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Swarm Diffusion-Taxis: Transport of spatial information for cooperative
gradient-based navigation
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Abstract: Swarm Diffusion-Taxis is a new algorithm for navigation of unknown environments to areas of interest. The algorithm
disperses robots into an unmapped space using random walk and robots communicate locally how long ago they were in the area.
Because the robots spatially diffuse, this timer estimates radial distance to the area. This creates a gradient of spatial information
which can be used by robots to navigate. It is shown in simulation of ground-based robots that this creates a successful taxis
effect. An intralogistics use case is simulated which requires the delivery of items to a user and compares the time taken with a
fixed and dynamic area of interest. The time performance is similar to a global gradient algorithm (using a solar compass) and a
connected communication algorithm (hop-based navigation). The benefits of minimal set-up and requirements, mean that robots
could be cheap, simple to maintain and deployed out-of-the-box.

Keywords: Swarm intelligence, Swarm robotics, Self-organisation, Intralogistics

1. INTRODUCTION

A new swarm algorithm known as Swarm Diffusion-Taxis
(DT) is presented to facilitate the navigation of unmapped ar-
eas. The aim of the algorithm is to use the swarm to find an
area of interest (AOI) in a space where the robots know noth-
ing about their environment and are told nothing by an ob-
server system. The control is distributed to include the inher-
ent benefits of swarm intelligence which include robustness,
scalability and adaptability [1]. The key principle relies on
diffusive motion (random walk) and their recording of time
elapsed from the visitation of an area of interest. This time
taken is an estimate only (no odometry data is recorded) of
radial distance from the area of interest. The spatial diffu-
sion of these decaying timers creates a gradient that can then
be navigated simply by moving towards those with lowest
timers. There is no path planning or global communication
needed and the algorithm only requires local, single mes-
sages to be exchanged between robots. Other techniques that
provide gradients for navigation either rely on environmental
gradient information (e.g. light sources, sound or electro-
magnetic fields that can be read by a robot sensor), or hop-
based navigation that rely on constant connection through-
out a communication network. The same effects could be
achieved with the Swarm DT algorithm without the require-
ment of connectivity or globally available information. In-
deed, in Swarm DT, robots only rely on their individual diffu-
sive motion to spread spatial information. This is exemplified
in Fig. 1 which has examples of global gradient, connected
communication and diffusion based (i.e. Swarm DT) com-
munication at work. In the diffusion case, the robots who
have been to the AOI in the previous 10 s are displayed with
their timer numbers and the ones who have never been to the
area have none displayed. The range of timer values is in be-
tween 0-500 to indicate how recently they have been in the
area. When they exit the area, the timer increases from 0 by 1

† Emma Milner is the presenter of this paper.

every 0.02 s and stops broadcasting after 10 s (once the timer
reaches 500). The robot with the symbol > is indicating that
it is choosing to move towards another robot and we can see
that this is the correct direction to move to get closer to the
area. The robot makes this decision based on its communi-
cation with its two local neighbours, the only other robots
within sensory range. One has not seen the area, the other
has seen the area recently. The navigating robot can compare
the two and knows to move towards the lower timer to in-
crease the likelihood of moving closer to its goal. However,
if the same robot were to be using a connected communica-
tion method, such as hop-based navigation, then the robots
who are furthest from the area have not yet been able to re-
ceive any spatial information because they are too far from
the area to be part of the connected robots. This is also shown
in the diagram in Fig. 1. The connected robots have formed
a connected china in order of proximity (i.e. hop-count) to
the area which is guiding the robot with label > to move to-
wards the area but the robots with the ‘?’ symbol have no
spatial information. If there are no robots in the area at all
then there is no connection at all and no spatial information
being shared at all. Fig. 1 also shows how the task could be
completed using global communication methods, such as fol-
lowing a light intensity gradient to a light source within the
area. All robots in the space can access the gradient informa-
tion which can guide them to the area. The requirements of
this method however are that all the robots can access glob-
ally available information which requires the space to have
pre-existing, global communication infrastructure.
A use case for the Swarm DT algorithm could be the deliv-
ery of items in an unmapped storage space. Here the AOI is
the delivery area of a warehouse and the robots are required
to disperse throughout the unmapped space, with no inven-
tory list, to find items for the user. An example of such a
task is included in Jones et al. (2020) which provides fur-
ther information about a swarm storage and retrieval system
[2]. Ideally, a swarm could create a system for this purpose



Fig. 1. Diagrams show the global gradient, connection
(hop-based) and diffusion (Swarm DT) communication
types: Global uses environmental gradients; Connec-
tion communication uses a chain of a sequence of hop-
counts (displayed as numbers increasing from 0); Diffu-
sion (Swarm DT) uses timers which state how recently
the robot has been in the AOI, to guide the robot seeking
the AOI (displaying >). The dotted lines indicate a com-
munication occurring.

which is usable out-of-the-box, requiring no previous infras-
tructure, mapping, inventory list or set-up of any kind. The
benefits that the Swarm DT algorithm bring to this task in-
cluding simple, local communication and no infrastructure
requirements mean that it could facilitate an out-of-the-box
retrieval system for such a use case.

2. LITERATURE REVIEW

Swarm Diffusion-Taxis (DT) creates a gradient of spa-
tial information based on diffusive transport of information
from areas of interest (AOIs) that are accessed locally to
each robot and can be used for navigation of unmapped ar-
eas. Global communication has been used previously to con-
vey a spatial gradient to robots using a source located in the
AOI which emits a signal (e.g. odor [3], light [4], temper-
ature trails [5]) that can be accessed by every robot within
range. They follow their own measurements of this source
signal up a gradient of signal intensity until they reach the
area. This global communication method is often based on
bio-inspiration such as by the solar compass used by ants [6].
Sugawara et al. (2004) projects graphics on the floor which
replicate diffusing chemical signals for the robots to follow
towards a home area [7]. These techniques are dependent
on their environment which make them less robust if that one
guiding system fails and also requires set up which makes the
system usable only when the necessary infrastructure is in
place, limiting application scenarios. Hop-based navigation
is a method of navigation in unknown spaces but does not
require a method of global information sharing to be set up.
In this, robots with distributed control overcome their lim-
ited transmission ranges (i.e. no global communication) by
exchanging local messages which can be forwarded around
the swarm, extending information beyond a single robot’s
communication range. These multiple passes of messages
throughout the network are known as “hops” [10]. Robots in
the swarm act as nodes in a communication network. robots
who discover an area of interest, known as seed robots, ad-
vertise themselves as a ‘0’ [8]. Every robot within range of
the seed robot then increments their own hop-count from the
source by 1. This continues throughout the network with
robots always adding 1 to the smallest hop-count they sense
in their neighbourhood, creating a shortest path that can be

navigated to the area of interest. This has been success-
fully used on real robots including an aerial swarm [9] and
a swarm of 1000 kilobots [8].These methods are found to be
robust [9] but do not extend information to robots outside of
communication range of the connected robots creating the
shortest path. This reduces the ability of robots to explore
further afield places and still be able to access spatial cues
which can guide them back to an area of interest. In the in-
tralogistics use case robots must first search the warehouse
by diffusing to every corner to find items before they navi-
gate to the deliver area. However if they were far away from
the connected robots or there is no seed robot at all (because
none are currently in the AOI) then no spatial information
will be being shared.
Other communications methods are similar to Swarm DT be-
cause they have inform navigation through diffusive methods
of information storage. For example, Ducatelle et al. (2014)
also forwards information around a swarm, propagating out
from a target area to guide robots along a diffusive gradi-
ent. Their cooperative navigation algorithm used one robot
known as the Target robot who, once it found the area of in-
terest, would remain stationary and send periodic broadcasts
to its neighbours. Each robot keeps a table of other robots’
IDs and their estimated distance to the target robot as well
as the age of this information. Robots would communicate
their logs with local neighbours and update their own infor-
mation based on the age of other robot’s data and their own
on-board odometry calculations [11]. The Swarm DT algo-
rithm uses similar methods to Ducatelle et al. but has less
on-board computation or data storage requirements and no
need for recording each robot’s own odometry. There is an
unmet need for a retrieval system which is usable out-of-the-
box. In a series of interviews done by Carrillo-Zapata et al.
(2020) it was found that there were many small business use
cases where sorting of items in storage was considered a la-
borious task which would benefit from automation. However
these places could not afford the time, money or space re-
quired for the sorting systems currently on the market. The
advantages of scalability, robustness and adaptability brought
by the Swarm DT algorithm make it a useful alternative for
these use cases.

3. METHODOLOGY

The following section details the Swarm Diffusion-
Taxis (DT) algorithm and its implementation in a robot
simulation. The codes for this simulation can be ac-
cessed here https://bitbucket.org/hauertlab/
workspace/snippets/A9ygaR Algorithms for global
gradient communication (solar compass method) and a con-
nected communication algorithm (hop-based navigation) are
also tested in the same simulated conditions and compared to
the Swarm DT results.

3.1. Swarm Diffusion-Taxis algorithm
The Swarm DT algorithm uses random walk to disperse

the robots around an unmapped area. If there are no nearby
objects and the robot is not seeking the area of interest (AOI)



then it will move with random walk by adding a random per-
turbation, p, in the range −0.5rad ≤ p ≤ 0.5rad to its
current heading direction every time step. When the robot
is within the AOI, it will broadcast a timer value Ti of 0
to robots within its sensory range. When it leaves the area
(via random walk), this timer will increase by 1 every time
step (0.02 s) for 10 s. This is part of the algorithm described
by Fig. 2 which also states how if a robot is actively seek-
ing the AOI (for example, if it has an item to deliver to a
user), then it will record the timers of each of the neighbours,
Tn, within its sensory range. From these numbers, the robot
will select the neighbour with the lowest timer and move its
current heading so it moves towards this neighbour (making
HT i non-zero, see Eq. (4)). Each robot will only receive
timers from neighbours if they are actively looking for the
AOI to avoid communicating when not necessary.

3.2. Simulated use case set-up
The simulation used here is physics-based in 2D, written

in Python. It is based on an intralogistics use case in which
there are items within the unmapped space which must be
picked up by ground robots and delivered to a delivery area
(the AOI), where the user is waiting to receive them. The
storage space, known as the warehouse, is a bounded 5 m by
5 m square. Screenshots describing the simulation environ-
ment can be found in Fig. 3. Here it can be seen that there
are two versions of this task tested, one with a fixed AOI and
one with multiple, dynamic AOIs. In the fixed case, the area
is between width = 400 cm and 500 cm, stretching the full
length of the height axis, following the convention given in
Fig. 3. The aim of the fixed area task is to deliver all the
boxes to the area in the shortest time, in no particular order.
In the dynamic area case, the area is a circle of radius 100
cm whose centre can appear at any point on the warehouse
walls. There is only one box in the warehouse that can be
delivered to this particular area (this is the black box seen in
Fig. 3). Once this correct box has been delivered, the AOI lo-
cation will change (as seen in the Figure from the transition
between Time is 5 to 9 to 39 s) and the specific box ID to
be delivered will also change. The aim of the dynamic AOI

Fig. 2. Swarm Diffusion-Taxis algorithm. Robot Ri has
timer value Ti and can read other robot timers Tn within
sensory range. If the robot is seeking the area of interest
(AOI) then it will be attracted to nearby robots with low
timers. This creates the heading HT i which is added to
the robot heading (see Eq. (4)). If the robot is in the AOI
it will have a timer of 0 and increase by 1 every time step
it is outside the AOI.

Fig. 3. Screenshots of the simulation. In the fixed AOI task
the boundary of the AOI is a straight line and the area
remains static. For the dynamic task, the black box must
be delivered to a circular area which will change position
once it is delivered and a new box is now the next to be
delivered. The Swarm DT algorithm is illustrated here,
with the timers shown.

task is to deliver all the boxes to their particular area in the
shortest time total but the boxes cannot be delivered in paral-
lel and must be delivered in a given sequence. This mimics a
queue of individual requests from the user for specific items
from anywhere in the unmapped warehouse.

Background warehouse delivery algorithm The robots
pick up and put down boxes in the simulation, performing a
background task used to test the Swarm DT algorithm on a
real application. In the dynamic AOI case, if the robot does
not have the correct box for the area that is currently show-
ing then there is a probability factor of 0.03 every time step
that the robot will drop their box where they are. This keeps
the robots reshuffling the boxes in this task to avoid a dead-
lock. This reshuffling does not happen in the fixed AOI case
in which boxes can only be dropped once the robot carrying
it is within the AOI. Dropped boxes in the correct area are
instantaneously removed from the warehouse by the user.
Robot motion model The robot radius is 12.5 cm which is
the same size as the box radius. The robot moves with speed,
Sp equal to 100 cm/s. The update frequency of each robot
is once every 0.02 s which equals the time step (ts = 0.02
s). The range at which a robot can detect a box is 25 cm
which is when the boxes and robots are physically touching.
The sensory range for object recognition, used for collision
avoidance, is 35 cm. The robots are able to communicate
their timers over a range of 150 cm. All the sensory and com-
munication ranges are measured from the centre of the robot
to the centre of the object. The equation of motion for each
robot is given in Eq. (1). In this, the robot heading ⃗Ht+ts at
time t+ ts is the sum of column vector headings due to each
of: random walk ( ⃗Hnoise = H⃗t+[cos(p), sin(p)], where p is



a perturbation in the range −0.5rad ≤ p ≤ 0.5rad and H⃗t

is the heading in the previous time step); collision avoidance
Eqs. (2), (3); and timer readings Eq. (4).[
X
Y

]
t+ts

=

[
Xt + Sp ∗ ts ∗ cos(H(t+ts),x)
Yt + Sp ∗ ts ∗ sin(H(t+ts),y)

]
(1)

Collision avoidance is applied to the robot heading when
there is an obstacle within the robot’s sensory range (SR =
35 cm). A heading pointing the robot away from the obstacle
is generated, described in Eq. (2) for other robots and boxes
and Eq. (3) for the walls of the warehouse. Eq. (2) uses
the distance (dr and db) to the obstacle in x and y measured
from the centre of the robot to the centre of the obstacle. It
will only include the distances of obstacles that are within
the sensory range (|d| < SR) of the robot. The signs of the
vectors to the obstacles are inverted to point the robot away
from the obstacle. If there are no obstacles within the robot’s
sensory range then H⃗r,b = [0, 0].

H⃗r,b = H⃗r + H⃗b = −
∑[

dr,x
dr,y

]
<SR

−
∑[

db,x
db,y

]
<SR

(2)

H⃗w is non-zero when the robot is within a radius length of
the wall (i.e. it is touching the wall). In this case, the heading
generated has magnitude 100 in the direction perpendicular
to the wall. The factor of 100 is used so that if the robot
is touching a wall it will not go through it to e.g. avoid
other robots because H⃗w will always be greater than H⃗r. In
Eq. (3), letters W, E, S and N stand for West (x = 0), East
(x = 500), South (y = 0) and North (y = 500), for the four
walls. This follows the coordinate conventions given in Fig.
3. When the robot is touching e.g. the West wall, then W =
1. When it is not touching e.g. the South wall, then S = 0,
and so on.

H⃗w = 100 ∗
[
(W − E)
(S −N)

]
(3)

Finally, Eq. (4) describes the attractive behaviour that occurs
when a robot with a box that is seeking the delivery area
comes into sensory range of a robot which is broadcasting
a timer value. In this case H⃗T will be non-zero and will be
the vector towards the robot with the lowest timer within that
navigating robot’s sensory range. This vector is described
by dT which is a column vector that describes the distance
between the two robots. The vector magnitude is reduced by
including the 0.01 factor in Eq. (4) so that the timer heading
does not become dominant over collision avoidance headings
( ⃗Hr,b,w).

H⃗T = 0.01 ∗
[
dT,x

dT,y

]
Tmin

(4)

4. RESULTS
The following describes the performance results for the

Swarm Diffusion-Taxis (DT) algorithm when tested in sim-
ulation. A fixed area of interest (AOI) and a dynamic AOI
are both tested for a range of numbers of robots (Nr) and

boxes (Nb). Each time taken results is an average of 10 trials
with these parameters. The simulation was also used to test
two other algorithms for comparison, under the same condi-
tions. The first was a global communication method which
was based on a solar compass. A light source was simu-
lated as being in the AOI which could be sensed by the robots
from any position within the warehouse. The robots follow a
global gradient of light intensity to lead them directly to the
area. Occlusions and the physics of light were not modelled
in the simulation. The second uses hop-based navigation to
form a chain of hop-counts leading to the area. Any robot
within the area becomes a seed robot but no robot becomes
stationary. Random walk is also tested whereby the robots
follow the same random heading perturbation rules as the
other algorithms but with no communication between agents
or environmental sensing.

4.1. Single, fixed area of interest
For the single, fixed AOI the times taken by the global,

hop-based and Swarm DT algorithms are given as heatmaps
in Fig. 4, each of which is on a scale of 10 to 260 s, represent-
ing the time taken to deliver all the boxes. The random walk
results are given on a scale of 95 to 430 s. This shows that
the Swarm DT is having a positive effect on the performance
and produces results that are closer to the global gradient
and hop-based algorithms compared to random walk. The
performance for the Swarm DT algorithm is worse than the
global gradient algorithm (and the hop-based in many cases)
but are comparable to the hop-based method. The Swarm DT
performance improved for each given Nb, by increasing Nr.
This is also true for the other algorithms. Using a swarm of
Nr = 50, the Swarm DT algorithm took 27.8 s to collect
10 boxes and 53.6 s to collect 50 boxes. These are much
better than the time recorded for pure random walk which
was 184.6 s to collect 10 boxes and 307.0 s for 50 boxes,
using 50 robots. The Swarm DT times are are closer to the
times recorded for hop-based navigation and the global algo-
rithm which are as follows: hop-based navigation took 15.8
s to collect 10 boxes and 49.8 s to collect 50 boxes, using 50
robots; the global algorithm took 13.0 s to collect 10 boxes
and 41.6 s to collect 50 boxes, using 50 robots. The similarity
in times and patterns, particularly at larger swarm sizes, seen
between the Swarm DT and the other navigation algorithms
suggest that a taxis effect is being successfully created. The
swarm size was increased to 150 to test the limits of these
results. The results for 10-150 robots collecting 50 boxes
are given in Fig. 5. The average results are given as a line
and all results across the 10 trials are shadows surrounding
the average. Swarm DT average times significantly increase
beyond 105 robots. The hop-based and global gradient al-
gorithms also have increased averages beyond 115 robots.
The increase in hop-based navigation times is much lower
than Swarm DT but the increase in global gradient times are
very similar to the Swarm DT algorithm. The range of times
seen across the 10 trials vastly increases for Swarm DT al-
gorithm beyond 125 robots and the same effect is seen for
the global gradient algorithm but significantly less so for the
hop-based navigation. These increases in variability of re-



sults and in average time are due to crowding in the delivery
area which physically blocks new robots from reaching the
area. Increasing robot numbers from 100 to 150 increases the
average time taken to collect 50 boxes from 74.4 s to 404.9 s
using Swarm DT, 65.3 s to 132.9 s using hop-based naviga-
tion and 65.4 s to 336.9 s using the global gradient algorithm.
The crowding causes the Swarm DT robots to not be able to
re-enter the warehouse from the delivery area to spread their
diffusing spatial information which keeps the times high at
high robot numbers. The global gradient sees high times at
high robot numbers also due to crowding but instead it is be-
cause there is reduced random walk in the algorithm because
the return to the delivery area is so one-directional. This pre-
vents the robots from navigating around each other when try-
ing to get into the crowded delivery area because the navigat-
ing robots will not move out of the way with as much range
of movement as in hop-based navigation or Swarm DT. Hop-
based times are less affected by crowding because the spa-
tial information is spread through connection which provides
the directed return information without the need for robots to
physically move from one end of the warehouse to the other,
so is not affected by crowding. It is actually helped by crowd-
ing because this information propagates more easily through
closely packed robots. It also includes more random walk
in the directed return path than the global gradient case be-
cause the robots move towards the area through robot-robot
attraction rather than a direct compass measurement which
allows them to move around each other more easily to navi-
gate blockages. A figure is not included of these behaviours
because it is too difficult to see from a static image. However
a link to the code used for these experiments is included at
the start of this section which can be run by readers and the
effects of crowding can be seen.

Fig. 4. Heatmaps showing the average time taken on Scale
A (10-260 s) for the Swarm Diffusion-Taxis, global gra-
dient and hop-based algorithms and Scale B (95-430 s)
for random walkers. 10-50 boxes and robots are tested.

Fig. 5. The results for average time and all results over 10
trials display the time to collect 50 boxes in the fixed AOI
task for 10-150 robots. There is crowding has at higher
numbers of robots which negatively affects performance.

4.2. Multiple, dynamic areas of interest

The second task tested used multiple areas of interest
which, when found, changed position during the task. Boxes
could only be delivered in a given sequence of box IDs and
each to its own specific AOI. The dynamic AOI task was
tested using Nb = 10 for 10 ≤ Nr ≤ 50. Each swarm size
was tested 10 times and the full range of times seen in these
trials is given as a shadow of values behind the average time
in Fig. 6. The Swarm DT times are longer than hop-based
navigation and global algorithms for this task. However the
average times seen are close to the other algorithms which
is a good performance for the Swarm DT algorithm. The
maximum difference in average time between the Swarm DT
and the global gradient method is 156.1 s (for Nr = 10) with
the minimum average time difference being just 16.78 s (for
Nr = 35). The differences between the Swarm DT and hop-
based navigation are maximum at 80.1 s (for Nr = 25) and
minimum at 21.6 s (for Nr = 10). As Nr increases from 10
to 20, the average times for Swarm DT and the global gra-
dient method become more similar (as Swarm DT times de-
crease more significantly than global gradient times) whereas
the Swarm DT and hop-based navigation times grow further
apart (hop-based times continue to decrease while Swarm DT
plateau). The times taken for the Swarm DT algorithm im-
prove by increasing robot numbers from 10 to 30 robots how-
ever increasing swarm size beyond 30 robots does not see an
improvement in time. This suggests that in the case of 10
boxes to collect, 30 is the best and most efficient swarm size
because adding more robots to the swarm does not improve
performance. The most efficient number of robots (where
times steady to an approximately constant value despite in-
creasing swarm size) for both hop-based and the global gra-
dient algorithms is 20 robots which is fewer than for the
Swarm DT algorithm. The approximate average times that
the algorithms settle to for these last 30-50 robot numbers
is 120 s for Swarm DT, 70 s for hop-based and 40 s for the
global algorithm. The range of times over all 10 trials is
much more varied for the Swarm DT algorithm, compared to



Fig. 6. Line graph showing the results across all 10 trials as a
shadow surrounding the average time taken line for each
of the algorithms tested. The results display the time
taken to collect 10 boxes in the dynamic AOI task for
10-50 robots.

the hop-based and the global gradient algorithms.

5. DISCUSSION
The similarity in times and patterns between Swarm

Diffusion-Taxis and the other navigation algorithms suggest
that a taxis effect is being successfully formed. The similar-
ity in times is less so for the dynamic AOI case but is still
within a reasonable range compared to the other given algo-
rithms which suggests that a taxis effect to the area is still
being created even in this more complex task. These perfor-
mances suggest that a diffusion gradient of spatial informa-
tion is created and communicated by the swarm to navigate
the unmapped environment to find the area of interest. It was
found that increasing the swarm size improves the perfor-
mance but is limited by crowding effects as the number of
robots passes a certain density within the given warehouse
space. For this reason, there is likely an ideal robot density
for each task and a given number of boxes which could be
found to optimise efficiency in this use case. For the dynamic
AOI task, a larger range of times are seen for the Swarm DT
algorithm than the others which suggests that it is less consis-
tent in performance. The relatively low average time (com-
pared to the maximum time seen in the full range of 10 trails)
suggests that it is prone to a small percentage of much higher
times which could make it less reliable in application.

6. CONCLUSION
The Swarm Diffusion-Taxis algorithm has been shown in

simulation to cause the spread of spatial information through-
out the swarm which leads robots towards an area of interest.
This does not rely on global communication or for the robots
to be connected to many other robots to create a success-
ful taxis effect towards the area. This means that the algo-
rithm can be used on cheap robots with simple communica-
tion hardware and does not require complex infrastructure or
set-up. Due to these minimum requirements, the algorithm
is likely to be useful for use cases which require a sorting
system that is usable out-of-the-box.
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