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1.  Introduction
Climate change is increasing the frequency and intensity of some meteorological extremes, with implications for 
the terrestrial carbon and water cycles (Allen et al., 2015; Dunn et al., 2020; IPCC, 2021; Reichstein et al., 2013). 
Extreme rainfall has become more intense on short timescales (Allan & Soden, 2008; Min et al., 2011; X. Zhang 
et al., 2013), summer heatwaves have become more frequent and intense (Alexander, 2016; Perkins-Kirkpatrick 
& Lewis, 2020; Schär et al., 2004; Stott et al., 2004) and incidents of record-breaking and multi-year droughts 
have been observed globally (De Kauwe et al., 2022; Jiménez-Muñoz et al., 2016; Szejner et al., 2020; Williams 
et al., 2022). These weather extremes affect the vegetation through reductions in function (Ciais et al., 2005; 
Frank et al., 2015; Ma et al., 2016; Moran et al., 2014; Zscheischler et al., 2014a, 2014b) and in extreme cases, 
lead directly to mortality (Anderegg et al., 2015a; Arend et al., 2021). Understanding the vegetation's legacy to 
meteorological extremes, including the timescales of recovery, as well as the spatial recovery patterns, is emerg-
ing as a critical knowledge gap that limits our predictive capacity.

Abstract  Ecosystem function can be affected directly by climate, including by meteorological extremes, 
and also by sustained lags and legacies on timescales that surpass those of the weather events themselves. 
However, important gaps remain in our understanding of the influence and timescale of persistence of 
antecedent climate, known as environmental memory, on terrestrial carbon and water fluxes. Identifying 
the interactions between the lagged response to climate and the legacies to climate extremes, and whether 
the influence of memory varies through time, has not been fully explored. Here, we used a novel k-means 
clustering plus regression approach to examine timeseries of the sensitivity of terrestrial fluxes to antecedent 
precipitation at 65 eddy-covariance sites across a range of ecosystems. Quantifying the sensitivity to past 
precipitation and temperature reveals that the role of memory in ecosystem fluxes varies across sites and in 
time. When memory was accounted for in the model, relative improvement in modeled site flux r 2 compared to 
an instantaneous model varied between 0% and 57%, with mean of 12%. Our results show that vegetation  type 
was a stronger predictor of memory importance than site aridity, implying a need to understand vegetation 
resilience conferred by physiological traits and acclimation capacity. The influence of memory varied strongly 
through time at many sites, with the role of different timescales exhibiting consistent non-stationarity. Our 
results demonstrate the importance of accounting for time-varying vegetation response to antecedent rainfall in 
land surface models to accurately predict future terrestrial fluxes.

Plain Language Summary  To predict how changes in future climate and weather extremes might 
impact terrestrial ecosystems, we need to understand the timescales of vegetation response to antecedent 
climate. Prevailing methods of exploration assume such responses to be stationary, that is constant through 
time. We present a novel approach that shows how the memory of plants to climate conditions change through 
time. We show that the carbon and water fluxes of vegetation can be significantly sensitive to antecedent 
rainfall and importantly that this sensitivity can vary substantially through time. Plant functional type is a key 
indicator of the role of memory to precipitation, while the response to antecedent rainfall is not determined 
by site aridity. Predicting future changes in the global carbon sink requires understanding how vegetation 
responds to climate across timescales. Identifying these timescales at which plants respond to climate is 
critically important as the climate changes, especially if extremes (e.g., heatwaves) become more frequent due 
to compounding effects.
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An increasing body of literature has investigated the timescales of memory that can affect vegetation function 
(e.g., De Boeck et al., 2018; Gong et al., 2020; Huxman et al., 2004; Mantoan et al., 2020; Peltier et al., 2018; 
Ogle et al., 2015; Schwalm et al., 2017; Vicente-Serrano et al., 2010; X. Wu et al., 2018). Here we differentiate 
the response of ecosystem-scale fluxes to antecedent climate based on both the type of the antecedent climate 
event and the response itself. We define a persistent but diminishing effect resulting from a climate extreme (or 
disturbance) as a “legacy”. By contrast, a “lag” is a systematic consistent behavioral delay in response to the typi-
cal climate at any given time, acting at timescales from hours to a year or more. Both mechanisms are classed as 
“memory” effects for the influence of antecedent climate on current terrestrial ecosystem functioning.

Many studies have investigated the influence of seasonal (intra-annual) lags on ecosystem functioning. These 
often focus on the role of antecedent precipitation on carbon fluxes and growth. For instance, intra-annual 
rainfall patterns can be of greater importance to grassland biomass than total annual rainfall (Hovenden 
et al., 2014, 2018, 2019) while the same amount of precipitation received in fewer events can reduce terrestrial 
carbon uptake (Arca et al., 2021). Precipitation deficits experienced at different times of the year have varying 
impacts on future growth (Alves et al., 2020; Hahn et al., 2021; Huang et al., 2018, 2021), while some plants 
can acclimate to multiple droughts within the same growing season (Lemoine et al., 2018). Soil respiration, a 
component of the carbon flux, can have delayed responses to precipitation of around 2 days to 10 weeks (Cable 
et  al.,  2013; Cleverly et  al.,  2013). Carbon fluxes can be impacted by a rainfall event for anywhere between 
5 days to 6 weeks in semi-arid woodlands (Cleverly et al., 2016), or up to 8 months in grasslands (T. Zhang 
et al., 2015). Other studies have revealed intra-annual lags between plant water content (affecting both carbon and 
water fluxes) and precipitation (Feldman et al., 2020), and carbon fluxes and temperature (T. Zhang et al., 2015). 
Overall therefore, there is ample evidence that climate, especially precipitation and temperature, at timescales of 
up to 1 year can influence current ecosystem carbon and water fluxes. Indeed, the prior year's climate can be a 
significant driver of current year productivity in some ecosystems (L. Liu et al., 2018; Sala et al., 2012; Ukkola 
et al., 2021; T. Zhang et al., 2015), indicating a role of inter-annual lags in ecosystem fluxes.

Legacies, in contrast to lags, are often identified over longer timescales. For example, precipitation deficits can 
impact tree ring growth for up to 5 years (Anderegg et al., 2015b; Vanoni et al., 2016), and sub-alpine forests expe-
rienced up to 11 years of legacy in mortality rates following droughts (Bigler et al., 2007). Legacy studies often 
consider the impact of large disturbances, such as fire impacting carbon fluxes for over 4 years (Sun et al., 2020) 
or consider ecosystem functions other than carbon or water fluxes, such as plant biomass and diversity being 
impacted by soil disturbances for up to 15 years into the future (Seabloom et al., 2020). A number of studies have 
examined whether a specific event produced legacy effects (Bastos et al., 2020; Griffin-Nolan et al., 2018; Peltier 
et al., 2021) which, while important, may miss compounding lags, confounding variables, or other events that 
influence the legacy effect (Bastos et al., 2021). Where studies consider legacies associated with multiple extreme 
events, these are often focused on growth metrics such as tree rings due to the requirement for long datasets that 
capture multiple events (Anderegg et al., 2015b; Vanoni et al., 2016). However, legacy effects seen in tree rings 
are not necessarily present in other aspects of ecosystem functioning, such as fluxes or leaf area (Kannenberg 
et al., 2019, 2020, 2022) and can be hard to directly connect to underlying processes represented in models. Some 
studies have instead focused on systematic lags that do not vary through time, using methods such as Stochastic 
Antecedent Modeling (Cranko Page et al., 2022; Guo et al., 2020; Ogle et al., 2015; Ryan et al., 2015, 2017) and 
lagged correlations (T. Zhang et al., 2015). These studies help our understanding of ecosystem functioning and 
are valuable in developing better LSMs (Keenan et al., 2012). However, as the rate of climate change intensifies, 
it is possible that systematic lags are themselves changing through time, which may have important implications 
for ecosystem function (Peltier & Ogle, 2020). Such changes, whether in the magnitude or timescale of influence 
of lags, would be missed under the assumption of memory stationarity (Peltier & Ogle, 2020).

Here, we introduce a novel method to explore the memory effects in ecosystem fluxes, by utilizing a machine 
learning approach to investigate which lags contribute the most to flux predictability at different timescales. This 
method enables information on both lags and legacies at a site to be extracted without any assumptions of behav-
ioral stationarity, which are often inherent in prior studies (e.g., Cranko Page et al., 2022; Hovenden et al., 2014; 
L. Liu et al., 2018; Peltier et al., 2018; Richard et al., 2008). To demonstrate the power of this approach, we use 
it here to understand the role of memory to past precipitation and temperature in both net ecosystem productivity 
(NEP, the carbon flux) and latent heat (LE, the water flux). We compare metrics of memory importance with 
site characteristics such as aridity (Y. Liu et al., 2019) and plant functional types to investigate which site traits 
influence the role of lags and legacies in their ecosystem fluxes.
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We examined the following hypotheses: (a) the inclusion of ecosystem memory improves the accuracy of 
modeled fluxes; (b) the sensitivity of fluxes to antecedent climate is non-stationary and varies both intra- and 
inter-annually; (c) ecosystem memory is more influential in the modeling of NEP than LE due to NEP having 
more mechanisms for delayed responses to prior conditions (i.e., via carbon losses from belowground respiration 
fluxes); and (d) the more arid a site is, the greater improvement in model performance when antecedent climate 
is included.

2.  Methods
2.1.  Data

2.1.1.  Flux Data

Half-hourly meteorological and flux data from 65 eddy-covariance flux towers were taken from the PLUMBER2 
forcing and evaluation datasets (Ukkola et  al.,  2022). This data set gap-fills and quality-checks the FLUX-
NET2015 data set and was further aggregated to daily data for this study. Table S1 in Supporting Information S1 
shows the list of sites included in this study. The sites are primarily located in North America (21 sites), Europe 
(33 sites), and Australia (9 sites), with one site apiece in French Guiana and Russia. The sites cover a range of 
vegetation types representative of the distribution amongst all FLUXNET sites, with 33 forest sites, 12 grass-
lands, and 10 cropland sites comprising the majority of the sites. The remaining sites are split into five savannah 
sites, two shrubland sites, and two wetland sites.

In this analysis, we examine LE and NEP fluxes. NEP, as a direct measurement of net ecosystem carbon flux, was 
preferred over flux-derived GPP due to known issues with partitioning between uptake and respiration (Renchon 
et al., 2021). The in situ meteorological data, namely total downward shortwave radiation (SWdown), mean air 
temperature (Tair), mean vapor pressure deficit (VPD), mean wind speed (WS) and total precipitation (PPT), were 
used as predictors for the two fluxes in the machine learning setup described below.

2.1.2.  Satellite Data

Leaf area index (LAI) data from the Copernicus Global Land Service was also used as a predictor for the fluxes 
in the same vein as the meteorological variables. The inclusion of LAI is intended to capture any differences in 
ecosystem functioning between growing and non-growing seasons. Note that this LAI data is included in the 
PLUMBER2 data sets, and is interpolated to daily data from the original temporal resolution (Ukkola et al., 2022). 
Full details of the LAI processing can be found in Ukkola et al. (2022).

2.1.3.  Additional Data

To explore the relationship between memory effects and site aridity, two indices of site behavior were calcu-
lated so that site aridity could be categorized. These indices were the site Evaporative Index (EI), calculated as 
mean annual evapotranspiration (MAET) divided by mean annual precipitation (MAP), and Aridity Index (AI), 
calculated as mean annual potential evapotranspiration (MAPET) divided by MAP. Monthly potential evapo-
transpiration was calculated using Thornthwaite's method (Thornthwaite, 1948) and then aggregated annually. 
These indices were calculated from the PLUMBER2 data and therefore might differ slightly from the long-
term site records. To explore the role that vegetation type plays in the expression of memory, International 
Geosphere-Biosphere Programme (IGBP) classifications of plant functional type (PFT) for each site were taken 
from the FLUXNET website (FLUXNET, 2023). Details of each class can be found in Strahler et al. (1999) and 
the class of each site is specified in Table S1 in Supporting Information S1.

2.2.  Modeling

We model daily NEP and LE using an in-sample k-means clustering plus regression machine learning methodol-
ogy (Jain et al., 1999; MacQueen, 1967). This approach models a target variable (here, each of the fluxes) using a 
set of predictor variables (the meteorological variables and LAI data), much like any model of this system would, 
except the relationship between flux and predictors is constructed entirely using observed site data without any 
physical assumptions. Hence, this is a purely empirical approach. k-means clustering partitions the observations 
(here, individual daily timesteps) of the predictors into groups, or clusters, by utilizing Thiessen polygons so that 
each cluster contains daily time steps with similar predictor values. For each cluster a multiple linear regression 
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is performed between the predictors and the fluxes for the daily time steps 
that belong to the cluster, as though each time step were entirely independent.

For each site and each flux, two separate models were developed. The first 
model, referred to as the instantaneous model, used only current-day meteor-
ological and LAI data as predictors for the NEP and LE fluxes. The second 
implementation, referred to as the historical model, included lagged rainfall 
data from up to 4 years in the past and lagged temperature from the prior 
month to the instantaneous model. The chosen temporal periods for the 
lagged predictors are based on both prior studies (Cranko Page et al., 2022; Y. 
Liu et al., 2019) and physical mechanisms, as rainfall has clear storage pools 
(namely soil moisture and groundwater) while temperature storage (e.g., soil 
temperature) is less likely to influence fluxes on longer timescales. Table 1 
shows the complete list of predictors. For each model implementation, the 
entire predictor set was included in both the clustering and the linear regres-
sion calculations.

To minimize overfitting, any clusters that contained fewer observations than 
10 times the number of predictors (i.e., any cluster containing fewer than 
60 observations for the instantaneous model, or fewer than 170 observations 
for the historical model) were expanded during the regression phase. Based 
on Euclidean distance from the cluster center, the closest observations not 
already in the cluster were included in the linear regression such that the 
regression included 10 times the number of predictors. Only the observations 
initially assigned to the cluster were then assigned the modeled flux values; 
the expansion observations were still assigned the modeled flux value from 
the cluster they were assigned during the clustering algorithm.

The clustering was performed with 729 clusters for four reasons (cf. 
Cranko Page et al. (2022), which used between two and eight clusters). First, 
a greater number of clusters improves the model performance and, due to 

the regression expansion mechanism described above, did not risk overfitting. Second, we prefer a number of 
clusters that captures something of the underlying physical behavior in the data set. With six predictors in the 
instantaneous model, if we assume that each predictor might have clusters where its values are “low,” “average,” 
and “high,” all possible combinations of these three values across the predictors will result in 729 clusters (3 6). To 
ensure a fair comparison, we kept the same number of clusters for the historical model. Additionally, we wanted 
at least two years of modeled fluxes to explore, thus 730 clusters was the maximum number of clusters possible 
since each day is treated as a single observation, and having more clusters than the total number of observations 
will inevitably result in empty clusters. Sensitivity tests on the number of clusters showed that, as the number of 
clusters increased, the results tended toward stable solutions as the clusters increasingly needed to bring in data 
from neighboring clusters to complete the regression stage (not shown). Finally, the greater cluster resolution of 
this framework compared to prior studies allows a much more nuanced description of the evolution of memory 
responses to antecedent climate through time, providing insight into which variables and memory timescales 
provide predictability at a particular point in time at a given site.

All flux, meteorological and LAI data were scaled on a site-by-site basis such that the full site time series had 
mean of zero and standard deviation of one. While necessary for the k-means clustering to ensure predictors of 
larger scales do not dominate the clustering, this scaling has the additional benefit of allowing all results to be 
directly comparable across sites, models, and predictors.

2.3.  Analysis

Multiple linear regressions were fitted separately for each cluster in a given site's model, with all predictors 
normalized beforehand (Equation 1). The coefficient of each predictor, given that all predictors had been normal-
ized, is representative of the sensitivity of the flux to that predictor within the cluster. We can therefore examine 
flux sensitivity to each predictor through time by taking the value of this coefficient at each timestep based on 
the cluster that each timestep belongs.

Table 1 
The Inputs to Each Model Implementation

Predictors Model Categorization

LAI(t) Instantaneous –

Tair(t) Instantaneous –

SWdown(t) Instantaneous –

VPD(t) Instantaneous –

WS(t) Instantaneous –

PPT(t) Instantaneous –

Tair(t-1) Historical –

Tair(t-2) to Tair(t-7) Historical –

Tair(t-8) to Tair(t-14) Historical –

Tair(t-15) to Tair(t-30) Historical –

PPT(t-1) to PPT(t-30) Historical Seasonal

PPT(t-31) to PPT(t-90) Historical Seasonal

PPT(t-91) to PPT(t-180) Historical Seasonal

PPT(t-181) to PPT(t-365) Historical Mid-term

PPT(t-366) to PPT(t-730) Historical Mid-term

PPT(t-730) to PPT(t-1095) Historical Long-term

PPT(t-1096) to PPT(t-1460) Historical Long-term

Note. t refers to the current day. For historical Tair and PPT, the sum of the 
daily data is calculated over the period covered. The categorization column 
refers to how the historical precipitation predictors are grouped into seasonal, 
mid-, and long-term “memory.”
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Flux(𝑡𝑡) = Intercept +
∑

𝑖𝑖

𝑎𝑎𝑖𝑖 × Predictor𝑖𝑖(𝑡𝑡)� (1)

Next, regression coefficients were masked based on two criteria to ensure that only well-defined sensitivity 
was reported. For each predictor, timesteps in the coefficient timeseries where any of the masking criteria were 
true had the coefficient value replaced with “NaN” values. First, we masked any timesteps where the regression 
coefficient in the linear regression was not significant at a p-value of 0.05 or less. Since these coefficients are 
statistically non-significant, it would be erroneous to report any subsequent behavior attributed to them as realis-
tic. Additionally, any clusters where the linear regression between the observed and modeled flux had an r 2 value 
of less than 0.2 were also masked. Although this choice of a low r 2 is arbitrary, the chosen value is a reasonable 
limit at which to determine that the linear regression captures a reasonable degree of the variability. This ensures 
that sensitivities resulting from poor model performance are not conflated with more significant findings in our 
results. These “NaN” masks were only applied after metrics of model accuracy were calculated (see Figures 1 
and 2).

2.4.  Model Implementation

All analysis was performed using R software (R Core Team, 2020). The k-means clustering was performed using 
the “KMeans_Rcpp” function from the “ClusterR” package (Mouselimis, 2022). The linear regressions were 
fitted using the “lm” function. PET was calculated using the “thornthwaite” function from the “SPEI” R package 
(Beguería et al., 2014; Vicente-Serrano et al., 2010).

The k-means clustering was implemented using the k-means++ initialization (Arthur & Vassilvitskii, 2007). This 
method aims to produce initial clusters that cover as much of the occupied sample space as possible, rather than 
choosing the initial centers at random as per the standard k-means algorithm. This initialization technique has 
been shown to improve both the accuracy and speed of the k-means clustering (Arthur & Vassilvitskii, 2007).

3.  Results
3.1.  Model Predictions at Eddy-Covariance Flux Sites

We first demonstrate the high-fidelity in the machine learning approach to simulate timeseries of ecosystem 
fluxes, which builds confidence in our interpretation of regression coefficients and the sensitivity of fluxes to 
predictors. Figure 1 shows observed and modeled LE and NEP for two sites each, using both the instantaneous and 
historical models. Figure 1 demonstrates the ability of the historical model to accurately model the observed flux, 
and the extent to which the historical model can outperform the instantaneous model (see Table 2 which summa-
rizes model performance metrics for the instantaneous and historical models for both fluxes as well as Figure 
S66 in Supporting Information S1). For example, Figure 1b shows the predicted LE flux in 2011–2012 years is 
higher in the summer using the historical model than the instantaneous model, in line with the observations. This 
improved prediction skill appears to carry forward into the 2012–2013 predictions, where the historical model 
and observations show a reduced summer flux, compared to the instantaneous model, in 2011–2012.

For both fluxes at both daily and monthly timesteps, the historical model performs better than the instanta-
neous model in all metrics apart from the mean bias error. Similar results are shown in Figures S1–S65 in 
Supporting Information S1 for all included sites. Several studies have shown that similar approaches routinely 
outperform physically based ecosystem models or LSMs, especially when tested in-sample, as we are doing here 
(Abramowitz et al., 2008; Best et al., 2015; Nearing et al., 2018).

3.2.  Examining the Importance of Memory Across Sites

Figure  2 shows the overall relative improvement in two model performance metrics (normalized mean error 
and r 2) between the instantaneous model and the historical model, highlighting the degree to which memory of 
precipitation and temperature affects site predictability. Results are shown on a Budyko curve (Budyko, 1974) 
to examine whether water or energy limitation plays a role in the importance of memory effects relating to 
precipitation and temperature. For both fluxes and both metrics, the historical model (i.e., accounting for past 
meteorological conditions) performs better at all sites than the instantaneous model. Relative improvement in 
normalized mean error (NME) is similar across both fluxes with a mean improvement of 24% for NEP and 23% 
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for LE. Relative improvement in r 2 is smaller than for NME, especially when considering LE. For NEP, mean r 2 
improvement is 17% while for LE the mean relative improvement is 7%. However, the mean r 2 for the instantane-
ous LE model is 0.86 which results in an upper limit on potential mean relative improvement of 16% (compared 
with a mean instantaneous r 2 of 0.73, and hence a limit of 37%, for NEP).

Relative improvement in both metrics and across both fluxes was not correlated with site aridity or the evapo-
rative index, as shown by the r 2 and p-values in the lower right of the plots (Figures S67 and S68 in Supporting 
Information S1). This can be seen in Figure 2, where the relative memory improvement for a site is clearly not 

Figure 1.  Timeseries of observed flux against the flux modeled using the instantaneous and historical models. The x-axis is the date, the y-axis is the flux value, the 
lines are the monthly mean daily flux and the shaded areas indicate the monthly standard deviation of the daily flux. Subplot (a) is the net ecosystem productivity 
(NEP) flux at CH-Dav, an evergreen needleleaf forest site, (b) is the LE flux at DE-Kli, a cropland site, (c) is the NEP flux at DK-ZaH, a grassland, and (d) is the LE 
flux at US-SRM, a savannah site. These four sites were chosen to illustrate the potential of our approach and are sites with some of the best model improvement when 
accounting for the memory effect.
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related to the site's aridity index (x-axis), evaporative index (y-axis) or position along the Budyko curve. Similarly 
the distance of a site from the Budyko curve, indicating the presence of water sources/sinks outside of precipita-
tion and evapotranspiration, also has no effect on the role of memory at the site. Relative improvement was also 
not correlated with the coefficient of variation of yearly precipitation, a proxy for site variability (Figures S69 in 
Supporting Information S1).

Notably, the seven sites with the greatest relative improvement in r 2 for NEP, all with an improvement of 40% or 
greater, are grasslands or croplands. There are some sites where environmental memory to precipitation and/or 
temperature plays a large role in both fluxes. For instance, DE-Kli, a cropland in Germany, had the second great-
est improvement in r 2 amongst all sites for both NEP (51%) and LE (24%). Other sites where both fluxes have 
a large influence from antecedent climate include AU-Ync (41% improvement for NEP, 17% for LE), DK-ZaH 
(35% for NEP, 24% for LE) and CH-Dav (38% for NEP, 22% for LE). Alternatively, there are sites where the 
role of memory is much more important in one flux than another (relative to the other sites in this study). As an 
example, FR-Pue has a relative improvement in r 2 of 9% for NEP while LE has an r 2 improvement of 18%. Simi-
larly, IT-SRo has only a 20% improvement in NEP r 2 but a 36% improvement for LE.

Figure 2.  Relative improvement in model performance metrics between the instantaneous and historical models for each site. The plots are split by flux (net ecosystem 
productivity (NEP) top and LE bottom) and metric (NME left and r 2 right). The x-axis is the site aridity index of potential evapotranspiration over precipitation 
(AI = PET/PPT) and the y-axis is the site evaporative index of actual evapotranspiration over precipitation (EI = AET/PPT). The color of each point indicates the 
relative improvement in the metric value between the instantaneous and historical models (e.g., if the instantaneous model has r 2 = 0.5 and the historical model has 
r 2 = 0.75, then the relative improvement will be 50%). The solid black line indicates the Budyko curve, and the dotted black line indicates AI = 1, with sites where 
AI < 1 being considered “energy limited” and for AI > 1 “water limited.” Correlation statistics are provided in the lower right of each panel, where “Imp” refers to the 
relative improvement.
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For NEP, site improvement in r 2 was significantly correlated with improvement in NME (r 2 = 0.67, p-value 
<0.001). The improvement in the two metrics was also correlated for LE (r 2 = 0.61, p-value <0.001). For r 2, 
relative improvement for NEP was significantly correlated with improvement for LE (r 2 = 0.38, p-value <0.01). 
The same was true for NME (r 2 = 0.51, p-value <0.001). This implies that the importance of antecedent climate 
for a site's fluxes was robust between carbon and water fluxes, as well as being consistent between model perfor-
mance metrics.

3.3.  The Influence of Different Timescales of Ecosystem Memory

We next look at the role of different timescales (seasonal, mid-term, and long-term) of lagged rainfall on flux 
predictability (Figure 3) (see Table 1 for how rainfall predictors are categorized). Figure 3 illustrates the general 
“well-defined” median sensitivity of the site flux to each timescale of antecedent rainfall (seasonal, mid-term, 
and long-term); that is, 50% of significant timesteps have a sensitivity with magnitude equal to or greater than the 
sensitivity shown in Figure 3. The sensitivity of both NEP and LE to different timescales of antecedent rainfall 
was highly variable amongst sites. In general, the flux sensitivity to antecedent rainfall was greater for NEP than 
for LE. The mean of the median sensitivity across all categories was 0.55 for NEP and 0.40 for LE. For NEP, 
seasonal antecedent rainfall had a mean site median sensitivity of 0.50, increasing to 0.61 for mid-term anteced-
ent rainfall before decreasing to 0.53 for long-term antecedent rainfall. Similarly, for LE, seasonal antecedent 
rainfall had a mean site median sensitivity at 0.40, mid-term median sensitivity is greatest at 0.44 and then the 
median sensitivity decreases to 0.37 for long-term antecedent rainfall. Overall, based on site median sensitivity, 
NEP was more sensitive to mid-term historic precipitation relative to other timescales while LE was influenced 
by the shorter timescales of seasonal and mid-term rainfall.

The Budyko curve in Figure 3 again shows how site aridity was not correlated with NEP median sensitivity at 
any timescale of historical precipitation. The standard deviation of NEP median sensitivities across timescales, 
that is the variance in sensitivity at different lag times, was also not correlated with site AI. However, for LE, 
seasonal median sensitivity was positively correlated with AI with the correlation weakening as the timescales 
lengthened. The standard deviation amongst LE median sensitivities for each timescale at each site was similarly 

Table 2 
Performance of Instantaneous Versus Historical Models

Timescale Flux Model

Aggregated year classifications  
(no. of sites) Mean performance metrics

Poor 
mean

Poor 
variability Acceptable NME MBE Correlation

SD 
difference

Daily NEP Instantaneous 38 6 21 0.46 −0.007 0.85 0.20

Historical 35 0 30 0.35 −0.019 0.92 0.14

LE Instantaneous 29 2 34 0.31 −0.002 0.93 0.10

Historical 25 0 40 0.24 −0.004 0.96 0.07

Monthly NEP Instantaneous 12 38 15 0.35 −19,444 0.92 0.18

Historical 3 0 62 0.15 −47,715 0.99 0.07

LE Instantaneous 2 36 27 0.20 −1,761 0.97 0.07

Historical 2 0 63 0.08 −9,685 1.00 0.02

Note. “Daily” timescale refers to daily timeseries, “Monthly” refers to the daily timeseries aggregated to monthly by taking 
the mean. For the “No. of Sites” columns, the three categories applied to the aggregation of the timeseries into groups of 
each calendar day or month using means. For instance, the daily timeseries was aggregated by finding the mean flux for all 
1 January, 2 January, and so on for all 365 days. The monthly timeseries was aggregated by taking the mean of all Januarys, 
all Februarys, and so on for all 12 months. A site has “Poor Mean” if any aggregated timestep is such that the modeled 
mean flux ± standard deviation falls outside the range of the observed mean flux ± standard deviation. A site has “Poor 
Variability” if it is not classified as having “Poor Mean” and at least 25% of timesteps (i.e., 90 days for “Daily” and 3 months 
for “Monthly”) have a modeled standard deviation that is more than 50% larger or smaller than observed standard deviation. 
“Acceptable” sites are those that do not fall in either of the prior two classifications. The percentages sum to one. The 
performance metrics are the mean values for the 65 sites. At each site, the performance metrics are calculated for the entire 
timeseries. “NME” is the normalized mean error, “MBE” is the mean bias error, “Correlation” is the Pearson correlation 
coefficient, and “SD Difference” is the standard deviation difference.
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weakly correlated with site AI. This means that, as site aridity increased, the variation in sensitivity across times-
cales also increased.

Of note in Figure 3 are a selection of sites with marked sensitivity differences between seasonal, mid- and long-
term antecedent rainfall. For NEP, one example was US-FPe, a grassland with AI 1.5 and EI 0.79, which had a 

Figure 3.  The median of absolute coefficient values from the historical model for each site and each category of historical rainfall for (a) net ecosystem productivity 
(NEP) and (b) latent heat (LE). The x-axis is the site aridity index of potential evapotranspiration over precipitation (AI = PET/PPT) and the y-axis is the site 
evaporative index of actual evapotranspiration over precipitation (EI = AET/PPT). Each site has three points jittered around its location in AI/EI space, one for each 
timescale of past rainfall. The color represents the value of the median of the absolute coefficient values for all predictors within the category and all timesteps. Lighter 
colors represent a higher coefficient magnitude and therefore a greater sensitivity. The inset plots shows box plots of the non-masked coefficients for seasonal, mid-term 
and long-term antecedent rainfall (left to right, respectively) for all sites and the corresponding flux. For each boxplot, the thick black line is the median, the wide boxes 
denote the interquartile range (IQR, 25th–75th percentile), the thin boxes mark the 10th to 90th percentile and the error bars denote the 1st and 99th percentiles. The 
black cross indicates the mean. Note the pseudo-log scale on the y-axis. Correlation statistics are provided in the upper right of each panel.
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median sensitivity to seasonal antecedent rainfall of 1.17, a mid-term median 
sensitivity of 2.60 and a decreased median of 1.15 for long-term timescales. 
AU-DaS, an Australian savanna site (with AI = 1.30 and EI = 0.73), similarly 
had a substantially larger sensitivity to mid-term antecedent rainfall (seasonal 
median sensitivity  =  1.60, mid-term  =  2.23, long-term  =  1.14). Another 
grassland, CH-Oe1 (with AI of 0.51 and EI of 0.50) had a large increase 
in median sensitivity as the timescale becomes longer (seasonal  =  0.43, 
mid-term  =  1.00 and long-term  =  1.30). Similarly, BE-Lon (cropland, 
AI = 0.89, EI = 0.48) had very strong median sensitivities to mid- and long-
term antecedent rainfall (1.14 and 1.00 respectively) but weak seasonal sensi-
tivity of 0.34. For LE, there were fewer sites with high variation amongst 

median sensitivities, although US-FPe continued to have a substantially stronger median sensitivity to mid-term 
antecedent rainfall compared to seasonal and long-term timescales (seasonal median = 0.63, mid-term = 1.41, 
long-term = 0.58).

For each timescale, the median NEP sensitivity was significantly correlated with median LE sensitivity (r 2 = 0.75, 
0.50, and 0.52 for seasonal, mid- and long-term respectively, p-values < 0.001). This implies that the site sensi-
tivity to antecedent rainfall was consistent between fluxes; that is, a site with high NEP sensitivity to antecedent 
rainfall at any timescale was likely to also have a (relatively) high LE sensitivity to the same timescale. Median 
sensitivities were positively correlated pairwise across the three timescale categories for both fluxes (Table 3). 
Hence, in general, a site that was sensitive to, for example, seasonal rainfall was also sensitive to both mid-term 
and long-term antecedent rainfall. Notably, the correlations between mid-term and long-term sensitivity are 
amongst the strongest which may suggest that the mechanisms resulting in sensitivity at the 6 months to 2 years 
timescale were similar to the mechanisms driving sensitivity to 2- to 4-year lagged antecedent rainfall. Correla-
tions between seasonal and long-term memory sensitivities were the weakest, as might be expected due to the 
lack of continuity between the timescales.

Figure 4 illustrates the distributions of historical temperature and precipitation coefficient values for each times-
cale (temperature is only plotted at the monthly scale) and PFT grouping for the two fluxes. Positive NEP values 
imply an uptake of carbon and, therefore, an increase in sensitivity indicates that uptake increased and decreased 
as rainfall increased and decreased, respectively. It is important to note that, due to the varying sign of the sensi-
tivity coefficients, a mean or median of zero in Figure 4 is not necessarily an indicator of low sensitivity. Instead 
consider that the thin boxes and error bars, exclusive of the larger box, indicate sensitivity magnitudes experi-
enced at least 40% of the time (5th to 95th percentile, excluding the 25th–75th percentiles).

NEP in savannas, shrublands, and grasses was more sensitive to all timescales of antecedent precipitation 
compared to forests and wetlands (Figure 4a). This follows from both the greater magnitude of mean sensitivity, 
and the larger spread of the box plots, which indicates that they experience higher sensitivities. Interestingly, NEP 
within all PFT classes experienced periods of both negative and positive sensitivity to antecedent rainfall at all 
timescales. Negative sensitivity (i.e., an increase in rainfall leads to a decrease in carbon uptake and vice versa) 
was most common in savannas and grassland ecosystems. Savanna NEP had a particularly high sensitivity to rain-
fall at all timescales, although this switches from strong negative sensitivity at seasonal and mid-term timescales 
to a strong positive sensitivity at the long-term timescale. Shrubland NEP had a positive sensitivity to seasonal 
rainfall over 50% of the time (median in first panel of Figure 4a) while negative sensitivity to long-term rainfall is 
more frequent than positive. The inverse is seen in grasslands where most of the time NEP was negatively sensi-
tive to seasonal rainfall but was more likely to be positively sensitive (increased NEP uptake with increased rain-
fall) to long-term rainfall. Wetland carbon uptake was positively influenced by increases in seasonal, mid-term 
and long-term rainfall, although sensitivity was generally of a smaller magnitude than at shrublands and grass-
lands. While the range of NEP sensitivity tends to decrease over time for shrubs/savannas and grasses, sensitivity 
at forest sites was mostly consistent across timescales. Forest PFT classes, except for evergreen broadleaf forests, 
did not have substantial changes in the range, median, or mean of NEP sensitivity to precipitation as the timescale 
extends. The greater variability for EBFs likely reflects the broader range of species/climate that this category 
encompasses (i.e., eucalypts from Australia, tropical tree species, and Quercus ilex).

The relative consistency of forest flux sensitivity across precipitation timescales was also true for LE (Figure 4b). 
However, for deciduous broadleaf, evergreen broadleaf and evergreen needleleaf, seasonal sensitivity was 

Table 3 
r 2 Values of Pairwise-Correlation Between the Median Sensitivities for Each 
Site (n = 65) for Net Ecosystem Productivity (NEP) and Latent Heat (LE)

Precipitation timescale categories NEP LE

Seasonal × Mid-term 0.66 0.49

Seasonal × Long-term 0.46 0.40

Mid-term × Long-term 0.66 0.72

Note. All correlations were significant at a p-value <0.001.
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dominantly positive. As such, these forest biomes generally experienced an increase in evapotranspiration 
when there was an increase in seasonal rainfall. This dominant positive sensitivity was also apparent for the 
shrub/savanna and grassland sites. As antecedent rainfall timescales increased, LE sensitivity decreased and 
became more symmetrical with negative influence becoming as frequent as positive sensitivity. The lowest sensi-
tivities across all PFT classes are seen for the LE fluxes to long-term antecedent rainfall. When both fluxes were 
considered together, shrublands, savannas, and grasslands experienced the greatest sensitivities to antecedent 
rainfall across all timescales.

Figure 4.  Boxplots of temperature and precipitation coefficient values grouped by International Geosphere-Biosphere Programme (IGBP) classification and split by 
historical rainfall category for (a) net ecosystem productivity (NEP) and (b) latent heat (LE). The x-axis is the IGBP classification (note that “osh” and “csh” were 
grouped in “shr” and “wsa” was combined with “sav”). The y-axis is the coefficient value (dimensionless due to the scaling of the model inputs). For each boxplot, the 
thick black line is the median, the wide boxes denote the interquartile range (IQR, 25th–75th percentile), the thin boxes mark the 10th to 90th percentile and the error 
bars denote the 5th and 95th percentiles. The black cross indicates the mean. The labels at the bottom of the plots are the number of sites (above) and the number of 
site-years (below) within the IGBP class. Outliers are not plotted due to a few instances of exceptionally large coefficients.
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The flux sensitivity to antecedent temperature lagged up to 1 month is consistently low across PFTs and for both 
NEP and LE. Even for those PFT classes with relatively low sensitivity to antecedent precipitation, the sensitivity 
to antecedent temperature is only ever of a similar magnitude or smaller.

3.4.  The Influence of Memory Is Not Stationary

The novel implementation of the machine learning approach also allows us to visualize the timescales of influ-
ence as a timeseries at each flux site, allowing an examination of whether the influence of memory changes as a 
function of time. Figures 5–8 show the timeseries of regression coefficients for each historical rainfall predictor 
at four different sites. These sites were chosen as they illustrate a selection of potential behaviors that can be 
identi fied in these types of plots. The same figures for the other 61 sites are included in the Supplementary 
Information. In Figure 5, the coefficient values for the NEP model at US-Var, a Californian grassland with a 
Mediterranean climate, are shown. The coefficients were greatest at times of low rainfall (approximately May to 
September for years 2007, 2008, and 2013 and to lesser extents in 2009, 2010, 2011, and 2014) and the greatest 
sensitivity was experienced during the driest year, 2013. Within the dry summers, rainfall up to one year into 
the past negatively affected NEP in all years but 2014. The effect of rainfall from one to four years into the 
past was generally weaker and varied between negative and positive sensitivity. Figure 6 shows the regression 
coefficients for NEP modeled at US-SRM, a woody savanna in southern Arizona. At this site, there was a clear 
positive memory effect of prior rainfall affecting NEP in late summer. The exact strength varies but timescales 
of between three to 6 months consistently exhibit the strongest influence. There are occasional strong negative 
sensitivities in the memory to precipitation. The seasonal timescales are consistently of greater influence than 
the mid- and long- term predictors. The coefficients for US-Ne3, a non-irrigated cropland in Nebraska, are shown 
in Figure 7. At this site, crops are present between approximately May to October, and the site experiences an 
extremely seasonal climate with cold winters and hot summers. The sensitivity of NEP to prior rainfall clearly 
reflects the period during which crops are present. However, the magnitude and direction of sensitivity varies 
between years. This can be compared to US-Ne1 and US-Ne2, two irrigated croplands, which have much more 
consistent sensitivity to antecedent rainfall (see Figures S54 and S55 in Supporting Information S1), suggesting a 

Figure 5.  Timeseries of coefficient values for antecedent rainfall from the k-means clustering plus regression historical model for net ecosystem productivity (NEP) 
at US-Var. The x-axis is the date at a daily timestep, and the y-axis is each antecedent rainfall predictor, together with monthly rainfall totals (Rainfall), the difference 
between actual monthly rainfall and mean monthly rainfall for the calendar month (Month Deficit), and a rolling 6 month sum of the monthly deficit (6 Month Deficit). 
Each predictor is colored at each timestep according to the coefficient value calculated for the cluster in which the timestep belongs. Red timesteps indicate a negative 
sensitivity of NEP to rainfall (more antecedent rainfall within the period represented by the predictor results in less NEP) and green indicates a positive sensitivity 
(more antecedent rainfall results in greater NEP).
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confounding influence of irrigation or crop type. Finally, Figure 8 shows the regression coefficients for a woody 
savanna, US-Ton. This site shows extremely strong sensitivity to antecedent rainfall during the dry summer 
growing seasons (see figure scale and note magnitudes relative to the previous three figures). This sensitivity is 
however noticeably less strong during the very wet years of 2006 and 2011.

A potential confounding factor in our methodology is the temporal autocorrelation of precipitation at sites. If 
different periods of lagged rainfall are highly correlated at a site, then the method could arbitrarily divide the 

Figure 6.  Timeseries of coefficient values for antecedent rainfall from the k-means clustering plus regression historical model for net ecosystem productivity at 
US-SRM. The plot layout and definitions are identical to Figure 5.

Figure 7.  Timeseries of coefficient values for antecedent rainfall from the k-means clustering plus regression historical model for net ecosystem productivity at 
US-Ne3. The plot layout and definitions are identical to Figure 5.
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predictive power of the periods between them. This would result in a potential misclassification of sensitivity to 
one period of lagged climate over another. Of the 65 sites in this study, 37 of them exhibit at least one significant 
correlation (p < 0.05) between two periods of lagged rainfall. At BE-Lon, nine out of a possible 28 correlations 
between rainfall predictors are significantly correlated, while for the other 36 sites, at most 5 correlations are 
significant with 31 sites only having two or less significant correlations. 21 sites have significant correlations 
between lagged rainfall experienced between 31 and 90 days into the past, and rainfall from 181 to 365 days into 
the past. This is likely due to yearly rainfall seasonality, with one of these windows consisting of the site's dry/wet 
season and the other then being the inverse.

Nevertheless, at no site is current day precipitation significantly correlated with any lagged rainfall predictor, indi-
cating that attribution of flux sensitivity to memory is unlikely to be affected. In effect therefore, any confounding 
effects are limited to the timescales at which this memory acts.

4.  Discussion
Our machine learning methodology demonstrates the capacity to accurately model the variability in fluxes across 
a wide range of climates and vegetation types, as shown by the performance metrics in Table 2. Further, we have 
demonstrated the value of the methodology as a method for data mining flux data that does not require any a 
priori assumptions or knowledge regarding extreme climate events or specific lags. Similarly, this framework 
could prove an excellent tool for initial exploration of experimental data where ecosystem memory is hypoth-
esized to be important. The results also imply an important role for plant functional type in determining the 
memory of an ecosystem to varying timescales of antecedent rainfall. For instance, forests had consistent NEP 
sensitivity to lagged rainfall received any time in the past 4 years, while savannah NEP was negatively sensitive 
to seasonal and mid-term antecedent rainfall but positively affected by long-term antecedent rainfall. Future work 
that attempts to mechanistically link vegetation traits to meteorological legacies is therefore likely valuable.

Theoretically our framework would highlight both lags and legacies in the response of fluxes to antecedent rain-
fall (and other drivers if included). In fact, the individual site plots in Figures 5–8 do show the ability of machine 
learning frameworks to identify how climate extremes affect flux sensitivity, with clear signals in the memory to 
precipitation during dry years. In addition, it is possible that the sensitivities at longer timescales (i.e., the “long-
term memory”) are driven by legacy mechanisms due to the length of time involved. However, it is notable that 

Figure 8.  Timeseries of coefficient values for antecedent rainfall from the k-means clustering plus regression historical model for net ecosystem productivity at 
US-Ton. The plot layout and definitions are identical to Figure 5.
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well-known climate extremes (such as the 2003 European drought) were not explicitly identifiable in the time-
series of lagged rainfall sensitivity at sites known to be affected. If, as expected, these well-known extreme events 
did significantly impact the site fluxes, it might be expected that the event would propagate through the timeseries 
of lagged rainfall. For instance, for the 2003 European drought which occurred in July-August, increased sensi-
tivity to lagged rainfall might be expected in the lags that incorporate this time period (i.e., increased sensitivity 
in the “31–90 Day Lag” between August and October 2003, in the “91–180 Day Lag” between October 2003 and 
January 2004, and so on until the “1,096–1,460 Day Lag” which would respond between August 2006 and August 
2007). There are numerous reasons why such behavior is not apparent (see Figures S1–S65 in Supporting Infor-
mation S1 for European site timeseries). First, this could be a consequence of the framework used in this study. 
As the lagged predictors become more long-term, they contain longer periods of aggregated precipitation, and 
so the signal from a climate extreme may be lost (e.g., while July-August was exceptionally hot and dry in 2003, 
the 12 months both preceding and following did not experience particularly low rainfall). This could be tested in 
further work using more narrow lagged precipitation windows such that the climate extremes are more likely to be 
isolated and not be averaged out. Alternatively, it may well be the case that legacies to drought, while apparent in 
growth patterns (e.g., tree rings), are not evident in carbon and water fluxes (i.e., source limitations, Kannenberg 
et al., 2019). Our results could potentially provide additional evidence that the fluxes at drought-affected sites 
quickly recover to pre-drought levels, although additional work would be required as mentioned above to rule out 
other reasons for the lack of unambiguous legacies in our results. Applying our approach to both flux and tree 
ring data at overlapping sites would be a useful next step.

We now revisit the hypotheses outlined at the beginning of the paper, namely that (a) the inclusion of ecosys-
tem memory improves the accuracy of modeled fluxes; (b) the sensitivity of fluxes to antecedent climate is 
non-stationary and varies both intra- and inter-annually; (c) ecosystem memory is more influential in the mode-
ling of NEP than LE due to NEP having more mechanisms for delayed responses to prior conditions; and (d) the 
more arid a site is, the greater improvement in model performance when antecedent climate is included.

4.1.  Does Memory Matter?

Understanding the role of lags and/or legacies is critical for accurate modeling and ensuring predictions of future 
climate change are properly constrained (Humphrey et al., 2018; Keenan et al., 2012; Ogle et al., 2015). Our 
results suggest that the importance of understanding vegetation response to prior climate is strongly site depend-
ent. When all sites are viewed collectively, the introduction of memory effects to precipitation and temperature 
into our model improved performance metrics by between 7% and 24%. This supports the recent calls for a more 
nuanced inclusion of memory into LSMs (Anderegg et al., 2015b; Bastos et al., 2021; Frank et al., 2015; Jones 
et al., 2020; Kolus et al., 2019). However, the improvement varied substantially between sites and across time. 
BE-Lon, a cropland in Belgium, saw relative improvements in NEP modeling by 56% for r 2 (0.58 instantaneous 
to 0.91 historical) and 52% for NME (0.57 instantaneous to 0.27 historical). By contrast, an evergreen needleleaf 
forest in Canada, CA-Qfo, had no significant difference between the instantaneous and historical models for NEP 
(r 2 relative improvement of 0%, NME relative improvement of 4%). These improvements fall within the ranges 
reported in previous analysis (Cranko Page et al., 2022; Y. Liu et al., 2019).

Our results also show that lags and legacies have different impacts depending on the flux being modeled. Modeled 
NEP fluxes generally benefitted more from the introduction of antecedent climate than LE fluxes, consistent with 
a prior study (Cranko Page et al., 2022). This apparent discrepancy between the role of memory in the modeling 
of fluxes is due in part to the better performance of the instantaneous models for LE (more predictable) result-
ing in a lower potential benefit of memory effects. This implies that LE fluxes are driven mostly by the current 
climate (Best et al., 2015; Haughton, Abramowitz, & Pitman, 2018). Such a result is not surprising, since LE 
includes all components of the water flux (i.e., soil evaporation, canopy evaporation and transpiration). While 
partitioning of LE into evaporation and transpiration is difficult (Stoy et  al.,  2019), non-plant evaporation is 
estimated to account for around one-third of global ET (Fatichi & Pappas, 2017; Lian et al., 2018; Schlesinger 
& Jasechko, 2014; Wei et  al.,  2017). In energy-limited ecosystems (AI < 1), evaporation is driven predomi-
nately by concurrent radiation, temperature, wind speed and vapor pressure deficit (Monteith, 1965; Priestley & 
Taylor, 1972). In arid ecosystems, evaporation is more likely to depend on antecedent rainfall to ensure there is 
moisture available. While evaporation is clearly inherently instantaneous (when water and energy are available), 
transpiration, particularly from deeper-rooted species, could potentially provide mechanisms for memory to act 
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(Pérez-Ruiz et al., 2022). For instance, delays between rainfall and peak plant water content could buffer the 
response of transpiration to precipitation (Feldman et al., 2020). Indeed, it has been hypothesized that access to 
groundwater is a key driver of the interannual variability in plant functioning (Humphrey et al., 2018). Memory 
in the LE flux acting through transpiration of long-term water storage reservoirs is potentially the mechanism 
explaining why certain forest sites in our study (such as IT-SRo, FR-Pue, and AU-Ctr) see a relatively greater 
memory influence in LE compared to NEP fluxes compared to other sites. Therefore, there are clear mechanisms 
explaining the dominant role of current climate in LE fluxes, and hence the good performance of the instanta-
neous LE model. By illustrating differences in the memory of NEP and LE fluxes, we have contributed further 
evidence that memory effects are inconsistent across ecosystem fluxes and types (Kannenberg et al., 2019, 2020).

4.2.  What Influences the Role of Memory at a Site?

Previous work has suggested that memory effects become more influential in increasingly arid ecosystems 
(Cranko Page et al., 2022; X. Liu et al., 2018. Y. Liu et al., 2019; D. Wu et al., 2015). Here, we find that the role 
of lags and legacies in ecosystem fluxes is not well explained by site aridity. There is no correlation between 
improvement in model performance for the historical model and either AI or EI at the site. This is unlikely to be 
due to our site selection, as we have 30 sites with AI greater than one (water-limited) and 35 with AI less than 
one (energy-limited). The sites studied have good coverage between AI values of 0.3 and 2 and include nine 
sites with AI over 2. However, some sites do lie far from the Budyko curve (Figure 2). This indicates that are 
potentially sources of water other than rainfall which may impact the ability of the models to accurately capture 
these sites (Haughton, Abramowitz, De Kauwe, & Pitman, 2018). For instance, our study includes cropland sites 
with no differentiation between irrigated and rainfed sites. This is a potential confounding factor when discuss-
ing these sites, as the total water available to the plants at an irrigated site is not represented accurately by the 
AI. Note however that memory importance is also not correlated with the distance of the site from the Budyko 
curve. One reason for such a difference in the role of aridity may be the ability of our model to allow sensitivity 
to precipitation memory to vary over time. Arid sites tend to experience less frequent rainfall and typically have 
shallow rooting systems (Schenk & Jackson, 2002) and the fluxes are therefore more tightly linked to antecedent 
rainfall, a proxy for soil moisture availability. The influence of precipitation memory at these sites would then be 
relatively constant. One surprising finding from our analysis is the generally low sensitivity of forest ecosystem 
fluxes to the longer timescales of rainfall. One interpretation of this result may be that deep soil water storage/
root access (including groundwater dependent ecosystems) blurs the exact timescales of influence of past rain-
fall. Thus, while overall there remains a sensitivity to past conditions in the flux predictability, it can be harder 
to attribute to a distinct timescale. Alternatively, this finding may imply that ecosystem fluxes themselves are 
relatively robust to past climatic conditions, as distinct from impacts on state conditions (e.g., growth, leaf area; 
Sala et al., 2012). Understanding why memory effects vary so much at sites with different IGBP classifications 
(Figure 4) will likely require greater insight into species differences and site characteristics (e.g., soil, ground-
water access, species). For LE, sensitivity to antecedent rainfall at nearly all IGBP classifications was skewed 
positive (an increase in prior rainfall leads to an increase in LE) and decreased as the length of the lag increased. 
This provides further evidence of the role of evaporation, as increases in antecedent rainfall would increase soil 
moisture and surface runoff, leading to greater evaporation and LE. In contrast, NEP sensitivity to antecedent 
precipitation was more symmetrically distributed between positive and negative sensitivity. The greater magni-
tudes of sensitivity to antecedent precipitation seen at grassy sites would seem to support this positive/negative 
variability in sensitivity, suggesting a potential “boom-bust” behavior where high rainfall results in strong carbon 
uptake for grasses and, in dry years, carbon is released back to the atmosphere via respiration.

4.3.  Does Memory Sensitivity Change Through Time?

Most studies of ecosystem memory utilize methods that assume, explicitly or implicitly, that the timescales of 
influence are constant at a site, both inter- and intra-annually. Such methods include regressions or correlation 
calculations against lagged rainfall (e.g., Richard et  al.,  2008; Hovenden et  al.,  2014; X. Liu et  al.,  2018) or 
frameworks such as Stochastic Antecedent Modeling (e.g., Barron-Gafford et al., 2014; Peltier & Ogle, 2019). 
However, it is reasonable to hypothesize that the role of memory might vary both throughout a year (for instance, 
during the growing season when plant growth provides more mechanisms by which NEP can be influenced by 
prior water) and across years (such as a particularly dry year dramatically reducing plant growth and therefore 
limiting any influence from prior rainfall).
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Figures 5–8 demonstrate a key strength of our method and clearly show how the role of memory is non-stationary 
and changes through time. First, we see clear seasonal signals at some sites where the role of memory is great-
est during (or even effectively limited to) a certain time of year, whether that be the growing season (US-Ne3 
and US-SRM) or the dry season (US-Var and US-Ton). By assuming any memory effect is stationary, these 
seasonal signals may be masked by the lower—or even reversed—sensitivity at other times of year. Addition-
ally, we show how different conditions can affect the role of memory. For instance, US-Var shows the strongest 
memory  sensitivities in the driest years (2007, 2008, and 2013, see Figure 5). This strong negative sensitivity 
at a grassland implies that an increase in antecedent rainfall led to a decrease in the carbon sink at the site, 
which again is potentially due to a “boom/bust scenario.” As the site becomes drier throughout the year, any 
carbon that was invested in additional biomass under antecedent conditions can no longer be supported, the 
plants turnover tissue, and the carbon is respired back into the atmosphere. Further evidence for this being a key 
mechanism in the negative sensitivity of NEP to antecedent rainfall is that the ecosystems where such behavior 
is known to occur most frequently (grasslands/savannas) are part of the PFTs which show the strongest negative 
sensitivities. There are other years (e.g., 2012) where there is almost no effect of antecedent rainfall on NEP. As 
such, we have shown that ecosystem memory varies in time and should not be assumed to be stationary. Any 
methods exploring the role of antecedent climate should consider the impact of changes in sensitivity through 
time at both inter- and intra-annual timescales. Our methodology is likely to be widely applicable when examin-
ing the impact of stochastic disturbances (e.g., fires, wind throw, pest attacks) and meteorological extremes (i.e., 
drought/heatwaves), as well as looking at the changing nature of vegetation response to climate as flux records 
increase in length. Identifying methods to summarize the time-varying memory effects across multiple sites is 
not trivial and is a direction for future work to ensure that the information from this framework is as accessible 
as possible.

This capacity to isolate the timescales of influence of both the past extremes and behavioral lags opens 
important avenues around the introduction of new theory into LSMs to capture ecosystem memory to climate. 
Our framework provides an approach for important checks on model hypothesis testing around the introduc-
tion of new theory related to plant hydraulics (De Kauwe et al., 2022; Sabot et al., 2020, 2022), acclimation 
(Mercado et al., 2018; Smith & Dukes, 2013), and carbon storage (De Kauwe et al., 2014; Fatichi et al., 2014; 
Jones et al., 2020). Implementing model hypotheses intended to improve the response timescales of vegeta-
tion to climate into LSMs, and then comparing the results between the model and observations when passed 
through frameworks such as ours, will ensure that model development is correctly capturing the timescales 
of influence that are evident in the observational records. Using this k-means clustering plus regression 
approach on testing sites used for model evaluation could help to benchmark expected flux responses to 
antecedent climate. This link between machine learning and model theory development is an important next 
step for LSMs.

5.  Conclusion
We showed that memory effects can play a significant role in the modeling of ecosystem fluxes and functioning. 
However, our results also indicate that this effect is highly variable and that some sites do not require a memory 
component to explain the measured fluxes at all. In contrast to previous work, we find that aridity is not a good 
predictor for whether a site exhibits strong memory effects. Further, our method provided evidence that the role 
of memory can change through time and should not be assumed to be stationary. It provides a simple tool to site 
investigators to better explain the drivers influencing ecosystem functioning in different circumstances. Such 
exploration could unlock further understanding of plant functioning and ecosystem mechanisms that govern the 
carbon and water cycle. This understanding is in turn fundamental to improving the LSMs that are used to predict 
the climate of the future and the impacts of anthropogenic climate change.

Data Availability Statement
The FLUXNET data are available at https://doi.org/10.25914/5fdb0902607e1 (Ukkola,  2021). Examples of 
model and analysis codes are available at https://doi.org/10.5281/zenodo.7527607 (Cranko Page, 2023).
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