulation by osmotic stress in vivo (i) Representative images
of the SON generated from tissue sections obtained from Euh, Dhy, 4hr Rhy,
8hr Rhy and 24hr Rhy samples. Dapi nuclear marker (blue), immunostaining
for AVP (red) and OXT (green), Giot1 RNAscope signal detection (gray). (ii)
Bar plots indicating the quantity of Giot1 RNA detected in nuclear and cytoso-
lic compartments in AVP (A) and OXT (B) positive neurons in the SON. ∗∗
p<0.001.

Colocalization of endogenous Giot1 with intracellular markers in vivo

The results of the quantitative analysis in vivo provided compelling evidence

that, upon stimulation, the Giot1 signal is specifically upregulated in the nu-

cleus of AVP MCNs. To assess this in more detail, it was investigated whether

Giot1 expression in MCNs colocalized with additional intracellular markers

upon stimulation (Dhy). A combined RNAscope and immunhistochemical ap-

proach was carried out, investigating Giot1 expression in combination with
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Nucleolin, Psp1, Coilin, Malat1 and Caprin2 (Figure 2.23). As expected, the

Caprin2 RNAscope signal is distributed throughout the cell, in both the nu-

clear and cytoplasmic regions and provides a useful control for the RNAscope

assay. A nuclear Giot1 RNAscope signal was consistently detected, however,

the results did not suggest specific evidence of colocalization between Giot1 and

any of the additional markers.

Figure 2.23: Intracellular localization of Giot1 RNA expression in
vivo. Giot1 RNA signal detection was assessed by RNAscope in combination
with Dapi nuclear marker (blue), AVP (red) and (i) Caprin 2 RNA (green),
(ii) Nucleolin immunostaining (green), (iii) Psp1 immunostaining (green), (iv)
Coilin immunostaining and (v) Malat1 RNAscope (green)).
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Giot1 expression assay in combination with a small Spot® nanobody

Optimizing culture conditions

Throughout the optimization process of the Spot-Giot1 over-expression system,

several experimental variables were assessed and adjusted as follows;

1. Detection of the Spot-label.

2. The feasibility of over-expressing Giot1 in combination with a co-transfection

control.

3. Optimum transfection conditions for each cell type.

As a positive control for the Spot-tag, an additional culture transfected with

a Spot-Caprin2 fusion construct (provided by G. Elsamad, University of Bristol)

was performed. In order to increase the efficiency to detect the Spot-label, the

incubation time with the Spot-label was increased from 1hr (as recommended

by the manufacturers) to overnight.

Initially, over-expression of the Spot-Giot1 fusion constructs was assayed in

combination with plasmids expressing either the nuclear expressed mCherry-

laminA or the cytoplasmic mCherry fluorescent protein. While the inclusion

of a co-transfection control in the experimental design has several advantages,

the output from these experiments indicated a very clear interaction between

the Spot-Giot1 fusion constructs and either mCherry transfected internal con-

trol. For example, in Figure 2.24 (i) colocalization between the cytoplasmic

empty-mCherry expression vector and the Giot1 RNA signal occurs. In con-

trast, as observed in Figure 2.24 (ii), when the mCherry-laminA expression

vector was included as an internal control, the Giot1 -RNA signal colocalizes

with mCherry-laminA in the nucleus. The over-expressed products in the cell

appear to aggregate together and interfere with localization. Due to the strong

tendency for this interaction to occur between the Giot1 fusion constructs and

other over-expressed proteins in the culture, repeat assays did not include an

internal transfection control.
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Figure 2.24: Interaction between Giot1 overexpression vector with
co-transfection control. Interaction between the fluoresecent Spot-label and
co-transfection control impedes interpretation of the results. Results using
two cytoplasmic expressed mCherry (i) and nuclear expressed mCherry (ii) co-
transfection controlas are compared. Dapi nuclear marker (blue), Spot fluores-
ence (green), mCherry co-transfection controls (red), Giot1 RNA signal (gray).

Repeat experiments transfecting each cell type with the Giot1 -fusion con-

structs indicated that Giot1 -Spot over-expression continued to be particularly

stressful in the cultures, limiting the ability to achieve consistent results. A high-

degree of abnormal cellular and nuclear morphology was observed in cells trans-

fected with any Giot1 -fusion construct when assayed 24hrs post-transfection.

Additionally, cells would poorly adhere to the glass cover-slips increasing the

likelihood of losing cells during the washing or fixation. To address this, cells

were assayed at the earlier time-point of 18hrs post-transfection. The aim of

this adjustment was to assess expression before toxic levels of accummulation oc-

curred in cell nuclei as a result of over-expression. Additionally, the transfection

protocol was adapted for each cell type to ensure the cultures were minimally

stressed or disrupted.
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Giot1 RNA, and not protein, is enriched in the nucleus

Consistent and reproducible over-expression of the Giot1 -Spot fusion constructs

was achieved in each cell type using the finalised experimental transfection con-

ditions informed by each round of troubleshooting. The results of this exper-

iment indicate that Giot1 RNA expression is enriched in the nucleus of cells,

where it is expressed as RNA (Figure 2.25). Cells transfected with Spot-

Caprin2 provide an effective positive control for the Spot-tag signal when protein

is translated. No positive Spot labelling was detected in cell cultures transfected

with any Spot-Giot1 fusion construct, indicating that Giot1 protein expression

is unlikely to occur at levels sufficient for detection in the assay. The nuclear

phenotype was not affected by deletion of the conserved nuclear localisation

sequence, indicating that Giot1 function in the nucleus may be determined by

alternative mechanisms. The inability to detect any Spot signal in cultures

transfected with the ORF-specific Giot1 constructs indicates that translation

of the putative Giot1 ORF is unlikely to occur, supporting a predominant role

for Giot1 as a non-coding RNA.

The results of this experiment when assayed using an earlier version of the

Giot1 RNAscope probe are provided in Figure A.1. Bespoke RNAscope probes

are provided by Applied Cell Diagnostics (ACD) and designed to hybridised

with gene specific sequences using an in-house algothm. At the beginning of

this project, the only Giot1 specific hybridization probe offered was specific to

the Giot1 5’-UTR sequence. The results obtained using this probe are consistent

with those provided above, however it was not possible to detect Giot1 RNA

in cells transfected with the Giot1 -ORF specific constructs (construct 3 & 4)

due to the specificity of the Giot1 RNAscope probe for the 5’UTR. The results

provided in (Figure 2.25) were obtained using an updated Giot1 probe with

specificity for a region within the ORF.
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Figure 2.25: Giot1 RNA and not protein is enriched in the nucleus of transfected cells. The results obtained in HEK293
and N2A cells are presented. Spot-Caprin2 transfected cells provide a positive control for the Spot fluoresence assay. Dapi nuclear signal
(blue), Spot fluoresence provides the proxy for the detection of protein (green), Giot1 RNA signal (gray).

98



Intracellular localization of endogenously expressed Giot1

The results of the overexpression analysis support the hypothesis that Giot1

may function as an RNA which is enriched in the nucleus. To confirm this,

detailed characterization of endogenous Giot1 was next carried out in vitro.

Characterization of endogenous Giot1 in hypothalamic IVB cells

To gain further insight on the function of Giot1 in the nucleus, colocalization

between endogenously expressed Giot1 and specific intracellular markers was

assessed. Giot1 expression in IVB cells is efficiently up-regulated upon stimu-

lation with IBMX and Forskolin, which co-operatively raise intracellular levels

of cAMP. Combined immunocytochemical and RNAscope analyses were under-

taken to investigate evidence of colocalization between Giot1 RNA with Nucle-

olin, Psp1, Coilin and Malat-1 Figure 2.26, as was carried out in vivo. A Giot1

RNAscope signal is detected scattered throughout the nucleus, and does not ap-

pear to colocalize particularly with any of the intracellular or nuclear markers

assayed. These results support the investigation of Giot1 colocalization with

nuclear markers carried out on in vivo sections, however robust quantification of

the Giot1 RNAscope signal in this assay was not possible due to the relatively

weak endogenous expression detected by the RNAscope assay in vitro, even in

stimulated samples.

99



Figure 2.26: Colocalization of endogenous Giot1 with nuclear mark-
ers in IVB cells. Endogenous Giot1 RNA signal (gray) was assessed by
RNAscope in combination with Dapi nuclear marker (blue), Rsp6 cytoplasmic
marker (red) and (i) Nucleolin immunostaining (green), (ii) PsP1 immunostain-
ing (green), and (iii) Malat1 RNAscope (green).

2.5 Discussion

In this study, a novel shAAV mediated gene knockdown system was developed

in order to investigate the role of Giot1 in a targeted and brain region specific

manner. A high-throughput gene expression analysis was conducted in order

to comprehensively characterize the molecular mechanism involving Giot1. sh-

Giot1 mediated knockdown induced extensive changes in the transcriptomic

profile of the SON in response to dehydration. Furthermore, Giot1 inhibition
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resulted in the inverse regulation of a proportion of genes typically robustly up-

regulated in response to chronic dehydration (Pauža et al. 2021). These findings

support a role for Giot1 in the coordination of the osmoregulatory response. De-

tailed molecular characterization of Giot1 expression localization in vitro and

in vivo indicate that the Giot1 gene product is predominantly non-coding and

enriched in the nucleus where it likely functions to regulate gene expression.

Giot1 expression profile

Neural processes are goverend by the regulation of specific gene expression pro-

files across anatomically distinct regions of the brain. Through a series of com-

parative analyses, a description of the putative Giot1 mediated transcriptonal

program in response to osmotic stress is provided. An advantage of this study

is that significant technical care was taken during all steps of tissue processing

to ensure high quality RNA samples were provided for analysis. RNA-seq anal-

yses conducted on Illumina sequencing platforms offer a robust evaluation of

gene expression which are not subject to the same degree of bias and issues re-

garding reproducibility as earlier micro-array studies (Balázsi and Oltvai 2007;

Zhang, Yoder, and Enkemann 2006). As such, validation of RNA-seq findings

for highly differentially expressed genes is not considered a requirement (Co-

enye 2021; Everaert et al. 2017). That said, qPCR validation of a minor subset

of DEGs identified in the present analysis is provided as an additional quality

control. Lastly, cross-evaluation of the dehydration response observed in the

present study (Comparison 1) with the published reference SON specific dehy-

dration transcriptome (Pauža et al. 2021) provides a valuable benchmark for

the present study. Despite significant differences in study design between the

published and present analysis (respectively, species: Wistar Han vs Sprague

Dawley; condition: 72hrs vs 48hrs water deprivation; tissue: bilateral SON vs

unilateral scCntrl treated SON), the differential expression profiles are highly

concordant.
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Elucidating the role of Giot1 in the SON

Comparative assessment of the Giot1 transcriptome with gene expression stud-

ies conducted on other robust DEGs in the osmoregulatory pathway provides a

detailed desscription of the bulk SON tissue transcriptome. Concurrent studies

from the Murphy lab have demonstrated the effects of knocking down expres-

sion of other genes highly upregulated in the SON in response to osmotic stress

(Pauža et al. 2021) using a similar experimental approach. Cross-evaluation

with these gene expression datasets helps both to narrow down the Giot1 spe-

cific expression profiles and provides intriguing insight on compensatory func-

tionality within the system. This analysis highlights that the SON is largely

regulated by over-lapping gene networks. Inhibiting the expression of any of

the osmoregulatory genes in the SON described dramatically disrupts the re-

sponse to osmotic stress. An important limitation of molecular studies in the

brain is that, despite efforts to perform gene expression analyses using tissue

sections enriched for a specific sub-anatomical region, due to the vast complexity

of the brain significant cellular heterogeneity persists.

Cellular characteristics of Giot1

This investigation of Giot1 expression and localization begins to provide some

insight on the characteristics of Giot1 at a cellular level. The detection of Giot1

by in situ hybridisation using the RNAscope method reproducibly highlighted

Giot1 expression in the nuclear compartments of a subset of hypothalamic neu-

rons. For example, multiplex RNAscope analysis of Giot1 and Caprin2 revealed

colocalization of both gene products in some, but not all, neurons assayed in-

dicating a distinct Giot1 cellular phenotype (Figure 2.23). Further molecular

investigation of Giot1 expression supports the hypothesis that Giot1 gene prod-

ucts are predominantly non-coding and enriched in the nuclear compartment of

neurons.

Biological complexity is typically defined by an increase in the number of cell

types. Non-coding RNAs are thought to have contributed substantially to the
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increased regulatory and cellular complexity of the CNS (Salvatori, Biscarini,

and Morlando 2020) and are implicated in both neurodevelopment (Aprea et

al. 2013; Mercer et al. 2010) and response to neural activity (Lipovich et al.

2012). LncRNAs are particularly abundant in the CNS, and the majority of

differentially regulated lncRNAs in the genome are brain specific (Derrien et al.

2012). The study of non-coding RNAs in the genome has been made possible by

several technological advances in recent years, particularly the high-throughput

quantification of RNA molecules by RNA-seq. The present study has addition-

ally benefitted from technical advances in the qualitative assessment of RNA

by using techniques such as RNAscope. While many lncRNAs, including Giot1,

contain an ORF and may possess some multifunctionality in specific contexts

(Douka et al. 2021; Suenaga et al. 2022), efforts to detect Giot1 protein have not

yielded a result. As such, characterization of Giot1 expression is made possible

only by the analysis of the RNA signal. Particularly, this analysis represents a

starting point from which to gain insight on the role of lncRNA in heterogeneous

neural cell populations when combined with other omics technologies.

Insight on Giot1 from concerted multi-omics analyses

The enormous complexity of cellular connections and subtle neural phenotypes

in the brain presents unique challenges for functional and molecular character-

ization. Diverse gene regulatory mechanisms and expression profiles are funda-

mental to neural cell biology. High-throughput transcriptomic screens such as

those discussed (Hindmarch et al. 2006; Pauža et al. 2021) offer a holistic ap-

proach to identify the global gene expression networks implicated in mediating

the response to a physiological stimulus. Gene specific knockdown studies, such

as the ongoing characterization of genes highly responsive to osmotic stress

(Giot1, Caprin2, Creb3l1, Opsin3 ) in the Murphy lab, demonstrate how re-

searchers can begin to probe the specific regulatory function of neural expressed

genes and advance our understanding of neurobiology. The myriad heteroge-

neous cellular effects which function to mediate the response through specific
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cell-cell interactions and expression profiles, however, remains a challenge.

In general, qualitative characterization of neural phenotypes has been based

on a handful of markers providing limited capacity to classify diverse cell types.

Significant progress is currently being made in our ability to deconvolute this

cellular heterogeneity, facilitated by the advent of single nuclei (sn) and single

cell (sc) sequencing technologies. A particular advantage of these approaches is

the capacity to distinguish between closely related neural cell types. Ongoing

research arising from a collaborative project between the Murphy lab (Uni-

versity of Bristol) and the Mecawi lab (Federal University of São Paulo) have

recently explored single nuclei approaches to study cellular heterogeneity in the

rat SON in response to osmotic stress (unpublished data). In summary, single

nuclei were isolated from SON tissue sections obtained from control (Euh) and

48hrs water deprived (Dhy) animals. Nuclei were isolated from these samples

and snRNA-seq was performed using the 10x Genomics sequencing platform.

Downstream analysis of the sequencing data was performed using the Seurat

R package. This analysis revealed that approximately two thirds of the cell

population comprised MCNs. Caprin2 emerged as a common molecular marker

for all MCNs in the SON. Analysis of the clustered cell populations revealed

that Giot1 is enriched within a specific sub-population of neurons identified

by the “RGD1560925/Adcy8” cluster (Figure 2.27). This finding supports

the qualitative assessment conducted in the present study which highlighted

Giot1 in a subset of Caprin2 positive neurons in hypothalamic regions of the

brain. Assessment of the expression profiles highly correlated with Giot1 in the

“RGD1560925/Adcy8” cluster identified by scRNA-seq analysis offers a valuable

approach to identify the genes putatively under direct transcriptional control of

Giot1. Taken together, these findings demonstrate how concerted multi-omics

approaches can be integrated to provide novel insight on complex and functional

neural subtypes.
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Figure 2.27: Giot1 expression is enriched within a specific neural cell
cluster. (i) TSNE plot illustrating the spread of neural cell clusters identi-
fied by snRNA-seq analysis (V. J. Duque, Federal University of São Paulo), (ii)
heatmap indicating the distribution of Giot1 expression across neural clusters,
(iii) comparison of enriched expression of genes responsive to osmotic stress
between select neural clusters (iv) Spearman correlation plot highlighting the
relationship between Giot1 expression and other co-expressed genes in the clus-
ter.
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Concluding remarks

The present study provides a detailed molecular characterization of a previously

poorly understood gene, identified here as a lncRNA which is highly upregulated

in the hypothalamus in a rat model of osmotic stress. The study highlights the

challenges associated with disentangling individual functional effects mediated

by the highly complex and interconnected cells of the CNS, and demonstrates

how recent technological advances are helping to overcome these challenges. De-

spite only being expressed in a subset of MCNs in the SON, Giot1 expression

is necessary to maintain the normal neuroendocrine response to osmotic stress.

Furthermore, evidence is provided in support of the hypothesis that the Giot1

gene product functions predominantly as a nuclear non-coding RNA, and hence

possesses a gene regulatory function. The study provides intriguing insight on

the role of a regulatory RNA in the CNS in maintaining physiological home-

ostasis in response to chronic stress. Elucidation of the regulatory effectors

responsible for the selective activation of gene products in the CNS in response

to physiological conditions provides important biological insight on the neural

processes responsible for behaviours crucial to our health and survival.

Translational prespective

As mentioned, the Giot1 gene belongs to a family of transcription factors char-

acterized by a KRAB-ZNF (KZNF) regulatory domain. ZNF709 has been iden-

tified as the closest human ortholog to Giot1 (Murphy lab). However the KZNF

family in the human genome, including ZNF709, are a family of closely related

genes which have arisen in a clustered genomic organization. Furthermore, the

evolution of the KZNF gene family exhibits a high degree of species specificity.

While the findings relating to Giot1 in the present study may not be directly

translational to gene expression in the human genome, in the following chap-

ter, the characteristics of the KZNF gene family are explored in more detail,

including an investigation of their role in common complex health traits.
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Chapter 3

KRAB-Zinc fingers in the

human genome

3.1 Abstract

Zinc-fingers (ZNFs) are the most prevalent genes in the eukaryotic genome that

encode proteins containing DNA binding domains. The C2H2 ZNFs associ-

ated with a potent repressor domain, the Krüpple associated box (KRAB)

domain, are the most common. The KRAB-ZNF (KZNF) gene family has

undergone rapid evolution with a high degree of species specificity. Several

primate-restricted KZNFs have been attributed important regulatory roles in

early developmental processes, however the functions of most KZNFs are un-

known. In Chapter 1, the role of the KZNF family member Giot1 in the rat

genome was investigated. Giot1 is expressed in the hypothalamus and impli-

cated in a gene regulatory network essential for maintaining the neuroendocrine

response to osmotic stress, which is an important homeostatic system for car-

diovascular health. ZNF709 is the nearest ortholog of Giot1 in the human

genome, which belongs to a cluster of KZNF family-members on chromosome

19. Due to the structure and evolution of the KZNF family, it is not possible
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to directly infer species-species functional orthologs. The aim of the present

study was to explore evidence for putative relationships between the expression

of individual KZNF gene family members in the human genome with various

cardiovascular health outcomes. This was undertaken by harnessing publicly

available gene-expression and genome-wide level summary data derived in large-

scale population studies. In particular, the study focused on the application of

applied statistical analyses and approaches to incorporate molecular gene ex-

pression datasets and large scale genome-wide association studies to investigate

relationships between KZNF genes in the central nervous system and common

cardiovascular traits.

3.2 Introduction

Gene duplication is a major driver of evolution and the diversification of func-

tion (Ohno, Wolf, and Atkin 1968; Zhang 2003). The preferential retention of

transcription factors (TFs) following duplication events has contributed sub-

stantially to the growth and diversity of gene regulatory networks (Gera et al.

2022; Teichmann and Babu 2004). The C2H2 Zinc finger (ZNF) TFs are the

largest category of TF in the human genome, and appear to have undergone

the highest rate of diversification in binding preferences compared to all other

TF subtypes (Rosanova et al. 2017). ZNF TFs possessing the tetrapod specific

Krüpple associated box (KRAB) domain (KZNFs) are the most common, rep-

resenting one of the largest gene families in the human genome. Furthermore,

the KZNF gene family has undergone rapid genomic expansions in our recent

evolutionary history (Lander et al. 2001; Looman et al. 2002).

The KZNF TFs consist of the two structural modules; (1) a C-terminal C2H2

ZNF domain comprising a variable number of multifunctional ZNF motifs with

DNA and RNA binding capacity (Klug and Schwabe 1995; Laity, Lee, and

Wright 2001); (2) an N-terminal KRAB domain primarily associated with tran-

scription repression mediated via the recruitment of KAP-1 protein (Friedman
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et al. 1996; Margolin et al. 1994; Witzgall et al. 1994). A simplified schematic

of a KZNF protein is provided in Figure 3.1. KAP-1 provides a scaffold for

histone modifying proteins including the H3K9me3 methyltransferase (Schultz

et al. 2002). The variable and structurally flexible characteristics of the KZNF

genes make these proteins highly adaptable (Looman et al. 2002).

Figure 3.1: Simplified schematic of a KRAB-ZNF protein structure
KRAB-ZNFs comprise an N terminal KRAB domain and C terminal variable
C2H2 ZNF domain. Different KZNFs bind different DNA sequences. The ZNFs
bind DNA in a sequence specific manner. Binding specificity is typically de-
termined by 3 amino acids located within each ZNF. The KRAB domain has
transcriptional repression activity. It works by tethering the KRAB associated
protein 1 (KAP1) protein to the DNA sequence bound by the ZNF. KAP1
functions as a scaffold for the recruitment of additional proteins involved in
chromatin silencing, e.g. SETDB1 which is a methyltransferase involved in
H3K9me3 methylation.

The evolution of KZNF function

Important insight on the evolution of the KZNF family of TFs has been gained

through observations supporting a co-evolutionary “arms-race” between KZNFs

and transposable elements (TEs). Firstly, the emergence of KZNF expansions

is highly correlated with the integration sites of endogenous long terminal re-

peat (LTR) retrotransposons (Imbeault, Helleboid, and Trono 2017a). High-

throughput ChIP-Seq screens performed in order to determine the DNA bind-

ing sites of KZNF proteins have shown that the majority of them map to TEs

(Imbeault, Helleboid, and Trono 2017a). Furthermore, the potent repressor ac-

tivity of the KRAB-KAP1 domain has been attributed essential functions in

early embryonic silencing of TEs (Rowe et al. 2010; Wolf and Goff 2009; Wolf

et al. 2015).
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However, it is likely that the “arms-race” model is not the only driving

force behind the evolution of this family of transcriptional regulators. Firstly,

TE-KZNF pairs are conserved long after their transposition potential has been

lost. Secondly, a large proportion of TEs are not bound by any KZNF pro-

teins, likely due to loss of TE target recognition sites as a result of genetic

drift. TEs have been co-opted in eukaryotic genomes throughout evolution,

most notably as drivers of novel transcriptional regulation (Lynch et al. 2011;

McClintock 1965; Trizzino et al. 2017). It has therefore been hypothesized

that KZNFs have harnessed TEs as a platform for epigenetic regulation and

have subsequently evolved important species-restricted gene regulatory func-

tions (Helleboid et al. 2019; Imbeault, Helleboid, and Trono 2017a; Yang, Wang,

and Macfarlan 2017b).

KZNFs are predominantly located within chromosomal clusters overlapping

segmental duplications. The majority of KZNFs have arisen in 6 clusters on

chromosome 19, representing hotspots for copy number variations (CNVs) (Lu-

kic, Nicolas, and Levine 2014). The massive expansion of KZNFs on chromo-

some 19 is specific to the human genome, highlighting higher species specificity

between clustered KZNFs. Intriguingly, distinct gene expression patterns within

clusters illustrate how closely related paralogs have diverged since duplication

(Hamilton et al. 2006). Diverse patterns of transcriptional activity have been

observed between physically clustered KZNFs. The expression activity of these

genes are generally uncorrelated (Huntley et al. 2006), and cell type specific

gene expression patterns have consistently been observed (Imbeault, Helleboid,

and Trono 2017b; Liu et al. 2014). It is now broadly accepted that the selection

of KZNFs in the human genome has been facilitated beyond their initial role in

silencing TEs, most notably through the exaptation of TE-regulatory sequences

in the diversification of transcriptional networks (Playfoot et al. 2021).
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KZNFs function in diverse transcriptional networks

Some KZNF gene regulatory factors have a well established role in early embry-

onic developmental processes (Pontis et al. 2019; Turelli et al. 2020). However,

their function at later developmental stages or in adult tissues is poorly under-

stood. Importantly, KZNF genes are more highly expressed in the brain than

any other tissue, suggesting prominent integration into the gene regulatory net-

works in the central nervous system (CNS) (Farmiloe et al. 2020; Nowick et al.

2009; Turelli et al. 2020). The global gene expression profile of KZNF genes

undergoes significant changes throughout brain development (Playfoot et al.

2021). Several individual KZNF genes have been implicated in neurodevelop-

mental (Gana et al. 2012; Lugtenberg et al. 2006; Tentler et al. 2003) and neuro-

logical disorders (Al-Naama, Mackeh, and Kino 2020; Bassett and Chow 2008;

Subaran et al. 2016). Interestingly, several lines of evidence point towards an

important role for KZNF transcriptional regulation in variation of metabolism

and homeostasis. The KZNF genes have contributed substantially to differen-

tial neuroregulatory changes between chimpanzees and humans (Nowick et al.

2009). A large proportion of these genes are strongly associated with functions

in energy metabolism (Nowick et al. 2009). The evolution of the human specific

KZNF gene expression profiles involved in energy homeostasis aligns with the

relationship between shifts in diet and the increase in energy demands specific

to the human brain (Blekhman et al. 2008; Cáceres et al. 2003; Khaitovich et al.

2008). Overall, however, the function of the majority of these genes is unknown.

Studying the role of human specific KZNFs in genetic regulation against the

backdrop of our closest evolutionary relatives, has provided a basis to help un-

derstand their role in human, and more specifically human brain, adaptations

to environmental change (Nowick et al. 2009). A study which aimed to identify

candidate gene regulatory factors with signatures of positive selection mainly

identified members of KZNF gene family with associated functions in the brain

(Jovanovic et al. 2021). Interestingly, the same genes are also associated with

a variety of complex traits, including type 2 diabetes and various cancer types
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(Dmitriev et al. 2015; Pan et al. 2019; Yamada et al. 2018). Whilst the major-

ity of KZNF genes remain poorly characterized, a growing number of studies

are beginning to implicate them more widely as sources of inter-individual phe-

notypic variation in complex traits (Bertozzi et al. 2020). Variation in KZNF

expression has been shown to contribute to variation in many complex disease

relevant traits including adiposity (Scherneck et al. 2010), lipid metabolism

(Schmitz, Heimerl, and Langmann 2004), adaptive and autoimmunity (Qi et al.

2021; Sio 2014; Tie and Rowe 2017), cardiomyocyte differentiation (Yi et al.

2004), neurological disorders (Al-Naama, Mackeh, and Kino 2020), and stress

(Jakobsson et al. 2008).

In summary, the KZNF gene family comprise genetic regulators enriched

in neuroregulatory and developmental processes with secondary biological roles

which may be important in mediating inter-individual disease susceptibility.

The literature relating to the KZNF gene family provides a comprehensive

overview of their evolutionary role in the diversification of regulatory networks,

particularly in the CNS, and their emerging roles in phenotypic variation and

physiology. The contribution of common genetic variation in KZNF genes to

inter-individual phenotypic variation and disease risk, however, has never been

directly assessed.

Aims

The aim of this study is to explore putative roles for all individual KZNF family

genes in common phenotypic variation and complex disease risk using human

genetic data. In the present study, an analytical framework was developed

which aimed to evaluate evidence for relationships between variation in KZNF

gene expression and a broad array of complex disease phenotypes using publicly

available summary statistics derived from population-scale studies. Due to the

fundamental role of KZNF genes in neuroregulatory networks, and the intrinsic

connection between the CNS and cardiovascular systems, the particular focus of

this study was to assess the relationship between genetically predicted variation
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in KZNF gene expression in the brain and susceptibility for cardiovascular and

cardiometabolic traits.

To do this, expression quantitative trait loci (eQTL) robustly associated with

variation in KZNF gene expression were harnessed as instrumental variables in

a Mendelian randomization (MR) analysis. In this context, KZNF associated

eQTLs provided genetic proxies to assess variation in KZNF gene expression

as individual exposure variables in a systematic analysis of all human KZNF

genes and 18 complex traits. To maximise the potential of this initial discovery

analysis, KZNF gene expression variables were separately assessed using data

derived from whole blood and brain tissue. Lastly, by means of a sensitivity

analysis, evidence for genetic colocalization was assessed at loci where KZNF

genes had evidence for a causal effect on a trait in the MR analysis.

Specific project aims

1. Identify KZNFs expressed by the human genome.

2. Identify robust eQTL genetic variants associated with KZNF gene expres-

sion in whole blood and brain tissue based on publicly available datasets.

3. Assess the causal effect estimates for variation in KZNF gene expression in

each tissue type and complex disease traits in a systematic MR analytical

framework.

4. Validate findings in genetic colocalization analyses.

3.3 Methods and Materials

3.3.1 KZNF data

KRAB-ZNF (KZF) family members in the human genome were originally cat-

alogued as described (Huntley et al. 2006). Regions of the genome contain-

ing KRAB and ZNF domains were comprehensively analysed using a machine

learning approach which identified 423 KZNF proteins. This was later updated
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in a study (Imbeault, Helleboid, and Trono 2017b) which gave a total of 485

KZNF genes in the human genome. The chromosomal data for all 485 human

KZNF genes was accessed from Supplementary Table 2 (Imbeault, Helleboid,

and Trono 2017b), and provided in Table B.1 in the present report.

3.3.2 Deriving KZNF gene expression exposures

To incorporate KZNF gene expression as exposure variables in MR analyses, a

recently described approach (Korologou-Linden et al. 2021) to harness published

datasets to identify independently inherited cis-expression quantitative trait loci

(eQTL) associated with KZNF gene expression for instrumental variable anal-

ysis was applied. To instrument variation in KZNF gene expression in whole

blood, single nucleotide polymorphisms (SNPs) robustly associated with gene

expression were selected using findings from the eQTLGen consortium (V øsa

et al. 2018). The eQTLGen consortium project involved a meta-analysis of SNP

effects on gene expression levels derived from peripheral blood using a sample of

31,684 individuals across 37 large cohort studies. A conventional genome-wide

threshold of P<5x10−8 was selected to identify eligible SNPs and minimise the

likelihood of weak instrument bias (in line with the first assumption of MR).

Instrument selection was also limited to SNPs located within a 200kb distance

of the relevant probe which measures gene expression for targeted KZNF genes

(which we refer to here as cis-expression quantitative trait loci (cis-eQTL)). This

was to mitigate bias via horizontal pleiotropy which trans-eQTL may be more

prone to (Holmes et al. 2021) and which can invalidate the third assumption of

MR (i.e. SNPs only influence the outcome of interest via changes to the anal-

ysed exposure). Meta-analyzed brain-tissue derived eQTL data was obtained

from a study conducted by Qi et al (Qi et al. 2018) which included data from

the GTEx consortium v7 (Battle et al. 2017), the CommonMind Consortium

(CMC) (Fromer et al. 2016) and the Religious Orders Study and Memory and

Aging Project (ROSMAP) (Ng et al. 2017), total n=1194. The neural tissue

included in these studies was derived from 10 brain regions (anterior cingulate
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cortex, caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal

cortex BA9, hippocampus, hypothalamus, nucleus accumbens basal ganglia and

putamen basal ganglia).

The cis-eQTL data within a 200kb flanking region of each KZNF probe was

extracted using smr software tools (Zhu et al. 2016). In total, 350 and 375 indi-

vidual KZNF probes were identified in blood and brain eQTL datasets respec-

tively. Independent variants were identified by applying linkage disequilibrium

(LD) clumping using the PLINK software (Purcell et al. 2007). A reference

panel comprising data on 10,000 unrelated individuals of European ancestry in

the UKB (Kibinge et al. 2020) was used to identify independent SNPs based on

r2<0.01 and genome-wide significance threshold (P<5x10-8).

Subsequent MR analyses were restricted to genes whose expression could

be instrumented with at least 2 independent SNPs based on findings from the

eQTLGen Consortium and brain eQTL dataset. This is because single SNP

MR analyses are more likely prone to false positive findings which may be at-

tributable to the presence of two separate causal variants in linkage disequi-

librium (i.e. one responsible for changes in gene expression and one for trait

variation). Furthermore, it was postulated that using MR to analyse multiple

SNPs together may identify evidence of association overlooked by conventional

single SNP analyses used in GWAS studies.

3.3.3 Mendelian randomization

Mendelian randomization (MR) analysis is a genetic method for causal infer-

ence which calculates an effect estimate for exposure-outcome relationships (ref

General Methods). MR analyses were conducted systematically for all KZNF

exposures derived from whole blood and brain gene expression datasets for a

total of 11 discrete and 7 continuous complex disease outcomes in a two-sample

setting (Lawlor 2016). The inverse-variance weighted (ivw) method (Burgess,

Butterworth, and Thompson 2013) was applied to estimate the association be-

tween the expression of each gene and outcome. Additional sensitivity analyses
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were performed by repeating the MR analysis using the weighted median and

MR Egger methods. All MR analyses were performed using the “TwoSam-

pleMR” package in R (Hemani et al. 2018). To minimise the introduction of

bias due to weak instruments, the mean F statistic was calculated for all KZNF

exposure variables (Tables B.2-B.3). The mean F statistics for all KZNF ex-

posure variables was calculated by taking the mean of the β2/se2 for eQTL

effects incorporated into each KZNF exposure, where β and se relate to the ef-

fect estimate and standard error of the individual eQTL effects respectively. An

F statistic < 10 indicates the exposure may be prone to weak instrument bias.

Adjusted p-values were calculated using the false discovery rate (FDR) method.

Results which survived the heuristic adjusted p-value threshold (q<0.05) were

considered to be consistent with evidence for a causal effect on the outcome vari-

able, and subsequently carried forward for additional sensitivity analysis using

genetic colocalization.

The outcome GWAS datasets incorporated into MR analyses are summarised

in Tables 3.1 & 3.2 which were accessed using MR-Base. When available,

repeat analyses were carried out using additional alternative data resources for

similar traits as a form of sensitivity analysis (i.e. blood pressure related traits,

arthritis datasets).

Table 3.1: Outcome GWAS datasets accessed through MRbase (discrete traits)
MRbase id Outcome Study N

(cases)
N
(controls)

ebi-a-
GCST005814

Osteoarthritis
(hospital diagnosed)

Zengini E 10083 40425

finn-b-M13
OSTEOPOROSIS

Osteoporosis FinnGen 3203 209575

ieu-a-7 Coronary heart disease CARDIoGRAMplusC4D 60801 123504
ieu-a-798 Myocardial infarction CARDIoGRAMplusC4D 43676 128199
ukb-a-106 Osteoarthritis

(self-reported)
Neale Lab 28257 308902

ukb-a-87 Osteoporosis
(self-reported)

Neale Lab 5266 331893

ukb-b-14057 Hypertension
(self-reported)

MRC-IEU 119731 343202

ukb-b-15541 Obesity (Diagnoses;
secondary)

MRC-IEU 4688 458322

ukb-b-9125 Rheumatoid arthritis
(self-reported)

MRC-IEU 5201 457732

ukb-d-M06 Rheumatoid arthritis
(Diagnoses; main)

Neale Lab 1401 359793
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Table 3.2: Outcome GWAS datasets accessed through MRbase (continuous
traits)
MRbase id Outcome Study N

(sample size)
ukb-b-19953 Body mass index (BMI) MRC-IEU 461460
ukb-b-7992 Diastolic blood pressure

(automated reading)
MRC-IEU 436424

ieu-a-299 HDL cholesterol GLGC 187167
ieu-a-300 LDL cholesterol GLGC 173082
ukb-a-335 Sodium in urine Neale Lab 326831
ukb-b-20175 Systolic blood pressure

(automated reading)
MRC-IEU 436419

ieu-a-302 Triglycerides GLGC 177861

Cluster analysis of MR results

Heatmaps were generated to illustrate clustering amongst KZNF gene family

members which had evidence for a causal effect estimate on any of the out-

comes analyzed. Z scores were calculated by dividing the MR effect estimate by

the standard error. Heatmaps were constructed using the Pheatmap R package

based on euclidean distance clustering and default parameters. The heatmaps

provide a general overview of whether KZNF genes located within specific clus-

tered regions of the genome share similar effect estimates on specific traits.

Additionally, they help visually demonstrate the KZNF gene family members

which have similar effect estimates on correlated traits (e.g. the blood pressure

measurements), and identify robust associations uncovered in replication analy-

ses of the same trait. Due to the localization of the majority of KZNF genes on

chromosome 19, additional plots highlighting the KZNF gene family members

on chromosome 19 only are provided in order to gain a focused overview of the

relationship between the KZNF genes and each trait.

Colocalization analysis

By means of a stringent sensitivity analysis, the causal KZNF gene-outcome

estimates robust to multiple testing identified in the MR analysis using the

ivw method were next tested for evidence of a shared causal variant using the

genetic colocalization approach “coloc” (Giambartolomei et al. 2014). The colo-

calization analysis was performed using the R package “coloc” (Giambartolomei
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et al. 2014), which is described in detail elsewhere. Briefly, the analysis is based

on a Bayesian approach which is used to identify shared genetic effects at a

defined locus between two traits by calculating the prior probability of associ-

ation (PPA) for 5 competing hypotheses: H0, no association with either trait;

H1 and H2, association with one trait but not the other; H3 association with

both traits driven by independent SNPs; H4, association with both traits driven

by the same SNP. Colocalization analyses were performed systematically for all

gene-outcome combinations identified in the MR analysis. The eQTL and out-

come summary statistics were assayed for shared causal effects within a 200kb

flanking region around each KZNF probe. The cis-eQTL effect estimates were

extracted from their respective gene expression datasets using the smr tools

as above. A PPA threshold of >0.8 was applied to identify genes which had

evidence for shared causal effects in H4 test, as recommended by the authors of

the method (Giambartolomei et al. 2014).

3.4 Results

3.4.1 Instrument identification

In total, 266 KZNF genes could be instrumented in multi-snp MR using blood-

derived eQTL, and 95 could be instrumented using brain derived eQTL. On

average, KZNF genes could be instrumented with 9.6 and 13.7 variants for

blood and brain derived eQTL effects respectively.

3.4.2 Mendelian randomization results

MR analyses were performed systematically to investigate evidence for a rela-

tionship between variation in KZNF gene expression derived from whole blood

and brain tissue respectively. A total of 266 and 95 KZNF genes were incorpo-

rated into MR analyses for the analysis of gene expression derived from whole

blood and brain tissue respectively. In total, 211 and 58 KZNF exposures had

a mean F-statistic > 10 when derived using the blood and brain cis-eQTL data
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respectively (Tables B.2-B.3). Next, an FDR threshold of P<5% was applied

to the results. Overall, variation in 98 unique KZNF genes had evidence for a

genetic effect across 18 traits based on findings using the whole blood derived

eQTL data Tables B.4 & B.6 and Figure 3.2 & 3.3, and 36 KZNF genes

had evidence for an effect based on findings using brain tissue derived eQTL

data using the ivw method Tables B.5 & B.7 and Figure 3.4 & 3.5.

Figure 3.2: Heatmap illustrating all the MR results in blood A heatmap
illustrating the clustered organization of all KZNF gene family members with
evidence of a causal effect estimate on risk of developing each of the outcomes
when instrumented using whole blood derived eQTL.
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Figure 3.3: Heatmap illustrating all the MR results in blood for
KZNF genes located on chromosome 19 A focused heatmap illustrating
the clustered organization of KZNF gene family members located on chromo-
some 19 with evidence of a causal effect estimate on risk of developing each of
the outcomes when instrumented using whole blood derived eQTL.
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Figure 3.4: Heatmap illustrating all the MR results in brain A heatmap
illustrating the clustered organization of all KZNF gene family members with
evidence of a causal effect estimate on risk of developing each of the outcomes
when instrumented using brain tissue derived eQTL.
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Figure 3.5: Heatmap illustrating all the MR results in brain for KZNF
genes located on chromosome 19 A focused heatmap illustrating the clus-
tered organization of KZNF gene family members located on chromosome 19
with evidence of a causal effect estimate on risk of developing each of the out-
comes when instrumented using brain tissue derived eQTL.

3.4.3 Results of genetic colocalization analysis

The KZNF gene exposure-outcome combinations which had evidence of a causal

relationship in the MR analysis were next investigated for evidence of a shared

causal variant in a genetic colocalization analysis. The combination of MR with

analyses of genetic colocalization presents a stringent analytical approach for the

identification of functional genetic effects. In total, 10 KZNF exposure-outcome

combinations had a PPA of a shared causal > 0.8 (consistent with evidence of

a shared causal effect) in the analysis using cis-eQTL data derived from whole
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blood (Table 3.3), and 1 KZNF exposure-outcome combination was identified

in the analysis using brain tissue derived cis-eQTL data (Table 3.4).

Table 3.3: Loci where there was evidence for genetic colocalization between
KZNF gene expression in whole blood and disease traits. Number of SNPs
(nsnp).

Blood derived KZNF colocalization hits
Exposure Chr Outcome Outcome id nsnp PPA4
ZNF430 chr19 (p12) BMI ukb-b-7992 8180 0.9905
ZSCAN29 chr15 (q15.3) BMI ukb-b-7992 3185 0.9948
ZNF430 chr19 (p12) Systolic blood pressure ukb-b-20175 8181 0.8497
ZKSCAN7 chr3 (p21.31) Osteoarthritis ukb-a-106 5484 0.9848
ZNF197 chr3 (p21.31) Osteoarthritis ukb-a-106 5537 0.9848
ZNF35 chr3 (p21.31) Osteoarthritis ukb-a-106 5626 0.9848
ZNF10 chr12 (q24.33) Hypertension ukb-b-14057 3410 0.8056
ZNF140 chr12 (q24.33) Hypertension ukb-b-14057 3602 0.9108
ZNF26 chr12 (q24.33) Hypertension ukb-b-14057 3765 0.8628
ZNF660 chr3 (p21.31) Rheumatoid arthritis ukb-b-9125 2959 0.8370

Table 3.4: Loci where there was evidence for genetic colocalization between
KZNF gene expression in brain tissue and disease traits. Number of SNPs
(nsnp).

Brain derived KZNF colocalization hits
Exposure Chr Outcome Outcome id nsnp PPA4

ZNF641 chr12 (q13.11) Hypertension ukb-b-14057 4693 0.9311

3.5 Discussion

The KZNF family of TFs represent one of the largest classes of transcriptional

regulators in mammalian genomes, however their contribution to common vari-

ation in disease susceptibility in humans has been largely unexplored. The

evolution of non-redundancy between closely related KZNF paralogs can be

attributed, at least in part, to the acquisition of important roles shaping tran-

scriptional networks via the exaptation of TE sequences. This is most evident in

the CNS, where KZNF expression is both enriched and dynamically regulated

(Playfoot et al. 2021).

The present study describes the development of a statistical genetic frame-

work applied here to explore putative relationships between common variation

in KZNF gene expression and complex disease traits. By focusing on a family of

transcriptional regulators prominently integrated in neuroregulatory networks,
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the study attempts to demonstrate how published datasets may be harnessed to

provide additional insight on complex transcriptional networks in the brain. The

CNS and cardiovascular system are intrinsically linked by the careful orchestra-

tion of mutually interacting neural and neuroendocrine systems. Specifically,

this study aimed to assess whether common variation in KZNF gene expression

in the CNS may influence susceptibility to highly prevalent cardiovascular and

cardiometabolic related traits in this exemplar. As such, this is a novel study

aimed at elucidating the direct effects of the KZNF family of genetic regulators

on inter-individual trait variation.

To maximise potential findings, analyses were carried out using gene expres-

sion data derived both from whole blood and from a meta-analyzed dataset of

pooled brain regions. Firstly, the eQTLgen resource of whole blood derived gene

expression variation is the most highly powered (n=31,684) public resource of

its kind (V øsa et al. 2018). While this dataset does not account for tissue-

specificity, it provides a powerful platform for initial discovery studies. The

brain gene expression resource used in repeat analyses (n=1,194), however, has

a demonstrated gain in power for the identification of brain specific effects (Qi

et al. 2018). Combined, these datasets provide complementary platforms to test

hypotheses relating to the expression of KZNF genes in the population and the

CNS.

General insight from the systematic analysis of KZNF genes using

MR

The heatmaps illustrating the results of the MR analyses provide a general

overview of potential associations between KZNF genes and individual traits.

In general, the relationships observed between the total subset of blood derived

KZNF exposure variables and disease traits exhibit biologically plausible trends

Figures 3.2-3.5. Notably, clear clustering of effect estimates was observed for

certain traits, such as the blood pressure related traits (hypertension (HTN),

systolic blood pressure (SBP) and diastolic blood pressure (DBP)) and body-
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mass index (BMI). Due to the high concentration of KZNF genes on chromosome

19, Figures 3.3-3.5 provide a focused view of the relationships between the

KZNF genes located on chromosome 19 and each trait.

Significant attention was paid to ensuring that the independent instrumen-

tal variables incorporated into MR analyses were valid (r2<0.01; genome-wide

significance threshold (P<5x10-8)), and analyses were restricted only to strong

KZNF exposure variables as determined by the F statistic cut-off (F>10). How-

ever, an important consideration when assessing the relationships identified by

MR for the KZNF genes is their chromosomal location. The particular chromo-

somal organization of the KZNF genes arising from the expansion of chromo-

somal clusters, means that careful attention should be paid to shared positive

results observed between closely neighbouring genes. This will be explored in

detail for the following examples:

1. Chromosomal location of genes associated with blood pressure traits (SBP,

DBP and HTN).

2. Chromosomal location of genes associated with BMI.

Chromosomal location of genes associated with blood pressure traits

The hierarchical clustering was performed to illustrate the results of the MR.

This analysis facilitated the identification of groups of genes both inversely and

positively associated with the blood pressure related traits (HTN, SBP and

DBP) in the whole blood (Figure 3.2) and brain tissue (Figure 3.4) analyses.

The genes identified and their chromosomal location are outlined in Tables

3.5-3.6.
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Table 3.5: KZNF genes with evidence for an increasing effect on blood pressure
related traits and their chromosomal locations. Genes which provided evidence
for colocalization are marked with “∗”. Genes with evidence for causal effect in
both tissues are highlighted in blue

.

Blood Brain

Gene Chr Gene Chr

ZNF184 chr6 (p22.1) ZKSACN3 chr6 (p22.1)
ZNF680 chr7 (q11.21) ZNF37A chr10 (p11.1)

ZNF34 chr8 (q24.3) ZNF117 chr7 (q11.21)

ZNF641∗ chr12 (q13.11) ZNF138 chr7 (q11.21)
ZNF140∗ chr12 (q24.33) ZNF786 chr7 (q36.1)

ZNF605 chr12 (q24.33) ZNF34 chr8 (q24.3)

ZNF84 chr12 (q24.33) ZNF641∗ chr12 (q13.11)
ZNF19 chr16 (q22.2) ZNF506 chr19 (p13.11)
ZNF431 chr19 (p12) ZNF565 chr19 (q13.12)
ZNF607 chr19 (q13.12)
ZFP30 chr19 (q13.12)
ZNF420 chr19 (q13.12)
ZNF571 chr19 (q13.12)
ZFP28 chr19 (q13.43)

Table 3.6: KZNF genes with evidence for a decreasing effect on blood pressure
related traits and their chromosomal locations. Genes which provided evidence
for colocalization are marked with “∗”. Genes with evidence for causal effect in
both tissues are highlighted in blue

.

Blood Brain

Gene Chr Gene Chr

ZNF589 chr3 (p21.31) ZNF273 chr7 (q11.21)
ZNF311 chr3 (p22.1) ZNF117 chr7 (q11.21)
ZFP57 chr6 (p22.1) ZSCAN21 chr7 (q22.1)
ZCAN16 chr7 (q11.21) ZNF208 chr19 (p12)
ZNF16 chr8 (q24.3) ZNF429 chr19 (p12)

ZNF26∗ chr12 (q24.33) ZNF559 chr19 (p13.2)
ZNF10∗ chr12 (q24.33) ZNF14 chr19 (p13.11)
ZSCAN29∗ chr15 (q15.3) ZNF382 chr19 (q13.12)

ZNF500 chr16 (p13.3) ZNF415 chr19 (q13.42)
ZNF430∗ chr19 (p12)
ZNF100 chr19 (p12)
ZNF493 chr19 (p12)
ZNF708 chr19 (p12)
ZNF675 chr19 (p12)

ZNF559 chr19 (p13.2)
ZNF793 chr19 (q13.12)
ZNF585B chr19 (q13.12)
ZNF540 chr19 (q13.12)

ZNF415 chr19 (q13.42)

This analysis was capable of detecting causal effects both at individual loci

putatively associated with the trait (e.g. ZNF34 chr 8 (q24.3)) and for clusters of

126



neighboring genes (e.g. ZNF607, ZFP30, ZNF420, ZNF571, all chr19 (q13.12)).

In general, there was a higher tendency to detect similar results for proximally

located genes in the analysis of whole blood derived gene expression, potentially

due to an increased capacity to detect patterns of correlated co-expression in

the much larger sample size available for whole blood (n=31,684 vs n=1,190).

It is possible that the causal effects detected at dense genomic clusters are a

result of an inflated signal from multiple genes, or a strong effect driven by a

single gene which would require functional validation. In both scenarios, further

fine mapping and functional validation of the signal is required.

Interestingly, the very small number of genes where evidence of a causal effect

was detected both in the analysis of whole blood and brain tissue were identi-

fied independently of any other gene at their specific chromosomal locus (e.g.

ZNF34, chr8 (q24,3); ZNF559, chr19 (p13.2); ZNF415, chr 19 (q13.42); ZNF641,

chr12 (q13.11)). As such, this may provide higher confidence to attribute an

association between variation in the gene’s expression and the phenotypic trait.

Furthermore, statistical validation of the causal effect was observed at one of

these genetic loci, ZNF641 and hypertension (PPA for colocalization > 0.8).

ZNF641 was first identified as a transcriptional activator of MAPK signalling

(Qi et al. 2006), however further functional investigation of the gene beyond

this is lacking. The results of the present study provide novel evidence of a

functional association between variation in ZNF641 expression and risk for de-

veloping hypertension, and may therefore be considered a strong candidate for

further functional exploration.

Chromosomal location of genes associated with BMI

As before, hierarchical clustering was applied to illustrate the results of the MR

analysis. This clearly identified groups of genes both inversely and positively

associated with body-mass index (BMI) in the analysis of whole blood (Figure

3.2) and brain tissue (Figure 3.4). The genes identified and their chromosomal

location are outlined in Tables 3.7-3.8.
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Table 3.7: KZNF genes with evidence for an increasing effect on BMI and their
chromosomal locations. Genes with evidence for causal effect in both tissues are
highlighted in blue

.

Blood Brain

Gene Chr Gene Chr

ZNF204P chr6 (p22.1) ZNF169 chr9 (q22.32)

ZKSCAN4 chr6 (p22.1) ZNF561 chr19 (p13.2)

ZNF736 chr7 (q11.21) ZNF266 chr19 (p13.2)
ZNF117 chr7 (q11.21) ZNF493 chr19 (p12)

ZNF169 chr9 (q22.32) ZNF260 chr19 (q13.12)
ZKSCAN16 chr9 (q31.3) ZNF529 chr19 (q13.12)
ZNF79 chr9 (q33.3)
ZNF37BP chr10 (q11.21)
ZNF239 chr10 (q11.21)
ZKSCAN3 chr10 (q11.21)

ZNF266 chr19 (p13.2)

ZNF561 chr19 (p13.2)

Table 3.8: KZNF genes with evidence for an decreasing effect on BMI and their
chromosomal locations. Genes with evidence for causal effect in both tissues are
highlighted in blue

.

Blood Brain

Gene Chr Gene Chr

ZNF713 chr7 (p11.2) ZNF273 chr7 (q11.21)
ZNFSCAN1 chr7 (p11.2) ZNF208 chr19 (p12)
ZSCAN25 chr7 (q22.1) ZNF429 chr19 (p12)
ZNF316 chr7 (p22.1) ZNF14 chr19 (p13.11)
ZNF33B chr10 (q11.21) ZNF382 chr19 (q13.12)
ZNF768 chr16 (p11.2) ZNF415 chr19 (q13.42)
ZNF205 chr16 (p13.3)
ZNF780A chr19 (q13.2)
ZNF585A chr19 (q13.12)
ZNF566 chr19 (q13.12)

This analysis identified causal effects both at individual loci putatively as-

sociated with the trait (e.g.ZNF169 chr 9 (q22.32)), and at genomic clusters

of neighboring genes (ZNF266, ZNF561, both chr19 (p13.2)). Evidence of a

causal effect was observed in both tissues for several genes (ZNF169, ZNF266

and ZNF561). Two of these genes, (ZNF266 and ZNF561) belong to the same

chromosomal cluster on chr19 (p13.2), whereas ZNF169 individually had evi-

dence for a causal effect in the MR analysis at the chr9 (q22.32) locus. ZNF169

has previously been implicated in obesity risk (Turcot et al. 2018), however the

specific role of the gene is unknown. Quantitative trait loci associated with
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ZNF561 and ZNF266 mapping to the chr19 (p13.2) locus have recently been as-

signed dual function as trans-acting methylation-QTL (meQTL) with cis-acting

effects on the nearby transcription regulatory genes (i.e. ZNF561 and ZNF266)

(Bonder et al. 2017; Huan et al. 2019). The elucidation of these dual function-

ing molecular regulators may provide important insight on the involvement of

DNA methylation in human disease. Further investigation of trait associated

transcriptional regulators at this locus may provide important insight on the

mechanism of trans-mediated regulation of methylation relevant for phenotypic

variation.

Limitations

A limitation of the present study is highlighted by the fact very few results

identified in the MR analysis statistically validated by genetic colocalization.

The threshold for genetic colocalization is based on a highly conservative prior

probability to minimise the rate of type I errors (i.e. false positives). In some

cases, statistical validation may have suffered due to low or insufficient SNP

coverage in the GWAS dataset resulting in reduced power to detect effects at

particular loci.

A major limitation for the validation of findings in the present analysis, how-

ever, is the genomic organization of KZNF genes. The clustered organization of

KZNF genes at particular loci creates spatial dependencies which are challeng-

ing to correct for in a colocalization analysis (Kanduri et al. 2019). Another

consideration is that causal effects identified for groups of genetically proximal

genes in the MR analysis may have been influenced by inflated confounding at

the particular locus. To demonstrate, Figure 3.6 depicts the region on chr19

q13.12. Associations at several KZNF genes located in this highly dense region

were identified in the MR analysis (Tables 3.5-3.8). None of these findings had

strong evidence for genetic colocalization with the trait effect however, owing

to the significant challenge associated with assigning causal effects to individ-

ual correlated genes. Stratification approaches which account for confounding
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in certain contexts (Sandve et al. 2010; Trynka et al. 2015) would likely suffer

from significant loss of power or residual confounding in such highly dense ge-

nomic regions. Further analyses incorporating data derived from other omics

platforms, particularly protein QTL data and additional tissue or cell specific

data, may offer more precise validation of the findings.

Figure 3.6: Snapshot of gene density at chr19 q13.12 obtained from
ensembl

Concluding remarks and future studies

In summary, the present study demonstrates a statistical genetics approach

which aimed to gain insight on a relatively unexplored family of transcriptional

regulators on inter-individual variation underlying complex health outcomes.

Several lines of evidence have identified the KZNF class of transcriptional regu-

lators as important mediators of gene expression in the CNS. A specific example

of KZNF gene regulatory function in the brain is explored in detail in Chapter

1, where the function of the rat specific KZNF gene Giot1 in the neuroen-

docrine regulation of a homeostatic response is investigated. The central regu-

lation of homeostatic mechanisms (such as the response to stress, glucose, fluid,

circulatory and energy homeostasis) are majorly regulated by neuroendocrine

mechanisms in the hypothalamus. As such, variation in processes affecting the

130



neuroendocrine axes are intrinsically linked to myriad cardiovascular traits. The

present study aimed to explore whether additional insight could be gained on

the KZNF family of transcriptional regulators in the human genome, with a

particular focus on gene expression in the CNS, by harnessing publicly available

genetic datasets for related complex health outcomes.

The results of this analysis identified several examples which presented strong

evidence for a causal association with traits relevant for cardiovascular health

(BMI, blood pressure) and arthritic traits (osteoarthritis, rheumatoid arthritis)

in whole blood. Strong evidence for a causal effect in the CNS was detected

between ZNF641 and hypertension, however whether the effect is specific to the

brain requires further investigation. Furthermore, the study highlights several

methodological challenges associated with the performance of applied statistical

models to investigate dense multi-gene regions.

Additional insight on the potential contribution of KZNF genes to common

phenotypic trait variation may be more appropriately explored by the integra-

tion of additional omics datasets. Particularly, methylation signatures associ-

ated with KZNF genes may yield relevant insight on the function of KZNF

genes in adult tissues. KZNFs are understood to function widely in transcrip-

tional repression via KAP1 mediated methylation. Recently, a number of stud-

ies have demonstrated enrichment for KZNF genes as trans regulators of DNA

methylation (Hop et al. 2020; Huan et al. 2019), with strong enrichment of trait-

associated CpG sites for complex traits such as rheumatoid arthritis (Bretherick

et al. 2022). Further assessment on the extent to which KZNF genes contribute

to variable methylation dynamics may yield important insight on their role in

physiology and complex trait variation.

In the next chapter, methodology which explores how published genetic

datasets can be harnessed to gain insight on the contribution of gene expression

in the CNS on complex cardiovascular outcomes is assessed directly.
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Chapter 4

Tissue effects on disease
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tional analyses to conduct and provided comments at each stage of manuscript

drafting. All co-authors and supervisors provided comments to refine the study

and approved its final version.

4.1 Abstract

Obesity is a prevalent cardiometabolic condition known to causally influence

many types of complex disease. Epidemiological studies rely on measures of

body-mass index (BMI) as an indicator of obesity in the population. The her-

itable component of BMI has consistently implicated genes expressed in the

brain as the predominant site of functional genetic variation associated with

BMI. Despite this, the genetics of BMI are highly heterogeneous which presents

a significant challenge for functional characterization. Efforts to investigate the

relationship between the genetic architecture of obesity and its associated co-

morbidities requires an integrated approach. In this study, a novel methodology

which harnesses tissue-specific genetic variation in the brain and subcutaneous

adipose tissue is developed to investigate the direct effect of the neural and

subcutaneous adipose components of BMI on disease risk.

4.2 Introduction

Body-weight is a complex physiological phenotype influenced by homeostatic

and non-homeostatic effects of appetite, metabolism and body-fat distribution.

Variation in weight regulation arises from the interaction of social, environmen-

tal and genetic factors. Obesity is an increasingly prevalent condition charac-

terized by excess adiposity, and is principally driven by chronic dysregulation

of the central control of appetite.

Molecular insight from genetic studies

The first molecular insight on the physiological control of body-weight was

gained in animal models. The seminal discovery of the adipose tissue derived
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hormone leptin made in the ob\ob mouse paved the way for the elucidation of

a homeostatic system for weight regulation (Zhang et al. 1994). A homozygous

mutation in the gene encoding leptin causes an obese phenotype in mice, which

can be reversed upon administration of leptin (Muzzin et al. 1996). The initial

findings in animal models informed a series of candidate gene studies in humans

which lead to the elucidation of penetrant mutations in the gene encoding lep-

tin (LEP) (Farooqi et al. 2001; Montague et al. 1997) and downstream effectors

of the melanocortin pathway (including LEPR (Clément et al. 1998), PCSK1

(Jackson et al. 1997) and most notably MC4R (Huszar et al. 1997; Vaisse et al.

1998; Yeo et al. 1998)) in congenital obesity.

The leptin-melanocortin signalling pathway is fundamental to the molecular

regulation of appetite (Yeo et al. 2021). Hypothalamic neurons receive endocrine

signals (e.g. leptin) from adipose tissue, which sends information regarding nu-

trient availability to the CNS. Activation of MC4R expressing neurons in the

paraventricular nucleus of the hypothalamus mediates the fed state, while de-

creased levels of circulating leptin activates the agouti-related peptide (AgRp)

neurons which mediate hunger (Ahima et al. 1996; Friedman and Halaas 1998).

Similarly, information is received from the gut which provides information on

satiety (Moura-Assis, Friedman, and Velloso 2021). Energy intake is also influ-

enced by cross-talk between homeostasis and the stimulation of reward centers

in the brain (Adam and Epel 2007; Foster et al. 2009), and in many scenarios

motivational reward has been shown to override the physiological need for food

(Begg and Woods 2013). The incorporation of all of these signals influences

body-weight over time.

Human genetics plays a critical role in the identification of biological mecha-

nisms which mediate obesity, and is facilitating the identification and validation

of targets for weight-loss therapy. Obesity is typically classified by two separate

clinical manifestations; monogenic (rare, severe early-onset and inherited in a

Mendelian pattern) and polygenic (common, the result of many SNPs and the

environment) obesity. Broadly, findings from both converge on similar biologi-
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cal mechanisms; (1) both common and rare variants have been identified in the

leptin-melanocortin pathway and (2), the genes robustly associated with overall

body-weight are predominantly enriched in the CNS (Locke et al. 2015). The

MC4R locus in particular has gained a lot of attention as a potential drug tar-

get (Collet et al. 2017). Mutations at the MC4R locus are implicated in both

monogenic (Yeo et al. 1998) and polygenic (Lotta et al. 2019) forms of obesity.

Furthermore, the severity of the genetic defect influences the severity of the

clinical presentation (Farooqi et al. 2003; Lotta et al. 2019), pointing towards

an important link between the molecular and clinical phenotype.

The GWAS era of genetic association studies held the promise of providing

insight on the biological mechanisms underlying complex traits (Hirschhorn and

Daly 2005). The number of robust genetic associations with variation in overall

body weight (measured by body-mass index) is currently in the hundreds (Yengo

et al. 2018a). However, the majority of GWAS identified variants are located

in non-coding regions of the genome presenting a challenge universally for the

validation of their functional effects. Despite this, GWAS studies are highly

valuable resources for biological findings. A simple and inexpensive metric such

as BMI has been leveraged by many large-scale studies to maximise the potential

sample size of large-scale GWAS studies. Larger sample sizes provide greater

statistical power to uncover novel genetic associations. Combined with the

advent of multi-omics databases and improved functional genomics methodology

(Cano-Gamez and Trynka 2020; Loos 2020), defining the regulatory function

of non-coding variants and determining their tissue and cell-types of action is

now a research priority. As described in detail in this recent review (Loos and

Yeo 2022), the translation of even a small number of BMI loci has significant

potential to identify novel biological factors and candidate therapeutic targets.

The epidemiology of obesity

The prevalence of overweight and obesity has grown dramatically in both adults

and children, while globally obesity has tripled since the 1970s (WHO 2021b).
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This recent shift likely reflects the rapid change in environment, and supports a

dominating influence of non-homeostatic factors over classic homeostatic factors

on food intake over time (Alonso-Alonso et al. 2015). The medical problems as-

sociated with obesity are substantial, posing a major concern for public health.

Overweight and obesity both increase the likelihood of developing type-2 dia-

betes (T2D), cardiovascular disease, stroke, certain types of cancer and muscu-

loskeletal disease (e.g. osteoperosis) (WHO 2021b). In many contexts, weight

loss has been shown to significantly improve health outcomes. For example,

weight loss of 5-10% has been shown to lead to significantly improved metabolic

and cardiovascular complications (Goldstein 1992; Hamman et al. 2006; Wing

et al. 2011). Taken together, this emphasises a pressing need to understand the

mechanisms which influence weight, particularly the aspects of weight regulation

which causally influence disease susceptibility.

In the following sections, a statistical genetics approach is developed, demon-

strating how the heritable component of body-weight variation mediated via the

CNS or subcutaneous adipose tissue can be harnessed using published functional

genomic datasets. The study demonstrates how this data can be incorporated

into a novel analytical model applied to estimate the direct contribution of the

genetic variants in a particular tissue type on disease risk in specific disease

contexts.

Insights from the genetics of common obesity and BMI

In epidemiological studies, a body mass index (BMI) greater than 30 kg/m2

is typically used to classify obesity, which is a complex trait with a substan-

tial genetic component (Elks et al. 2012; Rokholm et al. 2011; Silventoinen

et al. 2017). Large scale genome-wide association studies (GWAS) have been

successful in identifying genetic variants robustly associated with BMI across

the human genome with approximately 900 independent loci uncovered to date

(Yengo et al. 2018a). However, the functional mechanisms explaining the as-

sociations at these loci are for the most part poorly understood. Furthermore,
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whilst BMI is commonly used to investigate adiposity, it is renowned to be het-

erogeneous (Sulc et al. 2020), suggesting that it is a surrogate measure of various

phenotypes. For example, BMI on its own cannot distinguish between fat and

lean mass and will also be influenced by traits unrelated to adiposity, such as

bone mineral density (Ahima and Lazar 2013). As such the genetic variants

robustly associated with BMI likely exert their effects on this composite trait

via alternate biological pathways.

Efforts to gain insight on BMI-associated loci identified by GWAS have

shown that the putatively responsible genes are predominantly expressed in neu-

ral tissues (Locke et al. 2015). Further studies have implicated multiple brain

regions in obesity susceptibility (Timshel, Thompson, and Pers 2020; Verkouter

et al. 2020), extending beyond the central role of the hypothalamus in appetite

regulation implicated in monogenic and rare forms of severe obesity (Klaauw

and Farooqi 2015; Montague et al. 1997; Vaisse et al. 1998). Taken together,

these findings establish an important role for the central nervous system in reg-

ulating overall body-composition and obesity. However, despite this previous

evidence has suggested that the mean effect size of BMI-associated variants on

T2D and CAD risk does not drastically differ when clustered by brain-derived

tissue types (n=114 to 205) compared to other randomly selected sets of BMI

SNPs (Verkouter et al. 2020).

Additionally, there are recent studies which have provided evidence of a

link between BMI increasing alleles, higher fat mass and lower risk of car-

diometabolic disease for a small proportion of variants consistent with a protec-

tive effect mediated via adipose storage capacity and potentially site of storage

(Huang et al. 2021; Yaghootkar et al. 2016). In this scenario, a protective effect

has been attributed to specific adiposity increasing alleles on lipid and car-

diometabolic traits. This has been shown to be influenced through an effect on

fat-distribution; whereby the adiposity increasing allele is associated with an in-

creased capacity to store fat subcutaneously as opposed to viscerally (Loos and

Kilpeläinen 2018). As such, the extent to which BMI associated SNPs relate to
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fat-distribution could be important when evaluating the relationship between

excess adiposity (indicated by BMI) and disease.

These findings highlight divergent mechanisms by which BMI increasing al-

leles may influence either metabolically “favorable” adiposity compared to the

typically “unfavorable” effects of adiposity leading to obesity and adverse car-

diovascular outcomes. The parsimonious explanation for these effects could be

that genes expressed in brain tissue which influence BMI may be more likely

to do so via appetite regulation, whereas adipose expressed genes may have a

greater effect in specific fat depots and pathways related to muscle development

(Gómez-Hernández et al. 2016; Loos and Kilpeläinen 2018). Understanding the

relationship between BMI variants and their distinct effects in individual tissue

types on the development of obesity and body composition may prove critical

in establishing effective preventative interventions for related co-morbidities.

4.2.1 Aims

The aim of this study was to conduct applied genetic analyses to develop insight

into the causal pathways by which genetic variants exert their effects on BMI

variation using meta-analyzed gene expression quantitative trait loci (eQTL)

datasets derived from subcutaneous adipose and brain tissue samples. These

datasets were analysed using a Bayesian colocalization analysis to investigate

whether the causal variant for BMI variation at each of the known ∼900 genome-

wide loci was also the causal eQTL for a proximal gene’s expression in either

subcutaneous adipose or brain tissue. Given the amount of heterogeneity de-

tected when undertaking conventional Mendelian randomization (MR) analyses

of BMI (Rees et al. 2019), it was reasoned that partitioning BMI variants by

predominantly brain and adipose colocalization profiles may provide novel in-

sight into the tissue-specific effects on BMI and their individual contribution to

disease risk. To this end, multivariable MR analyses were applied to estimate

the independent effects of BMI putatively mediated by subcutaneous adipose

and brain gene expression separately on disease outcomes and measures of car-
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diac structure and function for which BMI has a known causal effect (Bowden,

Hemani, and Davey Smith 2018; Funck-Brentano et al. 2019; Larsson et al.

2020; Richardson et al. 2020b; Wade et al. 2018).

Specific project aims

1. Identify robust genetic variants associated with BMI in the largest avail-

able sample size (at the time this study was undeertaken).

2. Partition the BMI variants by their tissue specific evidence for colocaliza-

tion with gene expression in neural and subcutaneous adipose tissue using

highly powered expression quantitative trait loci (eQTL) identified using

highly powered meta-analysed datasets.

3. Characterize the adiposity profiles of the genetic variants identified by

genetic colocalization analyses.

4. Derive novel genetically determined exposures for subcomponents of BMI

based on tissue-partitioned BMI variants and construct these as genetic

risk scores (GRS) in the UK Biobank (UKB).

5. Assess the direct effects of the tissue-partitioned BMI exposures on disease

risk by incorporating them into multivariable Mendelian randomization

(MR) analyses.

4.3 Methods and Materials

4.3.1 Overview of the analytical framework

A flowchart providing an overview of the analytical pipeline applied in this study

can be found in Figure 4.1.
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Figure 4.1: Analysis overview Flowchart illustrating a summary of the
analytical pipeline implemented in this study (left panel), the data integrated
into analyses is summarized (right panel). GWAS: genome-wide association
study, eQTL: expression quantitative trait loci, BMI: body mass index, UKB:
UK Biobank, nsnps: number of single nucleotide polymorphisms, PPA: posterior
probability of association

Body mass index (BMI) summary statistics

Summary-level data was obtained for 2,336,260 SNPs analysed by a meta-

analysis of BMI GWAS data from the Genetic Investigation of ANthropomet-

ric Traits (GIANT) consortium and in the UK Biobank (UKB) (Yengo et al.

2018a). This meta-analysis included BMI data from the UK Biobank (UKB)

study and the GIANT consortium, which the original authors conclude as hav-

ing negligible sample overlap. To ensure the highest SNP coverage available was

implemented for colocalization analyses, this data was combined with summary

statistics from a GWAS of BMI using participants of European ancestry from

the UK Biobank only (n=463,005) conducted internally (University of Bristol)

to obtain summary statistics for SNPs not included in the meta-analysis with

GIANT. The GWAS quality control (QC) thresholds applied by the authors in

each study are as follows:
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Yengo et al:

SNPs were imputed with reference to the HRC imputation reference panel based

on a quality score >0.3. For each UKB participant, genotypes were called

based on a posterior probability >0.9 and SNPs which survived >0.95 call rate,

minor allele frequency >0.0001 and P-value for Hardy–Weinberg test >10−6

were retained for analysis.

UK Biobank only GWAS (to bolster SNP coverage):

Pre-imputation QC in the UKB, along with phasing and imputation have been

described (Elsworth et al. 2019). A graded filtering was applied for SNP selec-

tion with varying imputation quality for different allele frequency ranges. There-

fore, rarer genetic variants are required to have a higher imputation INFO score

(Info>0.3 for MAF >3%; Info>0.6 for MAF 1-3%; Info >0.8 for MAF 0.5-1%;

Info>0.9 for MAF 0.1-0.5%) with MAF and info scores being determined using

the “European” subset. Genotyping rate >0.015 and Hardy-Weinberg equilib-

rium p-value <0.0001 were additionally applied.

Independent SNPs robustly associated with BMI (based on P<5x10−8) were

identified by applying linkage disequilibrium (LD) clumping using the PLINK

software (Purcell et al. 2007). The clumping method retains SNPs that have

the strongest independent association with BMI across the genome to identify

the number of loci where genetic variation influences this trait. Although all

correlated SNPs with these top hits are removed during clumping, all SNPs

in the region are then reintroduced prior to conducting colocalization analyses

(as described below) to test whether there is evidence of a shared common

variant at each locus with gene expression in either brain or adipose tissue. 915

independent SNPs were identified based on a reference panel comprising data on

10,000 unrelated individuals in the UKB of European ancestry (Kibinge et al.

2020) based on r2 <0.01.
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Tissue-specific gene expression data

Meta-analyzed brain eQTL data was obtained from a study conducted by Qi et

al (Qi et al. 2018) which included data from the GTEx consortium v7 (Battle

et al. 2017), the CommonMind Consortium (CMC) (Fromer et al. 2016) and

the Religious Orders Study and Memory and Aging Project (ROSMAP) (Ng

et al. 2017), total n=1194. The neural tissue included in these studies was

derived from 10 brain regions (anterior cingulate cortex, caudate basal gan-

glia, cerebellar hemisphere, cerebellum, cortex, frontal cortex BA9, hippocam-

pus, hypothalamus, nucleus accumbens basal ganglia and putamen basal gan-

glia) (Qi et al. 2018). An important consideration for the overall study-design

was the incorporation of tissue-derived eQTL datasets of comparable sample

sizes. This was to minimise the introduction of bias potentially arising from

the more highly powered exposure variable predominating over the other vari-

able in the multivariable model. To ensure adipose eQTL data of a comparable

sample size was included in the study, a meta-analysis of subcutaneous adipose

eQTL data using summary data from two publicly available resources was per-

formed; the MuTHER study (n=766) (Grundberg et al. 2012) and individuals

of European ancestry in the GTEx consortium v8 (Consortium 2020) (n=491)

(total n=1257). Consistent with the BMI and brain eQTL data, all adipose

eQTL variant data were mapped to the hg19 genome-build using GRCH37 ref-

erence assembly. The MuTHER and GTEx eQTL probes were harmonized

using Ensembl Gene mappings prior to the meta-analysis. Non-autosome and

non-protein coding genes as defined by Ensembl were omitted from downstream

analyses. Summary-level adipose eQTL data was converted to SMR (Summary

Mendelian Randomization) input format using the “gwas-summary” function

in the SMR software package (v1.03) (Zhu et al. 2016). The MeCS method

in the SMR R package was applied, which has been described previously (Qi

et al. 2018) to meta-analyze the harmonized adipose eQTL datasets. Briefly,

this meta-analysis methodology uses “null” SNPs in the analysis (i.e. P> 0.01)

to quantify the sampling correlation of SNP effects estimated between datasets.
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This approach accounts for the correlation of expression between datasets which

is otherwise not available in summary level data. A summary of the primary

data resources used in this work are summarized in Table 4.1.

Table 4.1: Data resources
Data Description N Web

resource

BMI
GWAS

Summary-level data from a meta-analysis
of BMI in UK Biobank and the GIANT
consortium

681,275 Yengo et al
data

UK Biobank BMI GWAS
conducted internally

463,005 UKB GWAS
data

Adipose
cis-eQTL

Genome-wide expression profile data de-
rived from subcutaneous adipsoe tissue
obrained from the Multiple Tissue Hu-
man Expression Resource (MuTHER)

766 MuTHER
eQTL data

eQTL data data from subcutaneous adi-
pose tissue
GTEx Portal (GTEx Analysis data v8)

491 GTEx eQTL
data

Brain
cis-eQTL

eQTL data from a meta-analyses of 10
brain regions derived from GTEx v6
(GTEx consortium, Nature 2017), CMC
(Fromer et al. 2016 Nat Neurosci), and
ROSMAP (Ng et al. 2017 Nat Neurosci)
by MeCS was obtained from the genome-
wide and complex trait analysis (GCTA)
database

1,194 Brain cis-
eQTL data

Genetic colocalization

Genetic colocalization is a statistical approach which tests the hypothesis that

the same causal variant at a locus is responsible for both a GWAS and gene

expression association signal. To partition the genetic variants associated with

BMI, the Bayesian method “coloc” was systematically applied (Giambartolomei

et al. 2014) using the default parameters to evaluate the posterior probabil-

ity (PPA) for colocalization between the 915 independent BMI GWAS SNPs

based on LD clumping and the expression of proximal genes within a 200kb

window. The “coloc” method estimates the posterior probability of five com-

peting hypotheses: no association with either trait (PPA0); association with

one trait (PPA1, PPA2); association with both traits but with distinct causal

variants (PPA3); association with both traits with a common causal variant
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(PPA4)(Giambartolomei et al. 2014).

Colocalization analyses were conducted twice at each locus, firstly using

eQTL data derived from the adipose tissue meta-analysis and then repeated

separately using the eQTL data from brain tissue. A PPA4 >0.8 was considered

strong evidence of colocalization, as recommended by the authors of the method.

Variants within the MHC region (chr6:25,000,000-35,000,000) were excluded

from analyses. Although evidence of genetic colocalization may indicate that

changes to a gene’s expression may reside along the causal pathway to BMI in

this study, there is currently no robust method to rule out horizontal pleiotropy

as a possible explanation for these findings (Richardson et al. 2018).

Locuszoom plots were generated using code adapted from the “gassocplot”

R package. The estimated LD-matrix was based on a reference panel comprising

10,000 unrelated individuals in the UKB, as described above.

Characterization of SNPs implemented as instrumental variables

The association between BMI SNPs with evidence for colocaization identified

in the previous analysis and various additional adiposity traits was next inves-

tigated. The data for the additional adiposity traits was derived from publicly

available GWAS summary statistics including: body fat percentage, hip circum-

ference, leg fat percentage (left and right), trunk fat percentage, subcutaneous

adipose tissue (SAT) volume, visceral adipose tissue (VAT) volume, subcuta-

neous adipose tissue attenuation, visceral adipose tissue attenuation, ratio of

visceral-to-subcutaneous adipose tissue volume and waist-to-hip ratio (WHR).

This was assessed by calculating Pearson correlation coefficients to estimate the

correlation between each set of SNP estimates for BMI (calculated as Z scores

(i.e. beta/standard error)) with each adiposity trait in turn. A heatmap illus-

trating the SNP:trait correlations based on hierarchical k-means clustering was

generated using the “pheatmap” package in R Figure 4.2. A summary of the

GWAS data implemented in the analysis is provided in Figure 4.2.
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Table 4.2: Data resources for adiposity measures
Trait Study N Web

resource

Subcutaneous adipose tissue volume
(SAT)

Chu et al 2017 14780 data

Visceral adipose tissue volume
(VAT)

Liu et al 2021 32860 data

Subcutaneous adipose tissue attenuation
(SATHU)

Liu et al 2021 32860 data

Visceral adipose tissue attenuation
(VATHU)

Chu et al 2017 11478 data

Ratio of visceral-to-subcutaneous adipose
tissue volume
(VATSAT)

Chu et al 2017 11662 data

Waist-to-hip ratio
(WHR)

Pulit et al 2019 697734 data

Body fat percentage Elseworth 2018 454633 data
Trunk fat percentage Elseworth 2018 454613 data
Leg fat percentage (left) Elseworth 2018 454826 data
Leg fat percentage (right) Elseworth 2018 454854 data
Hip circumference Elseworth 2018 462117 data
Waist-to-hip ratio adjusted for BMI
(WHRadjBMI)

O’Connor et al 2018 408196 data
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Figure 4.2: Relationship between tissue-partitioned BMI instruments and adiposity measures Heatmap illustrating rela-
tionship between tissue-partitioned BMI instruments and various adiposity measures
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Pathway enrichment and gene ontology analyses were carried out using

the ConsensusPathDB-human web application (Kamburov et al. 2011). The

approach mines publicly available data from 32 databases to perform over-

representation analyses with cellular interaction networks. Enrichment analyses

were also undertaken using gene expression data from GTEx version 8 (Con-

sortium 2020). This data was leveraged to evaluate whether the brain tissue

partitioned set of variants were enriched in 13 specific areas of the brain using

the FUMA tool (Watanabe et al. 2017). Secondly, whether the variants were

also eQTL in all other tissue types from GTEx v8 after excluding subcutaneous

adipose- and brain-related tissue types (based on a false discovery rate<0.05

using results from GTEx) was assessed next.

Mendelian randomization (MR)

The genetically predicted effect of BMI on 6 cardiovascular disease outcomes

(coronary artery disease, type 2 diabetes, atrial fibrillation, heart failure, pe-

ripheral artery disease and stroke (all defined by ICD10 codes)) and 4 measures

of cardiac structure and function (left ventricular end-diastolic volume, left ven-

tricular end-systolic volume, stroke volume and left ventricular ejection fraction)

were evaluated by applying univariable Mendelian randomization (MR) (Davey

Smith and Hemani 2014; Davey Smith and Ebrahim 2003). This was achieved

using individual level data from the UKB study by generating a genetic risk score

(GRS) with all 915 BMI associated SNPs weighted by their effect estimates in

up to 334,398 unrelated individuals of European descent. This sample size was

determined after removing individuals with withdrawn consent, evidence of ge-

netic relatedness or who were not of “white European” ancestry based on a

K-means clustering (K=4). Full details as described previously (Richardson et

al. 2019). MR estimates were then calculated using either linear (for continuous

outcomes) and logistic regression (for discrete outcomes) on all 10 outcomes with

adjustment for age, sex, the top 10 principal components and binary variable

indicating genotype chip. The type 1 error rate attributed to the proportion
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of overlap between the GRS derivation dataset and the number of cases and

controls analysed in the UKB sample was calculated with the “overlap” web

application reported in the Web Resources section. This suggested that based

on the F-statistics of the instruments, the bias introduced in the analyses due

to overlapping samples is likely to be very minimal (type 1 error rate<0.05).

Tissue partitioned MR

The analysis above was next repeated but using the sets of adipose and brain

eQTL which colocalized with BMI based on PPA4>0.8 to derive two separate

weighted GRS. In analyses using the score consisting of adipose colocalized

eQTL, this exposure is referred to as “adipose tissue instrumented BMI” here-

after, whereas when using the GRS derived using brain colocalized eQTL we

refer to this exposure as “brain tissue instrumented BMI”. Next, an approach

known as multivariable MR was applied, which is used to estimate the indepen-

dent effects of multiple exposures on an outcome by simultaneously estimating

their effects in the same model (Burgess, Davies, and Thompson 2016; Sander-

son et al. 2019). Multivariable MR has previously been applied to separate the

effects of extremely correlated traits, such as LDL cholesterol and apolipoprotein

B (Burgess et al. 2017). The approach was applied in this study to investigate

the genetically predicted effects of adipose- and brain-instrumented BMI in-

dependent of each other on the 10 outcomes in turn. This was achieved by

simultaneously modelling the adipose- and brain tissue derived GRS together.

An overview of this approach is depicted in Figure 4.3. Effect estimates are

interpretable as a 1-standard deviation change in BMI instrumented using vari-

ants which colocalize in one tissue whilst accounting for the contribution of BMI

instrumented using variants in the other tissue.
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Figure 4.3: Summary of Mendelian randomization (MR) (A) and multivariable MR analyses (B) The “total” effect of BMI
on disease outcomes eg. coronary artery disease (CAD) is estimated by instrumenting BMI using a genetic risk score (GRS) derived using
the full set of 915 independent genome-wide significant BMI variants (A). BMI instrumented with a GRS derived from BMI variants
identified by colocalization in adipose and brain tissue to estimate the “independent” effect of BMI via gene expression in each tissue
when taking into account their effect in the other tissue (B). BMI – body mass index, SNPs – single nucleotide polymorphisms, CAD –
coronary artery disease
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Sensitivity analysis

In the form of sensitivity analyses, the univariable MR analyses were repeated

in a two-sample setting to see whether findings could be recapitulated using

summary-level data using various techniques. This included the inverse-variance

weighted (IVW) (Burgess, Butterworth, and Thompson 2013), MR Egger and

weighted median methods and allowed us to leverage findings from large-scale

GWAS on the 10 outcomes investigated (Morris et al. 2012; Nielsen et al. 2018;

Nikpay et al. 2015; Pirruccello et al. 2020; Shah et al. 2020). Global heterogene-

ity amongst instrumental variables was calculated using Cochran’s Q statistic.

A calculated Q value greater than L-1 (where L is equal to the number of instru-

mental variables) is indicative of heterogeneity between instrumental variables in

the analysis (Bowden, Hemani, and Davey Smith 2018). These analyses were all

conducted using the “TwoSampleMR” R package. An evaluation of weak instru-

ment bias was quantified by calculating the F-statistics of genetic instruments

and using the conventional threshold of F>10 to indicate that the instruments

were not prone to this source of bias (Burgess, Thompson, and Collaboration

2011). Additionally, the MR-Clust method was applied to evaluate whether the

adipose and brain tissue derived instrument sets overlapped with the clusters

identified by this approach (Foley et al. 2020). Finally, the potential issue of

SNPs being used as instruments which could influence BMI prior to their effects

on gene expression, which in theory could introduce collider bias into analyses

(Hemani, Tilling, and Davey Smith 2017) was assessed. For this reason, the

“Steiger” method was applied to identify and omit SNPs more strongly corre-

lated with BMI than tissue-derived gene expression. All outcome data sources

analysed using both one- and two-sample MR are described in Table 4.3 and

Table 4.4 respectively.
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Table 4.3: Outcome data used in one-sample MR analyses
UK Biobank field Outcome N

(cases/controls)

41270 (ICD10 code=E11) Type 2 diabetes 334398 (23588/310810)
41270 (ICD10 code=I25) Coronary heart disease 334398 (31039/303359)
41270 (ICD10 code=I48) Atrial fibrillation 334398 (23290/311108)
41270 (ICD10 code=I50) Heart failure 334398 (10155/324243)
41270 (ICD10 code=I63) Stroke 334398 (5421/334398)
41270 (ICD10 code=I73) Peripheral artery disease 334398 (5421/328977)
22420 LV ejection fraction 26389
22421 LV end diastolic volume 26389
22422 LV end systolic volume 26389
22423 LV stroke volume 26389

Table 4.4: Outcome data used in two-sample MR analyses
MR-base id Outcome Study N

(cases/controls)
PMID link

ieu-a-26 Type 2 diabetes Morris et al,
2012

69,033
(12,171/56,862)

22885922 link

ieu-a-7 Coronary heart dis-
ease

Nikpay et al,
2015

184,305
(60,801/123,504)

26343387 link

ebi-a-
GCST006414

Atrial fibrillation Nielsen JB
et al, 2018

1,030,836
(60620/970216)

30061737 link

ebi-a-
GCST009541

Heart failure Shah S et al,
2020

977,323
(47,309/930,014)

31919418 link

N/A LV ejection
fraction

Pirruccello JP
et al, 2020

NA 32382064 link

N/A LV end diastolic
volume

Pirruccello JP
et al, 2020

NA 32382064 link

N/A LV end systolic
volume

Pirruccello JP
et al, 2020

NA 32382064 link

N/A LV stroke volume Pirruccello JP
et al, 2020

NA 32382064 link

ebi-a-
GCST006906

Stroke Malik et al,
2018

446,696
(40,585/406,111)

29531354 link

finn-b-
I9 PAD

Peripheral artery
disease

NA 213,639
(7,098/206,541)

NA NA

Web resources

A list and links to web resources accessed in the study:

• BMI GWAS data

• GTEx data
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• MuTHER adipose data

• Brain expression meta-analysis data

• SMR - MeCS

• coloc

• COJO - GCTA

• Locuszoom

• ConsensusPath-DB

• NIH GRASP

• Type 1 error rate calculator

4.4 Results

Systematically applying genetic colocalization to highlight loci where

BMI and adipose or brain-derived gene expression share a causal

variant

Applying genetic colocalization identified 86 loci where BMI colocalized with

proximal adipose-derived gene expression Table C.1 and 140 where BMI colo-

calized with proximal brain-derived gene expression (based on PPA4>0.8) (Ta-

ble C.2). In total, there were 43 variants which colocalized with proximal

gene expression in both adipose and brain tissues. A subset of candidate loci

distributed across the genome which provided evidence of colocalization with

BMI and gene expression in either adipose or brain tissue are highlighted in the

Manhattan plot in Figure 4.4 as an exemplar.
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Figure 4.4: Loci which provided evidence of genetic colocalization between BMI and gene expression Colocalization with
gene expression derived from brain (red), adipose (purple) tissue or both (blue). Manhattan plot illustrating loci and their association
with BMI which showed evidence for colocalization in brain (red), adipose (purple) or both (blue) tissue gene expression data. The -log10

of the p-value reflecting associations between genetic variants and BMI are plotted on the y-axis and the genomic locations of variants
are plotted along the x-axis. A subset of loci are annotated here as an exemplar. The complete list of loci which had evidence for
colocalization are reported in Tables C.1 and C.2. Gene annotations are based on the gene which had the highest PPA4 in the results
of the colocalization analysis.
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There were many instances where variation in BMI at a locus colocalized

with gene expression derived from either subcutaneous adipose or brain-derived

tissue but not the other. For example, the ADAMTS9 (A Disintegrin-like

And Metalloprotease with Thrombospondin type-1 motif-9) and TBX15 (T-

Box Transcription Factor 15) loci provide examples where stronger evidence of

colocalization was detected between BMI and their expression in adipose tis-

sue (both PPA4=0.97) but not in brain tissue (PPA4=0.03 and PPA4=0.04

respectively) Table C.3. A locuszoom plot illustrating this contrast at the

ADAMTS9 locus is shown in Figure 4.5. ADAMTS9 is a secreted metallo-

proteinase whose expression has been previously linked with decreased insulin

sensitivity and signaling in human skeletal muscle (Graae et al. 2019) whereas

TBX15 plays an important role in skeletal development (Singh et al. 2005).
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Figure 4.5: LocusZoom plots illustrating the association between vari-
ants at the ADAMTS9 (A) and FGFR1 (B) loci with body mass in-
dex, and each of these genes’ expression in adipose and brain tissue.
Variants are plotted according to their chromosomal location along the x-axis as
indicated by the gene-track. The strength of their association with each trait is
indicated by -log10(p) on the y-axis. Recombination rate is calculated from the
linkage disequilibrium (LD) structure in the region based on a reference panel
of 10,000 individuals of European descent from the UK Biobank (see Methods
and Materials). LD with respective lead variants in the region is indicated by
the color scheme portrayed in the figure legends.

Conversely, NEGR1 (PPA4=0.93) and KCNK3 (PPA4=0.97) provided strong

evidence for colocalization with BMI using gene expression data from brain tis-

sue but not with adipose gene expression data (PPA4=0.04 and PPA4=0.18

respectively) Table C.4. NEGR1 encodes Neuronal Growth Regulator 1 which

is involved in synapse formation and neural development (Hashimoto et al. 2008;

Sanz, Ferraro, and Fournier 2015), whereas KCNK3 (Potassium Two Pore Do-

main Channel Subfamily K Member-3) has been previously reported to play

a role in taste signaling (Bachmanov and Beauchamp 2007). We also identi-

fied loci which provided evidence of colocalization with BMI using eQTL data

from both adipose and brain tissue, such as FGFR1 which encodes Fibroblast

Growth Factor Receptor 1 and has an essential role in embryonic development
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(Yamaguchi et al. 1994) Table C.5. Results at this locus provided evidence of

colocalization when using both brain (PPA4=0.97) and adipose (PPA4=0.92)

tissue data. The association signal with FGFR1 gene expression was stronger

in the region using data derived from brain tissue (P=3.53x10−8) compared to

adipose tissue (P=1.64x10−5), as depicted in Figure 4.5B (Pcomparison=0.08).

A list of the loci which provided borderline evidence of colocalization (based on

PPA4>0.7) can be found in Tables C.6 and C.7.

Characterization of adipose and brain tissue colocalized BMI variants

To investigate how the BMI variants carried forward from the colocalization

analysis relate to different measures of anthropometry, the correlation between

the SNP associations with BMI and 12 GWAS traits representing various aspects

of adiposity and body composition were comprehensively assessed. Overall, the

adipose and brain tissue colocalized BMI SNPs shared similar correlation re-

lationships with the majority of adiposity traits and were broadly represented

within the two clusters identified by performing hierarchical k-means clustering

(Figure 4.2). The only exception to this was in relation to WHR and VAT,

as effect estimates for brain tissue colocalized BMI SNPs were more strongly

correlated with those for WHR (r=0.733) and VAT (r=0.554) compared to

those of the adipose tissue colocalized SNPs (WHR: r=0.445; VAT: r=0.254)

(Pcomparison=0.001 and Pcomparison=0.0088 respectively) (Table C.8). This

suggests that BMI variants which colocalized with brain-derived gene expres-

sion are more likely to play a role in abdominal fat deposition compared with

variants which colocalized with adipose-derived gene expression. This is par-

ticularly noteworthy given that the average effect size of the adipose and brain

derived variants on BMI were comparable (mean absolute standard deviation

change in BMI per effect allele for variants in the adipose set=0.0148 and brain

set=0.0149). Estimates were similarly comparable after removing variants which

were common to both adipose and brain tissue colocalized sets, with the adi-

pose variants having a marginally smaller mean magnitude of effect than those
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specific to brain (adipose=0.0141 and brain=0.0146 standard deviation change

in BMI).

As an additional sensitivity analysis, the approach was also applied to WHRad-

jBMI. This indicated that the adipose subset of SNPs were typically more

strongly correlated with this trait (r=-0.423) compared to the brain subset

(r=-0.191) (Pcomparison=0.06). However, it should be noted that caution is

required when interpreting these findings as adjusting WHR for BMI may have

induced collider bias into these GWAS results. Collider bias refers to a non-

random source of error in the estimation which can occue when an exposure and

outcome variable independently influence a third (collider) variable, and that

variable has been adjusted for.

Pathway analyses provided several examples of overrepresented biological

pathways highlighted in each dataset which could be reflective of important

tissue specific processes related to BMI. For example, genes at adipose tissue

colocalized loci were enriched amongst several metabolic pathways including the

malate-aspartate shuttle pathway which is integral to glycolysis (P=5.22x10−7)

(Tables C.9-C.10). Similarly, the fibroblast growth factor (FGF) pathway

was enriched for genes at brain tissue colocalized loci (P=3.45x10−5), which

is a dominant family of signaling molecules in the brain that play important

roles in the development and function of the hypothalamus and neuroendocrine

system (Kaminskas et al. 2019; Tsai et al. 2011).

Enrichment analyses across 13 individual brain regions for our partitioned

sets of SNPs found that the expression of the brain tissue colocalized variants

tended to be over or underrepresented in certain brain regions compared to

others, although overall the evidence of enrichment in these analyses were not

particularly strong (full results available in Table C.11). Furthermore, after

removing SNPs which colocalized in both adipose- and brain tissue, we also

found that our sets of variants were on average expressed in various other types

of tissues using data from GTEx v8. In brief, brain tissue colocalized variants

were eQTL in mean=15.2 (standard deviation (SD)=10.9) other tissue types
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(excluding adipose- and brain-related tissues), whereas our adipose partitioned

SNPs were eQTL in mean=14.3 (SD=9.9) other tissues (full results in Table

C.12).

Using Mendelian randomization to disentangle the putative effects

of body mass index on disease endpoints when instrumented using

adipose and brain-regulatory variants

MR analyses provided strong evidence of a genetically predicted effect between

total BMI and the cardiovascular endpoints assessed using a weighted GRS

consisting of all 915 SNPs, as well as on the measures of cardiac structure

and function with the exception of left ventricular (LV) ejection fracture (Beta:

-0.025, 95% confidence interval (CI): -0.143-0.093, P=0.06) (Figure 4.6 A,

Table 4.5-4.6)). Repeating analyses in a two-sample analysis supported these

findings using the ivw method Tables C.13-C.14. The estimated Q statistics

generated in these analyses (all P<2.44x10−14) highlights the large amount of

global heterogeneity associated with the total set of 915 BMI SNPs when ana-

lyzed against each outcome, suggesting that there are likely multiple pathways

underlying the relationship between these instruments, BMI and phenotypic

endpoints (Table C.15). Furthermore, the MR-Clust method was applied (Fo-

ley et al. 2020) which identified many clusters of BMI variants with comparable

effect estimates on outcomes, although none of these clusters substantially over-

lapped with our adipose and brain tissue expression partitioned sets (Figure

C.1, Table C.16)
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Table 4.5: Summary of one-sample Mendelian randomization analysis using all 915 BMI instruments (disease outcomes)
MR results between BMI and 6 disease outcomes using a weighted genetic risk score (GRS) comprising the total set of 915 genome-wide
significant BMI variants as instruments, id.outcome - UK Biobank identifier for disease/trait outcome, b - Beta effect estimate, se -
standard error, OR- odds ratio, CI - confidence interval, PAD - peripheral artery disease

id.outcome name N beta se pvalue OR lower CI upper CI
41270 Coronary heart disease 334398 0.121 0.006 1.78E-85 1.129 1.115 1.142
41270 Atrial fibrillation 334398 0.105 0.007 2.63E-51 1.111 1.096 1.126
41270 Heart failure 334398 0.194 0.010 6.13E-80 1.214 1.190 1.239
41270 Type 2 diabetes 334398 0.275 0.007 0.000 1.316 1.299 1.334
41270 Stroke 334398 0.063 0.014 4.51E-06 1.065 1.037 1.094
41270 PAD 334398 0.112 0.014 1.68E-16 1.118 1.089 1.148

Table 4.6: Summary of one-sample Mendelian randomization analysis using all 915 BMI instruments (cardiac measures)
MR results between BMI and 4 left-ventricular cardiac measures using a weighted genetic risk score (GRS) comprising the total set of
915 genome-wide significant BMI variants as instruments, id.outcome - UK Biobank identifier for disease/trait outcome, b - Beta effect
estimate, se - standard error, OR- odds ratio, CI - confidence interval, LV - left ventricular

id.outcome name N beta se pvalue lower CI upper CI
22421 LV ejection fraction 26389 -0.025 0.060 6.81E-01 -0.143 0.093
22422 LV end diastolic volume 26389 0.586 0.051 1.29E-30 0.486 0.686
22423 LV end systolic volume 26389 0.487 0.052 8.80E-21 0.385 0.589
22420 LV stroke volume 26389 0.540 0.054 1.25E-23 0.434 0.646

159



Next, the effects of “adipose-” and “brain-tissue” instrumented BMI were

investigated for each outcome using GRS derived from the subsets of 86 adipose

and 140 brain tissue variants respectively. A summary of the adipose and brain

tissue instruments used, and their effect estimates on BMI can be found in Table

C.17. Plots depicting the effect estimates of tissue-partitioned instruments

in relation to T2D can be found in Figures C.2 and C.3 as an exemplar.

Broadly, both adipose and brain-tissue instrumented BMI provided evidence of

an effect on increased risk of cardiovascular disease and increased measures of

cardiac structure, with the exception of stroke and peripheral arterial disease

where adipose-tissue instrument BMI did not provide strong evidence of an

effect Tables 4.7 and 4.8. Estimates derived in a two-sample setting based on

the weighted-median and MR-Egger methods are summarized in Tables C.18

and C.19. Repeating analyses using genetic instruments where evidence of

colocalization was identified only in adipose- or brain-tissue (but not the other

tissue based on PPA4>0.8) did not drastically alter findings (Tables C.20-

C.21). The Steiger method was also applied to filter out instruments which may

influence gene expression due to their initial effects on BMI variation (Tables

C.22-C.23) (Hemani, Tilling, and Davey Smith 2017). This analysis removed

2 instruments from both the adipose and brain tissue sets, although this did not

alter overall findings (Tables C.24-C.25).

Next, to separate the effects of adipose- and brain tissue instrumented BMI,

their independent effects from one another were estimated on each outcome

using multivariable MR. For each of the 6 disease outcomes assessed, the inde-

pendent effect of adipose tissue instrumented BMI was shown to attenuate upon

accounting for the effect of brain tissue instrumented BMI in the multivariable

MR. For example, the total effect of adipose tissue instrumented BMI on coro-

nary heart disease (CHD) risk provided strong evidence of an effect (Odds ratio

(OR)=1.04; 95% CI=1.03-1.05; P=7.45x10−10), although when analysed simul-

taneously with brain tissue instrumented BMI in the multivariable model there

was weak evidence of an effect (OR=1.01; 95% CI=1.00-1.03; P=0.04).
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In contrast, the multivariable MR estimates for brain tissue instrumented

BMI were consistent with a strong increasing effect on CHD risk (OR=1.05;

95% CI=1.04-1.07; P=4.67x10−14) independent of the effect of BMI when in-

strumented using the adipose tissue SNPs. Similarly, the results of the multi-

variable MR analysis provided strong evidence of an effect between brain tissue

instrumented BMI and type 2 diabetes (T2D) risk (OR=1.12; 95% CI=1.09-

1.13; P=7.16x10−46), consistent with the total effect derived in the univariable

model (OR=1.13; 95% CI=1.11-1.14; P=8.13x10−69). In contrast, there was

limited evidence of an independent effect for adipose tissue instrumented BMI

on T2D (OR=1.02; 95% CI=1.00-1.04; P=0.003). For detailed results of MR

analyses see Tables 4.7 and 4.8. Similar findings were also found for the other

cardiovascular disease endpoints as illustrated in Figure 4.6 B.

Applying this approach to the measures of cardiac structure and function

found the converse trend to the disease outcomes, as adipose tissue instru-

mented BMI typically predominated in the multivariable model. For example,

the univariable MR estimate for adipose tissue instrumented BMI on LV stroke

volume (Beta=0.23, 95% CI=0.13-0.34; P=1.42x10−5) remained robust when

accounting for the effect of brain tissue instrumented BMI (Beta=0.21, 95%

CI=0.09-0.32, P=6.43x10−4). In contrast, univariable estimates for brain tis-

sue instrumented BMI (Beta=0.15, 95% CI=0.05-0.26, P=0.004) attenuated to

include the null in the multivariable analysis (Beta=0.06, 95% CI=-0.06-0.18,

P=0.33). All multivariable MR estimates from this analysis are also depicted in

Figure 4.6. A comparison of all univariable and multivariable estimates from

the analyses using tissue-partitioned instruments can be found in Figure C.4.
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Figure 4.6: Forest plots illustrating the Mendelian randomization results Summary of Mendelian randomization results for
BMI on six disease outcomes and four left-ventricular cardiac phenotypes on the basis of (A) univariable analyses using the total set of
BMI variants and (B) analyses instrumented in a multivariable setting with tissue-partitioned variants. Forest plots illustrating the odds
ratios or effect estimates per standard deviation (SD) change in risk factor and 95% confidence intervals (CIs) for each disease outcome
analyzed by MR are shown. The effect estimates of BMI instrumented with all 915 BMI SNPs is illustrated in (A), and the independent
effect estimates of BMI instrumented by adipose- (purple) and brain (red)- tissue-derived instruments in the multivariable MR model are
illustrated in (B). Circles representing central estimates are filled in when confidence intervals, as illustrated by lines, do not overlap with
the null. Abbreviations are as follows: PAD, peripheral artery disease; and LV, left ventricular.
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Table 4.7: Summary of the results of univariable and multivariable tissue-partitioned MR analyses (disease outcomes)
Univariable MR analysis Multivariable MR analysis

id.outcome outcome N exposure b se pval OR lower CI upper CI b se pval OR lower CI upper CI

41270 CHD 334398
brain 0.06 0.01 1.66E-21 1.06 1.05 1.07 0.05 0.01 4.67E-14 1.05 1.04 1.07
adipose 0.04 0.01 7.45E-10 1.04 1.03 1.05 0.01 0.01 0.04 1.01 1.00 1.03

41270 AF 334398
brain 0.04 0.01 5.64E-09 1.04 1.03 1.06 0.03 0.01 1.75E-05 1.03 1.02 1.05
adipose 0.03 0.01 1.17E-05 1.03 1.02 1.05 0.02 0.01 0.05 1.02 1.00 1.03

41270 HF 334398
brain 0.09 0.01 3.85E-19 1.10 1.07 1.12 0.07 0.01 1.97E-09 1.07 1.05 1.10
adipose 0.08 0.01 3.49E-15 1.08 1.06 1.11 0.05 0.01 2.22E-05 1.05 1.03 1.07

41270 T2D 334398
brain 0.12 0.01 8.13E-69 1.13 1.11 1.14 0.11 0.01 7.16E-46 1.12 1.10 1.13
adipose 0.07 0.01 1.11E-26 1.08 1.06 1.09 0.02 0.01 0.002 1.02 1.01 1.04

41270 Stroke 334398
brain 0.03 0.01 0.02 1.03 1.01 1.06 0.03 0.02 0.03 1.03 1.00 1.07
adipose 0.01 0.01 0.32 1.01 0.99 1.04 0.00 0.02 0.89 1.00 0.97 1.03

41270 PAD 334398
brain 0.04 0.01 0.004 1.04 1.01 1.07 0.03 0.02 0.03 1.03 1.00 1.07
adipose 0.03 0.01 0.05 1.03 1.00 1.05 0.01 0.02 0.46 1.01 0.98 1.04
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Table 4.8: Summary of the results of univariable and multivariable tissue-partitioned MR analyses (cardiac measures)
Univariable MR analysis Multivariable MR analysis

id.outcome outcome N exposure b se pval lower CI upper CI b se pval lower CI upper CI

22421 LV end diastolic volume 26389
brain 0.16 0.05 0.002 0.06 0.25 0.07 0.06 0.22 -0.04 0.18
adipose 0.22 0.05 1.16E-05 0.12 0.32 0.19 0.06 0.0008 0.08 0.30

22422 LV end systolic volume 26389
brain 0.12 0.05 0.02 0.02 0.22 0.06 0.06 0.29 -0.05 0.17
adipose 0.17 0.05 0.001 0.06 0.27 0.14 0.06 0.02 0.02 0.25

22423 LV stroke volume 26389
brain 0.15 0.05 0.004 0.05 0.26 0.06 0.06 0.33 -0.06 0.18
adipose 0.23 0.05 1.42E-05 0.13 0.34 0.21 0.06 0.0006 0.09 0.32

22420 LV ejection fraction 26389
brain 0.01 0.06 0.85 -0.11 0.13 -0.01 0.07 0.94 -0.14 0. 13
adipose 0.03 0.06 0.58 -0.08 0.15 0.04 0.07 0.60 -0.10 0.17
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4.5 Discussion

In this study, extensive genetic colocalization analyses were performed to gain

insights into the distinct contribution of genetic effects on BMI variation pu-

tatively mediated by gene expression in adipose and brain tissue. The find-

ings presented demonstrate that BMI altering variants clustered by evidence

of colocalization using subcutaneous adipose and brain tissue gene expression

show differential effects on WHR and VAT, as well as enrichments amongst

biological pathways. This finding is consistent with earlier studies which have

suggested that distinct molecular processes and metabolic mechanisms may con-

tribute differentially to fat distribution (Locke et al. 2015; Shungin et al. 2015;

Winkler et al. 2018). Finally, these partitioned sets of BMI variants were har-

nessed as genetic instruments in a novel multivariable MR analytical framework.

The results suggest that selecting genetic instruments for MR based on their

tissue-dependent effects can help elucidate the biological pathways by which an

exposure influences disease susceptibility and phenotypic traits.

The genes identified by the colocalization analysis highlight different biolog-

ical features which may reside along the causal pathway to overall body-size.

Several candidate genes identified by our analysis converge on processes underly-

ing appetite and feeding behavior. For example, NEGR1 has been implicated in

conferring risk of obesity in a number of studies (Speliotes et al. 2010; Thorleif-

sson et al. 2009; Willer et al. 2009) and is highly expressed in the hypothalamus

where it is known to affect the central regulation of energy balance (Boender,

Rozen, and Adan 2012; Boender et al. 2014; Lee et al. 2012). Our results pro-

vide further evidence linking the functional effect of NEGR1 expression variants

in the brain to phenotypic variation in BMI. Interestingly, eQTL in the FGFR1

locus showed evidence for colocalization with BMI in both adipose and brain

tissue, but the association with FGFR1 expression was stronger in brain at

this region which may be indicative of its functional role with respect to adi-

posity. Inhibition of FGFR1 has been linked to appetite suppression which is
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likely mediated by hypothalamic FGFR1 signaling cascades underlying energy

intake (Jain and Turner 2012; Sun et al. 2007). Additionally, FGFR1 activa-

tion by FGF21 in peripheral tissues has been found to be important for glucose

homeostasis and relaying information on nutritional state (Adams et al. 2012;

Fisher and Maratos-Flier 2016; Hill et al. 2018). Importantly, it is the effect

of the endocrine signaling cascade on the central nervous system enacting a

change in preference for carbohydrate consumption which has been shown to

directly affect weight regulation (Baruch et al. 2020; Jensen-Cody et al. 2020;

Lan et al. 2017). Some genes highlighted by our analysis have been impli-

cated in rare forms of monogenic obesity. For example, BDNF (encoding brain-

derived neurotrophic factor) has been implicated in a rare case of monogenic

obesity likely arising from impaired BDNF expression during hypothalamic de-

velopment (Gray et al. 2006). BDNF is an important effector immediately

downstream MC4R (melanocortin-4) in the melanocortin pathway regulating

energy balance (Nicholson et al. 2007). MC4R is one of the most common genes

implicated in monogenic obesity (Farooqi et al. 2003), although evidence of

colocalization between BMI and brain tissue expression at this locus narrowly

missed out on the heuristic threshold applied in this study (PPA=0.71). Taken

together, these results suggest that genetic effects influencing feeding behaviors

and the central regulation of body-composition play an important role in overall

adiposity variation.

Additionally, the colocalization analysis highlighted examples where genetic

effects on body composition are likely mediated by pathways independent to the

central regulation of appetite or energy homeostasis, due to evidence of colocal-

ization with BMI using gene expression data from adipose tissue but not in the

brain. For example, the mesodermal development gene TBX15 (Lausch et al.

2008; Lee et al. 2015; Singh et al. 2005) is differentially expressed within distinct

fat-depots (Gesta et al. 2006; Lee et al. 2017; Schleinitz et al. 2014a), and has

been shown to effect adipocyte differentiation, metabolism and triglyceride stor-

age (Gesta et al. 2011; Sun et al. 2019). The evidence for colocalization between
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TBX15 expression in subcutaneous adipose and BMI presented here provides

further support for the functional relationship between the pathways driving

heterogeneity in adipogenesis and fat distribution (Heid et al. 2010; Schleinitz

et al. 2014b). Similarly, eQTL associated with genes such as ADAMTS9 which

have been attributed roles in insulin secretion peripherally (Boesgaard et al.

2009; Graae et al. 2019) highlight the putative causal relationship between in-

sulin metabolism in adipose tissue and fat composition (Shungin et al. 2015).

Due to the distinct sets of BMI partitioned variants identified by the colocal-

ization analysis, along with their differential effects on WHR and VAT, it was

hypothesized that the separate biological pathways which these variants con-

tribute towards may have differential effects on disease risk. The results of our

multivariable MR analysis suggest that BMI when instrumented using brain tis-

sue eQTL has an independent effect on increased risk for cardiovascular disease

endpoints when accounting for the contribution of BMI instrumented using adi-

pose tissue eQTL. One such mechanism by which these SNPs exert their effects

on BMI is via appetite regulatory and energy expenditure pathways, highlight-

ing the critical importance of neurogenic adiposity as a risk factor for all-cause

mortality.

Conversely, the results of the multivariable MR analysis suggest that the ex-

pression of BMI-associated genes in subcutaneous adipose tissue may underlie

the relationship between BMI and measures of cardiac structure and function.

Previous studies which have focused on fat distribution rather than BMI have

found that lean body mass is more strongly related to left ventricular traits

compared to BMI or fat mass (Bella et al. 1998). Given that the enrichment

analyses conducted in this study provided evidence that adipose tissue vari-

ants are more likely to be involved in fat distribution compared to those which

colocalized with brain-derived gene expression, the results provide further sup-

port for the genetic relationship between body composition and variation in left

ventricular remodeling phenotypes of prognostic importance (Aung et al. 2019;

Neeland et al. 2013).
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The findings in this study provide insight into the complexity of the genetics

of BMI and propose an innovative method to differentiate between the effects of

adiposity and anthropometry increasing alleles in specific phenotypic contexts.

Therefore, although the study was not focused on identifying effects consistent

with favorable adiposity, it may be of interest to triangulate these results from

alternative approaches in this paradigm to further investigate BMI-associated

loci throughout the genome. However, whilst this approach may prove valuable

in terms of developing insight into disease mechanisms, it should be noted that

the overall effect of adiposity on disease risk may be consistent regardless of

which tissue or pathway it results from (as described by the gene-environment

equivalence assumption in MR (Ebrahim and Davey Smith 2008)).

Limitations

A limitation of this work is that cell-type specific effects within bulk adipose

tissue biopsies or brain transcriptomic datasets have not been accounted for.

Integrating cell-type data from large samples when they become available is

therefore particularly warranted. For example, adipose tissue is comprised of

adipocytes, endothelial cells and multiple immune cell subtypes, which vary pro-

portionally within population data, and may contribute differentially to func-

tional changes in tissue composition (Glastonbury et al. 2019). While the in-

clusion of meta-analyzed gene expression data from multiple datasets provided

larger statistical power for this study, the development of methods to deconvo-

lute tissue heterogeneity is a growing area of research which may yield higher

resolution into molecular and cell regulatory changes on disease risk (Donovan

et al. 2020; Glastonbury et al. 2019).

The findings presented in this study are based on data derived from indi-

viduals of European descent, which is primarily due to the lack of available

eQTL datasets in the field in non-European participants. However, the ap-

proach presented in this study should be worthwhile applying in non-European

samples once these data are available in sufficient sample sizes. Additionally,
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sex-dependent differences in adiposity will also be an important area for fu-

ture research given that adipose deposition is known to vary between males

and females (Randall et al. 2013). The work presented here focused on non-

sex stratified analyses to initially demonstrate the novel methodology and have

therefore harnessed the most highly powered datasets available. Moreover, the

current lack of publicly available tissue-specific eQTL datasets poses a challenge

to sex-stratified analyses, as well as sex-differential participation bias in the UK

Biobank study (Pirastu et al. 2021).

Amongst the adipose and brain tissue derived sets of instruments, a substan-

tial amount of heterogeneity persisted in the data as indicated by Cochran’s Q

statistics. It was postulated that the most parsimonious explanation for this is

that, although integrating tissue-specific data can help bring us closer to under-

standing the underlying biology of trait-associated variants, there likely exist

various granular level mechanisms which require further investigation. For in-

stance, it is unlikely that all 140 variants which colocalized with brain-derived

gene expression all influence BMI via appetite regulation, but additionally via

other types of regulatory pathway. It should also be noted that, although adi-

pose and brain tissues were the focus of this study due to sample size availability

and their biological relevance to BMI (Sobreira et al. 2021), they may not nec-

essarily be the primary tissue by which our colocalized sets of variants influence

this trait. Therefore, whilst the multivariable MR framework can exploit the

shared tissue-specificity amongst these instrument sets, further research using

datasets derived using other tissues is required to comprehensively characterize

each of these BMI SNPs on a case by case basis (once these data are accessible

in sufficient samples).

It is also important to note that the adipose tissue expressed instruments in

this study were derived from subcutaneous tissue and therefore interpretation of

these results may not extend to other adipose-related tissues such as visceral fat

(the intra-abdominal adipose adjacent to internal organs) and other fat deposits.

Furthermore, although the weighted median and MR-Egger sensitivity methods
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were applied in this study, which are typically regarded to be more robust to

horizontal pleiotropy than the IVW approach, they cannot rule out extensive

correlated pleiotropy (Morrison et al. 2020). Finally, as discussed previously, it

should be acknowledged that genetic correlation is necessary, but not sufficient,

for causality (Richardson et al. 2018).

Concluding remarks

The results of this study demonstrate that genetic variants underlying complex

traits such as BMI, when partitioned according to tissue-specific molecular data,

can yield insight into causal pathways and disease etiology using genetic colo-

calization and MR. Future studies adopting a similar approach should prove

valuable in elucidating the distinct contributions of modifiable exposures to

phenotypic variation and disease risk.

The results in this chapter were derived using individual level genetic data

accessed via the UKB study. In the next chapter, further development of the

tissue-partitioned MR approach aimed at incorporating more widely accessible

summary level GWAS data is described. This work aims to provide further

insight into the causal genetic mechanisms expressed in neural and subcutaneous

adipose tissues underlying complex health traits.
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Chapter 5

Tissue effects on cancer

5.1 Authorship and contributorship statement

The results and text contained in this chapter were published immediately prior

to the submission of this thesis. The data and text presented are available in the

following peer-reviewed article, representing the author of this thesis’ original

work:

G. M. Leyden et al. (2022a). “Disentangling the aetiological pathways

between body mass index and site-specific cancer risk using tissue-partitioned

Mendelian randomisation”. In: Br J Cancer. Leyden, Genevieve M Greenwood,

Michael P Gaborieau, Valérie Han, Younghun Amos, Christopher I Brennan,

Paul Murphy, David Davey Smith, George Richardson, Tom G 2022/11/27.

issn: 1532-1827. doi: 10.1038/s41416-022-02060-6. url: https://www.

ncbi.nlm.nih.gov/pubmed/36434155

The published work was reproduced with permission from Springer Nature.

The author of this thesis confirms lead authorship of the published results and

contributions of co-authors are outlined as follows: conceptualisation: TGR; for-

mal analysis: GML; investigation: GML; supervision: TGR and GDS; method-
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ology: TGR, GDS and GML; resources: VG, TH, CIA and PB; writing—original

draft: GML; all authors and supervisors contributed to the review and editing

of the final version of the paper.

5.2 Abstract

Excess body-weight, typically measured by body mass index (BMI), is known to

influence risk of developing many complex disease traits including site-specific

cancers. However, dissecting which subcomponents of this heterogeneous risk

factor are predominantly responsible for driving the disease effects has proven

difficult to establish. In Chapter 4, a novel methodology referred to as “tissue-

partitioned Mendelian randomization” was developed and applied to investigate

the direct effect of BMI genetic variants stratified by their neural and subcu-

taneous adipose tissue gene expression profiles on a variety of cardiovascular

and cardiometabolic traits in a one-sample setting. The current study presents

an adapted two-sample approach, and an applied example investigating the

relationships between adipose- and brain-tissue instrumented BMI on risk of

developing 7 site-specific cancer types. To do this, SNP-exposure estimates

were weighted by their evidence for colocalization with subcutaneous adipose-

and brain-tissue derived gene expression and incorporated into a two-sample

multivariable Mendelian randomization analysis. The results provide evidence

that brain-tissue derived BMI variants are predominantly responsible for driv-

ing the genetically predicted effect of BMI on lung cancer, and adipose-tissue

derived BMI variants may predominantly drive the effect of BMI and increased

risk for endometrial cancer. The study provides valuable insight into tissue-

dependent genetic mechanisms underlying the pathways between BMI and risk

of site-specific cancers.
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5.3 Introduction

Body mass index (BMI) is an important risk factor for multiple types of cancer.

Mendelian randomization (MR) (Davey Smith and Ebrahim 2003) studies have

been integral in elucidating evidence of causal relationships between variation in

BMI and site-specific cancer risk (Fang et al. 2021), although further granular

insight is required to clarify the specific mechanistic and biological pathways

which may explain these effects. While BMI is a commonly used proxy for

excess adiposity in population studies, it retains a high degree of heterogeneity

and therefore captures multiple phenotypes (Sulc et al. 2020).

In Chapter 4, a novel multivariable MR approach was described which was

developed and applied to separate the effects of phenotypic subcomponents of

BMI on complex traits and disease risk. This was implemented through frac-

tionation of the genetic variants associated with BMI according to whether the

BMI signal colocalises with gene expression in brain or subcutaneous adipose

tissue (Leyden et al. 2022b). In this framework, “adipose-” and “brain-tissue

instrumented BMI” were analysed as separate exposures in a one-sample multi-

variable MR analysis using genetic risk scores (GRS) based on subsets of adipose

and brain expression colocalizing BMI variants. It was found that these distinct

tissue-dependent exposures related differentially to measures of fat distribution

and visceral adiposity. Briefly, the brain-tissue colocalizing variants were found

to drive the effect of BMI on cardiometabolic disease outcomes and subcuta-

neous adipose-tissue colocalizing variants were predominantly responsible for

the effect of BMI on measures of heart structure (Leyden et al. 2022b).

The previous analysis highlighted distinct genetic phenotypes which con-

tribute differentially to overall body-size, or BMI. The incorporation of tissue

partitioned BMI genetic risk scores (GRS) into the multivariable MR frame-

work represents a novel statistical approach which adds to our understanding

of the role of phenotypic variation in complex traits. Particularly, the analysis

provided strong evidence that the neural mediated component of BMI was pre-
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dominantly responsible for the relationship between polygenic obesity and its

associated cardiometabolic co-morbidities. Due to the strong causal evidence

for relationships between BMI and diverse complex disease outcomes, an aim

of this work is to assess the tissue-partitioned BMI phenotypes in other disease

contexts. Performing the analysis in a one-sample setting, however, has several

limitations. Firstly, access to individual level genetic data is not widely available

for all traits of interest, limiting the contexts where it is possible to evaluate the

tissue-partitioned BMI variables. Additionally, one-sample analyses are suscep-

tible to “winner’s curse”, leading to an under-estimation of the strength of the

exposure-outcome relationship (Lawlor 2016; Taylor et al. 2014). Lastly, the in-

corporation of summary data derived in large non-overlapping GWAS studies, as

is done for two-sample MR analysis, offers far greater statistical power (Lawlor

2016). As such, adaptation of the analytical framework for a two-sample setting

is a priority of this research.

5.3.1 Aims

The aim of this study was to adapt the tissue-partitioned multivariable MR ap-

proach to allow it to be applied in a two-sample MR setting, to facilitate the use

of findings from large consortia. In doing this, the approach was applied to an

investigation of the putatively independent effects of adipose- and brain-tissue

instrumented BMI on risk of 7 site-specific cancer outcomes. While having a

higher BMI is an important predictor of cancer risk (Bhaskaran et al. 2014a),

how BMI influences cancer risk is complex and site dependent. This study aims

to provide additional insight on the relationship between phenotypic subcom-

ponents of BMI on cancer risk. Lastly, further analyses were conducted using

additional datasets to evaluate the robustness of potential independent effects

highlighted in the primary analysis.
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5.3.2 Specific project aims

1. Demonstrate the efficacy of the tissue-partitioned exposure variables in

two-sample multivariable MR analyses by assessing whether the results

obtained in Chapter 4 for cardiovascular traits are reproducible.

2. Assess the tissue-partitioned BMI relationships on site-specific cancer risk

using the two-sample multivariable model.

3. Repeat the instrument derivation pipeline to identify tissue partitioned

genetic instruments for early-life body size.

4. Investigate the tissue-partitioned early-life body size effects on breast can-

cer risk using the adapted multivariable MR framework.

5.4 Methods and Materials

An overview of the analysis is provided in Figure 5.1 .
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Figure 5.1: Flowchart illustrating a summary of the analytical
pipeline implemented in this study. In this study, the genetic instruments
identified in the previous chapter are incorporated into the tissue partitioned
MR framework using a two-sample setting. A series of sensitivity analyses were
performed which demonstrate the strength of the proposed two-sample tissue-
partitioned MR approach. This included repeat analyses of the adipose- and
brain-tissue instrumented BMI effects on cardiovascular and cardiometabolic
traits to assess the reproducibility of the findings made in the single-sample anal-
ysis. Novel results relating to cancer outcomes in the present study were further
evaluated using additional datasets. To further investigate putative early-life
effects of subcutaneous adipose- and brain-tissue partitioned BMI, specifically
in the context of breast cancer risk, the instrument derivation pipeline was
repeated using GWAS data for early-life body size and instruments were incor-
porated into the multivariable framework.

5.4.1 Tissue-partitioned genetic instruments for adult BMI

Full details on the genetic instruments identified for MR analyses are described

fully in Chapter 4 Methods and Materials. In brief, the gene expression data

was incorporated to identify genetic variants whose robust effects on BMI are

putatively mediated via the expression of a nearby gene in either subcutaneous

adipose and neural tissues. This was assessed by conducting extensive genetic

colocalization analyses using the “coloc” method (Giambartolomei et al. 2014)
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where a posterior probability for colocalization (PPA4) ≥0.8 was applied to

formally define instrument sets, as recommended by the authors of the method.

Genetic colocalization analyses were performed systematically at 915 inde-

pendent loci robustly associated with adult BMI (i.e. P<5x10−08 and r2<0.01)

using a meta-analysis GWAS from the Genetic Investigation of Anthropometric

Traits (GIANT) consortium and the UK Biobank (UKB) (n=681,275) (Yengo et

al. 2018a). To ensure that the highest SNP coverage available was implemented

for colocalization analyses, these datasets were combined with the summary

statistics from a BMI GWAS involving participants of European ancestry from

the UK Biobank only (n=463,005). This was done to obtain summary statis-

tics for SNPs not included in the meta-analysis with GIANT. The combined

BMI datasets provided summary statistics on a total of 12,322,387 SNPs. To

minimize the incorporation of findings which may potentially be influenced by

strong regional LD structure, variants which reside within the human leukocyte

antigen (HLA) region (chr6:25Mb-35Mb) were omitted.

In total, 86 genetic variants provided evidence of colocalization between BMI

and proximal subcutaneous adipose-tissue derived gene expression using meta-

analysed expression quantitative loci (eQTL) data derived from subcutaneous

adipose (n=1,257). Similarly, 140 genetic variants with evidence of colocaliza-

tion were found between BMI and proximal brain-tissue derived gene expres-

sion data using the meta-analysed brain-tissue samples (n=1,194). These two

instrument sets were used as proxies for what will be referred to as “adipose-”

and “brain-tissue instrumented BMI” respectively. These tissues were selected

due to their important biological relevance for adiposity and resulting instru-

ments were subject to various robustness evaluations such as ensuring that both

resulting instrument sets have very similar average effect estimates on BMI

(adipose=0.0148 and brain=0.0149 standard deviation change in BMI per ef-

fect allele) (as described fully in Chapter 4). Full details of the genetic variants

incorporated into adipose- and brain-tissue instrumented BMI exposures are

provided in Table D.1.
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Robust simulation studies in the literature have suggested that sample sizes

of eQTL studies over n=1,000 should maintain a high true positive and low false

positive rate for the majority of common variants identified by GWAS (Huang et

al. 2018). To assess how the number of instruments incorporated into exposure

variables in the multivariable framework may influence instrument strength,

the F-statistics of adipose- and brain-tissue derived instruments were compared

when randomly sampled. Randomly sampling pools of adipose- and brain-tissue

instruments suggested that even when 30 BMI instruments for both tissues are

available the proposed multivariable approach is capable of separating these two

exposures (F-statistic adipose=30.6 and F-statistic brain=29.9).

5.4.2 Tissue-partitioned childhood body size instruments

In this study, the instrument derivation pipeline as described above (and in

Chapter 4), was additionally applied to GWAS results from a measure of child-

hood body size using recall data from the UK Biobank study at age 10 (Bycroft

et al. 2018). UKB participants completed recall questionnaires asking if they

were “thinner”, “plumper” or “about average” when they were aged 10 years

old as compared to average. These GWAS results have been previously val-

idated using measured childhood BMI in 3 independent cohorts which found

that they predict BMI at this early stage in the lifecourse more strongly com-

pared to adult BMI genetic variants (Brandkvist et al. 2021; Richardson et al.

2020b, 2021b). Additionally the childhood BMI phenotype has been shown

to directly influence outcomes measured during childhood such as vitamin D

levels (Richardson, Power, and Davey Smith 2022), but have an indirect ef-

fect after accounting for genetically predicted adulthood adiposity on the same

outcome when measured in adulthood. There were 56 and 53 childhood body

size associated variants which colocalized with adipose- and brain-tissue eQTL

respectively. The details of these genetic variants can be found in Table D.2.
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5.4.3 Genome-wide association study data on site-specific

cancers

GWAS estimates were obtained on the following 7 site-specific cancer out-

comes: colorectal, breast, endometrial, lung, ovarian, kidney and prostate can-

cer (Michailidou et al. 2017; O’Mara et al. 2018; Phelan et al. 2017; Richardson

et al. 2021a; Schumacher et al. 2018). All site-specific cancers investigated in

the present analysis have previously been shown to be causally influenced by

adiposity in MR analyses (Carreras Torres et al. 2017; Gao et al. 2016; Painter

et al. 2016). If a particular SNP was not present in the outcome summary

data extracted from the MRC-IEU OpenGWAS database using the MR-base

platform, a proxy SNP in LD with the requested SNP was provided by default.

LD proxies were determined using the 1000 genomes European sample data.

To maximise statistical power for cancer outcomes where reported parental his-

tory of disease in the UK Biobank study provided a larger number of cases

compared to accessible datasets (i.e. colon and lung cancer), estimates were

obtained based on a GWAS by proxy approach previously shown to be highly

genetically correlated with findings from GWAS of diagnosed cases (DeBoever

et al. 2020; Liu, Erlich, and Pickrell 2017). A summary of all outcome datasets

used in this study is provided in Tables 5.1-5.2.
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Table 5.1: Datasets used in primary analyses* Includes UK Biobank data
Outcome Study Ancestry n (cases) n (controls) n
Breast cancer BCAC, 2017 European 122977 105974 228951
Ovarian cancer OCAC, 2017 European 25509 40941 66450
Endometrial cancer O’Mara, 2018 European 12906 108979 121885
Prostate cancer PRACTICAL, 2018 European 79148 61106 140254
Colorectal cancer (parental history proxy) UK Biobank* European 45213 412429 457642
Lung cancer (parental history proxy) UK Biobank* European 51073 404606 455679
Kidney cancer IARC European 5219 8011 13230

Table 5.2: Datasets used in sensitivity analyses* Includes UK Biobank data
Outcome Study Ancestry n cases n controls sample size
Type 2 diabetes Mahajan et al, 2018* European 55005 400308 455313
Coronary heart disease Nikpay et al, 2015 Mixed 60801 123504 123504
Atrial fibrillation Nielsen JB et al, 2018* European 60620 970216 1030836
Heart failure Shah S et al, 2020 European 47309 930014 977323
Left ventricular ejection fraction Pirruccello JP et al, 2020* European NA NA 36041
Left ventricular end diastolic volume Pirruccello JP et al, 2020* European NA NA 36041
Left ventricular end systolic volume Pirruccello JP et al, 2020* European NA NA 36041
Left ventricular stroke volume Pirruccello JP et al, 2020* European NA NA 36041
Stroke Malik et al , 2018 European 40585 406111 446696
Peripheral artery disease FinnGen, 2022 European 7098 206541 213639
Endometrial cancer Rashkin et al, 2020* European 2037 217619 219656
Lung cancer (ILLCO) McKay et al, 2017* European 29266 56450 85716
Cigarettes per day Liu et al, 2019 Mixed NA NA 249752
Alcohol intake frequency MRC-IEU, 2018* European NA NA 462346
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5.4.4 Univariable Mendelian randomization to estimate

the total effect of BMI

The total effect of genetically predicted adult BMI was first estimated using

the full set of 915 instruments (i.e. without considering their tissue-dependent

effects on gene expression) on the 7 site-specific cancer outcomes which have

previously been shown to be influenced by adiposity (Carreras Torres et al.

2017; Gao et al. 2016; Painter et al. 2016). Analyses were conducted using

two-sample Mendelian randomization (MR) with the inverse-variance weighted

(ivw) method (Burgess, Butterworth, and Thompson 2013) and repeated using

the MR Egger, weighted median and MR penalised weighted median methods,

which are typically more robust to horizontal pleiotropy (Hemani, Bowden, and

Davey Smith 2018). All analyses were conducted using the “TwoSampleMR” R

package. Estimates for instruments when analysing cancer endpoints based on

GWAS of sex-stratified populations (i.e., breast, endometrial and ovarian can-

cers in female only populations, prostate cancer in a male only population) were

obtained from previously conducted sex-stratified GWAS analyses of BMI (Pulit

et al. 2019). MR analyses were conducted using exposure and outcome data

from non-overlapping samples where possible to avoid overfitting bias (Burgess,

Davies, and Thompson 2016).

5.4.5 Tissue-partitioned Mendelian randomization

Next, the sets of adipose and brain expression variants which colocalized with

BMI (based on PPA4 ≥0.8) were used as instrumental variables within the MR

framework. When using the adipose colocalized variants as genetic proxies for

BMI, we refer to this exposure as “adipose-tissue instrumented BMI” hereafter,

whereas when using the subset of brain colocalized variants as instruments we

refer to this exposure as “brain-tissue instrumented BMI”. Univariable MR was

conducted (as above) to estimate the total effect of adipose and brain expressed

BMI separately on all 7 site-specific cancers.
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A multivariable MR (MVMR) approach was next employed to estimate the

direct effects of these tissue-partitioned exposures on each outcome by simul-

taneously estimating their effects in the same model. The use of MVMR to

separate the effects of adipose- and brain-tissue instrumented BMI was demon-

strated previously in a one-sample MR setting for various cardiovascular disease

traits (Chapter 4) (Leyden et al. 2022b). Due to the current limited availability

of individual level data with large numbers of cancer cases, the methodology

was adapted to leverage GWAS summary statistics for which there are publicly

available data from highly powered meta-analysed studies conducted by consor-

tia. Simulations were conducted using the “simulateGP” R package to evaluate

the relative power of this approach across a range of effect sizes (0.1, 0.125 ad

0.15), outcome sample sizes (10,000, 25,000, 50,000, 75,000 and 100,000) and

proportion of variance explained by tissue-partitioned instruments (0.5%, 1%,

1.5%, 2%, 2.5% and 3%) derived from a simulated GWAS of n=700,000 with

a pool of 915 independent genetic instruments (based on the BMI GWAS by

Yengo used in the applied analysis).

The independent effects of adipose- and brain-tissue instrumented BMI were

estimated using MVMR by weighting the beta effect estimates of the SNP-

exposure associations by their PPA4 values assessed by colocalization for each

tissue respectively. This weighting scheme was devised to incorporate the evi-

dence that genetic instruments putatively influence BMI due to their expression

in either adipose or brain tissues (i.e. SNPs with a very small PPA4 value were

down weighted using the approach as they are unlikely to influence BMI via gene

expression in adipose or brain tissue). A schematic diagram of this approach is

illustrated in Figure 5.2.
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Figure 5.2: Schematic diagram of Mendelian randomization (MR) analyses The total effect of BMI (A) was estimated using
univariable MR analysis. The independent effect of adipose- and brain-tissue instrumented BMI was estimated using a multivariable MR
approach (B) by weighting the beta effect estimates of the SNP-exposure associations by their PPA4 values assessed by colocalization for
each tissue respectively
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The novel two-sample MVMR approach was next applied to investigate

whether the effect of BMI on the 7 cancer types are predominantly attributed to

genetic variants exerting their effects via adipose- or brain-tissue related path-

ways. Importantly, it should be emphasized that the effect estimates derived

using tissue partitioned instruments should not be interpreted as causal effects

in the same manner as more conventional risk factors when analysed using MR.

Instead, this approach has been developed to investigate the separate contribu-

tions of genetic instruments that relate to different forms of a given trait, applied

in this study using BMI and adipose/brain tissue-derived gene expression as an

exemplar. To this end, the framework provides a novel approach to dissect dis-

ease pathways between risk factors and disease endpoints by leveraging genetic

instruments under the principles of MR.

The sensitivity of this weighted two-sample MVMR approach was assessed

by analysing the same cardiovascular disease endpoints and measures of cardiac

structure investigated in the previous study (Leyden et al. 2022b) (ref Chapter

4). The aim of this analysis was to evaluate whether the more widely applicable

two-sample approach was capable of recapitulating findings from its application

in a one-sample MVMR setting. Instrument strength in MVMR analyses was

evaluated using conditional F-statistics as derived with the “MVMR” R package

with F>10 used as indication that weak instrument bias was not influencing the

findings (Sanderson et al. 2019) (Table 5.3). Conditional F-statistics were par-

ticularly important to evaluate within the MVMR framework to demonstrate

that the two molecular forms of BMI being analysed could be instrumented as

two separate exposures in the model. In order to maximise the number of re-

liable instruments incorporated in exposure variables, the effect of varying the

PPA threshold for eQTL instrument identification on the conditional F-statistic

was demonstrated in an analysis on coronary artery disease (Table 5.3). Low-

ering the PPA threshold in the instrument inclusion criteria resulted in weaker

exposure variables as indicated by their conditional F-statistics. Therefore it is

advocated that the recommended PPA4 threshold proposed by the coloc method
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developers (i.e PPA4>0.8) be used when identifying tissue-partitioned instru-

ments.

Table 5.3: Conditional F-statistics Calculated for adipose and brain tissue
instrumented BMI exposures on outcomes analysed in multivariable MR anal-
yses

Adipose Brain
Bowel cancer 23.64992602 32.96026744
Lung cancer 23.64992602 32.96026744
Breast cancer 17.49251839 12.25345951
Ovarian cancer 17.49251839 12.25345951
Endometrial cancer 17.49984267 12.39496929
Prostate cancer 16.37674871 11.90399007
Kidney cancer 26.32063 35.90882
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Figure 5.3: Effect of varying the PPA4 threshold on instrument strength To evaluate the robustness of the PPA4 threshold
for instrument derivation, an extended analysis was conducted to investigate how lowering the threshold would influence the conditional
F-statistics in the exposure variables incorporated into analyses with coronary artery disease as the outcome. In conclusion, lowering
the PPA4 threshold in this context results in an overall lower conditional F-statistic for exposure variables, therefore suggesting that the
initial cut-off of PPA4 proposed is likely the most appropriate for the method. A= brain tissue instrumented BMI; B= adipose tissue
instrumented BMI.
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5.5 Results

5.5.1 Tissue-partitioned MR performed in a two-sample

setting recapitulates earlier findings

To demonstrate the sensitivity of the adapted two-sample MVMR approach,

the method was applied to test whether it would recapitulate previously pub-

lished findings by analysing the adipose- and brain-instrumented BMI exposures

against 6 cardiovascular disease outcomes and 4 measures of cardiac structure

(ref Chapter 4) (Leyden et al. 2022b). The genetically predicted effect of BMI

without taking the tissue-dependent effects on gene expression into account

(i.e. using all 915 BMI variants as instrumental variables) provided strong ev-

idence of an increasing effect on all outcomes except left ventricular ejection

fraction (LVEF) (Beta=-0.06; 95% CI= -0.10:-0.02; P=0.005) in a two-sample

MR analysis Tables D.3-D.4. Overall, the results of the one-sample and two-

sample MVMR analyses investigating adipose- and brain-instrumented BMI

were concordant in terms of the predominant tissue-dependent exposure Ta-

bles 5.4-5.5. For example, the genetically predicted effect of BMI on risk

of cardiovascular disease outcomes such as type 2 diabetes (T2D) (OR=2.38;

95% CI=1.41-3.99; P=0.001), coronary heart disease (CHD) (OR=1.43; 95%

CI=1.08-1.91; P=0.01) and heart failure (HF) (OR=1.60; 95% CI=1.26-2.05;

P=0.0001) remained strong for brain-tissue instrumented BMI when the ef-

fect of adipose-tissue instrumented BMI was accounted for in the same model

using the two-sample MVMR approach. Additionally, the adipose-tissue in-

strumented BMI effect on cardiovascular disease outcomes attenuated when ac-

counting for the effect of brain-tissue instrumented BMI (e.g.: T2D (OR=0.81;

95% CI=0.44-1.50; P=0.50), CHD (OR=1.18; 95% CI=0.84-1.66; P=0.34), HF

(OR=1.23; 95% CI=0.92-1.64; P=0.16)).

Conversely, the opposite trend was observed for measures of cardiac structure

as identified previously in a one-sample setting. Structural changes in the heart,

for example increases in left ventricular end-diastolic volume (LVEDV) and
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left ventricular end-systolic volume (LVESV), are a defining feature of dilated

cardiomyopathy and an important predictor of HF. The positive relationship

between BMI and left-ventricular cardiac measures such as LVEDV (Beta=0.23;

95% CI=0.02-0.43; P=0.03) and SV (Beta=0.23; 95% CI=0.02-0.45; P=0.04)

was maintained by the adipose-tissue instrumented BMI exposure, while the

brain-tissue instrumented BMI effect attenuated (LVEDV: Beta=0.06; 95% CI:-

0.12-0.23; P=0.51; SV: Beta=0.07; 95% CI=-0.11:0.26; P=0.43), as reported

previously (Leyden et al. 2022b) (ref Chapter 4). Full details of these results

are provided in Tables 5.4-5.5 and Tables D.5-D.6.
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Table 5.4: Summary of the results of univariable and multivariable tissue-partitioned two-sample MR analyses (car-
diovascular disease outcomes) Abbreviations: Atrial fibrillation (AF); type 2 diabetes (T2D), coronary heart disease (CHD), heart
failure (HF), peripheral artery disease (PAD)

Univariable MR analysis Multivariable MR analysis
outcome exposure nsnp b se pval OR lower CI upper CI nsnp b se pval OR lower CI upper CI

AF
adipose BMI 85 0.288 0.103 0.0050 1.334 1.091 1.631 182 0.114 0.158 0.468 1.121 0.823 1.528
brain BMI 139 0.303 0.082 0.0002 1.354 1.154 1.589 182 0.258 0.134 0.054 1.295 0.996 1.683

T2D
adipose BMI 81 0.705 0.168 2.79E-05 2.024 1.456 2.816 176 0.183 0.222 0.409 1.201 0.777 1.858
brain BMI 136 0.785 0.091 6.29E-18 2.193 1.835 2.621 176 0.795 0.190 2.73E-05 2.215 1.527 3.211

CHD
adipose BMI 86 0.357 0.126 0.0046 1.430 1.116 1.831 183 0.166 0.174 0.340 1.181 0.839 1.662
brain BMI 140 0.416 0.083 5.74E-07 1.515 1.288 1.784 183 0.361 0.147 0.014 1.435 1.075 1.915

HF
adipose BMI 86 0.507 0.102 7.07E-07 1.660 1.359 2.028 183 0.205 0.147 0.164 1.228 0.920 1.638
brain BMI 140 0.548 0.073 4.85E-14 1.729 1.500 1.994 183 0.473 0.125 0.0001 1.604 1.256 2.049

Stroke
adipose BMI 85 0.152 0.123 0.2151 1.165 0.915 1.482 182 0.110 0.171 0.520 1.117 0.798 1.563
brain BMI 139 0.116 0.078 0.1377 1.123 0.964 1.308 182 0.085 0.145 0.557 1.089 0.819 1.448

PAD
adipose BMI 85 0.194 0.185 0.2953 1.214 0.844 1.746 181 0.171 0.290 0.555 1.187 0.672 2.095
brain BMI 138 0.400 0.140 0.0043 1.492 1.134 1.964 181 0.308 0.246 0.211 1.361 0.840 2.206

Table 5.5: Summary of the results of univariable and multivariable tissue-partitioned two-sample MR analyses (cardiac
measures) Abbreviations: Left ventricular end-diastolic volume (LVEDV), left ventricular stroke volume (LVSV), left ventricular end-
systolic volume (LVESV) and left ventricular ejection fraction (LVEF)

Univariable MR analysis Multivariable MR analysis
outcome exposure nsnp b se pval lower CI upper CI nsnp b se pval lower CI upper CI

LVEDV
adipose BMI 82 0.282 0.069 3.77E-05 0.148 0.417 183 0.226 0.105 0.031 0.021 0.432
brain BMI 135 0.162 0.049 0.0010 0.065 0.259 183 0.059 0.089 0.510 -0.116 0.233

LVSV
adipose BMI 82 0.296 0.075 7.44E-05 0.149 0.442 183 0.233 0.111 0.036 0.015 0.450
brain BMI 135 0.179 0.054 0.0009 0.073 0.284 183 0.074 0.094 0.431 -0.110 0.259

LVESV
adipose BMI 82 0.203 0.068 0.0030 0.069 0.337 183 0.150 0.104 0.149 -0.054 0.354
brain BMI 135 0.116 0.049 0.0174 0.020 0.211 183 0.047 0.088 0.594 -0.126 0.221

LVEF
adipose BMI 82 -0.035 0.076 0.6486 -0.184 0.115 183 -0.004 0.114 0.969 -0.228 0.219
brain BMI 135 -0.014 0.055 0.8050 -0.121 0.094 183 -0.013 0.097 0.894 -0.202 0.177
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5.5.2 Tissue partitioned MR analyses of cancer outcomes

Univariable MR analyses of BMI effects on cancer outcomes

MR analyses were firstly carried out to estimate the total effect of geneti-

cally predicted BMI using all 915 independent variants and each of the 7 can-

cer endpoints. The MR estimates reproduced findings from previously pub-

lished MR studies of the relationship between adiposity and site-specific cancers

(i.e., without considering tissue-dependent effects on gene expression) (Car-

reras Torres et al. 2017; Gao et al. 2016; Painter et al. 2016) (Tables 5.6-

D.7; (Tables 5.4 A). Univariable MR analyses of BMI instrumented with the

adipose- and brain-tissue colocalized variants found strong evidence of an effect

on risk of outcomes such as endometrial (adipose: OR=1.84; 95% CI=1.35-

2.51; P=9.88x10−5; brain: OR=1.61; 95% CI= 1.32:1.97; P= 3.7x10−6) and

lung (adipose: OR=1.07; 95% CI= 0.95:1.19; P= 0.27; brain: OR= 1.17; 95%

CI= 1.07:1.27; P= 0.0003) cancer. Evidence of a genetically predicted effect

using tissue-partitioned BMI was also found on lower risk of prostate cancer

(adipose: OR= 0.79; 95% CI= 0.6:0.98; P= 0.03; brain: OR= 0.77; 95% CI=

0.65:0.91; P=0.002).

Multivariable MR analyses of tissue-partitioned BMI effects on can-

cer outcomes

Applying the weighted two-sample MVMR approach to separate the “indepen-

dent” effects of adipose- and brain-tissue instrumented BMI highlighted in-

stances where these tissue-partitioned sets of variants may contribute differ-

entially to site-specific cancer risk (Tables 5.4). For example, the indepen-

dent effect of brain-tissue instrumented BMI on risk of endometrial cancer at-

tenuated when analysed simultaneously with adipose-tissue instrumented BMI

(OR=1.20; 95% CI=0.81:1.78; P=0.36), whereas the effect of adipose-tissue

instrumented BMI remained strong (OR=1.71; 95% CI=1.07:2.74; P=0.02).

Conversely, evidence of an independent effect of adipose-tissue instrumented
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BMI on lung cancer risk attenuated in the MVMR model (OR=0.98; 95% CI=

0.82:1.17; P=0.83) and the effect of brain-tissue instrumented BMI remained

strongly positive (OR=1.17; 95% CI=1.01:1.36; P=0.03). A comparison of all

univariable and multivariable estimates for each site-specific cancer outcome is

provided in Tables 5.7-D.8.

Weak evidence of an independent effect was detected for both adipose-

(OR=1.03; 95% CI= 0.78:1.37; P=0.80) and brain-tissue (OR=0.85; 95% CI=

0.67:1.07; P=0.17) instrumented BMI and breast cancer. Given the emerging

role of childhood obesity in breast cancer risk (Richardson et al. 2020b), the en-

tire instrument derivation pipeline was re-applied using results from a large-scale

GWAS of childhood body size based on age 10 in the lifecourse. In total, 56 vari-

ants provided strong evidence of colocalization with proximal gene expression

derived from subcutaneous adipose tissue, and 53 variants using gene expres-

sion data from brain-derived tissue (Tables D.2). The mean absolute effect

for each subset of these tissue-partitioned instruments on childhood body size

were similar (adipose=0.013, brain=0.013). Although both adipose- and brain-

tissue instrumented childhood body size effects provided evidence of an effect

on breast cancer risk in an univariable setting (adipose: OR=0.59; 95% CI=

0.41:0.87; P= 0.007; brain: OR=0.58; 95% CI=0.42:0.81; P=0.001), only weak

evidence of an independent effect was found in the multivariable MR analysis for

adipose-tissue instrumented childhood body size (OR=0.98; 95% CI=0.55:1.73;

P=0.93). In contrast, the central estimate for genetically predicted childhood

body size when instrumented using brain-tissue colocalized variants remained

robust in a multivariable setting (OR= 0.57; 95% CI= 0.33:0.98; P=0.04) Ta-

bles 5.8-5.9, D.9.
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Figure 5.4: Forest plot summarizing the results of two-sample Mendelian randomization analyses. Summary of Mendelian
randomization results for BMI on 7 site-specific cancers based on (A) univariable analyses using the total set of BMI variants and (B)
analyses instrumented in a multivariable setting with tissue-partitioned variants. Forest plots illustrating the odds ratios per change in
risk factor and 95% confidence intervals (CIs) for each outcome analyzed by MR are shown. The effect estimates of BMI instrumented
with all 915 BMI SNPs is illustrated in (A) (red), and the independent effect estimates of BMI instrumented by adipose- (blue) and brain
(orange)-tissue-derived instruments in the multivariable MR model are illustrated in (B)
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Table 5.6: Two-sample MR evaluating the total effect of BMI instru-
mented with 915 genetic variants on cancer outcomes MR estimates
derived using the ivw method

outcome nsnp b se pval OR lower CI upper CI
Colorectal cancer 891 -0.010 0.016 0.52424 0.990 0.959 1.022
Lung cancer 891 0.116 0.017 7.50E-12 1.123 1.086 1.161
Endometrial cancer 887 0.527 0.045 4.82E-31 1.693 1.549 1.851
Ovarian cancer 837 0.064 0.040 0.10836 1.067 0.986 1.154
Breast cancer 838 -0.091 0.030 0.00221 0.913 0.862 0.968
Prostate cancer 881 -0.085 0.034 0.01232 0.918 0.859 0.982
Kidney cancer 802 0.284 0.078 0.00026 1.329 1.141 1.548
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Table 5.7: Univariable and multivariable MR analysis of adipose and brain instrumented BMI in a two-sample setting
(Cancer outcomes)

Univariable MR analysis Multivariable MR analysis
outcome exposure nsnp b se pval OR lower CI upper CI nsnp b se pval OR lower CI upper CI

Breast cancer
adipose BMI 80 -0.103 0.080 0.2000 0.902 0.770 1.056 173 0.035 0.142 0.807 1.0354 0.7838 1.3677
brain BMI 134 -0.080 0.069 0.2476 0.923 0.807 1.057 173 -0.162 0.119 0.171 0.8501 0.6738 1.0725

Ovarian cancer
adipose BMI 80 -0.143 0.124 0.2485 0.867 0.680 1.105 173 -0.165 0.227 0.466 0.8476 0.5433 1.3222
brain BMI 134 -0.036 0.106 0.7370 0.965 0.784 1.187 173 0.072 0.189 0.702 1.0751 0.7422 1.5574

Endometrial cancer
adipose BMI 85 0.611 0.157 9.88E-05 1.843 1.355 2.507 182 0.538 0.239 0.024 1.7133 1.0731 2.7355
brain BMI 140 0.477 0.103 3.70E-06 1.612 1.317 1.973 182 0.185 0.200 0.356 1.2032 0.8124 1.7822

Prostate cancer
adipose BMI 84 -0.236 0.111 0.0334 0.790 0.636 0.982 178 0.006 0.171 0.973 1.0058 0.7199 1.4053
brain BMI 136 -0.266 0.087 0.0022 0.767 0.646 0.909 178 -0.282 0.145 0.053 0.7544 0.5672 1.0033

Colon cancer
adipose BMI 86 -0.052 0.055 0.3395 0.949 0.853 1.056 183 0.034 0.086 0.693 1.0344 0.8743 1.2239
brain BMI 140 -0.067 0.043 0.1141 0.935 0.860 1.016 183 -0.080 0.073 0.275 0.9235 0.8005 1.0655

Lung cancer
adipose BMI 86 0.066 0.059 0.2653 1.068 0.951 1.199 183 -0.019 0.089 0.834 0.9815 0.8242 1.1688
brain BMI 140 0.156 0.044 0.0004 1.169 1.072 1.274 183 0.161 0.076 0.034 1.1745 1.0125 1.3625

Kidney cancer
adipose BMI 86 0.382 0.264 0.1476 1.466 0.873 2.460 182 0.548 0.409 0.180 1.7300 0.7765 3.8544
brain BMI 139 -0.020 0.194 0.9192 0.981 0.671 1.433 182 -0.269 0.345 0.435 0.7640 0.3886 1.5021

Table 5.8: Two-sample MR analysis instrumented using childhood BMI instruments on breast cancer risk Total early-life
BMI effect

exposure method nsnp b se pval OR lower CI upper CI

childhood BMI

MR Egger 262 -0.7892 0.1258 1.48E-09 0.4542 0.3549 0.5812
Weighted median 262 -0.5019 0.0636 2.94E-15 0.6054 0.5345 0.6857
Inverse variance weighted 262 -0.4927 0.0596 1.45E-16 0.6110 0.5436 0.6868
Penalised weighted median 262 -0.4327 0.0595 3.54E-13 0.6488 0.5774 0.7290
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Table 5.9: Two-sample univariable and multivariable tissue-partitioned early-life effects on breast cancer risk Results
generated using the ivw method

Univariable MR analysis Multivariable MR analysis
exposure nsnp b se pval OR lower CI upper CI nsnp b se pval OR lower CI upper CI
adipose BMI 55 -0.518 0.192 0.007 0.596 0.409 0.868 75 -0.024 0.291 0.935 0.976 0.552 1.726
brain BMI 49 -0.545 0.170 0.001 0.580 0.415 0.810 75 -0.571 0.280 0.041 0.565 0.327 0.978
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5.5.3 Replication and negative control analyses

As a further analysis, additional datasets were incorporated to investigate the

replicability of the findings for endometrial and lung cancer, and it is advocated

that similar validation analyses be conducted for any future applications of the

tissue-partitioned MVMR approach. The independent effect of adipose-tissue

instrumented BMI on endometrial cancer risk is supported by an analysis using

data obtained from the UK Biobank (UKB) and the Kaiser Permanente Genetic

Epidemiology Research on Adult Health and Aging (GERA) cohorts (Rashkin

et al. 2020) (OR=3.03; 95% CI= 1.42:6.47; P=0.004), despite the small case

numbers in this dataset. The independent effects of brain-tissue instrumented

BMI on lung cancer using an additional case-control GWAS study (McKay et

al. 2017) did not replicate (OR=1.10; 95% CI= 0.78:1.55; P=0.57). However,

evidence that brain-tissue instrumented BMI is predominantly responsible for

driving the relationship between BMI and “cigarettes smoked per day” when

analysed as an outcome is provided (adipose: Beta=0.03; 95% CI=-0.18:0.24;

P=0.76; brain: Beta=0.44; 95% CI=0.26:0.61; P=1.62x10−6), which is note-

worthy given the strong causal effect that smoking has on lung cancer risk.

Detailed results of all replication analyses are provided in Tables 5.10-5.11

and Tables D.10-D.13.

Negative control analysis using “null” tissues and exposure

To demonstrate the importance of carefully selecting biologically relevant tissue

types when partitioning genetic instruments for an exposure using the tissue-

partitioning MR approach as described, the entire instrument derivation pipeline

was repeated using tissues which are unlikely to be of biological relevance for

BMI. This analysis was performed by TGR while the study was undergoing the

peer-review process. eQTL data were obtained for minor salivory gland and

ovary tissues from the GTEx Consortium (v8) (Consortium 2020; Grundberg

et al. 2012; Watanabe et al. 2017) for this purpose as the derived sets of in-

struments provided very similar average magnitudes of effect on BMI (minor

196



salivery gland=0.0147 and ovary=0.0148 per 1-SD change in BMI). Similarly,

the resulting instrument sets (n=33.6 variants for minor salivory gland and

n=45.1 variants for ovary) yielded conditional F-statistics which suggested that

they were unlikely to be prone to weak instrument bias. This was not the case

when evaluating other tissue combinations however (e.g. whole blood). In con-

trast to findings from the primary analysis, there was very weak evidence to

suggest that partitioning variants from these putatively non-causal tissues for

BMI leads to robust evidence of an effect on the site-specific cancer endpoints

analysed previously Tables D.14.

Investigating the 7 site-specific cancer outcomes evaluated in the primary

analysis provided very weak evidence of an effect based on all multivariable es-

timates, emphasising the importance of matching causal tissues to exposures

being instrumented by the approach. Similarly, an attempt to partition genetic

instruments using the adipose- and brain-tissue derived datasets used in the pri-

mary analysis was made for a phenotype where these tissues are unlikely to be

functionally important. A GWAS of psoriasis, a primarily immune-associated

disease, conducted in the UKB (n=462,933) was selected for this purpose. The

results of this investigation further reinforced that tissue types need to be care-

fully selected for the approach to produce meaningful results, given that only

2 variants were identified with evidence of colocalization with adipose-tissue

derived gene expression and only 1 variant with brain-derived gene expression.

As a final sensitivity analysis, the effects where adipose- and brain-tissue in-

struments provided evidence of an independent effect on cancer against another

tissue BMI phenotype were evaluated. To do this, the instrument derivation

pipeline was applied to gene expression data derived from whole blood provided

by the eQTLGen consortium study (n=31,684) (V øsa et al. 2018). Colocal-

ization analysis was performed at all 915 BMI loci using summary statistics

derived in whole blood. This identified 162 variants where there was evidence

of a shared causal effect (PPA4 ≥ 0.8) between BMI and whole blood derived

gene expression. Repeat multivariable analyses using the tissue-paritioned ap-
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proach indicated that the independent effect of brain-instrumented BMI on lung

cancer risk remained robust when analysed simultaneously with blood-tissue in-

strumented BMI (OR=1.14; 95% CI=1.00:1.30; P=0.04), while the blood-BMI

effect attenuated (OR=1.09; 95% CI=0.96:1.23; P=0.18). Similarly, the inde-

pendent effect of adipose-instrumented BMI on endometrial cancer replicated

when analysed simultaneously with blood-tissue instrumented BMI (OR=2.33;

95% CI=1.06:5.12; P=0.03), while weak evidence of an independent effect was

obtained for blood-tissue instrumented BMI (OR= 1.07; 95% CI= 0.58:1.96;

P=0.83) Tables D.15-D.16. While it should be advocated that tissue eQTL

datasets used for instrument derivation be obtained from datasets of compa-

rable sample size to minimize the introduction of bias on the performance of

exposures in the model, this analysis provides a useful robustness analysis for

the findings presented in the present study.
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Table 5.10: Two-sample univariable and multivariable tissue-partitioned BMI effects on replication datasets Lung cancer
(McKay et al, 2017), Endometrial (Rashkin et al, 2020). Results generated using the ivw method

Univariable MR analysis Multivariable MR analysis
outcome exposure nsnp b se pval OR lower CI upper CI nsnp b se pval OR lower CI upper CI

Endometrial cancer
adipose BMI 85 0.814 0.296 0.006 2.256 1.263 4.029 182 1.126 0.401 0.005 3.083 1.404 6.772
brain BMI 139 0.235 0.232 0.311 1.265 0.803 1.994 182 -0.296 0.336 0.378 0.744 0.385 1.436

Lung cancer
adipose BMI 79 0.348 0.133 0.009 1.416 1.091 1.838 173 0.345 0.209 0.098 1.412 0.938 2.125
brain BMI 134 0.289 0.098 0.003 1.335 1.101 1.619 173 0.098 0.173 0.570 1.103 0.786 1.547

Table 5.11: Two-sample univariable and multivariable tissue-partitioned BMI effects on replication datasets (part 2)
Cigarettes smoked per day and alcohol intake frequency. Results generated using the ivw method

Univariable MR analysis Multivariable MR analysis
outcome exposure nsnp b se pval lower CI upper CI nsnp b se pval lower CI upper CI

Cigarettes smoked per day
adipose BMI 85 0.337 0.066 3.03E-07 0.2083 0.4666 179 0.032 0.107 0.761 -0.177 0.241
brain BMI 136 0.414 0.054 1.78E-14 0.3078 0.5194 179 0.436 0.091 1.62E-06 0.258 0.614

Alcohol intake frequency
adipose BMI 88 0.314 0.049 1.30E-10 0.2183 0.4099 183 0.186 0.082 0.023 0.026 0.346
brain BMI 141 0.316 0.042 3.49E-14 0.2346 0.3982 183 0.219 0.069 0.002 0.083 0.355
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5.6 Discussion

The role of obesity in cancer aetiology is highly complex. In this study, the

principles of MR have been applied to estimate the effects of separate tissue-

partitioned subcomponents of BMI on the risk of 7 site-specific cancer outcomes

which have previously been shown to be influenced by adiposity (Carreras Tor-

res et al. 2017; Gao et al. 2016; Painter et al. 2016). The results generated using

the two-sample MVMR approach detect distinct adipose- and brain-tissue BMI

mediated effects and provide concordant results with a recently conducted one-

sample multivariable MR analysis on cardiovascular disease and cardiac struc-

ture phenotypes (Leyden et al. 2022b) (Chapter 4). Application of this novel

extension of multivariable MR to cancer outcomes provides mechanistic insight

into the distinct pathways underlying variation in BMI and risk of developing

certain cancer types, particularly endometrial, lung and breast cancer.

Tissue-partitioned BMI effects on endometrial cancer risk

Endometrial cancer is more strongly associated with obesity than any other

cancer (Reeves et al. 2007; Renehan et al. 2008). Adipose tissue accumula-

tion is an important driver of endometrial cancer progression via three main

mechanisms: excess oestrogen exposure (Grodin, Siiteri, and MacDonald 1973;

Rodriguez et al. 2019), insulin resistance (Mu et al. 2012), and the induction of

pro-inflammatory phenotypes as a result of hypoxia following adipose tissue ex-

pansion (Hosogai et al. 2007; Shawon, Eriksson, and Li 2017). The variation in

gene expression captured by the adipose-tissue instrumented BMI exposure in

this study may have several molecular consequences which can be postulated to

differentially influence disease aetiology. For instance, adipose tissue is a major

source of multipotent mesenchymal stem cells (MSCs) which have significant

proliferative capacity (Minteer, Marra, and Rubin 2013; Zuk et al. 2002). The

characteristic migration of MSCs towards sites of injury (Caplan 2009; Chapel

et al. 2003) includes the sites of several tumour types and has been shown to
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contribute to cell growth in tumour microenvironments (Karnoub et al. 2007;

Kucerova et al. 2010; Prantl et al. 2010). Regional differences in proliferation

and differentiation may favourably impact metabolic phenotypes, explaining the

attenuated effect observed between adipose-BMI on common obesity comorbidi-

ties such as T2D (Leyden et al. 2022b; Loos and Kilpeläinen 2018; Martin et

al. 2022). A plausible explanation for this has been attributed to variation in

fat-distribution, whereby adiposity increasing alleles associated with greater fat

storage capacity subcutaneously (as opposed to viscerally) are protective (Loos

and Kilpeläinen 2018).

On the other hand, the results of the present study suggest that adipose-

tissue BMI may capture a particular phenotype which is more susceptible to

inducing endometrial tumorigenicity. Genetic loci incorporated into the adipose-

tissue BMI exposure included several regulators of adipogenesis which may be

of prognostic importance for endometrial cancer. For example, FST encodes

the adipokine follistatin which has been shown to regulate adipocyte differen-

tiation (Braga et al. 2014; Brown et al. 2011; Flanagan et al. 2009) and is also

a marker of polycystic ovary syndrome (PCOS) (Raeisi et al. 2021). The de-

velopmental transcription factor TBX15 influences adipogenesis (Gburcik et al.

2012; Gesta et al. 2011; Sun et al. 2019) and has recently been identified as a

key regulator of co-expression networks regulating central adiposity (Pan et al.

2021). Furthermore, expression of CADM1 has a role in extracellular matrix

adhesion (Moiseeva et al. 2014) and has been shown to promote endometrial

cancer progression (De Strooper et al. 2014; Wang et al. 2021; Yadav et al.

2020). These findings help to establish an important link between the regu-

lation of body composition and endometrial cancer risk and warrant further

functional investigation.

Tissue-partitioned BMI effects on lung cancer risk

The epidemiological evidence for the relationship between obesity and lung can-

cer is complicated, with some studies reporting seemingly paradoxical findings
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(Ardesch et al. 2020; Bhaskaran et al. 2014b; Mavridis and Michaelidou 2019;

Yang et al. 2013). This can most likely be attributed to the strong potential for

confounding caused by smoking status and the effect of smoking on body weight.

Our results are consistent with a positive causal effect of genetically predicted

higher BMI on lung cancer risk, which has been reported in earlier MR studies

(Carreras Torres et al. 2017; Gao et al. 2016). The results of the multivari-

able MR analysis suggest that BMI when instrumented using the brain-tissue

BMI exposure independently increases risk of lung cancer when the effect of

adipose-tissue BMI is accounted for. This is further supported by the indepen-

dent effect observed for brain-tissue BMI on cigarette smoking shown in our

sensitivity analysis. A potential limitation of the analysis to detect supporting

evidence of the brain-tissue instrumented BMI effect in the replication dataset

may have been introduced by covariate adjustment amongst the contributing

consortia for variables including alcohol dependence. Investigating the effect

of the tissue-partitioned instruments on alcohol intake frequency suggests that

the brain-tissue derived variants relate more strongly to this behavioural trait

Tables D.12. As such, this finding therefore requires further investigation by

future studies.

Earlier, it was postulated that the brain-tissue BMI exposure may relate to

a molecular phenotype which predominantly influences BMI through a genetic

predisposition for increased adiposity, likely arising from variation in appetite

and energy intake (Leyden et al. 2022b). Additionally, the findings of the present

study contribute to our understanding of the positive relationship between BMI

and smoking. BMI has been shown to bi-directionally associate with smoking

(Taylor et al. 2019a); whereby having a higher BMI is positively associated with

smoking (Clark et al. 2004; Farley et al. 2012; Taylor et al. 2019a), and smoking

heaviness inversely effects BMI (Åsvold et al. 2014; Freathy et al. 2011; Morris et

al. 2015). The overall positive relationship between BMI and smoking behaviour

has been well replicated, likely influenced both by behavioural (Calzo et al.

2012; Howe et al. 2017; Tomeo et al. 1999; Winter et al. 2002) and physiological
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factors (Jain and Bernert 2010), while the inverse relationship between smoking

heaviness and BMI may be mediated by the effect of nicotine on energy balance

(Fang et al. 2021). The brain-tissue BMI exposure reflects the BMI phenotype

leading to smoking, suggesting that smoking may be a mediator between BMI

and lung cancer, or may be partly influenced by a shared aetiology for BMI and

smoking (Carreras-Torres et al. 2018; Criscitelli and Avena 2016). For example,

adiposity genes incorporated into the brain-tissue BMI exposure such as BDNF

and OPRL1, have each been shown to contribute to energy-intake (Farhang

et al. 2010; Rios 2013; Xu et al. 2003), binge-eating (Akkermann et al. 2011;

Hardaway et al. 2016; Statnick et al. 2016), and smoking initiation (Kasai et al.

2016; Korhonen et al. 2020; Lang et al. 2007; Ohmoto and Takahashi 2019).

Furthermore, association studies have identified a positive relationship between

sensitivity to sweet tasting stimuli and impulsive behaviour (Weafer, Burkhardt,

and Wit 2014). Among the loci incorporated into the brain-tissue BMI exposure

are several genes which are highly represented within the sweet taste signaling

pathway (e.g. KCNK3, PLCD4, PRKCD) (Shawon, Eriksson, and Li 2017).

Taken together, these findings highlight compelling parallels between the impact

of variation in neuroregulatory pathways on energy intake, smoking behaviour,

and lifetime risk of lung cancer which will be important to delineate further.

Tissue-partitioned early-life BMI effects on breast cancer risk

The univariable MR results align with studies which have established strong

evidence indicating that a larger body-size in childhood is protective against

breast cancer risk (Guo et al. 2016; Richardson et al. 2020b; Shawon, Eriksson,

and Li 2017). The results of the multivariable MR suggest that the independent

effect of childhood body-size when instrumented using the brain-tissue BMI

exposure may contribute to the protective effect on breast cancer. Nutritional

status and higher adiposity in childhood are important drivers of earlier pubertal

onset (Freedman et al. 2002; Kaplowitz 2008), which is a demonstrated risk

factor for breast cancer risk (Cancer 2012; Ritte et al. 2013). Further exploration
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of the molecular characteristics of higher-childhood BMI phenotypes on key

developmental stages, such as age of menarche, may provide important insight

on potential preventative measures. Previous MR studies (Gao et al. 2016;

Guo et al. 2016), including the results presented here, have also reported an

inverse relationship between lifetime BMI and breast cancer risk. However,

observational studies have suggested that higher adiposity is an important driver

of breast cancer susceptibility in post-menopausal women (Brandt et al. 2021;

Guo, Key, and Reeves 2018; Renehan et al. 2008). As such, additional analyses

stratified by pre- and post-menopause are needed to further investigate the

independent effects of BMI via distinct tissue types on breast cancer risk.

Limitations

This study has several limitations. In all MR analyses a null effect was ob-

served for the relationship between BMI and colon cancer (based on a GWAS by

proxy study) (51,073/404,606 cases/controls). While GWAS ascertained from

family history of disease has demonstrated utility (Liu, Erlich, and Pickrell

2017; Purcell, Sham, and Daly 2005), these resources are liable to have atten-

uated effect sizes and reduced statistical power relative to conventional GWAS

datasets. Repeated analyses will be needed to determine these effects should

the summary statistics from large-scale cohort studies on colon cancer become

publicly available. Similarly, evidence for independent effects of adipose- or

brain-tissue BMI on kidney cancer are not reported in this study (5,219/8011

cases/controls). Simulations suggest that the tissue-partitioned MR approach

is adequately powered as long as tissue-partitioned instruments explained at

least 1% of the variance in the exposure trait, as well as analysing outcome

GWAS datasets based on at least 75,000 participants Tables D.1. As such, the

analysis should be repeated to evaluate independent effects of tissue-partitioned

instruments on kidney cancer once sufficient sample sizes become accessible.

Furthermore, another important aspect to address in future studies will be

the different aetiological subtypes of several of the cancer types assessed in the
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present study. For example, BMI is heterogeneously associated with the devel-

opment of the histological subtypes of renal cell carcinoma (RCC) (Callahan

et al. 2018; Pol et al. 2021), which may potentially influence attenuation of the

observed associations between the tissue-stratified BMI exposures and kidney

cancer.

Lastly, the present study is focused on the effects of BMI mediated predomi-

nantly by neural and subcutaneous adipose gene expression, due to both sample

size availability and biological relevance to BMI. Future analyses incorporating

gene expression data from additional tissue types will likely yield further in-

sight on important aetiological effects for site-specific cancers once sufficiently

powered datasets are available.

Concluding remarks

In summary, this study demonstrates a novel application of multivariable MR

which facilitates the investigation of the genetically predicted effects of distinct

molecular subcomponents of BMI on risk of site-specific cancers. By extending

this approach into a two-sample setting, this method may have wide applicabil-

ity on a spectrum of disease outcomes where individual level data obtained in

highly powered cohort studies is not currently publicly available. Furthermore,

the findings provide important insight into the divergent underlying pathways

between body mass index and risk of site-specific cancers.
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Chapter 6

Discussion

6.1 Discussion and perspectives

The aim of this project was to explore how genetic approaches may be used

to assess the role of gene expression in the central nervous system (CNS) on

complex cardiovascular traits. This thesis lays a strong foundation on the inte-

gration of multidisciplinary genetic approaches to examine the role of the CNS

in complex traits. It provides a proposed approach on how recent technological

advances may be integrated to begin addressing the unique challenges associ-

ated with characterizing the role of individual or novel genes in the brain. This

work describes novel methodology likely to have wide applicability in the field of

functional genomics and genetic epidemiology, while simultaneously providing a

valuable resource of candidate central and peripherally expressed genes to probe

experimentally. Overall, this work provides a valuable perspective on the current

challenges associated with studying the role of neural mechanisms in complex

traits, and how continued advances in the availability of high-throughput molec-

ular datasets may be integrated by multidisciplinary efforts. This is discussed

in more detail in the following sections.
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6.1.1 Genetic studies provide insight on cellular complex-

ity in the brain

The functional characterization of genes in the brain is essential to progress

results from pre-clinical studies to translational findings. The current transla-

tion of discoveries from basic science research however, is remarkably limited

(Seyhan 2019). This is compounded by the fact that only a minor proportion of

known genes have been functionally characterized. This is particularly evident

in neuroscience research where, of the genes whose expression is enriched in

the brain, 5% of those genes constitute 70% of the relevant literature (Pandey

et al. 2014). Myriad factors have contributed to this historical publication bias,

as has been discussed in detail by Stoeger et al (Stoeger et al. 2018). One of

the associated challenges is that the characteristics of the gene will influence

the difficulty or ease at which it can be studied. For example, whether the

gene is lowly/highly expressed, coding/non-coding will affect the feasible design

of research tools (e.g. antibodies) to assay its expression. When considering

complex disease traits, the shift towards the disease state is often the result

of many small and subtle gene expression changes which are both tissue and

context dependent. Therefore, concerted efforts are needed to help explain the

contribution of a larger proportion of the functional genes active on the causal

pathway towards disease progression.

6.1.2 Technological advances facilitate the characteriza-

tion of genes in the CNS

The molecular investigation of Giot1 presented in this thesis highlights the

technological advances which are facilitating the study of a larger proportion

of functional genes in the CNS. High-throughput transcriptomic screening pro-

vides an unbiased view of all the gene expression changes and regulatory factors

implicated in the response to a stimulus (or chronic exposure). This is well

demonstrated by the transcriptomic analysis of the supraoptic nucleus (SON)
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in the hypothalamus. Firstly, using the model of osmotic stress, it has been

shown that a stimulus such as dehydration impacts the expression of a large

proportion of genes in the SON (Hindmarch et al. 2006; Pauža et al. 2021).

This provides an overview of all the responsive genes expressed in the SON pu-

tatively acting in the homeostatic pathway. The inhibition of a single gene in the

homeostatic system (Giot1 ), as demonstrated in this study, shows the profound

effect that perturbation of a key regulatory component can have on the total

system. Furthermore, the cross-evaluation with comparable knockdown studies

as described in section 2.4.2 (Caprin2, Creb3l1, Opsin3 ) provides an indica-

tion of the extent to which downstream regulatory functions may be shared or

complementary. Additionally, two key advantages are highlighted by the use of

the recently developed in situ hybridization technique (RNAscope): the method

facilitated (1) a qualitative evaluation of the Giot1 positive hypothalamic neu-

rons at the single cell level and (2) a highly specific evaluation of an otherwise

poorly characterised non-coding RNA product. In other words, the advent of

this technique made studying an otherwise classically “difficult” gene possible.

Crucially, the cross evaluation with the recently derived single-nuclei tran-

scriptomic dataset in the SON (Murphy lab, unpublished data) provides a pow-

erful proof-of-concept example of (1) the inherent complexity within neural sys-

tems, and (2) how the research community may begin to probe these systems

experimentally. This analysis identified a small cluster of Giot1 positive neu-

rons in the SON, which, combined with the results in this thesis, are attributed

a potent gene regulatory role essential for the maintenance of the normal home-

ostatic response to osmotic stress. This has several implications. Firstly it

emphasises the important role single-cell sequencing approaches are likely to

play in neuroscience research going forward. The primary advantage of single-

cell and single-nuclei sequencing is the increased power to detect differentially

expressed genes within cell types or, as demonstrated here, within distinct neu-

roanatomical structures of the brain. These studies aim to provide a compre-

hensive overview of the cellular heterogeneity within the system (Choi and Kim
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2019). While the bulk SON derived gene expression dataset provides a highly

powered reference of the most dynamically responsive genes in the system, refer-

ence to the single-nuclei SON dataset allows for further evaluation of the extent

to which the neurons expressing those genes functionally overlap. Further ex-

plorative studies may investigate whether neurons expressing genes of interest

belong within distinct cell clusters (as was observed for Giot1 in this study); do

they exhibit homogenous expression within the neuroanatomical structure (e.g.

Caprin2 ); to what extent does the transcriptomic profile vary in relation to

other neural clusters characterized by the expression of other key homeostatic

regulators (e.g.hypothalamic neurons expressing POMC, AgRp, MC4R); and

how does the transcriptomic profile of neural clusters vary in response to dif-

ferent stimuli; for example, one could examine whether there are stimuli which

induce differential gene expression profiles localized to specific clusters, or is

differential expression observed globally within the neuroanatomical structure

of the SON. As such, the integrated analysis of SON enriched bulk and single

nuclei data in this study represents an intriguing starting point from which to

assess both the functionally distinct and shared mechanisms which underlie the

central regulation of vital homeostatic processes.

It is expected that experimental models, such as the model of osmotic stress

implemented here, will continue to provide important insight on neural mech-

anisms relevant to a variety of related health outcomes. This study focused

on activation of the hypothalmic neurohypophyseal system (HNS). The HNS

comprises multiple interdependent neural structures. Activation of the HNS

(as achieved through osmotic stress) is intrinsically linked to cardiovascular

homeostasis (Murphy et al. 2012), and hyperosmolarity is an important con-

tributing factor to elevated blood pressure (Johnson et al. 2014; Kuwabara et

al. 2020). Hypothalamic control of blood pressure is mediated via several path-

ways. Some examples of this include the activity of AVP neurons in the SON

and PVN which are implicated in maintaining hypertension (Carmichael and

Wainford 2015; Chen et al. 2014; Pietranera et al. 2012; Yi et al. 2012); and
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the activity of neurons in the PVN which have been shown to influence sympa-

thetic nerve activity dependent regulation of arterial blood pressure and volume

(Coote 2005; Hardy 2001; Yang and Coote 1998). As such, this study provides

insight on a dynamic gene regulatory mechanism activated in hypothalmic neu-

rons and elicits important downstream effects on physiology. Cross-evaluation

of the gene expression profiles measured in alternative models of hypothalamic

activation may form the basis of an interesting future complementary analysis.

Whether similar gene regulatory mechanisms govern other classic hypothalmic

homeostatic mechanisms (e.g. glucose homeostasis, energy homeostasis..) will

be essential to decipher.

6.1.3 Determining the role of regulatory categories in the

CNS may require bespoke analytical resources

The elucidation of the gene regulatory function of Giot1 in the hypothalamus

was informed by high-throughout RNAseq analyses derived from an animal

model. While it is not appropriate to make direct inferences regarding the

function of a human ortholog in the CNS, the molecular characteristics of the

wider KZNF gene family highlight several important considerations for the study

of genes in the CNS, and the pursuit towards the characterization of a larger

proportion of functional genes in the CNS.

Firstly, as described in detail in section 3.2, the particular evolutionary

properties of the KZNF gene family in mammalian genomes means they elicit

a high degree of species specificity. Intriguingly, a likely explanation for the

persistence of the KZNF gene family following their rapid expansion is that

they acquired roles which have contributed to phenotypic variation and envi-

ronmental adaptation. In humans, the expression of KZNF genes is enriched

in the CNS (Ecco, Imbeault, and Trono 2017; Farmiloe et al. 2020; Nowick et

al. 2009; Turelli et al. 2020), which is suggestive of putative widespread func-

tions in diverse transcriptional networks in the brain. While it is possible that

some KZNF family members, via a similar mechanism as was demonstrated for
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Giot1 in the rat, may underlie the neuroregulatory response to a physiological

stimulus, their characterization in the adult CNS in humans warrants further

research.

Of note, the study of the KZNF gene family in this thesis highlights several

factors which may have impeded systematic attempts to functionally charac-

terize the genome. The clustered organization of KZNF genes within dense

chromosomal regions presents several challenges. It is difficult to assign the

effect of single-nucleotide polymorphisms (SNPs) which map to these genomic

loci to any individual gene in the locus. As such, statistical approaches such

as Mendelian randomization and genetic colocalization do not perform well in

dense regions of the genome. This limitation is conceptually analogous to the

inflation of signals arising from correlated regions of the genome as a result

of Linkage Disequilibrium (LD). The impact of common genetic variants on

KZNF clusters may therefore require a more detailed molecular assessment on

a gene-by-gene basis.

KZNF genes regulate transcription predominantly via interactions with their

cis- and trans-binding sites located in transposable elements (TE). An addi-

tional challenge to the systematic delineation of their role in the CNS is that

the activity of their binding partners should be accounted for. While variation

in KZNF transcriptional activity may be more directly reflected at the level of

TE expression (or their derepression), differential activity tends to be difficult

to detect in high-throughput assays because TE transcripts are typically lowly

expressed. TEs feature heavily in long noncoding RNAs (lncRNA), which are

emerging as abundant regulatory factors enriched in the human CNS (Derrien

et al. 2012; Kelley and Rinn 2012; Zimmer-Bensch 2019). Similarly, the char-

acterization of lncRNA to date has been limited by the difficulty associated

with detecting lowly expressed transcripts which also exhibit highly cell specific

expression profiles (Moore and Uchida 2020). Recent advances in sequencing

technologies will likely continue to play a role in addressing these challenges in

future research (Playfoot et al. 2021).
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Developments in multi-omic approaches offer another means to address these

limitations. A good example of this is provided by Bretherick et al in their pre-

print study (Bretherick et al. 2022). Here, an integrative approach is applied

which assesses the relationship between KZNF associated eQTL and variable

CpG methylation sites (meQTL) identified genome-wide. They show that vari-

able CpG sites strongly associated with KZNF eQTL are enriched around KZNF

binding sites, and go on to assess the relationship between those CpG sites and

diverse disease traits. They identify strong associations between KZNF associ-

ated variable CpG sites and rheumatoid arthritis among other disease outcomes.

Thus, the study provides a compelling example on the role of multi-omic analy-

ses in expanding the repertoire of complex trait associations implicating KZNF

genes. Taken together, this research illustrates how the characteristics of genes

are beginning to inform bespoke comprehensive analyses of gene function across

the genome.

6.1.4 Integrative human genetic studies provide insight on

central effects involved in complex trait variation

A major aim of this thesis was to explore how genetic datasets may be harnessed

to provide greater insight on the relationship between a larger proportion of

genes in the CNS on cardiovascular and other complex traits. Genome-wide

association studies (GWAS) have identified thousands of trait associated genetic

variants, however their functional interpretation and validation is a significant

research challenge. In this thesis, a multi-omic approach was applied which

aimed to provide further insight on the function of genetic associations via the

integration of tissue-specific molecular data. The genetics of body-mass index

(BMI) represents a compelling example which lends itself very well to the applied

analyses described. As a health metric, BMI is incredibly useful as it can be

inexpensively, quickly and easily derived in population scale datasets. For that

reason, the available GWAS of BMI are exceptionally highly powered relative

to other health metrics.
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An intriguing characteristic of BMI is that the risk alleles predominantly

map to loci expressed in the CNS. An additional challenge to the interpretation

of the genetics of BMI, however, is that it is a composite trait representing

proxy measures of variation in over-all body weight, adiposity and obesity. Due

to the well established relationship between high BMI and myriad disease traits

(WHO 2021b), how the genetics of BMI relates to phenotypic heterogeneity and

its associated role in specific disease contexts demands further clarification. As

such, this present study set out to provide insight on how the genetic modifiers

associated with BMI, which are enriched in the CNS, modify the severity of

cardiovascular and other complex disease traits.

The tissue-partitioned Mendelian randomization (MR) approach described

in this thesis builds on existing statistical genetic models. Chiefly, genetic colo-

calization, which assesses whether association signals for two traits may be

driven by the same variant; Mendelian randomization (MR), which uses ge-

netic variants to test whether an exposure or risk factor may be causally related

to an outcome; and multivariable MR, which uses genetic variants to disentangle

related traits. The tissue-partitioned MR approach described in this thesis pro-

vides an example of how they can be used interactively, in this case, to address

heterogeneous subcomponents of a complex trait. A significant advantage of the

approach is that it can be applied to published summary statistics which are

widely accessible in highly powered sample sizes for many traits. As such, the

tissue-partitioned MR approach may have broad applicability in future research

studies.

6.1.5 Future research avenues

The investigation of the tissue partitioned early life body-size exposures and

breast cancer risk (section 5.5.2), demonstrates another interesting applica-

tion of the principles of MR to test hypotheses outside the original scope of

the methodology, i.e. investigating the direct effects of subcomponents under-

lying a complex trait at different stages in the life-course. Recently, a similar
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approach was applied in an investigation of circulating leptin levels measured

in childhood and adulthood (Richardson et al, unpublished). The brain tissue

instrumented BMI exposure was found to influence circulating leptin levels both

in childhood and adulthood. Previously, the brain-BMI exposure was described

as capturing the component of BMI relating to variation in adiposity as a result

of centrally mediated effects on energy homeostasis. Leptin is a peptide hor-

mone synthesized in adipose tissue which signals to the hypothalamus via the

leptin-melanocortin pathway, and is fundamental to the regulation of appetite

and energy homeostasis (Yeo et al. 2021). The direct effect of brain-BMI on

circulating leptin levels observed in this analysis illustrates the capacity of the

instrument derivation pipeline implemented here to capture distinct molecular

effects which are mechanistically linked to adiposity. As described earlier, varia-

tion in the activity of the melanocortin pathway in the hypothalamus influences

adiposity via homeostatic hunger and motivational reward. This study may

therefore help identify active neuroregulatory pathways which interact with the

obesogenic environment to drive adiposity as early in the lifecourse as childhood.

A major advantage of the instrument derivation pipeline described in this

thesis is that it provides a valuable resource of candidate genes expressed pe-

ripherally and centrally which may be used to inform future functional studies.

Taking the genetic loci which constitute the brain-BMI exposure in exemplar,

these results highlight genes implicated in the hypothalamic regulation of en-

ergy balance (e.g. NEGR1, FTO, BDNF ), as well as many genetic loci whose

role in the CNS are not yet well defined. Functional studies of these genes may

help to broaden the scope of our molecular insight on the centrally mediated

mechanisms underlying adiposity beyond the core hypothalamic pathways.

The array of tissue specific candidate loci identified here demonstrates the

gain-in-power that was achieved by leveraging highly powered meta-analysed

bulk tissue derived eQTL datasets. However, cellular heterogeneity is an inher-

ent property of both the subcutaneous adipose and brain tissue derived eQTL

datasets analysed. The field of genetics is currently undergoing rapid advances
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in the application of next-generation sequencing (NGS) technologies to single

cells. This is due to both a reduction in the cost and technological improvements

in our ability to multiplex and achieve higher throughput. Pertinently, cross-

evaluation of the BMI loci where there was evidence of colocalization using the

bulk adipose and brain tissue derived data with single-cell derived transcrip-

tomic profiles may help establish advanced validation studies.

Mapping eQTL at single-cell resolution represents an exciting new area of re-

search aimed at improving our understanding of genetic regulation across tissues

in health and disease. The data provided by collaborative initiatives, such as

the single-cell eQTL consortium, which is bringing cohorts together in order to

do large-scale eQTL mapping and identify cell-specific eQTL, has the potential

to facilitate detailed phenotypic and functional characterization of genes (Wijst

et al. 2020) in heterogeneous tissue systems. Global collaborations aimed at pro-

viding open resource platforms such as the Single-cell expression atlas (SCEA),

the human cell atlas (Regev et al. 2017) and the recently launched NIH Brain

Initiative cell atlas network (BICAN) represent ongoing efforts aimed at mak-

ing detailed single-cell expression data available to the research community, for

the continued characterization of cell-types and co-expression networks. Ulti-

mately, the insight gained from gene-trait association studies, combined with

highly phenotyped human cell type data, will warrant detailed characterization

in commonly used animal models. Together, this will be key to improving the

translational landscape of complex disease traits.

6.1.6 Concluding remarks

The CNS is constantly monitoring homeostatic and physiological cues. As such,

neuroregulatory genetic pathways are intrinsically linked to complex trait vari-

ation. A limitation within the current research landscape is that the role of the

majority of genes expressed in the CNS remains poorly understood (Pandey et

al. 2014). This thesis provides an in-depth exploration, with applied examples,

of how genetic and molecular datasets may be harnessed to gain further insight
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on the role of genes expressed in the CNS on complex traits, with a particular

focus on processes relevant to cardiovascular and cardiometabolic outcomes.

The CNS harbours the greatest level of molecular complexity compared to

any other biological system. This is depicted at the level of cellular hetero-

geneity, the activity of neural co-expression networks, and the diversity of gene

regulatory elements enriched in the CNS. The data described in this thesis sheds

light on how multi-omic approaches may be applied to the study of complex gene

regulatory factors in the CNS to help uncover putative disease effects. Addition-

ally, this thesis provides an applied example of how statistical genetic methods

and human genetic datasets may be leveraged to provide further insight on dis-

ease effects mediated via either central or peripherally expressed genes. Finally,

this thesis provides a demonstration of how gene regulatory mechanisms in the

CNS may be dissected experimentally to provide mechanistic insight on distinct

molecular processes in the brain.

Overall, the work presented provides a perspective on how different facets

of genetic research may be directly integrated into a complementary research

framework. Importantly, the work highlights how progress towards integrative

research paradigms will benefit from the continued contribution of large-scale

collaborative data resources and initiatives.
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Appendix A

Supplementary files for

Chapter 2

A.1 Supplementary data and material

A.1.1 Supplementary data and material relating to results

Chapter 1

Table A.1: Comparison 1. scCntrl Euh vs scCntrl Dhy. Subset of
highly differentially expressed genes (Padj <0.05 and log2FC> ±1.5)

Gene baseMean log2FC lfcSE stat pvalue padj

Oacyl 1159.3600 2.8395 0.1223 23.2246 2.57E-119 4.07E-115

Giot1 340.0862 2.4030 0.1866 12.8812 5.75E-38 4.55E-34

Dpys 294.8580 2.4645 0.2004 12.3005 9.00E-35 4.75E-31

Tnfaip6 230.2739 2.5908 0.2343 11.0584 2.00E-28 6.32E-25

Met 129.5946 1.8266 0.1670 10.9371 7.67E-28 2.02E-24

Opn3 605.2783 1.8052 0.1655 10.9093 1.04E-27 2.36E-24

Crh 147.1675 2.4059 0.2290 10.5065 8.06E-26 1.60E-22

Procr 286.1981 3.4893 0.3429 10.1763 2.53E-24 4.45E-21

Creb3l1 588.8960 1.6584 0.1698 9.7659 1.58E-22 2.08E-19

Sctr 80.2170 1.8714 0.2198 8.5153 1.66E-17 1.65E-14

Plaur 82.4508 2.1563 0.2582 8.3517 6.73E-17 5.92E-14

Apold1 227.6398 1.5244 0.1831 8.3263 8.34E-17 6.95E-14

Rtl1 226.0490 1.5272 0.1901 8.0341 9.43E-16 7.47E-13

Continued on next page
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Gene baseMean log2FC lfcSE stat pvalue padj

Wdr64 50.4126 2.2906 0.2919 7.8467 4.27E-15 3.08E-12

Alkal2 716.2030 3.3004 0.4645 7.1046 1.21E-12 6.37E-10

Nox1 19.1208 3.1959 0.4735 6.7496 1.48E-11 5.59E-09

Mmp9 32.4475 1.9956 0.3878 5.1455 2.67E-07 4.80E-05

Serpine1 45.7701 1.7404 0.3412 5.1011 3.38E-07 5.94E-05

11.2188 3.3563 0.6603 5.0828 3.72E-07 6.47E-05

Ucn 27.7401 2.5187 0.5028 5.0093 5.46E-07 8.92E-05

Slc12a1 168.1297 1.8424 0.3794 4.8554 1.20E-06 0.0002

Slc45a2 12.8658 2.1505 0.4600 4.6748 2.94E-06 0.0004

Arhgef16 17.5204 2.1768 0.4680 4.6518 3.29E-06 0.0004

Prok2 25.9034 1.5468 0.3465 4.4646 8.02E-06 0.0010

Trim54 26.2726 2.6629 0.6053 4.3997 1.08E-05 0.0012

AABR07065113.1 18.4324 1.6022 0.3661 4.3757 1.21E-05 0.0014

Trib3 20.0052 1.9339 0.4433 4.3622 1.29E-05 0.0014

Mir212 9.0452 2.4563 0.6017 4.0821 4.46E-05 0.0041

Svopl 11.0099 3.1660 0.7766 4.0770 4.56E-05 0.0041

Ucn2 9.9853 2.4056 0.5927 4.0589 4.93E-05 0.0044

AABR07026032.1 13.1835 2.7841 0.7193 3.8706 0.0001 0.0084

AABR07064753.1 6.2817 -3.2826 0.9306 -3.5273 0.0004 0.0243

Gm11100 5.1796 4.0441 1.1639 3.4747 0.0005 0.0280

Sptlc3 20.0252 1.7327 0.4990 3.4722 0.0005 0.0282

Rxfp2 9.3360 2.0931 0.6288 3.3289 0.0009 0.0419

Table A.2: Comparison 2. scCntrl Euh vs shGiot1 Euh: the effect
of the shGiot1 knockdown in the basal state (Euh). Subset of highly
differentially expressed genes (Padj <0.05 and log2FC> ±1.5)

Gene baseMean log2FC lfcSE stat pvalue padj

Pcsk1 591.9210 -1.8504 0.1528 -12.1062 9.79E-34 1.44E-29

Tmed3 922.1899 -1.5410 0.1320 -11.6757 1.70E-31 1.25E-27

Th 257.4202 -2.3264 0.2100 -11.0773 1.62E-28 5.94E-25

Cartpt 468.4264 -2.1536 0.2157 -9.9857 1.76E-23 3.70E-20

Glp1r 84.7853 -2.0231 0.2108 -9.5997 8.02E-22 9.07E-19

Oacyl 164.0045 -2.6935 0.2884 -9.3399 9.65E-21 9.45E-18

Pdyn 3843.3507 -3.0121 0.3274 -9.2011 3.54E-20 3.26E-17

Cd55 385.8122 -1.9693 0.2145 -9.1792 4.34E-20 3.59E-17

Kcnmb4 406.0732 -1.6324 0.1779 -9.1780 4.39E-20 3.59E-17

Caprin2 1078.7381 -2.2789 0.2505 -9.0987 9.14E-20 7.07E-17

167.1494 -1.7536 0.1965 -8.9249 4.46E-19 3.12E-16

Parm1 3019.1924 -2.0561 0.2350 -8.7492 2.15E-18 1.26E-15

Pla2r1 122.6679 -2.4962 0.2892 -8.6307 6.10E-18 3.32E-15

100.2006 -2.1620 0.2648 -8.1630 3.27E-16 1.41E-13

Tmem114 73.3357 -2.2017 0.3105 -7.0909 1.33E-12 3.26E-10

Continued on next page

218



Gene baseMean log2FC lfcSE stat pvalue padj

Gpx3 3772.9480 -1.6238 0.2408 -6.7439 1.54E-11 3.10E-09

Susd1 89.9900 -1.5553 0.2312 -6.7260 1.74E-11 3.46E-09

Ibsp 39.8990 -2.4110 0.3596 -6.7047 2.02E-11 3.90E-09

Cfap44 31.0864 -3.6698 0.5642 -6.5042 7.81E-11 1.32E-08

Alkal2 80.4923 -2.1835 0.3424 -6.3768 1.81E-10 2.74E-08

Oxt 26198.6211 -3.5910 0.5835 -6.1541 7.55E-10 1.00E-07

Gal 617.9367 -2.1268 0.3734 -5.6964 1.22E-08 1.18E-06

Avp 36521.1219 -3.3042 0.6033 -5.4767 4.33E-08 3.66E-06

Gbp1 21.3642 2.9953 0.5563 5.3843 7.27E-08 5.81E-06

Mogat2 41.1090 -1.5812 0.2964 -5.3354 9.53E-08 7.38E-06

Dpys 50.1542 -3.2186 0.6611 -4.8686 1.12E-06 6.43E-05

Atf3 33.0753 2.6237 0.5435 4.8274 1.38E-06 7.82E-05

Arpp21 1031.2372 1.6784 0.3538 4.7436 2.10E-06 0.0001

Slc12a1 44.7308 -2.1962 0.4634 -4.7389 2.15E-06 0.0001

AABR07026032.1 16.1103 3.1121 0.6601 4.7144 2.42E-06 0.0001

Crym 164.4030 1.9507 0.4363 4.4708 7.79E-06 0.0003

Prr29 23.5269 -1.6735 0.3834 -4.3652 1.27E-05 0.0005

Chrm1 221.8764 2.0916 0.4794 4.3632 1.28E-05 0.0005

Mroh4 13.7532 6.6535 1.5721 4.2323 2.31E-05 0.0008

Fgf7 29.3260 -1.7825 0.4222 -4.2221 2.42E-05 0.0008

Trim54 27.1019 2.7184 0.6528 4.1646 3.12E-05 0.0010

Trh 1034.2745 -2.3316 0.5625 -4.1452 3.40E-05 0.0010

Neurod2 19.7942 3.0413 0.7457 4.0784 4.53E-05 0.0013

Slc17a7 517.8864 3.0468 0.7483 4.0713 4.67E-05 0.0013

Krt17 13.1847 -2.3272 0.5720 -4.0682 4.74E-05 0.0013

Tnn 16.1306 -1.8427 0.4543 -4.0562 4.99E-05 0.0014

Sctr 22.1185 -1.8452 0.4581 -4.0278 5.63E-05 0.0015

Cym 14.4902 -2.2106 0.5503 -4.0172 5.89E-05 0.0016

Cracdl 528.6990 1.5338 0.3878 3.9556 7.63E-05 0.0020

Abcg5 16.3107 -1.7053 0.4342 -3.9273 8.59E-05 0.0022

Dsc2 20.0003 1.5775 0.4065 3.8810 0.0001 0.0025

Gpr6 26.3649 1.7808 0.4678 3.8066 0.0001 0.0032

Ddn 1492.3163 1.5425 0.4111 3.7523 0.0002 0.0039

Mx1 289.9684 3.2911 0.8822 3.7307 0.0002 0.0041

Calca 17.0037 -2.0668 0.5561 -3.7163 0.0002 0.0043

Ptprv 14.5050 1.8008 0.4861 3.7044 0.0002 0.0045

Mzb1 12.7706 -2.4896 0.6746 -3.6904 0.0002 0.0047

Neurod6 15.1757 2.8293 0.7892 3.5851 0.0003 0.0064

Tasl 11.9624 2.1116 0.5921 3.5661 0.0004 0.0068

Postn 13.1397 -1.5824 0.4445 -3.5597 0.0004 0.0069

Epcam 16.8702 1.8041 0.5109 3.5317 0.0004 0.0075

Itpka 97.6402 2.2358 0.6386 3.5014 0.0005 0.0082

Egr4 25.3123 1.5711 0.4614 3.4053 0.0007 0.0107

Continued on next page
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Gene baseMean log2FC lfcSE stat pvalue padj

Rtn4rl2 18.4485 2.2077 0.6527 3.3823 0.0007 0.0115

Foxb2 71.0025 -2.0374 0.6045 -3.3704 0.0008 0.0119

Mttp 14.9483 -1.5288 0.4553 -3.3577 0.0008 0.0123

Trim10 11.7789 -1.8671 0.5619 -3.3228 0.0009 0.0136

Spp1 330.1349 1.6691 0.5217 3.1994 0.0014 0.0189

Kcnj4 203.9109 1.8989 0.6022 3.1533 0.0016 0.0215

Hmx3 13.1666 -1.5175 0.4865 -3.1194 0.0018 0.0237

Mmp12 18.2592 5.8639 1.9262 3.0443 0.0023 0.0286

Cxcl10 49.2879 3.0332 0.9974 3.0410 0.0024 0.0288

Sptlc3 21.3592 1.8549 0.6283 2.9524 0.0032 0.0354

C3 1409.6902 1.7729 0.6013 2.9486 0.0032 0.0356

Wdr64 11.4429 -1.5920 0.5423 -2.9357 0.0033 0.0367

Gabrd 107.5379 1.6785 0.5753 2.9176 0.0035 0.0383

Cxcl13 39.6214 2.1016 0.7214 2.9132 0.0036 0.0387

Kcnh3 150.5238 1.9631 0.6974 2.8147 0.0049 0.0484

Table A.3: Comparison 3. scCntrl Dhy vs shGiot1 Dhy: the effect
of the shGiot1 knockdown in the dehydration state . Subset of highly
differentially expressed genes (Padj <0.05 and log2FC> ±1.5)

Gene baseMean log2FC lfcSE stat pvalue padj

Gene baseMean log2FC lfcSE stat pvalue padj

Pdyn 5380.6928 -3.6810 0.1631 -22.5714 8.28E-113 1.26E-108

Parm1 2919.2298 -2.4734 0.1220 -20.2812 1.88E-91 1.43E-87

Caprin2 2213.6777 -3.3890 0.1813 -18.6883 6.16E-78 3.12E-74

Pcsk1 772.6114 -2.2396 0.1385 -16.1672 8.59E-59 2.61E-55

Opn3 486.7414 -2.4835 0.1553 -15.9945 1.40E-57 3.53E-54

Rxfp3 462.1340 -2.0270 0.1327 -15.2718 1.18E-52 2.55E-49

Procr 256.5010 -3.8390 0.2645 -14.5129 1.00E-47 1.90E-44

Creb3l1 486.8853 -2.4644 0.1721 -14.3187 1.67E-46 2.82E-43

Pla2r1 187.5303 -3.4253 0.2448 -13.9906 1.78E-44 2.46E-41

Dpys 254.5677 -3.7911 0.2726 -13.9069 5.75E-44 7.27E-41

Cd55 495.7916 -2.6520 0.1918 -13.8292 1.70E-43 1.98E-40

Slc12a1 123.1440 -4.9237 0.3606 -13.6541 1.91E-42 2.07E-39

Gpx3 3119.4508 -1.7148 0.1323 -12.9616 2.02E-38 2.04E-35

Giot1 312.3601 -2.7298 0.2149 -12.7021 5.76E-37 5.46E-34

Oxt 29196.8286 -5.4087 0.4418 -12.2432 1.83E-34 1.54E-31

Tent5a 674.4482 -2.4497 0.2031 -12.0634 1.65E-33 1.32E-30

Kcnmb4 370.0863 -1.5961 0.1368 -11.6653 1.92E-31 1.38E-28

Oacyl 940.9912 -5.4613 0.4684 -11.6594 2.06E-31 1.42E-28

Rcn3 429.8149 -1.9571 0.1681 -11.6457 2.41E-31 1.59E-28

Vgf 1667.8993 -1.5819 0.1388 -11.3968 4.34E-30 2.74E-27

Tacr3 491.9742 -1.7129 0.1513 -11.3209 1.03E-29 6.28E-27
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Gene baseMean log2FC lfcSE stat pvalue padj

Elapor1 713.4042 -1.5334 0.1407 -10.8971 1.19E-27 5.64E-25

Avp 44783.5427 -4.2632 0.3989 -10.6871 1.17E-26 5.22E-24

Sctr 57.8547 -4.6764 0.4421 -10.5767 3.82E-26 1.66E-23

Rasd1 501.9683 -1.7375 0.1671 -10.3979 2.53E-25 1.07E-22

Apold1 197.7027 -1.7705 0.1937 -9.1395 6.28E-20 2.03E-17

Arhgdib 671.5277 -1.8424 0.2092 -8.8089 1.26E-18 3.76E-16

Cartpt 418.0372 -1.9687 0.2242 -8.7813 1.62E-18 4.63E-16

Glp1r 112.4242 -2.6401 0.3008 -8.7755 1.70E-18 4.78E-16

77.3843 -2.1829 0.2569 -8.4973 1.94E-17 4.83E-15

Btc 72.7773 -2.2117 0.2651 -8.3436 7.21E-17 1.66E-14

Rxfp1 244.2130 -1.7975 0.2175 -8.2641 1.41E-16 3.14E-14

142.5842 -1.8041 0.2200 -8.1999 2.40E-16 5.21E-14

Tmem114 60.3971 -3.4189 0.4215 -8.1117 4.99E-16 1.05E-13

Prr29 36.7749 -3.1191 0.3908 -7.9818 1.44E-15 2.96E-13

Wdr64 44.2286 -3.1457 0.4098 -7.6756 1.65E-14 3.12E-12

Rtl1 199.7969 -2.0777 0.2769 -7.5048 6.15E-14 1.07E-11

Prph 268.0649 -1.5493 0.2098 -7.3837 1.54E-13 2.59E-11

Nhlh2 126.2635 -2.1108 0.2903 -7.2701 3.59E-13 5.86E-11

Spp1 297.5419 1.6182 0.2328 6.9509 3.63E-12 5.15E-10

Crh 169.3246 -1.5641 0.2251 -6.9472 3.73E-12 5.23E-10

Usp51 75.9217 -1.6457 0.2398 -6.8636 6.72E-12 9.18E-10

Baiap2 447.1018 1.5713 0.2305 6.8166 9.32E-12 1.23E-09

Fam83g 46.9079 -2.7479 0.4121 -6.6672 2.61E-11 3.24E-09

Plaur 79.9333 -2.1905 0.3296 -6.6461 3.01E-11 3.60E-09

Mzb1 24.4298 -4.3894 0.6674 -6.5764 4.82E-11 5.58E-09

Alkal2 739.9128 -3.5960 0.5539 -6.4921 8.47E-11 9.44E-09

Tnfaip6 224.8370 -2.7945 0.4389 -6.3666 1.93E-10 1.97E-08

Tnn 34.2920 -3.2374 0.5116 -6.3279 2.49E-10 2.48E-08

Cfap44 29.6676 -3.4656 0.5549 -6.2454 4.23E-10 4.01E-08

Dysf 246.7333 -1.5737 0.2557 -6.1554 7.49E-10 6.85E-08

Foxb2 30.9709 -3.5753 0.5893 -6.0668 1.31E-09 1.12E-07

Vwa7 86.6427 -1.8037 0.2990 -6.0329 1.61E-09 1.36E-07

Gabrq 301.9565 -1.5216 0.2552 -5.9633 2.47E-09 2.00E-07

Rnf138rt1 84.3790 -1.6294 0.2733 -5.9617 2.50E-09 2.00E-07

Susd1 74.3441 -1.7375 0.2994 -5.8041 6.47E-09 4.70E-07

AABR07065531.24 39.6262 -1.9404 0.3457 -5.6127 1.99E-08 1.30E-06

Egr3 95.5175 2.2963 0.4156 5.5252 3.29E-08 2.01E-06

Gal 564.3937 -2.1156 0.3897 -5.4293 5.66E-08 3.26E-06

Ibsp 31.9422 -2.1161 0.3911 -5.4106 6.28E-08 3.60E-06

Svopl 9.4580 -6.6527 1.2517 -5.3148 1.07E-07 5.74E-06

Pemt 66.9939 -1.7452 0.3317 -5.2621 1.42E-07 7.48E-06

Krt77 115.2750 1.6042 0.3120 5.1416 2.72E-07 1.33E-05

Meox2 56.8830 -2.1492 0.4201 -5.1155 3.13E-07 1.50E-05
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Egr4 40.4460 2.0593 0.4027 5.1133 3.17E-07 1.51E-05

C3 1163.0990 1.6584 0.3280 5.0553 4.30E-07 1.96E-05

Nox1 18.9657 -2.9439 0.5856 -5.0276 4.97E-07 2.24E-05

RGD1304770 14.6811 -3.3951 0.6800 -4.9925 5.96E-07 2.59E-05

Ucn 23.1885 -2.7861 0.5642 -4.9384 7.88E-07 3.26E-05

Dnah8 22.1152 -2.3428 0.4755 -4.9268 8.36E-07 3.44E-05

Pgr15l 108.6347 -1.5245 0.3103 -4.9125 8.99E-07 3.68E-05

Neurod6 24.0169 3.0060 0.6218 4.8344 1.34E-06 5.18E-05

Lrrc10b 59.1004 1.7886 0.3757 4.7614 1.92E-06 7.17E-05

Mmp9 21.3164 -2.8692 0.6055 -4.7389 2.15E-06 7.95E-05

Mroh4 11.6655 5.5774 1.2052 4.6279 3.69E-06 0.0001

Otp 274.8694 -2.2301 0.4841 -4.6065 4.10E-06 0.0001

AABR07026032.1 27.9858 2.2653 0.4975 4.5531 5.29E-06 0.0002

Zfp831 127.8172 1.6049 0.3527 4.5501 5.36E-06 0.0002

Th 481.6320 -2.7188 0.5997 -4.5332 5.81E-06 0.0002

Bcl11b 440.0448 1.7725 0.3911 4.5316 5.85E-06 0.0002

Ptger4 57.7414 -1.6469 0.3638 -4.5274 5.97E-06 0.0002

Cracdl 564.4998 1.8583 0.4167 4.4595 8.21E-06 0.0002

Ddn 1591.9669 2.0384 0.4590 4.4414 8.94E-06 0.0003

Cps1 16.1719 2.6063 0.5913 4.4078 1.04E-05 0.0003

Mc3r 31.2069 -1.5913 0.3763 -4.2285 2.35E-05 0.0006

Cym 18.2976 -2.6092 0.6246 -4.1770 2.95E-05 0.0007

Slc45a2 10.9667 -2.9569 0.7102 -4.1637 3.13E-05 0.0008

AABR07065113.1 14.5395 -2.3399 0.5690 -4.1124 3.92E-05 0.0009

Arpp21 1046.3084 1.9321 0.4737 4.0786 4.53E-05 0.0011

Epcam 27.3899 1.7857 0.4400 4.0586 4.94E-05 0.0011

Cmya5 40.8422 1.6249 0.4054 4.0076 6.13E-05 0.0014

Ucn2 8.5007 -3.6395 0.9106 -3.9969 6.42E-05 0.0014

Kcnj4 193.9901 2.5700 0.6588 3.9010 9.58E-05 0.0020

Lamp5 318.1086 2.1019 0.5412 3.8835 0.0001 0.0021

Nmb 21.2378 -1.9503 0.5066 -3.8499 0.0001 0.0024

Mmp12 22.2144 5.7752 1.5385 3.7539 0.0002 0.0032

Kcnh3 175.1794 2.6379 0.7036 3.7492 0.0002 0.0033

Calcr 767.1392 -1.5079 0.4025 -3.7461 0.0002 0.0033

Akap5 353.9717 1.5485 0.4134 3.7457 0.0002 0.0033

Wfs1 1056.9885 1.7544 0.4707 3.7269 0.0002 0.0035

Cxcl10 23.7731 2.8131 0.7563 3.7197 0.0002 0.0036

Lat 16.3564 2.1442 0.5771 3.7155 0.0002 0.0036

Ano3 703.1668 1.5672 0.4249 3.6882 0.0002 0.0039

Chrm1 253.9646 1.9167 0.5283 3.6278 0.0003 0.0048

Slc5a10 11.3975 -2.5775 0.7106 -3.6271 0.0003 0.0048

Wipf3 493.4148 1.6806 0.4644 3.6189 0.0003 0.0050

Npas4 27.2140 1.6554 0.4614 3.5881 0.0003 0.0055

Continued on next page

222



Gene baseMean log2FC lfcSE stat pvalue padj

Crym 185.3238 2.2123 0.6252 3.5386 0.0004 0.0064

Ebf3 213.1735 -1.7118 0.4946 -3.4606 0.0005 0.0082

Mir212 8.8123 -2.5731 0.7449 -3.4541 0.0006 0.0083

Calca 15.9366 -2.0509 0.5981 -3.4289 0.0006 0.0090

Fgf7 25.9676 -1.8267 0.5341 -3.4201 0.0006 0.0092

Ptprv 14.6684 2.0942 0.6139 3.4112 0.0006 0.0094

Nxph2 23.0269 1.6705 0.4924 3.3928 0.0007 0.0099

Cxcl6 11.0710 2.1859 0.6444 3.3923 0.0007 0.0100

Rassf6 34.4832 -1.5312 0.4560 -3.3579 0.0008 0.0110

Cyp26a1 9.4178 3.1155 0.9323 3.3417 0.0008 0.0115

Shisa8 14.3512 2.5281 0.7591 3.3305 0.0009 0.0118

Itpka 91.1412 2.5002 0.7519 3.3250 0.0009 0.0120

Cbln1 691.0104 -1.7713 0.5353 -3.3088 0.0009 0.0126

Rtn4rl2 18.5330 2.2219 0.6894 3.2231 0.0013 0.0161

Cdk15 16.2470 -2.0628 0.6411 -3.2179 0.0013 0.0163

Cyp19a1 21.5872 1.7367 0.5409 3.2105 0.0013 0.0166

Dnaaf3 28.8628 1.6034 0.5169 3.1021 0.0019 0.0220

AC097129.1 9.6924 1.9253 0.6284 3.0637 0.0022 0.0244

Myo3b 13.6902 -1.8795 0.6146 -3.0581 0.0022 0.0247

Arhgef16 17.6663 -1.6488 0.5415 -3.0450 0.0023 0.0256

Gabrd 110.6053 2.1133 0.6980 3.0278 0.0025 0.0267

Ccdc42 12.6094 2.1592 0.7240 2.9823 0.0029 0.0301

Unc45b 10.4726 2.3884 0.8048 2.9676 0.0030 0.0311

Hmx3 13.0994 -2.3382 0.8027 -2.9128 0.0036 0.0360

Npbwr1 12.6746 -2.0727 0.7163 -2.8937 0.0038 0.0376

Fsip1 18.9381 -1.5610 0.5410 -2.8852 0.0039 0.0385

Atf3 29.7781 1.8701 0.6488 2.8825 0.0039 0.0388

Cpa4 14.4214 -1.5757 0.5471 -2.8801 0.0040 0.0389

Yjefn3 13.1574 1.5007 0.5318 2.8221 0.0048 0.0448

Krt71 108.9876 1.8427 0.6554 2.8117 0.0049 0.0459

Igsf23 8.1758 -2.4101 0.8618 -2.7966 0.0052 0.0474

Zbbx 13.6175 1.9590 0.7049 2.7793 0.0054 0.0492

Abca12 12.6665 1.6908 0.6093 2.7749 0.0055 0.0496

Table A.4: Comparison 3. shGiot1 Euh vs shGiot1 Dhy: a reference
for the extent to which shGiot1 knockdown affects the response to
the stimulus (dehydration) in the present study. Subset of differentially
expressed genes (Padj <0.05)

Gene baseMean log2FC lfcSE stat pvalue padj

Gpd1 1367.182 1.471 0.097 15.221 2.55E-52 4.62E-48

Alkal2 66.547 2.026 0.389 5.214 1.85E-07 0.0017

Sgk1 804.022 0.743 0.162 4.600 4.23E-06 0.0153
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Htra1 1448.931 0.521 0.112 4.634 3.59E-06 0.0153

Pla2g3 55.375 1.303 0.280 4.659 3.18E-06 0.0153

Gpatch4 279.728 0.720 0.166 4.329 1.50E-05 0.0451
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Table A.5: Enrichment analyses on DEGs identified in Comparison 1. Subset of highly differentially expressed genes (Padj

<0.05 and log2FC> ±1.5)

Database ID Description GeneRatio p-value p-adj Gene

BIOLOGICAL PROCESS

GO:0043950 positive regulation of cAMP-mediated signaling 4/28 3.13E-07 0.0004 Crh/Sctr/Ucn/Rxfp2

GO:0043949 regulation of cAMP-mediated signaling 4/28 2.65E-06 0.0015 Crh/Sctr/Ucn/Rxfp2

GO:0019933 cAMP-mediated signaling 4/28 1.18E-05 0.0045 Crh/Sctr/Ucn/Rxfp2

GO:0090280 positive regulation of calcium ion import 3/28 1.65E-05 0.0047 Crh/Serpine1/Ucn

GO:0019935 cyclic-nucleotide-mediated signaling 4/28 3.57E-05 0.0064 Crh/Sctr/Ucn/Rxfp2

GO:0032967 positive regulation of collagen biosynthetic process 3/28 3.63E-05 0.0064 Creb3l1/Serpine1/Ucn

GO:0032963 collagen metabolic process 4/28 3.90E-05 0.0064 Creb3l1/Mmp9/Serpine1/Ucn

GO:0010714 positive regulation of collagen metabolic process 3/28 4.82E-05 0.0069 Creb3l1/Serpine1/Ucn

GO:0050886 endocrine process 4/28 5.84E-05 0.0074 Crh/Nox1/Ucn/Ucn2

GO:0090279 regulation of calcium ion import 3/28 0.0001 0.0115 Crh/Serpine1/Ucn

GO:0032965 regulation of collagen biosynthetic process 3/28 0.0001 0.0115 Creb3l1/Serpine1/Ucn

GO:0055093 response to hyperoxia 3/28 0.0001 0.0115 Nox1/Mmp9/Serpine1

GO:0008643 carbohydrate transport 4/28 0.0002 0.0116 Met/Opn3/Slc45a2/Trib3

GO:0010712 regulation of collagen metabolic process 3/28 0.0002 0.0116 Creb3l1/Serpine1/Ucn

GO:0036296 response to increased oxygen levels 3/28 0.0002 0.0116 Nox1/Mmp9/Serpine1

GO:0032277 negative regulation of gonadotropin secretion 2/28 0.0002 0.0116 Crh/Ucn2

GO:0051459 regulation of corticotropin secretion 2/28 0.0002 0.0116 Crh/Ucn

GO:0032964 collagen biosynthetic process 3/28 0.0002 0.0116 Creb3l1/Serpine1/Ucn

GO:0097193 intrinsic apoptotic signaling pathway 5/28 0.0002 0.0116 Creb3l1/Plaur/Nox1/Mmp9/Trib3

GO:0044060 regulation of endocrine process 3/28 0.0002 0.0116 Crh/Ucn/Ucn2
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GO:0051549 positive regulation of keratinocyte migration 2/28 0.0002 0.0116 Mmp9/Serpine1

GO:1903365 regulation of fear response 2/28 0.0002 0.0116 Crh/Ucn

GO:2000822 regulation of behavioral fear response 2/28 0.0002 0.0116 Crh/Ucn

GO:0032275 luteinizing hormone secretion 2/28 0.0003 0.0123 Crh/Ucn2

GO:0051458 corticotropin secretion 2/28 0.0003 0.0123 Crh/Ucn

GO:0051547 regulation of keratinocyte migration 2/28 0.0003 0.0123 Mmp9/Serpine1

GO:0001525 angiogenesis 6/28 0.0003 0.0127 Creb3l1/Apold1/Nox1/Mmp9/Serpine1/Prok2

GO:0019932 second-messenger-mediated signaling 5/28 0.0003 0.0127 Crh/Sctr/Ucn/Slc12a1/Rxfp2

GO:0070141 response to UV-A 2/28 0.0003 0.0127 Opn3/Mmp9

GO:2001242 regulation of intrinsic apoptotic signaling pathway 4/28 0.0003 0.0127 Creb3l1/Plaur/Nox1/Mmp9

GO:0060986 endocrine hormone secretion 3/28 0.0004 0.0136 Crh/Ucn/Ucn2

GO:0051546 keratinocyte migration 2/28 0.0004 0.0157 Mmp9/Serpine1

GO:0010951 negative regulation of endopeptidase activity 4/28 0.0005 0.0157 Plaur/Mmp9/Serpine1/LOC299277

GO:0051099 positive regulation of binding 4/28 0.0005 0.0157 Met/Plaur/Mmp9/Trib3

GO:0032276 regulation of gonadotropin secretion 2/28 0.0005 0.0162 Crh/Ucn2

GO:0010466 negative regulation of peptidase activity 4/28 0.0005 0.0162 Plaur/Mmp9/Serpine1/LOC299277

GO:0050878 regulation of body fluid levels 5/28 0.0006 0.0170 Met/Procr/Sctr/Serpine1/Ucn

GO:2001267 regulation of cysteine-type endopeptidase 2/28 0.0006 0.0172 Plaur/Mmp9

activity involved in apoptotic signaling pathway

GO:0010827 regulation of glucose transmembrane transport 3/28 0.0006 0.0175 Met/Opn3/Trib3

GO:0042246 tissue regeneration 3/28 0.0007 0.0200 Plaur/Serpine1/Ucn2

GO:0046888 negative regulation of hormone secretion 3/28 0.0008 0.0200 Crh/Ucn/Ucn2

GO:0070509 calcium ion import 3/28 0.0008 0.0200 Crh/Serpine1/Ucn

GO:0032098 regulation of appetite 2/28 0.0008 0.0200 Sctr/Ucn
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GO:0032274 gonadotropin secretion 2/28 0.0008 0.0200 Crh/Ucn2

GO:2001233 regulation of apoptotic signaling pathway 5/28 0.0008 0.0200 Creb3l1/Plaur/Nox1/Mmp9/Serpine1

GO:0071214 cellular response to abiotic stimulus 5/28 0.0008 0.0200 Opn3/Nox1/Mmp9/Serpine1/Slc12a1

GO:0104004 cellular response to environmental stimulus 5/28 0.0008 0.0200 Opn3/Nox1/Mmp9/Serpine1/Slc12a1

GO:0062197 cellular response to chemical stress 5/28 0.0008 0.0200 Met/Nox1/Mmp9/Serpine1/Slc12a1

GO:0071404 cellular response to low-density lipoprotein 2/28 0.0010 0.0223 Mmp9/Serpine1

particle stimulus

GO:2001243 negative regulation of intrinsic apoptotic 3/28 0.0010 0.0223 Creb3l1/Plaur/Mmp9

signaling pathway

GO:2001234 negative regulation of apoptotic signaling pathway 4/28 0.0010 0.0223 Creb3l1/Plaur/Mmp9/Serpine1

GO:0070293 renal absorption 2/28 0.0011 0.0232 Sctr/Slc12a1

GO:0010447 response to acidic pH 2/28 0.0012 0.0244 Met/Nox1

GO:0090200 positive regulation of release of cytochrome 2/28 0.0012 0.0244 Plaur/Mmp9

c from mitochondria

GO:0071385 cellular response to glucocorticoid stimulus 3/28 0.0012 0.0247 Crh/Serpine1/Ucn2

GO:0007565 female pregnancy 4/28 0.0014 0.0282 Crh/Mmp9/Serpine1/Ucn

GO:0007586 digestion 3/28 0.0014 0.0282 Crh/Ucn/Ucn2

GO:0008645 hexose transmembrane transport 3/28 0.0015 0.0290 Met/Opn3/Trib3

GO:0071384 cellular response to corticosteroid stimulus 3/28 0.0015 0.0290 Crh/Serpine1/Ucn2

GO:1904659 glucose transmembrane transport 3/28 0.0015 0.0290 Met/Opn3/Trib3

GO:0015749 monosaccharide transmembrane transport 3/28 0.0016 0.0300 Met/Opn3/Trib3

GO:0051384 response to glucocorticoid 4/28 0.0017 0.0314 Crh/Serpine1/Ucn/Ucn2

GO:0034219 carbohydrate transmembrane transport 3/28 0.0017 0.0314 Met/Opn3/Trib3

GO:0000302 response to reactive oxygen species 4/28 0.0018 0.0324 Met/Nox1/Mmp9/Serpine1
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GO:0048520 positive regulation of behavior 2/28 0.0020 0.0352 Crh/Ucn

GO:0055094 response to lipoprotein particle 2/28 0.0020 0.0352 Mmp9/Serpine1

GO:0044706 multi-multicellular organism process 4/28 0.0021 0.0352 Crh/Mmp9/Serpine1/Ucn

GO:0045861 negative regulation of proteolysis 4/28 0.0021 0.0352 Plaur/Mmp9/Serpine1/LOC299277

GO:0045742 positive regulation of epidermal growth 2/28 0.0022 0.0361 Plaur/Mmp9

factor receptor signaling pathway

GO:0051928 positive regulation of calcium ion transport 3/28 0.0023 0.0369 Crh/Serpine1/Ucn

GO:0006884 cell volume homeostasis 2/28 0.0023 0.0369 Sctr/Slc12a1

GO:0070482 response to oxygen levels 5/28 0.0023 0.0369 Apold1/Nox1/Mmp9/Serpine1/Ucn2

GO:0031960 response to corticosteroid 4/28 0.0024 0.0376 Crh/Serpine1/Ucn/Ucn2

GO:1901186 positive regulation of ERBB signaling pathway 2/28 0.0024 0.0378 Plaur/Mmp9

GO:0030856 regulation of epithelial cell differentiation 3/28 0.0026 0.0389 Apold1/Mmp9/Serpine1

GO:0071402 cellular response to lipoprotein 2/28 0.0026 0.0389 Mmp9/Serpine1

particle stimulus

GO:0051346 negative regulation of hydrolase activity 4/28 0.0027 0.0396 Plaur/Mmp9/Serpine1/LOC299277

GO:0035902 response to immobilization stress 2/28 0.0029 0.0421 Crh/Ucn2

GO:0006979 response to oxidative stress 5/28 0.0029 0.0421 Met/Nox1/Mmp9/Serpine1/Ucn

GO:0050819 negative regulation of coagulation 2/28 0.0030 0.0433 Procr/Serpine1

GO:0048265 response to pain 2/28 0.0033 0.0465 Crh/Ucn

GO:0090199 regulation of release of cytochrome c from mitochondria 2/28 0.0033 0.0465 Plaur/Mmp9

GO:0034599 cellular response to oxidative stress 4/28 0.0034 0.0465 Met/Nox1/Mmp9/Serpine1

GO:0010634 positive regulation of epithelial cell migration 3/28 0.0035 0.0476 Met/Mmp9/Serpine1

MOLECULAR FUNCTION

GO:0051428 peptide hormone receptor binding 3/28 6.96E-06 0.0008 Crh/Ucn/Ucn2
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GO:0051427 hormone receptor binding 3/28 2.05E-05 0.0012 Crh/Ucn/Ucn2

GO:0071855 neuropeptide receptor binding 3/28 3.67E-05 0.0014 Crh/Ucn/Ucn2

GO:0005179 hormone activity 3/28 0.0004 0.0124 Crh/Ucn/Ucn2

GO:0042562 hormone binding 3/28 0.0008 0.0187 Sctr/Ucn2/Rxfp2

GO:0001664 G protein-coupled receptor binding 4/28 0.0021 0.0405 Crh/Ucn/Prok2/Ucn2

CELLULAR COMPONENT

GO:0043196 varicosity 2/27 0.0003 0.0171 Crh/Ucn

KEGG PATHWAY

rno04610 Complement and coagulation cascades 3/16 0.0004 0.0230 Procr/Plaur/Serpine1

rno04080 Neuroactive ligand-receptor interaction 5/16 0.0005 0.0230 Crh/Sctr/Ucn/Ucn2/Rxfp2

REACTOME

R-RNO-500792 GPCR ligand binding 6/17 3.19E-05 0.0020 Opn3/Crh/Sctr/Ucn/Prok2/Rxfp2

R-RNO-372790 Signaling by GPCR 7/17 4.86E-05 0.0020 Opn3/Crh/Sctr/Ucn/Arhgef16/Prok2/Rxfp2

R-RNO-373080 Class B/2 (Secretin family receptors) 3/17 0.0001 0.0028 Crh/Sctr/Ucn

Table A.6: Enrichment analyses on DEGs identified in Comparison 2. Subset of highly differentially expressed genes (Padj

<0.05 and log2FC> ±1.5)

Database ID Description GeneRatio p-value p-adj Gene

BIOLOGICAL PROCESS

GO:0007631 feeding behavior 7/63 7.39E-07 0.0012 Th/Cartpt/Glp1r/Oxt/Gal/Trh/Calca

GO:0051047 positive regulation of secretion 9/63 3.28E-05 0.0146 Pcsk1/Cartpt/Glp1r/Pla2r1/Oxt/Gal/Avp/Trh/Spp1

GO:0007218 neuropeptide signaling pathway 5/63 4.48E-05 0.0146 Cartpt/Glp1r/Pdyn/Gal/Calca

GO:0009651 response to salt stress 4/63 5.94E-05 0.0146 Th/Oxt/Avp/Slc12a1
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GO:0045777 positive regulation of blood pressure 4/63 7.06E-05 0.0146 Cartpt/Glp1r/Oxt/Avp

GO:0032892 positive regulation of organic acid transport 4/63 7.67E-05 0.0146 Pla2r1/Oxt/Avp/Trh

GO:0007204 positive regulation of cytosolic calcium 8/63 7.99E-05 0.0146 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/Cxcl10/Cxcl13

ion concentration

GO:0051954 positive regulation of amine transport 4/63 8.33E-05 0.0146 Cartpt/Oxt/Avp/Trh

GO:0022600 digestive system process 5/63 9.46E-05 0.0146 Cartpt/Oxt/Mogat2/Chrm1/Abcg5

GO:1905952 regulation of lipid localization 6/63 9.71E-05 0.0146 Pla2r1/Oxt/Gal/Abcg5/Spp1/C3

GO:1903793 positive regulation of anion transport 4/63 0.0001 0.0146 Pla2r1/Oxt/Avp/Trh

GO:1905954 positive regulation of lipid localization 5/63 0.0001 0.0146 Pla2r1/Oxt/Gal/Spp1/C3

GO:1903532 positive regulation of secretion by cell 8/63 0.0001 0.0146 Pcsk1/Cartpt/Glp1r/Oxt/Gal/Avp/Trh/Spp1

GO:1901654 response to ketone 8/63 0.0001 0.0146 Th/Gpx3/Oxt/Avp/Trh/Postn/Spp1/C3

GO:0007586 digestion 5/63 0.0001 0.0146 Cartpt/Oxt/Mogat2/Chrm1/Abcg5

GO:0055078 sodium ion homeostasis 4/63 0.0001 0.0146 Oxt/Avp/Slc12a1/Spp1

GO:0007588 excretion 4/63 0.0002 0.0148 Oxt/Avp/Slc12a1/Abcg5

GO:0042538 hyperosmotic salinity response 3/63 0.0002 0.0156 Oxt/Avp/Slc12a1

GO:0008217 regulation of blood pressure 6/63 0.0002 0.0164 Cartpt/Glp1r/Oxt/Avp/Calca/Postn

GO:0006874 cellular calcium ion homeostasis 9/63 0.0002 0.0165 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/Spp1/Cxcl10/Cxcl13

GO:0051480 regulation of cytosolic calcium ion concentration 8/63 0.0002 0.0170 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/ Cxcl10/Cxcl13

GO:0055074 calcium ion homeostasis 9/63 0.0002 0.0179 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/Spp1/Cxcl10/Cxcl13

GO:0015837 amine transport 5/63 0.0002 0.0179 Th/Cartpt/Oxt/Avp/Trh

GO:0007617 mating behavior 3/63 0.0003 0.0209 Th/Oxt/Avp

GO:0072503 cellular divalent inorganic cation homeostasis 9/63 0.0003 0.0209 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/Spp1/Cxcl10/Cxcl13

GO:0007188 adenylate cyclase-modulating G protein- 6/63 0.0004 0.0231 Glp1r/Chrm1/Sctr/Gpr6/Calca/Cxcl10

coupled receptor signaling pathway
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GO:0032368 regulation of lipid transport 5/63 0.0004 0.0246 Pla2r1/Oxt/Gal/Abcg5/Spp1

GO:0072507 divalent inorganic cation homeostasis 9/63 0.0004 0.0262 Glp1r/Cd55/Oxt/Avp/Gpr6/Calca/Spp1/Cxcl10/Cxcl13

GO:0043270 positive regulation of ion transport 7/63 0.0005 0.0262 Pla2r1/Oxt/Gal/Avp/Chrm1/Trh/Cxcl10

GO:0032890 regulation of organic acid transport 4/63 0.0006 0.0333 Pla2r1/Oxt/Avp/Trh

GO:0055067 monovalent inorganic cation homeostasis 5/63 0.0006 0.0333 Oxt/Avp/Slc12a1/Tasl/Spp1

GO:0032370 positive regulation of lipid transport 4/63 0.0006 0.0333 Pla2r1/Oxt/Gal/Spp1

GO:0006972 hyperosmotic response 3/63 0.0008 0.0385 Oxt/Avp/Slc12a1

GO:0051412 response to corticosterone 3/63 0.0008 0.0404 Th/Gpx3/Trh

GO:1903522 regulation of blood circulation 6/63 0.0009 0.0438 Th/Glp1r/Oxt/Avp/Dsc2/Calca

GO:0019098 reproductive behavior 3/63 0.0010 0.0438 Th/Oxt/Avp

GO:0051798 positive regulation of hair follicle development 2/63 0.0010 0.0438 Gal/Krt17

GO:0051384 response to glucocorticoid 6/63 0.0011 0.0449 Pcsk1/Th/Gpx3/Oxt/Trh/C3

GO:0045124 regulation of bone resorption 3/63 0.0011 0.0449 Cartpt/Calca/Spp1

GO:0002118 aggressive behavior 2/63 0.0012 0.0449 Oxt/Avp

GO:0010819 regulation of T cell chemotaxis 2/63 0.0012 0.0449 Cxcl10/Cxcl13

GO:0060180 female mating behavior 2/63 0.0012 0.0449 Oxt/Avp

GO:0097278 complement-dependent cytotoxicity 2/63 0.0012 0.0449 Cd55/C3

GO:0140374 antiviral innate immune response 2/63 0.0012 0.0449 Mx1/Cxcl10

GO:0046849 bone remodeling 4/63 0.0012 0.0454 Cartpt/Calca/Ptprv/Spp1

GO:0042755 eating behavior 3/63 0.0013 0.0454 Th/Oxt/Trh

GO:0008015 blood circulation 8/63 0.0013 0.0464 Th/Cartpt/Glp1r/Oxt/Avp/Dsc2/Calca/Postn

GO:0008016 regulation of heart contraction 5/63 0.0014 0.0495 Th/Glp1r/Oxt/Dsc2/Calca

MOLECULAR FUNCTION
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GO:0005184 neuropeptide hormone activity 5/61 2.77E-08 5.95E-06 Cartpt/Oxt/Gal/Avp/Calca

GO:0048018 receptor ligand activity 11/61 1.77E-07 1.71E-05 Cartpt/Pdyn/Oxt/Gal/Avp/Fgf7/Trh/Calca/Spp1/Cxcl10/Cxcl13

GO:0030546 signaling receptor activator activity 11/61 2.39E-07 1.71E-05 Cartpt/Pdyn/Oxt/Gal/Avp/Fgf7/Trh/Calca/Spp1/Cxcl10/Cxcl13

GO:0030545 signaling receptor regulator activity 11/61 4.95E-07 2.66E-05 Cartpt/Pdyn/Oxt/Gal/Avp/Fgf7/Trh/Calca/Spp1/Cxcl10/Cxcl13

GO:0005179 hormone activity 6/61 7.52E-07 3.23E-05 Cartpt/Oxt/Gal/Avp/Trh/Calca

GO:0001664 G protein-coupled receptor binding 8/61 2.58E-05 0.0009 Pdyn/Oxt/Gal/Avp/Calca/Cxcl10/C3/Cxcl13

GO:0045236 CXCR chemokine receptor binding 2/61 0.0013 0.0395 Cxcl10/Cxcl13

CELLULAR COMPONENT

GO:0044306 neuron projection terminus 8/63 1.34E-05 0.0021 Pcsk1/Th/Pdyn/Oxt/Gal/Chrm1/Tnn/Calca

GO:0043679 axon terminus 7/63 5.92E-05 0.0047 Pcsk1/Th/Pdyn/Oxt/Chrm1/Tnn/Calca

GO:0030141 secretory granule 7/63 0.0004 0.0235 Pcsk1/Cartpt/Pdyn/Oxt/Gal/Avp/Trh

GO:0060205 cytoplasmic vesicle lumen 2/63 0.0011 0.0424 Pcsk1/Pdyn

GO:0043204 perikaryon 5/63 0.0015 0.0424 Pcsk1/Th/Gal/Ddn/Rtn4rl2

GO:0031983 vesicle lumen 2/63 0.0016 0.0424 Pcsk1/Pdyn

KEGG PATHWAY

rno04080 Neuroactive ligand-receptor interaction 11/34 1.47E-07 1.40E-05 Glp1r/Pdyn/Oxt/Gal/Avp/Chrm1/Trh/Sctr/Calca/C3/Gabrd

rno04975 Fat digestion and absorption 3/34 0.0008 0.0389 Mogat2/Abcg5/Mttp

REACTOME

R-RNO-500792 GPCR ligand binding 11/34 4.31E-08 5.13E-06 Glp1r/Oxt/Gal/Avp/Chrm1/Trh/Sctr/Calca/Cxcl10/C3/Cxcl13

R-RNO-375276 Peptide ligand-binding receptors 7/34 3.01E-06 0.0002 Oxt/Gal/Avp/Trh/Cxcl10/C3/Cxcl13

R-RNO-372790 Signaling by GPCR 11/34 5.49E-06 0.0002 Glp1r/Oxt/Gal/Avp/Chrm1/Trh/Sctr/Calca/Cxcl10/C3/Cxcl13

R-RNO-373076 Class A/1 (Rhodopsin-like receptors) 8/34 8.55E-06 0.0003 Oxt/Gal/Avp/Chrm1/Trh/Cxcl10/C3/Cxcl13

R-RNO-388396 GPCR downstream signalling 8/34 0.0004 0.0098 Oxt/Gal/Avp/Chrm1/Trh/Cxcl10/C3/Cxcl13
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R-RNO-373080 Class B/2 (Secretin family receptors) 3/34 0.0009 0.0170 Glp1r/Sctr/Calca

Table A.7: Enrichment analyses on DEGs identified in Comparison 3. Subset of highly differentially expressed genes (Padj

<0.05 and log2FC> ±1.5)

Database ID Description GeneRatio p-value p-adj Gene

BIOLOGICAL PROCESS

GO:0007218 neuropeptide signaling pathway 10/117 3.28E-09 7.52E-06 Pdyn/Rxfp3/Cartpt/Glp1r/Gal/Ucn/Pgr15l/Nmb/Calca/Npbwr1

GO:0007631 feeding behavior 9/117 4.02E-07 0.0005 Oxt/Tacr3/Cartpt/Glp1r/Gal/Ucn/Th/Mc3r/Calca

GO:0007567 parturition 5/117 7.06E-07 0.0005 Cd55/Oxt/Rxfp1/Mmp9/Ptger4

GO:0007188 adenylate cyclase-modulating G protein-coupled 11/117 1.25E-06 0.0007 Sctr/Glp1r/Rxfp1/Ptger4/

receptor signaling pathway Mc3r/Ucn2/Calcr/Akap5/Cxcl10/Chrm1/Calca

GO:0044706 multi-multicellular organism process 12/117 3.57E-06 0.0014 Cd55/Oxt/Arhgdib/Rxfp1/Crh/Ucn/

Mmp9/Ptger4/Mmp12/Akap5/Calca/Hmx3

GO:1905954 positive regulation of lipid localization 8/117 3.58E-06 0.0014 Pla2r1/Oxt/Spp1/Crh/Gal/C3/Cyp19a1/Abca12

GO:0008217 regulation of blood pressure 10/117 4.24E-06 0.0014 Oxt/Tacr3/Avp/Cartpt/Glp1r/Crh/Nox1/Ucn/Mc3r/Calca

GO:0055078 sodium ion homeostasis 6/117 8.76E-06 0.0020 Slc12a1/Oxt/Avp/Spp1/Ptger4/Mc3r

GO:0032370 positive regulation of lipid transport 7/117 9.36E-06 0.0020 Pla2r1/Oxt/Spp1/Crh/Gal/Cyp19a1/Abca12

GO:0009914 hormone transport 13/117 9.88E-06 0.0020 Vgf/Cartpt/Glp1r/Spp1/Crh/Gal/

Ucn/Ptger4/Ucn2/Nmb/Crym/Cyp19a1/Abca12

GO:0051384 response to glucocorticoid 11/117 1.04E-05 0.0020 Pcsk1/Gpx3/Oxt/Crh/C3/Ucn/Th/Cps1/Ucn2/Calcr/Npas4

GO:0051047 positive regulation of secretion 13/117 1.05E-05 0.0020 Pcsk1/Pla2r1/Oxt/Avp/Cartpt/Glp1r/

Spp1/Crh/Gal/Ucn/Ptger4/Nmb/Cyp19a1

GO:0007189 adenylate cyclase-activating G protein-coupled 8/117 1.69E-05 0.0030 Glp1r/Rxfp1/Ptger4/Mc3r/Ucn2/Calcr/Cxcl10/Calca
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receptor signaling pathway

GO:0035902 response to immobilization stress 5/117 2.29E-05 0.0035 Crh/Gal/Th/Ptger4/Ucn2

GO:1903532 positive regulation of secretion by cell 12/117 2.37E-05 0.0035 Pcsk1/Oxt/Avp/Cartpt/Glp1r/

Spp1/Crh/Gal/Ucn/Ptger4/Nmb/Cyp19a1

GO:0010817 regulation of hormone levels 15/117 2.48E-05 0.0035 Pcsk1/Vgf/Cartpt/Glp1r/Spp1/Crh/

Gal/Ucn/Ptger4/Ucn2/Nmb/Crym/Cyp26a1/Cyp19a1/Abca12

GO:0031960 response to corticosteroid 11/117 2.59E-05 0.0035 Pcsk1/Gpx3/Oxt/Crh/C3/Ucn/Th/Cps1/Ucn2/Calcr/Npas4

GO:0019933 cAMP-mediated signaling 6/117 2.77E-05 0.0035 Sctr/Glp1r/Crh/Gal/Ucn/Ptger4

GO:0046883 regulation of hormone secretion 11/117 3.40E-05 0.0040 Cartpt/Glp1r/Spp1/Crh/Gal/Ucn/

Ptger4/Ucn2/Nmb/Cyp19a1/Abca12

GO:0045124 regulation of bone resorption 5/117 3.73E-05 0.0040 Cartpt/Spp1/Ptger4/Calca/Cyp19a1

GO:0046879 hormone secretion 12/117 3.74E-05 0.0040 Vgf/Cartpt/Glp1r/Spp1/Crh/Gal/Ucn/

Ptger4/Ucn2/Nmb/Cyp19a1/Abca12

GO:0021854 hypothalamus development 4/117 3.82E-05 0.0040 Nhlh2/Crh/Otp/Cyp19a1

GO:0009651 response to salt stress 5/117 4.17E-05 0.0042 Slc12a1/Oxt/Tacr3/Avp/Th

GO:0007565 female pregnancy 10/117 4.36E-05 0.0042 Oxt/Arhgdib/Crh/Ucn/Mmp9/Ptger4/Mmp12/Akap5/Calca/Hmx3

GO:0042538 hyperosmotic salinity response 4/117 4.59E-05 0.0042 Slc12a1/Oxt/Tacr3/Avp

GO:0051048 negative regulation of secretion 9/117 5.45E-05 0.0045 Pla2r1/Oxt/Cartpt/Crh/Gal/Ucn/Ptger4/Ucn2/Nmb

GO:0019932 second-messenger-mediated signaling 11/117 5.49E-05 0.0045 Slc12a1/Sctr/Rasd1/Glp1r/Crh/Gal/

Ucn/Ptger4/Akap5/Lat/Cyp19a1

GO:0007204 positive regulation of cytosolic 11/117 5.67E-05 0.0045 Rxfp3/Cd55/Oxt/Avp/Glp1r/Ptger4/Nmb/

calcium ion concentration Calcr/Akap5/Cxcl10/Calca

GO:0045777 positive regulation of blood pressure 5/117 5.77E-05 0.0045 Oxt/Tacr3/Avp/Cartpt/Glp1r

GO:0046887 positive regulation of hormone secretion 8/117 5.87E-05 0.0045 Glp1r/Spp1/Crh/Gal/Ucn/Ptger4/Nmb/Cyp19a1
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GO:0043270 positive regulation of ion transport 11/117 6.03E-05 0.0045 Pla2r1/Oxt/Avp/Crh/Gal/Ucn/Calcr/Akap5/Wfs1/Cxcl10/Chrm1

GO:0007618 mating 5/117 7.07E-05 0.0050 Oxt/Vgf/Avp/Nhlh2/Th

GO:0003014 renal system process 7/117 7.22E-05 0.0050 Slc12a1/Oxt/Avp/Sctr/Btc/Ptger4/Wfs1

GO:1905952 regulation of lipid localization 8/117 8.08E-05 0.0053 Pla2r1/Oxt/Spp1/Crh/Gal/C3/Cyp19a1/Abca12

GO:0048871 multicellular organismal homeostasis 14/117 8.12E-05 0.0053 Oxt/Rcn3/Avp/Sctr/Cartpt/Spp1/Pemt/Ptger4/Mc3r/

Wfs1/Calca/Fgf7/Cyp19a1/Abca12

GO:0140353 lipid export from cell 5/117 8.59E-05 0.0055 Oxt/Spp1/Crh/Gal/Cyp19a1

GO:0046888 negative regulation of hormone secretion 6/117 9.97E-05 0.0060 Cartpt/Crh/Gal/Ucn/Ucn2/Nmb

GO:0007617 mating behavior 4/117 0.0001 0.0060 Oxt/Avp/Nhlh2/Th

GO:0043950 positive regulation of cAMP-mediated signaling 4/117 0.0001 0.0060 Sctr/Crh/Ucn/Ptger4

GO:0006874 cellular calcium ion homeostasis 13/117 0.0001 0.0060 Rxfp3/Cd55/Oxt/Avp/Glp1r/Spp1/Ptger4/

Nmb/Calcr/Akap5/Wfs1/Cxcl10/Calca

GO:0046850 regulation of bone remodeling 5/117 0.0001 0.0063 Cartpt/Spp1/Ptger4/Calca/Cyp19a1

GO:0048167 regulation of synaptic plasticity 10/117 0.0001 0.0063 Vgf/Sctr/Crh/Baiap2/Mmp9/Akap5/Npas4/Shisa8/Itpka/Cbln1

GO:1901654 response to ketone 11/117 0.0001 0.0064 Gpx3/Oxt/Avp/Spp1/Crh/C3/Th/Ptger4/Cps1/Npas4/Cyp19a1

GO:0048545 response to steroid hormone 13/117 0.0001 0.0064 Pcsk1/Gpx3/Oxt/Spp1/Crh/C3/Ucn/Th/

Ptger4/Cps1/Ucn2/Calcr/Npas4

GO:0010876 lipid localization 12/117 0.0001 0.0068 Pla2r1/Oxt/Apold1/Spp1/Crh/Dysf/Gal/C3/

Nmb/Ano3/Cyp19a1/Abca12

GO:0055074 calcium ion homeostasis 13/117 0.0001 0.0070 Rxfp3/Cd55/Oxt/Avp/Glp1r/Spp1/Ptger4/Nmb/

Calcr/Akap5/Wfs1/Cxcl10/Calca

GO:0019935 cyclic-nucleotide-mediated signaling 6/117 0.0001 0.0071 Sctr/Glp1r/Crh/Gal/Ucn/Ptger4

GO:0050878 regulation of body fluid levels 11/117 0.0002 0.0074 Procr/Oxt/Avp/Sctr/Btc/C3/Ucn/Ptger4/Wfs1/Chrm1/Abca12

GO:0035176 social behavior 5/117 0.0002 0.0086 Oxt/Avp/Ucn/Th/Npas4
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GO:0032368 regulation of lipid transport 7/117 0.0002 0.0086 Pla2r1/Oxt/Spp1/Crh/Gal/Cyp19a1/Abca12

GO:0072503 cellular divalent inorganic cation homeostasis 13/117 0.0002 0.0087 Rxfp3/Cd55/Oxt/Avp/Glp1r/Spp1/Ptger4/Nmb/

Calcr/Akap5/Wfs1/Cxcl10/Calca

GO:0051480 regulation of cytosolic calcium ion concentration 11/117 0.0002 0.0091 Rxfp3/Cd55/Oxt/Avp/Glp1r/Ptger4/Nmb/

Calcr/Akap5/Cxcl10/Calca

GO:0051703 biological process involved in intraspecies 5/117 0.0002 0.0095 Oxt/Avp/Ucn/Th/Npas4

interaction between organisms

GO:0045779 negative regulation of bone resorption 3/117 0.0002 0.0097 Cartpt/Calca/Cyp19a1

GO:0046849 bone remodeling 6/117 0.0002 0.0097 Cartpt/Spp1/Ptger4/Calca/Ptprv/Cyp19a1

GO:0051051 negative regulation of transport 13/117 0.0003 0.0110 Pla2r1/Oxt/Cartpt/Crh/Dysf/Gal/Ucn/Mmp9/

Ptger4/Ucn2/Nmb/Akap5/Calca

GO:0055067 monovalent inorganic cation homeostasis 7/117 0.0003 0.0113 Slc12a1/Oxt/Avp/Spp1/Nox1/Ptger4/Mc3r

GO:0007566 embryo implantation 5/117 0.0003 0.0114 Arhgdib/Mmp9/Mmp12/Calca/Hmx3

GO:0045453 bone resorption 5/117 0.0003 0.0114 Cartpt/Spp1/Ptger4/Calca/Cyp19a1

GO:0072507 divalent inorganic cation homeostasis 13/117 0.0003 0.0115 Rxfp3/Cd55/Oxt/Avp/Glp1r/Spp1/

Ptger4/Nmb/Calcr/Akap5/Wfs1/Cxcl10/Calca

GO:0007586 digestion 6/117 0.0003 0.0115 Oxt/Cartpt/Crh/Ucn/Ucn2/Chrm1

GO:0006970 response to osmotic stress 6/117 0.0003 0.0124 Slc12a1/Oxt/Tacr3/Avp/Dysf/Th

GO:0006972 hyperosmotic response 4/117 0.0003 0.0124 Slc12a1/Oxt/Tacr3/Avp

GO:0043084 penile erection 3/117 0.0004 0.0124 Oxt/Vgf/Avp

GO:0046851 negative regulation of bone remodeling 3/117 0.0004 0.0124 Cartpt/Calca/Cyp19a1

GO:0051412 response to corticosterone 4/117 0.0004 0.0133 Gpx3/Crh/Th/Npas4

GO:0019098 reproductive behavior 4/117 0.0005 0.0158 Oxt/Avp/Nhlh2/Th

GO:0051924 regulation of calcium ion transport 9/117 0.0005 0.0158 Glp1r/Crh/Dysf/Ucn/Calcr/Akap5/Wfs1/Cxcl10/Calca
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GO:0034103 regulation of tissue remodeling 5/117 0.0005 0.0165 Cartpt/Spp1/Ptger4/Calca/Cyp19a1

GO:0043129 surfactant homeostasis 3/117 0.0005 0.0165 Rcn3/Fgf7/Abca12

GO:0021536 diencephalon development 5/117 0.0006 0.0183 Pcsk1/Nhlh2/Crh/Otp/Cyp19a1

GO:0032094 response to food 4/117 0.0007 0.0208 Oxt/Cartpt/Ucn/Cps1

GO:0090279 regulation of calcium ion import 4/117 0.0007 0.0208 Crh/Dysf/Ucn/Calcr

GO:0001696 gastric acid secretion 3/117 0.0007 0.0210 Oxt/Cartpt/Ucn

GO:0032098 regulation of appetite 3/117 0.0007 0.0210 Sctr/Cartpt/Ucn

GO:0048875 chemical homeostasis within a tissue 3/117 0.0007 0.0210 Rcn3/Fgf7/Abca12

GO:0043949 regulation of cAMP-mediated signaling 4/117 0.0007 0.0215 Sctr/Crh/Ucn/Ptger4

GO:0008015 blood circulation 12/117 0.0008 0.0222 Oxt/Tacr3/Avp/Cartpt/Glp1r/Crh/Nox1/Ucn/Th/Cps1/Mc3r/Calca

GO:0006869 lipid transport 10/117 0.0008 0.0235 Pla2r1/Oxt/Apold1/Spp1/Crh/Gal/Nmb/Ano3/Cyp19a1/Abca12

GO:0008016 regulation of heart contraction 7/117 0.0009 0.0260 Oxt/Tacr3/Glp1r/Ucn/Th/Mc3r/Calca

GO:0051928 positive regulation of calcium ion transport 6/117 0.0010 0.0274 Crh/Ucn/Calcr/Akap5/Wfs1/Cxcl10

GO:0042593 glucose homeostasis 9/117 0.0010 0.0283 Vgf/Cartpt/Crh/Th/Ptger4/Nmb/Wfs1/Cyp19a1/Abca12

GO:0033500 carbohydrate homeostasis 9/117 0.0011 0.0283 Vgf/Cartpt/Crh/Th/Ptger4/Nmb/Wfs1/Cyp19a1/Abca12

GO:0034104 negative regulation of tissue remodeling 3/117 0.0011 0.0283 Cartpt/Calca/Cyp19a1

GO:0035813 regulation of renal sodium excretion 3/117 0.0011 0.0283 Oxt/Avp/Ptger4

GO:0050891 multicellular organismal water homeostasis 4/117 0.0011 0.0283 Avp/Sctr/Wfs1/Abca12

GO:0097529 myeloid leukocyte migration 7/117 0.0011 0.0283 Spp1/Dysf/Ptger4/Cxcl10/Calca/Cxcl6/Cyp19a1

GO:0009306 protein secretion 10/117 0.0012 0.0299 Pcsk1/Rcn3/Vgf/Cartpt/Glp1r/Crh/Ptger4/Akap5/Cbln1/Abca12

GO:0050795 regulation of behavior 5/117 0.0012 0.0299 Tacr3/Crh/Ucn/Ptger4/Mc3r

GO:0035592 establishment of protein localization 10/117 0.0012 0.0300 Pcsk1/Rcn3/Vgf/Cartpt/Glp1r/Crh/

to extracellular region Ptger4/Akap5/Cbln1/Abca12

GO:0007620 copulation 3/117 0.0012 0.0300 Oxt/Vgf/Avp
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GO:0090280 positive regulation of calcium ion import 3/117 0.0012 0.0300 Crh/Ucn/Calcr

GO:0003013 circulatory system process 12/117 0.0013 0.0311 Oxt/Tacr3/Avp/Cartpt/Glp1r/Crh/Nox1/Ucn/Th/Cps1/Mc3r/Calca

GO:0045776 negative regulation of blood pressure 4/117 0.0013 0.0320 Oxt/Crh/Ucn/Calca

GO:0071692 protein localization to extracellular region 10/117 0.0013 0.0320 Pcsk1/Rcn3/Vgf/Cartpt/Glp1r/Crh/Ptger4/Akap5/Cbln1/Abca12

GO:0035812 renal sodium excretion 3/117 0.0014 0.0320 Oxt/Avp/Ptger4

GO:0045472 response to ether 3/117 0.0014 0.0320 Oxt/Crh/Th

GO:1903522 regulation of blood circulation 8/117 0.0014 0.0320 Oxt/Tacr3/Avp/Glp1r/Ucn/Th/Mc3r/Calca

GO:0048771 tissue remodeling 7/117 0.0014 0.0320 Cartpt/Spp1/Mmp9/Ptger4/Calca/Ptprv/Cyp19a1

GO:0001894 tissue homeostasis 8/117 0.0014 0.0320 Rcn3/Cartpt/Spp1/Ptger4/Calca/Fgf7/Cyp19a1/Abca12

GO:0032963 collagen metabolic process 5/117 0.0014 0.0320 Creb3l1/Rcn3/Ucn/Mmp9/Mmp12

GO:0044060 regulation of endocrine process 4/117 0.0015 0.0336 Crh/Gal/Ucn/Ucn2

GO:0010737 protein kinase A signaling 3/117 0.0015 0.0336 Gal/Calcr/Akap5

GO:0035809 regulation of urine volume 3/117 0.0015 0.0336 Oxt/Btc/Ptger4

GO:0022600 digestive system process 5/117 0.0016 0.0336 Oxt/Cartpt/Crh/Ucn/Chrm1

GO:1990266 neutrophil migration 5/117 0.0016 0.0336 Spp1/Dysf/Ptger4/Cxcl10/Cxcl6

GO:0021761 limbic system development 6/117 0.0017 0.0354 Nhlh2/Crh/Neurod6/Otp/Akap5/Cyp19a1

GO:0061003 positive regulation of dendritic 3/117 0.0017 0.0362 Caprin2/Baiap2/Itpka

spine morphogenesis

GO:0060326 cell chemotaxis 8/117 0.0017 0.0363 Spp1/Dysf/Egr3/Cxcl10/Calca/Cxcl6/Cyp19a1/Arhgef16

GO:0007588 excretion 4/117 0.0018 0.0377 Slc12a1/Oxt/Avp/Ptger4

GO:0030104 water homeostasis 4/117 0.0018 0.0377 Avp/Sctr/Wfs1/Abca12

GO:0050775 positive regulation of dendrite morphogenesis 4/117 0.0018 0.0377 Caprin2/Baiap2/Akap5/Itpka

GO:0030072 peptide hormone secretion 8/117 0.0020 0.0407 Vgf/Cartpt/Glp1r/Crh/Gal/Ucn/Ptger4/Abca12

GO:0002792 negative regulation of peptide secretion 4/117 0.0021 0.0419 Cartpt/Crh/Gal/Ptger4
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GO:0044062 regulation of excretion 3/117 0.0021 0.0419 Oxt/Avp/Ptger4

GO:0050886 endocrine process 5/117 0.0021 0.0420 Crh/Gal/Nox1/Ucn/Ucn2

GO:0051385 response to mineralocorticoid 4/117 0.0022 0.0433 Gpx3/Crh/Th/Npas4

GO:0033273 response to vitamin 6/117 0.0023 0.0453 Spp1/Pemt/Mmp9/Cxcl10/Crym/Cyp26a1

GO:0002790 peptide secretion 8/117 0.0024 0.0457 Vgf/Cartpt/Glp1r/Crh/Gal/Ucn/Ptger4/Abca12

GO:0044344 cellular response to fibroblast growth factor stimulus 5/117 0.0024 0.0461 Creb3l1/Egr3/Cps1/Fgf7/Cyp19a1

GO:0060047 heart contraction 7/117 0.0025 0.0475 Oxt/Tacr3/Glp1r/Ucn/Th/Mc3r/Calca

GO:0090276 regulation of peptide hormone secretion 7/117 0.0025 0.0475 Cartpt/Glp1r/Crh/Gal/Ucn/Ptger4/Abca12

GO:1902476 chloride transmembrane transport 4/117 0.0026 0.0490 Slc12a1/Gabrq/Ano3/Gabrd

MOLECULAR FUNCTION

GO:0005184 neuropeptide hormone activity 7/110 1.14E-10 3.19E-08 Oxt/Vgf/Avp/Cartpt/Gal/Nmb/Calca

GO:0005179 hormone activity 10/110 2.28E-10 3.19E-08 Oxt/Vgf/Avp/Cartpt/Crh/Gal/Ucn/Ucn2/Nmb/Calca

GO:0048018 receptor ligand activity 16/110 5.54E-09 5.17E-07 Pdyn/Oxt/Vgf/Avp/Cartpt/Btc/Spp1/Crh/Gal/Ucn/Ucn2/

Nmb/Cxcl10/Calca/Fgf7/Cxcl6

GO:0030546 signaling receptor activator activity 16/110 8.59E-09 6.01E-07 Pdyn/Oxt/Vgf/Avp/Cartpt/Btc/Spp1/Crh/Gal/Ucn/Ucn2/

Nmb/Cxcl10/Calca/Fgf7/Cxcl6

GO:0030545 signaling receptor regulator activity 16/110 2.46E-08 1.38E-06 Pdyn/Oxt/Vgf/Avp/Cartpt/Btc/Spp1/Crh/Gal/Ucn/Ucn2/

Nmb/Cxcl10/Calca/Fgf7/Cxcl6

GO:0008528 G protein-coupled peptide receptor activity 10/110 8.34E-08 3.89E-06 Rxfp3/Tacr3/Sctr/Glp1r/Rxfp1/Gal/Pgr15l/Mc3r/Calcr/Npbwr1

GO:0001653 peptide receptor activity 10/110 1.69E-07 6.78E-06 Rxfp3/Tacr3/Sctr/Glp1r/Rxfp1/Gal/Pgr15l/Mc3r/Calcr/Npbwr1

GO:0001664 G protein-coupled receptor binding 13/110 1.94E-07 6.78E-06 Pdyn/Oxt/Avp/Crh/Gal/C3/Ucn/Ucn2/

Nmb/Akap5/Cxcl10/Calca/Cxcl6

GO:0071855 neuropeptide receptor binding 5/110 3.02E-06 9.40E-05 Crh/Gal/Ucn/Ucn2/Nmb
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GO:0004930 G protein-coupled receptor activity 13/110 3.59E-06 0.0001 Opn3/Rxfp3/Tacr3/Sctr/Glp1r/Rxfp1/Gal/Pgr15l/Ptger4

/Mc3r/Calcr/Chrm1/Npbwr1

GO:0042562 hormone binding 7/110 8.51E-06 0.0002 Sctr/Glp1r/Rxfp1/Mc3r/Ucn2/Calcr/Crym

GO:0051428 peptide hormone receptor binding 3/110 0.0004 0.0102 Crh/Ucn/Ucn2

GO:0008188 neuropeptide receptor activity 4/110 0.0005 0.0104 Tacr3/Gal/Pgr15l/Npbwr1

GO:0017046 peptide hormone binding 4/110 0.0010 0.0207 Sctr/Glp1r/Mc3r/Calcr

GO:0051427 hormone receptor binding 3/110 0.0012 0.0232 Crh/Ucn/Ucn2

GO:0001228 DNA-binding transcription activator activity, 10/110 0.0015 0.0257 Creb3l1/Nhlh2/Egr3/Meox2/Egr4/

RNA polymerase II-specific Neurod6/Bcl11b/Npas4/Ebf3/Atf3

GO:0001216 DNA-binding transcription activator activity 10/110 0.0017 0.0274 Creb3l1/Nhlh2/Egr3/Meox2/Egr4/Neurod6/Bcl11b/Npas4/Ebf3/Atf3

GO:0015144 carbohydrate transmembrane transporter activity 3/110 0.0022 0.0338 RGD1304770/Slc45a2/Slc5a10

CELLULAR COMPONENT

GO:0044306 neuron projection terminus 13/116 1.22E-07 2.53E-05 Pdyn/Pcsk1/Oxt/Prph/Baiap2/Tnn/Gal/Ucn/Th/

Ptger4/Chrm1/Calca/Cyp19a1

GO:0043679 axon terminus 10/116 1.55E-05 0.0016 Pdyn/Pcsk1/Oxt/Prph/Tnn/Ucn/Th/Chrm1/Calca/Cyp19a1

GO:0030141 secretory granule 11/116 4.40E-05 0.0030 Pdyn/Pcsk1/Oxt/Vgf/Avp/Cartpt/Baiap2/Gal/Calcr/Wfs1/Abca12

GO:0032590 dendrite membrane 5/116 6.72E-05 0.0035 Tacr3/Ddn/Lamp5/Akap5/Shisa8

GO:0043204 perikaryon 8/116 0.0002 0.0067 Pcsk1/Prph/Crh/Gal/Ucn/Th/Ddn/Rtn4rl2

GO:0032591 dendritic spine membrane 3/116 0.0003 0.0110 Ddn/Akap5/Shisa8

GO:0032589 neuron projection membrane 5/116 0.0005 0.0139 Tacr3/Ddn/Lamp5/Akap5/Shisa8

GO:0043195 terminal bouton 6/116 0.0005 0.0139 Oxt/Prph/Tnn/Th/Calca/Cyp19a1

GO:0150034 distal axon 11/116 0.0008 0.0175 Pdyn/Pcsk1/Oxt/Prph/Tnn/Ucn/Th/Lamp5/Chrm1/Calca/Cyp19a1

KEGG
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rno04080 Neuroactive ligand-receptor interaction 24/61 2.47E-17 3.56E-15 Pdyn/Rxfp3/Oxt/Vgf/Tacr3/Avp/Sctr/Glp1r/Rxfp1/Crh/Gabrq/

Gal/C3/Ucn/Pgr15l/Ptger4/Mc3r/Ucn2/Nmb/Calcr/

Chrm1/Calca/Gabrd/Npbwr1

REACTOME

R-RNO-500792 GPCR ligand binding 21/55 2.64E-16 4.17E-14 Opn3/Rxfp3/Oxt/Tacr3/Avp/Sctr/Glp1r/Rxfp1/Crh/Gal/

C3/Ucn/Ptger4/Mc3r/Nmb/Calcr/Cxcl10/Chrm1/Calca/

Cxcl6/Npbwr1

R-RNO-372790 Signaling by GPCR 22/55 5.42E-13 4.28E-11 Opn3/Rxfp3/Oxt/Tacr3/Avp/Sctr/Glp1r/Rxfp1/Crh/Gal/

C3/Ucn/Ptger4/Mc3r/Nmb/Calcr/Cxcl10/Chrm1/Calca/

Cxcl6/Arhgef16/Npbwr1

R-RNO-373076 Class A/1 (Rhodopsin-like receptors) 15/55 5.37E-11 2.83E-09 Opn3/Rxfp3/Oxt/Tacr3/Avp/Rxfp1/Gal/

C3/Ptger4/Mc3r/Nmb/Cxcl10/Chrm1/Cxcl6/Npbwr1

R-RNO-375276 Peptide ligand-binding receptors 12/55 2.31E-10 9.12E-09 Rxfp3/Oxt/Tacr3/Avp/Rxfp1/Gal/

C3/Mc3r/Nmb/Cxcl10/Cxcl6/Npbwr1

R-RNO-373080 Class B/2 (Secretin family receptors) 6/55 4.91E-07 1.55E-05 Sctr/Glp1r/Crh/Ucn/Calcr/Calca

R-RNO-388396 GPCR downstream signalling 13/55 5.21E-06 0.0001 Opn3/Rxfp3/Oxt/Tacr3/Avp/Gal/C3/Nmb/

Cxcl10/Chrm1/Cxcl6/Arhgef16/Npbwr1

R-RNO-418594 G alpha (i) signalling events 7/55 0.0011 0.0248 Opn3/Rxfp3/Gal/C3/Cxcl10/Cxcl6/Npbwr1
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Table A.8: Enrichment analyses on DEGs identified in Comparison 4. Subset of highly differentially expressed genes (Padj

<0.05 and log2FC> ±1.5)

Database ID Description GeneRatio p-value p-adj Gene

BIOLOGICAL PROCESS

GO:0061098 positive regulation of protein tyrosine kinase activity 1/1 0.004159734 0.033979181 Alkal2

GO:0061097 regulation of protein tyrosine kinase activity 1/1 0.006504311 0.033979181 Alkal2

GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 1/1 0.013311148 0.033979181 Alkal2

GO:0070374 positive regulation of ERK1 and ERK2 cascade 1/1 0.01489941 0.033979181 Alkal2

GO:0010976 positive regulation of neuron projection development 1/1 0.016185146 0.033979181 Alkal2

GO:0050730 regulation of peptidyl-tyrosine phosphorylation 1/1 0.018075934 0.033979181 Alkal2

GO:0070372 regulation of ERK1 and ERK2 cascade 1/1 0.021403721 0.033979181 Alkal2

GO:0070371 ERK1 and ERK2 cascade 1/1 0.023067615 0.033979181 Alkal2

GO:0018108 peptidyl-tyrosine phosphorylation 1/1 0.025790349 0.033979181 Alkal2

GO:0018212 peptidyl-tyrosine modification 1/1 0.026017244 0.033979181 Alkal2

GO:0045860 positive regulation of protein kinase activity 1/1 0.026697928 0.033979181 Alkal2

GO:0031346 positive regulation of cell projection organization 1/1 0.031689608 0.034790501 Alkal2

GO:0033674 positive regulation of kinase activity 1/1 0.032672818 0.034790501 Alkal2

GO:0043410 positive regulation of MAPK cascade 1/1 0.034790501 0.034790501 Alkal2

MOLECULAR FUNCTION

GO:0030296 protein tyrosine kinase activator activity 1/1 0.001465917 0.010261422 Alkal2

GO:0030971 receptor tyrosine kinase binding 1/1 0.006352309 0.012199691 Alkal2

GO:0030295 protein kinase activator activity 1/1 0.007411027 0.012199691 Alkal2

GO:0019209 kinase activator activity 1/1 0.007899666 0.012199691 Alkal2

GO:1990782 protein tyrosine kinase binding 1/1 0.008714065 0.012199691 Alkal2
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GO:0019887 protein kinase regulator activity 1/1 0.013356136 0.015582159 Alkal2

GO:0019207 kinase regulator activity 1/1 0.015717892 0.015717892 Alkal2
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Figure A.1: Giot1 RNA and not protein is enriched in the nucleus of transfected cells (older Giot1 RNAscope probe)
The results obetained in HEK293 and rat IVB cells are presented. Spot-Caprin2 transfected cells provide a positive control for the Spot
fluoresence assay. Dapi nuclear signal (blue), Spot fluoresence provides the proxy for the detection of protein (green), Giot1 RNA signal
(gray)
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B.1 Supplementary data and material
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Table B.1: KZNF genes and chromosomal location. Data as extracted from Imbeault 2017 (REF)

Gene ENSG CHR start end Gene ENSG CHR start end

ZNF555 ENSG00000186300 19 2852584 2853823 ZNF300P1 ENSG00000197083 5 150930780 150931908

ZNF597 ENSG00000167981 16 3436441 3437227 ZNF630 ENSG00000221994 X 48058412 48059649

ZNF227 ENSG00000131115 19 44235183 44236812 ZNF783 ENSG00000204946 7 149294592 149295605

ZNF45 ENSG00000124459 19 43913449 43914937 ZNF354C ENSG00000177932 5 179079083 179079986

ZNF596 ENSG00000172748 8 245435 246338 ZNF157 ENSG00000147117 X 47412562 47413549

ZNF660 ENSG00000144792 3 44594346 44595165 ZSCAN4 ENSG00000180532 19 57678542 57678857

ZNF624 ENSG00000197566 17 16622311 16624054 ZNF177 ENSG00000188629 19 9380754 9381753

ZNF776 ENSG00000152443 19 57753925 57754910 ZNF510 ENSG00000081386 9 96758879 96760064

ZNF565 ENSG00000196357 19 36182327 36183461 AC010642.2 ENSG00000269794 19 58319288 58320486

ZNF33AP1 ENSG00000235197 10 37895092 37896806 ZNF550 ENSG00000251369 19 57546724 57547631

ZFP57 ENSG00000204644 6 29672724 29673582 ZNF484 ENSG00000127081 9 92846392 92848114

ZNF764 ENSG00000169951 16 30555325 30555892 ZNF382 ENSG00000161298 19 36626539 36627523

ZNF621 ENSG00000172888 3 40532226 40532793 ZNF333 ENSG00000160961 19 14718428 14719247

ZNF184 ENSG00000096654 6 27451314 27452889 ZNF695 ENSG00000197472 1 246986972 246988043

ZFP82 ENSG00000181007 19 36392755 36393826 ZNF844 ENSG00000223547 19 12075426 12078827

ZFP30 ENSG00000120784 19 37634992 37636063 ZNF546 ENSG00000187187 19 40013924 40015751

ZNF84 ENSG00000198040 12 133057339 133058914 ZNF155 ENSG00000204920 19 43996388 43999125

ZFP69B ENSG00000187801 1 40462824 40463559 ZNF226 ENSG00000167380 19 44176021 44177593

ZFP69 ENSG00000187815 1 40495294 40496029 ZNF613 ENSG00000176024 19 51944498 51945488

ZNF436 ENSG00000125945 1 23361977 23362964 ZNF761 ENSG00000160336 19 53455155 53457554

ZNF350 ENSG00000256683 19 51965180 51965831 ZNF460 ENSG00000197714 19 57291132 57292205

ZNF140 ENSG00000196387 12 133105763 133106582 ZNF134 ENSG00000213762 19 57620272 57621385

Continued on next page

246



Gene ENSG CHR start end Gene ENSG CHR start end

ZNF37A ENSG00000075407 10 38117967 38119289 ZNF551 ENSG00000204519 19 57687031 57688270

ZNF37BP ENSG00000234420 10 42519243 42520547 ZNF587 ENSG00000198466 19 57858691 57860204

ZNF175 ENSG00000105497 19 51587084 51588410 ZNF417 ENSG00000173480 19 57908485 57909998

ZNF200 ENSG00000010539 16 3223921 3224320 ZNF837 ENSG00000152475 19 58367757 58368516

ZNF213 ENSG00000085644 16 3140921 3141320 ZNF445 ENSG00000185219 3 44446586 44448212

ZNF620 ENSG00000177842 3 40516185 40516836 ZNF80 ENSG00000174255 3 114236357 114236924

ZNF71 ENSG00000197951 19 56621680 56622751 ZNF138 ENSG00000197008 7 64831746 64833474

ZFP2 ENSG00000198939 5 178931622 178932693 ZNF311 ENSG00000197935 6 28995099 28996257

ZNF192P1 ENSG00000226314 6 28166693 28167344 ZNF589 ENSG00000164048 3 48268438 48269677

ZNF354A ENSG00000169131 5 178712077 178713232 ZNF25 ENSG00000175395 10 37952153 37953140

ZNF354B ENSG00000178338 5 178883097 178884252 ZNF669 ENSG00000188295 1 247099038 247101198

ZNF112 ENSG00000062370 19 44327525 44329001 ZNF483 ENSG00000173258 9 111542255 111543158

ZNF514 ENSG00000144026 2 95148742 95149869 ZNF562 ENSG00000171466 19 9652809 9653851

ZNF470 ENSG00000197016 19 56577116 56578526 ZNF812 ENSG00000224689 19 9690185 9691004

ZNF671 ENSG00000083814 19 57720336 57721506 ZNF878 ENSG00000257446 19 12043729 12044968

ZNF517 ENSG00000197363 8 144807453 144808338 ZNF626 ENSG00000188171 19 20543410 20545593

ZNF16 ENSG00000170631 8 144930749 144932156 ZNF66 ENSG00000160229 19 20806038 20807277

ZNF268 ENSG00000090612 12 133202517 133204512 ZNF493 ENSG00000196268 19 21423208 21426412

ZNF567 ENSG00000189042 19 36719486 36720641 ZNF585A ENSG00000196967 19 37151594 37153421

ZSCAN29 ENSG00000140265 15 43361111 43361594 ZNF585B ENSG00000245680 19 37185232 37187059

ZKSCAN2 ENSG00000155592 16 25239908 25240391 ZNF221 ENSG00000159905 19 43966015 43968134

ZNF786 ENSG00000197362 7 149070509 149072204 ZNF224 ENSG00000267680 19 44106691 44108349

ZNF542P ENSG00000240225 19 56376964 56377951 ZNF141 ENSG00000131127 4 372956 374522

ZNF154 ENSG00000179909 19 57701643 57702462 ZNF429 ENSG00000197013 19 21536575 21537982
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ZNF74 ENSG00000185252 22 20405780 20406767 ZNF573 ENSG00000189144 19 37738509 37740084

ZNF793 ENSG00000188227 19 37537342 37537825 ZNF229 ENSG00000278318 19 44428326 44429730

ZNF34 ENSG00000196378 8 144773289 144774360 ZNF480 ENSG00000198464 19 52321862 52322868

ZNF18 ENSG00000154957 17 11977980 11978379 ZNF610 ENSG00000167554 19 52365993 52366902

ZNF274 ENSG00000171606 19 58212705 58213104 ZNF83 ENSG00000167766 19 52612959 52614282

ZNF790 ENSG00000197863 19 36818675 36819662 ZNF418 ENSG00000196724 19 57926173 57927931

ZNF461 ENSG00000197808 19 36638712 36639765 ZNF485 ENSG00000198298 10 43616436 43617339

ZNF286A ENSG00000187607 17 15716456 15717272 ZNF101 ENSG00000181896 19 19679298 19680237

ZNF286B ENSG00000249459 17 18661954 18662770 ZNF788 ENSG00000214189 19 12111468 12113704

ZNF41 ENSG00000147124 X 47447462 47448953 CTC-499B15.4 ENSG00000267343 19 11685098 11686154

ZNF192P2 ENSG00000218016 6 28188097 28189349 ZNF266 ENSG00000174652 19 9413298 9414453

ZNF749 ENSG00000186230 19 57443403 57445467 ZNF264 ENSG00000083844 19 57211709 57212780

ZNF419 ENSG00000105136 19 57493169 57494145 ZNF805 ENSG00000204524 19 57253431 57254585

ZNF773 ENSG00000152439 19 57506671 57507479 ZNF543 ENSG00000178229 19 57328062 57329216

ZNF552 ENSG00000178935 19 57808057 57808987 ZNF253 ENSG00000256771 19 19891766 19893522

ZNF544 ENSG00000198131 19 58261671 58263147 ZNF684 ENSG00000117010 1 40546803 40547454

ZNF860 ENSG00000197385 3 31989772 31991011 ZNF571 ENSG00000180479 19 37564603 37566007

ZNF320 ENSG00000182986 19 52880652 52881639 ZNF345 ENSG00000251247 19 36877019 36878258

ZNF415 ENSG00000170954 19 53108406 53109309 ZNF736 ENSG00000234444 7 64348301 64349204

ZNF780B ENSG00000128000 19 40033528 40036360 ZNF334 ENSG00000198185 20 46501367 46502624

ZNF780A ENSG00000197782 19 40073781 40075943 ZNF28 ENSG00000198538 19 52798451 52801196

RP11-488L18.4 ENSG00000227671 1 247189983 247190799 ZNF252P ENSG00000196922 8 144976292 144978029

ZNF561 ENSG00000171469 19 9610247 9611303 ZNF595 ENSG00000272602 4 85942 87430

RP11-45H22.1 ENSG00000226810 5 54857392 54858446 ZNF605 ENSG00000196458 12 132925381 132926788
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ZNF846 ENSG00000196605 19 9757492 9758479 ZNF606 ENSG00000166704 19 57978321 57979722

ZNF14 ENSG00000105708 19 19711369 19712968 ZFP37 ENSG00000136866 9 113042748 113043735

ZNF737 ENSG00000237440 19 20543570 20545680 ZNF627 ENSG00000198551 19 11616803 11617826

ZNF626 ENSG00000188171 19 20624092 20625351 ZNF746 ENSG00000181220 7 149474554 149474956

ZNF708 ENSG00000182141 19 21292879 21294458 ZNF317 ENSG00000130803 19 9160314 9161385

ZNF619 ENSG00000177873 3 40487125 40487944 ZKSCAN5 ENSG00000196652 7 99526081 99526333

ZNF425 ENSG00000204947 7 149103638 149105297 ZNF282 ENSG00000170265 7 149224188 149224587

ZNF212 ENSG00000170260 7 149253878 149254358 ZNF528 ENSG00000167555 19 52415494 52416733

ZNF732 ENSG00000186777 4 270449 272349 ZSCAN16 ENSG00000196812 6 28129614 28129929

ZKSCAN5 ENSG00000196652 7 99531379 99532387 ZNF768 ENSG00000169957 16 30524534 30525353

ZNF136 ENSG00000196646 19 12186804 12188401 HKR1 ENSG00000181666 19 37362701 37363850

ZNF43 ENSG00000198521 19 21806919 21809592 ZNF337 ENSG00000130684 20 25674999 25676744

ZNF681 ENSG00000196172 19 23743081 23744952 ZNF133 ENSG00000125846 20 18315496 18316744

ZNF91 ENSG00000167232 19 23358715 23362345 ZSCAN21 ENSG00000166529 7 100064029 100064593

ZNF850 ENSG00000267041 19 36747778 36750445 ZNF556 ENSG00000172000 19 2877402 2878299

ZNF283 ENSG00000167637 19 43847225 43849123 ZNF785 ENSG00000197162 16 30582691 30583258

ZNF285 ENSG00000267508 19 44386558 44387545 ZNF182 ENSG00000147118 X 47976226 47977381

ZNF285B ENSG00000176761 19 44472157 44473141 ZNF77 ENSG00000175691 19 2933500 2934487

ZNF806 ENSG00000018607 2 132317662 132318649 ZNF852 ENSG00000178917 3 44499223 44500296

CTD-3099C6.9 ENSG00000269825 19 52652490 52653897 ZKSCAN7 ENSG00000196345 3 44570262 44571333

ZNF347 ENSG00000197937 19 53139741 53142035 ZNF446 ENSG00000083838 19 58480372 58480708

ZNF33A ENSG00000189180 10 38055114 38056437 ZNF527 ENSG00000189164 19 37388877 37389861

ZNF33B ENSG00000196693 10 42592636 42593959 ZNF570 ENSG00000171827 19 37484279 37485182

ZIM2 ENSG00000269699 19 56774639 56775284 ZNF331 ENSG00000130844 19 53576956 53577943
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ZNF398 ENSG00000197024 7 149178904 149179642 ZNF583 ENSG00000198440 19 56423297 56424284

ZNF713 ENSG00000178665 7 55939535 55939934 ZIM3 ENSG00000141946 19 57134926 57135832

ZNF655 ENSG00000197343 7 99572747 99573979 ZNF782 ENSG00000196597 9 96817934 96819083

ZKSCAN4 ENSG00000187626 6 28245142 28245790 ZNF584 ENSG00000171574 19 58416998 58417730

ZKSCAN3 ENSG00000189298 6 28365613 28368733 ZNF859P ENSG00000215887 1 49845079 49846391

ZNF677 ENSG00000197928 19 53237115 53237934 ZNF135 ENSG00000176293 19 58067129 58068452

ZNF611 ENSG00000213020 19 52704285 52706358 ZNF678 ENSG00000181450 1 227654544 227655762

ZNF600 ENSG00000189190 19 52764326 52767266 ZNF124 ENSG00000196418 1 247156273 247157450

ZNF808 ENSG00000198482 19 52553612 52556025 ZNF33BP1 ENSG00000225192 10 37794183 37794993

ZNF239 ENSG00000196793 10 43556720 43557455 ZNF263 ENSG00000006194 16 3289643 3290549

ZNF490 ENSG00000188033 19 12580502 12581603 ZSCAN32 ENSG00000140987 16 3382896 3383379

CTD-2192J16.17 ENSG00000196826 19 12463308 12465612 RP11-618P13.1 ENSG00000263189 17 53953573 53955321

ZNF625-ZNF20 ENSG00000213297 19 12132076 12133858 ZNF519 ENSG00000175322 18 14104823 14105993

ZNF441 ENSG00000197044 19 11780253 11782253 CTC-559E9.6 ENSG00000267419 19 19835175 19835995

CTD-2006C1.6 ENSG00000267500 19 11651884 11653337 ZNF725P ENSG00000268100 19 23491585 23493318

ZNF670 ENSG00000277462 1 247037457 247038306 ZNF726 ENSG00000213967 19 23932722 23935360

ZFP92 ENSG00000189420 X 153420836 153421487 ZNF607 ENSG00000198182 19 37698045 37699785

AC092835.2 ENSG00000233757 2 95214700 95215519 ZNF765 ENSG00000196417 19 53408203 53410990

ZNF256 ENSG00000152454 19 57940932 57942534 ZNF343 ENSG00000088876 20 2483163 2484150

ZNF234 ENSG00000263002 19 44156463 44158038 ZNF721 ENSG00000182903 4 440560 444136

ZNF273 ENSG00000198039 7 64927949 64929104 ZNF479 ENSG00000185177 7 57119708 57120856

ZIK1 ENSG00000171649 19 57590531 57591350 ZNF733P ENSG00000185037 7 63291381 63292528

ZNF304 ENSG00000131845 19 57356139 57357780 ZNF734P ENSG00000197990 7 63455676 63456824

ZNF662 ENSG00000182983 3 42914652 42915303 ZNF92 ENSG00000146757 7 65398636 65400452
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Gene ENSG CHR start end Gene ENSG CHR start end

ZNF23 ENSG00000167377 16 71448110 71449433 ZNF169 ENSG00000175787 9 94300263 94301343

ZNF582 ENSG00000018869 19 56383914 56384816 ZNF560 ENSG00000198028 19 9465632 9467899

ZNF568 ENSG00000198453 19 36996549 36998811 ZNF426 ENSG00000130818 19 9528383 9529603

ZNF807 ENSG00000248830 19 34542551 34543462 ZNF44 ENSG00000197857 19 12246091 12248548

ZNF302 ENSG00000089335 19 34684643 34685546 ZNF30 ENSG00000168661 19 34943329 34944820

ZNF181 ENSG00000197841 19 34741095 34741998 CTD-2342I9.1 ENSG00000254939 11 98565148 98565964

ZNF530 ENSG00000183647 19 57606245 57607316 ZNF614 ENSG00000142556 19 52015914 52016979

ZNF641 ENSG00000167528 12 48343023 48343494 ZNF766 ENSG00000196214 19 52290355 52291335

ZNF777 ENSG00000196453 7 149431787 149432630 ZNF701 ENSG00000167562 19 52582710 52584044

ZNF473 ENSG00000142528 19 50045073 50047035 ZNF468 ENSG00000204604 19 52839551 52841645

ZNF420 ENSG00000197050 19 37127411 37128986 ZNF17 ENSG00000186272 19 57419747 57421472

ZNF500 ENSG00000103199 16 4752441 4752840 ZNF772 ENSG00000197128 19 57473291 57474308

ZNF233 ENSG00000159915 19 44273857 44274671 ZNF549 ENSG00000121406 19 57537553 57538909

ZSCAN22 ENSG00000182318 19 58338657 58339308 ZNF586 ENSG00000083828 19 57778956 57779772

ZNF891 ENSG00000214029 12 133120304 133120955 ZNF497 ENSG00000174586 19 58356159 58357314

ZNF487 ENSG00000243660 10 43481917 43482981 ZNF720 ENSG00000197302 16 31754630 31755783

ZKSCAN1 ENSG00000106261 7 100033639 100034122 ZNF778 ENSG00000170100 16 89226720 89228541

ZNF615 ENSG00000197619 19 51992885 51994460 ZKSCAN8 ENSG00000198315 6 28153249 28153984

ZNF250 ENSG00000196150 8 144881526 144882597 ZNF197 ENSG00000186448 3 44642243 44644070

ZNF529 ENSG00000186020 19 36546973 36547708 ZNF682 ENSG00000197124 19 20005912 20006979

ZNF121 ENSG00000197961 19 9565779 9566677 ZNF540 ENSG00000171817 19 37611844 37613251

ZNF214 ENSG00000149050 11 6999954 7000938 ZNF117 ENSG00000152926 7 64976828 64979240

ZNF548 ENSG00000188785 19 57398881 57399867 ZNF19 ENSG00000157429 16 71475325 71476060

ZNF287 ENSG00000141040 17 16551879 16553034 ZNF616 ENSG00000204611 19 52113249 52116605
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Gene ENSG CHR start end Gene ENSG CHR start end

ZSCAN25 ENSG00000197037 7 99629432 99629996 ZNF823 ENSG00000197933 19 11721718 11723038

ZNF75A ENSG00000162086 16 3317464 3317863 ZNF563 ENSG00000188868 19 12317907 12319718

ZNF75D ENSG00000186376 X 135287172 135287571 ZNF442 ENSG00000198342 19 12349718 12351038

ZNF781 ENSG00000196381 19 37667849 37670046 CTD-3105H18.4 ENSG00000248406 19 12379830 12381069

ZNF577 ENSG00000161551 19 51872924 51873494 ZNF799 ENSG00000196466 19 12390468 12391968

ZNF879 ENSG00000234284 5 179032563 179033634 ZNF443 ENSG00000180855 19 12430158 12431661

ZNF883 ENSG00000228623 9 112997146 112998217 ZNF81 ENSG00000197779 X 47915471 47916626

ZNF189 ENSG00000136870 9 101408215 101409631 ZNF132 ENSG00000131849 19 58433328 58435014

ZNF57 ENSG00000171970 19 2917044 2918199 ZNF625 ENSG00000257591 19 12145356 12146007

ZNF559 ENSG00000188321 19 9341811 9343295 ZFP28 ENSG00000196867 19 56554048 56555206

CTD-2192J16.20 ENSG00000269693 19 12526253 12527795 ZNF416 ENSG00000083817 19 57572187 57573090

CTD-2561J22.2 ENSG00000213976 19 21383161 21386651 ZNF215 ENSG00000149054 11 6956117 6956513

ZNF257 ENSG00000197134 19 22088272 22089849 ZNF763 ENSG00000197054 19 11978443 11980131

ZNF841 ENSG00000197608 19 52063627 52067092 ZNF433 ENSG00000197647 19 12014862 12016437

ZNF836 ENSG00000196267 19 52153744 52157025 ZNF85 ENSG00000105750 19 20949039 20950278

ZNF880 ENSG00000221923 19 52384135 52385374 ZNF676 ENSG00000196109 19 22179144 22181206

ZNF137P ENSG00000123870 19 52596119 52597323 ZNF599 ENSG00000153896 19 34759045 34760200

CTD-2331H12.5 ENSG00000268225 19 52861857 52862831 ZNF816 ENSG00000180257 19 52949431 52951090

AC010642.1 ENSG00000267216 19 58294582 58295532 ZNF845 ENSG00000213799 19 53351323 53354236

AC023271.1 ENSG00000228513 2 203060930 203062093 ZNF486 ENSG00000256229 19 20197175 20198078

ZNF727 ENSG00000214652 7 64077481 64079306 ZNF717 ENSG00000227124 3 75736946 75738992

KRBOX4 ENSG00000147121 X 46473172 46473574 ZNF454 ENSG00000178187 5 178964941 178965958

ZNF7 ENSG00000147789 8 144841860 144843159 ZNF789 ENSG00000198556 7 99486816 99487467

ZNF649 ENSG00000198093 19 51890779 51891598 ZNF716 ENSG00000182111 7 57469019 57470081
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Gene ENSG CHR start end Gene ENSG CHR start end

ZNF847P ENSG00000215812 1 227696898 227697869 ZNF679 ENSG00000197123 7 64266188 64267001

ZNF101P1 ENSG00000237746 10 28338875 28339855 ZNF79 ENSG00000196152 9 127444282 127445185

RP11-339B9.1 ENSG00000276375 10 130282455 130283755 ZNF674 ENSG00000251192 X 46499863 46500913

ZNF195 ENSG00000005801 11 3359123 3360272 ZNF324B ENSG00000249471 19 58455718 58456453

ZNF705E ENSG00000214534 11 71816412 71816976 ZNF324 ENSG00000083812 19 58471266 58472001

ZNF705A ENSG00000196946 12 8177118 8177682 ZNF783 ENSG00000204946 7 149281752 149282187

AC119403.1 ENSG00000266938 19 2896634 2897199 ZNF840P ENSG00000184617 20 46490945 46492622

CTD-3116E22.6 ENSG00000267490 19 9723989 9724813 ZNF180 ENSG00000167384 19 44476431 44477418

CTC-499B15.1 ENSG00000220949 19 11756550 11757448 ZNF404 ENSG00000176222 19 43872578 43873817

ZNF491 ENSG00000177599 19 11806265 11807252 ZNF160 ENSG00000170949 19 53068100 53069759

ZNF440 ENSG00000171295 19 11831695 11833807 ZNF665 ENSG00000197497 19 53163914 53165952

ZNF439 ENSG00000171291 19 11867630 11869299 ZNF205 ENSG00000122386 16 3119587 3120238

ZNF69 ENSG00000198429 19 11904976 11906249 ZNF3 ENSG00000166526 7 100071229 100071880

ZNF700 ENSG00000196757 19 11948609 11950597 ZNF2 ENSG00000275111 2 95181350 95182085

ZNF506 ENSG00000081665 19 19794477 19795280 ZNF791 ENSG00000173875 19 12627832 12629251

ZNF93 ENSG00000184635 19 19933477 19934884 ZNF44 ENSG00000197857 19 12272487 12273744

ZNF90 ENSG00000213988 19 20118076 20119315 ZNF554 ENSG00000172006 19 2834210 2834777

AC078899.3 ENSG00000269274 19 20303116 20303679 RP11-561N12.2 ENSG00000241149 7 64015323 64015890

ZNF826P ENSG00000231205 19 20397348 20398744 ZNF735 ENSG00000223614 7 64219609 64220360

ZNF208 ENSG00000160321 19 21970200 21974343 ZNF724P ENSG00000196081 19 23221380 23223731

ZNF209P ENSG00000269138 19 22471253 22472662 ZNF98 ENSG00000197360 19 22391614 22392685

ZNF729 ENSG00000196350 19 22313960 22318095 ZNF492 ENSG00000229676 19 22664095 22665166

ZNF99 ENSG00000213973 19 22754506 22759386 ZNF849P ENSG00000198153 19 22685481 22686636

ZNF723P ENSG00000268696 19 22857413 22858400 ZNF730 ENSG00000183850 19 23145566 23146861
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Gene ENSG CHR start end Gene ENSG CHR start end

ZNF728 ENSG00000269067 19 22974991 22976649 RP11-182N22.7 ENSG00000215198 9 35147595 35148662

ZNF675 ENSG00000197372 19 23653092 23654413 CTD-2126E3.5 ENSG00000269540 19 50058724 50060215

ZNF792 ENSG00000180884 19 34958102 34959455 RP11-255H23.2 ENSG00000233836 19 23831972 23833535

ZNF566 ENSG00000186017 19 36449066 36449633 ZNF430 ENSG00000118620 19 21056926 21058703

ZNF230 ENSG00000159882 19 44010546 44011281 ZNF714 ENSG00000160352 19 21117102 21118648

ZNF222 ENSG00000159885 19 44032112 44032931 ZNF431 ENSG00000196705 19 21182918 21184071

ZNF223 ENSG00000178386 19 44066359 44067178 RP11-420K14.1 ENSG00000268278 19 21655446 21656810

ZNF114 ENSG00000178150 19 48286539 48286854 ZNF100 ENSG00000197020 19 21725929 21727693

ZNF534 ENSG00000198633 19 52438021 52439428 ZNF254 ENSG00000213096 19 24126633 24128651

ZNF578 ENSG00000258405 19 52511077 52512745 AC084219.2 ENSG00000267022 19 44085925 44087854

ZNF525 ENSG00000203326 19 53381227 53384049 RP11-517P14.7 ENSG00000236114 10 43523727 43525188

ZNF667 ENSG00000198046 19 56441179 56442559 ZNF10 ENSG00000256223 12 133155882 133156947

ZNF587B ENSG00000269343 19 57840953 57842558 ZNF813 ENSG00000198346 19 53490880 53493024

ZNF814 ENSG00000204514 19 57872504 57875110 ZNF267 ENSG00000185947 16 31915053 31916788

ZNF587P1 ENSG00000223965 3 31794835 31796089 ZNF557 ENSG00000130544 19 7082910 7083729

ZNF718 ENSG00000250312 4 161201 162104 ZNF829 ENSG00000185869 19 36891500 36892319

ZNF876P ENSG00000198155 4 253849 254848 ZNF383 ENSG00000188283 19 37242749 37243652

RP11-1396O13.13 ENSG00000219492 4 9383917 9384398 ZNF471 ENSG00000196263 19 56524688 56525930

RP11-324H7.1 ENSG00000248452 4 26113326 26113809 ZNF747 ENSG00000169955 16 30532630 30532945

ZNF969P ENSG00000251046 4 110416859 110418504 ZNF394 ENSG00000160908 7 99493573 99494137

PRDM9 ENSG00000164256 5 23526255 23527734 ZNF260 ENSG00000254004 19 36514008 36515154

CTD-2285G11.1 ENSG00000250145 5 106543083 106543812 ZNF699 ENSG00000196110 19 9295492 9296815

ZNF204P ENSG00000204789 6 27358317 27359825 ZNF547 ENSG00000152433 19 57377240 57378176

RP1-265C24.5 ENSG00000219392 6 28115663 28116391 ZNF225 ENSG00000256294 19 44131145 44132552
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Gene ENSG CHR start end Gene ENSG CHR start end

ZNF316 ENSG00000205903 7 6652634 6654407 ZNF680 ENSG00000173041 7 64521217 64522204

RP11-611L7.2 ENSG00000198580 7 6674170 6676318 ZNF35 ENSG00000169981 3 44659032 44659935

RP11-10F11.2 ENSG00000228303 7 56639025 56640096 ZNF251 ENSG00000198169 8 144721811 144723029

ZNF735 ENSG00000223614 7 64266356 64267443 ZNF568 ENSG00000198453 19 36949822 36950998

ZNF735 ENSG00000223614 7 64349304 64397306 ZNF569 ENSG00000196437 19 37412605 37414096

ZNF107 ENSG00000196247 7 64706619 64709445 ZNF235 ENSG00000159917 19 44287235 44288639

ZNF705G ENSG00000215372 8 7357876 7358359 ZNF658B ENSG00000198416 9 39444542 39446624

ZNF705B ENSG00000215356 8 7952007 7952490 ZNF658 ENSG00000274349 9 66918631 66920701

ZNF705D ENSG00000215343 8 12112774 12113257 ZNF432 ENSG00000256087 19 52033737 52035060

ZNF705CP ENSG00000215339 8 12359011 12359494 ZNF689 ENSG00000156853 16 30604329 30605232

RP11-313J2.1 ENSG00000215146 10 42335101 42338030 ZNF211 ENSG00000121417 19 57640897 57642163

ZNF962P ENSG00000215604 13 18467177 18469671 ZNF202 ENSG00000166261 11 123726014 123726749

RP11-754I20.3 ENSG00000257171 14 18394723 18396647 ZFP1 ENSG00000184517 16 75169665 75170316

RP11-454P7.1 ENSG00000266818 18 15270475 15272465 RBAK ENSG00000146587 7 5064242 5065559

ZNF355P ENSG00000168122 21 13095364 13098032 ZNF12 ENSG00000164631 7 6690892 6692131

ZNF72P ENSG00000184624 22 15325138 15327462 ZFP14 ENSG00000142065 19 36340235 36341306

RP11-460N11.2 ENSG00000197550 9 64833679 64836331 ZNF496 ENSG00000162714 1 247300557 247301061

ZNF707 ENSG00000181135 8 143693945 143694512 ZNF275 ENSG00000063587 X 153346991 153347966

ZFP90 ENSG00000184939 16 68563423 68564680 ZNF26 ENSG00000198393 12 133010404 133011475

ZNF300 ENSG00000145908 5 150895441 150896428 ZNF248 ENSG00000198105 10 37831644 37832631

ZNF558 ENSG00000167785 19 8811295 8812030 ZNF663P ENSG00000215452 20 46455993 46456905
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Table B.2: Mean F-statistics for KZNF exposures derived using blood
eQTL. Blood derived KZNF exposures which had a mean F-statistic >10

Blood exposures with mean f-stat >10

exposure mean fstat exposure mean fstat exposure mean fstat exposure mean fstat

ZNF555 66.5685229 ZKSCAN5 114.857494 ZNF876P 14.5746389 ZNF77 163.470834

ZNF597 16.5206959 ZNF43 20.3754856 ZNF204P 113.548723 ZKSCAN7 111.546995

ZNF227 14.1766477 ZNF681 28.9386117 ZNF316 63.8532572 ZNF331 19.5332488

ZNF596 136.633992 ZNF91 156.618277 ZNF107 34.9479958 ZNF583 10.3119704

ZNF660 15.6613782 ZNF347 11.4285133 ZNF707 136.050593 ZNF782 11.5265707

ZNF624 71.3380698 ZNF33A 11.7404861 ZFP90 272.822537 ZNF584 16.1453854

ZNF776 15.3417488 ZNF33B 95.1393943 ZNF300 83.7064116 ZNF678 35.8202785

ZNF565 29.0642322 ZNF713 180.158097 ZNF783 34.9368808 ZNF124 111.485523

ZFP57 194.639166 ZNF655 18.55009 ZNF510 39.7078858 ZNF263 18.5239866

ZNF184 22.8260079 ZKSCAN4 119.071611 ZNF550 33.3982946 ZNF519 415.552508

ZFP82 182.951899 ZKSCAN3 86.2570172 ZNF484 80.746232 ZNF607 31.1541636

ZFP30 207.722516 ZNF677 10.1526851 ZNF333 192.689368 ZNF343 142.911447

ZNF84 121.035643 ZNF600 25.5127021 ZNF155 99.5266477 ZNF721 154.887405

ZFP69B 17.2215939 ZNF239 109.545624 ZNF226 13.618628 ZNF169 128.915921

ZFP69 102.889958 ZNF256 23.6255222 ZNF613 62.5032032 ZNF30 81.6478994

ZNF436 48.9621358 ZNF234 123.926918 ZNF761 16.6319752 ZNF701 18.5332208

ZNF140 29.0710456 ZNF273 19.3812679 ZNF587 12.4962194 ZNF468 16.2469856

ZNF37A 27.5617307 ZIK1 16.4010909 ZNF417 14.2351933 ZNF772 78.5784928

ZNF37BP 21.2458439 ZNF304 11.2990727 ZNF80 148.74832 ZNF586 104.573596

ZNF175 53.5959104 ZNF23 106.562061 ZNF138 97.7683033 ZNF720 82.0382632

ZNF200 90.2390549 ZNF302 121.367612 ZNF311 17.5086542 ZNF778 76.073285

ZNF213 220.982198 ZNF181 92.9496521 ZNF589 374.404245 ZNF197 177.252295

ZNF620 10.2601525 ZNF641 356.075783 ZNF25 217.31978 ZNF682 19.086777

ZNF71 15.8675395 ZNF777 15.3060197 ZNF669 86.3983722 ZNF540 13.1404422

ZFP2 11.720735 ZNF473 163.527025 ZNF483 89.3939885 ZNF117 69.2026192

ZNF354A 153.227503 ZNF420 51.1237331 ZNF626 128.369654 ZNF19 10.7633057

ZNF514 388.781319 ZNF500 201.397814 ZNF66 23.8074643 ZNF823 26.8243386

ZNF470 110.738098 ZKSCAN1 61.3930969 ZNF493 175.980009 ZNF132 63.1641932

ZNF671 38.7151819 ZNF529 51.8892213 ZNF585A 35.6001011 ZFP28 116.254291

ZNF517 57.2692648 ZNF121 38.3980765 ZNF585B 19.6532228 ZNF215 270.17125

ZNF16 19.922849 ZNF548 61.1046521 ZNF224 30.0435434 ZNF763 42.3760996

ZNF268 16.199694 ZNF287 12.3655695 ZNF429 238.814895 ZNF85 59.295208

ZSCAN29 315.772972 ZSCAN25 20.7224171 ZNF573 150.699036 ZNF816 34.9395149

ZKSCAN2 102.67959 ZNF75A 68.7924764 ZNF480 12.7602628 ZNF486 57.026872

ZNF786 104.301528 ZNF781 33.6604825 ZNF83 150.375542 ZNF717 215.689004

ZNF542P 17.3293545 ZNF577 11.7440123 ZNF418 47.1117734 ZNF79 249.838073

ZNF154 33.1443265 ZNF879 32.1751897 ZNF485 20.6947686 ZNF324 12.7116309

ZNF74 277.857589 ZNF883 131.919141 ZNF101 27.6901388 ZNF783 34.9368808

ZNF793 86.4118186 ZNF189 346.720851 ZNF266 1191.19272 ZNF404 25.6920885
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exposure mean fstat exposure mean fstat exposure mean fstat exposure mean fstat

ZNF34 149.123576 ZNF559 126.445306 ZNF543 21.5682892 ZNF205 110.26571

ZNF18 84.6794236 ZNF257 19.0169174 ZNF253 21.2830894 ZNF3 13.8113951

ZNF790 16.8535358 ZNF880 12.6192209 ZNF684 10.2960004 ZNF554 198.513907

ZNF286A 158.438439 ZNF7 24.9179465 ZNF571 35.3349199 ZNF430 24.1366366

ZNF419 12.3046501 ZNF195 438.400729 ZNF736 13.6428816 ZNF431 27.5437355

ZNF773 10.7634886 ZNF439 56.7169739 ZNF334 230.216768 ZNF100 161.048066

ZNF552 12.8982855 ZNF506 22.1500203 ZNF252P 154.998306 ZNF10 33.4859564

ZNF544 92.9647721 ZNF93 14.1124714 ZNF605 333.179438 ZNF557 119.911559

ZNF860 67.1378863 ZNF90 14.6234476 ZFP37 356.901829 ZNF471 19.5267606

ZNF320 29.9121656 ZNF208 36.3545763 ZNF627 12.877605 ZNF260 39.608735

ZNF415 38.6946004 ZNF675 14.9886241 ZNF746 85.0029417 ZNF680 20.3261284

ZNF780B 15.2346782 ZNF792 45.1965623 ZNF317 41.3368766 ZNF35 83.2798576

ZNF780A 148.942278 ZNF566 15.6184234 ZKSCAN5 114.857494 ZNF251 10.2572647

ZNF561 120.317592 ZNF230 13.0336753 ZNF282 122.827059 ZNF235 20.2455128

ZNF737 23.0335889 ZNF223 19.6701963 ZSCAN16 63.2295492 ZNF689 51.7510678

ZNF626 128.369654 ZNF525 23.1155549 ZNF768 11.9815205 ZNF211 48.6437306

ZNF708 48.7697037 ZNF667 21.8099315 ZNF337 397.984946 ZNF202 71.3829968

ZNF619 111.018966 ZNF587B 59.8434251 ZNF133 68.7803285 ZFP1 122.793188

ZNF425 89.6759549 ZNF814 22.7189792 ZSCAN21 64.647887 RBAK 318.224349

ZNF212 83.5357575 ZNF718 125.902446 ZNF785 17.6691903 ZNF12 27.3915492

ZNF496 46.6869388 ZNF26 21.0162245 ZNF248 135.00419 ZFP14 57.4404665

Table B.3: Mean F-statistics for KZNF exposures derived using brain
eQTL. Blood derived KZNF exposures which had a mean F-statistic >10

Brain exposures with mean f-stat >10

exposure mean fstat exposure mean fstat exposure mean fstat exposure mean fstat

ZNF555 24.5934347 ZNF124 122.950263 ZNF204P 15.0093538 ZKSCAN3 26.8751496

ZNF565 11.6773632 ZNF519 132.085488 ZFP90 98.6856866 ZNF239 10.6878626

ZNF184 21.7694476 ZNF726 24.8198745 ZNF300P1 205.069542 ZNF273 40.6835857

ZFP82 135.1158 ZNF607 15.0575454 ZNF783 29.9313678 ZNF304 16.3596007

ZFP69B 14.7334132 ZNF343 35.1108316 ZNF177 26.2445301 ZNF568 22.1813818

ZFP69 116.431702 ZNF169 33.5186039 ZNF484 68.0440042 ZNF302 39.0730816

ZNF37A 35.6894047 ZNF30 353.400271 ZNF382 11.6786781 ZNF181 35.4725454

ZNF37BP 19.943492 ZNF17 10.5279683 ZNF333 66.1857016 ZNF641 39.1849369

ZNF200 41.9359133 ZNF586 16.6488481 ZNF844 12.733117 ZNF500 1304.09799

ZNF213 23.3627457 ZNF720 85.7916455 ZNF155 67.7159758 ZNF529 16.3764481

ZFP2 13.4668714 ZNF197 12.1292112 ZNF417 108.959364 ZNF781 256.080106

ZNF354A 39.2604646 ZNF682 13.1401959 ZNF445 15.234788 ZNF577 88.8430553

ZNF514 183.258677 ZNF117 409.571392 ZNF138 26.79839 ZNF883 15.9469069

ZNF470 11.0091794 ZNF19 35.7269788 ZNF589 33.8026125 ZNF189 61.676241

ZNF517 31.2649876 ZNF717 51.2436842 ZNF25 35.8496936 ZNF559 54.872825

ZNF268 333.626959 ZNF454 38.8638132 ZNF669 115.51652 ZNF257 32.7503538
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exposure mean fstat exposure mean fstat exposure mean fstat exposure mean fstat

ZSCAN29 53.2148186 ZNF79 48.6638058 ZNF493 71.6203803 ZNF880 59.8114591

ZNF786 241.23575 ZNF783 29.9313678 ZNF585A 20.080153 ZNF7 13.1827876

ZNF74 58.2708472 ZNF404 172.972571 ZNF221 12.5526709 ZNF195 158.17048

ZNF34 80.5873599 ZNF554 71.8414536 ZNF141 10.0159435 ZNF439 557.858402

ZNF286A 89.6173392 ZNF492 11.1115432 ZNF429 139.97588 ZNF506 32.2129359

ZNF286B 62.7354005 ZNF730 21.3491565 ZNF83 54.9388316 ZNF93 10.0253511

ZNF419 70.3654866 ZNF714 13.5817051 ZNF266 423.701038 ZNF208 32.6680896

ZNF320 13.8161898 ZNF100 13.0302706 ZNF253 51.9572644 ZNF792 14.1599766

ZNF415 10.6344542 ZNF471 20.9589567 ZNF334 110.081045 ZNF667 20.5097538

ZNF561 19.3944572 ZNF260 17.7508508 ZNF252P 39.8710228 ZNF814 10.5994677

ZNF14 20.8347739 ZNF680 20.5152332 ZNF605 34.6727533 ZNF718 33.3115013

ZNF619 34.0049411 ZNF251 35.4516987 ZFP37 49.9951224

ZNF425 38.7584362 ZNF568 22.1813818 ZNF627 26.5408416

ZNF732 30.0463433 ZNF202 81.9583948 ZKSCAN5 11.3040581

ZKSCAN5 11.3040581 ZFP1 74.1342997 ZNF337 80.1089821

ZNF681 25.3711749 RBAK 95.8821693 ZSCAN21 319.508012

ZNF33A 12.5590416 ZNF12 43.8526512 ZNF77 67.5795053

ZNF33B 61.5566737 ZNF496 55.2636655 ZKSCAN7 36.6282136

ZNF713 64.020369 ZNF663P 32.9431955 ZNF584 61.7540703

Table B.4: Blood derived KZNF exposures with evidence for a causal
effect (Mendelian Randomization). Results for continuous traits

Blood derived KZNFs (Continuous outcomes)

outcome exposure nsnp b se pval FDR

Body mass index ZFP57 35 0.0124 0.0032 0.0001 0.0027

Body mass index ZNF436 3 0.1155 0.0257 7.01E-06 0.0002

Body mass index ZNF37BP 5 0.0212 0.0069 0.0022 0.0248

Body mass index ZSCAN29 35 0.0100 0.0030 0.0008 0.0120

Body mass index ZNF780A 4 -0.0260 0.0078 0.0009 0.0125

Body mass index ZNF561 6 0.0127 0.0039 0.0009 0.0130

Body mass index ZKSCAN5 11 0.0545 0.0091 2.05E-09 1.50E-07

Body mass index ZNF91 30 -0.0126 0.0031 5.91E-05 0.0014

Body mass index ZNF33A 6 0.0909 0.0129 1.78E-12 2.61E-10

Body mass index ZNF33B 31 -0.0124 0.0034 0.0002 0.0040

Body mass index ZKSCAN4 24 0.0428 0.0049 3.32E-18 8.78E-16

Body mass index ZKSCAN3 32 0.0356 0.0087 4.31E-05 0.0012

Body mass index ZKSCAN1 9 -0.0263 0.0073 0.0003 0.0052

Body mass index ZSCAN25 5 -0.0310 0.0092 0.0008 0.0117

Body mass index ZNF566 6 -0.0423 0.0082 2.76E-07 1.30E-05

Body mass index ZNF204P 22 0.0456 0.0049 6.09E-21 2.68E-18

Body mass index ZNF316 3 -0.0426 0.0094 6.05E-06 0.0002

Body mass index ZNF25 32 -0.0122 0.0030 5.64E-05 0.0014
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Body mass index ZNF493 32 -0.0121 0.0030 4.80E-05 0.0013

Body mass index ZNF585A 7 -0.0265 0.0088 0.0025 0.0276

Body mass index ZNF266 47 0.0073 0.0017 1.50E-05 0.0005

Body mass index ZNF736 7 0.0238 0.0074 0.0013 0.0170

Body mass index ZNF605 23 0.0143 0.0048 0.0028 0.0302

Body mass index ZKSCAN5 11 0.0545 0.0091 2.05E-09 1.50E-07

Body mass index ZSCAN16 13 0.0580 0.0070 1.93E-16 4.25E-14

Body mass index ZNF768 2 -0.1938 0.0239 4.49E-16 8.48E-14

Body mass index ZNF785 3 0.1714 0.0334 2.96E-07 1.35E-05

Body mass index ZKSCAN7 22 -0.0251 0.0068 0.0002 0.0040

Body mass index ZNF169 6 0.0294 0.0089 0.0009 0.0130

Body mass index ZNF197 22 -0.0177 0.0061 0.0036 0.0375

Body mass index ZNF117 21 0.0155 0.0033 2.45E-06 9.52E-05

Body mass index ZNF79 9 0.0252 0.0079 0.0014 0.0172

Body mass index ZNF100 35 -0.0062 0.0022 0.0052 0.0491

Body mass index ZNF35 17 -0.0488 0.0083 4.00E-09 2.78E-07

Body mass index ZNF26 2 -0.0353 0.0087 5.04E-05 0.0013

Body mass index ZNF248 15 -0.0141 0.0039 0.0003 0.0053

Diastolic blood pressure ZFP57 35 -0.0136 0.0027 4.42E-07 1.95E-05

Diastolic blood pressure ZNF184 14 0.1093 0.0202 5.91E-08 3.39E-06

Diastolic blood pressure ZNF140 2 0.0509 0.0154 0.0009 0.0130

Diastolic blood pressure ZNF16 3 -0.0357 0.0115 0.0019 0.0221

Diastolic blood pressure ZSCAN29 35 -0.0320 0.0025 4.00E-37 5.29E-34

Diastolic blood pressure ZNF790 8 0.0330 0.0090 0.0002 0.0044

Diastolic blood pressure ZNF212 11 0.0185 0.0056 0.0009 0.0130

Diastolic blood pressure ZKSCAN5 11 0.0235 0.0067 0.0004 0.0067

Diastolic blood pressure ZNF234 13 0.0167 0.0047 0.0004 0.0068

Diastolic blood pressure ZNF304 4 -0.0382 0.0119 0.0013 0.0170

Diastolic blood pressure ZNF641 67 0.0084 0.0021 6.47E-05 0.0016

Diastolic blood pressure ZNF500 15 -0.0155 0.0054 0.0044 0.0431

Diastolic blood pressure ZKSCAN1 9 -0.0424 0.0136 0.0018 0.0218

Diastolic blood pressure ZNF529 13 0.0240 0.0055 1.35E-05 0.0004

Diastolic blood pressure ZNF75A 3 0.0399 0.0104 0.0001 0.0028

Diastolic blood pressure ZNF781 11 0.0270 0.0074 0.0003 0.0046

Diastolic blood pressure ZNF559 19 -0.0071 0.0023 0.0018 0.0214

Diastolic blood pressure ZNF138 33 0.0109 0.0035 0.0019 0.0226

Diastolic blood pressure ZNF311 6 -0.0874 0.0167 1.63E-07 8.28E-06

Diastolic blood pressure ZNF589 91 -0.0216 0.0021 4.72E-24 3.12E-21

Diastolic blood pressure ZNF605 23 0.0158 0.0039 5.09E-05 0.0013

Diastolic blood pressure ZKSCAN5 11 0.0235 0.0067 0.0004 0.0067

Diastolic blood pressure ZSCAN16 13 -0.0862 0.0131 5.13E-11 5.64E-09

Diastolic blood pressure ZNF785 3 0.1758 0.0188 9.91E-21 3.27E-18

Diastolic blood pressure ZNF430 8 -0.0378 0.0090 2.90E-05 0.0008
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Diastolic blood pressure ZNF100 35 -0.0113 0.0021 8.80E-08 4.84E-06

Diastolic blood pressure ZNF680 12 0.0257 0.0086 0.0029 0.0307

Diastolic blood pressure ZNF26 2 -0.0383 0.0091 2.55E-05 0.0007

HDL cholesterol ZFP57 13 -0.0114 0.0035 0.0013 0.0170

HDL cholesterol ZNF514 6 0.0228 0.0061 0.0002 0.0036

HDL cholesterol ZNF33A 5 -0.1159 0.0301 0.0001 0.0026

HDL cholesterol ZKSCAN4 15 -0.0532 0.0089 1.90E-09 1.50E-07

HDL cholesterol ZKSCAN3 18 -0.0515 0.0093 3.28E-08 1.97E-06

HDL cholesterol ZNF239 9 -0.0492 0.0130 0.0001 0.0030

HDL cholesterol ZNF304 4 0.0869 0.0279 0.0018 0.0218

HDL cholesterol ZNF25 6 0.0310 0.0093 0.0008 0.0122

HDL cholesterol ZNF585A 6 0.0554 0.0182 0.0023 0.0260

HDL cholesterol ZSCAN16 8 -0.0672 0.0130 2.40E-07 1.17E-05

HDL cholesterol ZNF100 5 0.0698 0.0232 0.0026 0.0288

LDL cholesterol ZNF660 3 0.0902 0.0320 0.0048 0.0454

LDL cholesterol ZNF627 2 -0.1173 0.0413 0.0045 0.0433

Sodium in urine ZNF660 3 -0.0544 0.0171 0.0014 0.0178

Sodium in urine ZFP69 3 0.0366 0.0125 0.0035 0.0367

Sodium in urine ZNF436 3 0.1072 0.0245 1.26E-05 0.0004

Sodium in urine ZNF419 8 -0.0265 0.0087 0.0023 0.0257

Sodium in urine ZNF619 2 -0.0562 0.0193 0.0036 0.0375

Sodium in urine ZKSCAN5 11 0.0380 0.0056 1.79E-11 2.15E-09

Sodium in urine ZNF91 28 -0.0130 0.0038 0.0006 0.0087

Sodium in urine ZKSCAN3 32 -0.0228 0.0072 0.0017 0.0204

Sodium in urine ZNF781 11 -0.0193 0.0052 0.0002 0.0040

Sodium in urine ZNF669 7 -0.0284 0.0097 0.0035 0.0367

Sodium in urine ZNF101 6 0.0444 0.0123 0.0003 0.0051

Sodium in urine ZKSCAN5 11 0.0380 0.0056 1.79E-11 2.15E-09

Sodium in urine ZKSCAN7 23 -0.0208 0.0059 0.0004 0.0064

Sodium in urine ZNF720 6 0.0252 0.0088 0.0044 0.0428

Sodium in urine ZNF197 21 -0.0187 0.0059 0.0015 0.0189

Sodium in urine ZNF35 18 -0.0237 0.0063 0.0002 0.0035

Systolic blood pressure ZNF624 9 -0.0284 0.0078 0.0003 0.0047

Systolic blood pressure ZNF184 14 0.0469 0.0148 0.0016 0.0193

Systolic blood pressure ZNF140 2 0.0583 0.0154 0.0002 0.0032

Systolic blood pressure ZSCAN29 35 -0.0141 0.0024 7.32E-09 4.84E-07

Systolic blood pressure ZNF793 10 -0.0194 0.0048 5.47E-05 0.0014

Systolic blood pressure ZNF415 14 -0.0146 0.0051 0.0040 0.0402

Systolic blood pressure ZNF626 33 -0.0086 0.0030 0.0038 0.0391

Systolic blood pressure ZNF708 16 -0.0228 0.0049 3.22E-06 0.0001

Systolic blood pressure ZNF212 11 0.0169 0.0056 0.00247221 0.0274

Systolic blood pressure ZKSCAN5 11 0.0175 0.0061 0.00414425 0.0409

Systolic blood pressure ZNF713 14 0.0186 0.0047 7.52E-05 0.0017
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Systolic blood pressure ZKSCAN3 32 0.0204 0.0046 1.17E-05 0.0004

Systolic blood pressure ZNF641 67 0.0075 0.0021 0.0003 0.0056

Systolic blood pressure ZNF420 12 0.0217 0.0061 0.0004 0.0065

Systolic blood pressure ZSCAN25 5 0.0584 0.0097 1.56E-09 1.38E-07

Systolic blood pressure ZNF781 11 0.0204 0.0071 0.0040 0.0402

Systolic blood pressure ZNF559 19 -0.0074 0.0023 0.0011 0.0148

Systolic blood pressure ZNF675 5 -0.0470 0.0130 0.0003 0.0053

Systolic blood pressure ZNF204P 22 0.0191 0.0058 0.0011 0.0147

Systolic blood pressure ZNF311 6 -0.0349 0.0102 0.0006 0.0096

Systolic blood pressure ZNF589 91 -0.0158 0.0021 8.49E-14 1.40E-11

Systolic blood pressure ZNF626 33 -0.0086 0.0030 0.0038 0.0391

Systolic blood pressure ZNF493 32 -0.0137 0.0036 0.0002 0.0035

Systolic blood pressure ZNF585A 7 0.0362 0.0076 2.05E-06 8.22E-05

Systolic blood pressure ZNF585B 10 -0.0259 0.0069 0.0002 0.0033

Systolic blood pressure ZNF571 11 0.0238 0.0078 0.0021 0.0248

Systolic blood pressure ZNF605 23 0.0200 0.0038 1.52E-07 8.01E-06

Systolic blood pressure ZKSCAN5 11 0.0175 0.0061 0.0041 0.0409

Systolic blood pressure ZNF540 4 -0.0683 0.0162 2.39E-05 0.0007

Systolic blood pressure ZNF205 4 0.0178 0.0059 0.0024 0.0267

Systolic blood pressure ZNF430 8 -0.0433 0.0077 1.83E-08 1.15E-06

Systolic blood pressure ZNF431 10 0.0254 0.0065 0.0001 0.0022

Systolic blood pressure ZNF100 35 -0.0110 0.0024 6.57E-06 0.0002

Systolic blood pressure ZNF10 3 -0.0411 0.0106 9.97E-05 0.0022

Systolic blood pressure ZNF35 17 -0.0196 0.0049 7.01E-05 0.0017

Systolic blood pressure ZNF26 2 -0.0467 0.0096 1.21E-06 5.17E-05

Triglycerides ZFP30 6 -0.0281 0.0085 0.0010 0.0134

Triglycerides ZNF793 6 0.0442 0.0112 7.36E-05 0.0017

Triglycerides ZNF33A 5 0.1866 0.0298 3.79E-10 3.85E-08

Triglycerides ZNF655 2 0.1409 0.0497 0.0046 0.0437

Triglycerides ZKSCAN4 15 -0.0581 0.0121 1.60E-06 6.61E-05

Triglycerides ZKSCAN3 18 -0.0473 0.0136 0.0005 0.0080

Triglycerides ZNF304 4 -0.1287 0.0277 3.28E-06 0.0001

Triglycerides ZNF420 6 -0.0527 0.0164 0.0013 0.0171

Triglycerides ZNF25 6 -0.0277 0.0092 0.0027 0.0295

Triglycerides ZNF571 5 -0.0817 0.0195 2.69E-05 0.0008

Triglycerides ZSCAN16 8 -0.0862 0.0138 4.48E-10 4.23E-08
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Table B.5: Brain derived KZNF exposures with evidence for a causal
effect (Mendelian Randomization). Results for continuous traits

Brain derived KZNFs (Continuous outcomes)

outcome exposure nsnp b se pval FDR

Body mass index ZNF184 7 0.0257 0.0083 0.0021 0.0172

Body mass index ZNF415 24 -0.0088 0.0031 0.0043 0.0301

Body mass index ZNF561 11 0.0163 0.0042 0.0001 0.0016

Body mass index ZNF14 11 -0.0159 0.0041 0.0001 0.0018

Body mass index ZNF273 19 -0.0088 0.0017 3.73E-07 1.91E-05

Body mass index ZNF529 27 0.0166 0.0024 5.44E-12 1.12E-09

Body mass index ZNF781 24 -0.0056 0.0015 0.0002 0.0026

Body mass index ZNF208 23 -0.0055 0.0020 0.0070 0.0442

Body mass index ZNF382 27 -0.0226 0.0023 1.49E-23 6.12E-21

Body mass index ZNF138 19 0.0072 0.0017 2.49E-05 0.0005

Body mass index ZNF493 22 0.0083 0.0019 8.27E-06 0.0002

Body mass index ZNF585A 33 -0.0116 0.0038 0.0022 0.0179

Body mass index ZNF429 23 -0.0073 0.0012 5.91E-10 4.85E-08

Body mass index ZNF266 11 0.0055 0.0012 0.0000 9.64E-05

Body mass index ZNF607 24 -0.0185 0.0040 3.03E-06 8.86E-05

Body mass index ZNF169 2 0.0242 0.0050 1.46E-06 4.97E-05

Body mass index ZNF260 26 0.0155 0.0026 1.51E-09 8.85E-08

Diastolic blood pressure ZNF37A 7 0.0072 0.0022 0.0012 0.0118

Diastolic blood pressure ZNF786 7 0.0053 0.0019 0.0053 0.0349

Diastolic blood pressure ZNF415 24 -0.0145 0.0042 0.0006 0.0057

Diastolic blood pressure ZNF14 11 -0.0124 0.0046 0.0075 0.0458

Diastolic blood pressure ZKSCAN3 6 0.0321 0.0065 7.89E-07 2.94E-05

Diastolic blood pressure ZNF273 20 -0.0127 0.0021 8.48E-10 5.79E-08

Diastolic blood pressure ZNF568 33 -0.0071 0.0027 0.0083 0.0486

Diastolic blood pressure ZNF529 27 0.0137 0.0030 3.79E-06 9.72E-05

Diastolic blood pressure ZNF559 11 -0.0075 0.0020 0.0002 0.0024

Diastolic blood pressure ZNF506 10 0.0093 0.0035 0.0085 0.0492

Diastolic blood pressure ZNF208 23 -0.0090 0.0021 1.82E-05 0.0004

Diastolic blood pressure ZNF177 11 -0.0084 0.0023 0.0003 0.0033

Diastolic blood pressure ZNF382 27 -0.0150 0.0039 0.0001 0.0017

Diastolic blood pressure ZNF138 18 0.0127 0.0020 1.01E-10 1.04E-08

Diastolic blood pressure ZNF429 23 -0.0065 0.0018 0.0004 0.0048

Diastolic blood pressure ZNF266 11 0.0030 0.0011 0.0078 0.0470

Diastolic blood pressure ZSCAN21 5 -0.0101 0.0036 0.0052 0.0349

Diastolic blood pressure ZNF117 22 0.0049 0.0007 4.11E-11 5.62E-09

Diastolic blood pressure ZNF568 33 -0.0071 0.0027 0.0083 0.0486

HDL cholesterol ZNF34 5 -0.0241 0.0062 9.12E-05 0.0015

HDL cholesterol ZNF14 9 0.0498 0.0165 0.0025 0.0204

HDL cholesterol ZNF33A 5 -0.0605 0.0189 0.0013 0.0122
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HDL cholesterol ZNF33B 6 -0.0169 0.0061 0.0054 0.0349

HDL cholesterol ZNF273 14 0.0137 0.0051 0.0073 0.0451

HDL cholesterol ZNF208 16 0.0111 0.0041 0.0070 0.0442

HDL cholesterol ZNF25 5 0.0298 0.0085 0.0004 0.0048

HDL cholesterol ZNF585A 25 0.0183 0.0059 0.0019 0.0162

LDL cholesterol ZNF419 17 0.0149 0.0048 0.0017 0.0150

LDL cholesterol ZNF506 9 -0.0233 0.0066 0.0004 0.0045

Sodium in urine ZNF565 23 0.0107 0.0032 0.0008 0.0079

Sodium in urine ZKSCAN3 6 0.0137 0.0046 0.0026 0.0204

Sodium in urine ZNF641 2 0.0188 0.0067 0.0053 0.0349

Sodium in urine ZNF529 27 -0.0088 0.0022 6.23E-05 0.0011

Sodium in urine ZNF382 27 0.0093 0.0027 0.0006 0.0057

Sodium in urine ZNF138 19 -0.0060 0.0020 0.0033 0.0246

Sodium in urine ZNF117 21 -0.0027 0.0008 0.0008 0.0077

Sodium in urine ZNF260 26 -0.0063 0.0022 0.0039 0.0282

Systolic blood pressure ZNF184 7 0.0269 0.0062 1.59E-05 0.0003

Systolic blood pressure ZNF37A 7 0.0072 0.0022 0.0013 0.0121

Systolic blood pressure ZNF34 6 0.0092 0.0025 0.0002 0.0028

Systolic blood pressure ZNF641 2 0.0298 0.0059 4.22E-07 1.92E-05

Systolic blood pressure ZNF559 11 -0.0060 0.0020 0.0026 0.0204

Systolic blood pressure ZNF208 23 -0.0086 0.0020 2.62E-05 0.0005

Systolic blood pressure ZNF177 11 -0.0069 0.0023 0.0029 0.0222

Systolic blood pressure ZNF607 24 0.0146 0.0033 8.24E-06 0.0002

Systolic blood pressure ZNF260 26 -0.0069 0.0024 0.0041 0.0292

Triglycerides ZNF184 6 -0.0546 0.0109 4.98E-07 2.04E-05

Triglycerides ZNF33A 5 0.0814 0.0202 5.50E-05 0.0010

Triglycerides ZNF33B 6 0.0252 0.0079 0.0014 0.0122

Triglycerides ZNF568 25 0.0149 0.0039 0.0001 0.0020

Triglycerides ZNF506 9 -0.0195 0.0068 0.0039 0.0283

Triglycerides ZNF208 16 -0.0107 0.0041 0.0087 0.0497

Triglycerides ZNF25 5 -0.0391 0.0083 2.57E-06 8.10E-05

Triglycerides ZNF607 18 -0.0251 0.0068 0.0002 0.0028

Triglycerides ZNF568 25 0.0149 0.0039 0.0001 0.0020

Table B.6: Blood derived KZNF exposures with evidence for a causal
effect (Mendelian Randomization). Results for discrete traits

Blood derived KZNFs (Discrete outcomes)

outcome exposure nsnp b se pval FDR OR lower CI upper CI

CHD ZNF660 3 -0.2523 0.0719 0.0004 0.0127 0.7770 0.6749 0.8945

CHD ZNF624 9 0.1103 0.0330 0.0008 0.0210 1.1167 1.0467 1.1913

CHD ZNF184 14 0.1398 0.0411 0.0007 0.0176 1.1500 1.0611 1.2464

CHD ZFP82 42 -0.0399 0.0124 0.0013 0.0293 0.9609 0.9378 0.9845
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CHD ZNF268 2 0.1908 0.0598 0.0014 0.0316 1.2103 1.0764 1.3608

CHD ZNF257 6 -0.1221 0.0337 0.0003 0.0090 0.8850 0.8285 0.9454

CHD ZNF589 76 -0.0291 0.0081 0.0003 0.0093 0.9713 0.9560 0.9868

CHD ZNF573 10 -0.0778 0.0251 0.0019 0.0398 0.9251 0.8807 0.9718

CHD ZKSCAN7 22 -0.0722 0.0198 0.0003 0.0084 0.9304 0.8950 0.9671

CHD ZNF197 22 -0.0739 0.0176 2.72E-05 0.0012 0.9288 0.8973 0.9614

RA ZNF624 9 0.0017 0.0006 0.0025 0.0495 1.0017 1.0006 1.0028

RA ZNF37A 14 0.0010 0.0003 0.0009 0.0213 1.0010 1.0004 1.0017

RA ZNF33A 6 0.0037 0.0010 0.0002 0.0073 1.0037 1.0017 1.0056

RA ZKSCAN4 22 0.0016 0.0003 3.83E-09 4.49E-07 1.0016 1.0010 1.0021

RA ZNF204P 22 0.0009 0.0003 0.0010 0.0234 1.0009 1.0003 1.0014

RA ZNF493 31 0.0008 0.0002 0.0010 0.0235 1.0008 1.0003 1.0012

RA ZSCAN16 12 0.0019 0.0004 8.58E-08 7.35E-06 1.0019 1.0012 1.0026

RA ZNF785 3 0.0043 0.0014 0.0017 0.0360 1.0043 1.0016 1.0070

Obesity ZNF37A 5 -0.0027 0.0008 0.0006 0.0149 0.9973 0.9958 0.9988

Obesity ZSCAN29 9 0.0011 0.0003 0.0002 0.0062 1.0011 1.0005 1.0016

Obesity ZNF790 8 -0.0037 0.0009 4.06E-05 0.0018 0.9963 0.9945 0.9981

Obesity ZNF33A 3 0.0067 0.0020 0.0009 0.0230 1.0067 1.0027 1.0107

Obesity ZKSCAN4 6 0.0025 0.0004 1.15E-08 1.16E-06 1.0025 1.0016 1.0033

Obesity ZKSCAN3 8 0.0031 0.0005 1.86E-10 3.46E-08 1.0031 1.0021 1.0041

Obesity ZNF675 5 0.0042 0.0013 0.0016 0.0338 1.0042 1.0016 1.0068

Obesity ZNF223 2 -0.0045 0.0014 0.0015 0.0318 0.9956 0.9928 0.9983

Obesity ZNF204P 11 0.0021 0.0005 1.44E-05 0.0007 1.0021 1.0012 1.0031

Obesity ZNF25 13 -0.0020 0.0004 3.51E-08 3.26E-06 0.9980 0.9973 0.9987

Obesity ZSCAN16 7 0.0032 0.0005 5.99E-10 1.03E-07 1.0032 1.0022 1.0042

Obesity ZNF768 2 -0.0099 0.0025 8.35E-05 0.0031 0.9902 0.9853 0.9951

Obesity ZNF248 8 -0.0026 0.0004 5.05E-09 5.36E-07 0.9974 0.9965 0.9983

MI ZNF624 9 0.1245 0.0367 0.0007 0.0183 1.1326 1.0539 1.2171

MI ZNF184 14 0.1559 0.0453 0.0006 0.0156 1.1687 1.0694 1.2772

MI ZNF793 9 -0.0932 0.0232 6.04E-05 0.0024 0.9110 0.8705 0.9535

MI ZNF257 6 -0.1266 0.0374 0.0007 0.0186 0.8811 0.8188 0.9481

MI ZNF585A 7 -0.1516 0.0397 0.0001 0.0048 0.8593 0.7950 0.9288

MI ZNF585B 9 -0.1164 0.0359 0.0012 0.0269 0.8901 0.8297 0.9549

MI ZNF573 10 -0.1250 0.0277 6.33E-06 0.0004 0.8825 0.8359 0.9317

MI ZNF607 6 0.2378 0.0549 1.48E-05 0.0007 1.2684 1.1390 1.4125

OA ZNF33A 6 -0.0134 0.0044 0.0023 0.0450 0.9867 0.9782 0.9952

OA ZKSCAN4 24 0.0077 0.0012 8.20E-11 1.66E-08 1.0077 1.0054 1.0101

OA ZKSCAN3 32 0.0054 0.0011 1.29E-06 8.68E-05 1.0054 1.0032 1.0077

OA ZNF641 64 -0.0020 0.0006 0.0002 0.0073 0.9980 0.9969 0.9990

OA ZNF420 12 0.0061 0.0020 0.0021 0.0412 1.0061 1.0022 1.0101

OA ZNF204P 22 0.0041 0.0012 0.0010 0.0234 1.0041 1.0016 1.0065

OA ZSCAN16 13 0.0089 0.0016 2.39E-08 2.31E-06 1.0089 1.0058 1.0121

OA ZKSCAN7 23 -0.0069 0.0017 5.25E-05 0.0022 0.9931 0.9898 0.9965
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OA ZNF197 21 -0.0070 0.0017 4.66E-05 0.0020 0.9930 0.9897 0.9964

OA ZNF35 18 -0.0086 0.0017 2.56E-07 1.97E-05 0.9914 0.9882 0.9947

OA ZFP1 27 0.0054 0.0018 0.0025 0.0487 1.0054 1.0019 1.0089

HTN ZNF184 14 0.0357 0.0089 6.53E-05 0.0026 1.0364 1.0184 1.0547

HTN ZFP30 26 0.0080 0.0018 1.20E-05 0.0007 1.0080 1.0044 1.0116

HTN ZNF84 7 0.0104 0.0028 0.0003 0.0084 1.0104 1.0048 1.0161

HTN ZNF140 2 0.0435 0.0067 7.73E-11 1.66E-08 1.0444 1.0308 1.0582

HTN ZNF37A 14 0.0083 0.0019 9.06E-06 0.0005 1.0083 1.0046 1.0120

HTN ZNF793 10 -0.0197 0.0022 1.03E-18 7.67E-16 0.9805 0.9762 0.9848

HTN ZNF34 4 0.0144 0.0031 4.51E-06 0.0003 1.0145 1.0083 1.0207

HTN ZNF708 16 -0.0111 0.0021 1.47E-07 1.17E-05 0.9889 0.9848 0.9930

HTN ZKSCAN5 11 0.0136 0.0023 2.34E-09 3.26E-07 1.0137 1.0092 1.0183

HTN ZNF641 67 0.0030 0.0009 0.0009 0.0227 1.0030 1.0012 1.0048

HTN ZNF420 12 0.0228 0.0026 7.43E-18 4.14E-15 1.0231 1.0178 1.0284

HTN ZNF204P 22 0.0207 0.0034 1.95E-09 3.11E-07 1.0209 1.0140 1.0278

HTN ZNF311 6 -0.0462 0.0049 2.74E-21 3.06E-18 0.9549 0.9458 0.9641

HTN ZNF589 90 -0.0080 0.0008 3.11E-22 6.92E-19 0.9921 0.9905 0.9937

HTN ZNF493 31 -0.0095 0.0014 2.25E-12 7.15E-10 0.9905 0.9879 0.9932

HTN ZNF585B 10 -0.0236 0.0055 1.70E-05 0.0008 0.9767 0.9663 0.9872

HTN ZNF429 35 -0.0029 0.0008 0.0002 0.0081 0.9971 0.9956 0.9987

HTN ZNF571 11 0.0231 0.0052 9.88E-06 0.0006 1.0234 1.0129 1.0339

HTN ZNF605 22 0.0108 0.0018 3.08E-09 4.03E-07 1.0109 1.0073 1.0145

HTN ZKSCAN5 11 0.0136 0.0023 2.34E-09 3.26E-07 1.0137 1.0092 1.0183

HTN ZNF768 2 -0.0431 0.0108 6.78E-05 0.0027 0.9578 0.9377 0.9783

HTN ZNF607 6 0.0178 0.0048 0.0002 0.0071 1.0180 1.0084 1.0276

HTN ZNF540 4 -0.0379 0.0120 0.0017 0.0353 0.9629 0.9404 0.9859

HTN ZNF19 5 0.0444 0.0135 0.0010 0.0234 1.0454 1.0182 1.0734

HTN ZFP28 8 0.0079 0.0026 0.0020 0.0412 1.0079 1.0029 1.0130

HTN ZNF430 8 -0.0225 0.0032 1.15E-12 4.29E-10 0.9777 0.9717 0.9838

HTN ZNF431 9 0.0155 0.0028 5.45E-08 4.86E-06 1.0156 1.0099 1.0213

HTN ZNF100 35 -0.0060 0.0009 5.69E-11 1.41E-08 0.9940 0.9922 0.9958

HTN ZNF10 3 -0.0290 0.0055 1.03E-07 8.53E-06 0.9714 0.9611 0.9818

HTN ZNF35 17 -0.0076 0.0021 0.0004 0.0109 0.9924 0.9883 0.9966

HTN ZNF26 2 -0.0273 0.0056 9.37E-07 6.74E-05 0.9731 0.9625 0.9837

RA (ukb-b-9125) ZNF660 3 -0.0093 0.0016 4.19E-09 4.66E-07 0.9908 0.9877 0.9938

RA (ukb-b-9125) ZSCAN29 9 0.0009 0.0003 0.0016 0.0342 1.0009 1.0004 1.0015

RA (ukb-b-9125) ZNF425 2 -0.0029 0.0008 0.0003 0.0091 0.9971 0.9955 0.9987

RA (ukb-b-9125) ZKSCAN4 9 0.0029 0.0004 7.30E-12 0.0000 1.0029 1.0021 1.0038

RA (ukb-b-9125) ZNF566 3 -0.0040 0.0011 0.0004 0.0109 0.9960 0.9938 0.9982

RA (ukb-b-9125) ZNF814 5 0.0036 0.0010 0.0005 0.0135 1.0036 1.0016 1.0056

RA (ukb-b-9125) ZFP90 9 -0.0009 0.0003 0.0015 0.0318 0.9991 0.9986 0.9997

RA (ukb-b-9125) ZSCAN16 7 0.0040 0.0005 2.58E-13 1.15E-10 1.0040 1.0029 1.0050

RA (ukb-b-9125) ZKSCAN7 6 -0.0027 0.0006 2.25E-06 0.0001 0.9973 0.9962 0.9984
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outcome exposure nsnp b se pval FDR OR lower CI upper CI

RA (ukb-b-9125) ZNF197 6 -0.0024 0.0005 3.25E-07 2.41E-05 0.9976 0.9966 0.9985

RA (ukb-b-9125) ZNF680 5 0.0046 0.0013 0.0005 0.0137 1.0046 1.0020 1.0072

RA (ukb-b-9125) ZNF35 3 -0.0030 0.0007 1.23E-05 0.0007 0.9970 0.9956 0.9983

OA (ebi-a-GCST005814) ZNF140 2 0.4261 0.1187 0.0003 0.0099 1.5312 1.2135 1.9322

OA (ebi-a-GCST005814) ZNF793 10 -0.1510 0.0372 4.89E-05 0.0021 0.8598 0.7994 0.9248

OA (ebi-a-GCST005814) ZNF790 8 -0.3029 0.0690 1.13E-05 0.0006 0.7387 0.6452 0.8456

OA (ebi-a-GCST005814) ZKSCAN4 24 0.0964 0.0277 0.0005 0.0137 1.1012 1.0430 1.1626

OA (ebi-a-GCST005814) ZSCAN25 5 -0.3292 0.0756 1.33E-05 0.0007 0.7195 0.6205 0.8344

OA (ebi-a-GCST005814) ZNF204P 22 0.1622 0.0274 3.26E-09 4.03E-07 1.1761 1.1146 1.2410

OA (ebi-a-GCST005814) ZNF25 33 -0.1027 0.0240 1.90E-05 0.0009 0.9024 0.8609 0.9459

OA (ebi-a-GCST005814) ZNF573 12 -0.1629 0.0334 1.06E-06 7.41E-05 0.8497 0.7959 0.9071

OA (ebi-a-GCST005814) ZNF605 22 0.0912 0.0257 0.0004 0.0113 1.0955 1.0416 1.1521

OA (ebi-a-GCST005814) ZNF337 20 -0.0646 0.0204 0.0016 0.0337 0.9374 0.9006 0.9757

OA (ebi-a-GCST005814) ZNF607 6 0.3533 0.0847 3.02E-05 0.0013 1.4238 1.2060 1.6808

OA (ebi-a-GCST005814) ZNF248 15 -0.1382 0.0316 1.27E-05 0.0007 0.8710 0.8186 0.9267

OP ZFP57 36 0.0862 0.0202 2.01E-05 0.0009 1.0900 1.0477 1.1340

OP ZNF626 33 -0.1047 0.0320 0.0011 0.0248 0.9006 0.8459 0.9589

OP ZNF43 3 -0.2225 0.0692 0.0013 0.0293 0.8005 0.6990 0.9168

OP ZNF626 33 -0.1069 0.0320 0.0008 0.0210 0.8986 0.8441 0.9568

OP ZNF429 36 -0.0708 0.0182 9.66E-05 0.0035 0.9316 0.8990 0.9654

OP ZNF785 3 0.9033 0.2280 7.43E-05 0.0029 2.4677 1.5785 3.8580

OP ZNF100 34 -0.1052 0.0285 0.0002 0.0073 0.9001 0.8513 0.9518

T2D ZNF213 4 0.1297 0.0414 0.0017 0.0360 1.1385 1.0497 1.2348

T2D ZSCAN25 3 0.4350 0.1101 7.83E-05 0.0030 1.5450 1.2450 1.9173

Table B.7: Brain derived KZNF exposures with evidence for a causal
effect (Mendelian Randomization). Results for discrete traits

Brain derived KZNFs (Discrete outcomes)

outcome exposure nsnp b se pval FDR OR lower CI upper CI

CHD ZNF786 7 -0.0265 0.0083 0.0015 0.0182 0.9739 0.9581 0.9899

CHD ZKSCAN3 6 0.0409 0.0139 0.0032 0.0325 1.0417 1.0138 1.0704

CHD ZNF568 33 -0.0273 0.0068 5.79E-05 0.0014 0.9731 0.9602 0.9861

CHD ZNF641 2 0.0849 0.0284 0.0028 0.0294 1.0886 1.0296 1.1509

CHD ZNF781 24 -0.0215 0.0043 5.67E-07 2.40E-05 0.9787 0.9705 0.9870

CHD ZNF783 7 0.0439 0.0139 0.0016 0.0196 1.0448 1.0167 1.0738

CHD ZNF585A 33 -0.0534 0.0101 1.36E-07 7.33E-06 0.9480 0.9294 0.9670

CHD ZNF783 7 0.0439 0.0139 0.0016 0.0196 1.0448 1.0167 1.0738

CHD ZNF568 33 -0.0273 0.0068 5.79E-05 0.0014 0.9731 0.9602 0.9861

RA (id:ukb-d-M06) ZNF208 24 0.0003 0.0001 0.0020 0.0224 1.0003 1.0001 1.0005

RA (id:ukb-d-M06) ZNF138 20 0.0004 0.0001 0.0012 0.0165 1.0004 1.0002 1.0007

RA (id:ukb-d-M06) ZNF493 21 -0.0004 0.0001 0.0003 0.0047 0.9996 0.9993 0.9998

RA (id:ukb-d-M06) ZNF429 22 0.0004 8.94E-05 3.57E-05 0.0011 1.0004 1.0002 1.0005
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outcome exposure nsnp b se pval FDR OR lower CI upper CI

RA (id:ukb-d-M06) ZNF117 23 0.0001 4.78E-05 0.0021 0.0234 1.0001 1.0001 1.0002

Obesity ZNF786 7 -0.0005 0.0002 0.0033 0.0325 0.9995 0.9991 0.9998

Obesity ZNF14 11 -0.0013 0.0004 0.0002 0.0038 0.9987 0.9980 0.9994

Obesity ZNF273 18 -0.0011 0.0002 5.92E-07 2.40E-05 0.9989 0.9985 0.9994

Obesity ZNF529 25 0.0006 0.0002 0.0041 0.0397 1.0006 1.0002 1.0010

Obesity ZNF781 23 -0.0003 9.71E-05 0.0007 0.0102 0.9997 0.9995 0.9999

Obesity ZNF783 7 0.0009 0.0003 0.0018 0.0207 1.0009 1.0003 1.0015

Obesity ZNF382 25 -0.0009 0.0002 0.0001 0.0026 0.9991 0.9986 0.9996

Obesity ZNF138 17 0.0009 0.0002 3.66E-07 1.82E-05 1.0009 1.0006 1.0013

Obesity ZNF25 6 -0.0015 0.0004 0.0001 0.0027 0.9985 0.9977 0.9993

Obesity ZNF585A 31 -0.0009 0.0002 7.11E-05 0.0017 0.9991 0.9987 0.9995

Obesity ZNF607 23 -0.0011 0.0003 0.0002 0.0032 0.9989 0.9984 0.9995

Obesity ZNF117 18 0.0003 6.83E-05 1.11E-06 3.98E-05 1.0003 1.0002 1.0005

Obesity ZNF783 7 0.0009 0.0003 0.0018 0.0207 1.0009 1.0003 1.0015

MI ZNF34 6 -0.0400 0.0126 0.0014 0.0182 0.9608 0.9374 0.9847

MI ZNF273 21 -0.0266 0.0087 0.0022 0.0234 0.9738 0.9573 0.9905

MI ZNF568 33 -0.0460 0.0084 4.19E-08 2.47E-06 0.9551 0.9395 0.9709

MI ZNF781 24 -0.0362 0.0048 2.61E-14 5.64E-12 0.9644 0.9555 0.9735

MI ZNF718 5 0.0479 0.0161 0.0029 0.0303 1.0491 1.0165 1.0827

MI ZNF585A 33 -0.0824 0.0112 1.69E-13 2.74E-11 0.9209 0.9010 0.9413

MI ZNF117 23 0.0098 0.0035 0.0054 0.0486 1.0098 1.0029 1.0168

MI ZNF568 33 -0.0460 0.0084 4.19E-08 2.47E-06 0.9551 0.9395 0.9709

OA ZNF429 22 0.0014 0.0004 0.0007 0.0104 1.0014 1.0006 1.0021

OA ZNF565 23 0.0017 0.0004 3.11E-05 0.0010 1.0017 1.0009 1.0025

OA ZFP82 25 -0.0007 0.0002 0.0018 0.0207 0.9993 0.9989 0.9998

OA ZNF273 19 -0.0008 0.0003 0.0044 0.0412 0.9992 0.9987 0.9998

OA ZNF529 27 -0.0011 0.0003 4.93E-05 0.0014 0.9989 0.9983 0.9994

OA ZNF382 27 0.0013 0.0003 0.0001 0.0028 1.0013 1.0006 1.0020

OA ZNF260 26 -0.0010 0.0003 0.0004 0.0064 0.9990 0.9985 0.9996

HTN ZNF565 23 0.0051 0.0015 0.0007 0.0102 1.0051 1.0022 1.0081

HTN ZNF34 6 0.0067 0.0011 5.75E-10 5.33E-08 1.0067 1.0046 1.0088

HTN ZNF415 24 -0.0056 0.0020 0.0044 0.0412 0.9944 0.9906 0.9983

HTN ZKSCAN3 6 0.0080 0.0020 5.69E-05 0.0014 1.0080 1.0041 1.0120

HTN ZNF568 33 -0.0066 0.0007 3.05E-19 9.89E-17 0.9935 0.9920 0.9949

HTN ZNF641 2 0.0183 0.0025 7.23E-13 9.37E-11 1.0185 1.0134 1.0236

HTN ZNF781 24 -0.0027 0.0007 0.0003 0.0054 0.9973 0.9959 0.9988

HTN ZNF208 23 -0.0049 0.0012 8.49E-05 0.0020 0.9951 0.9927 0.9976

HTN ZNF493 22 0.0044 0.0013 0.0005 0.0088 1.0044 1.0019 1.0069

HTN ZNF585A 33 -0.0051 0.0017 0.0034 0.0332 0.9949 0.9916 0.9983

HTN ZNF429 23 -0.0039 0.0008 1.07E-06 3.98E-05 0.9961 0.9945 0.9977

HTN ZNF568 33 -0.0066 0.0007 3.05E-19 9.89E-17 0.9935 0.9920 0.9949

RA (id:ukb-b-9125) ZNF184 7 0.0020 0.0006 0.0009 0.0119 1.0020 1.0008 1.0032

RA (id:ukb-b-9125) ZNF781 23 -0.0003 0.0001 0.0007 0.0104 0.9997 0.9995 0.9999
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outcome exposure nsnp b se pval FDR OR lower CI upper CI

RA (id:ukb-b-9125) ZNF783 7 0.0017 0.0005 0.0001 0.0028 1.0017 1.0008 1.0026

RA (id:ukb-b-9125) ZNF783 7 0.0017 0.0005 0.0001 0.0028 1.0017 1.0008 1.0026

OA (id:ebi-a-GCST005814) ZNF419 29 0.0415 0.0120 0.0006 0.0094 1.0423 1.0180 1.0672

OA (id:ebi-a-GCST005814) ZNF568 33 -0.0711 0.0119 2.30E-09 1.66E-07 0.9314 0.9099 0.9533

OA (id:ebi-a-GCST005814) ZNF641 2 0.1348 0.0446 0.0025 0.0269 1.1443 1.0484 1.2489

OA (id:ebi-a-GCST005814) ZNF781 24 -0.0482 0.0074 6.72E-11 7.26E-09 0.9530 0.9393 0.9669

OA (id:ebi-a-GCST005814) ZNF585A 33 -0.0907 0.0179 4.14E-07 1.92E-05 0.9133 0.8818 0.9459

OA (id:ebi-a-GCST005814) ZNF429 22 -0.0267 0.0094 0.0046 0.0417 0.9736 0.9558 0.9918

OA (id:ebi-a-GCST005814) ZNF568 33 -0.0711 0.0119 2.30E-09 1.66E-07 0.9314 0.9099 0.9533

OP ZNF506 8 -0.1067 0.0375 0.0044 0.0412 0.8988 0.8351 0.9673

OP ZNF208 24 -0.0591 0.0185 0.0014 0.0182 0.9426 0.9090 0.9775

OP ZNF138 20 0.0901 0.0220 4.25E-05 0.0013 1.0943 1.0481 1.1426

OP ZNF117 23 0.0270 0.0083 0.0011 0.0146 1.0274 1.0109 1.0441

T2D ZNF34 4 0.1259 0.0283 8.63E-06 0.0003 1.1342 1.0730 1.1989

T2D ZNF33B 6 -0.0818 0.0241 0.0007 0.0102 0.9215 0.8790 0.9661

T2D ZNF585A 23 0.0776 0.0227 0.0006 0.0102 1.0807 1.0335 1.1299
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Appendix C

Supplementary files for

Chapter 4

C.1 Supplementary data and material

C.1.1 Supplementary data and material relating to results

Chapter 4

Table C.1: Loci where there was evidence for colocalization with
BMI using the subcutaneous adipose eQTL data SNP=single nucleotide
polymorphism, PPA=posterior probability of association. The probability that
the SNP and trait are not associatiated (PPA0), association with one trait but
not the other (PPA1, PPA2); association with both traits but with distinct
causal variants (PPA3); association with both traits with a common causal
variant (PPA4)

SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs10779751 MTOR 6.6E-09 9.1E-02 7.8E-09 1.1E-01 0.8

rs10923724 TBX15 2.2E-09 6.3E-04 1.2E-07 3.2E-02 0.96

rs11577094 DNALI1 1.7E-16 2.0E-13 4.2E-06 4.0E-03 0.99

rs12044597 SLC35E2B 3.7E-111 5.4E-98 5.1E-16 6.4E-03 0.99

rs12564992 SERPINC1 1.4E-20 1.6E-13 9.7E-10 9.8E-03 0.99

rs16864515 PRRC2C 2.0E-15 1.5E-09 9.8E-09 6.1E-03 0.99

rs1730859 PRMT6 8.4E-24 3.4E-19 4.2E-06 1.7E-01 0.83

rs17391694 FUBP1 1.2E-39 4.4E-09 9.8E-34 2.6E-03 0.99
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SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs2282231 BMP8A 8.2E-13 3.7E-04 2.1E-10 9.2E-02 0.91

rs4970712 EVI5 1.3E-08 2.8E-03 8.6E-07 1.8E-01 0.82

rs591088 CCDC23 7.5E-08 1.0E-05 1.4E-03 1.9E-01 0.81

rs6587552 SELENBP1 3.0E-13 4.0E-03 3.3E-13 3.3E-03 0.99

rs7535528 HES5 1.2E-10 1.5E-01 1.9E-11 2.2E-02 0.83

rs7540681 NBPF1 1.0E-05 1.3E-03 3.8E-04 5.0E-02 0.95

rs905938 ZBTB7B 2.2E-13 2.8E-05 4.0E-11 4.1E-03 0.99

rs1263618 GPR1 7.6E-07 9.1E-02 9.8E-08 1.1E-02 0.9

rs1704190 C2orf69 3.7E-06 2.6E-04 1.7E-03 1.2E-01 0.87

rs4556997 AFF3 2.1E-15 7.6E-02 9.4E-16 3.4E-02 0.89

rs6738445 SLC25A12 5.3E-19 1.8E-12 3.5E-09 1.1E-02 0.99

rs7557796 KDM3A 3.0E-14 3.3E-02 4.4E-14 4.6E-02 0.92

rs7607351 GFPT1 2.1E-12 2.2E-07 6.9E-07 7.1E-02 0.93

rs11710798 IP6K2 1.0E-08 3.6E-02 1.2E-08 4.2E-02 0.92

rs2293605 KLHL6 4.8E-05 1.2E-01 1.5E-05 3.6E-02 0.84

rs263041 MAP6D1 3.2E-13 9.1E-08 5.3E-08 1.4E-02 0.99

rs2710323 NT5DC2 2.2E-22 5.9E-12 1.3E-12 3.3E-02 0.97

rs4132228 ADAMTS9 9.7E-05 7.2E-03 3.1E-04 2.2E-02 0.97

rs9821675 MST1R 2.6E-53 9.2E-09 1.9E-46 6.8E-02 0.93

rs17695092 CPEB4 3.3E-21 8.6E-18 3.6E-05 9.2E-02 0.91

rs2052883 PJA2 7.4E-12 1.1E-09 4.0E-04 6.1E-02 0.94

rs2074613 PCDHA3 4.9E-05 1.3E-01 1.6E-05 4.3E-02 0.82

rs2367112 RGS7BP 1.9E-09 6.4E-03 1.6E-08 5.2E-02 0.94

rs3844598 PCDHGA2 5.7E-07 1.9E-04 1.7E-04 5.3E-02 0.95

rs4865796 FST 3.9E-05 3.6E-03 8.4E-05 6.6E-03 0.99

rs7716275 MYOT 2.9E-05 1.1E-01 9.4E-06 3.3E-02 0.86

rs13209968 HEY2 5.8E-15 1.3E-10 9.0E-06 2.0E-01 0.8

rs16882001 RRAGD 1.1E-06 2.9E-02 3.1E-06 8.1E-02 0.89

rs9394312 UHRF1BP1 2.8E-07 1.4E-01 9.5E-08 4.5E-02 0.82

rs13240600 ARPC1A 1.7E-13 1.1E-02 1.6E-12 1.0E-01 0.89

rs17207196 GTF2IRD2 3.4E-30 1.6E-02 6.5E-30 2.9E-02 0.96

rs17685 MDH2 4.7E-04 3.0E-02 2.2E-03 1.4E-01 0.82

rs329277 DPY19L1 1.3E-11 1.4E-09 7.7E-04 8.1E-02 0.92

rs6463489 FBXL18 4.8E-09 1.4E-06 7.6E-05 2.1E-02 0.98

rs1394 MSRA 3.8E-14 5.8E-02 4.7E-14 7.1E-02 0.87

rs4841659 AF131215.5 5.8E-17 9.9E-07 6.9E-13 1.1E-02 0.99

rs6985109 MSRA 7.3E-21 5.8E-02 7.4E-21 5.7E-02 0.89

rs881301 FGFR1 6.1E-06 3.6E-02 8.4E-06 4.8E-02 0.92

rs10971712 GALT 3.0E-08 1.4E-01 9.2E-09 4.1E-02 0.82

rs4877313 ISCA1 6.1E-06 3.3E-02 5.2E-06 2.7E-02 0.94

rs10886017 KIAA1598 9.3E-11 1.8E-02 1.7E-10 3.1E-02 0.95

rs12411886 PDCD11 8.4E-15 4.7E-02 2.1E-14 1.1E-01 0.84

rs1468069 SLIT1 9.3E-20 2.2E-17 3.1E-04 7.0E-02 0.93
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SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs3977755 PDCD11 1.6E-12 9.0E-02 8.6E-13 4.7E-02 0.86

rs1048932 CADM1 3.5E-29 1.1E-14 3.4E-18 8.8E-06 0.99

rs10832778 NCR3LG1 3.5E-20 1.0E-13 6.4E-09 1.7E-02 0.98

rs7102454 EFEMP2 7.9E-19 2.0E-03 1.1E-17 2.8E-02 0.97

rs7124681 MYBPC3 4.8E-53 1.0E-02 1.0E-52 2.1E-02 0.97

rs11066188 ALDH2 1.3E-07 4.5E-02 5.6E-08 1.8E-02 0.94

rs4077093 AC139768.1 5.3E-11 3.7E-09 2.9E-05 1.1E-03 0.99

rs4148866 HCAR1 4.1E-11 4.3E-04 4.3E-09 4.4E-02 0.96

rs7133378 ZNF664 1.5E-11 4.3E-06 1.2E-07 3.2E-02 0.97

rs7134628 SP1 8.2E-23 3.4E-20 1.2E-04 5.0E-02 0.95

rs7334078 STK24 5.2E-16 4.9E-12 1.9E-05 1.8E-01 0.82

rs11635675 USP3 2.2E-06 3.8E-02 9.0E-06 1.5E-01 0.81

rs2238373 NTHL1 5.2E-10 6.4E-03 1.3E-08 1.5E-01 0.84

rs3888190 ATXN2L 1.4E-55 4.7E-03 4.7E-54 1.6E-01 0.84

rs455527 AC137932.1 7.8E-04 3.1E-02 8.9E-04 3.5E-02 0.93

rs4985557 CLEC18A 3.0E-32 3.5E-20 1.4E-14 1.6E-02 0.98

rs7189122 OGFOD1 1.1E-09 5.4E-05 3.6E-06 1.7E-01 0.83

rs1000940 SLC25A11 6.3E-12 1.2E-01 2.9E-12 5.3E-02 0.83

rs12150665 DHRS11 4.6E-37 6.3E-22 1.1E-17 1.4E-02 0.99

rs4796243 DHRS11 4.6E-37 6.3E-22 1.1E-17 1.4E-02 0.99

rs9299 ATP5G1 1.7E-14 3.1E-05 2.5E-11 4.6E-02 0.95

rs559231 PIK3C3 5.7E-12 6.9E-05 1.0E-08 1.2E-01 0.88

rs11670142 PPFIA3 1.9E-08 4.9E-05 9.8E-06 2.4E-02 0.98

rs2304130 YJEFN3 1.4E-19 1.1E-12 6.1E-09 4.7E-02 0.95

rs3810291 SAE1 1.1E-47 3.9E-03 1.7E-46 5.8E-02 0.94

rs3957285 TMEM259 1.4E-10 8.4E-02 3.3E-11 2.0E-02 0.89

rs998732 LPAR2 1.3E-17 8.3E-10 1.1E-09 7.1E-02 0.93

rs1117080 YWHAB 6.1E-07 6.5E-05 1.6E-03 1.7E-01 0.83

rs1884389 NSFL1C 4.7E-27 1.4E-24 9.5E-05 2.7E-02 0.97

rs2425024 ITCH 1.3E-03 1.9E-02 3.1E-03 4.5E-02 0.93

rs2425847 WFDC3 1.4E-06 5.8E-02 2.1E-06 8.7E-02 0.85

rs4012234 EIF2S2 3.3E-15 2.8E-06 6.7E-11 5.5E-02 0.94

rs676749 PCED1A 3.6E-04 9.5E-02 3.5E-04 9.2E-02 0.81

rs12628891 H1F0 4.3E-16 6.6E-14 2.4E-04 3.5E-02 0.96

rs138289 SELM 9.4E-07 6.7E-05 1.7E-04 1.1E-02 0.99
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Table C.2: Loci where there was evidence for colocalization with
BMI using the brain eQTL data SNP=single nucleotide polymorphism,
PPA=posterior probability of association. The probability that the SNP and
trait are not associatiated (PPA0), association with one trait but not the other
(PPA1, PPA2); association with both traits but with distinct causal variants
(PPA3); association with both traits with a common causal variant (PPA4)

SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs12022461 S100PBP 1.1E-09 8.6E-02 9.8E-10 7.3E-02 0.84

rs12044597 SLC35E2B 9.3E-35 2.2E-21 2.5E-16 5.0E-03 0.99

rs12120851 SYCP1 8.4E-06 1.6E-02 2.8E-05 5.2E-02 0.93

rs12564992 SLC9C2 1.6E-23 1.6E-16 5.4E-09 5.0E-02 0.95

rs12759296 AGMAT 1.4E-17 2.5E-15 3.7E-04 6.7E-02 0.93

rs1730859 PRMT6 3.4E-32 1.4E-27 3.2E-07 1.2E-02 0.99

rs1993709 NEGR1 8.0E-63 1.4E-12 4.0E-52 6.9E-02 0.93

rs2235564 KLHL21 1.7E-08 2.0E-02 8.8E-08 1.0E-01 0.88

rs2481665 L1TD1 3.0E-19 9.2E-04 4.6E-17 1.4E-01 0.86

rs4653017 ZNF362 4.9E-12 2.9E-07 8.6E-07 5.0E-02 0.95

rs4970712 EVI5 3.4E-11 7.3E-06 4.0E-07 8.5E-02 0.91

rs6587552 TARS2 1.7E-12 2.1E-02 4.8E-12 5.6E-02 0.92

rs6692586 LUZP1 5.9E-13 1.1E-02 6.8E-12 1.3E-01 0.86

rs7540681 NBPF1 1.3E-13 1.1E-11 1.6E-04 1.3E-02 0.99

rs7551507 LRRC53 1.4E-29 7.1E-07 1.7E-24 8.3E-02 0.92

rs761423 ATP13A2 3.7E-06 1.3E-02 9.4E-06 3.2E-02 0.95

rs823074 PM20D1 1.2E-11 4.2E-08 3.4E-06 1.2E-02 0.98

rs905938 ZBTB7B 2.2E-10 2.9E-02 1.1E-10 1.4E-02 0.96

rs12468863 KCNK3 4.5E-36 2.8E-22 5.0E-16 3.0E-02 0.97

rs1704190 TYW5 6.9E-10 5.1E-08 9.8E-04 7.1E-02 0.93

rs2162524 TRIP12 2.1E-12 6.3E-02 1.6E-12 4.8E-02 0.89

rs2280039 PTPRN 1.0E-09 1.0E-01 1.0E-09 9.6E-02 0.8

rs6738445 SLC25A12 2.4E-25 7.9E-19 2.8E-08 9.4E-02 0.91

rs7557796 KDM3A 4.1E-15 4.5E-03 7.9E-14 8.5E-02 0.91

rs7607369 PLCD4 3.1E-20 1.0E-14 4.2E-07 1.4E-01 0.86

rs10460960 ZNF662 8.0E-11 2.3E-02 2.4E-11 6.1E-03 0.97

rs11710798 IP6K2 5.3E-11 1.9E-04 1.7E-08 6.0E-02 0.94

rs13072731 EXOG 3.9E-19 4.5E-16 7.3E-05 8.3E-02 0.92

rs1452075 CADPS 3.9E-09 4.8E-02 6.6E-09 8.1E-02 0.87

rs2293605 ECE2 2.3E-270 5.9E-267 3.0E-05 7.6E-02 0.92

rs2710323 GLYCTK 1.2E-14 3.1E-04 2.6E-13 6.0E-03 0.99

rs28350 ZNF662 8.0E-11 2.3E-02 2.4E-11 5.9E-03 0.97

rs3731544 CSPG5 1.1E-09 2.4E-04 6.5E-07 1.4E-01 0.86

rs4677812 ACAP2 1.2E-34 3.3E-29 5.9E-07 1.7E-01 0.83

rs6764533 UBXN7 1.5E-06 1.9E-02 9.0E-06 1.2E-01 0.86

rs6777784 CADPS 3.9E-09 4.8E-02 6.4E-09 7.8E-02 0.87

rs7630080 PRKCD 4.4E-07 5.2E-06 9.4E-03 1.1E-01 0.88
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SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs7652415 SETD5 8.2E-07 1.4E-02 6.4E-06 1.1E-01 0.88

rs9821675 C3orf18 9.0E-301 3.2E-256 2.8E-46 1.0E-01 0.89

rs223391 CENPE 4.4E-08 2.2E-04 3.8E-06 1.8E-02 0.98

rs13174863 SIL1 1.0E-10 6.9E-02 4.5E-11 2.8E-02 0.9

rs17695092 CPEB4 9.6E-08 2.9E-05 2.2E-04 6.5E-02 0.93

rs3844598 PCDHGA3 1.9E-05 6.0E-03 3.2E-05 9.1E-03 0.98

rs460799 ERBB2IP 4.1E-06 1.2E-01 1.5E-06 4.1E-02 0.84

rs4704513 SCAMP1 1.4E-06 5.1E-04 2.8E-04 1.0E-01 0.9

rs13209968 HEY2 9.8E-32 2.2E-27 1.6E-06 3.6E-02 0.96

rs17757975 GLO1 2.8E-05 6.1E-03 5.1E-04 1.1E-01 0.88

rs2246012 MED23 2.2E-08 3.5E-02 3.5E-08 5.5E-02 0.91

rs2842385 ID4 7.8E-06 1.3E-04 2.5E-03 4.0E-02 0.96

rs3813680 C6orf62 6.8E-23 4.2E-20 1.6E-04 9.6E-02 0.9

rs6569648 L3MBTL3 3.4E-20 2.2E-16 1.5E-05 9.4E-02 0.9

rs6901756 FRS3 1.9E-10 5.4E-08 6.4E-05 1.7E-02 0.98

rs9394312 ANKS1A 7.7E-09 3.8E-03 8.8E-09 3.3E-03 0.99

rs1048303 AP1S1 3.7E-279 5.0E-276 3.7E-06 4.0E-03 0.99

rs13240600 ZKSCAN5 9.7E-18 5.2E-07 6.7E-13 3.5E-02 0.96

rs17207196 POM121C 9.8E-307 4.6E-279 1.0E-30 3.8E-03 0.99

rs1830074 ZNF12 8.1E-10 2.4E-07 1.7E-05 4.1E-03 0.99

rs1899689 CADPS2 2.0E-08 3.4E-03 7.3E-07 1.3E-01 0.87

rs217433 NUDCD3 1.2E-10 3.7E-08 5.0E-04 1.5E-01 0.85

rs3807875 CADPS2 2.0E-08 3.4E-03 7.3E-07 1.3E-01 0.87

rs6463489 FBXL18 1.1E-07 3.5E-05 1.4E-04 4.3E-02 0.96

rs7811342 TTC26 1.7E-08 9.4E-03 1.5E-07 8.3E-02 0.91

rs12545740 DUSP26 2.0E-06 1.6E-03 8.8E-05 6.8E-02 0.93

rs17446091 TRIM35 1.7E-29 6.6E-26 8.1E-06 3.0E-02 0.97

rs2170382 STAU2 3.0E-07 1.9E-03 2.6E-05 1.6E-01 0.84

rs3134353 YWHAZ 1.1E-33 2.3E-28 6.7E-08 1.3E-02 0.99

rs4841659 FAM86B1 1.6E-13 2.7E-03 2.8E-12 4.7E-02 0.95

rs7830160 ZBTB10 5.1E-07 1.1E-01 4.8E-08 9.1E-03 0.88

rs881301 FGFR1 5.1E-08 3.0E-04 5.5E-06 3.1E-02 0.97

rs10971712 UBE2R2 4.6E-17 2.3E-10 1.8E-08 8.6E-02 0.91

rs450231 ANKS6 2.8E-08 1.5E-04 2.0E-05 1.1E-01 0.89

rs7031064 FREM1 2.2E-06 7.5E-03 2.7E-06 8.3E-03 0.98

rs7871866 SLC27A4 5.8E-10 1.1E-02 4.3E-09 7.9E-02 0.91

rs10824218 VCL 7.7E-09 2.7E-03 2.8E-08 8.9E-03 0.99

rs12411886 CNNM2 1.2E-15 6.5E-03 9.0E-15 5.0E-02 0.94

rs12779943 ANKRD26 5.5E-14 4.3E-09 8.2E-07 6.3E-02 0.94

rs3977755 INA 5.6E-13 3.0E-02 1.0E-13 4.6E-03 0.96

rs7083450 AS3MT 7.5E-09 1.3E-03 1.2E-07 1.9E-02 0.98

rs10768994 HSD17B12 9.8E-77 7.4E-58 1.4E-22 6.7E-05 0.99

rs10838465 CTD-2210P24.4 1.8E-08 1.1E-01 6.5E-09 4.0E-02 0.84
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SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs1465900 TSKU 1.1E-07 3.5E-03 1.5E-06 4.7E-02 0.95

rs1784460 HMBS 9.6E-43 1.6E-35 6.2E-09 1.1E-01 0.89

rs349088 AP000974.1 9.6E-09 1.4E-02 6.9E-08 1.0E-01 0.88

rs472611 PVRL1 1.1E-03 2.9E-02 5.5E-03 1.5E-01 0.81

rs7124681 C1QTNF4 1.2E-57 2.7E-07 7.2E-52 1.6E-01 0.84

rs719802 TTC12 5.0E-274 2.7E-272 5.7E-05 2.2E-03 0.99

rs7947143 TEX40 2.8E-17 8.5E-10 3.5E-10 9.7E-03 0.99

rs10878946 CPSF6 4.1E-10 1.1E-03 2.7E-08 7.1E-02 0.92

rs6606686 TCTN1 1.8E-09 4.9E-02 1.0E-09 2.8E-02 0.9

rs7133378 DNAH10OS 4.6E-18 1.2E-12 1.6E-07 4.2E-02 0.96

rs7134628 SP1 7.9E-06 3.6E-03 1.1E-04 4.8E-02 0.95

rs7963783 TAOK3 3.4E-06 3.5E-02 3.5E-06 3.6E-02 0.93

rs833831 RHEBL1 1.2E-09 2.8E-07 3.5E-04 8.1E-02 0.92

rs1045411 HMGB1 1.4E-259 1.8E-251 3.1E-10 3.9E-02 0.96

rs7334078 FARP1 1.8E-07 1.7E-03 5.2E-06 4.8E-02 0.95

rs10144318 STYX 2.0E-03 5.7E-02 1.9E-03 5.3E-02 0.89

rs2010281 TRMT61A 7.9E-24 1.6E-10 6.7E-15 1.4E-01 0.86

rs3803286 TRAF3 4.2E-23 2.6E-07 2.2E-18 1.2E-02 0.99

rs11629783 MAP2K1 1.1E-07 5.8E-02 8.3E-08 4.3E-02 0.89

rs12595749 DNAJA4 2.3E-10 1.1E-01 1.4E-10 6.1E-02 0.83

rs12905439 PGPEP1L 7.8E-08 1.5E-04 4.7E-05 9.0E-02 0.91

rs7172627 OTUD7A 1.6E-10 1.4E-05 3.1E-07 2.5E-02 0.97

rs8033995 LCMT2 1.6E-05 5.3E-03 4.2E-04 1.4E-01 0.85

rs936227 ULK3 4.9E-07 8.1E-02 1.3E-07 2.0E-02 0.89

rs11866815 PDIA2 4.5E-16 7.6E-07 2.7E-11 4.5E-02 0.96

rs12597712 FTO 4.4E-16 2.1E-12 2.3E-06 9.6E-03 0.99

rs3814883 DOC2A 6.6E-35 4.9E-02 5.3E-35 3.8E-02 0.91

rs3888190 NFATC2IP 1.9E-59 6.5E-07 1.7E-54 5.7E-02 0.94

rs4889606 ZNF646 2.5E-28 1.7E-02 8.4E-28 5.7E-02 0.93

rs4985557 EXOSC6 5.2E-273 6.2E-261 8.4E-16 2.0E-10 0.99

rs7189122 OGFOD1 1.2E-09 5.4E-05 1.7E-06 7.4E-02 0.93

rs7200919 NFATC3 2.2E-08 4.8E-07 5.5E-04 1.1E-02 0.99

rs889398 EXOSC6 5.8E-31 1.7E-05 1.2E-27 3.5E-02 0.97

rs9921416 FTO 4.4E-16 2.1E-12 2.3E-06 9.6E-03 0.99

rs1000940 RPAIN 5.8E-18 1.1E-07 7.4E-13 1.3E-02 0.99

rs1038088 CORO6 2.4E-12 8.8E-07 3.1E-07 1.2E-01 0.88

rs1075901 NCOR1 4.2E-10 3.5E-03 1.4E-08 1.1E-01 0.88

rs12150665 DHRS11 3.5E-291 5.0E-276 7.5E-18 9.7E-03 0.99

rs208015 SP2 7.6E-20 1.1E-01 4.6E-20 6.4E-02 0.83

rs4796243 DHRS11 3.5E-291 5.0E-276 7.5E-18 9.6E-03 0.99

rs7209235 CDK3 8.4E-06 1.0E-02 1.6E-04 1.9E-01 0.8

rs7220138 TMUB2 2.1E-05 8.7E-02 2.1E-05 8.4E-02 0.83

rs8075273 DCAF7 4.9E-10 1.7E-03 3.2E-08 1.1E-01 0.89
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SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs9299 CDK5RAP3 2.0E-22 9.4E-13 7.8E-12 3.5E-02 0.96

rs12964689 C18orf8 5.4E-55 4.1E-30 6.2E-27 4.7E-02 0.95

rs559231 RIT2 1.2E-08 1.5E-01 3.6E-09 4.2E-02 0.81

rs9965170 PIAS2 4.2E-05 7.1E-03 8.2E-04 1.4E-01 0.85

rs2304130 HAPLN4 2.9E-14 2.3E-07 5.0E-09 3.8E-02 0.96

rs3957285 KLF16 5.3E-13 3.3E-04 2.9E-10 1.8E-01 0.82

rs895330 PIAS4 2.0E-19 1.3E-06 2.2E-14 1.4E-01 0.86

rs998732 HAPLN4 6.3E-16 4.4E-08 8.0E-10 5.5E-02 0.95

rs1117080 YWHAB 2.2E-274 2.4E-272 7.9E-04 8.6E-02 0.91

rs6050446 ENTPD6 1.0E-12 3.4E-06 4.4E-08 1.5E-01 0.85

rs6512302 OPRL1 4.2E-15 4.9E-10 9.5E-08 1.0E-02 0.99

rs676749 PTPRA 3.4E-04 9.2E-02 2.8E-04 7.3E-02 0.83

rs2837398 DSCAM 4.6E-07 2.3E-03 1.2E-05 5.9E-02 0.94

rs427943 ADARB1 1.4E-17 2.4E-02 2.2E-17 3.9E-02 0.94

rs11538 BID 6.6E-15 9.2E-12 2.4E-05 3.3E-02 0.97

rs175165 ZDHHC8 2.4E-09 3.7E-07 1.6E-04 2.5E-02 0.98

rs738140 WBP2NL 2.8E-18 1.1E-12 3.1E-09 2.0E-04 0.99

Table C.3: Loci where there was evidence for colocalization between BMI and
subcutaneous adipose eQTL only

Colocalization at adipose-tissue loci only

SNP Top Adipose Gene Adipose PPA4 Brain PPA4

rs4556997 AFF3 0.89 0.00

rs11066188 ALDH2 0.94 0.00

rs11577094 DNALI1 1.00 0.00

rs12628891 H1F0 0.96 0.00

rs263041 MAP6D1 0.99 0.00

rs16882001 RRAGD 0.89 0.00

rs17685 MDH2 0.82 0.00

rs10832778 NCR3LG1 0.98 0.02

rs2052883 PJA2 0.94 0.02

rs4012234 EIF2S2 0.94 0.02

rs11635675 USP3 0.81 0.03

rs4132228 ADAMTS9 0.97 0.03

rs4865796 FST 0.99 0.03

rs1263618 GPR1 0.90 0.03

rs7535528 HES5 0.83 0.03

rs2238373 NTHL1 0.84 0.03

rs1394 MSRA 0.87 0.03

rs10923724 TBX15 0.97 0.03

rs10886017 KIAA1598 0.95 0.03

rs2367112 RGS7BP 0.94 0.03
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SNP Top Adipose Gene Adipose PPA4 Brain PPA4

rs6985109 MSRA 0.89 0.04

rs329277 DPY19L1 0.92 0.04

rs4877313 ISCA1 0.94 0.04

rs2425847 WFDC3 0.85 0.04

rs138289 SELM 0.99 0.04

rs4148866 HCAR1 0.96 0.05

rs17391694 FUBP1 0.99 0.08

rs2425024 ITCH 0.93 0.08

rs2074613 PCDHA3 0.82 0.09

rs7716275 MYOT 0.86 0.09

rs3810291 SAE1 0.94 0.11

rs1468069 SLIT1 0.93 0.13

rs591088 CCDC23 0.81 0.16

rs1048932 CADM1 0.99 0.19

rs11670142 PPFIA3 0.98 0.19

rs1884389 NSFL1C 0.97 0.20

rs2282231 BMP8A 0.91 0.38

rs7102454 EFEMP2 0.97 0.41

rs16864515 PRRC2C 0.99 0.63

rs10779751 MTOR 0.80 0.72

rs7607351 GFPT1 0.93 0.76

rs4077093 AC139768.1 0.99 0.00

rs455527 AC137932.1 0.93 0.00

Table C.4: Loci where there was evidence for colocalization between BMI and
brain eQTL only

Colocalization at brain-tissue loci only

SNP Top Brain Gene Adipose PPA4 Brain PPA4

rs12022461 S100PBP 0.07 0.84

rs12120851 SYCP1 0.04 0.93

rs12759296 AGMAT 0.10 0.93

rs1993709 NEGR1 0.04 0.93

rs2235564 KLHL21 0.06 0.88

rs2481665 L1TD1 0.00 0.86

rs4653017 ZNF362 0.60 0.95

rs6692586 LUZP1 0.00 0.86

rs7551507 LRRC53 0.00 0.92

rs761423 ATP13A2 0.06 0.96

rs823074 PM20D1 0.01 0.99

rs12468863 KCNK3 0.06 0.97

rs2162524 TRIP12 0.04 0.89

rs2280039 PTPRN 0.04 0.80
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SNP Top Brain Gene Adipose PPA4 Brain PPA4

rs7607369 PLCD4 0.24 0.86

rs10460960 ZNF662 0.05 0.97

rs13072731 EXOG 0.46 0.92

rs1452075 CADPS 0.04 0.87

rs28350 ZNF662 0.05 0.97

rs3731544 CSPG5 0.06 0.86

rs4677812 ACAP2 0.40 0.83

rs6764533 UBXN7 0.10 0.86

rs6777784 CADPS 0.04 0.87

rs7630080 PRKCD 0.05 0.88

rs7652415 SETD5 0.36 0.88

rs223391 CENPE 0.04 0.98

rs13174863 SIL1 0.05 0.90

rs460799 ERBB2IP 0.04 0.84

rs4704513 SCAMP1 0.31 0.90

rs17757975 GLO1 0.56 0.88

rs2246012 MED23 0.07 0.91

rs2842385 ID4 0.00 0.96

rs3813680 C6orf62 0.07 0.90

rs6569648 L3MBTL3 0.05 0.91

rs6901756 FRS3 0.29 0.98

rs1048303 AP1S1 0.05 1.00

rs1830074 ZNF12 0.01 1.00

rs1899689 CADPS2 0.03 0.87

rs217433 NUDCD3 0.44 0.85

rs3807875 CADPS2 0.03 0.87

rs7811342 TTC26 0.05 0.91

rs12545740 DUSP26 0.04 0.93

rs17446091 TRIM35 0.13 0.97

rs2170382 STAU2 0.04 0.84

rs3134353 YWHAZ 0.73 0.99

rs7830160 ZBTB10 0.13 0.88

rs450231 ANKS6 0.07 0.89

rs7031064 FREM1 0.03 0.98

rs7871866 SLC27A4 0.11 0.91

rs10824218 VCL 0.40 0.99

rs12779943 ANKRD26 0.03 0.94

rs7083450 AS3MT 0.12 0.98

rs10768994 HSD17B12 0.00 1.00

rs10838465 CTD-2210P24.4 0.00 0.85

rs1465900 TSKU 0.00 0.95

rs1784460 HMBS 0.67 0.89

rs349088 AP000974.1 0.05 0.88
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SNP Top Brain Gene Adipose PPA4 Brain PPA4

rs472611 PVRL1 0.05 0.81

rs719802 TTC12 0.33 1.00

rs7947143 TEX40 0.00 0.99

rs10878946 CPSF6 0.17 0.93

rs6606686 TCTN1 0.04 0.92

rs7963783 TAOK3 0.03 0.93

rs833831 RHEBL1 0.07 0.92

rs1045411 HMGB1 0.05 0.96

rs10144318 STYX 0.59 0.89

rs2010281 TRMT61A 0.00 0.86

rs3803286 TRAF3 0.07 0.99

rs11629783 MAP2K1 0.03 0.90

rs12595749 DNAJA4 0.04 0.83

rs12905439 PGPEP1L 0.00 0.91

rs7172627 OTUD7A 0.03 0.97

rs8033995 LCMT2 0.64 0.85

rs936227 ULK3 0.00 0.90

rs11866815 PDIA2 0.04 0.96

rs12597712 FTO 0.06 0.99

rs3814883 DOC2A 0.05 0.91

rs4889606 ZNF646 0.00 0.93

rs7200919 NFATC3 0.33 0.99

rs889398 EXOSC6 0.00 0.97

rs9921416 FTO 0.06 0.99

rs1038088 CORO6 0.52 0.88

rs1075901 NCOR1 0.52 0.88

rs208015 SP2 0.06 0.83

rs7209235 CDK3 0.05 0.80

rs7220138 TMUB2 0.04 0.83

rs8075273 DCAF7 0.08 0.89

rs12964689 C18orf8 0.77 0.95

rs9965170 PIAS2 0.65 0.85

rs895330 PIAS4 0.08 0.86

rs6050446 ENTPD6 0.02 0.85

rs6512302 OPRL1 0.00 0.99

rs2837398 DSCAM 0.06 0.94

rs427943 ADARB1 0.00 0.94

rs11538 BID 0.00 0.97

rs175165 ZDHHC8 0.05 0.98

rs738140 WBP2NL 0.09 0.99
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Table C.5: Loci where there was evidence for colocalization with BMI in both
tissues

Colocalization in both tissues (Top PPA4 gene reported)

SNP Top Adipose Gene Top Adipose PPA4 Top Brain Gene Top Brain PPA4

rs1000940 SLC25A11 0.83 RPAIN 0.99

rs10971712 GALT 0.82 UBE2R2 0.91

rs1117080 YWHAB 0.83 YWHAB 0.91

rs11710798 IP6K2 0.92 IP6K2 0.94

rs12044597 SLC35E2B 0.99 SLC35E2B 0.99

rs12150665 DHRS11 0.99 DHRS11 0.99

rs12411886 PDCD11 0.84 CNNM2 0.94

rs12564992 SERPINC1 0.99 SLC9C2 0.95

rs13209968 HEY2 0.80 HEY2 0.96

rs13240600 ARPC1A 0.89 ZKSCAN5 0.96

rs1704190 TYW5 0.82 TYW5 0.93

rs1704190 C2orf69 0.87 C2orf69 0.67

rs17207196 GTF2IRD2 0.96 POM121C 1.00

rs1730859 PRMT6 0.83 PRMT6 0.99

rs17695092 CPEB4 0.91 CPEB4 0.93

rs2293605 KLHL6 0.84 ECE2 0.92

rs2304130 YJEFN3 0.95 HAPLN4 0.96

rs2710323 NT5DC2 0.97 GLYCTK 0.99

rs3844598 PCDHGA2 0.95 PCDHGA3 0.98

rs3888190 ATXN2L 0.84 NFATC2IP 0.94

rs3957285 TMEM259 0.90 KLF16 0.82

rs3977755 PDCD11 0.86 INA 0.96

rs4796243 DHRS11 0.99 DHRS11 0.99

rs4841659 AF131215.5 0.99 FAM86B1 0.95

rs4970712 EVI5 0.82 EVI5 0.91

rs4985557 CLEC18A 0.98 EXOSC6 1.00

rs559231 PIK3C3 0.88 RIT2 0.81

rs6463489 FBXL18 0.98 FBXL18 0.96

rs6587552 SELENBP1 0.99 TARS2 0.92

rs676749 PCED1A 0.81 PTPRA 0.83

rs7124681 MYBPC3 0.97 C1QTNF4 0.84

rs7133378 ZNF664 0.97 DNAH10OS 0.96

rs7134628 SP1 0.95 SP1 0.95

rs7189122 OGFOD1 0.83 OGFOD1 0.93

rs7334078 STK24 0.82 FARP1 0.95

rs7540681 NBPF1 0.95 NBPF1 0.99

rs7557796 KDM3A 0.92 KDM3A 0.91

rs881301 FGFR1 0.92 FGFR1 0.97

rs905938 ZBTB7B 1.00 ZBTB7B 0.96
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SNP Top Adipose Gene Top Adipose PPA4 Top Brain Gene Top Brain PPA4

rs3814883 ATP5G1 0.95 CDK5RAP3 0.96

rs9394312 UHRF1BP1 0.82 ANKS1A 0.99

rs9821675 MST1R 0.93 C3orf18 0.90

rs998732 LPAR2 0.00 HAPLN4 0.95

Table C.6: Variants with borderline evidence for colocalisation in adipose
tissue (i.e. based on PPA4>0.7 & PPA<0.8) Colocalisation (PPA4) results in
adipose and brain-derived tissues. The gene with the highest PPA4 in either
tissue type are reported for each lead SNP (although this may not necessarily
reflect that this gene is the causal gene responsible for their respective BMI
association)

Adipose

SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs10132280 SDR39U1 1.3E-11 2.1E-01 2.8E-12 4.7E-02 0.7435

rs10433609 CYB561D2 1.1E-06 1.8E-01 6.6E-07 1.1E-01 0.7125

rs10514710 ZNF502 1.4E-33 1.0E-30 3.6E-04 2.6E-01 0.7398

rs1075901 ZSWIM7 1.3E-08 1.1E-01 1.6E-08 1.4E-01 0.7470

rs10899486 USP35 2.2E-05 2.0E-02 2.6E-04 2.3E-01 0.7461

rs10903320 MSRA 1.0E-19 3.3E-02 5.5E-19 1.8E-01 0.7880

rs10903323 SLC35G5 1.3E-18 1.9E-01 3.4E-19 4.8E-02 0.7633

rs11228824 OR8I2 5.4E-03 1.9E-01 3.8E-04 1.2E-02 0.7938

rs11649864 RNF43 3.7E-04 2.3E-01 8.6E-05 5.3E-02 0.7119

rs11758326 SNRPC 1.4E-52 1.5E-14 2.0E-39 2.2E-01 0.7830

rs11783388 CLDN23 1.4E-14 4.5E-02 7.5E-14 2.4E-01 0.7104

rs12022461 SPOCD1 5.4E-09 2.3E-01 7.1E-10 3.0E-02 0.7404

rs12545740 MAK16 3.5E-06 2.8E-03 2.8E-04 2.2E-01 0.7802

rs12548931 CLDN23 1.5E-14 4.7E-02 6.4E-14 2.1E-01 0.7450

rs12615778 MAP4K4 2.1E-03 1.3E-01 1.4E-03 8.7E-02 0.7787

rs12631248 SEMA3F 8.7E-48 3.1E-03 6.1E-46 2.2E-01 0.7784

rs12742293 FUBP1 3.8E-12 9.0E-04 1.2E-09 2.9E-01 0.7127

rs12750810 S100A11 2.1E-11 2.8E-01 4.4E-13 5.0E-03 0.7174

rs12964689 C18orf8 2.8E-28 2.2E-03 3.0E-26 2.3E-01 0.7683

rs13072883 PCYT1A 7.0E-06 1.9E-01 5.7E-07 1.5E-02 0.7913

rs13100173 NAT6 4.6E-41 3.1E-02 2.8E-40 1.9E-01 0.7791

rs1402025 PGGT1B 3.4E-04 1.2E-01 4.2E-04 1.5E-01 0.7364

rs17110049 SDR39U1 1.3E-11 2.1E-01 2.5E-12 4.0E-02 0.7482

rs17599948 TUBG2 3.5E-03 2.5E-01 3.6E-04 2.5E-02 0.7245

rs17639568 PRDX2 8.4E-06 1.1E-01 9.5E-06 1.3E-01 0.7616

rs17650177 COL4A3BP 3.5E-50 2.4E-01 1.1E-51 7.0E-03 0.7492

rs17724992 GATAD2A 1.9E-03 2.3E-01 6.6E-05 7.0E-03 0.7658

rs2010281 PPP1R13B 3.5E-15 7.1E-02 9.4E-15 1.9E-01 0.7378

rs2012502 CMIP 4.4E-06 3.2E-02 3.5E-05 2.6E-01 0.7102
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rs2051559 MSANTD1 6.2E-07 1.8E-01 3.8E-07 1.1E-01 0.7099

rs2409615 CLDN23 1.4E-14 5.0E-02 6.2E-14 2.1E-01 0.7356

rs247767 TSSK6 1.2E-07 1.9E-01 2.1E-08 3.2E-02 0.7808

rs2754087 SDR39U1 1.3E-11 2.1E-01 3.0E-12 5.0E-02 0.7410

rs284262 UBIAD1 7.9E-03 2.4E-01 1.1E-03 3.3E-02 0.7233

rs3134353 YWHAZ 1.2E-29 2.6E-24 1.3E-06 2.7E-01 0.7312

rs35419825 FNTA 2.0E-07 1.5E-04 3.4E-04 2.4E-01 0.7566

rs3740694 MTCH2 6.3E-33 1.7E-01 2.3E-33 6.2E-02 0.7645

rs3798544 UHRF1BP1 6.4E-97 8.3E-59 2.0E-39 2.5E-01 0.7484

rs4148155 FAM13A 7.1E-08 2.1E-01 7.9E-09 2.3E-02 0.7634

rs4275226 SLC35G5 1.4E-18 1.9E-01 2.3E-19 3.1E-02 0.7822

rs4686682 SENP2 1.7E-15 7.0E-13 5.3E-04 2.2E-01 0.7794

rs523092 MFAP3L 1.2E-03 3.1E-02 6.5E-03 1.7E-01 0.7899

rs573455 PCSK7 2.8E-04 1.9E-01 1.4E-04 9.5E-02 0.7142

rs599823 BMP8A 6.0E-12 1.6E-03 8.1E-10 2.2E-01 0.7824

rs6011457 ARFRP1 3.4E-05 2.4E-01 4.8E-06 3.2E-02 0.7297

rs6235 ERAP1 1.2E-13 2.5E-01 2.2E-14 4.4E-02 0.7091

rs6606686 ATP2A2 6.9E-09 1.9E-01 1.7E-09 4.6E-02 0.7655

rs6819344 FAM13A 7.1E-08 2.1E-01 8.9E-09 2.6E-02 0.7610

rs7083450 CNNM2 1.3E-06 2.2E-01 8.9E-08 1.4E-02 0.7663

rs7114704 MYBPC3 1.9E-39 7.7E-02 3.3E-39 1.3E-01 0.7906

rs740157 GSAP 6.8E-11 9.3E-06 1.6E-06 2.2E-01 0.7775

rs8033995 CATSPER2 2.7E-05 1.0E-02 4.9E-04 1.9E-01 0.7998

rs806794 PRSS16 1.1E-04 8.0E-03 3.7E-03 2.8E-01 0.7040

rs8070454 PGAP3 3.2E-04 3.0E-02 2.0E-03 1.8E-01 0.7876

rs889398 DDX19A 7.5E-27 2.3E-01 8.0E-28 2.3E-02 0.7511

rs9299 UBE2Z 1.2E-28 5.4E-19 6.7E-11 2.9E-01 0.7061

rs936227 SNUPN 1.1E-07 1.8E-02 1.4E-06 2.4E-01 0.7457

Table C.7: Variants with borderline evidence for colocalisation in brain tissue
(i.e. based on PPA4>0.7 & PPA<0.8)

Brain

SNP Gene PPA0 PPA1 PPA2 PPA3 PPA4

rs10160701 PACSIN3 0.0001 0.1075 0.0001 0.1294 0.7629

rs10198345 GPD2 0.0003 0.0708 0.0008 0.1854 0.7427

rs10431745 PPP2R5C 0.0000 0.0000 0.0004 0.2609 0.7388

rs10433609 PPM1M 0.0000 0.2090 0.0000 0.0410 0.7500

rs10514710 ZNF501 0.0000 0.0000 0.0003 0.2695 0.7302

rs10773049 FAM101A 0.0000 0.0250 0.0000 0.2667 0.7084

rs10779751 MTOR 0.0000 0.0009 0.0000 0.2814 0.7177

rs10794357 HRAS 0.0000 0.2278 0.0000 0.0628 0.7094

rs10821196 PHF2 0.0000 0.0000 0.0000 0.2577 0.7423
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rs10838709 FAM180B 0.0000 0.0142 0.0000 0.2655 0.7204

rs10962549 CCDC171 0.0101 0.2503 0.0003 0.0063 0.7331

rs11080090 TP53I13 0.0043 0.2035 0.0004 0.0160 0.7759

rs11125627 CENPO 0.0000 0.0906 0.0000 0.1285 0.7809

rs1150659 HIST1H2AB 0.0000 0.2087 0.0000 0.0890 0.7023

rs11574938 ASPHD1 0.0000 0.1974 0.0000 0.0226 0.7800

rs11757081 TAPBP 0.0000 0.0540 0.0000 0.1895 0.7565

rs11889536 PTPRN 0.0000 0.1004 0.0000 0.1325 0.7671

rs1248860 CADM2 0.0000 0.0939 0.0000 0.1735 0.7325

rs12620249 GALNT13 0.0002 0.0351 0.0015 0.2136 0.7496

rs12680842 KIAA1429 0.0000 0.1083 0.0000 0.1808 0.7109

rs12750810 LYSMD1 0.0000 0.1703 0.0000 0.0567 0.7730

rs12936083 GP1BA 0.0000 0.2013 0.0000 0.0632 0.7355

rs13012099 SOCS5 0.0000 0.2518 0.0000 0.0385 0.7097

rs13200797 HIST1H2AB 0.0000 0.2085 0.0000 0.0897 0.7018

rs13329567 AAGAB 0.0000 0.2146 0.0000 0.0830 0.7024

rs13406427 SOCS5 0.0000 0.2521 0.0000 0.0375 0.7105

rs1375561 CADM2 0.0000 0.0480 0.0000 0.1614 0.7905

rs1421334 TEX15 0.0000 0.0026 0.0000 0.1995 0.7979

rs17019087 AC007401.2 0.0003 0.2314 0.0001 0.0505 0.7178

rs17035438 SOCS5 0.0000 0.2521 0.0000 0.0375 0.7105

rs17114534 BTRC 0.0000 0.2409 0.0000 0.0251 0.7340

rs17636031 CTBP2 0.0000 0.1725 0.0000 0.1269 0.7005

rs1891215 PARK7 0.0000 0.1280 0.0000 0.1668 0.7052

rs1895874 KIAA1429 0.0000 0.1085 0.0000 0.1797 0.7119

rs2044469 GPR155 0.0000 0.0817 0.0000 0.1650 0.7533

rs210139 CUTA 0.0000 0.0000 0.0000 0.2210 0.7790

rs2122042 CADM2 0.0000 0.0646 0.0000 0.1638 0.7716

rs2160077 FBLN5 0.0014 0.0194 0.0129 0.1778 0.7885

rs2307022 SMPD3 0.0000 0.0004 0.0000 0.2676 0.7320

rs2448241 PPP2R5C 0.0000 0.0000 0.0004 0.2609 0.7387

rs2718786 DNAJC19 0.0000 0.0805 0.0001 0.2046 0.7148

rs2811219 PTBP2 0.0062 0.2332 0.0008 0.0309 0.7290

rs284262 CORT 0.0054 0.2036 0.0019 0.0721 0.7170

rs2905855 WNT3 0.1558 0.0216 0.0614 0.0077 0.7535

rs2973564 ARHGEF28 0.0001 0.0374 0.0007 0.1882 0.7735

rs326889 NEUROG2 0.0000 0.0527 0.0000 0.2085 0.7388

rs35419825 FNTA 0.0000 0.0278 0.0003 0.1745 0.7974

rs3731695 CDK15 0.0000 0.2612 0.0000 0.0096 0.7292

rs3740694 FNBP4 0.0000 0.0806 0.0000 0.1199 0.7995

rs377623 GP1BA 0.0000 0.2014 0.0000 0.0625 0.7360

rs3798544 UHRF1BP1 0.0000 0.0000 0.0000 0.2125 0.7875

rs3803522 SKOR1 0.0000 0.1993 0.0000 0.0921 0.7086
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rs3815822 TAOK2 0.0000 0.0008 0.0000 0.2172 0.7820

rs40245 SP4 0.0004 0.0845 0.0006 0.1242 0.7904

rs4148155 NUDT9 0.0000 0.2197 0.0000 0.0200 0.7603

rs4414033 SYT11 0.0000 0.0995 0.0000 0.1077 0.7928

rs4517932 ADCY3 0.0000 0.0529 0.0000 0.2357 0.7114

rs4557666 RP11-481A20.11 0.0000 0.0192 0.0000 0.2487 0.7322

rs4752979 FAM180B 0.0000 0.0149 0.0000 0.2251 0.7600

rs4791806 LSMD1 0.0000 0.0001 0.0011 0.2338 0.7650

rs4807179 REXO1 0.0000 0.0230 0.0000 0.2641 0.7129

rs4969387 MYADML2 0.0000 0.2324 0.0000 0.0613 0.7063

rs498240 CSNK2B 0.0000 0.2041 0.0000 0.0744 0.7215

rs591088 C1orf50 0.0000 0.0014 0.0014 0.2591 0.7381

rs6031855 SDC4 0.0018 0.1948 0.0004 0.0434 0.7596

rs6712 MAPK11 0.0012 0.0552 0.0036 0.1629 0.7770

rs6759670 PXDN 0.0000 0.0092 0.0003 0.2582 0.7323

rs679596 MRPL21 0.0000 0.0000 0.0041 0.2480 0.7479

rs6819344 NUDT9 0.0000 0.2201 0.0000 0.0181 0.7618

rs6964833 GTF2IRD2B 0.0000 0.2368 0.0000 0.0364 0.7268

rs7243357 RAX 0.0000 0.2234 0.0000 0.0638 0.7128

rs7607351 GFPT1 0.0000 0.1046 0.0000 0.1328 0.7626

rs7624230 CADM2 0.0000 0.0616 0.0000 0.2025 0.7359

rs7714420 POLK 0.0000 0.0490 0.0000 0.2368 0.7142

rs774211 ANKRD52 0.0002 0.2312 0.0000 0.0472 0.7213

rs784944 SGCB 0.0000 0.0000 0.0001 0.2353 0.7647

rs7923382 CTBP2 0.0000 0.1726 0.0000 0.1266 0.7008

rs8085350 RIT2 0.0000 0.1939 0.0000 0.0356 0.7704

rs8095679 MC4R 0.0000 0.1816 0.0000 0.1133 0.7051

rs9267677 CSNK2B 0.0000 0.2041 0.0000 0.0744 0.7215

rs9299 ATP5G1 0.0000 0.0000 0.0000 0.2555 0.7445

rs945211 LCK 0.0000 0.2299 0.0000 0.0435 0.7265

rs9925273 C16orf11 0.0000 0.2515 0.0000 0.0363 0.7122
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Table C.8: Correlation between adipose and brain tissue colocalized BMI variants and measures of adiposity. Columns
reflect results for body-fat percentage, hip circumference, leg-fat percentage (left and right), trunk-fat percentage, subcutaneous adipose
tissue volume, visceral adipose tissue volume, subcutaneous adipose tissue attenuation (SATHU), visceral adipose tissue attenuation
(VATHU), ratio of visceral-to-subcutaneous adipose tissue volume (VATSAT), waist-to-hip ratio (WHR) and wasit-to-hip ratio adjusted
for BMI (WHRadjBMI)

Body
fat

hip
circum-
0fer-
ence

leg
fat
Left

leg
fat
Right

Subcuta-
neous
adipose

SATHU Trunk
fat

Visceral
adipose

VATHU VATSAT WHR WHRadjBMI

total BMI
(reference) (r)

0.9500 0.9639 0.9607 0.9554 0.7967 -0.1729 0.9321 0.6483 -0.2860 0.4588 0.8040 -0.1847

adipose (r) 0.9179 0.9504 0.9370 0.9288 0.7089 -0.2272 0.8817 0.2542 -0.1956 -0.2415 0.4447 -0.4225

brain (r) 0.9252 0.9553 0.9504 0.9407 0.7541 -0.1236 0.8974 0.5537 -0.1787 -0.2146 0.7332 -0.1914

z score
for difference
(adipose/brain)

-0.35 -0.38 -0.88 -0.68 -0.7 -0.77 -0.54 -2.62 -0.13 -0.2 -3.29 -1.85

p value
for difference
(two-tailed)

0.7263 0.7039 0.3789 0.4965 0.4839 0.4413 0.5892 0.0088 0.8966 0.8415 0.001 0.0643
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Table C.9: “Consensus-Path-DB” Pathway analysis (adipose) Evi-
dence of enrichment for the adipose-tissue derived set of BMI variants using the
Consensus-Path-DB tool

Enriched pathway-based sets in adipose data subset

pathway name set size candidates contained p-value q-value pathway source

Malate-

Aspartate Shuttle 4 3 (75.0%) 5.22E-07 0.000103 SMPDB

Breast cancer -

Homo sapiens (human) 147 6 (4.1%) 0.000107 0.00908 KEGG

Breast cancer pathway 154 6 (3.9%) 0.000138 0.00908 Wikipathways

mTORC1-mediated signalling 24 3 (13.0%) 0.000216 0.0106 Reactome

Signaling by NOTCH4 6 2 (33.3%) 0.000388 0.0127 Wikipathways

Signaling by NOTCH1 6 2 (33.3%) 0.000388 0.0127 Wikipathways

Gluconeogenesis 35 3 (8.8%) 0.0007 0.0197 Reactome

mTOR signalling 41 3 (7.5%) 0.00113 0.0278 Reactome

Signaling by NOTCH3 11 2 (18.2%) 0.0014 0.0306 Wikipathways

Thermogenesis 108 4 (3.7%) 0.00231 0.0456 Wikipathways

Macroautophagy 57 3 (5.3%) 0.00314 0.0517 Reactome

Notch Signaling Pathway 61 3 (4.9%) 0.00381 0.0517 Wikipathways

mTOR signaling pathway 65 3 (4.7%) 0.00436 0.0517 PID

Gluconeogenesis 22 2 (9.1%) 0.00566 0.0517 SMPDB

Glycogenosis, Type IA.

Von gierke disease 22 2 (9.1%) 0.00566 0.0517 SMPDB

Glycogenosis, Type IC 22 2 (9.1%) 0.00566 0.0517 SMPDB

Glycogen Storage Disease

Type 1A (GSD1A) or Von

Gierke Disease 22 2 (9.1%) 0.00566 0.0517 SMPDB

Triosephosphate

isomerase 22 2 (9.1%) 0.00566 0.0517 SMPDB

Fructose-1,6-

diphosphatase deficiency 22 2 (9.1%) 0.00566 0.0517 SMPDB

Phosphoenolpyruvate

carboxykinase deficiency

1 (PEPCK1) 22 2 (9.1%) 0.00566 0.0517 SMPDB

Glycogenosis, Type IB 22 2 (9.1%) 0.00566 0.0517 SMPDB

Alpha6Beta4Integrin 71 3 (4.2%) 0.00583 0.0517 NetPath

Negative regulators of

DDX58/IFIH1 signaling 23 2 (8.7%) 0.00618 0.0517 Reactome

Signaling by NOTCH1 74 3 (4.1%) 0.0063 0.0517 Reactome

Leptin signaling pathway 76 3 (3.9%) 0.00705 0.0552 Wikipathways

skeletal muscle hypertrophy

is regulated via akt-mtor pathway 25 2 (8.0%) 0.00728 0.0552 BioCarta

p73 transcription factor
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pathway name set size candidates contained p-value q-value pathway source

network 79 3 (3.8%) 0.00784 0.0553 PID

Glypican 1 network 26 2 (7.7%) 0.00786 0.0553 PID

Diseases of signal

transduction 248 5 (2.0%) 0.00899 0.0609 Reactome

TGF-beta signaling

pathway - Homo sapiens (human) 85 3 (3.5%) 0.00958 0.0609 KEGG

Energy dependent

regulation of mTOR by

LKB1-AMPK 29 2 (6.9%) 0.00972 0.0609 Reactome

TP53 Regulates

Metabolic Genes 86 3 (3.5%) 0.00989 0.0609 Reactome

Table C.10: “Consensus-Path-DB” Pathway analysis (brain) Evi-
dence of enrichment for the brain-tissue derived set of BMI variants using the
Consensus-Path-DB tool

Enriched pathway-based sets in adipose data subset

pathway name set size candidates contained p-value q-value pathway

source

FGF 67 6 (9.0%) 0.0000345 0.0131 INOH

Fas 24 4 (16.7%) 0.0000637 0.0131 INOH

Diseases of signal transduction 248 10 (4.0%) 0.0000988 0.0131 Reactome

Apoptosis 118 7 (5.9%) 0.000109 0.0131 Reactome

Programmed Cell Death 121 7 (5.8%) 0.000127 0.0131 Reactome

Role of Calcineurin-dependent

NFAT signaling in lymphocytes 56 5 (8.9%) 0.000162 0.0139 PID

Signaling by high-kinase

activity BRAF mutants 34 4 (11.8%) 0.000259 0.0171 Reactome

Activation of BAD and

translocation to mitochondria 15 3 (20.0%) 0.000322 0.0171 Reactome

Signaling by RAS mutants 36 4 (11.1%) 0.000324 0.0171 Reactome

Paradoxical activation

of RAF signaling by kinase

inactive BRAF 38 4 (10.5%) 0.000401 0.0171 Reactome

MAP2K and MAPK activation 38 4 (10.5%) 0.000401 0.0171 Reactome

Signaling by moderate

kinase activity BRAF

mutants 38 4 (10.5%) 0.000401 0.0171 Reactome

FOXM1 transcription

factor network 42 4 (9.5%) 0.000591 0.0205 PID

IFN-gamma pathway 42 4 (9.5%) 0.000591 0.0205 PID

Fibroblast growth

factor-1 74 5 (6.8%) 0.000599 0.0205 NetPath
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pathway name set size candidates contained p-value q-value pathway

source

Intrinsic Pathway for

Apoptosis 43 4 (9.3%) 0.000647 0.0207 Reactome

Thyroid hormone signaling

pathway - Homo sapiens (human) 116 6 (5.2%) 0.000711 0.0214 KEGG

Synthesis of wybutosine

at G37 of tRNA(Phe) 6 2 (33.3%) 0.00124 0.0353 Reactome

Androgen receptor signaling

pathway 89 5 (5.6%) 0.00138 0.0373 Wikipathways

RAF activation 25 3 (12.0%) 0.00152 0.0391 Reactome

Signaling by BRAF

and RAF fusions 58 4 (6.9%) 0.002 0.0454 Reactome

GPCR GroupI metabotropic

glutamate receptor 28 3 (10.7%) 0.00213 0.0454 INOH

EGF 28 3 (10.7%) 0.00213 0.0454 INOH

Hepatitis B - Homo

sapiens (human) 144 6 (4.2%) 0.00217 0.0454 KEGG

RAF/MAP kinase cascade 197 7 (3.6%) 0.00226 0.0454 Reactome

Oncogenic MAPK signaling 61 4 (6.6%) 0.00241 0.0454 Reactome

Disease 510 12 (2.4%) 0.00255 0.0454 Reactome

Activation of

BH3-only proteins 30 3 (10.0%) 0.0026 0.0454 Reactome

MAPK1/MAPK3 signaling 203 7 (3.5%) 0.00268 0.0454 Reactome

mTOR signaling pathway 65 4 (6.2%) 0.00287 0.0454 PID

Validated nuclear estrogen

receptor alpha network 64 4 (6.2%) 0.00287 0.0454 PID

MAP kinase cascade 9 2 (22.2%) 0.00292 0.0454 HumanCyc

Ethanol metabolism resulting

in production of ROS by

CYP2E1 9 2 (22.2%) 0.00292 0.0454 Wikipathways

Hepatitis C - Homo

sapiens (human) 155 6 (3.9%) 0.00313 0.0457 KEGG

Initiation of transcription

and translation elongation at

the HIV-1 LTR 32 3 (9.4%) 0.00313 0.0457 Wikipathways

AGE-RAGE pathway 66 4 (6.1%) 0.00321 0.0457 Wikipathways

Trk receptor signaling

mediated by the MAPK pathway 33 3 (9.1%) 0.00342 0.0475 PID

Class I PI3K signaling

events mediated by Akt 35 3 (8.6%) 0.00405 0.0547 PID

Trk receptor signaling

mediated by PI3K and

PLC-gamma 36 3 (8.3%) 0.00439 0.0578 PID
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pathway name set size candidates contained p-value q-value pathway

source

Validated transcriptional

targets of AP1 family

members Fra1 and Fra2 37 3 (8.1%) 0.00475 0.0594 PID

Regulation of mRNA stability

by proteins that

bind AU-rich elements 37 3 (8.1%) 0.00475 0.0594 Reactome

tRNA charging 38 3 (7.9%) 0.00512 0.0614 HumanCyc

Tandem pore domain

potassium channels 12 2 (16.7%) 0.00526 0.0614 Reactome

Regulation of nuclear

SMAD2/3 signaling 78 4 (5.2%) 0.00558 0.0614 PID

Generic Transcription Pathway 1107 19 (1.7%) 0.00561 0.0614 Reactome

Negative regulation of

MAPK pathway 40 3 (7.5%) 0.00592 0.0614 Reactome

TNFalpha 234 7 (3.0%) 0.00598 0.0614 NetPath

role of mitochondria in

apoptotic signaling 13 2 (15.4%) 0.00617 0.0614 BioCarta

TRAF3-dependent IRF

activation pathway 13 2 (15.4%) 0.00617 0.0614 Reactome

melanocyte development

and pigmentation pathway 13 2 (15.4%) 0.00617 0.0614 BioCarta

Chk1/Chk2(Cds1) mediated

inactivation of Cyclin B:Cdk1

complex 13 2 (15.4%) 0.00617 0.0614 Reactome

MAPK family signaling cascades 237 7 (3.0%) 0.00626 0.0614 Reactome

Gastrin 41 3 (7.3%) 0.00634 0.0614 NetPath

tRNA Aminoacylation 42 3 (7.1%) 0.00679 0.0633 Reactome

tRNA modification in the

nucleus and cytosol 42 3 (7.1%) 0.00679 0.0633 Reactome

apoptotic signaling in

response to dna damage 14 2 (14.3%) 0.00716 0.0642 BioCarta

C-type lectin receptors

(CLRs) 83 4 (4.8%) 0.00726 0.0642 Reactome

Signaling Pathways in

Glioblastoma 83 4 (4.8%) 0.00726 0.0642 Wikipathways

Kaposi sarcoma-associated

herpesvirus infection -

Homo sapiens (human) 186 6 (3.2%) 0.00755 0.0656 KEGG

FOXA1 transcription factor

network 44 3 (6.8%) 0.00772 0.066 PID

TP53 Regulates Metabolic

Genes 86 4 (4.7%) 0.00821 0.0691 Reactome
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pathway name set size candidates contained p-value q-value pathway

source

Ubiquitin mediated proteolysis

- Homo sapiens (human) 137 5 (3.6%) 0.00878 0.0725 KEGG

Transcriptional regulation of

white adipocyte differentiation 47 3 (6.4%) 0.00927 0.0725 Reactome

NOTCH1 Intracellular Domain

Regulates Transcription 47 3 (6.4%) 0.00927 0.0725 Reactome

human cytomegalovirus and map

kinase pathways 16 2 (12.5%) 0.00933 0.0725 BioCarta

Rap1 signalling 16 2 (12.5%) 0.00933 0.0725 Reactome

Ceramide signaling pathway 48 3 (6.2%) 0.00982 0.0741 PID

Notch-mediated HES/HEY

network 48 3 (6.2%) 0.00982 0.0741 PID

Table C.11: Evidence of enrichment for tissue partitioned sets of variants in
13 specific brain regions. All analyses conducted using FUMA with data frorm
GTEx v8

Adipose Brain
Tissue Beta SE P Beta SE P
Brain Amygdala 0.391 0.258 0.067 0.320 0.194 0.051
Brain Anterior cingulate cortex 0.300 0.242 0.110 0.301 0.177 0.046
Brain Caudate basal ganglia 0.564 0.272 0.021 0.375 0.202 0.033
Brain Cerebellar Hemisphere 0.114 0.232 0.312 0.246 0.168 0.073
Brain Cerebellum 0.102 0.231 0.330 0.249 0.172 0.076
Brain Cortex 0.237 0.236 0.159 0.307 0.176 0.042
Brain Frontal Cortex BA9 0.277 0.237 0.123 0.289 0.173 0.049
Brain Hippocampus 0.395 0.274 0.077 0.339 0.194 0.042
Brain Hypothalamus 0.360 0.281 0.103 0.363 0.207 0.041
Brain Nucleus accumbens basal 0.569 0.268 0.019 0.318 0.193 0.051
Brain Putamen basal ganglia 0.549 0.274 0.025 0.389 0.205 0.030
Brain Spinal cord cervical c-1 -0.189 0.390 0.685 0.088 0.244 0.359
Brain Substantia nigra 0.181 0.376 0.316 0.118 0.243 0.314

Table C.12: Number of other tissues which adipose and brain tissue
colocalized SNPs were also eQTL in Coloc tissue - Adipose/Brain depend-
ing on evidence of colocalization in this study (PPA>0.8) (excluding eQTL
which colocalize in both tissues), eQTL in other tissue - number of tissues this
SNP is an eQTL in within the GTEx v8 database (based on false discovery
rate<0.05) (excluding adipose and brain-related tissues)

SNP Coloc tissue eQTL in SNP Coloc tissue eQTL in

n tissues n tissues

rs10144318 Brain 20 rs2282231 Adipose 21

rs1038088 Brain 19 rs2367112 Adipose 2
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SNP Coloc tissue eQTL in SNP Coloc tissue eQTL in

n tissues n tissues

rs1048303 Brain 9 rs2425024 Adipose 22

rs1048932 Adipose 1 rs2425847 Adipose 1

rs1075901 Brain 34 rs2481665 Brain 2

rs10768994 Brain 3 rs263041 Adipose 23

rs10779751 Adipose 17 rs28350 Brain 1

rs10824218 Brain 10 rs2837398 Brain 2

rs10832778 Adipose 22 rs3134353 Brain 29

rs10838465 Brain 4 rs329277 Adipose 12

rs10878946 Brain 21 rs349088 Brain 2

rs10886017 Adipose 11 rs3731544 Brain 14

rs10923724 Adipose 32 rs3803286 Brain 8

rs11066188 Adipose 10 rs3810291 Adipose 2

rs11538 Brain 18 rs3813680 Brain 21

rs11577094 Adipose 27 rs3814883 Brain 32

rs11629783 Brain 11 rs4012234 Adipose 33

rs11635675 Adipose 4 rs4077093 Adipose 23

rs11670142 Adipose 5 rs4132228 Adipose 1

rs11866815 Brain 14 rs4148866 Adipose 19

rs12022461 Brain 9 rs427943 Brain 4

rs12120851 Brain 4 rs450231 Brain 12

rs12468863 Brain 10 rs455527 Adipose 4

rs12545740 Brain 27 rs4556997 Adipose 1

rs12597712 Brain 1 rs4653017 Brain 11

rs12628891 Adipose 15 rs4704513 Brain 3

rs12759296 Brain 22 rs4865796 Adipose 2

rs12779943 Brain 24 rs4877313 Adipose 6

rs12905439 Brain 7 rs4889606 Brain 33

rs12964689 Brain 28 rs591088 Adipose 5

rs13072731 Brain 24 rs6050446 Brain 2

rs13174863 Brain 2 rs6512302 Brain 23

rs138289 Adipose 19 rs6569648 Brain 30

rs1394 Adipose 13 rs6606686 Brain 23

rs1465900 Brain 7 rs6692586 Brain 10

rs1468069 Adipose 28 rs6764533 Brain 17

rs16864515 Adipose 6 rs6901756 Brain 14

rs17391694 Adipose 17 rs7083450 Brain 6

rs17446091 Brain 5 rs7102454 Adipose 32

rs175165 Brain 13 rs719802 Brain 32

rs17685 Adipose 21 rs7209235 Brain 20

rs17757975 Brain 2 rs7220138 Brain 28

rs1784460 Brain 33 rs738140 Brain 26

rs1830074 Brain 31 rs7535528 Adipose 12
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SNP Coloc tissue eQTL in SNP Coloc tissue eQTL in

n tissues n tissues

rs1884389 Adipose 16 rs7551507 Brain 4

rs1993709 Brain 3 rs7607351 Adipose 21

rs2010281 Brain 26 rs7607369 Brain 22

rs2052883 Adipose 28 rs761423 Brain 30

rs2074613 Adipose 19 rs7630080 Brain 2

rs208015 Brain 20 rs7652415 Brain 18

rs2162524 Brain 6 rs7716275 Adipose 11

rs2170382 Brain 2 rs7811342 Brain 1

rs217433 Brain 30 rs7871866 Brain 14

rs223391 Brain 26 rs7947143 Brain 28

rs2235564 Brain 7 rs7963783 Brain 2

rs2238373 Adipose 7 rs8033995 Brain 33

rs2246012 Brain 9 rs8075273 Brain 31

rs2280039 Brain 6 rs823074 Brain 33

rs936227 Brain 21 rs833831 Brain 11

rs9921416 Brain 1 rs889398 Brain 27

rs9965170 Brain 10 rs895330 Brain 6
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Table C.13: Summary of the total BMI effect on outcomes derived by 2 sample Mendelian randomization as sensitivity
analysis (disease outcomes) MR resultsusing the total set of 915 genome-wide significant BMI variants as instruments in a two sample
MR setting, id.outcome - MR-Base identifier for disease outcome, method - MR Method, b - beta, se - standard error, pval - p-value, OR-
odds ratio, CI - confidence interval, T2D - Type 2 Diabetes, PAD - Peripheral arterial disease

id.exposure id.outcome outcome method nsnp b se pval OR lower CI upper CI
id.outcome name N beta se pvalue OR lower CI upper CI
BMI ieu-a-7 Coronary heart disease MR Egger 888 0.589 0.090 1.10E-10 1.802 1.510 2.150
BMI ieu-a-7 Coronary heart disease Weighted median 888 0.394 0.043 2.33E-20 1.482 1.364 1.611
BMI ieu-a-7 Coronary heart disease ivw 888 0.377 0.031 1.26E-34 1.459 1.373 1.549
BMI ebi-a-GCST006414 Atrial fibrillation MR Egger 887 0.323 0.075 1.81E-05 1.382 1.193 1.601
BMI ebi-a-GCST006414 Atrial fibrillation Weighted median 887 0.318 0.035 5.35E-20 1.374 1.284 1.471
BMI ebi-a-GCST006414 Atrial fibrillation ivw 887 0.305 0.025 4.24E-33 1.357 1.291 1.426
BMI ieu-a-26 T2D MR Egger 802 1.008 0.200 5.79E-07 2.741 1.852 4.057
BMI ieu-a-26 T2D Weighted median 802 0.858 0.083 4.25E-25 2.358 2.004 2.774
BMI ieu-a-26 T2D ivw 802 0.798 0.070 1.79E-30 2.221 1.938 2.545
BMI ebi-a-GCST009541 Heart failure MR Egger 800 0.640 0.076 1.49E-16 1.896 1.634 2.200
BMI ebi-a-GCST009541 Heart failure Weighted median 800 0.546 0.041 1.32E-39 1.727 1.592 1.873
BMI ebi-a-GCST009541 Heart failure ivw 800 0.519 0.026 1.48E-86 1.681 1.596 1.770
BMI ebi-a-GCST006906 Stroke MR Egger 890 0.169 0.082 0.040 1.184 1.008 1.392
BMI ebi-a-GCST006906 Stroke Weighted median 890 0.142 0.045 0.001 1.153 1.056 1.258
BMI ebi-a-GCST006906 Stroke ivw 890 0.154 0.028 3.05E-08 1.166 1.105 1.232
BMI qTO9Uy PAD MR Egger 791 0.531 0.166 0.001 1.701 1.228 2.356
BMI qTO9Uy PAD Weighted median 791 0.288 0.089 0.001 1.334 1.120 1.589
BMI qTO9Uy PAD ivw 791 0.390 0.057 1.02E-11 1.477 1.320 1.653
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Table C.14: Summary of the total BMI effect on outcomes derived by 2 sample Mendelian randomization as sensitivity
analysis (cardiac measures) MR resultsusing the total set of 915 genome-wide significant BMI variants as instruments in a two sample
MR setting, id.outcome - MR-Base identifier for disease outcome, method - MR Method, b - beta, se - standard error, pval - p-value, OR-
odds ratio, CI - confidence interval, LVEDV - left ventricular end-diastolic volume, LVESV - left ventricular end-systolic volume, SV -
stroke volume, LVEF - left ventricular ejection fraction

id.exposure outcome method nsnp b se pval lower CI upper CI
BMI LVEDV MR Egger 891 0.272 0.056 1.20E-06 0.163 0.381
BMI LVEDV Weighted median 891 0.222 0.029 1.52E-14 0.166 0.279
BMI LVEDV ivw 891 0.214 0.019 9.93E-30 0.177 0.251
BMI LVEF MR Egger 891 -0.133 0.062 0.032 -0.255 -0.012
BMI LVEF Weighted median 891 -0.086 0.033 0.010 -0.150 -0.021
BMI LVEF ivw 891 -0.059 0.021 0.005 -0.100 -0.018
BMI LVESV MR Egger 891 0.245 0.057 1.76E-05 0.134 0.356
BMI LVESV Weighted median 891 0.196 0.029 2.33E-11 0.139 0.254
BMI LVESV ivw 891 0.171 0.019 7.41E-19 0.133 0.208
BMI SV MR Egger 891 0.242 0.058 3.37E-05 0.128 0.355
BMI SV Weighted median 891 0.229 0.029 2.93E-15 0.172 0.286
BMI SV ivw 891 0.210 0.020 1.20E-26 0.171 0.249
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Table C.15: Summary of heterogeneity (Q) of BMI instrumented with
genome-wide significant SNPs in 2 sample Mendelian randomization
analyses Heterogeneity testing between 915 BMI instruments, and BMI instru-
ments with either the adipose-derived instrument or brain-derived instruments
removed and 8 outcomes. Q = Cochran’s Q statistic, Q df = degrees of free-
dom where the degrees of freedom = nSNPs -1. Abbreviations: left ventricular
end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV),
stroke volume (SV), left ventricular ejection fraction (LVEF). Method = inverse
variance weighted

outcome id.exposure Q Q df Q pval

Heart failure
total BMI 1227.58 797 6.58E-21
brain BMI 239.86 122 1.06E-09
adipose BMI 204.73 78 2.56E-13

SV
total BMI 1313.97 890 6.62E-19
brain BMI 226.99 134 9.31E-07
adipose BMI 167.96 81 4.92E-08

LVESV
total BMI 1353.09 890 9.08E-22
brain BMI 200.06 134 0.0002
adipose BMI 151.45 81 3.49E-06

LVEF
total BMI 1247.11 890 2.08E-14
brain BMI 196.21 134 0.0004
adipose BMI 145.39 81 1.50E-05

LVEDV
total BMI 1383.78 890 3.99E-24
brain BMI 219.09 134 4.90E-06
adipose BMI 161.88 81 2.47E-07

PAD
total BMI 1027.05 790 2.25E-08
brain BMI 159.89 121 0.0103
adipose BMI 118.46 77 0.0017

Coronary heart disease
total BMI 1434.20 887 1.63E-28
adipose BMI 219.94 81 8.94E-15
brain BMI 251.72 134 3.25E-09

Type 2 diabetes
total BMI 1627.62 788 1.18E-60
adipose BMI 147.97 75 1.06E-06
brain BMI 180.70 121 0.0004

Atrial fibrillation
total BMI 1939.95 884 5.95E-81
adipose BMI 283.70 80 1.40E-24
brain BMI 478.57 133 1.63E-40

Stroke
total BMI 1214.50 887 1.29E-12
adipose BMI 214.42 80 3.18E-14
brain BMI 218.72 133 4.06E-06
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Figure C.1: MR-Clust analysis representing effect estimates between
genetic effects between BMI (exposure) and coronary artery disease
(outcome) Each point represents a genetic variant, error bars are 95% confi-
dence intervals for each variant’s association. Clusters are indicated by colours.
Dotted lines represent cluster means.
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Table C.16: Summary of clusterd effect estimates identified by apply-
ing “MR-clust” Cluster ID = identifier allocated to cluster using MR-clust
approach; nSNPs = total number of SNPs in cluster; Adipose\Brain SNPs =
number of overlapping SNPs from our adipose\brain-derived sets of instruments;
Adipose\Brain overlap = proportion overlap of cluster with the adipose\brain-
derived sets of instruments

Coronary artery disease

Cluster ID nSNPs Adipose SNPs Adipose overlap Brian SNPs Brain overlap

1 35 1 0.011 4 0.028
2 6 3 0.034 3 0.021
3 137 13 0.148 19 0.135
4 74 4 0.045 11 0.078
5 87 7 0.080 15 0.106
6 70 7 0.080 14 0.099
7 162 13 0.148 21 0.149
8 80 9 0.102 9 0.064
9 13 1 0.011 1 0.007
10 56 6 0.068 7 0.050
11 30 4 0.045 4 0.028
12 104 10 0.114 21 0.149
13 34 5 0.057 7 0.050
14 16 2 0.023 3 0.021

Table C.17: Effects estimates for SNPs incorporated into adipose-
and brain-instrumented BMI exposures in MR analyses Instruments
are ranked from largest-to-smallest effect estimate. 43 SNPs are common to
both tissues. The mean effect estimates between tissues are highly similar
(adipose=0.01478425, brain=0.01487766)

SNP effect allele other allele eaf beta se pval Tissue

rs208015 T C 0.078 0.036 0.003 1.40E-25 brain

rs6050446 A G 0.030 -0.034 0.005 4.40E-13 brain

rs1993709 A G 0.182 -0.033 0.002 1.90E-57 brain

rs17391694 T C 0.119 0.032 0.003 7.50E-38 adipose

rs9821675 A G 0.495 -0.029 0.002 1.60E-50 both

rs3810291 A G 0.670 0.027 0.002 2.10E-52 adipose

rs12411886 A C 0.083 0.027 0.003 1.50E-19 both

rs3888190 A C 0.404 0.027 0.002 9.20E-60 both

rs16882001 A G 0.949 -0.027 0.004 1.50E-11 adipose

rs7124681 A C 0.413 0.026 0.002 3.20E-58 both

rs3814883 T C 0.476 0.023 0.002 1.10E-40 brain

rs17207196 T C 0.412 -0.022 0.002 2.10E-35 both

rs3731544 A C 0.071 0.021 0.003 7.50E-12 brain

rs12779943 T C 0.082 0.021 0.003 2.00E-11 brain

rs13240600 A G 0.845 0.020 0.002 3.50E-17 both

rs12964689 A G 0.518 0.020 0.002 5.10E-32 brain

rs4889606 A G 0.620 0.020 0.002 2.80E-33 brain
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SNP effect allele other allele eaf beta se pval Tissue

rs895330 C G 0.808 0.020 0.002 5.50E-19 brain

rs455527 T C 0.944 0.020 0.004 1.10E-08 adipose

rs10971712 T C 0.108 -0.020 0.003 6.40E-13 both

rs4556997 A C 0.135 0.020 0.002 6.90E-17 adipose

rs10460960 A G 0.888 0.020 0.003 8.10E-15 brain

rs7811342 T C 0.894 0.020 0.003 1.10E-11 brain

rs889398 T C 0.425 -0.020 0.002 1.30E-32 brain

rs12564992 A G 0.886 -0.020 0.003 5.30E-14 both

rs13174863 A G 0.845 -0.019 0.002 2.90E-16 brain

rs6692586 A G 0.168 0.019 0.002 1.10E-16 brain

rs7871866 C G 0.153 0.019 0.002 2.30E-14 brain

rs16864515 A C 0.093 0.019 0.003 1.70E-10 adipose

rs7551507 T C 0.563 -0.018 0.002 9.30E-30 brain

rs11577094 T C 0.081 0.018 0.003 6.90E-10 adipose

rs3803286 A G 0.343 0.018 0.002 4.10E-23 brain

rs7947143 A G 0.163 -0.018 0.002 2.40E-14 brain

rs6985109 A G 0.534 -0.018 0.002 1.50E-26 adipose

rs28350 A G 0.193 0.018 0.002 3.50E-15 brain

rs2304130 A G 0.915 0.018 0.003 2.90E-09 both

rs6587552 A G 0.241 0.017 0.002 1.60E-17 both

rs2170382 T C 0.120 0.017 0.003 2.40E-10 brain

rs7134628 A G 0.103 0.017 0.003 1.20E-09 both

rs998732 A G 0.842 0.017 0.002 2.00E-14 both

rs427943 A C 0.433 -0.017 0.002 7.30E-23 brain

rs7630080 A G 0.924 0.017 0.003 4.10E-08 brain

rs2293605 T C 0.131 -0.017 0.003 3.60E-10 both

rs11710798 A C 0.891 0.017 0.003 2.90E-09 both

rs8033995 C G 0.094 -0.017 0.003 1.40E-08 brain

rs2282231 T C 0.225 0.017 0.002 4.80E-15 adipose

rs12150665 T C 0.594 0.016 0.002 1.60E-22 both

rs2010281 A G 0.355 -0.016 0.002 6.70E-21 brain

rs2481665 T C 0.559 0.016 0.002 7.20E-23 brain

rs1048932 A C 0.416 -0.016 0.002 3.80E-22 adipose

rs833831 T G 0.872 0.016 0.003 2.60E-09 brain

rs7557796 T C 0.348 0.016 0.002 2.30E-19 both

rs12022461 A G 0.180 -0.016 0.002 2.40E-12 brain

rs7083450 T C 0.839 0.016 0.002 1.70E-12 brain

rs7102454 T C 0.657 -0.016 0.002 2.40E-18 adipose

rs2246012 T C 0.837 -0.016 0.002 3.10E-13 brain

rs6463489 T C 0.109 0.016 0.003 3.10E-09 both

rs11866815 T C 0.246 -0.016 0.002 1.00E-16 brain

rs7652415 T C 0.142 0.016 0.003 9.70E-10 brain

rs2162524 T C 0.668 -0.016 0.002 4.10E-17 brain
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SNP effect allele other allele eaf beta se pval Tissue

rs1394 A G 0.640 -0.015 0.002 2.80E-19 adipose

rs1000940 A G 0.701 -0.015 0.002 1.10E-17 both

rs12468863 T C 0.524 -0.015 0.002 5.10E-21 brain

rs7535528 A G 0.374 -0.015 0.002 1.40E-16 adipose

rs10886017 A C 0.252 0.015 0.002 1.40E-15 adipose

rs7189122 T C 0.830 -0.015 0.002 4.50E-11 both

rs905938 T C 0.733 -0.015 0.002 1.20E-15 both

rs4841659 T C 0.479 0.015 0.002 9.20E-18 both

rs1045411 T C 0.265 -0.015 0.002 2.30E-15 brain

rs11629783 C G 0.769 0.015 0.002 9.80E-13 brain

rs6901756 T C 0.878 0.015 0.003 2.90E-09 brain

rs12120851 T C 0.789 -0.014 0.002 2.00E-09 brain

rs3813680 A G 0.844 0.014 0.002 1.60E-09 brain

rs3957285 A G 0.526 0.014 0.002 2.90E-16 both

rs12044597 A G 0.497 -0.014 0.002 1.70E-18 both

rs17757975 T C 0.852 0.014 0.002 4.20E-09 brain

rs6512302 C G 0.751 0.014 0.002 2.10E-12 brain

rs4012234 T G 0.408 -0.014 0.002 9.90E-16 adipose

rs10878946 T C 0.714 -0.014 0.002 3.60E-13 brain

rs2710323 T C 0.520 -0.014 0.002 4.80E-18 both

rs12595749 A G 0.571 0.014 0.002 5.70E-16 brain

rs1452075 T C 0.728 0.014 0.002 1.30E-14 brain

rs10838465 A C 0.697 0.014 0.002 9.10E-14 brain

rs10779751 A G 0.274 0.014 0.002 2.50E-14 adipose

rs4970712 A C 0.207 0.014 0.002 6.70E-12 both

rs4677812 A C 0.281 -0.014 0.002 1.40E-12 brain

rs6606686 C G 0.690 -0.014 0.002 7.60E-15 brain

rs11538 A G 0.820 -0.014 0.002 3.30E-09 brain

rs3977755 T C 0.280 -0.014 0.002 5.90E-13 both

rs738140 A G 0.679 0.014 0.002 5.10E-13 brain

rs559231 T G 0.396 0.014 0.002 2.40E-14 both

rs8075273 A C 0.282 -0.013 0.002 3.70E-13 brain

rs6738445 T C 0.284 -0.013 0.002 1.90E-13 both

rs7716275 T G 0.193 -0.013 0.002 2.20E-10 adipose

rs7830160 T C 0.254 -0.013 0.002 4.10E-12 brain

rs1784460 A T 0.404 0.013 0.002 9.00E-14 brain

rs223391 A G 0.195 -0.013 0.002 1.60E-10 brain

rs2235564 T C 0.347 0.013 0.002 3.70E-13 brain

rs4877313 A T 0.782 0.013 0.002 4.10E-10 adipose

rs349088 A C 0.498 -0.013 0.002 1.80E-13 brain

rs4077093 T G 0.217 0.013 0.002 5.10E-09 adipose

rs450231 A G 0.753 -0.013 0.002 2.10E-10 brain

rs6569648 T C 0.773 -0.013 0.002 3.70E-11 brain
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rs7963783 T G 0.715 0.013 0.002 4.00E-11 brain

rs10832778 C G 0.378 -0.013 0.002 1.30E-13 adipose

rs3134353 A T 0.387 -0.013 0.002 2.50E-12 brain

rs4704513 C G 0.819 -0.013 0.002 7.40E-09 brain

rs1465900 A C 0.781 0.013 0.002 4.80E-10 brain

rs7133378 A G 0.327 0.013 0.002 9.40E-13 both

rs4796243 A G 0.303 -0.012 0.002 6.10E-11 both

rs11635675 T G 0.647 0.012 0.002 1.30E-11 adipose

rs263041 A G 0.367 0.012 0.002 2.20E-12 adipose

rs17446091 T C 0.793 -0.012 0.002 1.80E-09 brain

rs7220138 C G 0.696 -0.012 0.002 2.70E-10 brain

rs10824218 A T 0.552 0.012 0.002 7.20E-12 brain

rs4653017 T C 0.682 0.012 0.002 4.50E-11 brain

rs1075901 T C 0.436 -0.012 0.002 1.20E-13 brain

rs7334078 T C 0.712 0.012 0.002 2.20E-10 both

rs9299 T C 0.647 0.012 0.002 3.60E-11 both

rs11066188 A G 0.418 -0.012 0.002 8.10E-13 adipose

rs1263618 T C 0.686 -0.012 0.002 5.30E-12 adipose

rs2842385 A G 0.802 -0.012 0.002 3.40E-08 brain

rs2367112 T G 0.508 0.012 0.002 2.30E-13 adipose

rs7607351 T C 0.581 0.012 0.002 8.40E-12 adipose

rs10923724 T C 0.573 -0.012 0.002 6.40E-13 adipose

rs2425847 A G 0.593 -0.012 0.002 2.20E-11 adipose

rs460799 A G 0.268 -0.012 0.002 6.40E-10 brain

rs936227 A G 0.389 -0.012 0.002 2.30E-12 brain

rs1730859 A G 0.658 -0.012 0.002 1.10E-11 both

rs12905439 C G 0.661 0.012 0.002 1.40E-10 brain

rs1038088 T G 0.492 -0.012 0.002 4.60E-13 brain

rs217433 T C 0.795 -0.012 0.002 2.00E-08 brain

rs7172627 A G 0.528 -0.012 0.002 1.10E-11 brain

rs1899689 T C 0.399 0.012 0.002 1.50E-12 brain

rs7607369 A G 0.439 0.012 0.002 9.30E-13 brain

rs6764533 A G 0.359 0.012 0.002 1.40E-10 brain

rs1830074 T C 0.712 -0.012 0.002 1.40E-09 brain

rs2837398 A C 0.596 -0.011 0.002 1.10E-10 brain

rs17685 A G 0.274 0.011 0.002 7.10E-09 adipose

rs10768994 T C 0.566 0.011 0.002 6.40E-12 brain

rs13209968 C G 0.518 0.011 0.002 3.10E-11 both

rs761423 T C 0.550 0.011 0.002 5.50E-11 brain

rs7540681 T C 0.521 -0.011 0.002 2.00E-08 both

rs12628891 T C 0.317 -0.011 0.002 3.00E-09 adipose

rs2238373 A G 0.649 0.011 0.002 3.50E-09 adipose

rs823074 T C 0.588 0.011 0.002 1.60E-10 brain
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rs11670142 T G 0.606 -0.011 0.002 4.70E-10 adipose

rs1048303 T C 0.586 -0.011 0.002 2.70E-10 brain

rs7209235 A G 0.695 -0.011 0.002 8.00E-09 brain

rs2074613 T C 0.555 0.011 0.002 1.70E-10 adipose

rs1117080 C G 0.702 0.011 0.002 7.00E-09 both

rs12597712 C G 0.420 -0.011 0.002 1.40E-10 brain

rs9394312 C G 0.492 0.011 0.002 2.30E-10 both

rs7031064 A G 0.522 0.011 0.002 3.10E-10 brain

rs17695092 T G 0.692 0.011 0.002 3.40E-09 both

rs13072731 A C 0.395 -0.011 0.002 2.30E-09 brain

rs12545740 A C 0.557 0.011 0.002 2.50E-09 brain

rs6777784 T G 0.622 0.011 0.002 4.70E-09 brain

rs676749 A T 0.502 -0.010 0.002 1.70E-09 both

rs1468069 A C 0.357 0.010 0.002 8.50E-09 adipose

rs12759296 T G 0.689 0.010 0.002 1.90E-08 brain

rs1884389 T C 0.429 -0.010 0.002 4.00E-09 adipose

rs2425024 A C 0.664 -0.010 0.002 2.70E-08 adipose

rs4865796 A G 0.691 -0.010 0.002 5.20E-09 adipose

rs138289 A T 0.517 0.010 0.002 3.30E-09 adipose

rs175165 T G 0.606 0.010 0.002 5.20E-09 brain

rs472611 A G 0.662 -0.010 0.002 3.80E-08 brain

rs4132228 T C 0.289 0.010 0.002 1.50E-08 adipose

rs719802 T C 0.380 0.010 0.002 9.50E-09 brain

rs9921416 T C 0.441 -0.010 0.002 1.20E-08 brain

rs4985557 T C 0.487 -0.010 0.002 1.60E-08 both

rs329277 T G 0.521 -0.010 0.002 1.10E-08 adipose

rs2052883 A G 0.587 0.010 0.002 1.80E-08 adipose

rs4148866 T C 0.407 0.010 0.002 4.00E-08 adipose

rs1704190 A G 0.634 0.010 0.002 3.30E-08 both

rs591088 T C 0.559 -0.010 0.002 1.60E-08 adipose

rs9965170 A G 0.429 -0.010 0.002 2.50E-08 brain

rs881301 T C 0.582 -0.010 0.002 2.40E-08 both

rs3844598 A G 0.479 -0.010 0.002 3.80E-08 both

rs2280039 A G 0.653 0.010 0.002 2.40E-08 brain

rs7200919 A G 0.413 0.010 0.002 9.30E-09 brain

rs3807875 A G 0.629 -0.009 0.002 3.50E-08 brain

rs10144318 A C 0.489 0.009 0.002 1.40E-08 brain
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Figure C.2: Comparison of effect estimates between adipose-tissue
(purple, left) and brain-tissue (red, right) partitioned instruments on
type 2 diabetes (T2D) Each point represents a genetic variant, error bars
are 95% confidence intervals for each variant’s association.

Figure C.3: Comparison of effect estimates between adipose-tissue
(purple, left) and brain-tissue (red, right) partitioned instruments
on type 2 diabetes (T2D) after removing instruments in common
between sets Each point represents a genetic variant, error bars are 95% con-
fidence intervals for each variant’s association.
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Table C.18: Univariable MR analysis using two-sample Mendelian randomization (CVD outcomes) BMI instrumented with
variants which had evidence for colocalization in adipose and brain tissue separately.

id.exposure outcome method nsnp b se pval OR lower CI upper CI

adipose Atrial fibrillation
MR Egger 81 0.311 0.335 0.356 1.365 0.708 2.629
Weighted median 81 0.199 0.092 0.030 1.220 1.019 1.460
ivw 81 0.271 0.104 0.009 1.312 1.069 1.609

adipose Type 2 diabetes
MR Egger 78 0.761 0.680 0.267 2.139 0.565 8.107
Weighted median 78 0.632 0.249 0.011 1.881 1.155 3.064
ivw 78 0.428 0.212 0.044 1.534 1.012 2.324

adipose Coronary heart disease
MR Egger 82 0.613 0.419 0.148 1.847 0.812 4.202
Weighted median 82 0.577 0.132 1.28E-05 1.780 1.374 2.306
ivw 82 0.366 0.130 0.005 1.441 1.117 1.860

adipose Heart failure
MR Egger 79 0.731 0.341 0.035 2.077 1.066 4.050
Weighted median 79 0.582 0.108 7.08E-08 1.789 1.448 2.211
ivw 79 0.517 0.107 1.42E-06 1.678 1.360 2.071

adipose Stroke
MR Egger 81 0.733 0.399 0.070 2.082 0.952 4.554
Weighted median 81 0.268 0.126 0.033 1.308 1.021 1.675
ivw 81 0.163 0.126 0.195 1.177 0.920 1.507

adipose PAD
MR Egger 78 0.845 0.607 0.168 2.328 0.709 7.647
Weighted median 78 -0.066 0.252 0.794 0.936 0.571 1.535
ivw 78 0.250 0.195 0.200 1.284 0.876 1.880

brain Atrial fibrillation
MR Egger 134 0.291 0.287 0.313 1.337 0.762 2.347
Weighted median 134 0.386 0.078 8.08E-07 1.472 1.262 1.716
ivw 134 0.296 0.083 0.0004 1.344 1.141 1.583

brain Type 2 diabetes
MR Egger 122 0.592 0.506 0.2435 1.808 0.671 4.871
Weighted median 122 0.668 0.197 0.0007 1.951 1.326 2.870
ivw 122 0.717 0.150 1.67E-06 2.049 1.528 2.748

brain Coronary heart disease
MR Egger 135 0.562 0.294 0.058 1.754 0.986 3.121
Weighted median 135 0.465 0.099 2.41E-06 1.592 1.312 1.932
ivw 135 0.412 0.085 1.36E-06 1.510 1.278 1.785

brain Heart failure
MR Egger 123 0.845 0.254 0.001 2.328 1.416 3.826
Weighted median 123 0.564 0.092 7.76E-10 1.758 1.469 2.105
ivw 123 0.567 0.076 6.76E-14 1.764 1.520 2.046

brain Stroke
MR Egger 134 -0.095 0.268 0.725 0.910 0.538 1.539
Weighted median 134 0.045 0.104 0.663 1.046 0.854 1.282
ivw 134 0.132 0.078 0.091 1.142 0.979 1.331

brain PAD
MR Egger 122 -0.028 0.487 0.954 0.972 0.374 2.526
Weighted median 122 0.205 0.199 0.303 1.228 0.831 1.815
ivw 122 0.412 0.146 0.005 1.509 1.133 2.010
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Table C.19: Univariable MR analysis using two-sample Mendelian randomization (cardiac measures) BMI instrumented
with variants which had evidence for colocalization in adipose and brain tissue separately.

id.exposure outcome method nsnp b se pval lower CI upper CI

adipose LVEDV
MR Egger 82 0.189 0.220 0.392 -0.242 0.620
Weighted median 82 0.261 0.082 0.001 0.101 0.422
ivw 82 0.282 0.069 3.77E-05 0.148 0.417

adipose LVEF
MR Egger 82 -0.068 0.245 0.7819 -0.548 0.412
Weighted median 82 -0.139 0.092 0.1285 -0.318 0.040
ivw 82 -0.035 0.076 0.6486 -0.184 0.115

adipose LVESV
MR Egger 82 0.156 0.219 0.4779 -0.274 0.586
Weighted median 82 0.254 0.085 0.0027 0.088 0.420
ivw 82 0.203 0.068 0.0030 0.069 0.337

adipose SV
MR Egger 82 0.163 0.239 0.4974 -0.306 0.631
Weighted median 82 0.281 0.085 0.0009 0.115 0.447
ivw 82 0.296 0.075 7.44E-05 0.149 0.442

brain LVEDV
MR Egger 135 0.215 0.170 0.2068 -0.117 0.548
Weighted median 135 0.216 0.065 0.0009 0.089 0.344
ivw 135 0.162 0.049 0.0010 0.065 0.259

brain LVEF
MR Egger 135 -0.282 0.187 0.1340 -0.649 0.085
Weighted median 135 -0.014 0.071 0.8440 -0.154 0.126
ivw 135 -0.014 0.055 0.8050 -0.121 0.094

brain LVESV
MR Egger 135 0.269 0.167 0.1098 -0.058 0.596
Weighted median 135 0.207 0.063 0.0011 0.082 0.331
ivw 135 0.116 0.049 0.0174 0.020 0.211

brain SV
MR Egger 135 0.118 0.185 0.5251 -0.244 0.480
Weighted median 135 0.138 0.070 0.0480 0.001 0.275
ivw 135 0.179 0.054 0.0009 0.073 0.284
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Table C.20: Univariable MR analysis using two-sample Mendelian randomization on instruments unique to each tissue
(CVD outcomes) BMI instrumented with variants which had evidence for colocalization in adipose and brain tissue separately, excluding
instruments common to both adipose and brain tisue expression colocalized variants

id.exposure outcome method nsnp b se pval OR lower CI upper CI

adipose Atrial fibrillation
MR Egger 42 0.196 0.425 0.647 1.217 0.529 2.799
Weighted median 42 0.216 0.130 0.096 1.241 0.963 1.601
Inverse variance weighted 42 0.264 0.123 0.032 1.302 1.022 1.658

adipose Type 2 diabetes
MR Egger 40 0.403 1.281 0.755 1.497 0.122 18.422
Weighted median 40 0.918 0.377 0.015 2.504 1.196 5.241
Inverse variance weighted 40 0.520 0.368 0.157 1.682 0.818 3.460

adipose Coronary heart disease
MR Egger 42 1.025 0.630 0.112 2.787 0.811 9.577
Weighted median 42 0.570 0.191 0.003 1.768 1.217 2.570
Inverse variance weighted 42 0.402 0.180 0.026 1.495 1.049 2.129

adipose Heart failure
MR Egger 40 0.737 0.490 0.141 2.090 0.799 5.465
Weighted median 40 0.621 0.154 5.72E-05 1.860 1.375 2.516
Inverse variance weighted 40 0.458 0.146 0.002 1.581 1.187 2.105

adipose Stroke
MR Egger 42 1.020 0.694 0.150 2.774 0.711 10.817
Weighted median 42 0.354 0.175 0.043 1.425 1.011 2.008
Inverse variance weighted 42 0.240 0.202 0.235 1.271 0.856 1.887

adipose PAD
MR Egger 40 2.840 0.961 0.005 17.109 2.602 112.491
Weighted median 40 0.255 0.371 0.491 1.291 0.624 2.671
Inverse variance weighted 40 0.327 0.319 0.306 1.386 0.742 2.591

brain Atrial fibrillation
MR Egger 95 0.234 0.350 0.505 1.264 0.636 2.513
Weighted median 95 0.410 0.093 9.82E-06 1.507 1.256 1.807
Inverse variance weighted 95 0.305 0.095 0.001 1.357 1.127 1.634

brain Type 2 diabetes
MR Egger 84 0.450 0.688 0.515 1.568 0.407 6.036
Weighted median 84 0.974 0.242 5.78E-05 2.648 1.648 4.258
Inverse variance weighted 84 0.913 0.192 1.91E-06 2.492 1.711 3.629

brain Coronary heart disease
MR Egger 95 0.745 0.330 0.026 2.107 1.104 4.020
Weighted median 95 0.438 0.122 0.000 1.550 1.219 1.970
Inverse variance weighted 95 0.452 0.089 4.26E-07 1.571 1.319 1.872

brain Heart failure
MR Egger 84 0.976 0.289 0.001 2.654 1.506 4.677
Weighted median 84 0.559 0.108 2.42E-07 1.749 1.414 2.162
Inverse variance weighted 84 0.568 0.082 4.14E-12 1.765 1.503 2.073

brain Stroke
MR Egger 95 -0.580 0.322 0.075 0.560 0.298 1.052
Weighted median 95 0.059 0.119 0.622 1.060 0.840 1.339
Inverse variance weighted 95 0.150 0.090 0.096 1.161 0.974 1.384

brain PAD
MR Egger 84 0.572 0.656 0.386 1.772 0.490 6.410
Weighted median 84 0.418 0.248 0.092 1.519 0.935 2.468
Inverse variance weighted 84 0.539 0.185 0.004 1.713 1.193 2.462
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Table C.21: Univariable MR analysis using two-sample Mendelian randomization on instruments unique to each tissue
(cardiac measures) BMI instrumented with variants which had evidence for colocalization in adipose and brain tissue separately,
excluding instruments common to both adipose and brain tisue expression colocalized variants

id.exposure outcome method nsnp b se pval lower CI upper CI

adipose LVEDV
MR Egger 42 0.443 0.359 0.224 -0.261 1.147
Weighted median 42 0.492 0.112 1.12E-05 0.273 0.712
Inverse variance weighted 42 0.452 0.105 1.75E-05 0.245 0.658

adipose LVEF
MR Egger 42 -0.032 0.399 0.937 -0.814 0.750
Weighted median 42 -0.362 0.137 0.008 -0.631 -0.093
Inverse variance weighted 42 -0.122 0.117 0.298 -0.351 0.108

adipose LVESV
MR Egger 42 0.319 0.361 0.382 -0.389 1.027
Weighted median 42 0.401 0.118 0.001 0.170 0.632
Inverse variance weighted 42 0.358 0.106 0.001 0.150 0.565

adipose SV
MR Egger 42 0.470 0.377 0.219 -0.268 1.208
Weighted median 42 0.347 0.114 0.002 0.124 0.570
Inverse variance weighted 42 0.441 0.110 6.50E-05 0.224 0.657

brain LVEDV
MR Egger 95 0.254 0.225 0.261 -0.187 0.695
Weighted median 95 0.205 0.077 0.008 0.054 0.355
Inverse variance weighted 95 0.172 0.061 0.005 0.052 0.292

brain LVEF
MR Egger 95 -0.376 0.240 0.121 -0.847 0.095
Weighted median 95 -0.015 0.087 0.861 -0.185 0.154
Inverse variance weighted 95 -0.040 0.066 0.542 -0.170 0.089

brain LVESV
MR Egger 95 0.342 0.219 0.123 -0.088 0.772
Weighted median 95 0.206 0.078 0.008 0.053 0.360
Inverse variance weighted 95 0.137 0.060 0.022 0.020 0.254

brain SV
MR Egger 95 0.144 0.237 0.545 -0.320 0.608
Weighted median 95 0.157 0.081 0.051 -0.001 0.316
Inverse variance weighted 95 0.180 0.064 0.005 0.054 0.306
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Table C.22: Results of Steiger filtering for the identification of SNPs in the adipose-tissue instrumented BMI exposure
susceptible to reverse cause Results from applying the Steiger filtering approach: eaf - effect allele frequency, rsq - r2 values for each
SNP on exposure and outcome, steiger dir - TRUE/FALSE depending on whether rsq for exposure is larger than outcome, steiger pval -
corresponding pvalue, exposure= adipose gene expression, outcome = adipose BMI SNP effect

SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs1000940 G A -0.038 0.015 0.315 0.299 0.002 1.10E-17 0.011 0.0005 0.010 0.0001 TRUE 0.0016

rs1048932 C A 0.170 0.016 0.593 0.584 0.002 3.80E-22 0.019 0.0000 0.062 0.0001 TRUE 5.02E-18

rs10779751 G A -0.086 -0.014 0.737 0.726 0.002 2.50E-14 0.025 0.0007 0.009 0.0001 TRUE 0.0020

rs10832778 G C 0.308 0.013 0.613 0.622 0.002 1.30E-13 0.035 0.0000 0.059 0.0001 TRUE 2.90E-17

rs10886017 C A -0.107 -0.015 0.771 0.748 0.002 1.40E-15 0.026 0.0000 0.014 0.0001 TRUE 9.97E-05

rs10923724 T C 0.057 -0.012 0.577 0.573 0.002 6.40E-13 0.013 0.0000 0.014 0.0001 TRUE 8.29E-05

rs10971712 T C -0.065 -0.020 0.107 0.108 0.003 6.40E-13 0.018 0.0003 0.011 0.0001 TRUE 0.0009

rs11066188 G A -0.050 0.012 0.598 0.582 0.002 8.10E-13 0.013 0.0002 0.011 0.0001 TRUE 0.0005

rs1117080 G C 0.022 -0.011 0.291 0.299 0.002 7.00E-09 0.013 0.0928 0.002 0.0000 TRUE 0.1520

rs11577094 T C -0.161 0.018 0.073 0.081 0.003 6.90E-10 0.016 0.0000 0.074 0.0000 TRUE 7.80E-22

rs11635675 T G -0.044 0.012 0.670 0.647 0.002 1.30E-11 0.011 0.0001 0.012 0.0001 TRUE 0.0004

rs11670142 T G -0.001 -0.011 0.610 0.606 0.002 4.70E-10 0.006 0.8742 0.000 0.0001 FALSE 0.9133

rs11710798 C A -0.030 -0.017 0.094 0.109 0.003 2.90E-09 0.015 0.0522 0.003 0.0001 TRUE 0.0923

rs12044597 G A -0.050 0.014 0.518 0.503 0.002 1.70E-18 0.060 0.4041 0.001 0.0001 TRUE 0.6283

rs12150665 T C -0.168 0.016 0.591 0.594 0.002 1.60E-22 0.019 0.0000 0.061 0.0001 TRUE 1.72E-17

rs12411886 C A 0.188 -0.027 0.918 0.917 0.003 1.50E-19 0.049 0.0001 0.012 0.0001 TRUE 0.0005

rs12564992 G A 0.070 0.020 0.107 0.114 0.003 5.30E-14 0.007 0.0000 0.069 0.0001 TRUE 3.17E-20

rs12628891 T C 0.054 -0.011 0.319 0.317 0.002 3.00E-09 0.022 0.0138 0.005 0.0001 TRUE 0.0273

rs1263618 T C 0.016 -0.012 0.696 0.686 0.002 5.30E-12 0.005 0.0017 0.008 0.0001 TRUE 0.0042

rs13209968 G C 0.111 -0.011 0.470 0.482 0.002 3.10E-11 0.014 0.0000 0.046 0.0001 TRUE 1.27E-13

rs13240600 G A 0.071 -0.020 0.129 0.155 0.002 3.50E-17 0.016 0.0000 0.016 0.0001 TRUE 3.57E-05

rs138289 T A 0.095 -0.010 0.463 0.483 0.002 3.30E-09 0.018 0.0000 0.023 0.0001 TRUE 2.26E-07

rs1394 G A -0.041 0.015 0.369 0.360 0.002 2.80E-19 0.011 0.0001 0.012 0.0001 TRUE 0.0005

rs1468069 C A -0.003 -0.010 0.659 0.643 0.002 8.50E-09 0.005 0.5147 0.000 0.0000 TRUE 0.6848

rs16864515 C A -0.223 -0.019 0.900 0.907 0.003 1.70E-10 0.035 0.0000 0.032 0.0001 TRUE 1.22E-09

rs16882001 G A 0.035 0.027 0.049 0.051 0.004 1.50E-11 0.030 0.2448 0.001 0.0001 TRUE 0.3821
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SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs1704190 G A 0.092 -0.010 0.361 0.366 0.002 3.30E-08 0.023 0.0001 0.013 0.0000 TRUE 0.0002

rs17207196 T C -0.206 -0.022 0.411 0.412 0.002 2.10E-35 0.050 0.0000 0.014 0.0002 TRUE 0.0003

rs1730859 G A -0.106 0.012 0.349 0.342 0.002 1.10E-11 0.011 0.0000 0.071 0.0001 TRUE 4.39E-21

rs17391694 T C -0.038 0.032 0.140 0.119 0.003 7.50E-38 0.009 0.0000 0.015 0.0002 TRUE 0.0001

rs17685 G A 0.035 -0.011 0.730 0.726 0.002 7.10E-09 0.010 0.0007 0.009 0.0001 TRUE 0.0018

rs17695092 T G -0.133 0.011 0.688 0.692 0.002 3.40E-09 0.013 0.0000 0.079 0.0000 TRUE 1.29E-23

rs1884389 T C -0.139 -0.010 0.454 0.429 0.002 4.00E-09 0.013 0.0000 0.085 0.0001 TRUE 3.08E-25

rs2052883 G A 0.148 -0.010 0.400 0.413 0.002 1.80E-08 0.020 0.0000 0.043 0.0000 TRUE 6.24E-13

rs2074613 T C -0.016 0.011 0.580 0.555 0.002 1.70E-10 0.004 0.0003 0.010 0.0001 TRUE 0.0009

rs2238373 G A 0.027 -0.011 0.346 0.351 0.002 3.50E-09 0.013 0.0386 0.003 0.0001 TRUE 0.0714

rs2282231 T C 0.361 0.017 0.225 0.225 0.002 4.80E-15 0.068 0.0000 0.022 0.0001 TRUE 6.49E-07

rs2293605 T C -0.027 -0.017 0.128 0.131 0.003 3.60E-10 0.039 0.4869 0.000 0.0001 TRUE 0.6721

rs2304130 G A 0.156 -0.018 0.089 0.085 0.003 2.90E-09 0.060 0.0097 0.005 0.0000 TRUE 0.0189

rs2367112 T G -0.037 0.012 0.486 0.508 0.002 2.30E-13 0.009 0.0001 0.013 0.0001 TRUE 0.0002

rs2425024 C A -0.042 0.010 0.334 0.336 0.002 2.70E-08 0.010 0.0000 0.014 0.0000 TRUE 5.60E-05

rs2425847 G A -0.036 0.012 0.416 0.407 0.002 2.20E-11 0.009 0.0001 0.012 0.0001 TRUE 0.0003

rs263041 G A -0.060 -0.012 0.638 0.633 0.002 2.20E-12 0.009 0.0000 0.035 0.0001 TRUE 2.01E-10

rs2710323 T C 0.114 -0.014 0.535 0.520 0.002 4.80E-18 0.014 0.0000 0.051 0.0001 TRUE 5.09E-15

rs329277 T G 0.017 -0.010 0.515 0.521 0.002 1.10E-08 0.011 0.1321 0.002 0.0000 TRUE 0.2075

rs3810291 G A 0.042 -0.027 0.357 0.330 0.002 2.10E-52 0.009 0.0000 0.016 0.0003 TRUE 0.0001

rs3844598 G A -0.004 0.010 0.535 0.521 0.002 3.80E-08 0.004 0.3153 0.001 0.0000 TRUE 0.4419

rs3888190 C A 0.010 -0.027 0.609 0.596 0.002 9.20E-60 0.005 0.0371 0.003 0.0003 TRUE 0.1510

rs3957285 G A -0.069 -0.014 0.457 0.474 0.002 2.90E-16 0.019 0.0003 0.011 0.0001 TRUE 0.0009

rs3977755 T C 0.000 -0.014 0.271 0.280 0.002 5.90E-13 0.029 0.9896 0.000 0.0001 FALSE 0.7757

rs4012234 T G -0.044 -0.014 0.418 0.408 0.002 9.90E-16 0.007 0.0000 0.029 0.0001 TRUE 1.03E-08

rs4077093 T G -0.453 0.013 0.211 0.217 0.002 5.10E-09 0.061 0.0000 0.043 0.0001 TRUE 6.24E-13

rs4132228 T C 0.077 0.010 0.300 0.289 0.002 1.50E-08 0.016 0.0000 0.017 0.0000 TRUE 7.58E-06

rs4148866 T C 0.037 0.010 0.403 0.407 0.002 4.00E-08 0.025 0.1428 0.002 0.0000 TRUE 0.2195

rs455527 T C -0.537 0.020 0.944 0.944 0.004 1.10E-08 0.119 0.0000 0.016 0.0000 TRUE 1.86E-05

rs4556997 C A 0.014 -0.020 0.855 0.865 0.002 6.90E-17 0.008 0.0840 0.002 0.0001 TRUE 0.1630

rs4796243 G A 0.017 0.012 0.718 0.697 0.002 6.10E-11 0.022 0.4341 0.000 0.0001 TRUE 0.6149
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SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs4841659 T C 0.290 0.015 0.469 0.479 0.002 9.20E-18 0.047 0.0000 0.030 0.0001 TRUE 4.62E-09

rs4865796 G A 0.097 0.010 0.307 0.309 0.002 5.20E-09 0.021 0.0000 0.017 0.0000 TRUE 1.18E-05

rs4877313 T A 0.056 -0.013 0.211 0.218 0.002 4.10E-10 0.014 0.0001 0.013 0.0001 TRUE 0.0002

rs4970712 C A -0.061 -0.014 0.793 0.793 0.002 6.70E-12 0.020 0.0025 0.007 0.0001 TRUE 0.0060

rs4985557 T C 0.269 -0.010 0.486 0.487 0.002 1.60E-08 0.065 0.0000 0.013 0.0000 TRUE 0.0001

rs559231 T G -0.186 0.014 0.390 0.396 0.002 2.40E-14 0.034 0.0000 0.024 0.0001 TRUE 2.61E-07

rs591088 T C -0.062 -0.010 0.558 0.559 0.002 1.60E-08 0.017 0.0003 0.010 0.0000 TRUE 0.0008

rs6463489 T C 0.327 0.016 0.115 0.109 0.003 3.10E-09 0.049 0.0000 0.035 0.0000 TRUE 1.36E-10

rs6587552 G A -0.071 -0.017 0.778 0.759 0.002 1.60E-17 0.015 0.0000 0.017 0.0001 TRUE 2.07E-05

rs6738445 T C 0.081 -0.013 0.317 0.284 0.002 1.90E-13 0.010 0.0000 0.056 0.0001 TRUE 1.26E-16

rs676749 T A -0.100 0.010 0.488 0.498 0.002 1.70E-09 0.028 0.0005 0.010 0.0001 TRUE 0.0012

rs6985109 G A -0.039 0.018 0.460 0.466 0.002 1.50E-26 0.011 0.0002 0.011 0.0001 TRUE 0.0011

rs7102454 T C -0.059 -0.016 0.643 0.657 0.002 2.40E-18 0.012 0.0000 0.018 0.0001 TRUE 1.14E-05

rs7124681 C A 0.030 -0.026 0.602 0.587 0.002 3.20E-58 0.007 0.0000 0.014 0.0003 TRUE 0.0003

rs7133378 G A -0.022 -0.013 0.694 0.673 0.002 9.40E-13 0.010 0.0322 0.004 0.0001 TRUE 0.0637

rs7134628 G A -0.424 -0.017 0.883 0.897 0.003 1.20E-09 0.052 0.0000 0.051 0.0001 TRUE 4.18E-15

rs7189122 T C 0.013 -0.015 0.839 0.830 0.002 4.50E-11 0.006 0.0307 0.004 0.0001 TRUE 0.0602

rs7334078 T C -0.048 0.012 0.706 0.712 0.002 2.20E-10 0.012 0.0001 0.012 0.0001 TRUE 0.0003

rs7535528 G A -0.028 0.015 0.624 0.626 0.002 1.40E-16 0.008 0.0008 0.009 0.0001 TRUE 0.0029

rs7540681 T C 0.183 -0.011 0.522 0.521 0.002 2.00E-08 0.037 0.0000 0.019 0.0001 TRUE 4.15E-06

rs7557796 T C 0.113 0.016 0.352 0.348 0.002 2.30E-19 0.029 0.0001 0.012 0.0001 TRUE 0.0005

rs7607351 T C 0.095 0.012 0.601 0.581 0.002 8.40E-12 0.014 0.0000 0.034 0.0001 TRUE 2.21E-10

rs7716275 T G -0.031 -0.013 0.199 0.193 0.002 2.20E-10 0.009 0.0003 0.010 0.0001 TRUE 0.0008

rs881301 T C 0.006 -0.010 0.596 0.582 0.002 2.40E-08 0.006 0.3022 0.001 0.0000 TRUE 0.4276

rs905938 T C 0.138 -0.015 0.725 0.733 0.002 1.20E-15 0.024 0.0000 0.025 0.0001 TRUE 8.44E-08

rs9299 T C -0.015 0.012 0.649 0.647 0.002 3.60E-11 0.008 0.0544 0.003 0.0001 TRUE 0.1009

rs9394312 G C -0.084 -0.011 0.516 0.508 0.002 2.30E-10 0.033 0.0104 0.005 0.0001 TRUE 0.0220

rs9821675 G A 0.030 0.029 0.489 0.505 0.002 1.60E-50 0.006 0.0000 0.024 0.0005 TRUE 2.33E-06

rs998732 G A -0.260 -0.017 0.158 0.158 0.002 2.00E-14 0.033 0.0000 0.047 0.0001 TRUE 6.59E-14
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Table C.23: Results of Steiger filtering for the identification of SNPs in the brain-tissue instrumented BMI exposure
susceptible to reverse cause Results from applying the Steiger filtering approach: eaf - effect allele frequency, rsq - r2 values for each
SNP on exposure and outcome, steiger dir - TRUE/FALSE depending on whether rsq for exposure is larger than outcome, steiger pval -
corresponding pvalue, exposure= brain gene expression, outcome = brain BMI SNP effect

SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs1000940 A G 0.308 -0.015 0.693 0.701 0.002 1.10E-17 0.047 7.78E-11 0.035 0.000 TRUE 6.15E-10

rs10144318 C A -0.177 -0.009 0.504 0.511 0.002 1.40E-08 0.056 0.0014 0.009 0.000 TRUE 0.002953

rs1038088 G T 0.301 0.012 0.497 0.508 0.002 4.60E-13 0.049 1.06E-09 0.031 0.000 TRUE 5.53E-09

rs1045411 C T 1.191 0.015 0.792 0.735 0.002 2.30E-15 0.033 1.00E-200 0.535 0.000 TRUE 1.51E-222

rs10460960 A G 0.058 0.020 0.867 0.888 0.003 8.10E-15 0.097 0.5479 0.000 0.000 TRUE 0.764445

rs1048303 T C -1.132 -0.011 0.573 0.586 0.002 2.70E-10 0.031 1.00E-200 0.535 0.000 TRUE 3.59E-223

rs1075901 T C 0.203 -0.012 0.392 0.436 0.002 1.20E-13 0.046 1.17E-05 0.016 0.000 TRUE 4.18E-05

rs10768994 T C 0.035 0.011 0.548 0.566 0.002 6.40E-12 0.055 0.53131 0.000 0.000 TRUE 0.719486

rs10824218 A T -0.077 0.012 0.594 0.552 0.002 7.20E-12 0.035 0.0277 0.004 0.000 TRUE 0.056042

rs10838465 C A -0.201 -0.014 0.291 0.303 0.002 9.10E-14 0.058 0.0005 0.010 0.000 TRUE 0.001530

rs10878946 T C -0.237 -0.014 0.740 0.714 0.002 3.60E-13 0.050 2.30E-06 0.019 0.000 TRUE 9.66E-06

rs10971712 C T 0.537 0.020 0.913 0.892 0.003 6.40E-13 0.068 2.74E-15 0.051 0.000 TRUE 2.35E-14

rs1117080 C G -0.114 0.011 0.746 0.702 0.002 7.00E-09 0.056 0.0403 0.004 0.000 TRUE 0.070468

rs11538 G A -0.357 0.014 0.157 0.181 0.002 3.30E-09 0.053 1.21E-11 0.038 0.000 TRUE 5.81E-11

rs11629783 C G 0.182 0.015 0.785 0.769 0.002 9.80E-13 0.049 0.0002 0.012 0.000 TRUE 0.000553

rs11710798 C A -0.349 -0.017 0.086 0.109 0.003 2.90E-09 0.074 2.23E-06 0.019 0.000 TRUE 7.35E-06

rs11866815 C T -0.303 0.016 0.716 0.754 0.002 1.00E-16 0.053 7.68E-09 0.028 0.000 TRUE 4.72E-08

rs12022461 G A 0.181 0.016 0.846 0.821 0.002 2.40E-12 0.050 0.0003 0.011 0.000 TRUE 0.000965

rs12044597 G A 0.132 0.014 0.423 0.503 0.002 1.70E-18 0.055 0.0170 0.005 0.000 TRUE 0.040944

rs12120851 T C 0.533 -0.014 0.818 0.789 0.002 2.00E-09 0.173 0.0020 0.008 0.000 TRUE 0.005422

rs12150665 C T -1.021 -0.016 0.343 0.406 0.002 1.60E-22 0.027 1.00E-200 0.535 0.000 TRUE 1.27E-221

rs12411886 C A -0.337 -0.027 0.923 0.917 0.003 1.50E-19 0.073 3.53E-06 0.018 0.000 TRUE 1.79E-05

rs12468863 C T -0.367 0.015 0.559 0.476 0.002 5.10E-21 0.035 2.33E-25 0.087 0.000 TRUE 5.07E-24

rs12545740 A C -0.234 0.011 0.554 0.557 0.002 2.50E-09 0.046 2.94E-07 0.022 0.000 TRUE 1.06E-06

rs12564992 A G -0.745 -0.020 0.885 0.886 0.003 5.30E-14 0.077 2.66E-22 0.076 0.000 TRUE 2.63E-21

rs12595749 A G 0.127 0.014 0.552 0.571 0.002 5.70E-16 0.040 0.0013 0.009 0.000 TRUE 0.004036
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SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs12597712 C G -0.389 -0.011 0.426 0.420 0.002 1.40E-10 0.048 9.22E-16 0.053 0.000 TRUE 5.93E-15

rs12759296 G T 0.453 -0.010 0.294 0.311 0.002 1.90E-08 0.051 8.99E-19 0.064 0.000 TRUE 5.02E-18

rs12779943 C T -0.432 -0.021 0.910 0.918 0.003 2.00E-11 0.079 3.91E-08 0.025 0.000 TRUE 1.76E-07

rs12905439 C G -0.412 0.012 0.719 0.661 0.002 1.40E-10 0.081 3.28E-07 0.022 0.000 TRUE 1.29E-06

rs12964689 G A 0.466 -0.020 0.476 0.482 0.002 5.10E-32 0.038 2.68E-35 0.121 0.000 TRUE 2.48E-33

rs13072731 A C 0.411 -0.011 0.442 0.395 0.002 2.30E-09 0.047 1.76E-18 0.063 0.000 TRUE 1.11E-17

rs13174863 A G 0.201 -0.019 0.861 0.845 0.002 2.90E-16 0.055 0.0002 0.011 0.000 TRUE 0.000764

rs13209968 C G -0.440 -0.011 0.415 0.482 0.002 3.10E-11 0.037 2.71E-32 0.111 0.000 TRUE 2.07E-31

rs13240600 G A 0.367 -0.020 0.261 0.155 0.002 3.50E-17 0.059 3.67E-10 0.032 0.000 TRUE 3.06E-09

rs1452075 C T -0.180 -0.014 0.254 0.272 0.002 1.30E-14 0.048 0.0002 0.012 0.000 TRUE 0.000557

rs1465900 A C 0.254 0.013 0.761 0.781 0.002 4.80E-10 0.064 7.96E-05 0.013 0.000 TRUE 0.000213

rs1704190 A G 0.352 0.010 0.652 0.634 0.002 3.30E-08 0.052 1.39E-11 0.038 0.000 TRUE 5.96E-11

rs17207196 C T -1.139 0.022 0.632 0.588 0.002 2.10E-35 0.031 1.00E-200 0.535 0.000 TRUE 1.51E-219

rs1730859 G A -0.459 0.012 0.307 0.342 0.002 1.10E-11 0.038 4.70E-33 0.113 0.000 TRUE 3.02E-32

rs17446091 T C 0.529 -0.012 0.782 0.793 0.002 1.80E-09 0.044 3.72E-33 0.114 0.000 TRUE 1.65E-32

rs175165 G T -0.314 -0.010 0.375 0.394 0.002 5.20E-09 0.049 1.54E-10 0.034 0.000 TRUE 6.81E-10

rs17695092 T G 0.288 0.011 0.739 0.692 0.002 3.40E-09 0.053 4.64E-08 0.025 0.000 TRUE 1.61E-07

rs17757975 T C 0.221 0.014 0.857 0.852 0.002 4.20E-09 0.071 0.0019 0.008 0.000 TRUE 0.004239

rs1784460 A T 0.646 0.013 0.421 0.404 0.002 9.00E-14 0.078 1.63E-16 0.055 0.000 TRUE 1.65E-15

rs1830074 T C 0.305 -0.012 0.630 0.712 0.002 1.40E-09 0.050 8.77E-10 0.031 0.000 TRUE 3.90E-09

rs1899689 T C -0.185 0.012 0.373 0.399 0.002 1.50E-12 0.041 5.55E-06 0.017 0.000 TRUE 1.94E-05

rs1993709 A G -0.374 -0.033 0.172 0.182 0.002 1.90E-57 0.059 3.01E-10 0.033 0.000 TRUE 1.28E-08

rs2010281 G A -0.279 0.016 0.681 0.645 0.002 6.70E-21 0.037 6.32E-14 0.046 0.000 TRUE 8.04E-13

rs208015 C T 0.316 -0.036 0.929 0.922 0.003 1.40E-25 0.087 0.0003 0.011 0.000 TRUE 0.001441

rs2162524 C T -0.176 0.016 0.317 0.332 0.002 4.10E-17 0.048 0.0003 0.011 0.000 TRUE 0.000977

rs2170382 C T -0.286 -0.017 0.867 0.880 0.003 2.40E-10 0.071 5.94E-05 0.013 0.000 TRUE 0.000175

rs217433 C T 0.325 0.012 0.204 0.205 0.002 2.00E-08 0.048 8.11E-12 0.038 0.000 TRUE 3.26E-11

rs223391 A G 0.331 -0.013 0.164 0.195 0.002 1.60E-10 0.062 8.48E-08 0.024 0.000 TRUE 3.14E-07

rs2235564 T C -0.170 0.013 0.354 0.347 0.002 3.70E-13 0.046 0.0002 0.012 0.000 TRUE 0.000631

rs2246012 T C 0.215 -0.016 0.839 0.837 0.002 3.10E-13 0.061 0.0005 0.010 0.000 TRUE 0.001296

rs2280039 G A -0.063 -0.010 0.366 0.347 0.002 2.40E-08 0.048 0.186717 0.001 0.000 TRUE 0.269853
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all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs2293605 C T 0.388 0.017 0.896 0.869 0.003 3.60E-10 0.074 1.38E-07 0.023 0.000 TRUE 5.51E-07

rs2304130 G A 0.075 -0.018 0.092 0.085 0.003 2.90E-09 0.083 0.363714 0.001 0.000 TRUE 0.498894

rs2481665 T C 0.432 0.016 0.598 0.559 0.002 7.20E-23 0.088 9.80E-07 0.020 0.000 TRUE 6.23E-06

rs2710323 T C 0.242 -0.014 0.472 0.520 0.002 4.80E-18 0.048 5.16E-07 0.021 0.000 TRUE 2.75E-06

rs28350 G A -0.278 -0.018 0.847 0.807 0.002 3.50E-15 0.062 7.71E-06 0.017 0.000 TRUE 3.37E-05

rs2837398 A C 0.161 -0.011 0.602 0.596 0.002 1.10E-10 0.050 0.0013 0.009 0.000 TRUE 0.003292

rs2842385 A G 0.290 -0.012 0.779 0.802 0.002 3.40E-08 0.059 7.15E-07 0.020 0.000 TRUE 2.23E-06

rs3134353 T A -0.576 0.013 0.639 0.613 0.002 2.50E-12 0.048 3.22E-33 0.114 0.000 TRUE 2.96E-32

rs349088 A C -0.194 -0.013 0.486 0.498 0.002 1.80E-13 0.046 2.33E-05 0.015 0.000 TRUE 8.70E-05

rs3731544 C A 0.327 -0.021 0.939 0.929 0.003 7.50E-12 0.087 0.0002 0.012 0.000 TRUE 0.000452

rs3803286 G A -0.298 -0.018 0.610 0.657 0.002 4.10E-23 0.047 2.07E-10 0.033 0.000 TRUE 2.58E-09

rs3807875 G A -0.021 0.009 0.408 0.371 0.002 3.50E-08 0.041 0.602997 0.000 0.000 TRUE 0.761855

rs3813680 A G -0.455 0.014 0.869 0.844 0.002 1.60E-09 0.070 6.49E-11 0.035 0.000 TRUE 3.09E-10

rs3814883 C T 0.137 -0.023 0.575 0.524 0.002 1.10E-40 0.037 0.0002 0.012 0.000 TRUE 0.001381

rs3844598 A G -0.084 -0.010 0.497 0.479 0.002 3.80E-08 0.049 0.0891 0.002 0.000 TRUE 0.141432

rs3888190 C A -0.248 -0.027 0.634 0.596 0.002 9.20E-60 0.040 6.00E-10 0.032 0.000 TRUE 2.54E-08

rs3957285 A G -0.214 0.014 0.473 0.526 0.002 2.90E-16 0.043 8.61E-07 0.020 0.000 TRUE 4.59E-06

rs3977755 C T 0.054 0.014 0.703 0.720 0.002 5.90E-13 0.047 0.245553 0.001 0.000 TRUE 0.384437

rs427943 A C 0.144 -0.017 0.447 0.433 0.002 7.30E-23 0.037 9.77E-05 0.013 0.000 TRUE 0.000476

rs450231 A G -0.276 -0.013 0.759 0.753 0.002 2.10E-10 0.052 1.35E-07 0.023 0.000 TRUE 5.34E-07

rs460799 G A 0.185 0.012 0.746 0.732 0.002 6.40E-10 0.053 0.0004 0.010 0.000 TRUE 0.001124

rs4653017 T C -0.268 0.012 0.713 0.682 0.002 4.50E-11 0.041 3.89E-11 0.036 0.000 TRUE 2.20E-10

rs4677812 C A -0.120 0.014 0.682 0.719 0.002 1.40E-12 0.055 0.0282392 0.004 0.000 TRUE 0.057608

rs4704513 C G -0.264 -0.013 0.838 0.819 0.002 7.40E-09 0.058 5.22E-06 0.017 0.000 TRUE 1.58E-05

rs472611 A G 0.154 -0.010 0.644 0.662 0.002 3.80E-08 0.046 0.0008 0.009 0.000 TRUE 0.001849

rs4796243 A G -0.009 -0.012 0.264 0.303 0.002 6.10E-11 0.056 0.87644 0.000 0.000 FALSE 0.9077477

rs4841659 C T -0.252 -0.015 0.532 0.522 0.002 9.20E-18 0.056 6.18E-06 0.017 0.000 TRUE 3.12E-05

rs4889606 A G 0.137 0.020 0.656 0.620 0.002 2.80E-33 0.038 0.0003 0.011 0.000 TRUE 0.001733

rs4970712 C A -0.300 -0.014 0.812 0.793 0.002 6.70E-12 0.051 4.57E-09 0.028 0.000 TRUE 2.08E-08

rs4985557 C T -0.142 0.010 0.425 0.513 0.002 1.60E-08 0.054 0.0086 0.006 0.000 TRUE 0.017027

rs559231 T G 0.161 0.014 0.470 0.396 0.002 2.40E-14 0.046 0.0005 0.010 0.000 TRUE 0.001569
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rs6050446 G A 0.727 0.034 0.963 0.970 0.005 4.40E-13 0.325 0.025249 0.004 0.000 TRUE 0.051076

rs6463489 C T -0.415 -0.016 0.901 0.891 0.003 3.10E-09 0.074 1.97E-08 0.026 0.000 TRUE 6.97E-08

rs6512302 G C -0.312 -0.014 0.268 0.249 0.002 2.10E-12 0.054 1.05E-08 0.027 0.000 TRUE 5.43E-08

rs6569648 T C -0.460 -0.013 0.789 0.773 0.002 3.70E-11 0.055 3.50E-17 0.058 0.000 TRUE 2.28E-16

rs6587552 G A 0.226 -0.017 0.716 0.759 0.002 1.60E-17 0.056 4.87E-05 0.014 0.000 TRUE 0.000209

rs6606686 C G 0.153 -0.014 0.670 0.690 0.002 7.60E-15 0.044 0.0004 0.010 0.000 TRUE 0.001270

rs6692586 A G 0.195 0.019 0.206 0.168 0.002 1.10E-16 0.066 0.0033 0.007 0.000 TRUE 0.009601

rs6738445 C T -0.505 0.013 0.646 0.716 0.002 1.90E-13 0.051 1.01E-22 0.078 0.000 TRUE 9.53E-22

rs6764533 A G -0.194 0.012 0.353 0.359 0.002 1.40E-10 0.048 4.92E-05 0.014 0.000 TRUE 0.000148

rs676749 T A 0.178 0.010 0.455 0.498 0.002 1.70E-09 0.048 0.0002 0.011 0.000 TRUE 0.000590

rs6777784 T G 0.016 0.011 0.606 0.622 0.002 4.70E-09 0.043 0.711613 0.000 0.000 TRUE 0.901111

rs6901756 T C -0.246 0.015 0.885 0.878 0.003 2.90E-09 0.059 2.93E-05 0.015 0.000 TRUE 7.80E-05

rs7031064 G A 0.263 -0.011 0.452 0.478 0.002 3.10E-10 0.063 2.86E-05 0.015 0.000 TRUE 8.71E-05

rs7083450 T C 0.415 0.016 0.882 0.839 0.002 1.70E-12 0.086 1.41E-06 0.019 0.000 TRUE 5.27E-06

rs7124681 A C -0.300 0.026 0.403 0.413 0.002 3.20E-58 0.047 2.47E-10 0.033 0.000 TRUE 1.07E-08

rs7133378 G A -0.382 -0.013 0.623 0.673 0.002 9.40E-13 0.046 1.88E-16 0.055 0.000 TRUE 1.44E-15

rs7134628 G A -0.366 -0.017 0.911 0.897 0.003 1.20E-09 0.078 2.79E-06 0.018 0.000 TRUE 9.19E-06

rs7172627 G A 0.265 0.012 0.500 0.472 0.002 1.10E-11 0.046 7.68E-09 0.028 0.000 TRUE 3.78E-08

rs7189122 T C 0.190 -0.015 0.788 0.830 0.002 4.50E-11 0.062 0.0024 0.008 0.000 TRUE 0.005710

rs719802 C T -1.035 -0.010 0.607 0.620 0.002 9.50E-09 0.028 1.00E-200 0.535 0.000 TRUE 1.65E-223

rs7200919 A G -0.318 0.010 0.487 0.413 0.002 9.30E-09 0.051 3.83E-10 0.032 0.000 TRUE 1.45E-09

rs7209235 A G 0.203 -0.011 0.670 0.695 0.002 8.00E-09 0.061 0.0009 0.009 0.000 TRUE 0.001973

rs7220138 C G 0.178 -0.012 0.640 0.696 0.002 2.70E-10 0.046 0.0001 0.012 0.000 TRUE 0.000329

rs7334078 C T -0.206 -0.012 0.326 0.288 0.002 2.20E-10 0.048 2.07E-05 0.015 0.000 TRUE 6.48E-05

rs738140 A G 0.350 0.014 0.718 0.679 0.002 5.10E-13 0.042 1.41E-16 0.056 0.000 TRUE 1.31E-15

rs7540681 C T -0.303 0.011 0.434 0.479 0.002 2.00E-08 0.041 1.43E-13 0.045 0.000 TRUE 1.03E-12

rs7551507 T C 0.297 -0.018 0.506 0.563 0.002 9.30E-30 0.048 7.11E-10 0.031 0.000 TRUE 9.71E-09

rs7557796 T C 0.241 0.016 0.331 0.348 0.002 2.30E-19 0.054 7.80E-06 0.017 0.000 TRUE 4.15E-05

rs7607369 G A 0.294 -0.012 0.516 0.561 0.002 9.30E-13 0.038 4.94E-15 0.050 0.000 TRUE 3.53E-14

rs761423 C T 0.182 -0.011 0.440 0.450 0.002 5.50E-11 0.044 3.09E-05 0.014 0.000 TRUE 9.80E-05

rs7630080 A G 0.396 0.017 0.860 0.924 0.003 4.10E-08 0.069 7.69E-09 0.028 0.000 TRUE 2.56E-08
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SNP eff. oth. beta beta eaf eaf se pval se pval rsq rsq steiger steiger

all. all. exp. out. exp. out. out. out. exp. exp. exp. out. dir pval

rs7652415 C T 0.214 -0.016 0.802 0.858 0.003 9.70E-10 0.056 0.0001 0.012 0.000 TRUE 0.000371

rs7811342 T C -0.214 0.020 0.826 0.894 0.003 1.10E-11 0.064 0.0009 0.009 0.000 TRUE 0.002304

rs7830160 C T -0.159 0.013 0.659 0.746 0.002 4.10E-12 0.070 0.0237 0.004 0.000 TRUE 0.046259

rs7871866 G C 0.238 -0.019 0.850 0.847 0.002 2.30E-14 0.064 0.0002 0.011 0.000 TRUE 0.000730

rs7947143 G A 0.820 0.018 0.868 0.838 0.002 2.40E-14 0.112 3.19E-13 0.044 0.000 TRUE 2.77E-12

rs7963783 T G -0.197 0.013 0.749 0.715 0.002 4.00E-11 0.051 0.0001 0.013 0.000 TRUE 0.000321

rs8033995 G C 0.366 0.017 0.873 0.906 0.003 1.40E-08 0.083 1.09E-05 0.016 0.000 TRUE 3.11E-05

rs8075273 C A -0.196 0.013 0.706 0.719 0.002 3.70E-13 0.044 8.41E-06 0.017 0.000 TRUE 2.98E-05

rs823074 T C 0.550 0.011 0.629 0.588 0.002 1.60E-10 0.084 6.10E-11 0.035 0.000 TRUE 3.21E-10

rs833831 T G -0.002 0.016 0.894 0.872 0.003 2.60E-09 0.075 0.974874 0.000 0.000 FALSE 0.826017

rs881301 T C -0.249 -0.010 0.602 0.582 0.002 2.40E-08 0.045 3.53E-08 0.025 0.000 TRUE 1.24E-07

rs889398 C T -0.298 0.020 0.590 0.575 0.002 1.30E-32 0.054 2.67E-08 0.026 0.000 TRUE 3.28E-07

rs895330 C G -0.321 0.020 0.760 0.808 0.002 5.50E-19 0.051 4.39E-10 0.032 0.000 TRUE 4.14E-09

rs905938 C T -0.207 0.015 0.248 0.268 0.002 1.20E-15 0.053 8.74E-05 0.013 0.000 TRUE 0.000302

rs9299 C T -0.216 -0.012 0.414 0.353 0.002 3.60E-11 0.057 0.0001 0.012 0.000 TRUE 0.000382

rs936227 G A 0.179 0.012 0.551 0.611 0.002 2.30E-12 0.048 0.0002 0.012 0.000 TRUE 0.000560

rs9394312 C G -0.074 0.011 0.497 0.492 0.002 2.30E-10 0.046 0.1062 0.002 0.000 TRUE 0.176582

rs9821675 A G 0.546 -0.029 0.461 0.495 0.002 1.60E-50 0.015 1.00E-200 0.535 0.000 TRUE 3.56E-216

rs9921416 C T -0.035 0.010 0.567 0.559 0.002 1.20E-08 0.050 0.4814 0.000 0.000 TRUE 0.641649

rs9965170 G A -0.210 0.010 0.605 0.571 0.002 2.50E-08 0.050 2.71E-05 0.015 0.000 TRUE 7.31E-05

rs998732 A G -0.404 0.017 0.831 0.842 0.002 2.00E-14 0.060 1.89E-11 0.037 0.000 TRUE 1.26E-10
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Table C.24: Summary of repeat univariable 2 sample MR (2SMR)
using instruments which survived Steiger filtering (CVD outcomes)
Repeated 2SMR analyses after removing 2 instruments from both the adipose-
and brain-derived sets of instruments based on Steiger filtering, using the ivw
method. Abbreviations: coronary heart disease (CHD), type 2 diabetes (T2D),
atrial fibrillation (AF), heart failure (HF), peripheral artery disease (PAD)

]

outcome exposure nsnp b se pval OR lower CI upper CI

CHD adipose 80 0.383 0.131 0.00350 1.467 1.134 1.898
CHD brain 133 0.416 0.086 1.48E-06 1.515 1.279 1.795
T2D adipose 77 0.411 0.213 0.05353 1.509 0.994 2.291
T2D brain 120 0.740 0.150 8.91E-07 2.095 1.560 2.814
AF adipose 79 0.273 0.107 0.01052 1.314 1.066 1.619
AF brain 133 0.299 0.084 0.00037 1.348 1.144 1.589
HF adipose 77 0.528 0.108 1.13E-06 1.695 1.371 2.097
HF brain 121 0.560 0.076 2.38E-13 1.750 1.507 2.033
Stroke adipose 79 0.147 0.128 0.24960 1.159 0.902 1.489
Stroke brain 133 0.131 0.079 0.09639 1.140 0.977 1.331
PAD adipose 76 0.256 0.199 0.19832 1.292 0.875 1.908
PAD brain 120 0.412 0.146 0.00486 1.510 1.134 2.012

Table C.25: Summary of repeat univariable 2 sample MR (2SMR)
using instruments which survived Steiger filtering (cardiac measures)
Repeated 2SMR analyses after removing 2 instruments from both the adipose-
and brain-derived sets of instruments based on Steiger filtering, using the ivw
method. Abbreviations: left ventricular end-diastolic volume (LVEDV), left
ventricular end-systolic volume (LVESV), stroke volume (SV), left ventricular
ejection fraction (LVEF)

outcome exposure nsnp b se pval lower CI upper CI

LVEDV adipose 80 2.7E-01 6.9E-02 9.16E-05 1.4E-01 4.1E-01
LVEDV brain 133 1.7E-01 5.0E-02 0.00086 6.8E-02 2.6E-01
LVEF adipose 80 -3.1E-02 7.8E-02 0.68688 -1.8E-01 1.2E-01
LVEF brain 133 -1.5E-02 5.5E-02 0.79315 -1.2E-01 9.4E-02
LVESV adipose 80 1.9E-01 6.9E-02 0.00517 5.8E-02 3.3E-01
LVESV brain 133 1.2E-01 4.9E-02 0.01592 2.2E-02 2.1E-01
LVSV adipose 80 2.8E-01 7.6E-02 0.00017 1.4E-01 4.3E-01
LVSV brain 133 1.8E-01 5.4E-02 0.00079 7.5E-02 2.9E-01
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Figure C.4: Mendelian randomization results for BMI instrumented using tissue-partitioned sets of variants in the
univariable model (A) and the multivariable model (B). Forest plot illustrating the odds ratio per 1-standard deviation (SD)
change in risk and 95% confidence interval (CI) for each outcome analyzed in Mendelian randomization (MR) analyses using genetic risk
scores (GRS) derived from adipose- and brain-tissue partitioned variants to instrument BMI. Circles representing central estimates are
filled in when confidence intervals as illustrated by lines do not overlap with the null.
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Table D.1: Genetic loci identified by colocalization analysis incorporated into the adipose- and brain-tissue instrumented
BMI exposures in multivariable MR analyses SNP=single nucleotide polymorphism, PPA=posterior probability of association;
association with both traits with a common causal variant (PPA4)

SNP CHR effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs1000940 17 A G 0.701 -0.015 0.002 1.10E-17 794558 SLC25A11 0.830 RPAIN 0.987

rs10144318 14 A C 0.489 0.009 0.002 1.40E-08 794528 STYX 0.585 STYX 0.886

rs1038088 17 T G 0.492 -0.012 0.002 4.60E-13 794680 CORO6 0.525 CORO6 0.885

rs1045411 13 T C 0.265 -0.015 0.002 2.30E-15 776153 HSPH1 0.076 HMGB1 0.961

rs10460960 3 A G 0.888 0.020 0.003 8.10E-15 793248 NKTR 0.231 ZNF662 0.971

rs1048303 7 T C 0.586 -0.011 0.002 2.70E-10 690582 PVRIG 0.283 AP1S1 0.996

rs1048932 11 A C 0.416 -0.016 0.002 3.80E-22 795167 CADM1 1.000 CADM1 0.186

rs1075901 17 T C 0.436 -0.012 0.002 1.20E-13 794789 ZSWIM7 0.747 NCOR1 0.882

rs10768994 11 T C 0.566 0.011 0.002 6.40E-12 791685 TSPAN18 0.156 HSD17B12 1.000

rs10779751 1 A G 0.274 0.014 0.002 2.50E-14 794997 MTOR 0.801 MTOR 0.718

rs10824218 10 A T 0.552 0.012 0.002 7.20E-12 669278 VCL 0.400 VCL 0.988

rs10832778 11 C G 0.378 -0.013 0.002 1.30E-13 783042 NCR3LG1 0.983 PLEKHA7 0.447

rs10838465 11 A C 0.697 0.014 0.002 9.10E-14 692129 CREB3L1 0.131 CTD-2210P24.4 0.845

rs10878946 12 T C 0.714 -0.014 0.002 3.60E-13 685707 RAP1B 0.335 CPSF6 0.928

rs10886017 10 A C 0.252 0.015 0.002 1.40E-15 786354 KIAA1598 0.951 GFRA1 0.136

rs10923724 1 T C 0.573 -0.012 0.002 6.40E-13 789514 TBX15 0.967 GDAP2 0.044

rs10971712 9 T C 0.108 -0.020 0.003 6.40E-13 692587 GALT 0.824 UBE2R2 0.914

rs11066188 12 A G 0.418 -0.012 0.002 8.10E-13 792755 ALDH2 0.937 MAPKAPK5 0.272

rs1117080 20 C G 0.702 0.011 0.002 7.00E-09 690702 YWHAB 0.832 YWHAB 0.913

rs11538 22 A G 0.820 -0.014 0.002 3.30E-09 692349 BCL2L13 0.405 BID 0.967
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SNP CHR effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs11577094 1 T C 0.081 0.018 0.003 6.90E-10 779686 DNALI1 0.996 SF3A3 0.224

rs11629783 15 C G 0.769 0.015 0.002 9.80E-13 690824 IGDCC3 0.173 MAP2K1 0.899

rs11635675 15 T G 0.647 0.012 0.002 1.30E-11 688719 USP3 0.810 FAM96A 0.180

rs11670142 19 T G 0.606 -0.011 0.002 4.70E-10 681469 PPFIA3 0.976 TMEM143 0.390

rs11710798 3 A C 0.891 0.017 0.003 2.90E-09 671320 IP6K2 0.922 IP6K2 0.940

rs11866815 16 T C 0.246 -0.016 0.002 1.00E-16 792501 LUC7L 0.400 PDIA2 0.955

rs12022461 1 A G 0.180 -0.016 0.002 2.40E-12 692241 SPOCD1 0.740 S100PBP 0.841

rs12044597 1 A G 0.497 -0.014 0.002 1.70E-18 789125 SLC35E2B 0.994 SLC35E2B 0.995

rs12120851 1 T C 0.789 -0.014 0.002 2.00E-09 463005 CSDE1 0.371 SYCP1 0.933

rs12150665 17 T C 0.594 0.016 0.002 1.60E-22 795501 DHRS11 0.986 DHRS11 0.990

rs12411886 10 A C 0.083 0.027 0.003 1.50E-19 792405 PDCD11 0.839 CNNM2 0.944

rs12468863 2 T C 0.524 -0.015 0.002 5.10E-21 784269 CCDC121 0.176 KCNK3 0.970

rs12545740 8 A C 0.557 0.011 0.002 2.50E-09 674019 MAK16 0.780 DUSP26 0.930

rs12564992 1 A G 0.886 -0.020 0.003 5.30E-14 795119 SERPINC1 0.990 SLC9C2 0.950

rs12595749 15 A G 0.571 0.014 0.002 5.70E-16 692290 KIAA1024 0.253 DNAJA4 0.832

rs12597712 16 C G 0.420 -0.011 0.002 1.40E-10 727187 RPGRIP1L 0.063 FTO 0.990

rs12628891 22 T C 0.317 -0.011 0.002 3.00E-09 686575 H1F0 0.964 GCAT 0.674

rs1263618 2 T C 0.686 -0.012 0.002 5.30E-12 790501 GPR1 0.898 EEF1B2 0.481

rs12759296 1 T G 0.689 0.010 0.002 1.90E-08 692127 DNAJC16 0.557 AGMAT 0.933

rs12779943 10 T C 0.082 0.021 0.003 2.00E-11 692211 PTCHD3 0.267 ANKRD26 0.937

rs12905439 15 C G 0.661 0.012 0.002 1.40E-10 675205 LRRC28 0.312 PGPEP1L 0.910

rs12964689 18 A G 0.518 0.020 0.002 5.10E-32 692097 C18orf8 0.768 C18orf8 0.953

rs13072731 3 A C 0.395 -0.011 0.002 2.30E-09 691645 SLC25A38 0.567 EXOG 0.916

rs13174863 5 A G 0.845 -0.019 0.002 2.90E-16 773762 WDR55 0.229 SIL1 0.903
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SNP CHR effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs13209968 6 C G 0.518 0.011 0.002 3.10E-11 692069 HEY2 0.801 HEY2 0.964

rs13240600 7 A G 0.845 0.020 0.002 3.50E-17 692233 ARPC1A 0.888 ZKSCAN5 0.965

rs138289 22 A T 0.517 0.010 0.002 3.30E-09 687258 SELM 0.989 DEPDC5 0.620

rs1394 8 A G 0.640 -0.015 0.002 2.80E-19 783284 MSRA 0.871 PINX1 0.418

rs1452075 3 T C 0.728 0.014 0.002 1.30E-14 783729 PTPRG 0.116 CADPS 0.871

rs1465900 11 A C 0.781 0.013 0.002 4.80E-10 779748 RSF1 0.179 TSKU 0.950

rs1468069 10 A C 0.357 0.010 0.002 8.50E-09 691817 SLIT1 0.929 FRAT2 0.512

rs16864515 1 A C 0.093 0.019 0.003 1.70E-10 690508 PRRC2C 0.994 PRRC2C 0.627

rs16882001 6 A G 0.949 -0.027 0.004 1.50E-11 687690 RRAGD 0.890 ANKRD6 0.160

rs1704190 2 A G 0.634 0.010 0.002 3.30E-08 692593 C2orf69 0.874 TYW5 0.928

rs17207196 7 T C 0.412 -0.022 0.002 2.10E-35 668894 GTF2IRD2 0.956 POM121C 0.996

rs1730859 1 A G 0.658 -0.012 0.002 1.10E-11 788691 PRMT6 0.831 PRMT6 0.988

rs17391694 1 T C 0.119 0.032 0.003 7.50E-38 767720 FUBP1 0.997 GIPC2 0.083

rs17446091 8 T C 0.793 -0.012 0.002 1.80E-09 793600 STMN4 0.370 TRIM35 0.970

rs175165 22 T G 0.606 0.010 0.002 5.20E-09 690545 GSC2 0.492 ZDHHC8 0.975

rs17685 7 A G 0.274 0.011 0.002 7.10E-09 637984 MDH2 0.823 YWHAG 0.100

rs17695092 5 T G 0.692 0.011 0.002 3.40E-09 775102 CPEB4 0.908 CPEB4 0.935

rs17757975 6 T C 0.852 0.014 0.002 4.20E-09 690716 GLO1 0.561 GLO1 0.885

rs1784460 11 A T 0.404 0.013 0.002 9.00E-14 680042 HMBS 0.665 HMBS 0.895

rs1830074 7 T C 0.712 -0.012 0.002 1.40E-09 689911 AIMP2 0.342 ZNF12 0.996

rs1884389 20 T C 0.429 -0.010 0.002 4.00E-09 683669 NSFL1C 0.973 SIRPA 0.601

rs1899689 7 T C 0.399 0.012 0.002 1.50E-12 794654 PTPRZ1 0.058 CADPS2 0.871

rs1993709 1 A G 0.182 -0.033 0.002 1.90E-57 786001 NEGR1 0.037 NEGR1 0.931

rs2010281 14 A G 0.355 -0.016 0.002 6.70E-21 794009 PPP1R13B 0.738 TRMT61A 0.862
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SNP CHR effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs2052883 5 A G 0.587 0.010 0.002 1.80E-08 692071 PJA2 0.938 FBXL17 0.035

rs2074613 5 T C 0.555 0.011 0.002 1.70E-10 689896 PCDHA3 0.824 HARS 0.520

rs208015 17 T C 0.078 0.036 0.003 1.40E-25 691575 IGF2BP1 0.187 SP2 0.829

rs2162524 2 T C 0.668 -0.016 0.002 4.10E-17 691302 SP140 0.159 TRIP12 0.889

rs2170382 8 T C 0.120 0.017 0.003 2.40E-10 690485 RDH10 0.175 STAU2 0.835

rs217433 7 T C 0.795 -0.012 0.002 2.00E-08 790096 NUDCD3 0.443 NUDCD3 0.847

rs223391 4 A G 0.195 -0.013 0.002 1.60E-10 793455 BANK1 0.230 CENPE 0.981

rs2235564 1 T C 0.347 0.013 0.002 3.70E-13 691544 CHD5 0.276 KLHL21 0.878

rs2238373 16 A G 0.649 0.011 0.002 3.50E-09 629575 NTHL1 0.840 RPS2 0.636

rs2246012 6 T C 0.837 -0.016 0.002 3.10E-13 795598 TAAR6 0.164 MED23 0.911

rs2280039 2 A G 0.653 0.010 0.002 2.40E-08 794862 SPEG 0.175 PTPRN 0.803

rs2282231 1 T C 0.225 0.017 0.002 4.80E-15 689443 BMP8A 0.908 RLF 0.518

rs2293605 3 T C 0.131 -0.017 0.003 3.60E-10 668940 KLHL6 0.845 ECE2 0.924

rs2304130 19 A G 0.915 0.018 0.003 2.90E-09 783847 YJEFN3 0.953 HAPLN4 0.962

rs2367112 5 T G 0.508 0.012 0.002 2.30E-13 794305 RGS7BP 0.941 SGTB 0.088

rs2425024 20 A C 0.664 -0.010 0.002 2.70E-08 692589 ITCH 0.932 TRPC4AP 0.586

rs2425847 20 A G 0.593 -0.012 0.002 2.20E-11 686737 WFDC3 0.855 SNX21 0.336

rs2481665 1 T C 0.559 0.016 0.002 7.20E-23 795247 DOCK7 0.054 L1TD1 0.857

rs263041 3 A G 0.367 0.012 0.002 2.20E-12 692268 MAP6D1 0.986 KLHL6 0.270

rs2710323 3 T C 0.520 -0.014 0.002 4.80E-18 790805 NT5DC2 0.967 GLYCTK 0.994

rs28350 3 A G 0.193 0.018 0.002 3.50E-15 686689 ZBTB47 0.097 ZNF662 0.971

rs2837398 21 A C 0.596 -0.011 0.002 1.10E-10 680214 B3GALT5 0.094 DSCAM 0.938

rs2842385 6 A G 0.802 -0.012 0.002 3.40E-08 689031 NHLRC1 0.090 ID4 0.957

rs3134353 8 A T 0.387 -0.013 0.002 2.50E-12 679869 YWHAZ 0.731 YWHAZ 0.987
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SNP CHR effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs329277 7 T G 0.521 -0.010 0.002 1.10E-08 686149 DPY19L1 0.918 BMPER 0.054

rs349088 11 A C 0.498 -0.013 0.002 1.80E-13 684401 TMEM126B 0.121 AP000974.1 0.883

rs3731544 3 A C 0.071 0.021 0.003 7.50E-12 776530 SCAP 0.603 CSPG5 0.856

rs3803286 14 A G 0.343 0.018 0.002 4.10E-23 691435 DYNC1H1 0.094 TRAF3 0.988

rs3807875 7 A G 0.629 -0.009 0.002 3.50E-08 771110 PTPRZ1 0.057 CADPS2 0.871

rs3810291 19 A G 0.670 0.027 0.002 2.10E-52 763296 SAE1 0.938 ZC3H4 0.632

rs3813680 6 A G 0.844 0.014 0.002 1.60E-09 692399 SLC17A4 0.271 C6orf62 0.903

rs3814883 16 T C 0.476 0.023 0.002 1.10E-40 685519 ZNF747 0.477 DOC2A 0.912

rs3844598 5 A G 0.479 -0.010 0.002 3.80E-08 690704 PCDHGA2 0.947 PCDHGA3 0.985

rs3888190 16 A C 0.404 0.027 0.002 9.20E-60 794486 ATXN2L 0.838 NFATC2IP 0.943

rs3957285 19 A G 0.526 0.014 0.002 2.90E-16 681716 TMEM259 0.896 KLF16 0.819

rs3977755 10 T C 0.280 -0.014 0.002 5.90E-13 731529 PDCD11 0.862 INA 0.965

rs4012234 20 T G 0.408 -0.014 0.002 9.90E-16 689653 EIF2S2 0.945 GSS 0.696

rs4077093 12 T G 0.217 0.013 0.002 5.10E-09 620584 AC139768.1 0.999 FAM186A 0.071

rs4132228 3 T C 0.289 0.010 0.002 1.50E-08 795614 ADAMTS9 0.970 PRICKLE2 0.037

rs4148866 12 T C 0.407 0.010 0.002 4.00E-08 676418 HCAR1 0.955 ARL6IP4 0.320

rs427943 21 A C 0.433 -0.017 0.002 7.30E-23 712095 KRTAP10-10 0.152 ADARB1 0.937

rs450231 9 A G 0.753 -0.013 0.002 2.10E-10 692346 C9orf156 0.074 ANKS6 0.895

rs455527 16 T C 0.944 0.020 0.004 1.10E-08 779790 AC137932.1 0.932 CTU2 0.131

rs4556997 2 A C 0.135 0.020 0.002 6.90E-17 792972 AFF3 0.890 TBC1D8 0.101

rs460799 5 A G 0.268 -0.012 0.002 6.40E-10 690884 MAST4 0.107 ERBB2IP 0.842

rs4653017 1 T C 0.682 0.012 0.002 4.50E-11 686378 ZNF362 0.596 ZNF362 0.950

rs4677812 3 A C 0.281 -0.014 0.002 1.40E-12 691839 PCYT1A 0.834 ACAP2 0.834

rs4704513 5 C G 0.819 -0.013 0.002 7.40E-09 686651 SCAMP1 0.310 SCAMP1 0.897
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rs472611 11 A G 0.662 -0.010 0.002 3.80E-08 686211 CXCR5 0.326 PVRL1 0.814

rs4796243 17 A G 0.303 -0.012 0.002 6.10E-11 691686 DHRS11 0.986 DHRS11 0.990

rs4841659 8 T C 0.479 0.015 0.002 9.20E-18 687488 AF131215.5 0.989 FAM86B1 0.950

rs4865796 5 A G 0.691 -0.010 0.002 5.20E-09 789716 FST 0.990 SNX18 0.172

rs4877313 9 A T 0.782 0.013 0.002 4.10E-10 691598 ISCA1 0.940 GAS1 0.158

rs4889606 16 A G 0.620 0.020 0.002 2.80E-33 788888 ZNF668 0.543 ZNF646 0.926

rs4970712 1 A C 0.207 0.014 0.002 6.70E-12 793514 EVI5 0.818 EVI5 0.915

rs4985557 16 T C 0.487 -0.010 0.002 1.60E-08 669579 CLEC18A 0.984 EXOSC6 1.000

rs559231 18 T G 0.396 0.014 0.002 2.40E-14 685154 PIK3C3 0.877 RIT2 0.810

rs591088 1 T C 0.559 -0.010 0.002 1.60E-08 691522 CCDC23 0.808 C1orf50 0.738

rs6050446 20 A G 0.030 -0.034 0.005 4.40E-13 766287 GINS1 0.088 ENTPD6 0.852

rs6463489 7 T C 0.109 0.016 0.003 3.10E-09 791893 FBXL18 0.978 FBXL18 0.957

rs6512302 20 C G 0.751 0.014 0.002 2.10E-12 686053 SOX18 0.409 OPRL1 0.990

rs6569648 6 T C 0.773 -0.013 0.002 3.70E-11 795618 SMLR1 0.123 L3MBTL3 0.906

rs6587552 1 A G 0.241 0.017 0.002 1.60E-17 689723 SELENBP1 0.993 TARS2 0.923

rs6606686 12 C G 0.690 -0.014 0.002 7.60E-15 795209 ATP2A2 0.765 TCTN1 0.923

rs6692586 1 A G 0.168 0.019 0.002 1.10E-16 690921 ASAP3 0.312 LUZP1 0.864

rs6738445 2 T C 0.284 -0.013 0.002 1.90E-13 787966 SLC25A12 0.989 SLC25A12 0.906

rs6764533 3 A G 0.359 0.012 0.002 1.40E-10 690832 TM4SF19 0.443 UBXN7 0.864

rs676749 20 A T 0.502 -0.010 0.002 1.70E-09 691753 PCED1A 0.812 PTPRA 0.834

rs6777784 3 T G 0.622 0.011 0.002 4.70E-09 679371 PTPRG 0.108 CADPS 0.874

rs6901756 6 T C 0.878 0.015 0.003 2.90E-09 795378 FRS3 0.289 FRS3 0.983

rs6985109 8 A G 0.534 -0.018 0.002 1.50E-26 793993 MSRA 0.885 RP11-481A20.11 0.939

rs7031064 9 A G 0.522 0.011 0.002 3.10E-10 691926 SNAPC3 0.198 FREM1 0.984
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rs7083450 10 T C 0.839 0.016 0.002 1.70E-12 795609 CNNM2 0.766 AS3MT 0.980

rs7102454 11 T C 0.657 -0.016 0.002 2.40E-18 691134 EFEMP2 0.970 MEN1 0.491

rs7124681 11 A C 0.413 0.026 0.002 3.20E-58 795474 MYBPC3 0.969 C1QTNF4 0.845

rs7133378 12 A G 0.327 0.013 0.002 9.40E-13 784423 ZNF664 0.968 DNAH10OS 0.958

rs7134628 12 A G 0.103 0.017 0.003 1.20E-09 691228 SP1 0.949 SP1 0.949

rs7172627 15 A G 0.528 -0.012 0.002 1.10E-11 690458 GOLGA8Q 0.095 OTUD7A 0.975

rs7189122 16 T C 0.830 -0.015 0.002 4.50E-11 692600 OGFOD1 0.828 OGFOD1 0.926

rs719802 11 T C 0.380 0.010 0.002 9.50E-09 692544 TTC12 0.334 TTC12 0.998

rs7200919 16 A G 0.413 0.010 0.002 9.30E-09 793695 PRMT7 0.871 NFATC3 0.988

rs7209235 17 A G 0.695 -0.011 0.002 8.00E-09 683445 TRIM47 0.456 CDK3 0.801

rs7220138 17 C G 0.696 -0.012 0.002 2.70E-10 638185 C17orf53 0.349 TMUB2 0.829

rs7334078 13 T C 0.712 0.012 0.002 2.20E-10 688374 STK24 0.824 FARP1 0.951

rs738140 22 A G 0.679 0.014 0.002 5.10E-13 687178 CYP2D6 0.450 WBP2NL 1.000

rs7535528 1 A G 0.374 -0.015 0.002 1.40E-16 632868 HES5 0.832 TPRG1L 0.258

rs7540681 1 T C 0.521 -0.011 0.002 2.00E-08 463005 NBPF1 0.948 NBPF1 0.987

rs7551507 1 T C 0.563 -0.018 0.002 9.30E-30 794579 LHX8 0.340 LRRC53 0.917

rs7557796 2 T C 0.348 0.016 0.002 2.30E-19 692414 KDM3A 0.921 KDM3A 0.910

rs7607351 2 T C 0.581 0.012 0.002 8.40E-12 685674 GFPT1 0.929 GFPT1 0.763

rs7607369 2 A G 0.439 0.012 0.002 9.30E-13 790384 GLB1L 0.451 PLCD4 0.863

rs761423 1 T C 0.550 0.011 0.002 5.50E-11 692545 MFAP2 0.507 ATP13A2 0.955

rs7630080 3 A G 0.924 0.017 0.003 4.10E-08 783736 TKT 0.256 PRKCD 0.881

rs7652415 3 T C 0.142 0.016 0.003 9.70E-10 680377 SETD5 0.360 SETD5 0.877

rs7716275 5 T G 0.193 -0.013 0.002 2.20E-10 781833 MYOT 0.860 ETF1 0.278

rs7811342 7 T C 0.894 0.020 0.003 1.10E-11 676265 AKR1D1 0.203 TTC26 0.908
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rs7830160 8 T C 0.254 -0.013 0.002 4.10E-12 794714 ZNF704 0.132 ZBTB10 0.884

rs7871866 9 C G 0.153 0.019 0.002 2.30E-14 683494 GOLGA2 0.696 SLC27A4 0.910

rs7947143 11 A G 0.163 -0.018 0.002 2.40E-14 690463 SLC22A12 0.316 TEX40 0.990

rs7963783 12 T G 0.715 0.013 0.002 4.00E-11 689765 FBXW8 0.377 TAOK3 0.929

rs8033995 15 C G 0.094 -0.017 0.003 1.40E-08 692600 CATSPER2 0.800 LCMT2 0.855

rs8075273 17 A C 0.282 -0.013 0.002 3.70E-13 795026 DDX42 0.550 DCAF7 0.888

rs823074 1 T C 0.588 0.011 0.002 1.60E-10 689143 NUCKS1 0.576 PM20D1 0.988

rs833831 12 T G 0.872 0.016 0.003 2.60E-09 667741 PRPH 0.204 RHEBL1 0.918

rs881301 8 T C 0.582 -0.010 0.002 2.40E-08 691753 FGFR1 0.916 FGFR1 0.968

rs889398 16 T C 0.425 -0.020 0.002 1.30E-32 789694 DDX19A 0.751 EXOSC6 0.965

rs895330 19 C G 0.808 0.020 0.002 5.50E-19 684271 ZBTB7A 0.344 PIAS4 0.856

rs905938 1 T C 0.733 -0.015 0.002 1.20E-15 795227 ZBTB7B 0.996 ZBTB7B 0.957

rs9299 17 T C 0.647 0.012 0.002 3.60E-11 692577 ATP5G1 0.954 CDK5RAP3 0.965

rs936227 15 A G 0.389 -0.012 0.002 2.30E-12 793122 SNUPN 0.746 ULK3 0.899

rs9394312 6 C G 0.492 0.011 0.002 2.30E-10 691704 UHRF1BP1 0.819 ANKS1A 0.993

rs9821675 3 A G 0.495 -0.029 0.002 1.60E-50 463005 MST1R 0.932 C3orf18 0.900

rs9921416 16 T C 0.441 -0.010 0.002 1.20E-08 682666 FTO 0.064 FTO 0.990

rs9965170 18 A G 0.429 -0.010 0.002 2.50E-08 692261 PIAS2 0.654 PIAS2 0.854

rs998732 19 A G 0.842 0.017 0.002 2.00E-14 793852 LPAR2 0.929 HAPLN4 0.945
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Table D.2: Genetic loci identified by colocalization analysis incorporated into the adipose- and brain-tissue childhood
body size exposures Effect estimates are weighted by female childhood body size stratified effects as these instruments were analysed
against breast cancer as an outcome. SNP=single nucleotide polymorphism, PPA=posterior probability of association; association with
both traits with a common causal variant (PPA4)

SNP effect allele other allele eaf beta se pval n Gene adipose PPA4 adipose Gene brain PPA4 brain

rs1000471 C T 0.784 -0.008 0.002 3.70E-08 453169 ISG20 0.144 RHCG 0.844

rs1061072 G A 0.893 0.012 0.002 2.40E-08 453169 ZRANB1 0.205 CTBP2 0.872

rs10733682 A G 0.473 0.010 0.001 1.60E-12 453169 LMX1B 0.991 ANGPTL2 0.120

rs10791902 C T 0.588 -0.008 0.001 3.60E-08 453169 RAD9A 0.885 RAD9A 0.783

rs10896348 T C 0.724 0.011 0.002 3.40E-14 453169 GAL 0.747 PPP6R3 0.353

rs11165687 C T 0.591 -0.009 0.001 9.40E-09 453169 PTBP2 0.923 RP11-286B14.1 0.054

rs11209943 A G 0.396 -0.017 0.001 9.70E-38 453169 NEGR1 0.026 NEGR1 0.984

rs115250958 C A 0.886 -0.024 0.002 5.60E-17 453169 NOTCH4 0.986 BRD2 0.940

rs11525873 T C 0.902 0.020 0.002 1.60E-13 453169 AKR1D1 0.164 TTC26 0.904

rs11642090 T C 0.626 -0.013 0.001 9.20E-16 453169 CMIP 0.976 BCMO1 0.371

rs11690500 T C 0.822 0.014 0.002 7.50E-11 453169 ADCY3 1.000 ADCY3 1.000

rs11727676 T C 0.904 0.011 0.002 3.20E-08 453169 FREM3 0.276 GYPA 0.761

rs1177279 A G 0.278 0.010 0.002 1.40E-08 453169 KIAA1841 0.825 RP11-493E12.2 0.837

rs11777719 A G 0.716 -0.011 0.002 8.50E-14 453169 CLDN23 0.871 FAM66A 0.633

rs11925138 G A 0.904 0.016 0.002 3.10E-08 453169 CPNE4 0.786 RP11-39E3.3 0.097

rs12042908 A G 0.438 0.032 0.001 2.30E-84 453169 LHX8 0.317 LRRC53 0.919

rs12045879 C T 0.687 0.009 0.002 5.30E-11 453169 DNAJC16 0.951 AGMAT 0.943

rs12110721 G A 0.826 -0.019 0.002 1.60E-23 453169 HCRTR2 0.953 COL21A1 0.331

rs12308065 A G 0.373 -0.010 0.001 1.10E-08 453169 AC002070.1 0.349 GCN1L1 0.968

rs12436513 C A 0.357 0.010 0.001 4.20E-09 453169 TRAF3 0.246 TRAF3 0.931
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rs12601380 A C 0.587 0.006 0.001 4.30E-08 453169 MYO19 0.891 DHRS11 0.972

rs12798028 C T 0.591 -0.016 0.001 1.10E-24 453169 ACP2 0.948 C1QTNF4 0.841

rs12817542 C T 0.939 -0.016 0.003 1.70E-09 453169 EID3 0.772 IGF1 0.391

rs13047416 C G 0.623 0.013 0.001 1.40E-17 453169 AP001042.1 0.891 AF064858.7 0.907

rs148696809 T C 0.882 -0.023 0.002 7.40E-18 453169 HLA-J 0.975 RP1-265C24.5 1.000

rs16982345 G A 0.750 -0.012 0.002 7.10E-13 453169 GATAD2A 0.790 BST2 0.366

rs17637472 G A 0.601 -0.009 0.001 4.10E-14 453169 ZNF652 0.978 GNGT2 0.652

rs1808579 C T 0.518 0.011 0.001 7.70E-11 453169 C18orf8 0.884 C18orf8 0.954

rs2034963 G C 0.351 0.013 0.001 6.50E-14 453169 CCDC12 0.331 DHX30 0.846

rs2115885 G A 0.792 0.012 0.002 1.00E-09 453169 TMEM161B 0.713 CTC-498M16.2 0.757

rs2238435 C G 0.386 -0.017 0.001 2.90E-30 453169 ADCY9 0.151 RP11-462G12.1 0.995

rs2242258 T C 0.741 -0.010 0.002 8.80E-09 453169 NDST2 0.653 GLUD1P3 0.939

rs2268762 A G 0.388 -0.009 0.001 2.50E-08 453169 EXOG 0.925 EXOG 0.859

rs2275241 G A 0.628 -0.014 0.001 6.30E-13 453169 LMX1B 0.991 ANGPTL2 0.118

rs2303384 C T 0.360 0.014 0.001 3.30E-18 453169 EFEMP2 0.982 MEN1 0.608

rs2307111 T C 0.605 0.009 0.001 1.10E-09 453169 COL4A3BP 0.419 POC5 0.929

rs2356864 G A 0.479 -0.007 0.001 8.00E-10 453169 EPS15 0.855 ELAVL4 0.795

rs2409743 C G 0.503 0.012 0.001 3.00E-15 453169 ENPP7P12 0.966 FAM66D 0.875

rs2594994 T A 0.178 0.018 0.002 2.50E-17 453169 VGLL4 0.906 VGLL4 0.731

rs2722406 C T 0.716 -0.013 0.002 4.60E-15 453169 IGF2BP3 0.918 GPNMB 0.300

rs28629903 T C 0.436 0.009 0.001 1.50E-10 453169 MLXIP 0.784 MLXIP 0.670

rs2939931 T C 0.517 -0.010 0.001 1.90E-08 453169 SEC23IP 0.332 SEC23IP 0.743

rs2958542 C T 0.632 0.009 0.001 1.80E-08 453169 AHNAK 0.931 SLC22A8 0.352

rs2965198 A G 0.348 -0.011 0.001 2.20E-10 453169 TM6SF2 0.915 ZNF14 0.918
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rs2970356 C G 0.679 -0.013 0.002 4.50E-11 453169 TTLL13 0.182 RP11-387D10.2 0.919

rs3013431 C T 0.388 0.009 0.001 1.40E-09 453169 MOV10 0.819 RP4-671G15.2 0.790

rs3095233 A G 0.861 -0.022 0.002 3.90E-19 453169 FLOT1 0.893 BAG6 0.992

rs3181269 C T 0.746 0.012 0.002 5.30E-09 453169 EHF 0.534 CD59 0.990

rs34196306 G C 0.893 -0.026 0.002 2.60E-18 453169 BTN3A2 0.947 BTN3A3 0.966

rs34229857 C T 0.971 -0.045 0.004 4.20E-16 453169 CMTM3 0.955 SLC9A5 0.412

rs34517439 C A 0.878 -0.012 0.002 2.20E-10 453169 FUBP1 0.998 RP4-564M11.2 0.107

rs35162296 C T 0.894 -0.025 0.002 1.20E-18 453169 ZNF391 0.924 PRSS16 0.973

rs35588936 C T 0.935 0.019 0.003 3.00E-10 453169 DAP3 0.834 ARHGEF2 0.495

rs35926495 C T 0.623 -0.009 0.001 4.80E-10 453169 NAT6 0.831 HYAL3 0.998

rs3810291 G A 0.325 -0.015 0.001 5.60E-23 453169 SAE1 0.892 ZC3H4 0.666

rs3815156 A G 0.824 -0.012 0.002 2.20E-08 453169 SMURF2P1 0.260 CRLF3 0.929

rs3961283 G A 0.272 0.009 0.002 1.20E-08 453169 PLA2G15 0.928 SLC7A6 0.946

rs39862 T C 0.717 0.010 0.002 7.40E-14 453169 MAST4 0.092 ERBB2IP 0.847

rs4267058 T C 0.626 0.009 0.001 1.30E-09 453169 KIF18A 0.049 METTL15 0.825

rs435775 A G 0.252 -0.010 0.002 5.20E-10 453169 GPR63 0.897 FUT9 0.072

rs4545941 T C 0.831 -0.010 0.002 1.10E-08 453169 KLF2 0.152 TMEM38A 0.858

rs4572029 A G 0.795 0.012 0.002 2.00E-10 453169 SUPV3L1 0.994 RP11-343J3.2 0.881

rs4723263 G C 0.567 -0.007 0.001 3.60E-09 453169 BBS9 0.991 BBS9 0.997

rs4739558 A G 0.399 0.009 0.001 6.60E-09 453169 FGFR1 0.908 FGFR1 0.981

rs4783789 T C 0.778 0.012 0.002 1.40E-08 453169 CYLD 0.752 RP11-7O14.1 0.341

rs488767 G T 0.395 0.011 0.001 6.70E-09 453169 USP37 0.860 RQCD1 0.849

rs4889630 T C 0.200 0.016 0.002 1.90E-12 453169 BCL7C 0.988 ZNF768 0.521

rs4985555 A G 0.501 0.009 0.001 4.60E-10 453169 ZNF19 0.598 EXOSC6 0.824
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rs6001872 A G 0.651 0.014 0.001 1.50E-17 453169 ADSL 0.769 CTA-223H9.9 0.356

rs601338 G A 0.492 0.010 0.001 2.10E-11 453169 ALDH16A1 0.323 NTN5 0.957

rs62037365 C G 0.602 -0.015 0.001 9.90E-22 453169 SULT1A2 0.936 SULT1A1 0.920

rs62134189 A G 0.897 0.017 0.002 1.00E-09 453169 LRPPRC 0.124 CAMKMT 0.931

rs62175963 T C 0.577 0.009 0.001 2.20E-10 453169 PLA2R1 0.973 RBMS1 0.807

rs6449532 C T 0.640 0.010 0.001 3.30E-14 453169 ERCC8 0.445 RP11-546M4.1 0.885

rs6577497 A T 0.614 0.010 0.001 1.90E-08 453169 RERE 0.274 RP5-1115A15.2 0.805

rs6743811 C A 0.285 0.011 0.002 2.60E-11 453169 ETAA1 0.745 ETAA1 0.913

rs67603370 G A 0.922 -0.017 0.003 3.40E-09 453169 SAT2 0.982 POLR2A 0.778

rs67679818 C T 0.418 0.007 0.001 4.70E-08 453169 IMMP2L 0.912 DOCK4-AS1 0.040

rs6974282 C T 0.804 0.013 0.002 1.50E-08 453169 ZCWPW1 0.871 ZCWPW1 0.904

rs6979832 A G 0.503 -0.011 0.001 2.70E-11 453169 RN7SL81P 0.452 RP11-155G14.5 0.720

rs7145052 C T 0.549 -0.010 0.001 3.70E-09 453169 RIN3 0.263 FBLN5 0.726

rs7162542 C G 0.443 0.008 0.001 3.80E-11 453169 GOLGA6L5P 0.883 SCAND2 0.270

rs7217460 G A 0.770 0.009 0.002 2.80E-08 453169 CACNG4 0.335 PRKCA 0.729

rs7237444 G A 0.328 0.010 0.002 3.40E-11 453169 PIK3C3 0.943 PIK3C3 0.931

rs72819571 G T 0.652 0.011 0.001 6.70E-16 453169 SRR 0.914 SMG6 0.944

rs7305424 A T 0.658 -0.012 0.001 2.30E-12 453169 FBXW8 0.085 KSR2 0.883

rs73085586 G A 0.799 -0.009 0.002 3.00E-08 453169 NKX2-2 0.269 NXT1 0.825

rs73422097 A G 0.699 -0.011 0.002 3.10E-12 453169 FRS3 0.993 FRS3 0.995

rs7354849 A G 0.541 -0.009 0.001 7.40E-09 453169 RPS7P3 0.099 SIPA1L2 0.837

rs7355953 T C 0.785 -0.016 0.002 6.60E-19 453169 CADM2 0.000 CADM2 0.900

rs7503580 C T 0.842 -0.014 0.002 8.70E-09 453169 SLC38A10 0.375 CTD-2526A2.2 0.752

rs7625768 G A 0.682 -0.010 0.002 1.30E-11 453169 CPNE4 0.786 RP11-39E3.3 0.106
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rs772175 G A 0.665 0.011 0.001 5.00E-08 453169 ANKRD36C 0.952 TMEM127 0.955

rs7787384 G A 0.177 0.012 0.002 9.30E-14 453169 PMS2P11 0.988 AC073635.5 0.341

rs7808296 C T 0.685 -0.012 0.002 2.80E-11 453169 DPY19L2P2 0.792 SPDYE2 0.578

rs7951870 T C 0.829 -0.011 0.002 5.30E-10 453169 MDK 0.946 PACSIN3 0.815

rs7958241 A G 0.656 -0.013 0.001 7.90E-19 453169 MCRS1 0.232 LMBR1L 0.808

rs8030456 C T 0.774 0.023 0.002 2.60E-37 453169 IQCH 0.289 SKOR1 0.727

rs8096658 C G 0.513 0.009 0.001 2.30E-10 453169 NFATC1 0.903 PARD6G 0.471

rs824207 A G 0.465 -0.009 0.001 3.70E-11 453169 PWRN1 0.061 NDN 0.907

rs836179 A G 0.631 0.011 0.001 1.20E-11 453169 ASIC1 0.945 RP4-605O3.4 0.948

rs884152 G T 0.356 -0.006 0.001 6.00E-09 453169 EBF2 0.872 KCTD9 0.186

rs9299 C T 0.343 -0.010 0.001 7.30E-11 453169 HOXB3 0.942 SCRN2 0.944

rs9438393 A G 0.586 0.007 0.001 3.10E-13 453169 PM20D1 0.996 PM20D1 0.995

rs9594686 C T 0.823 0.009 0.002 6.40E-09 453169 EPSTI1 0.114 FHP1 0.742

rs9611560 T C 0.261 0.007 0.002 6.50E-09 453169 SLC25A17 0.751 MKL1 0.669

rs9922288 A G 0.236 0.010 0.002 3.40E-10 453169 RBBP6 0.815 RBBP6 0.997
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Table D.3: Two-sample Mendelian randomization (MR) analysis of the total effect of BMI instrumented with 915
genetic variants on cardiovascular disease endpoints

outcome method nsnp b se pval OR lower CI upper CI

Coronary heart disease

MR Egger 916 0.592 0.089 4.13E-11 1.808 1.520 2.151
Weighted median 916 0.387 0.044 7.72E-19 1.473 1.352 1.605
Inverse variance weighted 916 0.373 0.030 2.16E-35 1.452 1.369 1.540
Penalised weighted median 916 0.381 0.044 2.19E-18 1.464 1.344 1.594

Atrial fibrillation

Inverse variance weighted 914 0.307 0.025 4.23E-34 1.359 1.293 1.428
Penalised weighted median 914 0.318 0.033 1.96E-21 1.374 1.287 1.467
MR Egger 914 0.316 0.075 2.57E-05 1.372 1.185 1.589
Weighted median 914 0.318 0.034 1.33E-20 1.374 1.285 1.469

Type 2 diabetes

MR Egger 880 1.106 0.133 4.05E-16 3.023 2.327 3.925
Weighted median 880 0.974 0.040 1.99E-133 2.648 2.450 2.861
Inverse variance weighted 880 0.870 0.045 4.47E-83 2.387 2.185 2.608
Penalised weighted median 880 0.986 0.039 8.44E-139 2.680 2.481 2.895

Heart failure

Inverse variance weighted 913 0.524 0.025 2.79E-100 1.688 1.609 1.772
Penalised weighted median 913 0.547 0.038 1.62E-47 1.728 1.605 1.861
MR Egger 913 0.644 0.073 6.68E-18 1.904 1.650 2.197
Weighted median 913 0.546 0.039 2.12E-45 1.726 1.601 1.862

Stroke

Inverse variance weighted 915 0.153 0.027 2.63E-08 1.165 1.104 1.230
Penalised weighted median 915 0.143 0.045 0.001407725 1.154 1.057 1.260
MR Egger 915 0.170 0.082 0.038061523 1.185 1.010 1.392
Weighted median 915 0.141 0.045 0.001760027 1.152 1.054 1.259

PAD

Inverse variance weighted 902 0.395 0.054 4.20E-13 1.484 1.334 1.651
Penalised weighted median 902 0.243 0.084 0.003641195 1.275 1.082 1.502
MR Egger 902 0.488 0.163 0.002768253 1.629 1.184 2.241
Weighted median 902 0.285 0.082 0.000515031 1.329 1.132 1.561
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Table D.4: Two-sample Mendelian randomization (MR) analysis of the total effect of BMI instrumented with 915
genetic variants on measures of cardiac structure and function

outcome method nsnp b se pval lower CI upper CI

Left venticular end diastolic volume

MR Egger 891 0.272 0.056 1.20E-06 0.163 0.381
Weighted median 891 0.222 0.029 1.52E-14 0.166 0.279
Inverse variance weighted 891 0.214 0.019 9.93E-30 0.177 0.251
Penalised weighted median 891 0.220 0.028 5.61E-15 0.165 0.275

Left venticular ejection fraction

MR Egger 891 -0.133 0.062 0.03192 -0.255 -0.012
Weighted median 891 -0.086 0.033 0.00956 -0.150 -0.021
Inverse variance weighted 891 -0.059 0.021 0.00501 -0.100 -0.018
Penalised weighted median 891 -0.087 0.032 0.00616 0.862 0.976

Left venticular end systolic volume

MR Egger 891 0.245 0.057 1.76E-05 0.134 0.356
Weighted median 891 0.196 0.029 2.33E-11 0.139 0.254
Inverse variance weighted 891 0.171 0.019 7.41E-19 0.133 0.208
Penalised weighted median 891 0.197 0.029 1.76E-11 0.139 0.254

Left venticular stroke volume

MR Egger 891 0.242 0.058 3.37E-05 0.128 0.355
Weighted median 891 0.229 0.029 2.93E-15 0.172 0.286
Inverse variance weighted 891 0.210 0.020 1.20E-26 0.171 0.249
Penalised weighted median 891 0.234 0.030 9.72E-15 0.174 0.293331



Table D.5: Univariable MR sensitivity analyses of tissue partitioned BMI (cardiovascular disease outcomes)
outcome exposure method nsnp b se pval OR lower CI upper CI

Atrial fibrillation

adipose

Inverse variance weighted 85 0.288 0.103 0.00497 1.334 1.091 1.631
Penalised weighted median 85 0.153 0.097 0.11467 1.165 0.964 1.408
MR Egger 85 0.259 0.328 0.43256 1.295 0.681 2.464
Weighted median 85 0.195 0.095 0.04019 1.215 1.009 1.465

brain

Inverse variance weighted 139 0.303 0.082 0.00020 1.354 1.154 1.589
Penalised weighted median 139 0.453 0.075 1.63E-09 1.572 1.357 1.822
MR Egger 139 0.278 0.281 0.32327 1.321 0.762 2.290
Weighted median 139 0.386 0.077 6.24E-07 1.471 1.264 1.712

Coronary heart disease

adipose

Inverse variance weighted 86 0.357 0.126 0.00461 1.430 1.116 1.831
Penalised weighted median 86 0.656 0.124 1.24E-07 1.927 1.511 2.458
MR Egger 86 0.634 0.406 0.12226 1.886 0.850 4.183
Weighted median 86 0.555 0.127 1.34E-05 1.742 1.357 2.237

brain

Inverse variance weighted 140 0.416 0.083 5.74E-07 1.515 1.288 1.784
Penalised weighted median 140 0.480 0.098 9.48E-07 1.616 1.334 1.957
MR Egger 140 0.551 0.287 0.05671 1.735 0.989 3.043
Weighted median 140 0.463 0.102 5.10E-06 1.589 1.302 1.939

Heart failure

adipose

Inverse variance weighted 86 0.507 0.102 7.07E-07 1.660 1.359 2.028
Penalised weighted median 86 0.588 0.104 1.77E-08 1.800 1.467 2.208
MR Egger 86 0.725 0.326 0.02899 2.064 1.089 3.913
Weighted median 86 0.583 0.109 8.47E-08 1.791 1.447 2.216

brain

Inverse variance weighted 140 0.548 0.073 4.85E-14 1.729 1.500 1.994
Penalised weighted median 140 0.556 0.091 1.05E-09 1.744 1.458 2.084
MR Egger 140 0.874 0.249 0.00061 2.396 1.471 3.905
Weighted median 140 0.560 0.087 1.16E-10 1.751 1.477 2.077

Stroke

adipose

Inverse variance weighted 85 0.152 0.123 0.21514 1.165 0.915 1.482
Penalised weighted median 85 0.343 0.125 0.00611 1.409 1.103 1.801
MR Egger 85 0.747 0.389 0.05824 2.110 0.985 4.521
Weighted median 85 0.264 0.129 0.04005 1.303 1.012 1.677

brain

Inverse variance weighted 139 0.116 0.078 0.13767 1.123 0.964 1.308
Penalised weighted median 139 -0.036 0.104 0.73175 0.965 0.788 1.182
MR Egger 139 -0.023 0.267 0.93038 0.977 0.579 1.649
Weighted median 139 0.005 0.102 0.95902 1.005 0.823 1.228

PAD

adipose

Inverse variance weighted 85 0.194 0.185 0.29532 1.214 0.844 1.746
Penalised weighted median 85 -0.090 0.250 0.71839 0.914 0.560 1.491
MR Egger 85 0.956 0.580 0.10320 2.601 0.834 8.111
Weighted median 85 -0.071 0.250 0.77498 0.931 0.570 1.520

brain

Inverse variance weighted 138 0.400 0.140 0.00428 1.492 1.134 1.964
Penalised weighted median 138 -0.014 0.192 0.94307 0.986 0.677 1.438
MR Egger 138 0.112 0.479 0.81483 1.119 0.438 2.858
Weighted median 138 0.213 0.191 0.26506 1.238 0.851 1.800

T2D

adipose

Inverse variance weighted 81 0.705 0.168 2.79E-05 2.024 1.456 2.816
Penalised weighted median 81 1.079 0.135 1.59E-15 2.940 2.255 3.833
MR Egger 81 1.348 0.523 0.01188 3.849 1.380 10.735
Weighted median 81 0.975 0.134 3.40E-13 2.651 2.039 3.447

brain

Inverse variance weighted 136 0.785 0.091 6.29E-18 2.193 1.835 2.621
Penalised weighted median 136 1.020 0.097 9.89E-26 2.774 2.292 3.357
MR Egger 136 0.823 0.325 0.01249 2.278 1.204 4.309
Weighted median 136 v 0.099 1.53E-19 2.443 2.013 2.964
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Table D.6: Univariable MR sensitivity analyses of tissue partitioned BMI (cardiac measures)
outcome exposure method nsnp b se pval lower CI upper CI

MRI SV

adipose

Inverse variance weighted 86 0.278 0.073 0.00016 0.134 0.422
Penalised weighted median 86 0.295 0.085 0.00052 0.129 0.462
MR Egger 86 0.225 0.235 0.34113 -0.236 0.687
Weighted median 86 0.276 0.084 0.00110 0.110 0.441

brain

Inverse variance weighted 140 0.173 0.053 0.00110 0.069 0.276
Penalised weighted median 140 0.118 0.068 0.08180 -0.015 0.251
MR Egger 140 0.147 0.182 0.42014 -0.210 0.504
Weighted median 140 0.133 0.070 0.05633 -0.004 0.271

MRI LVESV

adipose

Inverse variance weighted 86 0.180 0.068 0.00867 0.045 0.314
Penalised weighted median 86 0.291 0.088 0.00091 0.119 0.462
MR Egger 86 0.224 0.219 0.30949 -0.206 0.654
Weighted median 86 0.242 0.086 0.00492 0.073 0.411

brain

Inverse variance weighted 140 0.112 0.049 0.02193 0.016 0.209
Penalised weighted median 140 0.225 0.061 0.00024 0.105 0.346
MR Egger 140 0.274 0.169 0.10664 -0.057 0.604
Weighted median 140 0.208 0.062 0.00075 0.087 0.329

MRI LVEF

adipose

Inverse variance weighted 86 -0.018 0.076 0.81076 -0.166 0.130
Penalised weighted median 86 -0.142 0.094 0.12987 -0.325 0.042
MR Egger 86 -0.109 0.242 0.65267 -0.583 0.365
Weighted median 86 -0.099 0.096 0.30043 -0.287 0.088

brain

Inverse variance weighted 140 -0.014 0.055 0.79873 -0.122 0.094
Penalised weighted median 140 -0.014 0.070 0.84308 -0.150 0.122
MR Egger 140 -0.266 0.188 0.15947 -0.634 0.102
Weighted median 140 -0.014 0.071 0.83920 -0.153 0.124

MRI LVEF

adipose

Inverse variance weighted 86 0.260 0.068 0.00014 0.126 0.394
Penalised weighted median 86 0.266 0.080 0.00093 0.109 0.424
MR Egger 86 0.259 0.219 0.23943 -0.170 0.688
Weighted median 86 0.255 0.079 0.00136 0.099 0.410

brain

Inverse variance weighted 140 0.158 0.049 0.00139 0.061 0.254
Penalised weighted median 140 0.218 0.064 0.00069 0.092 0.345
MR Egger 140 0.234 0.170 0.17124 -0.099 0.566
Weighted median 140 0.215 0.063 0.00059 0.092 0.338
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Table D.7: Two-sample MR sensitivity analyses for total effect of BMI on cancer outcomes
outcome method nsnp b se pval OR lower CI upper CI

Lung cancer

Inverse variance weighted 891 0.116 0.017 7.50E-12 1.123 1.086 1.161
Penalised weighted median 891 0.105 0.024 1.06E-05 1.111 1.060 1.164
MR Egger 891 0.039 0.050 0.43151 1.040 0.943 1.147
Weighted median 891 0.087 0.024 0.00025 1.091 1.042 1.144

Colorectal cancer

Inverse variance weighted 891 -0.009 0.013 0.52424 0.991 0.966 1.018
Penalised weighted median 891 0.006 0.023 0.80369 1.006 0.962 1.052
MR Egger 891 -0.001 0.040 0.98930 0.999 0.925 1.080
Weighted median 891 0.007 0.022 0.74076 1.007 0.965 1.052

Kidney cancer

Inverse variance weighted 915 0.246 0.073 0.00070 1.279 1.109 1.475
Penalised weighted median 915 0.224 0.123 0.06937 1.251 0.982 1.592
MR Egger 915 0.527 0.217 0.01554 1.693 1.106 2.592
Weighted median 915 0.246 0.120 0.04048 1.279 1.011 1.618

Endometrial cancer

Inverse variance weighted 887 0.527 0.045 4.83E-31 1.693 1.549 1.851
Penalised weighted median 887 0.529 0.072 2.38E-13 1.697 1.473 1.955
MR Egger 887 0.729 0.123 5.03E-09 2.073 1.627 2.640
Weighted median 887 0.525 0.070 5.88E-14 1.691 1.474 1.940

Ovarian cancer

Inverse variance weighted 837 0.065 0.040 0.10753 1.067 0.986 1.154
Penalised weighted median 837 0.053 0.060 0.37581 1.054 0.938 1.185
MR Egger 837 0.187 0.108 0.08439 1.206 0.975 1.491
Weighted median 837 0.053 0.061 0.38257 1.054 0.936 1.187

Breast cancer

Inverse variance weighted 838 -0.091 0.030 0.00221 0.913 0.862 0.968
Penalised weighted median 838 -0.065 0.030 0.02905 0.937 0.884 0.993
MR Egger 838 -0.403 0.079 4.47E-07 0.668 0.572 0.780
Weighted median 838 -0.108 0.030 0.00030 0.898 0.847 0.952

Prostate cancer

Inverse variance weighted 881 -0.085 0.034 0.01216 0.918 0.859 0.982
Penalised weighted median 881 -0.115 0.037 0.00203 0.891 0.828 0.959
MR Egger 881 -0.095 0.092 0.30568 0.910 0.759 1.090
Weighted median 881 -0.115 0.037 0.00192 0.891 0.828 0.958
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Table D.8: Univariable MR sensitivity analyses of tissue partitioned BMI (cancer outcomes)
outcome exposure method nsnp b se pval OR lower CI upper CI

Pancreatic cancer

adipose

Inverse variance weighted 62 0.312 0.446 0.4837 1.366 0.570 3.272
Penalised weighted median 62 0.012 0.653 0.9848 1.013 0.281 3.644
MR Egger 62 0.218 1.406 0.8775 1.243 0.079 19.560
Weighted median 62 0.024 0.675 0.9718 1.024 0.273 3.848

brain

Inverse variance weighted 106 0.154 0.351 0.6601 1.167 0.587 2.321
Penalised weighted median 106 0.438 0.529 0.4084 1.549 0.549 4.372
MR Egger 106 1.526 1.200 0.2063 4.601 0.438 48.369
Weighted median 106 0.405 0.523 0.4396 1.499 0.537 4.181

Endometrial cancer

adipose

Inverse variance weighted 85 0.611 0.157 9.88E-05 1.843 1.355 2.507
Penalised weighted median 85 0.539 0.194 0.0055 1.714 1.172 2.507
MR Egger 85 0.976 0.500 0.0543 2.653 0.996 7.066
Weighted median 85 0.546 0.206 0.0081 1.726 1.152 2.585

brain

Inverse variance weighted 140 0.477 0.103 3.70E-06 1.612 1.317 1.973
Penalised weighted median 140 0.512 0.153 0.0008 1.669 1.237 2.250
MR Egger 140 0.860 0.353 0.0160 2.364 1.184 4.718
Weighted median 140 0.517 0.150 0.0006 1.677 1.250 2.250

Endometrial cancer

adipose

Inverse variance weighted 80 -0.143 0.124 0.2485 0.867 0.680 1.105
Penalised weighted median 80 -0.064 0.170 0.7049 0.938 0.672 1.308
MR Egger 80 -0.221 0.391 0.5742 0.802 0.373 1.726
Weighted median 80 -0.101 0.170 0.5501 0.904 0.648 1.260

brain

Inverse variance weighted 134 -0.036 0.106 0.7370 0.965 0.784 1.187
Penalised weighted median 134 0.110 0.135 0.4143 1.116 0.857 1.453
MR Egger 134 -0.047 0.359 0.8969 0.954 0.473 1.928
Weighted median 134 0.093 0.140 0.5082 1.097 0.834 1.444

Breast cancer

adipose

Inverse variance weighted 80 -0.103 0.080 0.2000 0.902 0.770 1.056
Penalised weighted median 80 -0.137 0.089 0.1234 0.872 0.732 1.038
MR Egger 80 0.267 0.251 0.2906 1.306 0.799 2.137
Weighted median 80 -0.118 0.093 0.2037 0.888 0.740 1.066

brain

Inverse variance weighted 134 -0.080 0.069 0.2476 0.923 0.807 1.057
Penalised weighted median 134 -0.065 0.072 0.3651 0.937 0.813 1.079
MR Egger 134 0.128 0.232 0.5806 1.137 0.722 1.790
Weighted median 134 -0.050 0.075 0.4989 0.951 0.822 1.100

Prostate cancer

adipose

Inverse variance weighted 84 -0.236 0.111 0.0334 0.790 0.636 0.982
Penalised weighted median 84 -0.356 0.115 0.0019 0.700 0.559 0.877
MR Egger 84 0.067 0.354 0.8502 1.069 0.534 2.142
Weighted median 84 -0.268 0.121 0.0271 0.765 0.604 0.970

brain

Inverse variance weighted 136 -0.266 0.087 0.0022 0.767 0.646 0.909
Penalised weighted median 136 -0.117 0.089 0.1882 0.890 0.747 1.059
MR Egger 136 -0.048 0.299 0.8716 0.953 0.531 1.710
Weighted median 136 -0.119 0.091 0.1890 0.888 0.743 1.060
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Table D.9: Univariable MR sensitivity analyses of tissue partitioned early life BMI effects on breast cancer risk
exposure method nsnp b se pval OR lower CI upper CI

adipose BMI

Inverse variance weighted 55 -0.518 0.192 0.007 0.596 0.409 0.868
Penalised weighted median 55 -0.317 0.151 0.036 0.729 0.542 0.979
MR Egger 55 -1.611 0.523 0.003 0.200 0.072 0.556
Weighted median 55 -0.395 0.155 0.011 0.674 0.498 0.912

brain BMI

Inverse variance weighted 49 -0.545 0.170 0.001 0.580 0.415 0.810
Penalised weighted median 49 -0.271 0.164 0.099 0.763 0.553 1.052
MR Egger 49 -1.413 0.419 0.001 0.243 0.107 0.553
Weighted median 49 -0.287 0.167 0.085 0.751 0.542 1.040

Table D.10: Two-sample MR analyses for total effect of BMI on replication datasets (lung and endometrial cancer) Lung
cancer (McKay et al, 2017), Endometrial (Rashkin et al, 2020)

outcome method nsnp b se pval OR lower CI upper CI

Endometrial cancer

MR Egger 797 0.433 0.264 0.1016 1.541 0.919 2.586
Weighted median 797 0.518 0.160 0.0012 1.679 1.226 2.299
Inverse variance weighted 797 0.479 0.094 3.14E-07 1.614 1.344 1.939
Penalised weighted median 797 0.522 0.155 0.0008 1.686 1.243 2.286

Lung cancer

MR Egger 832 0.263 0.120 0.0293 1.300 1.027 1.646
Weighted median 832 0.176 0.057 0.0021 1.193 1.066 1.335
Inverse variance weighted 832 0.204 0.039 1.44E-07 1.226 1.137 1.323
Penalised weighted median 832 0.152 0.056 0.0066 1.164 1.043 1.299
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Table D.11: Two-sample MR analyses for total effect of BMI on replication datasets Cigarettes smoked per day and alcohol
intake frequency

outcome method nsnp b se pval lower CI upper CI

Cigarettes smoked per day

MR Egger 883 0.284850713 0.057381514 8.28E-07 0.172382945 0.397318481
Weighted median 883 0.311218748 0.024538037 7.34E-37 0.263124195 0.3593133
Inverse variance weighted 883 0.336110764 0.019433613 5.10E-67 0.298020883 0.374200646
Penalised weighted median 883 0.332736092 0.02449083 4.84E-42 0.284734065 0.380738118

Alcohol intake frequency

MR Egger 892 0.298823228 0.04421127 2.51E-11 0.21216914 0.385477316
Weighted median 892 0.231645794 0.018532226 7.50E-36 0.195322632 0.267968956
Inverse variance weighted 892 0.258435294 0.014991212 1.35E-66 0.229052518 0.287818071
Penalised weighted median 892 0.230372076 0.018877993 2.99E-34 0.193371209 0.267372943

Table D.12: Two-sample MR analyses for effect of tissue partitioned BMI on replication datasets (Univariable sensitivity
analyses) Alcohol intake frequency and cigarettes smoked per day.

outcome exposure method nsnp b se pval lower CI upper CI

Alcohol intake frequency

adipose BMI

Inverse variance weighted 88 0.314 0.049 1.30E-10 0.218 0.410
Penalised weighted median 88 0.259 0.049 1.03E-07 0.164 0.355
MR Egger 88 0.699 0.150 1.19E-05 0.404 0.993
Weighted median 88 0.277 0.049 1.33E-08 0.182 0.373

brain BMI

Inverse variance weighted 141 0.316 0.042 3.49E-14 0.235 0.398
Penalised weighted median 141 0.308 0.038 2.48E-16 0.234 0.381
MR Egger 141 0.740 0.139 4.16E-07 0.467 1.013
Weighted median 141 0.317 0.038 8.30E-17 0.242 0.391

Cigarettes smoked per day

adipose BMI

Inverse variance weighted 85 0.337 0.066 3.03E-07 0.208 0.467
Penalised weighted median 85 0.351 0.079 8.98E-06 0.196 0.505
MR Egger 85 0.531 0.210 0.01326 0.120 0.943
Weighted median 85 0.343 0.081 2.00E-05 0.186 0.501

brain BMI

Inverse variance weighted 136 0.414 0.054 1.78E-14 0.308 0.519
Penalised weighted median 136 0.332 0.065 3.36E-07 0.205 0.460
MR Egger 136 0.468 0.186 0.01318 0.103 0.834
Weighted median 136 0.339 0.063 7.96E-08 0.215 0.463
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Table D.13: Two-sample MR analyses for effect of tissue partitioned BMI on replication datasets (Univariable sensitivity
analyses) Lung cancer (McKay et al, 2017), Endometrial (Rashkin et al, 2020)

outcome exposure method nsnp b se OR pval lower CI upper CI

Lung cancer

adipose BMI

Inverse variance weighted 79 0.348 0.133 0.009 1.416 1.091 1.838
Penalised weighted median 79 0.382 0.179 0.033 1.465 1.032 2.080
MR Egger 79 0.981 0.428 0.025 2.667 1.152 6.175
Weighted median 79 0.393 0.182 0.031 1.482 1.037 2.116

brain BMI

Inverse variance weighted 134 0.289 0.098 0.003 1.335 1.101 1.619
Penalised weighted median 134 0.340 0.134 0.011 1.406 1.081 1.828
MR Egger 134 0.696 0.343 0.045 2.006 1.024 3.931
Weighted median 134 0.334 0.139 0.016 1.396 1.063 1.834

Endometrial cancer

adipose BMI

Inverse variance weighted 85 0.814 0.296 0.006 2.256 1.263 4.029
Penalised weighted median 85 0.814 0.410 0.047 2.257 1.011 5.041
MR Egger 85 1.200 0.972 0.220 3.320 0.494 22.314
Weighted median 85 0.814 0.432 0.059 2.257 0.968 5.264

brain BMI

Inverse variance weighted 139 0.235 0.232 0.311 1.265 0.803 1.994
Penalised weighted median 139 0.399 0.338 0.238 1.490 0.769 2.889
MR Egger 139 0.907 0.815 0.268 2.476 0.501 12.237
Weighted median 139 0.385 0.350 0.271 1.470 0.741 2.919
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Table D.14: Univariable and multivariable MR analyses on cancer outcomes using instruments partitioned by “null”
tissues Minor salivary gland and ovary (GTEx Consortium)

Univariable MR analysis Multivariable MR analysis

Outcome Exposure nsnps Beta SE pval Beta SE pval

Colorectal cancer
Minor Salivary Gland 41 -0.011 0.008 0.167 -0.012 0.015 0.445
Ovary 51 -0.003 0.007 0.670 0.003 0.014 0.849

Breast cancer
Minor Salivary Gland 49 -0.114 0.116 0.324 0.318 0.285 0.264
Ovary 40 0.026 0.139 0.853 -0.314 0.251 0.211

Endometrial cancer
Minor Salivary Gland 41 0.594 0.194 0.002 0.291 0.392 0.458
Ovary 51 0.768 0.172 8.32E-06 0.587 0.347 0.090

Kidney cancer
Minor Salivary Gland 41 0.590 0.405 0.145 0.247 0.341 0.469
Ovary 51 -0.009 0.373 0.981 0.414 0.305 0.175

Lung cancer
Minor Salivary Gland 39 0.508 0.192 0.008 1.280 0.729 0.079
Ovary 49 0.484 0.165 0.003 -0.833 0.658 0.206

Ovarian cancer
Minor Salivary Gland 40 -0.010 0.187 0.959 -0.177 0.390 0.650
Ovary 49 0.084 0.166 0.611 0.222 0.343 0.517

Prostate cancer
Minor Salivary Gland 41 0.001 0.153 0.997 -0.426 0.318 0.181
Ovary 50 0.263 0.137 0.056 0.575 0.309 0.062

Table D.15: Two-sample MR results comparing tissue partitioned effects with blood derived BMI effects (univariable
and multivariable) Brain and blood effects on lung cancer and endometrial cancer results.

outcome exposure nsnp b se pval OR lower CI upper CI

Lung cancer
brain BMI 232 0.134 0.066 0.043 1.143 1.004 1.301
blood BMI 232 0.083 0.061 0.175 1.087 0.964 1.225

Endometrial cancer
brain BMI 230 -0.177 0.309 0.567 0.838 0.457 1.537
blood BMI 230 0.703 0.284 0.013 2.019 1.158 3.520
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Table D.16: Two-sample MR results comparing tissue partitioned effects with blood derived BMI effects (univariable
and multivariable) Adipose and brain effects on lung cancer and endometrial cancer results.

outcome exposure nsnp b se pval OR lower CI upper CI

Lung cancer
blood BMI 202 0.147 0.071 0.038 1.158 1.008 1.330
adipose BMI 202 -0.002 0.089 0.980 0.998 0.838 1.188

Endometrial cancer
adipose BMI 200 0.847 0.404 0.036 2.333 1.057 5.152
blood BMI 200 0.066 0.310 0.832 1.068 0.582 1.960
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Figure D.1: Power analysis by simulations The following analysis was performed by TGR while the study was undergoing the
perr-review process. Simulations were conducted to investigate how variance explained by genetic instruments in the study contributes
to statistical power across various sample sizes. Simulations were conducted using the “simulateGP” R package to evaluate the relative
power needed for instrument derivation across a range of effect sizes (0.1, 0.125 and 0.15), outcome sample sizes (10,000, 25,000, 50,000,
75,000 and 100,000) and proportion of variance explained by tissue-partitioned instruments (0.5%, 1%, 1.5%, 2%, 2.5% and 3%) derived
from a simulated GWAS of n=700,000 with a pool of 915 independent genetic instruments (based the BMI GWAS by Yengo et al used
in the applied analysis). Simulations suggest that the approach is adequately powered as long as tissue-partitioned instruments explained
at least 1% of the variance in the exposure trait, as well as analysing outcome GWAS datasets consisting of at least 75,000 participants.
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Fox, Caroline S Witteman, Jacqueline C M Boerwinkle, Eric Wang, Thomas

J Gudnason, Vilmundur Larson, Martin G Chakravarti, Aravinda Psaty,

Bruce M van Duijn, Cornelia M 2009/5/12, pp. 677–87. issn: 1546-1718.

doi: 10.1038/ng.384. url: https://www.ncbi.nlm.nih.gov/pubmed/

19430479.

Leyden, G. M. et al. (2022a). “Disentangling the aetiological pathways be-

tween body mass index and site-specific cancer risk using tissue-partitioned

Mendelian randomisation”. In: Br J Cancer. Leyden, Genevieve M Green-

wood, Michael P Gaborieau, Valérie Han, Younghun Amos, Christopher I

Brennan, Paul Murphy, David Davey Smith, George Richardson, Tom G

2022/11/27. issn: 1532-1827. doi: 10.1038/s41416-022-02060-6. url:

https://www.ncbi.nlm.nih.gov/pubmed/36434155.

Leyden, G. M. et al. (2022b). “Harnessing tissue-specific genetic variation to dis-

sect putative causal pathways between body mass index and cardiometabolic

phenotypes”. In: Am J Hum Genet. issn: 1537-6605. doi: 10.1016/j.ajhg.

2021.12.013. url: https://www.ncbi.nlm.nih.gov/pubmed/35090585.

Li, W., D. Notani, and M. G. Rosenfeld (2016). “Enhancers as non-coding RNA

transcription units: recent insights and future perspectives”. In: Nat Rev

Genet 17.4. Li, Wenbo Notani, Dimple Rosenfeld, Michael G 2016/3/8,

pp. 207–23. issn: 1471-0064. doi: 10 . 1038 / nrg . 2016 . 4. url: https :

//www.ncbi.nlm.nih.gov/pubmed/26948815.

Liao, Y., G. K. Smyth, and W. Shi (2014). “featureCounts: an efficient gen-

eral purpose program for assigning sequence reads to genomic features”. In:

Bioinformatics 30.7, pp. 923–30. issn: 1367-4811. doi: 10.1093/bioinformatics/

btt656. url: https://www.ncbi.nlm.nih.gov/pubmed/24227677.

387

https://www.ncbi.nlm.nih.gov/pubmed/19430479
https://www.ncbi.nlm.nih.gov/pubmed/19430479
https://www.ncbi.nlm.nih.gov/pubmed/36434155
https://www.ncbi.nlm.nih.gov/pubmed/35090585
https://www.ncbi.nlm.nih.gov/pubmed/26948815
https://www.ncbi.nlm.nih.gov/pubmed/26948815
https://www.ncbi.nlm.nih.gov/pubmed/24227677


Lin, L. et al. (2020). “Developmental Attenuation of Neuronal Apoptosis by

Neural-Specific Splicing of Bak1 Microexon”. In: Neuron 107.6. Lin, Lin

Zhang, Min Stoilov, Peter Chen, Liang Zheng, Sika 2020/7/28, 1180–1196.e8.

issn: 1097-4199. doi: 10.1016/j.neuron.2020.06.036. url: https:

//www.ncbi.nlm.nih.gov/pubmed/32710818.

Lipovich, L. et al. (2012). “Activity-dependent human brain coding/noncoding

gene regulatory networks”. In: Genetics 192.3. Lipovich, Leonard Dachet,

Fabien Cai, Juan Bagla, Shruti Balan, Karina Jia, Hui Loeb, Jeffrey A

2012/9/11, pp. 1133–48. issn: 1943-2631. doi: 10.1534/genetics.112.

145128. url: https://www.ncbi.nlm.nih.gov/pubmed/22960213.

Liu, C. et al. (2021). “Generalizability of Polygenic Risk Scores for Breast Can-

cer Among Women With European, African, and Latinx Ancestry”. In:

JAMA Netw Open 4.8. Liu, Cong Zeinomar, Nur Chung, Wendy K Kiry-

luk, Krzysztof Gharavi, Ali G Hripcsak, George Crew, Katherine D Shang,

Ning Khan, Atlas Fasel, David Manolio, Teri A Jarvik, Gail P Rowley, Robb

Justice, Ann E Rahm, Alanna K Fullerton, Stephanie M Smoller, Jordan

W Larson, Eric B Crane, Paul K Dikilitas, Ozan Wiesner, Georgia L Bick,

Alexander G Terry, Mary Beth Weng, Chunhua 2021/8/5, e2119084. issn:

2574-3805. doi: 10.1001/jamanetworkopen.2021.19084. url: https:

//www.ncbi.nlm.nih.gov/pubmed/34347061.

Liu, H. et al. (2014). “Deep vertebrate roots for mammalian zinc finger tran-

scription factor subfamilies”. In: Genome Biol Evol 6.3. Liu, Hui Chang,

Li-Hsin Sun, Younguk Lu, Xiaochen Stubbs, Lisa 2014/2/19, pp. 510–25.

issn: 1759-6653. doi: 10.1093/gbe/evu030. url: https://www.ncbi.nlm.

nih.gov/pubmed/24534434.

Liu, J. Z., Y. Erlich, and J. K. Pickrell (2017). “Case-control association map-

ping by proxy using family history of disease”. In: Nat Genet 49.3, pp. 325–

331. issn: 1546-1718. doi: 10.1038/ng.3766. url: https://www.ncbi.

nlm.nih.gov/pubmed/28092683.

388

https://www.ncbi.nlm.nih.gov/pubmed/32710818
https://www.ncbi.nlm.nih.gov/pubmed/32710818
https://www.ncbi.nlm.nih.gov/pubmed/22960213
https://www.ncbi.nlm.nih.gov/pubmed/34347061
https://www.ncbi.nlm.nih.gov/pubmed/34347061
https://www.ncbi.nlm.nih.gov/pubmed/24534434
https://www.ncbi.nlm.nih.gov/pubmed/24534434
https://www.ncbi.nlm.nih.gov/pubmed/28092683
https://www.ncbi.nlm.nih.gov/pubmed/28092683


Locke, Adam E. et al. (2015). “Genetic studies of body mass index yield new

insights for obesity biology”. In: Nature 518.7538, pp. 197–206. issn: 1476-

4687 0028-0836. doi: 10.1038/nature14177. url: https://www.ncbi.

nlm.nih.gov/pmc/PMC4382211/.

Loh, S. Y. et al. (2017). “Unsupervised Network Analysis of the Plastic Supraop-

tic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions”. In:

eNeuro 4.6. Loh, Su-Yi Jahans-Price, Thomas Greenwood, Michael P Green-

wood, Mingkwan Hoe, See-Ziau Konopacka, Agnieszka Campbell, Colin Mur-

phy, David Hindmarch, Charles C T 2017/12/28. issn: 2373-2822. doi: 10.

1523/ENEURO.0243-17.2017. url: https://www.ncbi.nlm.nih.gov/

pubmed/29279858.

Looman, C. et al. (2002). “KRAB zinc finger proteins: an analysis of the molec-

ular mechanisms governing their increase in numbers and complexity dur-

ing evolution”. In: Mol Biol Evol 19.12. Looman, Camilla Abrink, Magnus

Mark, Charlotta Hellman, Lars 2002/11/26, pp. 2118–30. issn: 0737-4038.

doi: 10.1093/oxfordjournals.molbev.a004037. url: https://www.

ncbi.nlm.nih.gov/pubmed/12446804.

Loos, R. J. F. (2020). “15 years of genome-wide association studies and no

signs of slowing down”. In: Nat Commun 11.1. Loos, Ruth J F 2020/11/21,

p. 5900. issn: 2041-1723. doi: 10.1038/s41467-020-19653-5. url: https:

//www.ncbi.nlm.nih.gov/pubmed/33214558.
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Paşca, A. M. et al. (2015). “Functional cortical neurons and astrocytes from

human pluripotent stem cells in 3D culture”. In: Nat Methods 12.7, pp. 671–

8. issn: 1548-7105. doi: 10.1038/nmeth.3415. url: https://www.ncbi.

nlm.nih.gov/pubmed/26005811.

Pasterkamp, R. J. and J. Verhaagen (2006). “Semaphorins in axon regeneration:

developmental guidance molecules gone wrong?” In: Philos Trans R Soc Lond

B Biol Sci 361.1473. Pasterkamp, R Jeroen Verhaagen, Joost 2006/8/31,

pp. 1499–511. issn: 0962-8436. doi: 10.1098/rstb.2006.1892. url: https:

//www.ncbi.nlm.nih.gov/pubmed/16939971.
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