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Abstract

Tree Description Grammars and Underspeci�ed Representations

Author: Laura Kallmeyer
Supervisors: Erhard W. Hinrichs and Uwe M�onnich

In this thesis, a new grammar formalism called (local) Tree Description Grammar (TDG)
is presented that generates tree descriptions. This grammar formalism brings together some
of the central ideas in the context of Tree Adjoining Grammars (TAG) on the one hand, and
approaches to underspeci�ed semantics for scope ambiguities on the other hand.

First a general de�nition of TDGs is presented, and afterwards a restricted variant called
local TDGs is proposed. Since the elements of a local TDG are tree descriptions, an extended
domain of locality as in TAGs is provided by this formalism. Consequently, local TDGs can
be lexicalized, and local dependencies such as �ller gap dependencies can be expressed in the
descriptions occurring in the grammar.

The tree descriptions generated by local TDGs are such that the dominance relation
(i.e. the re
exive and transitive closure of the parent relation) need not be fully speci�ed.
Therefore the generation of suitable underspeci�ed representations for scope ambiguities is
possible.

The generative capacity of local TDGs is greater than the one of TAGs. Local TDGs are
even more powerful than set-local multicomponent TAGs (MC-TAG). However, the gener-
ative capacity of local TDGs is restricted in such a way that only semilinear languages are
generated. Therefore these languages are of constant growth, a property generally ascribed
to natural languages.

Local TDGs of di�erent rank can be distinguished depending on the form of derivation
steps that are possible in these grammars. This leads to a hierarchy of local TDGs. For the
string languages generated by local TDGs of a certain rank, a pumping lemma is proven that
allows to show that local TDGs of rank n can generate a language Li := fa

k
1 � � � a

k
i j k � 0g

i� i � 2n holds.
In order to describe the relation between two languages, synchronous local TDGs are

introduced. The synchronization with a second local TDG does not increase the generative
power of the grammar in the sense that each language generated by a local TDG that is part
of a synchronous pair of local TDGs, also can be generated by a single local TDG.

This formalism of synchronous local TDGs is used to describe a syntax-semantics interface
for a fragment of French which illustrates the derivation of underspeci�ed representations for
scope ambiguities with local TDGs.
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Chapter 1

Introduction

In a grammar, linguistic information can be encoded in di�erent ways. Two broad perspec-
tives on linguistic information can be distinguished: either the information is represented by
structures, e.g. trees or attribute-value graphs, or by descriptions of structures, e.g. formulas
in some description language. From the �rst, more traditional point of view, information
is considered as a model whereas in the second case information is regarded as a theory.
Henceforward, the �rst approach will be called structure-based whereas the second will be
called description-based.

This thesis adopts the second approach: it brings together ideas from the area of tree-
generating formalisms, in particular description-based variants of Tree Adjoining Grammars
and proposals for underspeci�ed semantic representations. The goal of the thesis is the de�ni-
tion of a grammar formalism generating tree descriptions that are suitable as underspeci�ed
representations for scope ambiguities.

The two general perspectives { structure-based and description-based { are by no means
exclusive. Looking at the history of grammar formalisms, not only purely structure-based
or purely description-based formalisms can be found but also formalisms that show both
aspects. Already in early transformational generative grammar (Chomsky 1957, 1965) both
perspectives can be observed since the notion of transformation as a relation between trees is
mentioned on the one hand, opposed to structure descriptions and transformation descriptions
on the other hand. The contrast between structure and description becomes more explicite
with the so-called uni�cation-based or constraint-based grammar formalisms developed in the
80s, for example Kay's functional uni�cation grammar (FUG) and the PATR-II grammar
(see Shieber 1986). The two terms uni�cation versus constraint show the status of these
approaches between structure- and description-based since uni�cation is a structural notion
whereas a constraint is a logical formula. The starting point for these formalisms was to view
a grammar as a set of objects, e.g. feature structures (directed acyclic attribute value graphs)
that represent partial linguistic information. With the increasing complexity of these objects
the need arose to de�ne a logic that helps to understand the meaning of such objects. Work
in this area has been done for example by Shieber (1992) with an application to PATR-II,
and by Kasper and Rounds (1990), Johnson (1990), Dawar and Vijay-Shanker (1990) for
feature structures in general. In contrast to these constraint-based approaches, more recent
formalizations of grammar tend to become more rigorously description-based. This is for
example the case for HPSG (Head-Driven Phrase Structure Grammar, see Pollard and Sag
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2 CHAPTER 1. INTRODUCTION

1994). In the logic for HPSG proposed by King (1994), descriptions are formulas denoting
fully speci�ed objects. A description in such a logic is either true of false for a speci�c object.
Usually, it is true for more than one object, and in this sense it may be called underspeci�ed.
However, there are no objects representing partial information in such a purely description-
based approach.

A similar development from structure-based concepts of grammar to more and more
description-based formalisms can be observed in the research related to Tree Adjoining Gram-
mars (TAG) (Joshi et al. 1975, Joshi 1987). TAGs originally consist of trees from which
larger trees can be generated. Therefore TAGs were introduced as purely structure-based.
Vijay-Shanker (1992) proposes to de�ne TAGs in a description-based way. Following these
ideas, Rogers and Vijay-Shanker develop a de�nition of so-called quasi-trees. In their earlier
approach (Rogers and Vijay-Shanker 1992), quasi-trees are objects representing partial infor-
mation and together with these objects, a logic is de�ned denoting quasi-trees. Therefore this
�rst formalization of quasi-trees is both structure- and description-based, i.e. it is compara-
ble to constraint-based grammar formalisms as mentioned above. In their later formalization
(Rogers and Vijay-Shanker 1994), however, the notion of quasi-trees as objects is left aside
and the approach is purely description-based. The work presented in this thesis is very much
in
uenced by the work on tree descriptions and TAG done by Rogers and Vijay-Shanker.

In the case of King's logic for HPSG, a grammar is viewed as a single huge description
that is true for all grammatical objects. Therefore there is no generation or derivation pro-
cess involved in this approach. However, the choice of a description-based formalism does not
necessarily exclude the notion of generation. Such an approach might be derivation-based
in the sense that there might be a set of elementary descriptions, and from these elemen-
tary descriptions other descriptions might be derived by combining two descriptions in each
derivation step. This is for example the case for the description-based approach to TAGs in
Vijay-Shanker 1992.

There are several reasons for preferring a purely description-based approach to a structure-
based approach: in a structure-based approach some ordering relation is needed that com-
pares two models with respect to their degree of partiality. In the context of uni�cation-based
grammars, this relation is usually called subsumption. A �rst model subsumes a second model
if the second model extends the �rst or, in other words, if the second represents more in-
formation than the �rst. The problem is that subsumption is not monotonic with respect
to classical negation and implication. This problem is avoided if one deals with descriptions
instead of structures representing partial information. Even in a structure-based approach
such as TAG, a partial order on the objects can be found, namely the relation of \being
derivable by adjunction from" (i.e. h
1; 
2i is in the relation i� 
2 can be derived from 
1).
Here, as pointed out by Vijay-Shanker (1992), the problem of non-monotonicity arises not
only with respect to negation but also with respect to structural relations between nodes in
the trees.

A further reason to use descriptions is the necessity of underspeci�ed representations for
natural language expressions. With an increasing number of elements that are ambiguous
with respect to their scope, the number of possible readings explodes: a sentence with n such
elements may (at least theoretically) have n! readings. Poesio (1996) points out that (1) for
example has at least 14400 readings.
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(1) A politician can fool most voters on most issues most of the time, but no politician can
fool all voters on every single issue all of the time.

This shows clearly that from a practical point of view, a disjunction of several analyses of
an expression should be replaced by a single underspeci�ed analysis in order to avoid com-
binatorial explosion. Furthermore, from a cognitive point of view it does not seem plausible
that we process sentences such as (1) by �rst generating all readings and then testing them.
Instead, in some cases, the generation of a single underspeci�ed analysis might be cognitively
adequate whereas in other cases, we probably generate a default analysis and, if necessary,
perform some backtracking operation. The underspeci�ed representation then marks the
point one has to go back to when revising the default analysis. In any case, even from a
cognitive point of view the use of underspeci�ed representations is necessary.

Since one description may be true for more than one object, the use of descriptions
provides underspeci�cation in a very natural way. With appropriate partial structures, un-
derspeci�ed representations also can be obtained but in a less straight-forward way. In this
dissertation, I will therefore use descriptions of trees in order to integrate underspeci�ed
representations into a tree-generating formalism.

1.1 Tree Adjoining Grammars and tree descriptions

The Tree Adjoining Grammar (TAG) formalism, originally presented in Joshi et al. 1975, is
a tree-rewriting grammar formalism developed for natural languages. TAGs were proposed
in order to provide on the one hand a formalism that should be powerful enough to handle
natural languages, in particular more powerful than context-free grammars. On the other
hand, this formalism should stay as close as possible to the set of natural languages and
therefore only slightly extend the generative capacity of context-free grammars.

This last condition is captured by the notion of so-called mildly context-sensitive gram-
mars. Joshi (1985) claims that grammars that are adequate for natural language structures
are mildly context-sensitive, i.e. they allow only limited cross-serial dependencies, they gen-
erate only languages of constant growth, and they are polynomially parsable. These three
conditions hold for TAGs.

TAGs are structure-based since the elementary objects (i.e. the objects the grammar
consists of) are trees. From these elementary trees other trees are derived by operations
called adjunction and substitution. Both operations consist of replacing one single node with
a new elementary tree. In contrast to the string rewriting rules of context-free grammars,
TAGs allow extended domains of locality, i.e. a single \elementary" structure in the grammar
may contain more than one node and its daughters. As a consequence of this, TAGs can
be lexicalized (which means that each \elementary" tree in the grammar contains a lexical
item), and linguistic relations such as argument selection can be stated in the elementary
structures of the grammar.

However, there are some natural language phenomena that cannot be adequately ana-
lyzed with TAGs. Therefore several extensions of TAGs were proposed, in particular Multi-
Component TAGs (MC-TAGs, see Weir 1988 and Kroch and Joshi 1987) were used to handle
certain extraposition phenomena, Description Tree Grammars (D-Tree Grammars, see Ram-
bow et al. 1995) were developed in order to have a uniform complementation operation, and
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Unordered Vector Grammars with Dominance Links (UVG-DL, see Rambow 1994a,b) were
introduced in order to provide an analysis of German scrambling phenomena.

A common property of these TAG variants is that more than one tree is added in each
derivation step. Furthermore, in the case of D-Tree Grammars and UVG-DLs, these trees
are connected by dominance links. More precisely, a dominance link relates a leaf in one of
the trees to the root of another tree. These dominance links are supposed to represent the
re
exive and transitive closure of the parent (or immediate dominance) relation. In other
words, a dominance link between a leaf u1 and a root node u2 signi�es that either u1 and u2
may be identi�ed with each other or there may be arbitrarily many nodes between u1 and
u2. In this sense, dominance links signify an underspeci�cation of the parent relation in a
tree. This shows that the possibility of underspeci�cation in TAG variants is motivated not
only by the necessity of underspeci�ed representations but also by considerations concerning
the generative capacity of the grammar.

As already mentioned above, the idea to use tree descriptions (so-called quasi-trees) for a
de�nition of TAGs stems from Vijay-Shanker (1992). This approach is motivated by the lack
of monotonicity in TAGs which can be remedied by the use of quasi-trees. A logic for this
description-based approach is presented in Rogers 1994 and Rogers and Vijay-Shanker 1994.

This shift from the more traditional structure-based TAG formalism dealing with objects
to description-based TAG variants dealing with descriptions of objects opens new perspec-
tives. Underspeci�cation is a problem if linguistic information is viewed in terms of a single
model. But, as already mentioned above, if linguistic information is viewed in terms of de-
scriptions, then underspeci�cation is expected, since descriptions usually have several models.
Therefore, a description-based TAG variant might enable us to obtain underspeci�ed repre-
sentations for sentences such as (1).

Another TAG variant that has in
uenced the work presented in this dissertation is the
formalism of synchronous TAGs proposed by Shieber and Schabes (1990). The idea of this
formalism is to relate two TAGs by a synchronization relation and then to perform deriva-
tions in the two TAGs in parallel where simultaneous derivation steps are controlled by the
synchronization relation. Shieber and Schabes (1990) propose to use such a grammar in order
to account for the syntax-semantics interface. Adopting this idea, I will describe the syntax-
semantics interface using two description-based TAG variants related by a synchronization
relation.

1.2 Tree descriptions as underspeci�ed representations

In most recent theories of underspeci�ed representations (e.g. Reyle 1993, Bos 1995, Muskens
1995, and Niehren et al. 1997a,b), scope is represented by a partial order. Underspeci�ed
analyses for scope ambiguities are then obtained by leaving this ordering relation partially
unspeci�ed.

In the case of tree descriptions, the dominance relation is a partial order. (One node u1
dominates a second node u2, if either u1 = u2 holds or u1 has a daughter that dominates u2.)
Therefore, a representation of scope by the dominance relation suggests itself. Consider the
noun phrase in (2) (taken from Richter and Sailer 1997). This NP is structurally ambiguous
and has two readings.
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a

Det

former

AP

professor

N

in T�ubingen

PP

N

N

NP

a

Det

former

AP

professor

N

N

in T�ubingen

PP

N

NP

Figure 1.1: Syntactic structures for (2)

(2) a former professor in T�ubingen

The two syntactic structures of (2) are shown in Fig. 1.1. Corresponding to these two
structures, there are two possible scope orders:

1. either the NP describes a person that was a professor in T�ubingen in some former days
(this corresponds to the left structure in Fig. 1.1),

2. or the NP describes a person that is in T�ubingen and that was a professor in some
former days (right structure in Fig. 1.1).

An underspeci�ed representation for the two syntactic structues of (2) should be a tree
description that describes all properties that the two trees have in common. These properties
can be characterized as follows:

- there is a subtree 
1 with a root node with label NP , this root node has a left daughter
with label Det and a right daughter with label N . The left daughter again has a left
daughter which is labelled by the determiner a.

- there is a subtree 
2 containing a root with label N , this root has a left daughter with
label AP , and a right daughter with label N . Furthermore, the left daughter again has a
daughter with the label former.

- there is a subtree 
3 containing a root with label N , this root has a left daughter with
label N and a right daughter with label PP . The right daughter has a daughter with label
in T�ubingen,

- there is a subtree 
4 containing a root with label N and a single daughter with label
professor.

- for the relations between these four subtrees, the following holds: the leaf in 
1 with
label N dominates the roots of 
2 and 
3, and the leaves in 
2 and 
3 with label N both
dominate the root of 
4.

If these properties are to be described in a tree description, then this tree description must
correspond to the graphical representation given in Fig. 1.2. To avoid misunderstandings, I
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want to emphasize that objects as the one in Fig. 1.2 are not descriptions themselves but
they are only pictures of descriptions. Descriptions are formulas in a tree logic and graphical
representations illustrate the information entailed by the formula in question. Dotted edges
in such pictures represent dominance relations. The fact that the description of one node
is depicted left of the description of another node does not always signify linear precedence.
The description in Fig. 1.2 for example does not signify that the description of the root of 
2
is left of the description of the root of 
3.

NP
 description of 
1

Det N

a N N

description of 
2 ! AP N N PP  description of 
3

former in T�ubingen

N
 description of 
4

professor

Figure 1.2: Underspecified representation for (2)

In this tree description, the dominance relation is underspeci�ed: either the leaf with label
N in 
2 dominates the root of 
3 or the leaf with label N in 
3 dominates the root of 
2. In
the �rst case, the syntactic structure shown on the left side of Fig. 1.1 is obtained as a kind
of minimal model, and in the scond case the one on the right side is obtained.

These considerations have shown that an underspeci�cation of the dominance relation is
necessary in order to obtain suitable underspeci�ed representations for syntactic ambiguities
such as (2). However, the underspeci�cation in the above mentioned TAG-variants concerns
only the parent relation. Dominance is always completely speci�ed in these approaches, and
tree descriptions as in Fig. 1.2 cannot be obtained. Therefore none of these formalisms is
suitable to generate underspeci�ed representations of the form depicted in Fig. 1.2.

1.3 Overview of the thesis

This dissertation addresses the problem of integrating underspeci�ed representations of the
form shown in Fig. 1.2 into a description-based TAG extension. I will propose a new grammar
formalism called Tree Description Grammars (TDG). The advantages of TDGs encompass
those of previous extensions of TAGs, and TDGs allows the generation of underspeci�ed
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representations for scope ambiguities, i.e. of tree descriptions that represent scope ambiguities
as lack of information about the tree structure, rather than as a disjoint list of trees.

An introduction to TAGs and the TAG variants mentioned in Section 1.1 can be found
in Chapter 2 of this dissertation. In Chapter 3, a general form of TDGs is introduced, and
later, in Chapter 4, a variant of TDGs, local TDGs are proposed. Local TDGs are the central
formalism of the thesis. Chapter 5 presents a syntax-semantics interface for a fragment
of French showing that with local TDGs the desired underspeci�ed representations can be
generated. A summary of the main points made in the thesis, and a brief outlook, can be
found in Chapter 6.

1.3.1 Tree Description Grammars

TDGs are description-based, i.e. they consist of descriptions (formulas) denoting sets of trees.
The underlying tree logic is a quanti�er free �rst order logic similar to the one proposed in
Rogers 1994 and Rogers and Vijay-Shanker 1994.

The logic allows the description of relations between node names k1; k2 such as parent
relation (i.e. immediate dominance) k1 � k2, dominance k1 �

� k2, linear precedence k1 � k2
and equality k1 � k2. Furthermore, nodes are supposed to be labelled by terminals or by
atomic feature structures. The labeling function is denoted by Æ, and for a node name k,
Æ(k) � t signi�es that k has a terminal label t, and a(Æ(k)) � v signi�es that k is labelled by
a feature structure containing the attribute value pair ha; vi.

For this logic, a syntactic notion of consequence is de�ned, based on inference rules. This
syntactic consequence is decidable, sound and complete.

A presentation of the tree logic can be found in Section 3.1 of Chapter 3.

TDGs consist of tree descriptions, so-called elementary descriptions, and a speci�c start
description. In an elementary description  , some of the node names are marked (those in
the set K ). A sample grammar is given in Fig. 1.3.

In contrast to other description-based approaches such as King's logic for HPSG, TDGs
are derivation-based: they generate tree descriptions. A formalization of TDGs without a
notion of derivation might also be possible but it would be a complex issue involving the
de�nition of a more powerful tree logic than the one used for the derivation-based de�nition
of TDGs.

A derivation in a TDG starts with the start description. In each derivation step, a
derived description �1 and an elementary description  are used to obtain a new description
�2. Roughly speaking, �2 can be viewed as a conjunction of �1,  and new equivalences
between node names from �1 and from  , i.e. �2 = �1 ^  ^ k1 � k01 ^ � � � ^ kn � k0n where
ki are names from �1 and k

0
i are names from  for 1 � i � n. This derivation step must be

such that

1. for a node name k in  , there is a new equivalence i� k is either marked (i.e. in K )
or k is minimal (dominated by no other name, e.g. k7 in  1 in Fig. 1.3),

2. and the result �2 must be as \underspeci�ed" as possible, i.e. up to some renaming of
node names, �2 must not entail any other possible result of the derivation step.

E.g. in the grammar in Fig. 1.3, derivations �S
 1) �2 with �2 = �S^ 1^k4 � k7^k5 � k12
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TDG with start description �S and elementary descriptions  1;  2:
�S = k1 � k2 ^ k1 � k4 ^ k2 � k3 ^ k4 �

� k5 ^ k5 � k6 ^ k2 � k3
^cat(Æ(k1)) � NP ^ cat(Æ(k2)) � Det ^ Æ(k3) � a ^ cat(Æ(k4)) � N
^cat(Æ(k5)) � N ^ Æ(k6) � professor

 1 = k7 �
� k8 ^ k8 � k9 ^ k9 � k10 ^ k8 � k11 ^ k11 �

� k12 ^ k9 � k11
^cat(Æ(k7)) � N ^ cat(Æ(k8)) � N ^ cat(Æ(k9)) � AP ^ Æ(k10) � former
^cat(Æ(k11)) � N ^ cat(Æ(k12)) � N

K 1 = fk12g

 2 = k13 �
� k14 ^ k14 � k15 ^ k15 �

� k16 ^ k14 � k17 ^ k17 � k18 ^ k15 � k17
^cat(Æ(k13)) � N ^ cat(Æ(k14)) � N ^ cat(Æ(k15)) � N ^ cat(Æ(k16)) � N
^cat(Æ(k17)) � PP ^ Æ(k18) � in T�ubingen

K 2 = fk16g

Graphical representations:

�S
NP k1

Det k2 N k4

a k3 N k5

professor k6

 1

N k7

N k8

k9 AP N k11

k10 former N k12

K 1 = fk12g

 2

N k13

N k14

k15 N PP k17

k16 N in T�ubingen k18

K 2 = fk16g

Figure 1.3: Sample TDG

and also �2
 2) �3 with �3 = �2 ^ 2 ^ k4 � k13 ^ k5 � k16 are possible. Graphical representa-

tions of �2 and �3 are shown in Fig. 1.4. In the second case, �3 is the only description that
can be derived by putting �2 and  2 together because the result of a derivation step must be
maximally underspeci�ed. This condition avoids for example the derivation of a description
where k4 � k13 and k8 � k16 are added as new equivalences when combining �2 and  2.

TDGs generate descriptions that are true for in�nitely many trees. Therefore a notion
of minimal trees for a description is needed. E.g. the minimal trees of �3 in Fig. 1.4 should
be the two trees in Fig. 1.1. Roughly speaking, a minimal tree 
 of a description is de�ned
as a tree that satis�es the description in such a way that each parent relation in the tree is
described exactly once in the description. More precisely

(a) all parent relations in the tree are described in the description, and

(b) if two node names in the description are not equivalent and for both there are daughters
described, then the two node names do not denote the same node in 
.
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�2 NP

Det N k4�k7

a N k8

AP N k11

former N k5�k12

professor

�3 NP

Det N k4�k13

a N N

AP N N PP

former in T�ubingen

N k5�k16

professor

Figure 1.4: Sample derivation

The TDG formalism is presented in Section 3.2 of Chapter 3. In Section 3.3 I will give a
derivation procedure that takes a derived description and a new elementary description and
gives all possible results of a derivation step with these two descriptions. For the special case
of lexicalized TDGs the decidability of the word problem will be shown.

TDGs give us a way of introducing underspeci�cation to tree-generating grammars. They
o�er the advantages of Multi-Component TAGs and of D-Tree Grammars, without losing the
main principles of TAGs, namely the extended domain of locality.

1.3.2 Local TDGs

The problem with the general de�nition of TDGs is that they might be too powerful, since
there is no restriction with respect to the choice of equivalent node names in a derivation
step.

Therefore, in Chapter 4, I will propose a restriction of TDGs called local TDGs. The idea
is to restrict TDGs in such a way that the modi�cations that take place in one derivation
step are local in the following sense: the part of the old description that is modi�ed in this
derivation step must come from one single elementary description that was added before.
The most important restriction is that in one derivation step, all node names in the old
description that are used for new node name equivalences added in this step have to be part
of one single elementary description. This description is called the derivation description of
this step. Together with some further conditions, this requirement guarantees that only local
modi�cations are caused by a derivation step. This means that the modi�cation of properties
of node names caused by one derivation step concerns only names from one single elementary
description that was added before.

As a consequence of this locality, the derivation process in a local TDG can be described by
a context-free grammar. With this context-free grammar, semilinearity of the string languages
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of local TDGs can be proven by showing letter equivalence to context-free languages. This
result indicates that local TDGs are more adequate to handle natural languages than (general)
TDGs, since the so-called Constant Growth Property (a consequence of semilinearity) holds
for the string languages of local TDGs.

The Constant Growth Property is one of the properties Joshi (1985) lists in his charac-
terization of mildly context-sensitive languages. I do not consider the other two properties of
MCSGs in this dissertation. Cross-serial dependencies are clearly not limited in local TDGs.
With respect to parsing, I do not treat parsing complexity, this is not within the scope of the
work presented here.

On the other hand, local TDGs are still powerful enough: I will show that they are more
powerful than TAGs, even more powerful than set-local MC-TAGs. The crucial point is that
the locality restriction concerns only the derivation of descriptions and not the construction
of minimal trees.

As TDGs, local TDGs are also suitable for the generation of underspeci�ed representa-
tions. E.g. the descriptions �2 and �3 in Fig. 1.4 also can be derived with a local derivation
mode. In both derivation steps, �S ) �2 and �2 ) �3, the node names k4 and k5 that are
both part of the start description �S are used for the new equivalences.

The formalism of local TDGs is presented in Section 4.1, and the semilinearity proof and
the comparison to MC-TAGs can be found in Section 4.2 of Chapter 4.

Local TDGs can be distinguished with respect to the form of the descriptions occurring in
the grammar. Roughly speaking, the distinction concerns the maximal number of new node
name equivalences that might be added in one derivation step. According to this, in Section
4.3 I will de�ne local TDGs of di�erent rank and I will prove a pumping lemma for the string
languages generated by local TDGs of a certain rank n. Using this pumping lemma, I will
show that local TDGs of rank n generate a true subset of the languages generated by local
TDGs of rank n+ 1. In particular, TDGs of rank n can \count up to 2n". This means that
the languages Li := fa

k
1 � � � a

k
i ; k � 0g are generated up to i = 2n by local TDGs of rank n,

whereas for i > 2n, Li cannot be generated by a local TDG of rank n.

Adopting ideas from synchronous TAGs as de�ned in Shieber and Schabes 1990, I will
de�ne synchronous local TDGs in section 4.4. This formalism can be used to describe the
relation between two languages that depend on each other in a compositional way but that
do not have exactly the same structures. It is later used in Chapter 5 in order to describe
the relation between syntax and semantics.

A synchronous pair of local TDGs consists of two local TDGs related by a synchronization
relation. This is a relation between elementary descriptions in the �rst local TDG and
elementary descriptions in the second local TDG. Furthermore, for two related descriptions,
there is a relation between the node names of the two descriptions which indicates the node
names that must be treated in parallel in course of a derivation.

Derivation takes place simultaneously in these two grammars and it is controlled by the
synchronization relation: in each derivation step, a single derivation step takes place in each
of the two local TDGs. These derivations must be such that

1. the new elementary descriptions added in this step are related by the synchronization
relation,

2. the two derivation descriptions are also related to each other, and
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3. if new equivalences k1 � k2 and k3 � k4 are added in the two local TDGs, and if k1 and
k3 are related but k2 and k4 are not related, then neither k2 nor k4 is related to any node.

With respect to the generative capacity of this formalism, it can be shown that the
synchronization with a second local TDG does not increase the expressivity of local TDGs.
In other words, the set of languages generated by local TDGs that are part of a pair of
synchronous local TDGs is equal to the set of languages generated by single local TDGs.

1.3.3 Linguistic applications

Chapter 5 of the dissertation is concerned with a linguistic application of synchronous local
TDGs.

I will present a syntax-semantics interface for French that consists of a local TDG Gsyn
for the syntax, a local TDG Gsem for a truth conditional semantics and a synchronization
relation between Gsyn and Gsem.

The truth conditional logic is a typed �rst order �-calculus. Since local TDGs provide
an extended domain of locality, the relation between syntax and semantics is less close than
in more traditional Montagovian theories where each phrase structure rule is connected to
a semantic operation. Therefore the semantics depends on the syntax in a compositional
way but it can be independent from word order variation. Consequently, only functional
application and �-abstraction are necessary as semantic operations, and the trees generated
with respect to Gsem can be considered as syntactic structures of logical expressions. It is
suÆcient to de�ne truth conditional interpretations for the strings yielded by these trees.

The syntax-semantics interface covers a fragment of French including proper names, com-
mon nouns, verbs, intersective and non-intersective adjectives, generalized quanti�ers and
restrictive and appositive relative clauses. I will show that this approach gives a way to
generate suitable underspeci�ed representations for quanti�er scope ambiguities. Contrast-
ing this with other theories proposed for underspeci�cation, we will see that synchronous
local TDGs have the advantage that island conditions for quanti�er scope do not have to be
explicitely stated, but are a consequence of the formalism of local TDGs and of the speci�c
derivation mode for synchronous local TDGs.
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Chapter 2

Tree Adjoining Grammars

With respect to the descriptive complexity of theories of grammar developed for natural
languages, there are two aspects that must be taken into account. First, such a grammar
formalism must be rich enough to provide descriptions for the full range of data observed for
natural languages. Second, if possible, the formalism should even predict some restrictions
that hold for natural languages, in other word it should embody a description of the nature,
and hence limits, of natural language. Head-Driven Phrase Structure Grammars (HPSG)
(see Pollard and Sag 1994) for example are powerful enough to deal with natural languages
but they do not explain any restrictions on natural language structure. King and Vaillette
(1997) show that the logic proposed for HPSG by King (1994) is capable of determining any
total recursive set of strings. In contrast to this, Tree Adjoining Grammars (TAG) have been
developed with the idea to come as close as possible to a characterization of the class of
natural languages. TAGs are a tree generating formalism originally presented by Joshi et al.
(1975). Introductions to TAGs can be found in Joshi 1987 and Abeill�e 1993.

It has been shown that context-free grammars are not powerful enough to deal with
natural languages. Bresnan et al. (1982) for example have argued that a structurally adequate
description of cross-serial dependencies in Dutch is not possible with context-free grammars.
In other words, the strong generative capacity of context-free grammars is not suÆcient
to handle natural languages. Shieber (1985) shows that in the case of Swiss German, where
cross-serial dependencies require appropriate case-marking, even the weak generative capacity
of context-free grammars is not suÆcient to handle these phenomena.

The goal of the de�nition of TAGs is to provide a grammar formalism that is more powerful
than context-free grammars and therefore more suitable for natural languages but that only
slightly extends context-free grammars. To capture this idea, Joshi (1985) establishes some
criteria that such a formalism should satisfy. These criteria are:

� the string languages should be of constant growth,

� the formalism should be polynomially parsable, and

� it should allow only limited cross-serial dependencies.

Formalisms satisfying these conditions are called mildly context-sensitive grammars. Joshi
argues that grammars that are adequate for natural language structures will be found in the

13
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class of mildly context-sensitive grammars. TAGs and even set-local Multi-Component TAGs
are mildly context-sensitive.

In context-free derivation steps, trees of height 1 (i.e. trees where all daughters of the root
are leaves) are substituted for leaves. The idea of the TAG formalism is to extend context-free
grammars such that instead of trees of height 1, larger trees of arbitrary (�nite) height are
allowed as elements of the grammar. In a TAG derivation step, one node is replaced by such a
larger tree. The main derivation operation of TAGs is the operation adjunction. Adjunction
consists of replacing one internal node by a tree. It is used to factor recursion from the local
domains, i.e. the trees in the grammar.

Apart from the insuÆcient generative power, a second problem with context-free gram-
mars is that they cannot be lexicalized. Roughly said, a grammar is lexicalized if each
element in the grammar (e.g. production, tree, tree description ...) contains a lexical item
that is called its anchor. For a context-free grammar, it is of course possible to �nd a weakly
equivalent lexicalized context-free grammar, e.g. the equivalent grammar in Greibach normal
form. However, the derivation trees of these two grammars are usually not the same, and
therefore the grammars are not strongly equivalent. If a grammar formalism is intended to
describe natural languages, then a lexicalization should be possible in the sense that for each
grammar of this formalism, a strongly equivalent lexicalized grammar exists (i.e. a grammar
generating the same structures).

In order to provide lexicalized TAGs, besides adjunction, a second operation called sub-
stitution is used. Substitution consists of replacing a leaf by a tree. It does not extend
the generative capacity. TAGs with adjunction and substitution can be lexicalized because
of their larger domains of locality and because, with the additional substitution operation,
unique anchors are possible for elementary structures. Furthermore, cooccurrence restric-
tions, e.g. �ller gap dependencies or subcategorization frames can be locally described in
single elementary trees, i.e. trees belonging to the grammar.

In this chapter I will describe TAGs and those extensions of TAGs that have in
uenced
the development of Tree Description Grammars as presented in the following chapters. Be-
fore coming to the introduction of TAGs, some basic de�nitions are listed in the �rst section.
These de�nitions are probably known to most readers (e.g. the de�nition of a context-free
grammar). In Section 2.2 I will then present the TAG formalism with adjunction and sub-
stitution as derivation operations. Following Abeill�e 1993, I will mention some linguistic
principles underlying TAGs and sketch brie
y how to describe natural languages with TAGs.
In the next two sections, I will present some TAG-variants, synchronous TAGs (de�ned in
Shieber and Schabes 1990) and Multi-Component TAGs, as proposed in Joshi 1987 and Weir
1988. Afterwards, I will mention some recent proposals to view TAGs as de�ning constraints
on well-formed structures rather than generating a tree set. Besides some general consid-
erations concerning constraints I will outline the formalism of D-Tree grammars (DTG) as
presented in Rambow et al. 1995 and Unordered Vector Grammars with dominance links
(UVG-DL), proposed by Rambow (1994a,b). As a conclusion, in the last section, I will
summarize the criteria a grammar formalism should satisfy if it is supposed to preserve the
attractive properties of TAG-related formalisms and to allow underspeci�ed representations.
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2.1 Basic de�nitions

In this part I will give some basic de�nitions from the area of formal languages that are used
in the course of the dissertation. Most of the notions introduced here are generally known
(see for example Hopcroft and Ullman 1979, 1994 for these basic de�nitions).

De�nition 2.1 (Alphabet, word) An alphabet is a nonempty �nite set X. A string
x1dotsxn with n � 1 and xi 2 X for 1 � i � n is called a nonempty word on the alphabet X.
X+ is de�ned as the set of all nonempty words on X.
A new element � =2 X+ is added: X� := X+ [f�g. For each w 2 X+ concatenation of w and
� is de�ned as follows: w� := �w := w. � is called the empty word, and each w 2 X� is called
a word on X.

With respect to the concatenation operation on strings, X+ is a semigroup, and X� is a
monoid with neutral element �.

De�nition 2.2 (Homomorphism) For two alphabets X and Y , a function ' : X� ! Y �

is a homomorphism i� for all v; w 2 X�: '(vw) = '(v)'(w).

De�nition 2.3 (Pre�x, suÆx, substring) Let X be an alphabet. For a word w 2 X� a
word u 2 X� is

� a pre�x of w i� there is a v 2 X� such that w = uv.

� a suÆx of w i� there is a v 2 X� such that w = vu.

� a substring of w i� there are v1; v2 2 X
� such that w = v1uv2.

De�nition 2.4 (Length of a word, a-length) Let X be an alphabet, w 2 X�.

1. The length of w, jwj, is de�ned as follows: if w = �, then jwj = 0. If w = xw0 for some
x 2 X, then jwj = 1 + jw0j.

2. For each a 2 X, the a-length of w, jwja, is de�ned as follows: if w = �, then jwja = 0. If
w = xw0 for some x 2 X, then: if x = a, then jwja = 1 + jw0ja, else jwja = jw

0ja.

In other words, the a-length jwja of a word w for a certain symbol a is the number of
occurrences of a in w.

De�nition 2.5 (Language) A set L is called a language i� there is an alphabet X such
that L � X�.

De�nition 2.6 (Context-free grammar) A context-free grammar (CFG) is a tuple G =
(N;T; P; S) such that

1. N and T are disjoint alphabets, the nonterminals and terminals of G.

2. P � N� (N [T )� is the set of productions. A production (A;�) is usually written A! �.

3. S 2 N is the start symbol.

De�nition 2.7 (Language of a CFG) Let G = (N;T; P; S) be a CFG. Then the language
L(G) generated by G is the set fw 2 T � jS

�
) wg where
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1. for w1; w2 2 (N [ T )�: w1 ) w2, i� there is a A ! � 2 P and there are v; u such that
w1 = vAu and w2 = v�u,

2. and
�
) is the re
exive transitive closure of ) on (N [ T )�.

A language is called context-free i� it is generated by a CFG.

2.2 TAG formalism

2.2.1 Adjunction and substitution

In order to give a precise description of the tree operations adjunction and substitution used
in TAGs, a de�nition of trees, more precisely of �nite labelled trees, is necessary. Here I will
not use the notion of tree domains as Vijay-Shanker (1987) does for example. Instead I will
look at trees as sets of nodes structured by binary relations parent, dominance and linear
precedence. This concept of trees corresponds very much to the intuitive picture of a tree.
In Chapter 3 these structures also will serve as models for the tree logic for Tree Description
Grammars where variables denote nodes and there are constants for the binary relations on
the nodes, e.g. \�" for the parent relation.

De�nition 2.8 (Finite labelled tree) Let N and T be disjoint alphabets. A tuple
(U ; u0;P;D;L; �) is a �nite labelled tree with nonterminals N and terminals T i�

1. U is a �nite set with U \ (N [ T ) = ;, the set of nodes.

2. u0 2 U is a special node, the root.

3. P;L;D 2 U � U , such that for all w; x; y; z 2 U :

(a) P is irre
exive, and if x 6= u0, then there is exactly one v 2 U with hv; xi 2 P.

(b) D is the re
exive transitive closure of P, and D is antisymmetric.

(c) L is transitive.

(d) hx; yi 2 D or hy; xi 2 D or hx; yi 2 L or hy; xi 2 L.

(e) if hx; yi 2 L, then hx; yi =2 D and hy; xi =2 D.

(f) if hx; yi 2 L and hx;wi; hy; zi 2 D, then hw; zi 2 L.

4. � : U ! T [N [ f�g is a function, such that for all u 2 U : �(u) 2 N if there is a u0 2 U
with hu; u0i 2 P (u is no leaf).

A u 2 U , such that there is no u0 2 U with hu; u0i 2 P, is called a leaf.

A u 2 U that is not a leaf is called an internal node.

With 3.(a), each node except the root node has a single parent. Together with the
irre
exivity of P and the antisymmetry of D, this signi�es furthermore that the root has no
parent and that each node is dominated by the root node, i.e. for all x 2 U , hu0; xi 2 D holds:
for U = fu0g this is obvious. Suppose that jUj � 2 and u1 2 U n fu0g. Let u2; : : : ; un, n � 2
be such that hun; un�1i; : : : ; hu2; u1i 2 P. Then for 1 � i < j � n, ui 6= uj holds because P is
irre
exive and D is antisymmetric. Therefore, since U is �nite, there must be an u 2 U with
hu; u1i 2 D such that u has no parent and consequently (with 3.(a)) u = u0.

3.(a) requires the parent relation P to be an irre
exive relation. Furthermore, because
of 3.(b), the relation P is asymmetric: suppose that hx; yi 2 P and hy; xi 2 P hold. With
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3.(b) P � D and therefore hx; yi; hy; xi 2 D. Then x = y must hold since D is antisymmetric.
This is a contradiction to the irre
exivity of P. Intransitivity of P also can be shown: let
hx; yi; hy; zi 2 P. Then x; y; z must be pairwise di�erent and (since u0 has no parent), y 6= u0
and z 6= u0. Therefore (with 3.(a)) hx; zi =2 P.

Linear precedence L is transitive. With 3.(b) and 3.(e), L also is an irre
exive relation:
suppose that hx; yi 2 L and x = y. Then (since D is re
exive) hx; yi 2 D holds which is a
contradiction to 3.(e). Furthermore, L is also asymmetric: suppose that hx; yi; hy; xi 2 L.
Since L is transitive, hx; xi 2 L which is a contradiction to the irre
exivity of L.

The intuitive meaning of the axioms 3.(d) to 3.(f) is the following: 3.(d) requires every
pair of nodes to be related either by domination or by linear precedence. This is sometimes
called the exhaustiveness property. 3.(e) together with asymmetry of L signi�es that these
relations are mutually exclusive. This property is sometimes referred to as exclusiveness.
3.(f), the so-called inheritance or non-tangling property requires that the entire subtrees
rooted at nodes related by linear precedence are also related by linear precedence.

Henceforwad, for a tree 
, the symbols U
 ; u


0 ;P
 ;D
 ;L
 and �
 denote the nodes, the

root, the parent, dominance and linear precedence relation and the labeling function of 

respectively. In some cases, the nonterminals N and terminals T of a tree are not explicitely
mentioned.

If all leaves in a �nite labelled tree have terminal labels, this tree is called a terminal tree,
and then the string consisting of these terminals read from left to right is called the yield of
the tree.

De�nition 2.9 (Terminal tree, yield) Let 
 be a �nite labelled tree with nonterminals N
and terminals T .

1. 
 is called a terminal tree i� for all leaves u in 
, �
(u) 2 T [ f�g.

2. Let 
 be a terminal tree with n leaves (n � 1). Let u1; : : : ; un be the leaves in 
 such that
hui; ui+1i 2 L
 for 1 � i < n.

Then yield(
) := �(u1) : : : �(un) is the yield of 
.

With respect to TAGs, two kinds of trees are distinguished: on the one hand, �nite
labelled trees as de�ned above can occur in a TAG. In this case such a tree is called an initial
tree of the grammar.1 On the other hand, a TAG contains trees whith a unique leaf in the
tree that is marked as a so-called foot node and that has the same label as the root of the
tree. Such trees will be called foot-marked, and a foot-marked tree occurring in a TAG is a
so-called auxiliary tree.2

De�nition 2.10 (Foot-marked trees, foot node) A pair h
; u
f i is called a foot-marked
tree i�

1. 
 is a �nite labelled tree with nonterminals N and terminals T , and

2. u
f is a leaf in 
 with �
(u


f ) 2 N and �
(u



0) = �
(u



f ).

1Originally, in the basic de�nition of TAGs, all leaves in initial trees are labelled by terminals, i.e. initial
trees are terminal trees. But I will use an extended notion of initial trees allowing leaves with nonterminal
labels. In the course of a derivation, other initial trees must be substituted for these nodes (substitution
operation). Therefore such nodes are called substitution nodes.

2In other de�nitions of TAGs, there is no distinction between foot-marked trees in general and auxiliary
trees as particular trees of a grammar, and therefore the term foot-marked is not used. However I think this
notion necessary to give an exact de�nition of TAGs.
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u
f is called the foot node of 
.

In the following, the foot node will usually not be explicitely mentioned, i.e. 
 will be
written instead of h
; u
f i if it is clear that 
 is a foot-marked tree. Furthermore, if 
 is a

foot-marked tree, then the symbol u
f denotes the foot node.
The set of nodes between the root and the foot node of a foot-marked tree, i.e. the path

from the root to the foot, is called the spine. This path contains all nodes that dominate the
foot node.

De�nition 2.11 (Spine) Let � be a foot-marked tree with foot node u�f . The spine of � is

the set Us(�) = fus 2 U� j hus; u
�
f i 2 D�g.

Next the adjunction operation will be de�ned, an operation on trees that consists of
replacing a node in a �nite labelled tree by a foot-marked tree (see Fig. 2.1). Roughly said,
if a foot-marked tree � is adjoined to a tree 
 at an internal node u, then the subtree 
(2)
with root u is replaced by � and afterwards 
(2) is inserted under the foot node of �. To
render adjunction possible, the node where adjunction takes place and the root and the foot
of the foot-marked tree must be labelled by the same nonterminal.




(1)

u  

(2)

�

u�f

u�0


0

 �

u�f

u�0

 
(1) without u

 
(2) without u

Figure 2.1: Adjunction

De�nition 2.12 (Adjunction) Let 
 be a �nite labelled tree and � a foot-marked tree such
that U
 \ U� = ; holds. � can be adjoined to 
 at the node u 2 U
, i� u is an internal

node with �
(u) = ��(u
�
0 ). The result of this adjunction is the �nite labelled tree 
0 =

(U 0; u00;P
0;D0;L0; �0) with

� U 0 = (U
 n fug) [ U�
� For all u1; u2 2 U

0: hu1; u2i 2 P
0

i� either hu1; u2i 2 P
 [ P�,

or hu1; ui 2 P
 and u2 = u�0 ,

or hu; u2i 2 P
 and u1 = u�f .

� For all u1; u2 2 U
0:

if hu1; u2i 2 L
 [ L� then hu1; u2i 2 L
0,

if hu1; ui 2 L
 then hu1; u
�
0 i 2 L

0,
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train

N u

�

N�

jaune

A

AP

N

[u; �]

train

N

jaune

A

AP

N

Figure 2.2: Analysis of train jaune (`yellow train')

and if hu; u2i 2 L
 then hu�0 ; u2i 2 L
0.

� For all u
 2 U
 n fug: �
0(u
) = �
(u
).

For all u� 2 U�: �
0(u�) = ��(u�).

Notation: 
0 = 
[u; �].

Adjunction is the main derivation operation used for Tree Adjoining Grammars. It gives
us a way of factoring recursion, e.g. to add modi�ers. The modi�cation of a noun phrase by
a nominal modi�er for example results in a new noun phrase that can again be modi�ed by a
nominal modi�er (see Fig. 2.2). In the �gures, foot nodes are marked by an asterisk in order
to distinguish them from substitution nodes (other leaves with nonterminal labels).

Besides adjunction, a second operation is used in TAGs, namely substitution. As adjunc-
tion, substitution also consists of replacing one node in a �nite labelled tree by a tree. But in
contrast to adjunction, this node must be a substitution node, i.e. a leaf, and the tree must
be a �nite labelled tree.




u  

�
u�0


0

 
 without u

 �

u�0

Figure 2.3: Substitution

De�nition 2.13 (Substitution) Let 
 and � be �nite labelled trees such that U
 \U� = ;.
� can be substituted for a node u 2 U
, i� u is a leaf with �
(u) = ��(u

�
0 ). The result of this

operation is the �nite labelled tree 
0 = (U 0; u00;P
0;D0;L0; �0) with

� U 0 = (U
 n fug) [ U�
� For all u1; u2 2 U

0: hu1; u2i 2 P
0

i� either hu1; u2i 2 P
 [ P�,
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or hu1; ui 2 P
 and u2 = u�0 .

� For all u1; u2 2 U
0:

if hu1; u2i 2 L
 [ L� then hu1; u2i 2 L
0,

if hu1; ui 2 L
 then hu1; u
�
0 i 2 L

0,

and if hu; u2i 2 L
 then hu�0 ; u2i 2 L
0.

� For all u
 2 U
 n fug: �
0(u
) = �
(u
).

For all u� 2 U�: �
0(u�) = ��(u�).

Notation: 
0 = 
[u; �].

The idea of substitution is that there is a slot { the substitution node { that must be
�lled in order to obtain a correct structure. Argument slots in subcategorization frames are
therefore usually substitution nodes (see Fig. 2.4). This re
ects the obligatory character of
arguments and the fact that they must be added only once.

�

Jean

NP




NP u

arrive

V

VP

S

[u; �]

Jean

NP

arrive

V

VP

S

Figure 2.4: Analysis of Jean arrive (`Jean arrives')

As we will see later, there are some exceptions from this principle of realizing argument
slots by using substitution nodes, e.g. complement clauses.

The notations for adjunction and substitution are the same. This is no problem since the
nature of the operation is uniquely determined by the second tree: if it is a foot-marked tree,
the operation is an adjunction, and if it is a �nite labelled tree, the operation is a substitution.

2.2.2 Grammar formalism

Using the de�nitions above, Tree Adjoining Grammars can be de�ned. Mainly, the idea of
TAGs is that there are certain trees that already represent complete argument structures,
the set of initial trees of a TAG (e.g. the tree 
 in Fig. 2.4). Additionally from these initial
trees other trees can be derived by adjunction or substitution.

TAGs consist of a set I of �nite labelled trees, called the initial trees, a set A of foot-
marked trees, called the auxiliary trees and alphabets T and N of terminals and nonterminals
that are common for all trees in the grammar. A tree that is part of a TAG, i.e. either initial
or auxiliary, is called an elementary tree. Some de�nitions of TAGs also include a start
symbol (see Vijay-Shanker 1987). But I will use a simpler de�nition of TAGs without a start
symbol.
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Derivation in TAGs starts with an initial tree. In each derivation step, a new elementary
tree is added by adjunction or substitution to the tree that has been already derived. In this
way, a set of trees can be generated.

I = f�g; A = f�g; T = fa; b; cg; N = fSg

�

�

S

�

a

b S� c

S

S

Figure 2.5: Sample TAG without adjunction constraints

Simple TAGs as sketched above are more powerful than context-free grammars, but this
extra power is quite limited. A TAG generating the language L = fwcn jn � 0; jwja = jwjb =
n and for each suÆx u of w : juja � jujbg is given in Fig. 2.5. This language is not context-
free for the following reason: L3 = fa

nbncn jn � 0g is the intersection of L with the regular
language falbmcn j l � 0;m � 0; n � 0g. Since L3 is not context-free (this can be shown with
the pumping lemma for context-free languages), and since context-free languages are closed
with respect to intersection with regular languages, L cannot be context-free.

However, the language L3 cannot be generated by a simple TAG without adjunction
constraints: clearly, for a TAG generating L, each elementary tree must contain equal numbers
of a's, b's and c's. Furthermore, in each case, the a's must precede the b's and the b's must
precede the c's. Then it is easy to see that a mixing of either the a's and b's or the b's and c's
cannot be avoided. The copy-language fww jw 2 fa; bg�g also cannot be generated by such
a TAG. Therefore it is desirable to have the possibility of further restricting the adjunction
operation. To allow this, local constraints on adjunction have been introduced. There are
several forms of adjunction constraints that have been proposed (see for example Joshi 1985,
1987). The form of local constraints presented here was �rst proposed in Joshi 1987, and the
formalization chosen here is very similar to the one in Vijay-Shanker 1987.

There are two aspects of possible adjunctions that are speci�ed by adjunction constraints:
for each node u

1. the set of auxiliary trees that are allowed to be adjoined at u is restricted, and

2. the constraints specify whether adjunction at u is obligatory or not.

The �rst of these two aspects is expressed by some function C
 for each tree 
. For each
node u in 
, C
 maps u to the set of auxiliary trees that are allowed to be adjoined at u. The
second constraint is given by a function O
 mapping from the nodes of 
 to f0; 1g. For each
node u in 
, O
(u) = 0 signi�es that adjunction is not obligatory for u whereas O
(u) = 1
means that adjunction is obligatory for u.

With C and O the three kinds of adjunction constraints for nodes that are mentioned
in Joshi 1987 can be distinguished: nodes where no adjunction is possible (null adjunction
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or NA-constraint), nodes where adjunction is possible but not obligatory for a certain set
of auxiliary trees (selective adjunction or SA-constraint), and nodes where adjunction is
obligatory (obligatory adjunction or OA-constraint). C is a restriction of the adjunction
operation whereas O is a restriction on the set of derived trees, the tree language. Trees in
the tree language must not contain any OA-constraints, i.e. for all nodes u in a tree 
 in the
tree language, O
(u) = 0 must hold.

De�nition 2.14 (Tree Adjoining Grammar) A Tree Adjoining Grammar (TAG) is a
tuple hN;T; I;Ai such that

1. N and T are disjoint alphabets, the nonterminals and the terminals.

2. I is a �nite set of triples h�;C�; O�i where � is a �nite labelled tree with nonterminals N
and terminals T . C� : U� ! Pow(A), and O� : U� ! f0; 1g are functions.

(Pow(A) is a notation for the set of all subsets of A.)

3. A is a �nite set of triples h�;C� ; O�i where � is a foot-marked tree with nonterminals N
and terminals T . C� : U� ! Pow(A), and O� : U� ! f0; 1g are functions.

Each h�;C�; O�i 2 I is called an initial tree of G, each h�;C� ; O�i 2 A is called an auxiliary
tree in G, and each h
;C
 ; O
i 2 I [A is called an elementary tree of G.

For initial trees, the symbols �; �1; �2; : : : are usually used whereas �; �1; �2; : : : in general
stand for auxiliary trees.

As already mentioned, the derivation operations in TAGs are adjunction and substitution,
where adjunction to a tree 
 is restricted by C
 . To avoid some technical problems when
de�ning the derivation in TAGs, the notion of isomorphic trees is needed. A tree isomorphism
is simply a node renaming.

De�nition 2.15 (Isomorphic trees) Let G = hN;T; I; Ai be a TAG, and let h
1; C
1 ; O
1i
and h
2; C
2 ; O
2i be two triples where 
1 and 
2 are either both �nite labelled trees or both
foot-marked trees and O
1 : U
1 ! f0; 1g, O
2 : U
2 ! f0; 1g, C
1 : U
1 ! Pow(A) and
C
2 : U
2 ! Pow(A) are functions.
h
1; C
1 ; O
1i and h
2; C
2 ; O
2i are isomorphic (written h
1; C
1 ; O
1i � h
2; C
2 ; O
2i) i�
there is a bijection f : U
1 ! U
2 such that

1. For all u1; u2 2 U
1 and for all R 2 fP;D;Lg:

hu1; u2i 2 R
1 i� hf(u1); f(u2)i 2 R
2 .

2. For all u 2 U
1 : �
2(f(u)) = �
1(u), C
2(f(u)) = C
1(u) and O
2(f(u)) = O
1(u).

3. If 
1 and 
2 are foot-marked, then f(u
1f ) = u
2f .

f is then called a tree isomorphism.

Henceforward, I will often omit the two functions C
 and O
 and write 
 instead of
h
;C
 ; O
i.

De�nition 2.16 (Derivation in a TAG) Let G = hN;T; I; Ai be a Tree Adjoining Gram-
mar, and let 
1 be a �nite labelled tree (with C
1 and O
1).

1. For each �nite labelled tree 
2 (with C
2 and O
2) and each 
0 such that there is a 
e 2 I[A
with 
0 � 
e:


2 can be derived from 
1 in one step using 
0 (written 
1

0) 
2) i� there is a u 2 U
1

such that
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(a) 
2 = 
1[u; 
0],

(b) C
2(u
0) = C
1(u

0) and O
2(u
0) = O
1(u

0) for all u0 2 U
1 n fug,

(c) C
2(u
0) = C
0(u

0) and O
2(u
0) = O
0(u

0) for all u0 2 U
0 ,

(d) and if 
e 2 A, then 
e 2 C
1(u).

2. A �nite labelled tree 
2 can be derived from 
1 in one step (written 
1 ) 
2) i� there is a


0 such that 
1

0) 
2.

3. A �nite labelled tree 
n can be derived from 
1 in n steps (written 
1
n
) 
2) for n � 1 i�

there is a tree 
n�1 that can be derived in n� 1 step from 
1 such that 
n�1 ) 
n.

4. A �nite labelled tree 
2 can be derived from 
1 (written 
1
�
) 
2) i� either 
1 = 
2 or there

is a n with 
1
n
) 
2. (In other words,

�
) is the re
exive and transitive closure of ).)

With respect to the language of a TAG, the set of derived trees (tree language) and the
set of strings yielded by these trees (string language) must be distinguished. The trees in the
tree language must be such that their leaves are all labelled by terminals or � and that for
none of the nodes adjunction is obligatory.

De�nition 2.17 (Tree language, string language) Let G = hN;T; I; Ai be a Tree Ad-
joining Grammar.

(i) The tree language of G is the set

LT (G) := f
 j 
 is a terminal tree, there is an � 2 I with �
�
) 
, and O
(u) = 0 holds

for all u 2 U
g.

(ii) The string language of G, LS(G), is the set

LS(G) := fw j there is a 
 2 LT (G) such that w = yield(
)g.

(iii) A language L � T � is a Tree Adjoining Language (TAL), i� there is a TAG GL with
L = LS(GL).

The TAG shown in Fig. 2.5 generates a string language that is not context-free. Since it is
easy to show that each context-free language can be generated by a TAG without constraints
(i.e. with C
(u) = A and O
(u) = 0 for all 
 2 I [ A and all u 2 U
), even the languages
generated by TAGs without constraints are a proper superset of the context-free languages.
Examples for TAGs where adjunction constraints are of consequence, are those for the copy
language fww jw 2 fa; bg�g (see Fig. 2.6) and for L4 = fa

nbncndn j 0 � ng (see Fig. 2.7).

Henceforward, when talking about TAGs, these are always TAGs with adjunction con-
straints, i.e. TAGs as introduced in Def. 2.14.

2.2.3 Some formal properties of TAGs

In this subsection I restrict myself to those formal properties of TAGs that are important for
this dissertation. Further discussions of formal properties of TAGs can be found in Vijay-
Shanker and Joshi 1985 and Vijay-Shanker 1987.

Vijay-Shanker (1987) has proven the following pumping lemma for Tree Adjoining Lan-
guages:
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Initial and auxiliary trees:

�
S

�

�1 SNA

a S

S�NA a

�1 SNA

b S

S�NA b

Adjunction constraints:
For all 
 2 f�; �1; �2g and all u 2 U
 :
1. O
(u) = 0, and
2. if u has a subscript NA, then C
(u) = ;, else C
(u) = f�1; �2g.

Derivation for abbabb:

S

�

)

SNA

a S

SNA a

�

)

SNA

a SNA

b S

SNA b

SNA a

�

)

SNA

a SNA

b SNA

b S

SNA b

SNA b

SNA a

�

Figure 2.6: TAG for fww jw 2 fa; bg�g

Proposition 2.1 (Pumping lemma for TALs) If L is a TAL, then there is a constant
n such that for all z 2 L with jzj � n, the following holds: z may be written as
z = u1v1w1v2u2v3w2v4u3 with jv1w1v2v3w2v4j � n, jv1v2v3v4j � 1 such that for all i � 0,
u1v

i
1w1v

i
2u2v

i
3w2v

i
4u3 2 L.

This pumping lemma is important for the work presented in the next chapters because I
will use the proof idea of this lemma to show a pumping lemma for the languages generated by
the local Tree Description Grammars de�ned in Chapter 4. The pumping lemma for TALs is
proven in the following way: Vijay-Shanker �rst de�nes a derivation grammar describing the
derivation process of a TAG. This grammar is context-free, and therefore the CFG pumping
lemma holds for the derivation grammar of a TAG. For a derivation in a TAG, a pumping
in the corresponding local derivation tree implies a more complex pumping of the TAG tree.
By looking at this more closely, Vijay-Shanker has shown the TAG pumping lemma.

Such a pumping lemma is very useful because it gives us a way of showing for certain



2.2. TAG FORMALISM 25

Initial and auxiliary trees:

�
S

�

� SNA

a S d

b S�NA c

Derivation of a2b2c2d2:

S

�

)

SNA

a S d

b SNA c

�

)

SNA

a SNA d

a S d

b SNA c

b SNA c

�

Figure 2.7: TAG for fanbncndn j 0 � ng

languages that they cannot be generated by a grammar of the formalism in question. This can
be done by showing that they do not satisfy the pumping lemma. In this respect, pumping
lemmas are helpful in order to show descriptive complexity results, i.e. in order to classify a
class of language with respect to other classes of languages.

It is easy to see that context-free languages are a proper subset of Tree Adjoining Lan-
guages. The construction of a TAG for a given context-free grammar is quite straightforward,
and for example fanbncndn j 0 � ng is a TAL (see Fig. 2.7) but no context-free language. With
the pumping lemma for TALs it can be shown that for n > 4 the languages fak1 : : : a

k
n j 0 � kg

are no TALs. However these languages are indexed languages. As Vijay-Shanker (1987) has
proven, TALs are a subset of indexed languages. Altogether the following proposition for
TALs holds:

Proposition 2.2 (CFL � TAL � IND) The class of Tree Adjoining Languages is a proper
superset of the set of context-free languages and a proper subset of the set of indexed languages.

Next the notion of projection will be introduced. Roughly, two trees are projections of
each other if they have the same structures and if they yield the same strings (they only di�er
with respect to their nonterminal labels).
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De�nition 2.18 (Projection)

1. Let 
1 and 
2 be �nite labelled trees. 
1 is a projection of 
2 (and vice versa) i� there is
a bijection f : U
1 ! U
2 such that

� for all u1; u2 2 U
1 and all R 2 fP;D;Lg: hu1; u2i 2 R
1 i� hf(u1); f(u2)i 2 R
2 ,

� and for all u1 2 U
1 and t 2 T [ f�g: �
1(u1) = t i� �
2(f(u1)) = t.

2. Let T1 and T2 be two sets of �nite labelled trees. T1 is a projection of T2 i� for all 
2 2 T2
there is a projection 
1 of 
2 in T1 and vice versa.

Note that for two sets of trees, T1; T2, if T1 is a projection of T2, then of course T2 is also
a projection of T1. But this does not necessarily mean that jT1j = jT2j.

De�nition 2.19 (Weakly, projection and strongly equivalent) Let G1 and G2 be two
TAGs.

1. G1 and G2 are weakly equivalent, i� LS(G1) = LS(G2).

2. G1 and G2 are projection equivalent, i� LT (G1) is a projection of LT (G2).

3. G1 and G2 are strongly equivalent, i� LT (G1) = LT (G2).

The following lemmata are useful because they facilitate proofs concerned with TAGs.
They will be used in the course of the following chapters.

The �rst lemma says that the substitution operation does not increase the generative
capacity of TAGs. Originally TAGs were introduced without the substitution operation.
Substitution is desirable because of linguistic motivation but from a purely formal point of
view it is not necessary. In the TAG literature, this fact is taken to be well-known, but I did
not see any proof of it yet. The proof given below is my own.

Lemma 2.1 For each TAG G there is a strongly equivalent TAG G0 without substitution
nodes.

This lemma is proven by constructing the TAG G0 for a given TAG G. In principle all
substitution nodes must be replaced by appropriate initial trees. But, besides trees without
substitution nodes, there might be cycles, i.e. trees with a substitution node labelled by the
same label as the root of the initial tree they are derived from. These trees will be auxiliary
trees in G0. Accordingly, the construction is as follows: �rst, starting from the elementary
trees of G, a tree set TG is obtained by performing any number of substitutions as long as
there are no cycles, i.e. as long as there is no � substituted for a node in a subtree derived
from some other initial �0 with the same root symbol as �. Then all terminal trees in this
set TG are initial trees in G0, all trees without substitution nodes but with a foot node are
auxiliary trees, and, furthermore, all trees derived from an initial tree that have exactly one
substitution node labelled by the same symbol as the root are also auxiliary trees in G0.

Proof Let G = hN;T; I;Ai be a TAG.
First, a set TG is constructed:

(a) If 
 2 I [A, then 
 2 TG.

(b) If there are 
0 2 I [ A and �1; : : : ; �n 2 I and �01; : : : ; �
0
n isomorphic to �1; : : : ; �n

respectively, such that
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- 
0
�1) 
1 : : : 
n�1

�n) 
n = 
 with 
i = 
i�1[ui; �
0
i] for 1 � i � n, and

- for all 
i; 1 � i � n: if there is a j < i such that �(u
�0j
0 ) = �(u

�0
i

0 ) then hu
�0j
0 ; u

�0
i

0 i =2 D
i .

then 
 2 TG.

In 
, for all i (1 � i � n), u
�0i
0 is marked as root of the initial �i.

(c) These are all trees in TG.

Construction of a TAG G0 = hN;T; I 0; A0i:

1. Initial trees: 
 2 I 0 i� 
 2 TG and 
 is a terminal tree.

2. Auxiliary trees: 
 2 A0 i�

(i) either 
 2 TG, 
 has no substitution nodes and 
 has a foot node,

(ii) or there is a 
0 2 TG without foot node that has exactly one substitution node us
with �
0(us) = �
0(u


0

0 ), and there is a � 2 I with ��(u
�
0 ) = �
0(us), such that 
 is

(isomorphic to) the following tree 
00:

- U
00 = U
0 ;P
00 = P
0 ;L
00 = L
0 ; u

00

0 = u

0

0 , and �
00 = �
0 .

- C
00(u) = C
0(u) and O
00(u) = O
0(u) for all u 2 U
00 n fusg.

- us is foot node of 

00 with C
00(us) := C�(u

�
0 ) and O
00(us) := O�(u

�
0 ).


 is then marked as �-auxiliary tree.

3. Adjunction constraints:

First, for all �0 2 A0 \ TG that were obtained (when constructing TG) from some � 2 A:
replace � in all sets C
(u) for any 
 2 I

0 [A0 and u 2 U
 by all these �0.

Then, for all 
 2 I 0 [A0 and u 2 U
 : if u is marked as root of the initial tree � 2 I, then
add all 
� 2 A

0 to C
(u) that are marked as �-auxiliary.

Clearly, (if there are no isomorphic trees 
; 
0 that are both in I 0 [ A0) the construction
terminates after �nitely many steps, and the result G0 is a TAG.

To show: LT (G) = LT (G
0).

First, the notion of s-nodes of a tree 
 2 LT (G) wrt its derivation is de�ned:

Let � 2 I, �
�
) 
 in G. Let this derivation be ordered in the following way (since the

derivation process is local, this is possible without loss of generality):

� = 
00
�
) 
1

�1
) 
01

�
) : : : 
k�1

�k�1
) 
0k�1

�
) 
k = 
 where

(a) �i 2 A (1 � i � k � 1),

(b) and the derivation steps 
0i
�
) 
i+1 (0 � i < k) only consist of substitutions where for

i > 0 all substitution nodes replaced in these steps do not occur in 
i.

Then for all i (1 � i < k), and u1; u2 2 U
i+1 n U
0i : hu1; u2i is called an s-pair in 
i+1 i�

- �
i+1(u1) = �
i+1(u2),

- u1 6= u2,

- hu1; u2i 2 D
i+1 , and

- both, u1 and u2 are roots of some initial tree that was added in the course of the
derivation 
0i

�
) 
i+1.

Furthermore, for an s-pair hu1; u2i in 
i+1, u1 is called s-node in 
i+1, i�
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for all s-pairs hu; u0i in 
i+1:

if hu1; ui 2 D
i+1 , hu; u2i 2 D
i+1 and u 6= u2, then hu
0; u2i 2 D
i+1 .

For this order of the derivation of 
, I de�ne ns(
) :=
Pn
i=1 jfu ju s-node in 
igj.

Now by induction on n, the following can be shown:


 2 LT (G) with a derivation �
�
) 
 for some � 2 I such that n1 is the number of auxiliary

trees adjoined in the course of this derivation, n2 := ns(
) wrt to this derivation, and
n = n1 + n2
i�


 2 LT (G
0) with a derivation �0

n
) 
 for some �0 2 I 0.

Induction on n:

1. Induction start n = 0: in G, 
 2 LT (G) is derived without adjunction and it does not
contain any s-node , 
 is one of the terminal trees in TG , 
 2 I 0.

2. Induction step n! n+ 1:

Suppose that there is an � 2 I such that �
�
) 
 in G with n1 adjunctions, n2 = ns(
) wrt

this derivation, and n+ 1 = n1 + n2.

There are two cases that must be distinguished:

(a) eiter there is a �0 derived by substitutions from a tree � 2 A that has neither sub-
stitution nodes nor s-nodes such that �0 is a subtree of 
, and there is an order

�
�
) 
0

�
) 
00

�
) 
 of the derivation with 
00 = 
0[u; �]. There are no adjunctions in


00
�
) 
, and all substitutions in this part are done with substitution nodes that are

not in U
0 .

In this case 
0 also has n2 s-nodes, and it can be derived by performing only n1 � 1
adjunctions.

i�

(induction claim) there is an �0 2 I 0 with �0
n
) 
0, and (because of the construction of

TG), �
0 2 A0, and 
0

�0

) 
 with 
 = 
0[u; �0] (�0 2 C
0(u) because of the construction
of G0).

(b) or there is an s-node u1 in 
, and u2 is the node such that hu1; u2i form an s-pair, and
furthermore, there is no s-node us in 
 with us 6= u1, hu1; usi 2 D
 and hu2; usi =2 D
 .

i�

There are �1; �2 2 I such that the derivaition of 
 in G can be ordered as follows:
�
�
) 
0

�1) 
1
�
) 
01

�2) 
2
�
) 
 with 
1 = 
0[u01; �

0
1] and 
2 = 
0[u02; �

0
2]such that there

is no adjunction in 
0
�
) 
, and all substitution nodes in 
2 are in U�02 .

Because of �
(u
�01
0 ) = �
(u

�02
0 ), there is another derivation possible in G: �

�
) 
0

�2)


00
�
) 
n with 
00 = 
0[u01; �

0
2]. and the derivation steps in 
00

�
) 
n are the same

substitutions (i.e. with the same initial trees and the same substitution nodes) as in

0
�
) 
. 
n has n2 � 1 s-nodes.

i�

There is an �0 2 I 0 with �0
n
) 
n in G0 (induction claim), and there is a �0 2 A0

that was obtained from �1 in TG such that 
n
�0

) 
 with 
 = 
n[u
�02
0 ; �00] (because of

adjunction constraints in G0, this adjunction is allowed, and the constraints for the
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foot of �00 are those that hold for the root of �2 in G).

2

The next lemma is easier to show. It says that for each TAG, another TAG generating
the same string language can be found with NA constraints at all foot nodes of auxiliary
trees.

Lemma 2.2 For each TAG G, there is a weakly equivalent TAG G0 such that for all auxiliary
trees � in G0: if u�f is the foot node of �, then C�(u

�
f ) = ;.

Proof Let G = hN;T; I;Ai be a TAG. Construct an equivalent TAG G00 = hN;T; I; A0i as
follows:
for all � 2 A with C�(u

�
f ) 6= ;: replace � in A and in all adjunction constraints by the

following tree �0:

1. U�0 = U� [ funewg where unew =2 U�.

2. L� � L�0 , and P�0 = P� [ fhu
�
f ; unewig.

3. u�
0

f = unew is the foot node of �0.

4. ��0(u) = ��(u) for all u 2 U� , and ��0(unew) = ��(u
�
f ).

5. C�0(u) = C�(u) and O�0(u) = O�(u) for all u 2 U�, and O�0(unew) = 0 and C�0(unew) = ;.

The result is a TAG G0.

The following is easy to see for all n 2 IN and for each � 2 I:

there is a derivation �
n
) 
 in G

i�

there is a derivation �
n
) 
0 in G0 such that there is a partial function f : U
0 ! U
 that is

de�ned for all u 2 U
0 that are not one of the newly introduced foot nodes of an auxiliary
tree that was added in the course of the derivation of 
0. For this partial function and for
all u; u0 2 U
0 , the following holds:

- if f(u) is de�ned, then O
0(u) = O
(f(u)) and C
0(u) = C
(f(u)), and

- if u0 6= u and both f(u) and f(u0) are de�ned, then

if hu0; ui 2 P
0 then hf(u
0); f(u)i 2 P
 ,

hu0; ui 2 D
0 i� hf(u
0); f(u)i 2 D
 , and

hu0; ui 2 L
0 i� hf(u
0); f(u)i 2 L
 .

By induction on the length n of the derivation, this can be easily shown.

Since none of the leaves in 
0 was added in the course of the construction of G0, LS(G) =
LS(G

0) holds.

2

In an analogous way, the following lemma can be shown. This lemma signi�es that for
each TAG, another TAG generating the same string language exists with NA constraints at
the roots of auxiliary trees.
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Figure 2.8: Elementary trees and derivation for Jean �ecrit �a Marie (`Jean writes
to Mary')

Lemma 2.3 For each TAG G, there is a weakly equivalent TAG G0 such that for all auxiliary
trees � in G0: if u�0 is the root of �, then C�(u

�
0 ) = ;.

These are all formal properties of TAGs that are referred to in the course of the disserta-
tion.

2.3 TAGs for natural languages

For purposes of natural language processing, lexicalized TAGs (LTAG) are used. These are
TAGs where each elementary tree contains at least one leaf labelled by a terminal symbol.
The underlying idea is that each elementary tree has a unique anchor. This is a leaf with a
terminal label. Besides this anchor, other leaves may also be labelled by terminals.

De�nition 2.20 (Lexicalized TAG) A TAG G = hN;T; I; Ai is lexicalized i� for all 
 2
I [A there is a leaf u 2 U
 with �
(u) 2 T .

Using LTAGs for natural languages, several linguistic constraints are imposed on ele-
mentary structures (see Abeill�e 1993, 1994). These constraints on elementary trees are the
following:

� Lexicalization: The TAG must be lexicalized, and for each elementary tree there must
be exactly one leaf that is the unique anchor (or head) of the tree. This leaf has a
terminal label.

� Predicate-argument cooccurrence: For each predicate and each elementary tree with that
predicate as label of the anchor, there is a subcategorization frame for this predicate,
such that there is a node for each of the argument slots.

� Semantic consistency: Each elementary tree has a meaning, i.e. a semantic interpreta-
tion.
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� Semantic minimality: An elementary tree corresponds to a single semantic unit.

The de�nition of a lexicalized TAG given above captures only one aspect of the principle
of lexicalization, since it does not say anything about the uniqueness of the anchor. The
other principles are not formalized and partly they are quite vague. They are not part of the
grammar, in contrast to principles in HPSG for example, but they are taken into account
when constructing a TAG for natural language analysis.

The last two principles in particular are quite unclear without knowing what is meant
by the semantic interpretation of a syntactic structure. However, the idea of these two
principles is clear: corresponding to the TAG describing the syntax of a language there is a
compositional semantic theory. The elementary trees should be such that for each elementary
tree there is a corresponding semantics, which must be minimal in the sense that it cannot be
a composition of other semantic expressions. This means that for each lexical item that is not
semantically void, there must be an elementary tree in the grammar with this lexical item as
unique anchor. Besides this anchor, the elementary tree must not contain any other lexical
item with a semantic interpretation. The initial tree �1 in Fig. 2.8 contains more than one
lexical item, �ecrit and �a. In this case, the leaf with label �ecrit is the anchor of the elementary
tree. �ecrit selects of a PP with preposition �a, but this preposition itself is semantically void
in this context.

Originally adjunction was the only operation in TAGs. As we have seen, from a technical
point of view, substitution is not necessary. According to Lemma 2.1, for each TAG a strongly
equivalent TAG without substitution nodes can be found. But substitution is needed for
natural languages because of the uniqueness of the anchor. With adjunction as the only
derivation operation, the semantic principles underlying TAGs and the requirement of the
uniqueness of the anchor for natural languages cannot be satis�ed.

As already mentioned, modi�ers are usually added by adjunction, i.e. they do not �ll
an open slot, which re
ects the optional character of modi�ers. Examples are adjectives
modifying nouns as in Fig. 2.2. In contrast to this, according to the predicate-argument
cooccurrence principle, in each elementary tree of a predicate there must be substitution or
foot nodes for each of the arguments of the predicate. For most complements, there are
substitution nodes, e.g. for NP and PP complements (see Fig. 2.8). This corresponds to the
obligatory character of the complements as substitution nodes always must be replaced by
some initial tree to derive a tree belonging to the tree language.

The only exception are complement clauses. The slot for a complement clause does not
consist of a substitution node but of a foot node in an auxiliary tree describing the whole
argument structure. This is one of the problems with TAGs. One would like to have a uniform
distinction between complements and modi�ers by analyzing complements by substitution
and modi�ers by adjunction. But for the following reasons this is not possible (see Kroch
1987 and Abeill�e 1988a,b for the analysis of long-distance dependencies and complement
clauses in TAGs).

With complement clauses the problem is that there might be a long-distance dependency,
e.g. a wh-movement out of a complement clause as in (3).

(3) qui penses-tu que Marie aime? (`whom do you think Mary loves?')

Even in this case the predicate-argument cooccurrence principle should be respected.
Therefore the substitution or foot node for the moved element and the trace must be in
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Figure 2.9: Derivation step for (3) qui penses-tu que Marie aime?

the same elementary tree. But this is only possible if the predicate-argument structure (the
elementary tree of the predicate) is adjoined to the complement clause, as is shown in Fig.
2.9.

This problem that complement clauses and other arguments cannot be handled in a uni-
form way, is one of the motivations for replacing the substitution operation by the subsertion
operation de�ned in D-Tree Grammars (see Rambow et al. 1995). I will present this formal-
ism in 2.5.2. When de�ning Tree Description Grammars in Chapter 3 we will see that these
grammars also allow derivation steps similar to subsertion and therefore allow a uniform
treatment of arguments.
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2.4 TAG variants

Several variants of standard TAGs have been proposed, e.g. feature-structure-based TAGs
(FTAG, see Vijay-Shanker and Joshi 1988), probabilistic TAGs (see Resnik 1992), syn-
chronous TAGs (see Shieber and Schabes 1990) and multicomponent TAGs (MC-TAG, see
Weir 1988).

In this section, I will present two of these variants, namely Multi-Component TAGs and
synchronous TAGs. Both have in
uenced the work presented in this dissertation.

The idea of Multi-Component TAGs, �rst mentioned in Joshi et al. 1975, is to add not
only one elementary tree but a set of elementary trees in one derivation step. This extension
of TAG is necessary to handle non-local dependencies such as extraposition.

Multi-Component TAGs are introduced in this chapter because they constitute a �rst step
towards the idea of adding more than one subtree in one dervivation step. Later we will see
that this idea also can be found with Tree Description Grammars, the grammars introduced
in Chapter 3. In Chapter 4, the local variant of Tree Description Grammars will be compared
to set-local Multi-Component TAGs.

Synchronous TAGs were proposed by Shieber and Schabes (1990) to describe a relation
between two grammars, in particular to describe the relation between syntax and semantics
for natural languages. Following this idea, I will de�ne synchronous local TDGs in Chapter
4, and in Chapter 5 a syntax-semantics interface for a fragment of French is developed using
this formalism.

2.4.1 Multi-Component TAGs

Multi-Component TAGs were �rst de�ned in Joshi et al. 1975 where they are not yet called
Multi-Component TAGs but simultaneous TAGs. The idea of Multi-Component TAGs is to
adjoin several auxiliary trees that form a so-called auxiliary set, at the same time. In Joshi
1987 this kind of derivation is �rst called multicomponent adjoining, and Weir (1988) gives
a de�nition of this TAG extension calling it Multi-Component TAG (MC-TAGs). Depend-
ing on the way the derivation is restricted, tree-local, set-local and non-local MC-TAGs are
distinguished.

In this subsection, I will �rst present the three versions of MC-TAGs and then I will
mention some observations made in the literature concerning the relevance of MC-TAGs for
natural languages.

MC-TAG formalism

A Multi-Component TAG is a simple TAG with an additional set of sets of auxiliary trees,
the so-called auxiliary sets.

De�nition 2.21 (Multi-Component TAG) A Multi-Component TAG (MC-TAG) is a
tuple G = hN;T; I;A;Ai such that

1. hN;T; I;Ai is a TAG.

2. A � Pow(A) n ;.

Each set in A is called an auxiliary set.
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The set A contains sets of auxiliary trees. The derivation process is such that in each
derivation step, one of these auxiliary sets is used. All auxiliary trees in this set must be
adjoined simultaneously, i.e. in this single derivation step. Three di�erent types of MC-
TAGs are distinguished, depending on di�erent restrictions with respect to the nodes where
simultaneous adjunction is possible. An MC-TAG is called tree-local if all nodes where trees
from one auxiliary set are adjoined, are in one single elementary tree. It is called set-local,
if these nodes belong either all to one initial tree or all to elementary trees from one single
auxiliary set. If there is no restriction on the choice of the nodes for the simultaneous
adjunctions in one derivation step, then the MC-TAG is called non-local. This distinction
was �rst made in Joshi 1987, and the names \tree-local" and \set-local" stem from Rambow
(1994a).

De�nition 2.22 (Multicomponent derivation) Let G = hN;T; I; A;Ai be an MC-TAG.
Derivation in G is inductively de�ned:

1. Each � 2 I can be derived in 0 derivation steps from �.

2. Let 
 be a tree (with C
 and O
) derived in n steps from an initial � 2 I.


0 can be derived in 1 step from 
 (i.e. in n+1 steps from �) i� there is a f�1; : : : ; �kg 2 A
and a set f�01; : : : ; �

0
kg such that �i is isomorphic to �0i for 1 � i � k, and if there are

nodes u1; : : : ; uk 2 U
 such that:

(a) 
0 = 
[u1; �
0
1] � � � [uk; �

0
k],

(b) C
0(u
0) = C
(u

0) and O
0(u
0) = O
(u

0) for all u0 2 U
 , and

for all i, 1 � i � k: C
0(u
0) = C�0

i
(u0) and O
0(u

0) = O�0
i
(u0) for all u0 2 U�0

i
,

(c) for all i, 1 � i � k: �i 2 C
(ui),

(d) and a locality condition (L) speci�ed below holds.

Notation: 

f�1;:::;�kg
) 
0 or 
 ) 
0.

The locality condition (L) is

- either the following: there is an elementary tree 
e added in the course of the derivation
of 
 such that fu1; : : : ; ukg � U
e . Then the MC-TAG is called tree-local.

- or the following: either u1; : : : ; uk 2 U�, or there is an auxiliary set Sa isomorphic to
some element in A that has been added in one of the previous derivation steps such that
fu1; : : : ; ukg �

S
�2Sa U�. Then the MC-TAG is called set-local.

- or no restriction at all, i.e. fu1; : : : ; ukg � U
. Then the MC-TAG is called non-local.

Roughly said, the notion \local" signi�es that the modi�cations of the derived structure
that are caused by one derivation step are local in the following sense: these modi�cations
do not concern arbitrary nodes in the derived tree. Instead they concern only a part of the
tree, and this part is an elementary tree (in the case of tree-local MC-TAGs) or an auxiliary
set (in the case of set-local MC-TAGs), i.e. this part is an element of the grammar and it was
added in one previous derivation step.

Tree-local MC-TAGs are even strongly equivalent to TAGs. For set-local MC-TAGs,
Weir (1988) has shown that they are still in the class of mildly context-sensitive grammar
formalisms, i.e. that the derivation process is context-free and therefore the languages gen-
erated by these grammars are semilinear, the grammars are polynomially parsable, and they
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Figure 2.10: A sample MC-TAG for extraction from NP

allow only limited cross-serial dependencies. Non-local MC-TAGs are more powerful, since
they generate non-semilinear and NP-complete languages (see Rambow 1994a).

MC-TAGs and natural languages

As we have already seen, long distance dependencies such as wh-movement are handled in
TAGs without any movement or transformation mechanism because the intermediate mate-
rial is added by adjunction. However, there are other cases of nonlocal dependencies, e.g.
extraction out of noun phrases that cannot be handled in standard TAG while preserving
the predicate-argument cooccurrence restriction. Examples are (see Kroch 1987, Kroch and
Joshi 1987):

(4) a. A man arrived who knew Mary.

b. John gave everyone trouble who knew Mary.

c. Which paintingi did you buy a copy of �i?

The problem here is that there is an NP that cannot be part of one single elementary
tree. In (4)a. this is a man who knew Mary, in (4)b. the NP is everyone who knew Mary, and
in (4)c. which paintingi a copy of �i. Kroch and Joshi (1987) propose the use of tree-local
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Figure 2.11: A derivation in an MC-TAG

MC-TAGs to handle these examples. For (4)c., the MC-TAG shown in Fig. 2.10 generates
the tree of Fig. 2.11 by simultaneous adjoining of the two trees in the auxiliary set f�1; �2g
(see Kroch 1987). An application of tree-local MC-TAGs to the representation of extraposed
PPs in French can be found in Abeill�e 1994.

However, tree-local and even set-local MC-TAGs are probably not powerful enough to
represent the syntax of natural languages. In Becker et al. 1992 and Rambow 1994a, it is
shown that scrambling phenomena in free word order languages such as German cannot be
handled by set-local MC-TAGs.

Besides weak and strong generative capacity of a grammar, Becker et al. (1992) introduce
the notion of derivational generative capacity. This is motivated by the following observation:
while the speci�cs of a syntactic analysis of a particular construction may be subject to
controversy, the (semantic) predicate-argument structure of sentences is fairly uncontroversal.
Furthermore, what characterizes many syntactic phenomena in natural languages is the way
the predicate-argument structures map onto the surface string. Therefore, in order to decide
whether a grammar formalism is adequate for a natural language L, it is not only important
whether L can be generated as a string language by this formalism, but (if the predicate-
argument cooccurrence condition is accepted as a reasonable condition) it must be generated
in such a way that each predicate is added in the same derivation step as the slots for its
arguments.

(5) ... omdat Wim Jan Marie de kinderen zag helpen leren zwemen
... because Wim Jan Marie the children saw help teach swim
... because Wim saw Jan help Marie teach the children to swim
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For cross-serial dependencies in Dutch such as (5) for example, di�erent syntactic struc-
tures have been proposed (see for example Bresnan et al. (1982)) but the dependencies be-
tween predicates and arguments are always analyzed as in

omdat Wim Jan Marie de kinderen zag helpen leren zwemmen

In other words, cross-serial dependencies are such that a string of nouns is followed by a
string of verbs, where the �rst noun is the argument of the �rst verb, and so on. Therefore, the
i-th noun and the i-th verb depend on each other and must be added in the same derivation
step.

In order to formalize this, Becker et al. (1992) de�ne the derivational generative capacity
of a grammar in terms of its ability to generate sets of derivation structures. The idea is to
decorate the symbols of a string derived by a grammar by indices where two symbols have the
same index if they were added in the same derivation step. These strings are called indexed
strings.

De�nition 2.23 (Indexed string language, derivationally equivalent)

1. A pair hw; fi is called an indexed string, if w 2 T+ for some alphabet T and f :
f1; : : : ; jwjg ! IN is a mapping.

Notation: If w = a1 : : : an with ai 2 T (1 � i � n), then hw; fi is written as

a
[f(1)]
1 : : : a

[f(n)]
n .

2. Let G be a grammar, w 2 L(G) be a word derived in m steps in G (or yielded by an object,
e.g. a tree that was derived in m steps in G) and f a mapping such that

- w = a1 : : : an with ai 2 T (1 � i � n), and

- ai was added in the f(i)th derivation step.

Then a
[f(1)]
1 : : : a

[f(n)]
n 2 Lind(G).

These are all indexed strings in Lind(G).

Lind(G) is called the indexed string language of G.

3. Two grammars G1, G2 are called derivationally equivalent, i� Lind(G1) = Lind(G2) holds.

For the case of cross-serial dependencies, this formalization signi�es that a grammar that
can handle cross-serial dependencies in an adequate way must be able to derive the indexed
string language Lcross := fn

[0] : : : n[k]v[0] : : : v[k] j k � 0g. Obviously, if a grammar can derive
this indexed language, then it can also generate the copy language fww jw 2 fa; bg�g. Con-
sequently, if the copy language cannot be generated by a grammar, then this grammar is not
powerful enough to handle cross-serial dependencies.

Becker et al. (1992) argue that a grammar formalism that is suitable for an analysis of
scrambling in German, must be able to generate the following indexed string language:

SCRind := fn[�(1)] : : : n[�(m)]v[1] : : : v[m] jm � 0 and � 2 Smg
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where Sm is the group of the permutations of f1; : : : ;mg, i.e. each � 2 Sm is a bijection
� : f1; : : : ;mg ! f1; : : : ;mg.

The argument is as follows: there are matrix verbs in German that allow scrambling out
of embedded in�nitival clauses. This phenomenon is called long-distance scrambling. Long-
distance scrambling is quite free. As shown in (6), there is no bound to the number of clause
boundaries over which an element can scramble. Furthermore, examples such as (7) show
that there is also no bound on the number of elements that can scramble.

(6) a. ... da� [den K�uhlschrank]i niemand [[ti zu reparieren] zu versuchen]
... that the refrigeratoracc no-onenom to repair to try

versprochen hat
promised has
... that no-one has promised to try to repair the refrigerator

b. ... da� [den K�uhlschrank]i niemand [[[ti zu reparieren] zu versuchen]
... that the refrigeratoracc no-onenom to repair to try

zu versprechen] bereit ist
to promise ready is
... that no-one is ready to promise to try to repair the refrigerator

(7) ... da� [ dem Kunden]i [den K�uhlschrank]j bisher noch niemand ti
... that the clientdat the refrigeratoracc so far as yet no-onenom
[[tj zu reparieren] zu versuchen] versprochen hat
to repair to try promised has
... that so far, no-one yet has promised the client to try to repair the refrigerator

Under the assumption that each verb has exactly one overt nominal argument, the lan-
guage SCRind gives a formal presentation for the subset of scrambled German sentences with
such verbs. Consequently, a grammar that can deal with German scrambling phenomena must
be able to derive SCRind.

However, for SCRind, Becker et al. show the following result:

Proposition 2.3 There is no set-local MC-TAG G with SCRind = Lind(G).

Therefore set-local MC-TAGs are not powerful enough to handle scrambling phenomena
in free word order languages. In Chapter 4, this proposition is used to show that local TDGs
are more powerful than MC-TAGs.

An analysis of scrambling using non-local MC-TAGs is proposed in Becker et al. 1991.
Since non-local MC-TAGs are very powerful, it is desirable to �nd alternatives to MC-

TAGs, i.e. formlisms that also allow a kind of multicomponent derivation and that gener-
ate only semilinear languages but that allow the derivation of the indexed string language
SCRind. We will see in Chapter 4 that local TDGs satisfy these conditions.

2.4.2 Synchronous TAGs

Synchronous TAGs were originally introduced in Shieber and Schabes 1990. They are useful
to describe the relation between two languages that depend on each other in a compositional
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Figure 2.12: A sample synchronous TAG

way but that do not have the same syntactic structure. Synchronous TAGs are used to handle
the relation between syntax and semantics as proposed in Shieber and Schabes 1990 (see also
Abeill�e 1993, p. 240) and for Machine Translation (see Abeill�e et al. 1990, Prigent 1994).

Synchronous TAGs are important for this dissertation because in Section 4.4, the idea of
synchronization underlying synchronous TAGs will be the starting point for the de�nition of
synchronous local TDGs. Similar to Shieber and Schabes 1990, synchronous local TDGs are
used to describe a syntax-semantics interface for a fragment of French in Chapter 5.

In the following I will �rst present in an informal way the formalism of synchronous TAGs
together with some examples concerning the relation between syntax and semantics. Then
I will state that, as observed in Shieber 1994, the synchronization mechanism increases the
generative capacity of the grammar.

Synchronization

A synchronous TAG establishes a relation between two TALs via a relation between the
elementary trees of the two corresponding grammars. Since I don't need a formal de�nition
of synchronous TAGs in the course of this work, I will give, as Shieber and Schabes (1990)
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also do, only an informal description of synchronous TAGs together with some examples.
A synchronous TAG consists of two TAGs together with a synchronization relation �

between the two sets of elementary trees. Trees related by � are either both initial or both
auxiliary trees. If two trees 
1 and 
2 are related by �, then there is an additional relation
between the nodes U
1 of 
1 and the nodes U
2 of 
2. This relation, or as Shieber and Schabes
(1990) call it, these links between nodes in 
1 and in 
2 specify which nodes must be treated
in parallel in the course of the derivation.

The derivation is such that, starting with a pair of initial trees in �, in each step, the
following takes place for the already derived pair h
1; 
2i:

1. some node u1 in 
1 and some node u2 in 
2 is chosen such that u1 and u2 are linked

2. a pair of trees h
e1; 

e
2i is chosen from �

3. the new pair of trees then is h
1[u1; 

e
1 ]; 
2[u2; 


e
2 ]i if these two trees exist. The new

links are the union of the links between U
1 and U
2 and the links between U
e1 and U
e2 .

Figure 2.12 is taken from Shieber and Schabes 1990 and shows a very simple synchronous
TAG. It illustrates the idea of relating English to a representation of its logical form. Links
are represented by dotted lines. With this grammar, for the sentence George hates cooked
broccoli violently, a pair of trees as shown in Fig. 2.13 can be derived.

Shieber and Schabes do not explain their links and their choice of nonterminals in the
TAG for the logical form. The problem of relating syntactic and semantic representations
using a synchronous pair of grammars will be investigated in Chapter 5, and the synchronous
TAG in Fig. 2.12 is only an illustration of the formalism of synchronous TAGs.

S

NP VP

George VP ADVP

V NP violently

hates N

AP N

cooked broccoli

F

R

violently0 F

R T T

hates0 george0 R T

cooked0 broccoli0

Figure 2.13: Tree pair derived for George hates cooked broccoli violently



2.5. TREE DESCRIPTIONS 41

�1 S

A B

� �

SSA(�1)

�

�2 A

a A d

b A� c

�1
S�OA(�2)

�3 B

e B h

f B� g

�2
S�SA(�2)

Figure 2.14: A synchronous TAG for L8

Expressivity of synchronous TAGs

As Shieber (1994) points out, the de�nition of derivation for synchronous TAGs is problematic
because the weak generative expressivity of TAGs is increased by the synchronization. In
other words, the control of the derivation by the linking to a second TAG creates a more
powerful formalism. An example is the language L8 := fa

nbncndnenfngnhn jn � 0g that is
no TAL. Shieber (1994) gives the synchronous TAG shown in Fig. 2.14 that generates L8 by
synchronous derivation as string language of the left TAG.

In general, it is not necessarily a problem if the expressivity of a grammar formalism is
increased by adding a control mechanism using a second grammar. In the case of synchronus
TAGs, however, the intention of proposing synchronous TAG was not to get a formalism with
increased generative expressivity but to de�ne a formalism that allows the description of a
relation between two TALs. From this point of view, the fact that synchronous TAGs are
more powerful than simple TAGs, is a problem.

2.5 Tree descriptions

In recent work on TAG-related formalisms, there have been several proposals to view TAGs as
de�ning constraints on well-formed structures instead of generating a tree set from elementary
trees. This idea stems from Vijay-Shanker (1992). He proposes to use tree descriptions,
so-called quasi-trees to de�ne TAGs. Other TAG variants using tree descriptions are the
Description Tree Grammars (D-Tree Grammars) in Rambow et al. 1995, and the Unordered
Vector Grammars with Dominance Links (UVG-DL) presented in Rambow 1994a,b.

A common property of all these formalisms is that trees are replaced by tree descriptions
where the parent relation is only partially speci�ed. In other words, a kind of underspeci�-
cation is introduced by relaxing one of the binary relations holding on the nodes of a tree.
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Although these approaches do not aim at the generation of underspeci�ed representations
for ambiguous expressions, such an idea suggests itself. In the following chapter we will see
that suitable underspeci�ed representations can be obtained by leaving even the dominance
relation underspeci�ed.

In this section, I will present the ideas of quasi-trees, DTGs and UVG-DLs.

2.5.1 Quasi-trees

Borrowing ideas from Marcus et al. 1983, Vijay-Shanker (1992) proposes a reinterpretation
of TAGs as de�ning constraints on trees. His main motivation for this approach is the non-
monotonicity of the TAG derivation process. In a TAG derivation, the adjoining operation
on trees does not preserve the structural relationships holding in the trees that are combined.
E.g., in the derivation step shown in Fig., 2.15, in �, there is only one single node between u1
and u3, i.e. there is a node u2 with hu1; u2i 2 P� and hu2; u3i 2 P�. In the resulting tree 

this is no longer the case because the node u2 is no longer part of the tree, and instead there
are two di�erent nodes between u1 and u3.

�

un

Det

homme  u3

N  u2

NP  u1
�

grand

A

AP N�

N


 = �[u2; �]

un

Det

grand

A

AP

homme  u3

N

N

NP  u1

Figure 2.15: Example for non-monotonicity in TAG dervation

This problem of non-monotonicity arises because TAGs use fully speci�ed structures. To
avoid non-monotonicity, Vijay-Shanker (1992) proposes therefore to use tree descriptions,
represented by so-called quasi-trees, instead of trees.

The idea of quasi-trees is as follows: nodes are replaced by quasi-nodes. These are objects
that denote nodes, and two quasi-nodes may denote the same node. Quasi-nodes can be
related by the parent relation, linear precedence or dominance. For the example of Fig. 2.15,
the corresponding quasi-tree derivation is shown in Fig. 2.16. The node u2 is replaced by two
quasi-nodes n1; n2, and the dotted edge between them indicates a dominance relation. This
dominance relation signi�es that n1 and n2 can denote the same node (then there was no
adjunction) or there can be something between n1 and n2 (corresponding to an adjunction)
and in this case n1 and n2 would denote di�erent nodes.

If adjunction is interpreted as building the conjunction of two quasi-trees and additional
equivalences between quasi-nodes, e.g. 
 = � ^ � ^ n1 � n3 ^ n2 � n6 in Fig. 2.16, then each
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N
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Figure 2.16: Quasi-tree derivation for grand homme

derivation step increases the derived tree description and decreases the set of trees satisfying
this tree description.

Work on the formalization of quasi-trees for TAGs has been done by Rogers and Vijay-
Shanker. There are two ways of interpreting quasi-trees. Either quasi-trees can be seen as
structures, i.e. as objects. In this case they are models representing partial information, and
a de�nition of subsumption is needed. This approach is pursued in Rogers and Vijay-Shanker
1992. Or quasi-trees can be viewed as descriptions of trees, i.e. as formulas in a tree logic.
This second approach can be found in Rogers and Vijay-Shanker 1994 and Rogers 1994. An
advantage of the �rst approach is that it is easier to check whether a quasi-tree satis�es a
relation. On the other hand, quasi-trees seen as objects cannot capture many disjunctive
consequences. For this reason, in their later formalization, Rogers and Vijay-Shanker take
quasi-trees to be sets of formulas.

According to Rogers 1994, a quasi-tree is a partial description of trees such that the set
of trees satisfying this description has a unique minimum with respect to that partial order
which relates each tree to those trees that can be derived from it by adjunction. The formal
de�nition in Rogers 1994 allows more than these intended quasi-trees, and Rogers and Vijay-
Shanker (1994) suppose that additional constraints on the form of quasi-trees result from the
adjunction mechanism as de�ned in the (constraint-based) TAG formalism.

Another problem where a shift from trees to quasi-trees might be useful concerns the
representation of the lexicon, i.e. of the TAG. Vijay-Shanker and Schabes (1992) propose
the use of a more general form of quasi-trees for a compact organization of the elementary
structures of TAGs.

2.5.2 Description Tree Grammars

Description Tree Grammars (D-Tree Grammars or DTGs) are a TAG-variant proposed by
Rambow et al. (1995). In this subsection I will present the DTG formalism in an informal
way.
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Rambow et al. (1995) address a problem that has already been mentioned in Section
2.1, namely that TAGs do not allow a uniform treatment of arguments. DTGs consist of
quasi-tree like objects called d-trees, and the substitution and adjunction operations of TAGs
are replaced by subsertion and sister adjunction. The main idea of these operations is that
there should be one complementation operation (subsertion) and one modi�cation operation
(sister adjunction).

If one looks at the derivation steps shown in Fig. 2.8 on page 30 and 2.9 on page 32,
then it becomes clear that these two complementation derivation steps have the following in
common: taking the predicate-argument structure with open slots for the complements (�1
in Fig. 2.8 and � in Fig. 2.9), the argument is added in the following way: �rst a subtree of
the tree that represents the argument is substituted for the leaf representing the argument
slot (in Fig. 2.8 this subtree is the whole tree �2, and in Fig. 2.9 it is a proper subtree of 
1).
Then the rest of the tree of the argument is inserted somewhere above the subtree that was
substituted for the argument slot. This operation is formalized by the de�nition of subsertion.

The idea underlying d-trees is the same as the one underlying quasi-trees. Each node
in an elementary structure where adjunction is possible, is replaced by two di�erent nodes.
These two nodes are not connected by a normal edge representing a parent relation. Instead,
they are connected by a so-called d-edge. Such a d-edge between nodes u1 and u2 signi�es
that either u1 and u2 can become equal or there can be a subtree between u1 and u2. In
other words, these d-edges represent dominance relations.

D-trees are de�ned as trees with two kinds of edges, so-called i-edges (for immediate
domination edge) and d-edges (for domination edge) such that for each node u, either u is
a leaf or there is exactly one d-edge from u to another node below u or there are (�nitely
many) i-edges from u to other nodes (to children of u). This means that d-trees consist of
fully speci�ed trees with dominance relations between these trees. This idea will also be
captured in the de�nition of descriptions in the next chapter, i.e. in the de�nition of the
elementary objects of Tree Description Grammars. The crucial di�erence between d-trees
and descriptions however is that in the case of descriptions, dominance relations between the
subtrees are less restricted than in the case of d-trees. For descriptions, a leaf of one subtree
may dominate more than one other subtree, and, furthermore, the root of a subtree may be
dominated by more than one other leaf.

Subsertion

Subsertion is an operation taking two d-trees � and �. Roughly said, it consists of deriving
a new d-tree 
 by substituting a sub-d-tree of the second d-tree � for a node u in � and by
inserting the rest of � into the d-edges of �. E.g. in Fig. 2.17, the subtree �(5) is substituted
for the leaf u in �. Then �(4) is inserted into the d-edge between �(2) and �(3), and �nally
the subtree with �(1); �(2) and �(3) is inserted into the d-edge between �(1) and �(2).

Subsertion is restricted by constraints called subsertion-insertion constraints (SIC). Each
d-edge in an elementary d-tree has such a constraint. These constraints are �nite sets of nodes
in elementary d-trees. They specify those nodes that are not allowed to appear between the
two nodes of the d-edge the constraint is associated with.

Clearly, all substitution operations are also subsertion operations. Therefore subsertion
can be used as the operation that takes place to �ll argument slots in subcategorization
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Figure 2.17: Subsertion

frames. The advantage of subsertion in contrast to substitution is that it even allows an
adequate treatment of complement clauses. An analysis of (3) (see page 31) with subsertion
is shown in Fig. 2.18. The d-tree � for the complement clause is added by subsertion to the
d-tree � representing the argument structure of the matrix verb penses. (In contrast to this,
see Fig. 2.9 for the analysis of (3) in a TAG.)

Sister-adjunction

The other d-tree operation, sister adjunction, consists of adding a new d-tree to a d-tree as
right- or left-most subtree of a node with daughters. Therefore sister-adjoining only means
putting the two d-trees together and adding one single i-edge. With this de�nition, in contrast
to adjunction in TAGs, in successive derivation steps, several sister-adjunctions can occur at
the same node.

Similar to adjunction constraints in TAGs, DTG sister-adjoining constraints (for nodes)
specify whether a certain d-tree can be sister-adjoined at a certain node and whether it must
be right- or left-adjoined.

2.5.3 Unordered Vector Grammars with Dominance Links

Unordered Vector Grammars with Dominance Links (UVG-DL), introduced in Rambow
1994a,b, can also be seen as a grammar using quasi-trees. This grammar formalism is
motivated by the observation that set-local MC-TAGs are not powerful enough to handle



46 CHAPTER 2. TREE ADJOINING GRAMMARS

�

WH

NP

aime

V

�

NP

VP

S

S

S
�

�

NP

penses

V tu

V

que

Comp Su

S

VP

S

S

;




WH

�

NP

penses

V tu

V

que

Comp

NP

aime

V

�

NP

VP

S

S

S

VP

S

S

S

S

Figure 2.18: Subsertion operation adding a d-tree for the anchor of the com-

plement clause in qui penses-tu que Marie aime? (`whom do you think that Mary loves?')
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v1 := (S0 ! da� V P ), domv1 := ;

v2 := (V P (1) ! NP
(1)
nomV P (2); V P (3) ! NP

(1)
datV P

(4); V P (5) ! V P (6)V P (7);

V P (8) ! verspricht),

domv2 := fhV P
(2); V P (8)i; hV P (4); V P (8)i; hV P (7); V P (8)ig

v3 := (V P (1) ! V P (2)V P (3); V P (4) ! zu versuchen),

domv3 := fhV P
(3); V P (4)ig

v4 := (V P (1) ! NP
(1)
accV P (2); V P (3) ! zu reparieren),

domv4 := fhV P
(2); V P (3)ig

v5 := (NP
(1)
nom ! der Meister), domv5 := ;

v6 := (NP
(1)
dat ! niemandem), domv6 := ;

v7 := (NP
(1)
acc ! den K�uhlschrank), domv7 := ;

Figure 2.19: Sample UVG-DL

scrambling phenomena in German (see 2.4.1, page 35) whereas non-local MC-TAGs are un-
necessarily powerful. UVG-DL can be interpreted as a variant of non-local MC-TAGs.

An UVG-DL consists of a nonterminal and a terminal alphabet, a nonterminal start
symbol, and a set of pairs hv; domvi where v is a vector of context-free productions, and
domv is a binary relation over the occurrences of nonterminals in the productions in v. The
pairs in domv are called dominance links. In order to distinguish between di�erent occurrences
of the same nonterminal, the nonterminals in the productions are equipped with superscripts
(i) for the i-th occurrence of a certain nonterminal. The relation domv must be such that if
hA(i); B(j)i 2 domv, then A

(i) occurs in the right-hand side of some production in v, and B(j)

is the left-hand symbol of some production in v.

The language L(G) generated by some UVG-DL G is de�ned as follows: w 2 L(G) if w
is a terminal string derived from the start symbol by applying productions occuring in the
vectors of G such that

1. there are vectors v1; : : : ; vm 2 V and ni 2 IN for 1 � i � m such that in the course of the
derivation of w there were exactly ni applications of each production in vi, and

2. the dominance links must hold in the derivation tree of w (here derivation tree is the
context-free derivation tree).

The second condition signi�es the following: if 
 is the derivation tree of w, then for each
i, 1 � i � m, the ni application of each production in vi can be ordered in such way that the
following holds: if there are productions p = A(i) ! w1B

(j)w2 and q = C(k) ! u in vi, and
if hB(j); C(k)i 2 domvi , then for all l, 1 � l � ni: if u is the node with label B that is on the
right side of the l-th application of p and u0 is the node with label C that is on the left side
of the l-th application of q then hu; u0i 2 D
 holds.

An example is the UVG-DL shown in Fig. 2.19 taken from Rambow 1994b with pairs
hv1; domv1i; : : : ; hv7; domv7i (for a de�nition of this UVG-DL with tree descriptions see
Fig. 3.22).

Figure 2.20 shows a sample derivation for (8) with the UVG-DL in Fig. 2.19. A subscript
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Figure 2.20: Sample UVG-DL derivation tree

pij in this �gure indicates that this node represents the left-hand symbol of the j-th production
in vi.

(8) ... da� der Meister den K�uhlschrank niemandem zu reparieren
... that the bossnom the refrigeratoracc no-one to repair

zu versuchen verspricht
to try promises
... that the boss promises no-one to try to repair the refrigerator

A de�nition of the UVG-DL in Fig. 2.19 based on tree descriptions will be shown in Fig.
3.22 on page 102 in Chapter 3.

UVG-DLs show that the introduction of dominance links gives a suitable way to deal
with free word order languages such as German. However, Rambow suspects that certain
formal languages relevant to natural language syntax cannot be derived in an UVG-DL. In
Rambow 1994a, Conjecture 7, p. 78 he argues that it might not be possible to generate the
copy-language fww jw 2 fa; bg�g with UVG-DLs. The di�erence between UVG-DLs and
non-local MC-TAGs is that the application of the productions of a vector in an UVG-DL
need not take place simultaneously. This seems to be an important point in the case of the
copy language. Using MC-TAGs, this language can be easily generated, whereas with an
UVG-DL the order of the application of productions is perhaps too free. If this is true, then
this formalism is not adequate to handle Dutch cross-serial dependencies.

To remedy this possible shortcoming of UVG-DLs, Rambow proposes a tree-rewriting vari-
ant of UVG-DLs called Vector Multi-Component Tree Adjoining Grammars with Dominance
Links (V-TAGs, see also Rambow and Lee 1994).
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2.6 Conclusion: TAGs and underspeci�cation

In this section the approaches presented above, in particular those based on tree descriptions,
are considered with respect to the following question: what properties should a grammar
formalism have if it is supposed to allow underspeci�ed representations and, furthermore, to
preserve the attractive properties of TAGs and related formalisms?

We have seen that the main idea underlying the shift from context-free grammars to TAGs
was an extension of the domain of locality. The advantages of this extension are an increase
of the generative capacity, and the possibility to lexicalize a grammar for natural languages
without violating the linguistic principles observed in TAGs.

Furthermore, TAGs have been developed as a formalism that is supposed to predict some
properties of natural languages. If this view is adopted, then a grammar formalism should
in particular be restricted in such way that they generate only semilinear languages.

The requirement that underspeci�ed representations should be allowed, addresses another
problem: the relevant criterion here is neither the set of (indexed) strings nor the set of
trees generated by the grammar but the way these trees or strings are represented. A tree-
generating grammar allowing underspeci�cation must be such that the objects derived by
this grammar are descriptions of trees and these descriptions might describe more than one
minimal tree. (A suitable de�nition of minimal trees will be given later. For the considerations
here it is suÆcient to think of a minimal tree, similar to the de�nition of minimal referents in
Rogers 1994, as an object satisfying the actual description � without satisfying any description
derivable from �.)

A formalism such as TAG using fully speci�ed trees is obviously not able to generate
underspeci�ed representations. In order to capture more than one tree by one derived under-
speci�ed representation, the grammar itself must consist of underspeci�ed representations.
This is the case for quasi-tree based grammars like D-Tree Grammars and UVG-DLs. How-
ever, in both formalisms only the parent relation might be underspeci�ed. But scope relations
are transitive and therefore cannot be represented by the parent relation. They must be rep-
resented by the dominance relation, i.e. the partial tree descriptions must even allow an
underspeci�cation of the dominance relation.

To illustrate this, we will consider the following scope ambiguity:

(9) every man loves a woman

(9) contains two quanti�ers, every man and a woman, and (9) is ambiguous because the
relative scope of the two quanti�ers is underspeci�ed. The two possible scope orders can be
represented by the two �rst order terms:

� 8x((man(x))! (9y((woman(y)) ^ (loves(y)(x))))), and

� 9y((woman(y)) ^ (8x((man(x))! (loves(y)(x))))).

If a bracketed expression is interpreted as a subtree, then the two trees 
1 and 
2 in Fig.
2.21 correspond to these two readings. The di�erence between 
1 and 
2 is the following: in

1, the parent node of the universal quanti�er dominates the parent node of the existential
quanti�er while in 
2 the parent node of the existential quanti�er dominates the parent node
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1 �

8 x �

� ! �

man(x) 9 y �

� ^ �

woman(y) loves(y)(x)


2 �

9 y �

� ^ �

woman(y) 8 x �

� ! �

man(x) loves(y)(x)

�

� �

8 x � 9 y �

� ! � � ^ �

man(x) woman(y)

�

loves(y)(x)

Figure 2.21: Scope orders and underspecified representation for every man loves
a woman
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The two syntactic structures of a former professor in T�ubingen

NP

Det N

a AP N

former N PP

professor in T�u

NP

Det N

a N PP

AP N in T�u

former professor

An underspeci�ed tree description for these two structures:

NP

Det N

a N N

AP N N PP

former in T�ubingen

N

professor

Figure 2.22: Structural underspecification

of the universal quanti�er. In other words, 
1 and 
2 di�er not only in the parent relation
but also in the dominance relation. Therefore, a partial description for these two trees must
be such that dominance is not fully speci�ed. Fig. 2.21 shows such a tree description. The
two trees in Fig. 2.21 are the corresponding two minimal trees. This underspeci�ed repre-
sentation is similar to those proposed by Muskens (1995) for ambiguous logical forms where
underspeci�ed scope relations are also represented by underspeci�ed dominance relations in
a tree.

An example of syntactic scope ambiguities where an underspeci�ed representation can be
obtained by a relaxation of the dominance relation, was already given in (2) in the introduc-
tion. It is repeated here as (10):

(10) a former professor in T�ubingen

(10) is ambiguous with respect to its syntactic structure, and, corresponding to this
ambiguity, the following two readings are possible:
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1. either the NP describes a person that was a professor in T�ubingen in some former days,

2. or the NP describes a person that is in T�ubingen and that was a professor in some
former days.

The two syntactic structures of (10) and an underspeci�ed tree description representing
these two structures are shown in Fig. 2.22.

Clearly, representations with an underspeci�ed dominance relation cannot be derived by
the TAG-extensions using partial descriptions of trees that were introduced in this chapter.
Consequently these formalisms are not able to generate appropriate underspeci�ed repre-
sentations for scope ambiguities. Instead, a new formalism must be found that allows an
underspeci�ed dominance relation and that retains the attractive properties of the TAG
variants presented here.

Therefore, in the following two chapters, a TAG-extension will be proposed that is based
on the work on quasi-trees by Vijay-Shanker and Rogers and that satis�es the following
criteria:

1. it provides an extended domain of locality,

2. it is powerful enough to deal with natural languages, in particular powerful enough to
generate the indexed string languages fwindwind jw 2 T �g and SCRind,

3. it generates only semilinear languages,

4. and it allows underspeci�cation not only of the parent relation but also of the dominance
relation.



Chapter 3

Tree Description Grammars

The goal of this chapter is to develop an extension of Tree Adjoining Grammars that allows
underspeci�ed representations. As we have seen in the previous chapter, a very natural way to
introduce underspeci�cation into a tree generating grammar is a relaxation of the dominance
relation. The TAG-variants that deal with partial descriptions of trees, namely TAGs based
on quasi-trees, D-Tree Grammars and Unordered Vector Grammars with Dominance Links
only allow a relaxation of the parent relation but not of the dominance relation in trees.
Starting from the work on quasi-trees, a new grammar formalism is presented in the course
of this chapter that allows underspeci�cation of the dominance and (as a consequence of this)
of the linear precedence relation. These grammars are called Tree Description Grammars
(TDG). TDGs also have been presented in Kallmeyer 1996a,b, 1999b.

In principle the idea of TDGs is the following: TDGs consist of tree descriptions, so-called
elementary descriptions, i.e. TDGs are description-based. Similar to the TAG-variants with
tree descriptions presented in the last chapter, TDGs are also derivation-based. This means
that starting from the elementary descriptions, more complex descriptions are derived. Each
derivation step can be viewed as a conjunction of two formulas and additional equivalences
of node names. In contrast to quasi-trees, the dominance relation need not be fully speci�ed
in these tree descriptions.

In Fig. 2.21 on page 50 and 2.22 on page 51 we have already seen how underspeci�ed
representations could look like which are obtained by relaxing the dominance relation. In a
quasi-tree based framework, a derivation of the underspeci�ed tree description proposed in
Fig. 2.22 for former professor in T�ubingen could be of the form shown in Fig. 3.1. In this
�gure, starting with a tree description 
1 for former professor, the underspeci�ed represen-
tation 
2 is obtained by adding an elementary tree description � for a PP with proposition
in. In a further derivation step, the elementary description for T�ubingen must be added.

This example shows the necessity of two conditions on derivation in TDGs. Firstly, there
are only certain node names in the new elementary descriptions that occur in the equivalences
that are added in this step. If n2 � n7 was also added, the tree description would still be
satis�able. But this is not intended. Therefore, in TDGs it will be possible to mark certain
node names in an elementary description such that only for the minimal name (the name
dominating all other names, e.g. n5 in �) and for the marked names (e.g. n8 in �) new
equivalences are added. Marked names are comparable to foot nodes in TAGs since in a
derivation step they indicate those parts of the new elementary description that must be
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1 N n1

N n2

AP N n3

A N n4

former professor

� N n5

N n6

N n7 PP

N n8 P NP

in

n8 marked in �


2 N

N N

AP N N PP

A N P NP

former professor in


2 = 
1 ^ � ^ n1 � n5 ^ n4 � n8

Figure 3.1: Derivation of an underspecified tree description

connected to the old description. A second derivation condition is necessary to select the
\most underspeci�ed" derivation result. In the case of 
1 and �, it would be also possible to
add n1 � n5^n2 � n8 as new equivalences or n3 � n5^n4 � n8. However, these descriptions
are not desired since each of them describes only one of the two structures in Fig. 2.22. In
contrast to this, the result 
2 = 
1 ^ � ^ n1 � n5 ^ n4 � n8 is satis�ed by both structures
in Fig. 2.22. When de�ning the derivation in TDGs, we will see how such a condition of
\maximal underspeci�cation" can be formalized.

There are several aspects that must be taken into account for the de�nition of TDGs. An
important question concerns the nature of tree descriptions: are they objects or descriptions
(formulas) and how can they be de�ned? Following Rogers and Vijay-Shanker 1994 and
Rogers 1994, I view tree descriptions as formulas in a quanti�er-free �rst order logic. We will
see that for TDGs the quasi-tree de�nition of Rogers and Vijay-Shanker 1994 and Rogers
1994 is not appropiate. Therefore I will introduce so-called descriptions. These are formulas
that, roughly said, describe certain subtrees together with dominance relations between these
subtrees. E.g. 
1; � and 
2 in Fig. 3.1 represent descriptions. A TDG then consists of
descriptions, and the result of a derivation step in a TDG must also be a description.

After having de�ned TDGs, a suitable derivation mode must be found. Derivation in
TDGs should be such that multicomponent derivations and derivations of underspeci�ed
representations are possible. As already mentioned, the idea (as for quasi-trees) is that
in each derivation the conjunction of two descriptions and additional equivalences of node
names is built. The choice of node names used for these new equivalences can be controlled
by marking these names. Furthermore, as illustrated by the example from Fig. 3.1, the result
of such a derivation step must be \maximally underspeci�ed".

Finally, since the grammar generates tree descriptions and each tree description is satis�ed
by an in�nite number of trees, a notion of minimal tree must be introduced. The idea of
the minimal tree is the following: a tree is minimal for a given description if it satis�es this
description in such a way that all parent relations in the tree already occur in the description.
E.g. the tree description 
2 in Fig. 3.1 has two minimal trees, the two trees shown in Fig.
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2.22. For a given description, a minimal tree can be obtained by adding equivalences between
node names that are connected by a dominance relation in the description. The result is a
fully speci�ed description of a minimal tree. Rogers and Vijay-Shanker 1994 and Rogers 1994
also de�ne some kind of minimal model for a quasi-tree, the so-called circumscriptive reading,
but this does not capture the idea of minimal tree.

This chapter is structured as follows: �rst the tree logic used in TDGs is presented, a
simple quanti�er-free �rst order logic mainly based on Rogers 1994. Decidability, soundness
and completeness of this logic will be shown. Then descriptions are introduced in Section 3.2
and the TDG formalism is de�ned. In Section 3.3, I will give a decidable derivation procedure
for TDGs, and the decidability of the word problem for lexicalized TDGs will be shown.
Finally, in the last section, I will give some examples in order to show that underspeci�ed
representations, subsertion-like derivation steps and multicomponent derivations are possible
in a TDG.

3.1 A tree logic for TDGs

There are two alternatives with respect to the nature of tree descriptions: either they can be
seen as objects (as in Rogers and Vijay-Shanker 1992) or as formulas, i.e. as expressions in a
tree logic, as it is the case in Rogers and Vijay-Shanker 1994 and Rogers 1994. I follow the
second approach by de�ning TDGs as sets of formulas.

In this section, the underlying tree logic is introduced together with de�nitions of satis�-
ability and of semantic and syntactic consequence. Soundness, completeness and decidability
of the logic with respect to these consequence notions are shown. The tree logic is very similar
to the one proposed in Chapter 3 of Rogers 1994 for the de�nition of quasi-trees.

3.1.1 Syntax

A TDG consists of tree descriptions, i.e. of constraints for �nite labelled trees. In these trees,
leaves are labelled by terminal symbols and internal nodes by �nite atomic feature structures,
i.e. sets of attribute value pairs. The logic of tree descriptions used for TDGs is a quanti�er-
free �rst order logic. It di�ers from the one proposed in Rogers 1994 in so far as it allows not
only the formulation of constraints concerning the tree structure but also the formulation of
constraints for the labels of the nodes.

De�nition 3.1 ((A; V; T )-formulas) Let A (the attribute names), V (the attribute values)
and T (the terminals) be pairwise disjoint �nite sets. (A; V; T )-formulas are words over the
following symbols:

- the symbols of V [A [ T [ f�;?g

- a nonempty countable set K of variables called node names,

- constants �;��;�, � (for binary relations),

- a constant Æ (for the labeling function),

- logical connectives ^;_;: and

- bracket symbols (, ).

(A; V; T )-formulas are inductively de�ned:
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1. (A; V; T )-terms:

(a) � is an (A; V; T )-l-term (denoting labels) i� either � 2 T [ f�g or there is a k 2 K
with � = Æ(k).

(b) � is an (A; V; T )-v-term (denoting attribute values) i� either � 2 V [ f?g or there
are a 2 A and k 2 K such that � = a(Æ(k)).

(c) k is an n-term (denoting nodes) i� k 2 K.

2. (A; V; T )-formulas:

(a) For all �1; �2, that are either both (A; V; T )-l-terms or both (A; V; T )-v-terms or both
n-terms, �1 � �2 is an (A; V; T )-formula.

(b) For alle n-terms k1; k2: k1 � k2, k1 �
� k2 and k1 � k2 are (A; V; T )-formulas.

(c) If � is an (A; V; T )-formula, then :� also is an (A; V; T )-formula.

(d) If �;  are (A; V; T )-formulas, then (� ^  ) and (� _  ) are also (A; V; T )-formulas.

(e) Nothing else is an (A; V; T )-formula.

(A; V; T )-formulas containing at most one negation and no other logical connective are called
elementary (A; V; T )-formulas.

node(�) is the set of all node names occuring in an (A; V; T )-formula �.

If the order of logical connectives does not matter as in the case of conjunctions of more
than two formulas, or if there is only one possible order, brackets will be omitted.

The constants �;�� and � denote the parent, the dominance and the linear precedence
relation respectively.

As an example consider the tree description graphically represented as � in Fig. 3.1. If an
attribute cat is assumed for syntactic categories, this description is captured by the following
(A; V; T )-formula �� with attributes A = fcatg, attribute values V = fN;PP; P;NPg and
terminals T = fing:

�� = k1 �
� k2 ^ k2 � k3 ^ k3 �

� k4 ^ k2 � k5 ^ k5 � k6 ^ k6 � k7 ^ k5 � k8

^ k3 � k5 ^ k6 � k8

^ cat(Æ(k1)) � N ^ cat(Æ(k2)) � N ^ cat(Æ(k3)) � N ^ cat(Æ(k4)) � N

^ cat(Æ(k5)) � PP ^ cat(Æ(k6)) � P ^ Æ(k7) � in ^ cat(Æ(k8)) � NP

Since the syntax of the formulas shows which symbols are attribute names, which are
attribute values and which are terminal symbols, (A; V; T ) will be often omitted.

In contrast to ordinary predicate logic, this logic has three kinds of terms that can be
syntactically distinguished: the l-terms denoting labels of nodes, v-terms denoting attribute
values and n-terms denoting nodes.

Node names are free variables and not constants, as it is the case in the logic of Rogers
1994. This choice is motivated by the following observation: if the denotation of the node
names is given by an interpretation function that is part of the model, i.e. the tree, as in
Rogers 1994, then two formulas that only di�er in a renaming of the nodes (a bijection of
K) are satis�ed by di�erent models. In the case of TDGs, formulas di�ering only in a node
renaming shall be equivalent in the sense that their models are the same. Therefore node
names are treated as free variables. In this case formulas that are equivalent up to a node
renaming, are satis�ed by the same trees (only with respect to di�erent assignment functions).
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3.1.2 Semantics

The set of intended models for the tree logic introduced above is restricted to terminal �nite
labelled trees, i.e. �nite labelled trees, where each leaf is labelled by a terminal symbol or the
empty word and each internal node by a nonterminal.1 (For the corresponding de�nitions,
see Def. 2.8 on page 16 and Def. 2.10 on page 17 in Chapter 2.) As nonterminal labels I will
use �nite atomic feature structures.

De�nition 3.2 (Finite atomic feature structures) Let A and V be �nite disjoint sets.
A �nite atomic feature structure is a set F � A� V such that

1. F 6= ;, and

2. for each a 2 A there is at most one v 2 V with ha; vi 2 F .

A is called the set of attributes and V is called the set of attribute values.

Notation: a set N of �nite atomic feature structures with attributes A and values V is written
as NA;V .

Note that these feature structures are not allowed to be empty, i.e. each feature structure
must have at least one attribute value pair.

The notion of satis�ability in this logic is the same as in ordinary �rst-order predicate
logic. Satis�ability of a formula in a model is considered with respect to a node assignment
function mapping all node names in K onto nodes in the model.

De�nition 3.3 (Satis�ability) Let B = (U ; u0;P;D;L; �) be a �nite labelled tree with �-
nite atomic feature structures NA;V as nonterminals and terminals T . Let g : K ! U be a
function, the node assignment function, and let �, �1 and �2 be (A; V; T )-formulas.

B satis�es � wrt g (written B j=g �) is inductively de�ned:

1. For all k1; k2 2 K:

� B j=g k1 � k2 i� (g(k1); g(k2)) 2 P

� B j=g k1 �
� k2 i� (g(k1); g(k2)) 2 D

� B j=g k1 � k2 i� (g(k1); g(k2)) 2 L

� B j=g k1 � k2 i� g(k1) = g(k2)

2. For all l-terms l1; l2 (l-terms can either be in T [ f�g or they have the form Æ(k)):

B j=g l1 � l2 i� [[l1]]g = [[l2]]g where

� [[Æ(k)]]g = �(g(k)) for all k 2 K,

� [[x]]g = x for all x 2 T [ f�g.

3. For all v-terms v1; v2 (v-terms can either be in V [ f?g or they have the form a(Æ(k))):

B j=g v1 � v2 i� [[v1]]g = [[v2]]g where

� for all k 2 K and all a 2 A: if there is a v 2 V with ha; vi 2 [[Æ(k)]]g , then [[a(Æ(k))]]g =
v, else [[a(Æ(k))]]g = ?.

� [[v]]g = v for all v 2 V [ f?g.

1As suggested by Reinhard Muskens, for the de�nition of TDGs the restriction to �nite trees could even
be omitted, since the only trees we are concerned with are the minimal trees of tree descriptions and these
trees are always �nite because of the way minimal trees will be de�ned.
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4. B j=g (�1 ^ �2) i� B j=g �1 and B j=g �2.

5. B j=g (�1 _ �2) i� B j=g �1 or B j=g �2.

6. B j=g :�1 i� not B j=g �1.

B j= � i� there is an assignment function g, such that B j=g �.
�1 j= �2 i� for all trees B and all assignments g: if B j=g �1 then B j=g �2.

Henceforward the adjective \�nite" will be usually omitted, i.e. \tree" always stands for
\�nite tree".

3.1.3 Syntactic consequence

In this subsection I will de�ne some syntactic equivalent for the semantic consequence relation
\j=". This can be done by using inference rules as proposed by Rogers. The idea is as
follows: starting from a formula  by applying inference rules it is possible to construct a
conjunctive normal form of all the consequences of  . A syntactic notion of consequence can
then be de�ned for formulas  1;  2 by comparing the two conjunctive normal forms of the
consequences of  1 and  2.

This way to de�ne a syntactic consequence was very much in
uenced by Rogers' work. In
Rogers 1994, besides de�ning such inferences rules, he introduces the notion of a saturated
conjunction of disjunctions, which roughly said is a conjunctive normal form that represents
all consequences of a formula. Starting from Rogers' work, it is quite straightforward to de�ne
the syntactic consequence �1 ` �2 by comparing the corresponding two saturated conjunctive
normal forms of �1 and �2.

The syntactic consequence de�ned in this way is decidable, sound and even complete as
will be shown below. Later, when de�ning TDGs, this notion of syntactic consequence is
used for the de�nition of the derivation mode. Therefore it is important to show not only its
soundness and completeness but also its decidability.

Instead of conjunctions of disjunctions of formulas, I will deal with sets of sets of formulas
and interprete the whole set (the branch) conjunctively and the elements (the clauses) dis-
junctively. This is only a di�erent notation adopted from Rogers which is used in order to see
more clearly how inference rules work and in order to facilitate the de�nition of the syntactic
consequence. The use of branches and clauses allows a de�nition of a syntactic consequence
via a subset relation between clauses.

De�nition 3.4 (Clause and branch) Let B be a tree and g an assignment function.

1. A clause is a set of formulas �1; �2; � � �. Notation: [�1; �2; � � �]

B j=g [�1; �2; � � �] i� there is a � 2 f�1; �2; � � �g such that B j=g �.

2. A branch is a set of clauses �1;�2; � � �. Notation: k�1;�2; � � � k

B j=g k�1;�2; � � � k i� B j=g � for all � 2 f�1;�2; � � �g.

This de�nition does not exclude in�nite disjunctions or conjunctions. But for our purposes
we only need �nite clauses and branches.

The inference rules needed for the tree logic for TDGs are very similar to those proposed by
Rogers (1994). But Rogers uses these kind of rules without explicitely de�ning the way they
must be applied. Therefore, before introducing speci�c rules, I will give a general de�nition
of the syntax and semantics of inference rules.
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De�nition 3.5 (Inference rule) Let V� := f�1;�2; � � �g, V� := f�1;�2; � � �g and V� :=
f�1; �2; � � �g be pairwise disjoint countable sets.

1. Syntax of inference rules:

(i) A branch schema can be inductively de�ned:

(a) All �i 2 V� are formula schemata, all formula of the tree logic are formula
schemata, and for all formula schemata F1 and F2: :F1 and (F1 ^ F2) and
(F1 _ F2) are formula schemata.

Nothing else is a formula schema.

(b) Each formula schema and each �i 2 V� is a clause schema, and for all clause
schemata C1 and C2: C1; C2 is a clause schema.

Nothing else is a clause schema.

(c) For each clause schema C, [C] is a branch schema, each �i 2 V� is a branch
schema, and for all branch schemata B1 and B2: B1; B2 is a branch schema.

Nothing else is a branch schema.

(ii) An inference rule consists of two branch schemata Bold and Bnew such that all x 2
V� [ V� [ V� occuring in Bnew also occur in Bold.

Notation: if hnamei is the name of the rule, then the rule is notated as Bold
Bnew

hnamei.

2. Semantics: Let k�k be a branch.

(i) k�k satis�es a branch schema B, i� there is a homomorphism f such that

� f(�i) is a branch for all �i 2 V�, f(�i) is a clause for all �i 2 V� and f(�i) is
a formula for all �i 2 V�.

� for all formula F : f(F ) = F .

� for all �i 2 V�: f([�i]) = ff(�i)g.

� for all formula schemata F1 and F2: f(:F1) = :f(F1) and f((F1 ^ F2)) =
(f(F1) ^ f(F2)) and f((F1 _ F2)) = (f(F1) _ f(F2)).

� for all formula schemata F : f([F ]) = fff(F )gg.

� for each formula schema F and each clause schema C: f([F;C]) = fff(F )g [
f� j there is a � 2 f([C]) with � 2 �gg.

� for each �i 2 V� and each clause schema C: f([�i; C]) = ff(�i) [ f� j there is a
� 2 f([C]) with � 2 �gg.

� for all branch schemata B1; B2: f(B1; B2) = f(B1) [ f(B2).

� f(B) = k�k.

(ii) A rule Bold
Bnew

hnamei can be applied to k�k, if there is a function f such that k�k
satis�es Bold with f(Bold) = k�k. The result of the application of hnamei to k�k is
then f(Bnew).

The following inference rules in principle correspond to those proposed by Rogers (1994).
The logical and structural rules and the resolution rule res are exactly as in Rogers 1994 and
the tree axiom rules are similar to those in Rogers 1994. Only label and parts of the equality
rules do not �gure there because Rogers does not consider labelled trees.

Of course only those properties of the models can be considered in inference rules that
can be expressed in the tree logic. Properties that cannot be formulated in this logic are the
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�niteness of the trees, the uniqueness of the root and the requirement that each leaf must be
labelled by a terminal symbol.

For two terms �1; �2, I will often use an abbreviation for negated equivalence writing
�1 6� �2 instead of :�1 � �2.

De�nition 3.6 (Inference rules for the tree logic) Let � be in V�, �;	 be in V� and
�;  be in V�. Let A = fa1; � � � amg and V = fv1; � � � ; vlg be alphabets. Let T be an alphabet
with � =2 T . T� := T [ f�g = ft1; � � � ; tng (� is one of the ti here which is unusual but which
facilitates the formulation of the inference rules).

The inference rules for the tree logic with respect to T , A and V are the following:

1. Logical rules (elimination of logical connectives)

�; [�;::�]

�; [�; �]
::

�; [�; (� _  )]

�; [�; �;  ]
_

�; [�;:(� _  )]

�; [�;:�]; [�;: ]
:_

�; [�; (� ^  )]

�; [�; �]; [�;  ]
^

�; [�;:(� ^  )]

�; [�;:�;: ]
:^

2. Structural rules taut (elimination of tautologies) and abs (absorbtion of a clause by a
second clause, that implies the �rst one)

�; [�; �;:�]

�
taut

�; [�]; [�;	]

�; [�]
abs

3. Resolution res
�; [�; �]; [	;:�]

�; [�; �]; [	;:�]; [�;	]
res

4. Tree rules: for all k1; k2; k3; k4 2 K:

�

�; [:k1 �� k2;:k2 �� k3; k1 �� k3]
trD

�

�; [k1 6� k2; k1 �� k2]
rfD

�

�; [:k1 �� k2;:k2 �� k1; k1 � k2]
antisD

�

�; [:k1 � k2; k2 6� k1]
irrfP

�

�; [:k1 � k2;:k2 � k3; k1 � k3]
trL

�

�; [:k1 � k2; k1 �� k2]
T1

�

�; [k1 �� k2; k2 �� k1; k1 � k2; k2 � k1]
T2

�

�; [:k1 �� k2;:k1 � k2]
T3

�

�; [:k2 �� k1;:k1 � k2]
T4

�

�; [:k1 � k2;:k3 � k2; k1 � k3]
T5

�

�; [:k1 � k2;:k1 �� k3;:k2 �� k4; k3 � k4]
T6
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5. Label rules: for all k; k1; k2 2 K, for all t 2 T� and for all a 2 A:

�

�; [Æ(k) � t1; � � � ; Æ(k) � tn; a1(Æ(k)) � v1; � � � am(Æ(k)) � vl]
label1

�

�; [:k1 � k2; Æ(k1) 6� t]
nont1

�

�; [Æ(k1) 6� t; a(Æ(k1)) � ?]
term1

�

�; [a(Æ(k)) � v1; � � � ; a(Æ(k)) � vl; a(Æ(k)) � ?]
attr1

6. Equality rules: for all k1; k2; k3; k4 2 K, for all t; t0 2 T� with t 6= t0, for all a 2 A and for
all v; v0 2 V [ f?g with v 6= v0:

�

�; [k1 6� k2; k3 6� k4;:k1 �� k3; k2 �� k4]
equD

�

�; [k1 6� k2; k3 6� k4;:k1 � k3; k2 � k4]
equP

�

�; [k1 6� k2; k3 6� k4;:k1 � k3; k2 � k4]
equL

�

�; [k1 6� k2; Æ(k1) � Æ(k2)]
label2

�

�; [Æ(k1) 6� Æ(k2); a(Æ(k1)) � a(Æ(k2))]
attr2

�

�; [t 6� t0]
term2

�

�; [v 6� v0]
attr3

�

�; B
nont2 with

B := [a1(Æ(k1)) 6� a1(Æ(k2)); � � � ; am(Æ(k1)) 6� am(Æ(k2));

Æ(k1) � t1; � � � ; Æ(k1) � tn; Æ(k1) � Æ(k2)]

7. Equivalence rules: for all terms �1; �2; �3 that are either all n-terms or all l-terms or all
v-terms (with respect to A, V and T ), there are rules

�

�; [�1 6� �2; �2 6� �3; �1 � �3]
tr=

�

�; [�1 6� �2; �2 � �1]
sy=

�

�; [�1 � �1]
rf=

The logical rules eliminate logical connectives: they remove double negations, they trans-
form disjunctions into clauses and conjunctions into branches and they apply the de Morgan
laws to remove negations of disjunctions or conjunctions. taut removes tautologies and abs
removes disjunctions if a subset of the disjunction already holds. The resolution rule captures
the fact that (�1 _  ) ^ (�2 _ : ) implies �1 _ �2 since either  or : does not hold.

The mechanism of the tree rules, label rules and equality rules is as follows: if such a rule
is applied, a clause is added that holds universally for all trees. In further steps, this clause
might be reduced using the resolution rule and the structural rules. The �rst tree axiom rule
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n1

n2 n6

ap n3 n7 pp

a n4 p np

former professor in


2 = n1 �
� n2 ^ n2 � n3

^ n3 �
� n4 ^ n1 �

� n6
^ n6 � n7 ^ n7 �

� n4 ^ � � �

jj [
2] jj
log:rules
! jj � � � [n3 �

� n4]; [n7 �
� n4] � � � jj

rf=
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4] � � � jj

rfD
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 6� n4; n4 �

� n4] � � � jj
res
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 6� n4; n4 �

� n4]; [n4 �
� n4] � � � jj

abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4] � � � jj
T3! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 �
� n4;:n4 � n4] � � � jj

res
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 �
� n4;:n4 � n4];

[:n4 � n4] � � � jj
abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4] � � � jj
T6! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4];
[:n3 � n7;:n3 �

� n4;:n7 �
� n4; n4 � n4] � � � jj

res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4];
[:n3 � n7;:n3 �

� n4;:n7 �
� n4] � � � jj

res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4];
[:n3 � n7;:n3 �

� n4] � � � jj
res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4]; [:n3 � n7] � � � jj
T6;res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4]; [:n3 � n7];
[:n7 � n3] � � � jj

T2! jj � � � [n3 �
� n4]; [n7 �

� n4]; [n4 � n4]; [n4 �
� n4]; [:n4 � n4]; [:n3 � n7];

[:n7 � n3]; [n3 �
� n7; n7 �

� n3; n3 � n7; n7 � n3] � � � jj
res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4]; [:n3 � n7];
[:n7 � n3]; [n3 �

� n7; n7 �
� n3; n3 � n7] � � � jj

res;abs
! jj � � � [n3 �

� n4]; [n7 �
� n4]; [n4 � n4]; [n4 �

� n4]; [:n4 � n4]; [:n3 � n7];
[:n7 � n3]; [n3 �

� n7; n7 �
� n3] � � � jj

Figure 3.2: Sample application of inference rules
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for example expresses the fact that the dominance relation on nodes is transitive, i.e. for two
node names k1; k2 and a formula �: if � ` k1 �

� k2 ^ k2 �
� k3, then � ` k1 �

� k3 also holds.
This implication is expressed by :(k1 �

� k2 ^ k2 �
� k3) _ k1 �

� k3 which is equivalent to the
disjunction :(k1�

� k2)_:(k2�
� k3)_ k1�

� k3. This corresponds to the clause added in the
rule trD.

In a similar way, the rules T1 to T6 express the following facts: T1 signi�es that � ` k1�k2
entails � ` k1�

� k2. T2 captures the condition that two nodes in a tree must be related either
by domination or by linear precedence (exhaustiveness). With T3 and T4 these two relations
are exclusive. T5 expresses the uniqueness of the parent node, and T6 captures the inheritance
or non-tangling property.

The label rules add the following: with label1, for each node u, the label �(u) either is
in T [ f�g or it is a nonempty feature structure, i.e. there is at leat one attribute a and one
value v with ha; vi 2 �(u). The rule nont1 signi�es that a node that is parent of some other
node cannot be labelled by a terminal or the empty word. With term1, for each node with a
terminal label all attributes are unde�ned. attr1 expresses that each attribute value is either
in V or unde�ned.

Equality rules take care of the fact that � denotes equality between nodes, labels or
attribute values.

The last group of rules, the equivalence rules make sure that � is an equivalence relation.

As an example of the application of the inference rules, Fig. 3.2 shows how to deduce from
the underspeci�ed tree description 
2 in Fig. 3.1 the consequence that there are two possibili-
ties for the dominance relation between the node names n3 and n7. For the sake of simplicity,
all formulas concerning labels are omitted, and node names such as n1; n2; � � � ; ap; pp; � � � are
used. By application of inference rules, an additional clause [n3 �

� n7; n7 �
� n3] is derived,

i.e. the tree description implies that either n3 dominates n7 (wide scope of former) or n7
dominates n3 (wide scope of the PP). In the sample deduction, only those clauses are listed
that are used to derive [n3 �

� n7; n7 �
� n3].

Note that, as already mentioned in Chapter 1, objects such as the kind of graph with
di�erent edges shown in Fig. 3.2 are pictures of tree descriptions. Tree descriptions themselves
are formulas, and these pictures are graphical representations of (some of) the information
entailed by the formula in question. The parent relation is depicted by a normal edge and
dotted edges represent dominance relations. If a node name is depicted left of another node
name, this does not necessarily mean that there is a linear precedence relation between these
node names. In 
2 for example, there is no linear precedence relation between n2 and n6,
although in the picture n2 is left of n6.

It is easy to see that the application of inference rules does not change the set of models
(i.e. of trees) satisfying a branch:

Proposition 3.1 (Model invariance) Let k�1k and k�2k be two branches. If k�2k can be
constructed from k�1k in �nitely many steps by applying inference rules, then:

^

�12k�1k

_

�12�1

j=
^

�22k�2k

_

�22�2

and
^

�22k�2k

_

�22�2

j=
^

�12k�1k

_

�12�1

This can be shown by induction on the number of rule applications.
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The following de�nition is again taken from Rogers 1994. The idea is that a branch is
saturated if no new consequences can be added by applying inference rules, and a closed
branch contains one empty clause and is therefore unsatis�able.

De�nition 3.7 (Saturated, open, closed and satis�able branches) Let k�k be a
branch with attributes A, attribute values V and terminals T .

1. k�k is saturated, i�:

� No logical rule can be applied to k�k.

� Neither abs nor taut can be applied to k�k.

� For all applications of res to k�k the new clause introduced by this application can be
removed by abs or taut.

� For all tree rules, label rules, equality rules or equivalence rules with alphabets A, V ,
T and with node names occuring in k�k: if such a rule is applied to k�k, then the
resulting new clauses can be removed by abs.

2. k�k is closed, i� k�k contains an empty clause.

3. k�k is open, i� it is not closed.

4. k�k is satis�able, i� there is a tree B and a node assignment function g such that B j=g

k�k.

The next proposition says that each formula  can be extended to a saturated branch by
applying inference rules. (For the syntactic consequence for formulas  1;  2, de�ned below,
the saturated branches of  1 and  2 will be compared.)

Proposition 3.2 Let  be an (A; V; T )-formula for some attributes A, values V and termi-
nals T , and let Kfin � K be a �nite set such that node( ) � Kfin. In �nitely many steps a
unique saturated branch k�k can be constructed for  and Kfin, such that

 j=
^

�2k�k

_

�2�

and
^

�2k�k6

_

�2�

j=  

Notation: �( ;Kfin) is this saturated branch.

If it does not matter which set Kfin was used, I simply write \�( )" instead of
\�( ;Kfin)".

Prop. 3.2 can be proven by �rst giving an algorithm for constructing �( ;Kfin) for a
given  and Kfin and then showing that the result has the properties mentioned in the
proposition. The construction is very similar to the one proposed in Prop. 5 in Rogers 1994,
and it consists of an application of the inference rules in a certain order.

Proof: Construction: �1 := k[ ]k

1. Apply each tree rule, label rule, equality rule and equivalence rule with alphabets A, V
and T and node names from Kfin once to �1. The result is called �2.

2. Apply the logical rules as often as possible to �2. The result is called �3.

3. Apply res repeatedly to �3, as long as new clauses can be added by res. The result is
called �4.
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4. Apply the structural rules as often as possible to �4. The result is k�k.

(The order of the �rst two steps is of no importance because none of the rules applied in the
�rst step adds any logical connectives.)

To show: The construction terminates after �nitely many steps and the result is a saturated
branch k�k, such that B j=g  i� B j=g k�k.

(i) Construction terminates after �nitely many steps, i.e. each of the four parts 1. to 4.
only consists of a �nite number of rule applications:

(a) 1. part: There are only �nitely many rules with node names fromKfin and symbols
from A, V and T that are applied to �1.

(b) 2. part: There is only a �nite number of applications of logical rules to �2 because
�2 is �nite and each logical rule removes some logical connective.

(c) 3. part: Each application of res in 3. adds a new clause. But the number of
possible clauses containing elementary formulas with node names from Kfin and
symbols from A, V and T is �nite:

There are only �nitely many elementary formulas, that can occur as elements of
a clause. If n is the number of possible elementary formulas, then there are 2n

possible clauses and consequently at most 2n applications of res in 3.

(d) 4. part: Each structural rule removes a clause. Consequently only �nitely many
applications of taut and abs are possible.

(ii) k�k is saturated:

(a) No logical rule can be applied to k�k because no logical connectives are added in
2., 3. or 4.

(b) Because of the 4. part no structural rules can be applied to k�k.

(c) Because of k�k � �4 all applications of res, that are possible in k�k have already
been done in 3. Each additional application of res either does not change anything
or adds a clause that can be removed by taut or abs.

(d) In the beginning all tree rules, label rules, equality rules and equivalence rules
with names from Kfin have been applied. The clauses added by these rules are
no tautologies and contain only elementary formulas. Because of this they have
not been removed by taut or by a logical rule. Perhaps they have been reduced by
abs. Consequently for each result k�;�1;�2 � � � k of an application of a tree axiom
rule or a node symbol rule to k�k: For each new clause �i there is a clause 	i in
k�k with 	i � �i, i.e. �i can be eliminated by abs.

(iii) Model invariance: Holds because of  =
V
�2k[ ]k

W
�2� and Prop. 3.1.

2

Closed branches are not satis�able. Therefore (with Prop. 3.1) for all �: if �(�) is closed,
then � is not satis�able. This means that a necessary condition for the satis�ability of a
formula � is that �(�) must be open. We will see that this is even suÆcient, i.e. if �(�) is
open, then � is satis�able.

By comparing the saturated branches �(�1) and �(�2) of two formulas �1 and �2 a
syntactic notion of consequence �1 ` �2 can be de�ned. The idea is as follows: for two
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formulas �1, �2, the saturated branches �(�1) and �(�2) (for the same sets of node names)
represent conjunctive normal forms of the consequences of �1 and �2 respectively. If �1
implies �2, this means that for each clause (i.e. each conjunct) 	2 in �(�2), there must be
a clause (conjunct) 	1 in �(�1) such that 	1 implies 	2. Since 	2 and 	1 are clauses, i.e.
disjunctions, each disjunct in 	1 must then occur in 	2, in other words 	1 must be a subset
of 	2.

De�nition 3.8 (Syntactic consequence �1 ` �2) Let �1 and �2 be formulas, �1 :=
�(�1;Kfin) and �2 := �(�2;Kfin) with Kfin := node(�1) [ node(�2).

�1 ` �2 i� for all 	2 2 �2 there is a 	1 2 �1 such that 	1 � 	2

` is transitive and because of Prop. 3.2 decidable.

3.1.4 Soundness and Completeness

If �1 ` �2, then for all trees B and all node assignment functions g: If B j=g �1, then B j=g �2.
This follows immediately from Def. 3.8 together with Prop. 3.2 and Def. 3.4. Consequently
the following holds:

Proposition 3.3 (Soundness) For all �1; �2: If �1 ` �2, then �1 j= �2.

In order to prove completeness, the satis�ability of open saturated branches �rst must be
proven. This proposition will then be used in the completeness proof.

Proposition 3.4 (Satis�ability of open saturated branches) For all formulas  and
all k�k = �( ):

k�k is open i� k�k is satis�able (i�  is satis�able)

With this proposition the openness of a saturated branch is not only a necessary but also
a suÆcient condition for satis�ablility.

The proof of the satis�ability of an open saturated branch is as follows: �rst, �( ;Kfin)
is extended to a branch �0 such that in �0 linear precedence, the parent relation, dominance,
equality and the node labels are completely speci�ed for the node names occuring in �( ).
The saturatedness of �0 is shown, and then, similar to the construction in Rogers 1994, p. 29,
a tree satisfying �0 and also �( ) is constructed. This tree is constructed by taking as nodes
the equivalence classes of the relation �n� Kfin �Kfin with k1 �n k2 i� [k1 � k2] 2 �0.

Proof: Let  be a (A; V; T )-formula, and let Kfin be a �nite set with node( ) � Kfin � K.
Since closed branches are not satis�able, only the following must be shown: if � := �( ;Kfin)
is open, then  is satis�able.
Let � be open.

(i) First � is extended to a branch �0, such that all node labels are completely described
in �0 and for all k1; k2 2 Kfin:

[k1 � k2] 2 �0 or [:k1 � k2] 2 �0, [k1 � k2] 2 �0 or [:k1 � k2] 2 �0, [k1 �
� k2] 2 �0 or

[:k1 �
� k2] 2 �

0 and [k1 � k2] 2 �0 or [:k1 � k2] 2 �0 (in general �0 is not unique).

Construction:
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(a) De�nition of �0:

�0 := � [ f[k1rk2;:k1rk2] jr 2 f�;�;�
�;�g; k1; k2 2 Kfing

[ f[Æ(k) � t;:Æ(k) � t] j t 2 T [ f�g; k 2 Kfing
[ f[a(Æ(k)) � v;:a(Æ(k)) � v] j a 2 A; v 2 V [ f?g; k 2 Kfing

�0 := �0

(b) Apply �rst res (as long as no tautology is introduced) and then abs as often as
possible to �0 (only �nitely many applications).

(c) If j[�]j = 1 for all [�] 2 �0, then the construction is terminated.

Else: Choose one [�] 2 �0, such that j[�]j > 1, and [�] was added in (a), and then
choose one � 2 [�]. �00 := �0 [ f[�]g.

Apply res as often as possible to �00, as long as res does not introduce any tau-
tologies (these applications of res add only subsets of clauses that are already in
�00).

Apply then abs as often as possible to �00 (this only removes clauses that are
supersets of [�] or of the clauses just added by res). Let �000 be the resulting
branch. �0 := �000.

Continue with (c).

The construction terminates after �nitely many steps because no new clauses are in-
troduced and in each step at least one [�] is reduced.

No clause is completely removed. Consequently for each tautology added to � in the
beginning, a subset containing one formula is in �0.

(ii) To show: �0 is saturated.

� No logical rule can be applied to �.

� res and abs have been applied as often as possible.

� taut cannot be applied to �0 because j[�]j = 1 holds for all [�] 2 �0.

� � � �0 and for all [	] 2 �0 there is a [�] 2 �0, such that [�] � [	].

Consequently, for all [	] 2 � there is a [�] 2 �00, such that [�] � [	]. This means
that all clauses, that can be added to �0 by tree, label or equality rules, can be
removed by abs, and that for all trees B and all node assignments g: if B j=g �

0,
then B j=g �.

(iii) To show: �0 is satis�able:

Construction of a tree B = (U ; u0;P;D;L; �) satisfying �
0:

� Nodes and relations P;D and L:

U�0 := fu � Kfin j for all k1; k2 2 u : [k1 � k2] 2 �0g.

Let u0 be a new node, u0 =2 U�0 . u0 is the root of B.

D := fhu1; u2i ju1; u2 2 U�0 and there are k1 2 u1 and k2 2 u2

with [k1 �
� k2] 2 �0g

[ fhu0; ui ju 2 U�0 [ fu0gg

P := fhu1; u2i ju1; u2 2 U�0 and there are k1 2 u1 and k2 2 u2

with [k1 � k2] 2 �
0g

[ fhu0; ui ju 2 U�0 and there is no u0 2 U�0 ; u
0 6= u with hu0; ui 2 Dg
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L := fhu1; u2i ju1; u2 2 U�0 and there are k1 2 u1 and k2 2 u2 such that

[k1 � k2] 2 �0g

Unew := ;. For all u 2 U�0 : if there is no u
0 with hu0; ui 2 P, and if ud is such that

hud; ui 2 D and there is no u0, u 6= u0 and u0 6= ud with hud; u
0i; hu0; ui 2 D, then

- choose a u0d with u
0
d =2 U�0 [ Unew [ fu0g, and add u0d to Unew,

- add hud; u
0
di and hu

0
d; ui to P

- add hu0d; u
0
di to D, and then add hu1; u

0
di to D for all u1 with hu1; ui 2 D, and

then add hu0d; u2i to D for all u2 with hud; u2i 2 D.

- add hu1; u
0
di to L for all u1 with hu1; ui 2 L, and then add hu0d; u2i to L for all u2

with hu; u2i 2 L.

U := U�0 [ fu0g [ Unew.

� Labels: Let T be the terminals.

Choose a new attribute anew =2 A and a new value vnew =2 V .

N := fX jX � (A [ fanewg)� (V [ fvnewg) with hanew; vnewi 2 Xg.

Without loss of generality suppose that T , N and U are pairwise disjoint.

- For all t 2 T [ f�g and u 2 U�0 :

�(u) := t i� [Æ(k) � t] 2 �0 for all k 2 u.

- For all u 2 Unew [ fu0g de�ne �(u) := fhanew; vnewig.

- For all u 2 U�0 such that there is no t 2 T [ f�g with [Æ(k) � t] 2 �0 for some
k 2 u:

�(u) := fha; vi j a 2 A; v 2 V and [a(Æ(k)) � v] 2 �0 for all k 2 ug [ fha0; v0ig.

Clearly, there is at least one B that can be constructed in such a way.

To show: B is a �nite labelled tree.

Since Kfin is �nite, U is also �nite.

The axioms listed under 3. in Def. 2.8 on page 16 in Chapter 2 must be shown:

(a) P is irre
exive because of the inference rule irrfP .

Because of the additional pairs added to P with nodes in Unew, for each u 2
U n fu0g, there is a u

0 with hu0; ui 2 P.

Furthermore, because of T5 for each u 2 U , there is at most one u0 with hu0; ui 2 P.

(b) D is re
exive, transitive and antisymmetric because of the rules rfD, trD and
antisD.

With T1 and because of the construction of D, P � D holds.

Suppose that hu1; u2i 2 D holds for some u1; u2 2 U with u1 6= u2 and hu1; u2i =2 P.
Then (because of the relations added with nodes in Unew) there is a u3 with
hu1; u3i 2 D and hu3; u2i 2 P.

Consequently, D is the re
exive transitive closure of P.

(c) L is transitive because of trL and the new pairs added to L with nodes in Unew.

(d) Because of rule T2 and the new pairs added to D and P with nodes from U n
(Unew [ fu0g), for all u1; u2 2 U : hu1; u2i 2 D or hu2; u1i 2 D or hu1; u2i 2 L or
hu2; u1i 2 L.
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(e) For all u1; u2 2 U with hu1; u2i 2 L: with T3 and T4 and the construction of L:
hu1; u2i =2 D and hu2; u1i =2 D.

(f) Axiom (f) also holds because of rule T6 and the new pairs with nodes from Unew
added to D and L.

Because of the rules label2, attr2, term2 and attr3, � is a function, i.e. � is unique and
the values of attributes are also unique.

With the form of �0 and the de�nition of �, �(u) is de�ned for all u 2 U ,

and because of rule nont1, for each node u that is no leaf, �(u) 2 N holds.

Clearly, B is constructed in such a way that it satis�es �0 with each assignment function
g such that for all u 2 U�0 : g(k) = u for all k 2 u.

2

With this proposition completeness can be shown:

Proposition 3.5 (Completeness) For all �1; �2: If �1 j= �2, then �1 ` �2.

This proposition can be shown by induction on the structure of �2 where �2 is supposed to
be in conjunctive normal form, i.e. to be a conjunction of disjunctions of elementary formulas.

In order to render the completeness proof more readable, a special case is �rst considered
separately in the following lemma:

Lemma 3.1 For all formulas � =  1 _ � � � n�1 and  n, such that  i is an elementary
formula for 1 � i � n: � ` � _  n.

Proof of Lemma 3.1: Let � and  n be as in the lemma, � := �(�; node(� _  n)) and
�0 := �(� _  n; node(� _  n)).
If � is a tautology, then � = �0 and therefore � ` � _  n holds.
Let � be no tautology.
Suppose that, when constructing � and �0, the logical rules have been applied �rst.
The result of the applications of all logical rules to k[�]k and k[� _  n]k respectively are
k[ 1; � � � ;  n�1]k and k[ 1; � � � ;  n�1;  n]k.
in the course of the construction of �0, let �n be the result of applying n rules to
k[ 1; � � � ;  n�1;  n]k.
Claim: For all 	n 2 �n, that cannot be removed by taut, there is a � 2 � such that � � 	n.
Induction on n:

(i) Induction start n = 0: since � is constructed from k[ 1; � � � ;  n�1]k and taut cannot
be applied to any subset of this branch, � still contains a subset of [ 1; � � � ;  n�1] (and
also of [ 1; � � � ;  n�1;  n]).

(ii) Induction step n) n+ 1: possible rules that can be applied to �n to construct �n+1:

1. Tree, label, equality or equivalence rules: since � is saturated, the claim still holds
for the result of applying such a rule.

2. res: let [�; �]; [	;:�] 2 �n, res adds the clause [�;	].

There are [�0] � [�; �] and [	0] � [	;:�], such that [�0]; [	0] 2 � (induction claim).

� 1. case: [�0] � [�] or [	0] � [	] ) [�0] � [�;	] or [	0] � [�;	].
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� 2. case: [�0] = [�00; �] and [	0] = [	00;:�]

Consequently (� saturated) there is either a subset of [�00;	00] (and of [�;	]) in
�, or [�00;	00] (and consequently also [�;	]) is a tautology and can be removed
by taut.

3. taut and abs only remove clauses, i.e. claim still holds for the result of applying taut
or abs.

2

Proof of Prop. 3.5: Let �1; �2 be formulas with Kfin = node(�1) [ node(�2) such that
�1 j= �2. Without loss of generality let �2 be in conjunctive normal form. De�ne �1 :=
�(�1;Kfin) and �2 := �(�2;Kfin).

If �1 is not satis�able, then �1 = k[ ]k and therefore �1 ` �2 holds.

Let �1 be satis�able. Then (because of �1 j= �2) �2 is also satis�able.

To show: �1 ` �2.
Induction on the structure of �2:

(i) Induction start: Let �2 be an elementary formula. Then [�2] 2 �2.

De�ne �neg2 := :�2 if �2 does not contain negations, �neg2 := �02, if �2 = :�
0
2.

[�2] 2 �1 holds because:

Suppose that [�2] 62 �1.

Then, starting from �1 [ f[�
neg
2 ]g no closed branch can be constructed by applying

res.

Therefore (with Prop. 3.4) �1 ^ :�2 is satis�able.

Contradiction to �1 j= �2.

�1 and �2 are saturated, and (because of [�2] 2 �1), all rule applications that were
done to construct �2, were done as well (with the same instantiation f of the V�, V�
and V�) to construct �1.

Consequently �1 ` �2.

(ii) Induction step for disjunctions: �2 =  1 _  2 � � � _  n with elementary formulas  i,
1 � i � n.

Because of �1 j= �2 either �1 j=  1 _  2 � � � _  n�1 or �1 j=  n hold.

Consequently (induction claim) �1 `  1 _  2 � � � _  n�1 or �1 `  n.

 1_ 2 � � �_ n�1 `  1_ 2 � � �_ n�1_ n (Lemma 3.1) and  n `  1_ 2 � � �_ n�1_ n
(transitivity of `).

Consequently (transitivity of `) �1 `  1 _  2 � � � _  n�1 _  n.

(iii) Induction step for conjunctions: �2 =  1 ^  2 � � � ^  n and �1 j= �2.

) �1 j=  1 ^ � � � n�1 and �1 j=  n.

Consequently (induction claim) �1 `  1 ^ � � � n�1 and �1 `  n.

�n�1 := �( 1 ^ � � � n�1;Kfin);�
0 := �( n;Kfin).

For all 	 2 �n�1 [ �
0 there is a � 2 �1, such that � � 	 (induction claim).

�2 = �(�2;Kfin) can be constructed from �n�1 [ �
0 by repeatedly applying res, taut
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and abs. Let �n;m be the branch obtained after m applications of res, taut and abs to
�n�1 [ �

0.

To show: For all 	 2 �n;m there is a � 2 �1, such that � � 	.

Induction on m:

� Induction start m = 0: Claim holds because of �1 `  1 ^ � � � n�1 and �1 `  n.

� Induction step m! m+ 1: Possible rule applications:

res: Let res add a clause to �n;m, that is no tautology.

Consequently there are [	1;  ]; [	2;: ] 2 �n;m, such that [	1;	2] 2 �n;m+1.

There are subsets �1 of [	1;  ] and �2 of [	2;:	] in �1.

1. case:  =2 �1 or : =2 �2 ) �1 � [	1;	2] or �2 � [	1;	2].

3. case: �1 = [	01;  ];�2 = [	02;: ] ) there is a subset of [	01;	
0
2] in �1 and

[	01;	
0
2] � [	1;	2] holds.

Structural rules: taut and abs only remove clauses.

Consequently �1 `  1 ^ � � � n�1 ^  n also holds.

2

3.2 TDG-Formalism

In this section, the tree logic presented above is used to propose a grammar formalism based
on quasi-tree like formulas called descriptions. In the �rst part, the notions of description and
Tree Description Grammar (TDG) are de�ned. Then derivations in TDGs are introduced,
and afterwards the notions of description language (the set of descriptions generated by a
grammar), tree language and string language are de�ned.

3.2.1 Tree Description Grammar

First, the form of the formulas allowed in a TDG must be de�ned. It is not possible to take
the quasi-tree de�nition given in Rogers and Vijay-Shanker 1994 and Rogers 1994 because
this de�nition does not allow a relaxation of the dominance relation: for a formula � that is
a quasi-tree, the following holds: for all k1; k2 2 node(�), either � ` k1 �

� k2 or � ` k2 �
� k1

or � ` :k1 �
� k2 ^ :k2 �

� k1. In other words, dominance must be fully speci�ed. Therefore
some of the tree descriptions that should be generated by TDGs are no quasi-trees, e.g. the
tree description 
2 in Fig. 3.1 (p. 54) is no quasi-tree.

A common idea of the TAG variants mentioned in Chapter 2 is that each elementary
object in the grammar represents several trees (sets of trees in MC-TAGs, tree descriptions
in DTGs and vectors of trees in UVG-DLs and V-TAGs). If an elementary object is added
in the course of the derivation, then all trees of this elementary object are added. I want to
keep this idea for Tree Description Grammars and therefore, the form of the formulas used in
Tree Description Grammars is restricted. The form of the tree descriptions allowed in TDGs
is sketched in Fig. 3.3. In these formulas certain subtrees are completely described. Together
with the descriptions of these subtrees, dominance relations between leaves and roots of the
subtrees are speci�ed. There must be (at least) one node name dominating all other node
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Possible tree descriptions:

: : : : : :

: : : : : :

Tree descriptions that should not be allowed:

k1 k1

or (L not speci�ed for daughters)

k2 k3 k2 k3

k1 � k2 ^ k1 �
� k3 ^ k2 � k3 k1 � k2 ^ k1 � k3

Figure 3.3: Tree descriptions in TDGs

names. Neither negations nor disjunctions are allowed for these formulas, and the formulas
must be satis�able. This is formalized by the de�nition of description.

Before de�ning descriptions, a few notions are introduced, that will be frequently used
afterwards: a minimal name in a formula is a name dominating all other names. If a tree
satis�es the formula, then the minimal name denotes the root of that subtree in the tree that
is covered by the description. There can be more than one minimal name in a formula, but
all minimal names must be equivalent. Those dominances that are represented by dotted
edges in the graphical representations are called strong dominances. These dominances are
not implied by other dominance, parent or equivalence relations. A leaf name is a name
dominating only itself and all equivalent names. A name k is between two other names, if
one of the two names dominates k and k dominates the other name.

De�nition 3.9 (Minimal and leaf name, strong dominance, between names) Let
� be a formula and k; k1; k2 2 node(�).

1. k is called a minimal name in � i� � ` k �� k0 for all k0 2 node(�).

2. k is a leaf name in �, i� for all k0 2 node(�): if � ` k �� k0 then � ` k � k0.

3. k1 �
� k2 is called a strong dominance in �, if

- � ` k1 �
� k2,
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- � 6` k1 � k2 and � 6` k1 � k2,

- and for all k3 2 K: if � ` k1 �
� k3 ^ k3 �

� k2, then � ` k1 � k3 _ k3 � k2.

Notation: � `s k1 �
� k2

4. k is between k1 and k2 (and between k2 and k1), if k 6= k1, k 6= k2 and either � `
k1 �

� k ^ k �� k2 or � ` k2 �
� k ^ k �� k1.

De�nition 3.10 (Description) An (A; V; T )-formula � is called an (A; V; T )-description,
i�:

1. � is satis�able.

2. There is at least one minimal name in �.

3. � does not contain any negations or any disjunctions.

4. For all k1; k2; k3 2 K: if � ` k1 � k2 ^ k1 �
� k3, then either � ` k1 � k3 holds or there is

a k4, such that � ` k1 � k4 ^ k4 �
� k3.

5. For all k1; k2; k3 2 K: if � ` k1 � k2 ^ k1 � k3, then either � ` k2 � k3 or � ` k2 � k3 or
� ` k3 � k2 holds.

The �rst condition holds i� �(�) is open (see Prop. 3.4), i.e. this condition also can be
formulated in a syntactic way. In particular, this means that the satis�ability of a formula is
decidable. Since node(�) is �nite, the question whether a formula is a description or not, is
then also decidable.

Conditions 4. and 5. make sure that for each node name k: either k is a leaf name, or k
is a \mother node" in a fully speci�ed subtree description, or k strongly dominates another
subtree description.

Because of the existence of a minimal name in descriptions, it is easy to see that the
following lemma holds:

Lemma 3.2 For each description � and each k 2 node(�):

1. k is minimal in � or there is a k0 such that � ` k0 � k or � `s k
0
�
� k.

2. k is leaf name in � or there is a k0 such that � ` k � k0 or � `s k �
� k0.

Proof Let � be a description, k 2 node(�).

1. Let k1 be minimal in �.

Suppose that k is not minimal in � (i.e. � 6` k1 � k), and that there is no kp with � ` kp�k.

Since k1 is minimal, � ` k1 �
� k holds. Then either � `s k1 �

� k or there is a k2 with
� 6` k2 � k1 and � 6` k2 � k and � ` k1 �

� k2 ^ k2 �
� k.

Inductively (because node(�) is �nite), it follows that there are k1; � � � kn such that � `
k1�

� k2 ^ � � � ^ kn�1�
� kn ^ kn�

� k, for all 1 � i < n, � 6` ki+1 � ki and � 6` ki+1 � k and
there is no kn+1 with � ` kn �

� kn+1 ^ kn+1 �
� k and � 6` kn � kn+1 and � 6` kn+1 � k.

) � `s kn �
� k.

2. The second claim can be shown in a very similar way.

2

In principle, a Tree Description Grammar (TDG) consists of alphabets A, V and T
(attributes, attribute values and terminals), a set of (A; V; T )-descriptions and a speci�c start
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description. In a description in a TDG certain node names may be marked. The descriptions
occurring in a TDG are called elementary descriptions. Marked names are important for
the derivation process: in a derivation step where an elementary description  is added,
equivalent names must be found for the minimal names and all marked names in  . Roughly
said, the marked names in  indicate the points where  must be connected to the old
description. In this respect they resemble to foot nodes in TAGs. E.g. in the description �
in Fig. 3.1, the name n8 must be marked. Since a marked name can be viewed as a kind of
open slot (as a substitution or foot node in a TAG), marked names must not have terminal
labels.

De�nition 3.11 (Tree Description Grammar) A Tree Description Grammar (TDG) is
a tuple G = (A; V; T;D; �S), such that:

1. A; V and T are pairwise disjoint alphabets, the attributes, attribute values and the terminal
symbols.

2. D is a �nite set of pairs h ;K i where  is an (A; V; T )-description and K � node( )
such that for none of the k 2 K there is a t 2 T [ f�g with  ` Æ(k ) � t.

Each h ;K i 2 D is called an elementary description.

3. �S is an (A; V; T )-description, the start description.

For each elementary description ( ;K ) de�ne M := K [ fkm j km minimal in  g. A
k 2 K is called a marked name (in  ).

3.2.2 Derivation in a TDG

The following equivalence relation is necessary for technical reasons. It will be used to make
sure that in each TDG derivation step descriptions with disjoint sets of node names can be
chosen. This is desirable because identi�cations of node names should be controlled by the
marking of certain names and by the derivation process. I.e. they should not be caused by
accidental occurrences of equal node names in di�erent descriptions.

De�nition 3.12 (K-equivalent) Let A; V; T be alphabets.

1. Let f : K ! K be a function. f is homomorphically extended to (A; V; T )-formulas by
de�ning f̂(�) inductively for some (A; V; T )-formula �:

(a) For all l- or v-terms �1; �2, f̂(�1 � �2) = f̂(�1) � f̂(�2), where

� f̂(x) := x for all x 2 T [ V [ f�;?g and

� f̂(a(Æ(k))) := a(Æ(f(k))) for all k 2 K and a 2 A.

(b) For all k1; k2 2 K and R 2 f�;��;�;�g: f̂(k1R k2) := f(k1)R f(k2).

(c) f̂(:�1) := :f̂(�2), f̂(�1 ^ �2) := f̂(�1) ^ f̂(�2) and f̂(�1 _ �2) := f̂(�1) _ f̂(�2) for
all formulas �1; �2.

2. Let �; �0 be (A; V; T )-formulas. � �K �0 i� there is a bijection f : K ! K such that
�0 = f̂(�). � and �0 are then called K-equivalent.

3. Let h 1;K 1i; h 2;K 2i be pairs such that  1;  2 are (A; V; T )-formulas and K 1 �
node( 1) and K 2 � node( 2).

h 1;K 1i �K h 2;K 2i i� there is a bijection f : K ! K such that  2 = f̂( 1) and
K 2 = fk 2 Kj there is a k0 2 K 1 such that k = fK(k

0)g.
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N k1

�1

N k2

AP k3 N k6

A k4 N k7

former k5 professor k8

N k9

 

N k10

AP k11 N k14

A k12 N k15

former k13

N
�2

N

AP N

A N

former professor

�1
 
) �2 with �2 = �1 ^  ^ k1 � k9 ^ k2 � k10 ^ k3 � k11 ^ � � � ^ k7 � k15

Figure 3.4: A quasi-tree like derivation that is not allowed in TDGs

h 1;K 1i and h 2;K 2i are then called K-equivalent.

Clearly, �K is an equivalence relation because f is a bijection. For two K-equivalent
formulas � and �0, the following holds for all trees B: B j= � i� B j= �0.

A derivation in a TDG starts with the start description �S . In each derivation step the
description that is already derived is extended by adding a new elementary description. One
can think of a TDG derivation step as building the conjunction of the old description, a new
elementary description and additional node name equivalences. These equivalences are such
that for a name k in the new elementary description, an equivalent name is found in the old
description i� k is marked or minimal.

The new elementary description added in a derivation step should really represent a further
restriction of the old description. A derivation as shown in Fig. 3.4 where �2 is derived from
�1 by adding an elementary description  should not be allowed, since in this case the new
subtree description in  was identi�ed with a subtree description in �1 and thereby  did
not cause a further restriction of the derived description (all trees satisfying �1 satisfy �2 as
well). To avoid such cases, the two descriptions involved in a derivation step should be put
together in such a way that a sort of linearity condition is respected: each subtree description
in one of the two descriptions should occur in the result of the derivation step and therefore it
should not be possible to identify two parent relations with each other as it is the case in Fig.
3.4. On the other hand, the derivation de�nition must ensure that the result of a derivation
step is determined by the two old descriptions in the sense that it does not describe more
subtrees than the two single descriptions together. In particular, new parent relations must
not be added.

Finally, as already observed when the example of Fig. 3.1 on page 54 was considered, the
result of a derivation step must be as underspeci�ed as possible. Roughly said, this means
that it must denote as many trees as possible. To illustrate this, consider again the case of Fig.
3.1. The desired result is �1 := 
1^�^n1 � n5^n4 � n8. An alternative result that must be
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excluded by the condition of maximal underspeci�cation is �2 := 
1^�^n1 � n5^n2 � n8. A
direct comparison via syntactic consequence does not work since neither �1 ` �2 nor �2 ` �1
holds (e.g. �1 ` n2 6� n8 and �2 ` n2 � n8). In order to render such a comparison possible,
the new equivalences must be �rst \eliminated". This can be done by replacing in the new
description each occurrence of a marked or minimal name from the elementary description
by the equivalent name from the old derived description. In the case of �1 and �2 this would
eliminate n5 and n8, and the results would be �01 = 
1 ^ n1 �

� n6 ^ � � � ^ n7 �
� n4 and

�02 = 
1 ^ n1 �
� n6 ^ � � � ^ n7 �

� n2 respectively. After this modi�cation, a comparison
via syntactic consequence is possible and it captures the intuitive notion of \more" or \less
underspeci�ed". In the case of �01 and �

0
2, �

0
2 ` �

0
1 and �

0
1 6` �

0
2 holds which signi�es that �1

is more underspeci�ed than �2. The condition of maximal underspeci�cation is formalized
by axiom (A5) in the following de�nition.

De�nition 3.13 (Derivation in a TDG) Let G = (A; V; T;D; �S) be a TDG, �1; �2
(A; V; T )-descriptions and h e;K ei 2 D.

1. �2 can be derived in one step from �1 using h e;K ei (written �1
 e
) �2 or �1

h e;K ei) �2),
i� there is a pair h ;K i with h ;K i �K h e;K ei such that node(�1) and node( ) are
disjoint, and

(A1) �2 ` �1 ^  .

(A2) For all k 2 node( ):

- there is a k 2 node(�1) with �2 ` k � k i� k 2M and

- if there are k1; k2 2 node(�1) with �2 ` k1 � k ^ k2 � k , then �1 ` k1 � k2.

(A3) For all k1 2 node(�1); k2 2 node( ), such that �2 ` k1 � k2:

there are no k01 2 node(�1); k
0
2 2 node( ), such that �1 ` k1 � k

0
1 and  ` k2 � k

0
2.

(A4) For all k1; k2, such that �2 ` k1�k2: there are k3; k4, such that �2 ` k1 � k3^k2 � k4
and �1 ^  ` k3 � k4.

(A5) For all �3 ful�lling (A1) - (A4):

Let f1; f2 2 KK be mappings with f1(k) = f2(k) = k for all k =2 M , and for all
km 2 M , there are k1; k2 2 node(�1) with �2 ` k1 � km and �3 ` k2 � km such that
f1(km) = k1 and f2(km) = k2.

Then the following holds: if f̂1(�2) ` f̂2(�3), then f̂2(�3) ` f̂1(�2).

2. �2 can be derived in one step from �1, �1 ) �2, i� there is an elementary description  

such that �1
 
) �2.

3. �0 can be derived from � (in �nitely many steps), �
�
) �0, i� there are descriptions

�1; � � � �n, such that � = �1 ) �2 � � � ) �n = �0.

With (A1) and (A2) the result of a derivation step implies a conjunction of the two
descriptions involved in this step and additional equivalences of node names.

According to (A2) exactly for those names in the new elementary description  that
are minimal or marked names, there must be equivalent names in the old description �1.
Furthermore, for each marked or minimal name k in  , the equivalent name in the old �1
must be unique up to �, i.e. unique in the following sense: there may be two names k1 and
k2 in the old �1 that are both equivalent to k in the new derived description. But if this is
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the case, then k1 and k2 must already be equivalent to each other in �1. One can say that
the marking of names somehow speci�es how to put the two descriptions (the old �1 and the
new elementary  ) together.

(A3) states that two node names cannot be identi�ed if they both describe internal nodes
in completely described subtrees (e.g. n2 and n6 in Fig. 3.1 cannot be identi�ed). At least one
of them must be a leaf name or on the left side of a strong dominance in the old descriptions.
This formalizes the linearity condition mentioned above. As a further consequence of (A3),
the following holds for all k1 2 node(�1) and k2 2 node( ) with �2 ` k1 � k2: there are no
k01 2 node(�1); k

0
2 2 node( ), such that �1 ` k

0
1 � k1 and  ` k02 � k2. If there were such

k01; k
0
2, then (because of the uniqueness of the parent node, inference rule T5) �2 ` k

0
1 � k02

would also holds and this would be a contradiction to (A3).
(A4) simply says that in a derivation step no new � relations can be added. Therefore

the result of the derivation cannot describe more subtrees than the two single descriptions
do.

Because of (A1) and the transitivity of the relation \`" the following holds:

Proposition 3.6 (Monotony of the derivation) If �1
�
) �2, then �2 j= �1.

Therefore, in a TDG derivation �1
�
) �2, each tree satisfying �2 also satis�es �1, i.e.

in contrast to TAGs, the derivation process in TDGs is monotonic in the sense that in the
course of the derivation, the derived description becomes more and more speci�c and at the
same time the set of trees satisfying the description decreases in a monotonic way.

The examples in Fig. 3.5 and 3.7 show substitution-like and adjunction-like derivation
steps in TDGs. (Since the syntax-semantics interface presented in Chapter 5 is developed for
a fragment of French, most of the examples in the following will be in French, too.) In the
graphical representations, marked names are equipped with an asterisk.

For a derivation step similar to substitution (see Fig. 3.5) an elementary description
h ;K i with K = ; must be added. Then only for the minimal names in  there are
equivalent node names in the old description. However, an empty set of marked names is
not suÆcient to guarantee that the derivation step is a kind of substitution operation i.e.
that the minimal name of the elementary description becomes equivalent to a leaf name.
The elementary description  in the derivation step shown in Fig. 3.6 for example has no
marked names. But in this derivation step, the minimal name of  is not identi�ed with a
leaf name in the old description. Instead, it is identi�ed with a name that is part of a strong
dominance. Since the result of the derivation step must be a description and therefore in
particular satisfy the forth condition in the de�nition of descriptions, Def. 3.10 on page 73, a
further dominance must be added besides the new node name equivalence. In Section 3.3, the
derivation process in TDGs will be examined more closely, and I will show which dominances
must be added in addition to the old descriptions.

For an adjunction-like derivation step h ;K i must be such that all marked names are
equivalent and they are all leaf names. This corresponds to the foot node in an auxiliary
tree in a TAG. In the old description �1 there must be a strong dominance k1 �

� k2. Then
a derivation step adding  can consist of putting  between k1 and k2, which is like an
adjunction in a TAG (see Fig. 3.7). Furthermore if �1 ` Æ(k1) 6� Æ(k2), then this is comparable
to an OA-condition (obligatory adjunction) in a TAG: since �1 ` k1 6� k2 holds, for each tree
B satisfying �1, there is a subtree between the node denoted by k1 and the node denoted



78 CHAPTER 3. TREE DESCRIPTION GRAMMARS

�1
( ;K )
) �2

�1 �2

 k2 NP

vient k5

V k4

V P k3

S k1

Jean k7

NP k6

Jean k7

k2 � k6 NP

vient k5

V k4

V P k3

S k6

�1 = k1 � k2 ^ k1 � k3 ^ k2 � k3 ^ k3 � k4 ^ k4 � k5
^ cat(Æ(k1)) � S ^ cat(Æ(k2)) � NP ^ cat(Æ(k3)) � V P
^ cat(Æ(k4)) � V ^ Æ(k5) � vient

 = k6 � k7 ^ cat(Æ(k6)) � NP ^ Æ(k7) � Jean
K = ;
�2 = �1 ^  ^ k2 � k6

Figure 3.5: Jean vient (`Jean comes'): substitution-like derivation step

by k2. In other words, between these two node names, some further part of an elementary
description must be inserted in order to obtain a description that has a minimal tree (the
de�nition of minimal trees will be given in subsection 3.2.3). Derivation steps as shown in
Fig. 3.7 correspond to the quasi-tree adjunction proposed in Vijay-Shanker 1992 (see also
Chapter 2). However, such an elementary description as  in Fig 3.7 does not guarantee that
the derivation step is like an adjunction. E.g. the result of the derivation step in Fig. 3.1 is
the underspeci�ed 
2.

3.2.3 Language generated by a TDG

Since a TDG consists of descriptions and the derivation mode is concerned with descriptions,
the set generated by a TDG is a set of descriptions. This set is called the description language
of the grammar. Depending on its description language, the tree language of a TDG is de�ned
as the set containing the minimal trees of the derived descriptions. The string language is
then the set of strings yielded by these trees.

First, the description language is de�ned as the set of all descriptions derived from the start
description. A possible start description for example is �S = cat(Æ(k1)) � S; cat 2 A;S 2 V
in order to specify that the root has the category S.

De�nition 3.14 (Description language of a TDG) Let G = (A; V; T;D; �S) be a TDG.
The description language of G is LD(G) := f� j�S

�
) �g.

Now the minimal trees of a description � must be de�ned. The idea is that a minimal
tree represents one of the readings that are all described in the (possibly underspeci�ed)
description. If there is a strong dominance k1�

� k2 in the description such that the labels do
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�1
 
) �2

A k1

�1

B k2

� k3

A k4

 

a k5 B k6 a k7

A k1�k4

�2

a k5 B k6 a k7

B k2

� k3

�1 = k1 �
� k2 ^ k2 � k3

^ cat(Æ(k1)) � B ^ cat(Æ(k2)) � B ^ Æ(k3) � �
 = k4 � k5 ^ k4 � k6 ^ k4 � k7 ^ k5 � k6 ^ k6 � k7

^ cat(Æ(k4)) � A ^ Æ(k5) � a ^ cat(Æ(k6)) � B ^ Æ(k7) � a
K = ;
�2 = �1 ^  ^ k1 � k4 ^ k6 �

� k2

Figure 3.6: A derivation step without marked names that does not resemble

to substitution

not allow an equivalence between k1 and k2 (i.e. � ` k1 6� k2), then � is supposed to have no
minimal tree. The strong dominance k1�

�k2 is a kind of obligatory adjunction constraint, and
therefore it is intended to signify that something must be inserted into this strong dominance
in order to obtain a description with minimal trees. In this respect, the de�nition of minimal
referents in Rogers 1994 and Rogers and Vijay-Shanker 1994 is too general for our purposes.
The concept of minimal referents is such that each satis�able description has at least one
minimal referent.

Minimal trees of a description � are de�ned as follows: such a tree must be terminal,
i.e. all leaves must have terminal labels, it must satisfy �, and it has to be minimal in the
sense that its P relation is already described in �. Furthermore, two node names k1; k2 in
�1 with �1 6` k1 � k2 can denote the same node in the tree, but if this is the case, then
there must be no k3; k4 such that either � ` k1 � k3 ^ k2 � k4 or � ` k3 � k1 ^ k4 � k2. In
other words, if two node names are not equivalent in the description but describe the same
node in a minimal tree, then they both have to be part of some strong dominance in the
description. This is similar to the axiom (A3) for the derivation in TDGs. As a consequence,
two subtree descriptions in � must describe two di�erent subtrees of the tree. E.g. in Fig.
3.8 the trees B1 and B2 both satisfy � in such a way that all parent relations in the trees are
described in �. However, neither B1 nor B2 are intended to be minimal for � because � is
supposed to express that there are two di�erent subtrees of the form of B1 and some other
node dominating these two subtrees.

De�nition 3.15 (Minimal tree) Let G = (A; V; T;D; �S) be a TDG, � 2 LD(G). Let B
be a �nite labelled tree. B is a minimal tree of � i� B is a terminal tree wrt the nonterminal
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�1
( ;K )
) �2

N k1

�1

N k2

château k3

N k4

 

N k5

AP k6 N k9

A k7 N� k10

ancien k8

N k1�k4

 

N k5

AP k6 N k9

A k7 N k2�k10

ancien k8 château k3

�1 = k1 �
� k2 ^ k2 � k3 ^ cat(Æ(k1)) � N ^ cat(Æ(k2)) � N

^Æ(k3)) � chateau
 = k4 �

� k5 ^ k5 � k6 ^ k5 � k9 ^ k6 � k9 ^ k6 � k7 ^ k7 � k8
^k9 �

� k10 ^ cat(Æ(k4)) � N ^ cat(Æ(k5)) � N ^ cat(Æ(k6)) � AP
^cat(Æ(k7)) � A ^ Æ(k8) � ancien ^ cat(Æ(k9)) � N
^cat(Æ(k10)) � N

K = fk10g
�2 = �1 ^  ^ k1 � k4 ^ k2 � k10

Figure 3.7: ancien château (`former castle'): adjunction-like derivation step

alphabet Pow(A� V ) n ; and the terminal alphabet T , and there is an assignment function g
such that

1. B j=g �.

2. For all u1; u2 in U : if hu1; u2i 2 P, then there are k1; k2 2 K such that � ` k1 � k2 and
g(k1) = u1; g(k2) = u2.

3. For all k1; k2 with g(k1) = g(k2): if � 6` k1 � k2, then there are no k3; k4 such that
� ` k1 � k3 ^ k2 � k4.

A description � 2 LD(G) not only can have more than one minimal tree (e.g. 
2 in Fig.
3.1) but it can even have no minimal tree. This is for example the case for the description �
in Fig. 3.8.

In order to �nd the set of minimal trees for a given description �, a fully speci�ed descrip-
tion (i.e. a description without strong dominances) is �rst constructed. For this purpose, it
is suÆcient to add term equivalences to �, i.e. equivalences between node names and equiv-
alences between labels or attribute values. I will examine this process more closely in the
following section where decidability of the set of minimal trees for a given description will
be shown. Here I want to restrict myself to an example. In order to obtain a minimal tree
B for the description � shown in Fig. 3.9, the strong dominances in this description must be
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� S

S S

a b a b

B1 S

a b

B2 S

a b a b

Figure 3.8: Trees that are not minimal

� = k1 �
� k2 ^ k2 � k3 ^ k2 � k4 ^ k2 � k5

^ k1 �
� k6 ^ k6 � k7 ^ k6 � k8 ^ k6 � k9

^ k1 �
� k10 ^ k10 � k11 ^ k10 � k12 ^ k10 � k13

^ k4 �
� k14 ^ k8 �

� k14 ^ k12 �
� k14 ^ k14 � k15

^ � � �

S k1

S k2 S k6 S k10

a S k4 a b S k8 b c S k12 c

S k14

�

B S

a S a

b S b

c S c

�

Figure 3.9: Sample description with one of its minimal trees

eliminated by adding further equivalences between node names. First, an equivalent name
for k1 must be found. This can be either k2 or k6 or k10. Suppose that k1 � k2 was added.
This signi�es that B satis�es � ^ k1 � k2. Because of the third condition for minimal trees,
B must then also satisfy k4�

� k6^k4�
� k10. Then B might satisfy either k4 � k6 or k4 � k10

and therefore one of these equivalences must be added. Suppose that k4 � k6 is added, i.e.
B now satis�es �^ k1 � k2 ^ k4 � k6 ^ k4�

� k10. With the third condition for minimal trees,
B must also satisfy k8�

� k10, and therefore the last two equivalences that must be added are
k8 � k10 and k12 � k14. The resulting description �^k1 � k2^k4 � k6^k8 � k10^k12 � k14
fully speci�es one of the minimal trees of �, namely the tree B shown in Fig. 3.9. B is not
the only minimal tree of �. Altogether, � has 3! = 6 minimal trees.

An interesting question when thinking about minimal trees is whether there is a corre-
sponding notion of minimality with respect to some ordering relation on the models of the
description in question. In other words whether it is possible to de�ne the minimal trees of
a description � based only on a partial order de�ned on the models of �. As far as I see
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this is not possible for the following reasons: First of all, a general de�nition of a partial
order on the models of a description � that is independent from � such that the minimal
trees of � only depend on this order cannot exist, since there are descriptions that have
the same sets of models but whose minimal trees are di�erent. E.g., the description �0 :=
k1�

� k2^k2�k3^k2�k4^k3 � k4^cat(Æ(k1)) � S^cat(Æ(k2)) � S^Æ(k3)) � a^Æ(k4)) � b
is satis�ed by the same models as the description � in Fig. 3.8 but, in contrast to �, �0

has a minimal tree, namely the tree B1 in Fig. 3.8. Even a partial order depending on the
description in question that de�nes minimal trees probably does not exist in general: If one
supposes that such an order exists, then this order must express something like \has less
parent-relations" or \has less sister-relations (linear precedence with a common parent)".
Furthermore, the minimal trees are not always unique. Consequently, a tree B would be de-
�ned as being minimal for a description � if there was no smaller model of � (\smaller" in the
sense of the partial order). But then there would arise a problem with descriptions that do
not have a minimal tree. In these cases for each model of the description there should exist a
smaller model, and this seems to be contradictory. These considerations indicate that for the
de�nition of minimal trees of a description given above, there is probably no corresponding
notion of minimality with respect to some partial order on trees.

The tree language of a TDG is de�ned as the set of minimal trees of the descriptions
derived from the start description. The string language is the set of strings yielded by the
trees in the tree language:

De�nition 3.16 (Tree language of a TDG) Let G = (A; V; T;D; �S) be a TDG. The tree
language of G is LT (G) := fB jB is minimal tree of a � 2 LD(G)g.

De�nition 3.17 (String language of a TDG, TDL)

1. Let G = (A; V; T;D; �S) be a TDG. The string language of G is

LS(G) := fw j there is a B 2 LT (G) such that w = yield(B)g.

2. A language L � T � is a Tree Description Language (TDL), i� there is a TDG G such
that LS(G) = L.

Examples of TDGs are given in Fig. 3.10 and 3.11. Fig. 3.10 shows a schema for TDGs
generating the string languages Ln := fak1a

k
2 :::a

k
n j 0 � kg, and Fig. 3.11 shows a schema for

TDGs for Lncopy := fw
n jw 2 T �g. For n � 5, the string languages Ln are no TALs and for

n � 3, Lncopy is no TAL: with the pumping lemma for TALs proven by Vijay-Shanker (1987)

(see Prop. 2.1, page 23) it can be shown that for n � 5 the languages fak1a
k
2 :::a

k
n j 0 � kg

are no TALs. Together with the closure of TALs with respect to intersection with regular
languages, the pumping lemma can also be used to show that for n � 3, fwn jw 2 T �g are
no TALs. These two examples show that there are TDLs that are no TALs.

At a �rst glance, one might even suspect that TALs are a subset of TDLs. However, it is
not at all obvious how to construct an equivalent TDG for a given TAG. If nodes allowing
adjunction are simply replaced by strong dominances (as in Fig. 2.15 on page 42 and 2.16 on
page 43 in Chapter 2), then one usually gets a superset of the original string language. The
problem is that the tree description corresponding to an auxiliary tree need not necessarily
be inserted into one single strong dominance. Whereas in TAGs adjunction takes place at
one single node, TDGs are non-local in the sense that there can be arbitrary many node



3.3. FORMAL PROPERTIES OF TDG DERIVATIONS 83

A1

A1

�S A2

A2

A3

::
:

An�1

An

An

�

A1

 A1

a1 A�1

A2

a2 A�2

::
:

An

an A�n

Figure 3.10: TDG for fak1 : : : a
k
n j k 2 INg

names between the two names that are chosen as equivalent names for the minimal and the
marked name in such a description corresponding to an auxiliary tree. Therefore, I cannot
say anything about a subset relation between TALs and TDLs. In Chapter 4 we will see that
this is di�erent with local TDGs. Local TDGs generate a true superset of TALs, since it is
no problem to construct an equivalent local TDG for each given TAG (even for each given
set-local MC-TAG).

3.3 Formal properties of TDG derivations

In this section I will �rst show some properties of descriptions derived in TDGs. Then, I will
give a derivation algorithm, and show the decidability of lexicalized TDLs.

3.3.1 Description language

In the following, some properties of the result of a TDG derivation step are proven.
With the de�nition of the derivation, in particular with (A4) and (A5), it can be shown

that a derivation step does not add any new node names, i.e. that the result of the derivation
contains only node names occuring in the single descriptions involved in that derivation.

Proposition 3.7 If �1
( ;K )
) �2 in a TDG, then node(�2) = node(�1) [ node( ).

Proof: Let �1
( ;K )
) �2 hold.
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�S S

S1 : : : Sn

S1 Sn

� �
(n times)

 a for a 2 T :

S

S1 : : : Sn

a S�1 a S�n

Figure 3.11: TDG for fwn jw 2 T �g

1. To show: node(�1) [ node( ) � node(�2).

�1 and  are descriptions

) there is a k�1r such that �1 ` k
�1
r �

� k�1 for all k�1 2 node(�1), and there is a k r such
that  ` k r �

� k for all k 2 node( ).

) (transitivity of `) �2 ` k
�1
r �

� k�1 for all k�1 2 node(�1) and �2 ` k
 
r �

� k for all
k 2 node( ).

) node(�1) [ node( ) � node(�2).

2. To show: node(�2) � node(�1) [ node( ).

Suppose there is a k 2 node(�2) n (node(�1) [ node( )).

(i) 1. case: there is a k0 2 node(�1) [ node( ) such that �2 ` k � k
0.

Let �02 be the result of replacing all occurrences of k in �2 by k
0. �02 is a description

satisfying (A1) - (A4), and �2 ` �
0
2 and �

0
2 6` �2 hold.

Contradiction to (A5).

(ii) 2. case: There is no k0 2 node(�1) [ node( ) such that �2 ` k � k0, and there is a
k0 2 node(�2) such that �2 ` k

0
� k or �2 ` k � k

0. Contradiction to (A4).

�2:

k k0

k0 k

or

(iii) 3. case: There is no k0 2 node(�1)[node( ) such that �2 ` k � k
0, and there is a kt

such that �2 `s kt �
� k, and k either is a leaf name in �2 or there is a kb such that

�2 `s k �
� kb.

�2:

kb

kt

k

Let �02 be the result of �rst adding to �2 all conjuncts of the form k1 r k2 for r
2 f��;�g such that �2 ` k1 r k2 and k1; k2 6= k and then removing all conjuncts
containing an occurrence of k.
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�02 is a description, because:

1. �02 is satis�able because �2 ` �
0
2 holds and �2 is satis�able.

2. each name that is minimal in �2 is also minimal in �02.

3. �02 is negation and disjunction free since �2 is negation and disjunction free.

4. For all k1; k2; k3 2 node(�
0
2): If �

0
2 ` k1�k2^k1�

� k3, then �2 ` k1�k2^k1�
� k3

also holds (because of �2 ` �02). Therefore either �2 ` k1 � k3 or there is a
k4 2 node(�2) with �2 ` k1 � k4 ^ k4 �

� k3. In the second case, k4 2 node(�
0
2)

holds because of (ii). Then (construction of �02), either �
0
2 ` k1 � k3 or there is a

k4 2 node(�
0
2) with �

0
2 ` k1 � k4 ^ k4 �

� k3.

5. For all k1; k2; k3 2 node(�
0
2): If �

0
2 ` k1� k2 ^k1� k3, then (with (ii)) k1; k2; k3 2

node(�2), and �2 ` k1 � k2 ^ k1 � k3. Therefore either �2 ` k2 � k3 and
�02 ` k2 � k3, or �2 ` k2 � k3 and �02 ` k2 � k3, or �2 ` k3 � k2 and
�02 ` k3 � k2.

(A1) - (A4) hold for �02, and �2 ` �
0
2 and �

0
2 6` �2 hold. Contradiction to (A5).

(iv) 4. case: There is no k0 2 node(�1)[node( ) such that �2 ` k � k
0, and k is minimal

in �2: because of (i)-(iii), for all k
0 2 node(�2) n (node(�1) [ node( )), �2 ` k � k0

holds. Let �02 be the result of removing all conjuncts with occurrences of any element
of node(�2) n (node(�1) [ node( )) from �2. �

0
2 is a description where each name

that is minimal in �1, is also minimal in �02.

(A1) - (A4) hold for �02, and �2 ` �
0
2 and �

0
2 6` �2 hold. Contradiction to (A5).

2

The following three lemmata are concerned with the new conjuncts that must be added in
a derivation step besides the old descriptions and the new node name equivalences. Lemma
3.3 states that no new linear precedence relations must be added in order to �nd the result of
a derivation step. In other words, all linear precedence relations in the resul of a derivation
step are consequences of linear precedence relations in the old description and dominance
relations in the resulting description. This lemma is a consequence of the derivation axiom
(A5). The proof of Lemma 3.3 can be found in the appendix on page 233.

Lemma 3.3 If �1
 
) �2 is a derivation step in a TDG, then

(LP) for all k1; k2: �2 ` k1 � k2 i� there are k01; k
0
2 with �2 ` k01 �

� k1 ^ k
0
2 �
� k2 and

�1 ^  ` k
0
1 � k

0
2.

In contrast to linear precedence, there may be new dominance relations in the result of a
derivation step that are not implied by the old descriptions. In other words, in a derivation
procedure, some new dominances must be added in addition to those implied by the old
descriptions �1 and  and the new node name equivalences. This is necessary because the
result must be a description and therefore in particular, it must satisfy the forth condition
of Def. 3.10, page 73. According to this condition, for a node name k in the new description
�2 there must not be k1; k2 with �2 ` k � k1 and �2 `s k �

� k2, i.e. roughly said k must not
be on the left side of a parent relation and of a strong dominance.
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Suppose that a new node name equivalence k1 � k2 is added in a derivation step, that
for one of these two names, say k2, there is a daughter kp described in �1 or  and that
for the second name only a strong dominance with a kd on the right side is described in �1
or  . This means that for the result �2 of the derivation step with �2 ` �1 ^  ^ k1 � k2
also �2 ` k2 � kp ^ k2 �

� kd holds. Therefore, because of condition 4. for descriptions either
�2 ` k2 � kd must hold or there must be a k02 with �2 ` k2�k

0
2^k

0
2�
� kd. Since �2 6` k1 � kd

follows from axiom (A2) for TDG derivations (Def. 3.13), the second one must be the case.
With axiom (A4), no new parent relation may be added in a derivation step, and therefore k02
must be such that �1 ^ ` k2 � k

0
2 holds, i.e. in �2 kd must be dominated by some daughter

of k2 in �1 or  . In the derivation step shown in Fig. 3.6 on page 79 for example, the new
dominance k6 �

� k2 was added for this reason.

kd

k1

k2

;

kd

k1�k2

This picture might be misleading, since it shows only one of the possible results: in the
result �2, kd is not necessarily strongly dominated by some other name. If there is no daughter
described for kd, then kd might also be identi�ed with a node name that has a mother in �2.

The new dominances added in cases as sketched above are the only new dominances,
i.e. the only dominances in the result of a derivation step that are not implied by the old
descriptions and the new node name equivalences:

Lemma 3.4 If �1
 
) �2 is a derivation step in a TDG, and �� :=

V
fk� � k j k� 2

node(�1); k 2 node( ); �2 ` k� � k g, then

(D) for all k1; k2 with �2 `s k1 �
� k2:

(a) either �1 ^  ^ �� ` k1 �
� k2

(b) or there are km 2M , k 2 node(�1) and k
0 2 node(�2) such that

- �2 ` km � k,

- either  `s km �
� k2 and �1 ` k � k

0, or �1 `s k �
� k2 and  ` km � k

0,

- and �2 ` k0 �� k1.

The proof of this lemma is quite technical and therefore it is put into the appendix. It
can be found on page 234.

The following lemma states that no new formulas with v- or l-terms must be added. It is
obvious, that this lemma holds.

Lemma 3.5 If �1
 
) �2 is a derivation step in a TDG, then

(L) for all k 2 K, a 2 A, v 2 V [ f?g and t 2 T [ f�g:

� �2 ` a(Æ(k)) � v i� there is a k0 with �2 ` k � k
0 and �1 ^  ` a(Æ(k

0)) � v, and

� �2 ` Æ(k) � t i� there is a k0 with �2 ` k � k
0 and �1 ^  ` Æ(k

0) � t.
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3.3.2 A derivation procedure

The derivation de�nition 3.13 given in Section 3.2 on page 76 de�nes a derivation step by
specifying properties that the result of the derivation must have. However, this de�nition
does not tell us how to obtain the result of a derivation step. In the following, this problem
will be addressed. I will describe the TDG derivation process by proposing a derivation
procedure. For an old description and a new elementary description this procedure gives the
set of all results that may be obtained when these two descriptions are put together in one
derivation step.

Giving this derivation procedure I intend to show that the TDG derivation process is
decidable and I want to examine more closely the way derivation works. However, I do not
intend to present an algorithm that is attractive with respect to its complexity. Obviously,
from this point of view, there are better derivation procedures than the one presented here.

Clearly, for each TDG G, there is a strongly equivalent TDG G0 that allows even deriva-
tions of similar tree descriptions such that two names that are equivalent in one of the de-
scriptions in G0 are even equal. \Similar tree descriptions" means that there is a description �
derived in G i� there is a �0 derived in G0 such that there is a mapping f : node(�)! node(�)
with � ` k1 � k2 for all k1; k2 with f(k1) = f(k2) and �

0 = f̂(�). In particular, � and �0 have
the same minimal trees. Therefore, without loss of generality, for the derivation algorithm a
TDG G = hA; V; T;D; �Si is supposed to be such that for all elementary or start descriptions
 in G and for all k1; k2 2 node( ):  ` k1 � k2 i� k1 = k2.

This kind of descriptions � are called K-minimal since jnode(�)j is minimal in a certain
sense.

De�nition 3.18 (K-minimal) A description � is K-minimal i� for all k1; k2 2 node(�):
� ` k1 � k2 i� k1 = k2.

The derivation algorithm takes a derived description �1 and an elementary description  
with node(�1) \ node( ) = ; The output is a set D 

�1
of descriptions �. These descriptions

are such that for each result �2 of a derivation step �1
 
) �2, there is a corresponding �02

in D 
�1
. This �02 can be obtained from �2 by replacing all km 2 M by the equivalent name

from �1.

Roughly, the algorithm is as follows:

� �rst, the conjunction �1 ^  is built, new node name equivalences for marked and
minimal names in  are added, and dominances are added such that (D) (see Lemma
3.4) is satis�ed The result is a set of descriptions satisfying (A1) to (A4), (LP), (D)
and (L).

� Then for all � and �0 in this set, it is checked whether one description is \more under-
speci�ed" than the other in the sense of derivation axiom (A5), and in this case the
\less underspeci�ed" is removed.

In the proof of Prop. 3.2 I have shown how to construct an equivalent saturated branch
for a given formula �. This can be done in �nitely many steps, i.e. it is decidable. In order to
check whether a formula � is satis�able, it is suÆcient to check whether the saturated branch
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Input: two names k1; k2 and a K-minimal description �

Output: true or false

begin

if k1 = k2, then dom(k1; k2; �) = true,

else:

if there is a k, k 6= k2 with dom(k1; k; �) = true

and either k � k2 in � or k �� k2 in �,

then return dom(k1; k2; �) := true,

else return dom(k1; k2; �) := false;

end

Figure 3.12: Procedure dom

�(�; node(�)) contains an empty clause. If this is the case, then � is not satis�able. Whereas,
if this is not the case, then � is satis�able according to Prop. 3.4. Therefore I will suppose for
the following that there is a predicate satisfiable for formulas such that satisfiable(�)
= true i� � is satis�able.

Before coming to the main algorithm, the following procedures are introduced:

1. a procedure dom checking for two node names k1; k2 in a K-minimal description �
whether the �rst name dominates the second, i.e. whether � ` k1 �

� k2 holds,

2. a procedure strong-dom checking for two node names k1; k2 in a K-minimal description
� whether the �rst name strongly dominates the second, i.e. whether � `s k1�

�k2 holds,

3. a procedure left-of checking for two node names k1; k2 in a K-minimal description �
whether the �rst name is left of the second, i.e. whether � ` k1 � k2 holds,

4. a procedure terminal checking for a name k in a K-minimal description � and for a
terminal t whether � ` Æ(k) � t holds,

5. a procedure attr-closure adding to a K-minimal description � equivalences between
v-terms that are entailed by �,

6. a procedure attr-value checking for a name k in a K-minimal description � and for
an attribute a and a value v whether � ` a(Æ(k)) � v holds,

7. and a procedure more-underspecified checking for two K-minimal descriptions
whether one of them is \more underspeci�ed" in the sense of (A5) than the other.

In the algorithms, L1, L2, ... are labels. Partly they are used as goals for jump
commands and partly they are only used to refer to certain parts of the algorithm when
proving that the desired result is obtained.
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Input: two names k1; k2 and a K-minimal description �

Output: true or false

begin

if dom(k1; k2; �) = true and k1 6= k2 and k1 � k2 not in � and

there is no k 2 node(�), k =2 fk1; k2g with

dom(k1; k; �) = true and dom(k; k2; �) = true,

then return strong-dom(k1; k2; �) := true,

else return strong-dom(k1; k2; �) := false;

end

Figure 3.13: Procedure strong-dom

The dominance checking procedure shown in Fig. 3.12 is very simple. Since the input �
is satis�able and for k 6= k0, � ` k �� k0 ^ k0 �� k cannot hold, the recursion terminates after
�nitely many steps. Obviously, for two names k1 and k2 and a description � satisfying the
conditions speci�ed for the input: � ` k1 �

� k2 i� dom(k1; k2; �) = true.

Besides dom, a predicate strong-dom for strong dominance is also needed. The algorithm
is shown in Fig. 3.13.

With the Def. 3.9 of strong dominance for descriptions on page 72, it is clear that for
a K-minimal description � and names k1; k2 2 node(�): strong-dom(k1; k2; �) = true i�
� `s k1 �

� k2.

For the procedure left-of in Fig. 3.14 checking linear precedence, the input description
� is also supposed to be K-minimal. In the procedure, �rst a set L will be constructed
containing all linear precedences k1 � k2 with � ` k1 � k2. Then it will be tested whether
this set contains the linear precedence in question.

There are two inference rules that can cause the adding of new formulas kl � kr as
consequences, when a saturated branch is constructed for some description �. These are the
rules trL and T6. trL expresses the transitivity of L, and T6 expresses the fact that if there
are node names k1; k2; k3; k4 with � ` k1 � k2 ^ k1 �

� k3 ^ k2 �
� k4, then � ` k3 � k4. For

both rules, the consequences are added to L in left-of, and therefore for all descriptions �
and k1; k2 2 node(�): left-of(k1; k2; �) = true i� � ` k1 � k2.

The following two procedures are used in more-underspecified. The �rst procedure
checks for a node name k in a K-minimal description � and for a terminal t whether � `
Æ(k) � t holds. This procedure, called terminal, is shown in Fig. 3.15. The second checks
for a k 2 node(�), an attribute a 2 A and a value v 2 V [ f?g whether � ` a(Æ(k)) � v
holds. This is called attr-closure and is shown in Fig. 3.16.

Since all conjuncts with l-terms occurring in descriptions are either of the form t � t or
Æ(k1) � Æ(k2) or of the form Æ(k) � t or t � Æ(k) for some k; k1; k2 2 K and t 2 T [ f�g,
terminal(k; t; �) = true holds i� � ` Æ(k) � t.

In the procedure attr-closure, �rst (see label L1) conjuncts a(Æ(k)) � ? for all a 2 A
and all k with terminal label are added to the K-minimal input description �. In L2 all
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Input: names k1; k2 and a K-minimal description �

Output: true or false

begin

L := ;;

for all kl; kr 2 node(�): if kl � kr in �, then add kl � kr to L;

L1: if there are kl; k; kr with kl � k 2 L and k � kr 2 L and kl � kr =2
L,

then add kl � kr to L and go to L1;

if there are kl; kr; k
0
l; k
0
r with kl � kr =2 L, k0l � k

0
r 2 L and

dom(k0l; kl; �) = dom(k0r; kr; �) = true,

then add kl � kr to L and go to L1;

if k1 � k2 2 L, then return left-of(k1; k2; �) := true,

else return left-of(k1; k2; �) := false;

end

Figure 3.14: Procedure left-of

Input: a name k, a t 2 T [ f�g and a K-minimal description �

Output: true or false

begin

if Æ(k) � t or t � Æ(k) in �, then terminal(k; t; �) = true,

else:

if there are k1; � � � ; kn for some n, 1 � n � jnode(�)j with

Æ(k) � Æ(k1) or Æ(k1) � Æ(k) in �,

Æ(ki) � Æ(ki+1) or Æ(ki+1) � Æ(ki) in � for 1 � i < n,

and Æ(kn) � t or t � Æ(kn) in �,

then return terminal(k; t; �) := true,

else return terminal(k; t; �) := false;

end

Figure 3.15: Procedure terminal
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Input: a K-minimal description �

Output: a description

begin

�0 := �;

L1: for all k 2 node(�):

if there is a t 2 T [ f�g with Æ(k) � t in � or t � Æ(k) in �,

then: for all a 2 A:

if neither a(Æ(k)) � ? nor ? � a(Æ(k)) are in �0,

then add a(Æ(k)) � ? to �0;

L2: for all k1; k2 2 node(�) with Æ(k1) � Æ(k2) in �: begin

for all a 2 A such that a(Æ(k1)) � a(Æ(k2)) is not in �0:

add the conjunct a(Æ(k1)) � a(Æ(k2)) to �0;

remove Æ(k1) � Æ(k2) from �0;

end;

L3: for all k1; k2 2 node(�) and a1; a2 2 A:

if a1(Æ(k1)) � a2(Æ(k2)) in �0 and a2(Æ(k2)) � a1(Æ(k1))

is no conjunct in �0,

then add a2(Æ(k2)) � a1(Æ(k1)) to �0;

L4: for all k1; k2 2 node(�), a 2 A and v 2 V [ f?g: if

either a(Æ(k1)) � v or v � a(Æ(k1)) in �,

and either a(Æ(k2)) � v or v � a(Æ(k2)) in �,

then add a(Æ(k1)) � a(Æ(k2)) and a(Æ(k2)) � a(Æ(k1)) to �0;

L5: if there are k1; k2; k3 2 node(�) and a1; a2; a3 2 A with

a1(Æ(k1)) � a2(Æ(k2)) and a2(Æ(k2)) � a3(Æ(k3)) in �0

and a1(Æ(k1)) � a3(Æ(k3)) not in �0,

then begin

add a1(Æ(k1)) � a3(Æ(k3)) to �0;

add a3(Æ(k3)) � a1(Æ(k1)) to �0;

go to L5;

end;

return attr-closure(�) := �0;

end

Figure 3.16: Procedure attr-closure
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Input: a name k, a K-minimal description �, an a 2 A

and a v 2 V [ f?g

Output: true or false

begin

�0 := attr-closure(�);

if

a(Æ(k)) � v or v � a(Æ(k)) in �0

or there is a a0 2 A and a k0 2 node(�) with

a(Æ(k)) � a0(Æ(k0)) in �0

and either a0(Æ(k0)) � v or v � a0(Æ(k0)) in �0,

then return attr-value(k; a; v; �) := true,

else return attr-value(k; a; v; �) := false;

end

Figure 3.17: Procedure attr-value

equivalences Æ(k1) � Æ(k2) are replaced by all conjuncts of the form a0(Æ(k1)) � a0(Æ(k2))
for all a0 2 A. Then, in L3, all conjuncts of the form a1(Æ(k1)) � a2(Æ(k2)) for k1; k2 2
node(�); a1; a2 2 A are added that follow from the symmetry of the equivalence relation. In
L4 equivalences between attributes with equal values are added, and in L5 equivalences are
added that follow from the transitivity of the equivalence relation.

Clearly, for �0 :=attr-closure(�), � ` �0 and �0 ` � holds, and �0 is such that

- for all k 2 node(�), a 2 A and v 2 V [ f?g: � ` a(Æ(k)) � v i� either a(Æ(k)) � v or
v � a(Æ(k)) in �0,

- and for all a1; a2 2 A and k1; k2 2 node(�): � ` a1(Æ(k1)) � a2(Æ(k2)) i� a1(Æ(k1)) �
a2(Æ(k2)) is conjunct in �

0.

The procedure attr-value (Fig. 3.17) tests whether � ` a(Æ(k)) � v holds for a K-
minimal description �, a certain k 2 node(�); a 2 A and v 2 V [ f?g. With attr-closure,
this test is quite simple.

For the test of axiom (A5) in the main derivation algorithm, the two descriptions �2 and �3
are already such that for each new node name equivalence k � km with km marked or minimal
in the new elementary description, all occurrences of km were replaced by k. Therefore the
functions f1 and f2 in (A5) can be omitted (they are both the identity mapping). For two
descriptions �1; �2, the procedure more-underspecified testing whether the �rst one implies
the second or the reverse, is very simple (see Fig. 3.18). more-underspecified(�1; �2) =

true (i.e. �2 ` �1) holds if all conjuncts in �1 are implied by �2.

Clearly, for two K-minimal descriptions �1; �2: more-underspecified(�1; �2) = true

i� �2 ` �1.

The main derivation procedure derivation in Fig. 3.19 describes the construction of a
set D 

�1
for a given �1 and a given  as described above. For this set D 

�1
, it will be shown
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Input: two K-minimal (A; V; T )-descriptions �1 and �2
Output: true or false

begin

If for all k1; k2 2 node(�1) with k1 6= k2, a 2 A; v 2 V [ f?g; t 2
T [ f�g:

1. if k1 � k2 in �1, then k1 � k2 in �2,

2. if k1 � k2 in �1, then left-of(k1, k2, �2) = true,

3. if k1 �
� k2 in �1, then dom(k1, k2, �2) = true,

4. if Æ(k1) � t or t � Æ(k1) in �1, then terminal(k1; t; �2) =

true

5. if Æ(k1) � Æ(k2) in �1,

then

either Æ(k1) � Æ(k2) or Æ(k2) � Æ(k1) in �2
or there is a t 2 T [ f�g with

terminal(k1; t; �2) = terminal(k2; t; �2) = true

or

there are a0 2 A and v0 2 V with

attr-value(k1; a
0; v0; �2) = true,

and for all a00 2 A:

a00(Æ(k1)) � a
00(Æ(k2)) in attr-closure(�)

6. if a(Æ(k1)) � v or v � a(Æ(k1)) in �1,

then attr-value(k1; a; v; �2) = true

then more-underspecified(�1, �2) = true,

else more-underspecified(�1, �2) = false;

end

Figure 3.18: Procedure more-underspecified
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that �1
 
) �2 i� there is a �02 2 D 

�1
such that the following holds: there is a mapping

f : node(�2)! node(�02) mapping all marked or minimal node names in  to their equivalent
name in �1 and all other names to themselves. For this mapping, f̂(�2) is equivalent to �

0
2

(i.e. f̂(�2) ` �
0
2 and �

0
2 ` f̂(�2) hold).

Starting from the conjunction of �1 and  (see L1), for all marked or minimal names in  ,
equivalent names in �1 must be found (see L5) such that axiom (A2) and (A3) are respected
(see L8 and L9). Since the result must be a description, further dominances must be addded
such that (D) holds, and the result must be satis�able (see L10). Finally it must be checked
whether there is no other possibility for the new equivalences that is more underspeci�ed (see
L3).

In this procedure, begins and ends are equipped with numbers in order to show the
structure of the procedure. A pair of begin and end corresponding to each other have the
same number.

The following proposition states that the result of this procedure represents really the set
of all descriptions that might be derived from �1 by adding  .

Proposition 3.8 (Derivation procedure) Let G = hA; V; T;D; �Si be a TDG. Let �1 be
an (A; V; T )-description and let h ; k i be K-equivalent to an elementary description in G
such that node(�1) \ node( ) = ; and �1 and  are both K-minimal.

�1
 
) �2 i� there is a �02 2 derivation(�1;  ) such that there is a mapping

f : node(�2)! node(�02) with

1. f(k) := k for all k 2 node(�2) nM ,

2. for all k 2M with �2 ` k � k
0 for k0 2 node(�1): f(k) := k0,

3. and f̂(�2) ` �
0
2 and �02 ` f̂(�2).

Proof Let G = hA; V; T;D; �Si be a TDG. Let �1 and  be as speci�ed for the input of
derivation.

To show: �02 2 derivation(�1,  ) i� there is a �2 with �1
 
) �2 and with a mapping f as

in Prop. 3.8.

The following holds: �1
 
) �2 i� �2 is a description satisfying (L), (LP), (D), and (A1) to

(A5).

To show: �02 2 D
 
�1

holds in L3 i� the corresponding �2 is a description satisfying (A1) to
(A4) and (L), (LP), and (D).

�02 2 D
 
�1

holds in L3 i� for �02 and a corresponding �2 that can be obtained by adding all
new equivalences as conjuncts to �02

- �02 (and then also �2) is a description,

- �2 satis�es (A1) because of L1 and because none of the conjuncts was removed in the

course of the construction of D 
�1
,

- �2 satis�es (A2) because

(a) with the condition in L2 and with L5, for all km 2 M there is exactly one
k 2 node(�1) with �2 ` km � k, and
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Input: a description �1 and a pair h ;K i such that K � node( ),

node(�1) \ node( ) = ; and �1 and  are both K-minimal

Output: a set of descriptions

begin(1)

M := fk; k minimal in  or k 2 K g;

L1: D 
�1

:= f�1 ^  g;

L2: if M = ;, then begin(2)

L3: for all �; �0 2 D 
�1
: if more-underspecified(�; �0) = true

and more-underspecified(�0; �) = false,

then remove �0 from D 
�1
;

L4: return derivation(�1,  ) := D 
�1
;

end(2),

else begin(3)

L5: select an (arbitrary) km 2M and remove km from M ;

Dnew := ;;

L6: for all �old 2 D
 
�1
:

L7: for all k 2 node(�1): begin(4)

� := �old;

if there are no kp; k
0
p such that

L8: either kp � k in � and k0p � km in �,

L9: or k � kp in � and km � k
0
p in �,

then begin(5)

replace all occurrences of km in � by k;

L10: if there are kd; ks with k � kd in � and

strong-dom(k; ks; �) = true,

then: for all k0d such that dom(kd; k
0
d; �) = true and

there is no kp with k0d � kp in �:

begin(6)

add k0d �
� ks to �;

if satisfiable(�) = true, then add � to Dnew;

end(6);

end(5);

end(4);

L11: D 
�1

:= Dnew;

L12: go to L2;

end(3);

end(1)

Figure 3.19: Procedure derivation
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(b) because of the condition in L8, for no k 2 node( ) nM , there is a k 2 node(�1)
with �2 ` k � k:

if such a k existed, then the equivalence would have been added by one of the
inference rules tr=; sy=; rf=; antisD or T5. The �rst four rules cannot add equiva-
lences because �1 and  are K-minimal, and T5 cannot add equivalences because
of the condition in L8.

- �2 satis�es (A3) because of the condition in L9,

- �2 satis�es (A4) because no parent relations were added,

- �2 satis�es (L), (LP), and (D) since only dominances were added in L10 according to
(D).

Consequently, the following holds:

�02 2 derivation(�1;  )

i� �2 is a description satisfying (A1) to (A5) with respect to �1 and  (and consequently
also satisfying (L), (LP), and (D))

i� �1
 
) �2.

2

3.3.3 Decidability of lexicalized TDGs

In order to deal with natural languages in a way similar to TAGs, I will now de�ne lexicalized
TDGs (for a de�nition of lexicalized grammars in general see Schabes 1990). A TDG is
called lexicalized if there is at least one leaf name with a terminal label in each elementary
description. Furthermore, this terminal is preceded by a kind of \preterminal", i.e. for the
leaf name with the terminal label, there must be another name describing the parent of this
leaf.

De�nition 3.19 (Lexicalized TDG) A TDG G is a lexicalized TDG (LTDG), i� for every
elementary description  in G there are k; kt 2 node( ) and there is a t 2 T , such that
 ` k � kt ^ Æ(kt) � t.

Note that, as in the case of TAGs, this de�nition only captures the requirement to have
lexical items in each elementary description, but it does not say anything about the uniqueness
of an anchor.

To show the decidability of the word problem for lexicalized TDGs, the decidability of
minimal trees �rst must be proven. The result shown for the derivation algorithm then tells
us that the language generated by a lexicalized TDG is decidable.

In order to �nd the set of minimal trees for a given description, it is suÆcient to add
equivalences between n-terms, l-terms or v-terms to �. Therefore, the set of minimal trees of
a given description is decidable:

Proposition 3.9 (Decidability of minimal trees) Let G be a TDG. For each � 2 LD(G)
the set of minimal trees of � can be constructed in �nitely many steps.
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More precisely representatives of classes of isomorphic minimal trees will be constructed
(see Def. 2.15 for the notion of a tree isomorphism, only the constraint functions C and O are
omitted in the case of minimal trees). Henceforward I will not distinguish between isomorphic
trees. A tree will be identi�ed with the equivalence class it represents.

As already mentioned, the idea of the proof of Prop. 3.9 is to construct for a derived
description � �rst some description �0 by adding equivalences such that there are no strong
dominances in �0 and all node labels are completely speci�ed in �0. Then there is a direct
correspondence between these descriptions �0 and the minimal trees of �.

Proof or Prop. 3.9: Let G be a TDG and � 2 LD(G).
In order to �nd a minimal tree of �, a description �0 must be constructed such that �0 ` �,
node(�) = node(�0) and for all k1; k2 2 node(�):

(a) �0 `s k1 �
� k2 does not hold.

(b) �0 ` k1 � k2 or �
0 ` :k1 � k2.

(c) �0 ` k1� k2 ) there are k3; k4 such that �0 ` k1 � k3 ^ k2 � k4 and � ` k3� k4 (no new
parent relations, see second axiom for minimal trees).

(d) If �0 ` k1 � k2 and � 6` k1 � k2, then there are no k3; k4 such that � ` k1 � k3 ^ k2 � k4
(see third axiom for minimal trees).

(e) For all k 2 node(�0):

if k is a leaf name in �, then there is a t 2 T [ f�g with �0 ` Æ(k) � t (tree must be
terminal),

else (k no leaf name) for all a 2 A there is a v 2 V [ f?g with �0 ` a(Æ(k)) � v, and
there is at least one ha; vi 2 A� V with �0 ` a(Æ(k)) � v (at least one attribute with a
value v 6= ?).

Construction of such a �0:

- �0 := �

- Add arbitrary conjuncts k1 � k2 to �
0 with k1 6= k2 and k1; k2 2 node(�).

- Add arbitrary conjuncts Æ(k) � t to �0 with k 2 node(�) and t 2 T [ f�g.

- For all k 2 node(�) where no formula Æ(k) � t was added and for all a 2 A, choose a
v 2 V [ f?g and add the conjunct a(Æ(k)) � v to �0.

- If the result �0 is a description such that conditions (a) - (e) hold (this is decidable), then
it is one of the desired descriptions.

The construction is non-deterministic. But as node(�), A, V and T are �nite and \`" is
decidable, there are only �nitely many possibilities to construct a �0 in this way. Consequently
all possible �0 can be found in �nitely many steps.

Now it must be shown that the resulting �0 correspond to the minimal trees:

(i) Each of the �0 uniquely describes a minimal tree B�0 of � with respect to nonterminals
NA;V and terminals T :

B�0 = (U�0 ; u0�0 ;P�0 ;D�0 ;L�0 ; �) such that

- U�0 = fu ju � node(�
0) is equivalence class wrt fhk1; k2i j�

0 ` k1 � k2gg

- u0�0 is the node with k 2 u0�0 i� k is minimal in �0.

- P�0 = fhu1; u2i j�
0 ` k1 � k2 for all k1 2 u1 and k2 2 u2g
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- D�0 = fhu1; u2i j�
0 ` k1 �

� k2 for all k1 2 u1 and k1 2 u2g

- L�0 = fhu1; u2i j�
0 ` k1 � k2 for all k1 2 u1 and k2 2 u2g

- For all u 2 U�0 that are no leaf in B�0 :

�(u) := fha; vi j a 2 A; v 2 V and �0 ` a(Æ(k)) � v for all k 2 ug.

- For all leaves u 2 U�0 and all t 2 T [ f�g:

�(u) := t i� �0 ` Æ(k) � t for all k 2 u.

Because of the inference rules, it is easy to see that B�0 is a tree.

To show: B�0 is a minimal tree of �:

1. B j=g � holds for all assignments g such that for each u 2 U�0 : g(k) = u for all
k 2 u.

2. With the de�nition of P�0 , for all hu1; u2i 2 P�0 there are k1; k2 2 node(�) such that
�0 ` k1 � k2 and g(k1) = u1; g(k2) = u2.

Consequently (with condition (c) for �0) there are k3; k4 2 node(�) such that � `
k3 � k4 and �

0 ` k1 � k3 ^ k2 � k4
Consequently (with de�nition of U�0) there are k3; k4 2 node(�) such that � ` k3�k4
and g(k3) = u1; g(k4) = u2.

3. Let g(k1) = g(k2) and � 6` k1 � k2 hold.

Consequently �0 ` k1 � k2 and � 6` k1 � k2
Consequently (with cond. (d)) there are no k3; k4 with � ` k1 � k3 ^ k2 � k4.

(ii) For each minimal tree B of � there is a �0 that can be constructed from � such that B
is isomorphic to B�0 :

Let B be a minimal tree of � 2 LD(G) wrt the node assignment g.

For all k; k1; k2 2 node(�):

1. if k1 6= k2 and g(k1) = g(k2), then add k1 � k2 as a conjunct to �,

2. if there is a t 2 T [ f�g such that �(g(k)) = t, then add Æ(k) � t as a conjunct to �,
and

3. if g(k) is no leaf, then for all a 2 A: if there is a v 2 V with ha; vi 2 �(g(k)), then
add the conjunct a(Æ(k)) � v to �, else add the conjunct a(Æ(k)) � ?.

The resulting description �0 is one of the descriptions, that can be constructed from �
in the way described above.

Obviously the corresponding tree B�0 is isomorphic to B.

2

With Prop. 3.9 and 3.8 the following holds for LTDGs:

Proposition 3.10 (Decidability)
For LTDGs the word problem is decidable.

Proof: With Prop. 3.8, for a given description �1 and an elementary  the set

f� j there is a �2 with �1
 
) �2 and a f : node(�2)! node(�)

with f̂(�2) = � and �2 ` k1 � k2 for all k1; k2 with f(k1) = f(k2)g
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is �nite and can be constructed in �nitely many steps (i.e. is decidable).
Since G is lexicalized, in each derivation step at least one terminal is added to the yield of a
possible minimal tree. Therefore, in order to decide for a given w = t1 � � � tn, ti 2 T , whether
w 2 LS(G) holds, the following is suÆcient: all derivations �S

�
) � must be performed where

for each of the ti exactly one elementary description  with  ` Æ(k) � ti for one node name
k is added. In this way in �nitely many steps a �nite set of descriptions is obtained. After
that the minimal trees of these descriptions must be constructed (decidable with Prop. 3.9).
If w = yield(B) holds for one of these trees B, then w 2 L(G).

2

3.4 TDGs for natural language

In this section TDGs, more precisely LTDGs will be considered with respect to natural lan-
guages, and they will be compared to TAG variants mentioned in Chapter 2, in particular
to MC-TAGs, D-Tree Grammars and Unordered Vector Grammars with Dominance Links.
We will see that TDGs allow \multicomponent" derivation because one elementary descrip-
tion can describe several subtrees that have to be added at the same time. TDGs are even
powerful enough to generate the indexed string language SCRind which is not the case for
tree-local MC-TAGs. As shown by Becker et al. (1992), a grammar that is adequate to handle
scrambling phenomena in German must be able to generate SCRind (see also Section 2.4.1
in Chapter 2).

Furthermore, with TDGs arguments can be treated in a uniform way because subsertion-
like derivation steps are possible. In the previous chapter, we have seen that this is one
of the problems for TAGs where derivation is restricted to substitution and adjunction and
therefore a uniform treatment of arguments is not possible.

With respect to the main purpose of the introduction of TDGs, the generation of under-
speci�ed representations, we will see that, since underspeci�cation of the dominance relation
is possible in TDGs, representations as the one in the introductory example in Fig. 1.2 on
page 6 and Fig. 2.22 on page 51 for nominal modi�er ambiguities can be derived.

3.4.1 Multicomponent derivation

Kroch (1987) and Kroch and Joshi (1987) have argued that the derivational generative ca-
pacity of TAGs is not suÆcient to analyze certain nonlocal dependencies, such as extraction
out of noun phrases as in (11), in an appropriate way. They propose the use of tree-local
multicomponent TAGs for these cases. An MC-TAG analysis of (11) was given in Chapter 2.

(11) which paintingi did you buy a copy of �i?

Vijay-Shanker (1992) already points out that in a grammar based on quasi-trees such
multicomponent derivations are possible because more than one subtree can be represented
in one tree description. This is the case in particular for TDGs, a TDG analysis of (11) is
shown in Fig. 3.20. The corresponding analysis with tree-local MC-TAGS has been shown in
Fig. 2.10 on page 35 in Chapter 2. In the TDG, the two trees �1 and �2 of the auxiliary set
are described in a single elementary description  where the two node names denoting the
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�1
 
) �2 with �2 = �1 ^  ^ k1 � k5 ^ k2 � k6 ^ k4 � k7

�1 S k1

S k2

Aux S

did NP VP

you V NP k3

bye NP k4

�

 S k5

S

NP S� k6

which painting NP

Det N

a N PP

copy P NP� k7

of

�2 S k1 � k5

S

NP S k2 � k6

Aux S

which painting did NP VP

you V NP

bye NP

Det N

a N PP

copy P NP k4 � k7

of �

Figure 3.20: A multicomponent derivation in a TDG
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foot nodes of �1 and �2 are marked. However, as already mentioned for TAGs and TDGs,
this way of constructing a corresponding TDG for a tree-local MC-TAG does not work in
general, since TDGs are not local.

�S
N

N

V

V

�

�S N

N

n N

N�

V

v V�

Figure 3.21: A TDG generating SCRind

A TDG generating the indexed string language SCRind is shown in Fig. 3.21. For
each m � 0, there is only one description in the description language of this gram-
mar, and this description is an underspeci�ed representation of minimal trees for all
fn[�(1)] � � �n[�(m)]v[1] � � � v[m] j� 2 Smg. As shown by Becker et al. (1992), the indexed lan-
guage cannot be generated by set-local MC-TAGs. This shows that the derivational genera-
tive capacity of set-local MC-TAGs is not greater than the derivational generative capacity
of TDGs.

A variant of MC-TAGs are Unordered Vector Grammar with Dominance Links (UVG-
DL), proposed by Rambow (1994a,b). I have introduced these grammars in the last chapter.
In his dissertation, Rambow argues that UVG-DLs are adequate to handle scrambling in
German.

When comparing TDGs to UVG-DLs, it is very easy to construct a TDG G for a given
UVG-DL GV such that the two grammars are equivalent with respect to their weak, strong
and even derivational generative capacity. The construction is very simple: for each set
(vector) of productions in GV , one elementary description is constructed with no marked
names, one minimal name labelled with the start symbol of GV , one subtree description
for each production, dominance links from the minimal name to the minimal names of the
subtree descriptions of the single productions and the dominance links associated in GV with
this production vector. The start description contains only one node name labelled by the
start symbol of GV . Therefore, clearly the following holds:

Proposition 3.11 Each language generated by an Unordered Vector Grammar with Domi-
nance Links is a TDL.

For the UVG-DL in Fig. 2.19 on page 47, an equivalent TDG is shown in Fig. 3.22. The
elementary description  (vi) is constructed for the production vector vi. In the TDG, the
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�S  (v1) S

S S

da� VP

 (v3) S

VP

VP VP

VP

zu versuchen

 (v2) S

VP VP VP

NPnom VP NPdat VP VP VP

VP

verspricht

 (v4) S

VP

NPacc VP

VP

zu reparieren

Figure 3.22: A TDG for the UVG-DL in Fig. 2.19, p. 47

application of the productions in the vectors does not take place during the derivation of a
description but only when a minimal tree is found. Then node name equivalences must be
added and this corresponds to the applications of the productions in GV .

3.4.2 Complement clauses

As pointed out in the previous chapter, one of the de�ciencies of TAGs is that the TAG
operations of substitution and adjunction do not map cleanly onto the relations of comple-
mentation and modi�cation. Complement clauses must be treated in a di�erent way than
other arguments (see Abeill�e 1988b, 1993 and Rambow et al. 1995). One of the main ideas in
TAG is that arguments should be added by substitution to the argument structure whereas
adjuncts are added by adjunction. The only exception are complement clauses. The reason
for this di�erence is the desire to describe argument structures locally. In TAGs all argument
nodes for one lexical head are in one elementary tree. This is captured by the predicate argu-
ment cooccurrence principle. Even for unbounded dependencies the argument that has been
moved has to be in the same elementary tree as the head of the argument structure. If one
wants to preserve this in a TAG, it is not possible to add complement clauses by substitution
but the argument structure must be adjoined to the complement clause (see Fig. 2.9).

With TDGs it is possible to have this local analysis of unbounded dependencies without
treating complement clauses in a way di�erent from other arguments. Even for unbounded
dependencies inside of complement clauses the derivation can start from the argument struc-
ture and the complement clause is added in one derivation step. The crucial point here is
that there can be arbitrarily many marked names in elementary descriptions. A sample
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�1
( ;K )
) �2 with �2 = �1 ^  ^ k1 � k10 ^ k2 � k13 ^ k9 � k14

�1 S k1

S k2

NP VP

� V S

penses-tu Comp S k9

que

S k10

 

S k11

WH S� k13

S� k14

S k15

�2 S k1�k10

S k11

WH S k2�k13

NP VP

� V S

penses-tu Comp S k9�k14

que S k15

Figure 3.23: Complement clauses with unbounded dependencies qui penses-tu que
Marie aime � (see Abeill�e 1988b)
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analysis for (12) is given in Fig. 3.23.

(12) qui penses-tu que Marie aime �
whom do you think Marie loves �

This treatment of complement clauses corresponds to the subsertion operation proposed
in Rambow et al. 1995 as derivation operation for Description-Tree-Grammars (DTG, see
Section 2.5.2). Subsertion is a non-local operation in the sense that in one subsertion deriva-
tion step the d-edges chosen for the insertion of new subtrees need not be part of one single
elementary d-tree. Therefore it seems to be no problem to show that each language generated
by a DTG can also be generated by a TDG, i.e. that TDGs are more powerful than DTGs.

In TDGs the elementary description for arguments and those for modi�ers di�er in the
following way: arguments are described by descriptions  such that no leaf name is marked
in  . In contrast to this the elementary description of a modi�er contains a marked leaf
name, that can be compared to a foot node of an auxiliary tree in a TAG.

3.4.3 Underspeci�cation

As already mentioned in the introduction and the previous chapter, my main motivation for
de�ning TDGs was the desire to generate underspeci�ed representations of trees. In this
section I will consider some examples of structural ambiguities and I will show that TDGs
enable us to describe several readings in one tree description.

First we will go back to the example of a syntactic ambiguity mentioned in Chapter 2,
the nominal modi�er scope ambiguity a former professor in T�ubingen. As already explained,
corresponding to the two syntactic structures (see Fig. 2.22) this expression has two di�erent
interpretations, either with wide scope of former or with wide scope of in T�ubingen. The
elementary descriptions for former, in and professor can be chosen in such a way that one
single underspeci�ed description is derived for the ambiguous expression. Fig. 3.24 shows the
elementary descriptions �1,  1,  2 and  3 for a, professor, former and in and the derived
descriptions that are obtained when, starting from the description for a, the other three
elementary descriptions are added. In the �gure, the description of former is added before
adding the description for the preposition. However, the other order, i.e. �rst adding  3 and
then  2 leads to the same result. The resulting description �4 is not unique since for k7 one
of the two names k3; k5 may be chosen as equivalent name, and for k8 either k4 or k6 may
be chosen. But the four possible results of putting �3 and  3 together are equivalent to each
other. �4 is (up to equivalence) the only possible result because of the derivation axiom (A5).

The choice of the elementary descriptions in Fig. 3.24 corresponds to the way elemen-
tary trees in TAGs look like. The linguistic principles underlying TAGs, in particular the
predicate-argument cooccurrence principle are respected.

In a very similar way underspeci�ed representations for PP-attachment ambiguities can
be obtained. Here not only the dominance relation but also the labeling function is not fully
speci�ed. Fig. 3.25 shows a part of the analysis of the sentence (13).

(13) Jean regarde un homme avec un t�elescope
Jean is looking at a man with a telescope
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�1
 1
) �2

 2
) �3

 3
) �4 with �2 = �1 ^  1 ^ k2 � k3 and

�3 = �2 ^  2 ^ k3 � k5 ^ k4 � k6 and �4 = �3 ^  3 ^ k3 � k7 ^ k4 � k8

�1
NP k1

Det N k2

a

 1 N k3

N k4

professor

�2
NP k1

Det N k2�k3

a N k4

professor

N k5

 2

N

AP N

A N� k6

former

�3 NP

Det N k3�k5

a N

AP N

A N k4�k6
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N k7

 3

N

N PP

N� k8 P NP

in

�4 NP

Det N k3�k7

a N N

AP N N PP

A N k4�k8 P NP

former professor in

Figure 3.24: Nominal modifiers: a former professor in



106 CHAPTER 3. TREE DESCRIPTION GRAMMARS

 = � � � ^ Æ(k4) � Æ(k5) ^ � � �
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Figure 3.25: PP-attachment: Jean regarde un homme avec un t�elescope
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Other phenomena that might be handled with TDGs are ambiguities that arise with re-
spect to temporal relations in narrative texts. Schilder (1997a,b) proposes a TDG analysis for
the description of temporal relations. With this approach, underspeci�ed representations can
be obtained for narrative texts that are ambiguous with respect to their temporal structure.

In Chapter 5, when a syntax-semantics interface with synchronous local TDGs is proposed,
I will also consider quanti�er scope ambiguities, and we will see that for these ambiguities,
it is possible to derive underspeci�ed representations similar to those in Muskens 1995.

3.4.4 Generative capacity

The examples given in this section and the comparisons between TDGs on the one hand
and MC-TAGs, UVG-DLs and DTGs on the other hand have shown that TDGs not only
provide a description-based de�nition of TAG-like grammars. They also o�er the advantages
of multicomponent derivations and of a uniform distinction between complementation and
modi�cation operations. Furthermore they allow underspeci�cation in a very natural way.

As pointed out in the beginning of Chapter 2, with respect to the generative capacity of
a formalism developed for natural languages, there are two aspects that must be considered.
The �rst concerns the question whether the formalism is powerful enough to handle natural
languages in an adequate way. Since TDGs are at least as powerful as UVG-DLs and as
DTGs, they probably satisfy this criterion. A second point is the question whether the
formalism is not unnecessarily powerful, and this might be a problem for TDGs, since I have
not shown any restriction of the generative power of TDGs, i.e. any class of languages that
is a superset of the languages generated by TDGs.

One of the properties natural languages are supposed to have, is the so-called constant
growth property. This property is one of the conditions for mildly context-sensitive grammars.
Roughly said, a language satis�es the constant growth property if there is some constant c
for this language such that for each word w there is either no word longer than w or there is
a word with a length between jwj and jwj+ c.

Provided that natural languages are of constant growth, a formalism that is supposed
to capture the complexity of natural languages must generate only languages satisfying the
constant growth property. For TDGs as de�ned in this chapter, it might be at least diÆcult,
probably even impossible to show constant growth of the generated string languages.

This indicates that TDGs in their general form might be unnecessarily powerful to deal
with natural languages. To avoid this problem, a local version of TDGs will be de�ned in
the next chapter, the local TDGs. We will see that local TDGs still o�er the advantages of
TDGs in the general form presented in this chapter. They are more powerful than set-local
MC-TAGs, but they are restricted in such a way that their string languages are of constant
growth.
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Chapter 4

Local Tree Description Grammars

In the previous chapter I have introduced Tree Description Grammars, a description-based
variant of TAGs. We have seen that TDGs allow subsertion-like dervation steps, \multi-
component" derivation and underspeci�cation. With respect to the languages generated by
TDGs, we have seen that fak1a

k
2 :::a

k
n j 0 � kg for n � 5 and fwn jw 2 T �g for n � 3 are

TDLs, and that even all languages generated by Unordered Vector Grammars with Domi-
nance Links (UVG-DL, Rambow 1994a,b) or by D-Tree-Grammars (DTG, Rambow et al.
1995) are TDLs. For these reasons TDGs are a very interesting variant of TAGs for natural
languages.

As already pointed out in the end of the last chapter, the problem with TDGs is that they
might be unnecessarily powerful. I have not found any lowest upper bound for the class of all
TDLs. Since natural languages are supposed to be of constant growth, and constant growth
is a consequence of semilinearity, it is desirable to de�ne a grammar formalism that still has
all the advantages of TDGs for natural languages as shown in the examples in Chapter 3 but
can be shown to be semilinear. For TDGs in the general form this might be diÆcult. It is at
least not obvious whether they are semilinear or not. The problem is the non-locality of the
derivations in TDGs. In a TDG derivation step, for a minimal or marked name in the new
elementary description, any name in the old description can be chosen as equivalent name.
The names in the old description occurring in the equivalences added in this derivation step
must not belong to one single elementary description. This is sketched in Fig. 4.1 where a
possible non-local derivation step in a TDG is illustrated. The old description in this step
has been derived from the four start or elementary descriptions  1; : : : ;  4. In the derivation
step three equivalent names for the minimal name and the two marked names in the new
elementary description depicted on the right must be found. As shown in the �gure, it is
possible to choose names from  1,  2 and  4 for example, i.e. names form three di�erent start
or elementary descriptions added before. In other words, the subtree descriptions occurring
in the new elementary description can be inserted into any of the strong dominances in the
old description. Therefore the modi�cation of the old description caused by this derivation
step is non-local.

This non-locality not only is a problem because of the probable non-semilinearity of the
formalism. Furthermore, also from a more linguistic point of view one does not want to
allow non-locality as illustrated in Fig. 4.1. The parts of one local argument structure might
be separated from each other by intervening material, but even in the case of non-local
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Figure 4.1: Non-locality of derivations in (general) TDGs

dependencies only one single argument structure should be modi�ed in a derivation step. In
this sense derivation steps should be local in a grammar respecting the linguistic principles
underlying TAGs.

To solve this problem, I will present a restricted version of TDGs called local TDGs. Local
TDGs still allow multicomponent and subsertion-like derivations and even underspeci�ed
representations. The main idea of de�ning local TDGs is a restriction of the derivation: each
derivation step must be local in the sense that the part of the old description that is modi�ed
by this step must belong to one single elementary description. With this locality restriction,
the derivations can be described by a context-free grammar.

For local TDGs the semilinearity of the string languages can be shown by proving letter
equivalence to context-free languages. Local TDGs and a sketch of the semilinearity proof for
local TDLs (the string languages generated by local TDGs) are also presented in Kallmeyer
1997a.

The locality restriction concerns only the derivation in TDGs but not the de�nition of
minimal trees, and therefore local TDGs are still more powerful than set-local MC-TAGs.

Sample local TDGs for the languages L2 := fak1 � � � a
k
4 j k � 0g and the copy languages

suggest that the maximal number of marked names in one elementary description is somehow
crucial for the generative capacity of a local TDG. Therefore I will introduce a hierarchy of
local TDGs depending on the set of marked names. For this hierarchy, I will show that the



4.1. DEFINITION OF LOCAL TDGS 111

classes of rank 0 and 1 are both the context-free languages and that Tree Adjoining Languages
form a subset of the class of rank 2. (Whether TALs are equal to local TDLs of rank 2 is an
open question.) Furthermore, I will prove a pumping lemma for local TDLs of rank n and,
using this lemma, I will show that the class of rank n for n � 1 is a proper subset of the class
of rank n+1. In particular, the class of rank n contains the languages Li := fa

k
1 � � � a

k
i j k � 0g

for i � 2n, whereas L2n+1 is not in this class. This hierarchy together with the pumping
lemma is also presented in Kallmeyer 1998.

At the end of this chapter, following the idea of synchronous TAGs (see Chapter 2 and
Shieber and Schabes 1990), I will introduce synchronous local TDGs. Roughly, the idea is
that two local TDGs are connected by a synchronization relation. Depending on this relation,
derivation is done in parallel in the two TDGs. Synchronous grammars are useful to describe
dependencies between two languages that do not have the same structure but that somehow
depend on each other in a compositional way.1 With respect to the generative capacity of
synchronous local TDGs I will show that, in contrast to TAGs, the synchronization of a local
TDG with a second local TDG does not increase the set of languages generated by these
grammars.

In this chapter �rst the notion of semilinearity will be introduced. Then a de�nition of
local TDGs will be given and the semilinearity of the string languages of local TDGs will be
proven. Further, a hierarchy of local TDGs is introduced based on the number of marked
node names, and the classes of rank 0, 1 and 2 of this hierarchy are considered. Then a
pumping lemma for local TDLs of rank n is proven. Finally, synchronous local TDGs are
de�ned and it is shown that the synchronization does not increase the generative capacity of
the grammars.

4.1 De�nition of local TDGs

In this section I will de�ne a restricted version of TDGs called local TDGs. This work was
partly presented in Kallmeyer 1997a.

The main idea of local TDGs is a restriction of the derivation such that it is possible
to describe the derivation process by a context-free grammar. Local TDGs still have the
advantages of TDGs for natural languages and their string languages are semilinear.

Before coming to the introduction of local TDGs, I will present the de�nition of semi-
linearity together with the Parikh-Theorem. This theorem tells us that, if context-freeness
of the derivation process can be shown for a grammar formalism, then semilinearity of the
string languages also can be proven.

4.1.1 De�nition of semilinearity

Semilinearity, introduced in Parikh 1966, is a language property closely related to the so-
called Constant Growth Property. In this section, �rst the Constant Growth Property will
be de�ned and then semilinearity will be introduced. We will see that the Constant Growth
Property is a consequence of semilinearity, i.e. if a language L is semilinear, then the Constant
Growth Property holds for L.

1In Chapter 5 synchronous local TDGs will be used to deal with the relation between syntax and semantics,
and in particular to handle quanti�er scope ambiguities.
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Joshi (1985) introduces the notion of mild context-sensitive grammars (MCSG) by de�ning
three necessary properties of MCSGs. He claims that grammars that are adequate for natural
language structures are in the class of MCSGs. One of the properties of MCSGs is the
Constant Growth Property. The idea of the Constant Growth Property is that the length of
the words in a language grows in a linear way, e.g. fa2

n
j1 � ng does not belong to this class

of languages.
The following de�nition of the Constant Growth Property can be found in Weir 1988,

page 3.

De�nition 4.1 (Constant Growth Property) Let X be an alphabet and L � X� be a
language. The Constant Growth Property holds for L, i� there is a constant c0 > 0 and a
�nite set of constants C � IN n f0g such that for all w 2 L with jwj > c0, there is a w0 2 L
with jwj = jw0j+ c for some c 2 C.

As already mentioned, semilinearity is a more restricted property entailing the Constant
Growth Property.

Let IN be the set of the non-negative integers. (IN;+) is a commutative monoid. For
(a1; : : : ; an); (b1; : : : ; bn) 2 INn and m 2 IN the following operations are de�ned: (a1; : : : ; an)+
(b1; : : : ; bn) := (a1 + b1; : : : ; an + bn) and m(a1; : : : ; an) := (ma1; : : : ;man).

A Parikh mapping is a function counting for each letter of an alphabet the occurrences
of this letter in a word w.

De�nition 4.2 (Parikh mapping) Let X = fa1; : : : ; ang be an alphabet with some (arbi-
trary) �xed order of the elements. The Parikh mapping p : X� ! INn (wrt this order) is
de�ned as follows:
For all w 2 X�: p(w) := (jwja1 ; jwja2 ; : : : ; jwjan ), where jwjai is the ai-length of w (number
of occurrences of ai).
For all L � X�: p(L) := fp(w)jw 2 Lg is the Parikh-image of L.

To de�ne semilinearity we need the de�nition of letter equivalence. Two strings are
letter-equivalent if they contain equal number of occurrences of each terminal symbol, and
two languages are letter equivalent if every string in one language is letter-equivalent to a
string in the other language and vice-versa.

De�nition 4.3 (Letter-equivalent)

1. Two words x1; x2 2 X
� are letter-equivalent, i� there is a Parikh mapping p : X� ! INjXj

such that p(x1) = p(x2).

2. Two languages L1; L2 � X� are letter-equivalent, i� there is a Parikh mapping p : X� !
INjXj such that p(L1) = p(L2).

De�nition 4.4 (Semilinear)

1. Let x0; x1; : : : ; xm; 0 � m be in INn for some n 2 IN.

A set fx0 + n1x1 + � � �+ nmxm jni 2 IN for 1 � i � mg is a linear subset of INn.

2. The union of �nitely many linear subsets of INn is a semilinear subset of INn.

3. A language L � X� is semilinear, i� there is a Parikh mapping p such that p(L) is a
semilinear subset of INn.
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Obviously, the Constant Growth Property holds for semilinear languages. To show this,
the following constants (for the Constant Growth Property) can be chosen: suppose that L
is semilinear, and p(L) � INn is a semilinear Parikh image of L where p(L) is the union of
the linear sets M1; : : : ;Ml. Then the Constant Growth Property holds for L with
c0 := maxf

Pn
i=1 yi j there are x1; : : : ; xm such that

f(y1; : : : ; yn) + n1x1 + � � �+ nmxm jni 2 INg
is one of the sets M1; : : : ;Mlg,

C := f
Pn
i=1 yi j there are x1; : : : ; xm such that

fx1 + n1(y1; : : : ; yn) + � � �+ nmxmjni 2 INg
is one of the sets M1; : : : ;Mlg

Clearly, each language that is letter-equivalent to a semilinear language is semilinear as
well, since the Parikh-images of the two languages are equal.

As Parikh (1966) has proven, the following proposition holds:

Proposition 4.1 (Parikh-Theorem) Each context-free language is semilinear.

Therefore, in order to show the semilinearity of some language L, it is suÆcient to show
that L is letter-equivalent to a context-free language.

It seems to be plausible that the Constant Growth Property and even the more restricted
semilinearity hold for natural languages (see Joshi 1985 and Vijay-Shanker et al. 1987). As far
as I know, the only example for a possibly non-semilinear phenomenon in natural language is
case stacking in Old Georgian (see Michaelis and Kracht 1996). Since there are no speakers of
Old Georgian, it is diÆcult to test whether there is really a (theoretically) in�nite progression
of stacking possible. As long as these are the only examples, there is no reason to assume
natural languages not to be semilinear.

Consequently, if a grammar formalism is intended to capture human language capacity,
it should be expected to provide for semilinearity of the string languages it generates.

4.1.2 Local descriptions

In the following, local TDGs will be introduced. As already mentioned above, local TDGs are
TDGs where the derivation process is restricted in such a way that it can be captured by a
context-free grammar. The nonterminals of this grammar describe states of single elementary
descriptions used in the course of the derivation in the TDG. (Here the term \state" is not
used in a technical sense. A state consists of an elementary description and information about
the node names occurring in this description, e.g. whether a node name is a leaf name in the
derived description.)

To obtain context-freeness of the derivation, the restriction must be such that a single
derivation step only depends on one single elementary description that was added before
and, besides this elementary description, the state of no other elementary description added
before is modi�ed by this derivation step. This elementary description is called the derivation
description of this derivation step. If the derivation process is context-free, then it can be
shown that each local Tree Description Language (local TDL, string language of a local TDG)
is letter-equivalent to some context-free language. As context-free languages are semilinear
(see Prop. 4.1), one can conclude that local TDLs are semilinear.

The main di�erence between local TDGs and TDGs in general is that in local TDGs
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1. in one derivation step all node names in the old description that are used for new
node name equivalences added in this step have to be part of one single elementary
description (the derivation description), and

2. if a node name is used in more than one derivation step to introduce new node name
equivalences, then only in the �rst of these steps this may cause a modi�cation of old
states.

To understand the intuitions behind the de�nitions of local descriptions and of derivations
in local TDGs, it is helpful to have an idea of the way the nonterminals of the context-free
grammar GCF describing the derivation look like. These nonterminals describe the states of
elementary descriptions used in the course of a derivation. For a description � derived in the
TDG, in the corresponding derivation in GCF there is one nonterminal (state) Z d for each
start or elementary description  d added in the course of the derivation of �. Z d speci�es
in which way the names of  d can be used in a new derivation step. Furthermore the states
specify whether the derived description has a minimal tree. For each node name k in  d
that has not yet been used to introduce a new node name equivalence, Z d gives information
about

(a) whether k has a parent or daughter in �,

(b) whether k is minimal or a leaf name in � and

(c) whether k is strongly dominated by a name k0 such that � ` a(Æ(k0)) � v for certain
a 2 A and v 2 V [ f?g in GT .

Instead of the third information (c) for k, it is also possible to de�ne a local variant of
TDGs such that the relevant information (besides (a) and (b)) is the following:

(c') whether k strongly dominates a name k0 such that � ` a(Æ(k0)) � v for certain a 2 A
and v 2 V [ f?g in GT .

But it is not possible to have a context-free derivation grammar with (c) and (c') encoded
in the nonterminals for each k. As we will see later, for each description � that is elementary
or derived in a local TDG and for each k 2 node(�): if k is strongly dominated by any
name, then the attribute value pairs of all the names strongly dominating k are all the
same. Therefore I choose to encode the property (c) and not (c') in the states of elementary
descriptions.

As an example of a context-free grammar describing derivations in a (local) TDG, consider
Fig. 4.2. For this example, labels S1 and S2 are used instead of feature structures. Each
nonterminal (state) in the context-free grammar is a pair of a description from the TDG
(either �S or  1 or  2) and a conjunction that encodes information about the node names
occurring in this description. The �rst production signi�es that a derivation in the TDG
starts with the start description �S where the node name k2 is strongly dominated by a
node name with nonterminal S1 (encoded by dom"(k2; S1)) and the terminal c is added.
The following two productions express that to �S either  1 or  2 can be added. In both
cases, the state of �S is modi�ed in such a way that k1 and k2 have been used for new
equivalences (equ(k1) ^ equ(k2)). The state of the new elementary description is such that
the marked name has a child since it becomes equivalent to k2. In the third production (i.e.
when adding  2 to �S in the TDG), the two terminals a; b are added, and the node name
k8 is strongly dominated by a node name with nonterminal S1. From a state of �S with
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�S S1 k1

S2 k2

c

 1 S1 k4

S1 k5

S�2 k6

 2 S1 k7

S2 k8

a S�2 k9 b

Letter-equivalent context-free grammar (S is the start symbol and fa; b; cg is the
terminal alphabet):

S ! h�S ; dom"(k2; S1)ic
h�S ; dom"(k2; S1)i ! h�S ; equ(k1) ^ equ(k2)ih 1; child(k6)i
h�S ; dom"(k2; S1)i ! h�S ; equ(k1) ^ equ(k2)ih 2; child(k9) ^ dom"(k8; S1)iab
h�S ; equ(k1) ^ equ(k2)i ! �
h 1; child(k6)i ! �
h 2; child(k9)^dom"(k8; S1)i ! h 2; child(k9)^equ(k7)^equ(k8)ih 1; child(k6)i
h 2; child(k9) ^ dom"(k8; S1)i !
h 2; child(k9) ^ equ(k7) ^ equ(k8)ih 2; child(k9) ^ dom"(k8; S1)iab

h 2; child(k9) ^ equ(k7) ^ equ(k8)i ! �

Figure 4.2: Sample TDG with a letter-equivalent context-free grammar

equ(k1)^ equ(k2), the empty word can be derived since no further description must be added
with �S as derivation description in order to obtain a description that has a minimal tree.
The same holds for  1 if k6 has a child (see the �fth production). To  2, either  1 or  2

can be added (sixth and seventh production) similar to adding  1 or  2 to �S . Once  2 was
used as a derivation description with new equivalences for k7 and k8, no further derivation
step must be performed with this description as derivation description (see last production).
The states used in this context-free grammar are slightly simpli�ed compared to those that
will be used later, the example serves only as an illustration of the idea of a context-freee
grammar describing the derivation.

As already mentioned, for a derivation step with an old description � and a derivation
description  d, the following must be the case: no other state of some elementary description
 that was added before can be in
uenced by this derivation step. This means that Z d (in
the derivation in GCF corresponding to the derivation of � in the TDG) not only is the state
on which the derivation step depends but it is also the only state that is modi�ed by this
step. To guarantee that this is the case, the form of the descriptions and the derivation mode
must be restricted. Roughly said, the idea of the local derivation mode is that all parts of
the new elementary  that are between two marked or minimal names, must be \inserted"
into one single strong dominance �1 `s k �

� k0 with k0 2 node( d).

The restricted descriptions allowed in local TDGs are called local descriptions. The de-
scription  1 in Fig. 4.3 for example is local whereas  2 and  3 are not local descriptions. The
reason why descriptions similar to  2 should not be allowed, is the following: when adding
this description, the subdescription with names k13; k14 and k15 will be \inserted" between
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two node names of a strong dominance k1�
� k2 where the marked k15 will become equivalent

to k2. But it is not clear where to put the subdescription with k10; k11 and k12. If one of the
names k10; k11 or k12 was marked, then  2 would be local. Independet from marked names,
 3 should not be local because the minimal name k16 is parent of k17 and k18. The prob-

lem with this description is that in a derivation step �1
 3) �2, k16 might be identi�ed with

some name k strongly dominating some k0 in �1. Then the information about whether k0 is
strongly dominated by some name labelled by certain attribute value pairs might change. If
k0 does not belong to the derivation description, this means that the state of some elementary
description has changed that should not be in
uenced by this derivation step. Therefore each
marked or minimal name dominating any other minimal names must not have any daughters.

 1 k1

k2

k3 k4

k5

k�6

 2 k9

k10 k13

k11 k12 k14 k�15

 3 k16

k17 k18

k19

k�20

Figure 4.3: Local and non-local elementary descriptions

To avoid some special cases, local descriptions shall be K-minimal, i.e. for a local descrip-
tion � and two names k1; k2 2 node(�): � ` k1 � k2 holds i� k1 = k2 (see Def. 3.18 on page
87).

De�nition 4.5 (Local description) Let G be a TDG. An elementary description  in G
is local i�  is K-minimal and for all k1; k2; k3 2 node( ):

1. If  `s k2 �
� k1, and  `s k3 �

� k1, then k2 = k3.

2. If  `s k1 �
� k2,  `s k1 �

� k3 and k2 6= k3,

then: k1 2M , and there are k4; k5 2 K with  ` k2 �
� k4 ^ k3 �

� k5.

3. If k1; k2 2M with k1 6= k2 and  ` k1 �
� k2, such that there is no further marked name

between k1 and k2,

then there is a k such that  `s k1�
�k and  ` k��k2, and for all k 2 K : if  ` k�

�k ,
then  ` k2 �

� k .

4. If k1; k2 2 M are as in 3., and if there are k4; k5 with  ` k4 �
� k5,  `s k1 �

� k4 and
 `s k5 �

� k2,

then there is no k 6= k4 with  `s k1 �
� k, and for all a 2 A there is a v 2 V [ f?g with:

 ` a(Æ(k1)) � v ^ a(Æ(k2)) � v ^ a(Æ(k4)) � v ^ a(Æ(k5)) � v.

According to this de�nition, in a local description no name may be strongly dominated by
more than one other name (see 1. axiom), and only marked or minimal names k are allowed
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 1 k1

k

: : : : : :

k2

 2 k1

k4

k5

k2

Figure 4.4: Possible forms of local descriptions

to strongly dominate more than one other name. In the last case, each of the names strongly
dominated by k must again dominate some further marked name (2. axiom). Furthermore
each marked or minimal name dominating another marked name must strongly dominate
some name (3. axiom). For marked names k2 where k1 is the next marked or minimal name
dominating k2 and k1 �

� k2 is not a strong dominance, there are two possibilities (3. and 4.
axiom):

1. Either (see  1 in Fig. 4.4) k2 has a parent and k is the name with  `s k1 �
� k and

 ` k �� k2, and there are no further marked names allowed that are dominated by k
without being dominated by k2.

2. Or (see  2 in Fig. 4.4) k2 and k1 are such that underspeci�cation can occur. Then there
are k4 and k5 with  `s k1�

�k4 and  `s k5�
�k2. In this case k4; k5; k1 and k2 are labelled

by the same attribute value pairs, and there are no other names strongly dominated by
k1. As in the �rst case, there are no other marked names dominated by k4 without being
dominated by k2.

In the second case, the pair (k1; k2) is called an underspeci�cation pair:

De�nition 4.6 (Underspeci�cation pair) Let  be a local elementary description in a
TDG G.

(a) (k1; k2) is called an underspeci�cation pair in  , i�

1. k1; k2 2M ,

2. there are k3 6= k2 and k4 6= k1 with  `s k1 �
� k3,  `s k4 �

� k2 and  ` k1 �
� k4 ^

k3 �
� k2,

3. and there is no further marked name between k1 and k2.

(b) k 2 node( ) is called top-underspeci�ed i� there is a k0 such that (k; k0) is an under-
speci�cation pair in  .

(c) k 2 node( ) is called bottom-underspeci�ed i� there is a k0 such that (k0; k) is an un-
derspeci�cation pair in  .

The elementary descriptions in Fig. 3.5 (p. 78), 3.7 (p. 80), 3.20 (p. 100), 3.21 (p. 101),
3.23 (p. 103) and also 3.24 (p. 105) in Chapter 3 are all local descriptions. The description
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Local derivation steps �S
 d) � with derivation description �S and �

 
) �0 with

derivation description  d:

�S k1

k2 k5

k3 k6

k4

 d k7

k�8

k9

� k1 � k7

k2 k5

k3 k6 � k8

k4 k9

� k1 � k7

k2 k5

k3 k6 � k8

k4 k9

 k10

k11

k12 k13

k14

k15

�0 k1 � k7 � k10

k2 k5

k3 k11

k4 k12 k13

k14

k6 � k8 � k15

k9

Figure 4.5: Examples of local derivation steps

 (v2) in Fig. 3.22 on page 102 is not local because the 1. condition in Def. 4.5 does not hold
for it. Other examples of non-local descriptions are  2 and  3 in Fig. 4.3.  2 is not local
because the 2. axiom in Def. 4.5 is not ful�lled, and  3 is not local because the 3. axiom does
not hold.

A local TDG is a TDG containing only local descriptions (the start description is viewed
as a local description with no marked names):

De�nition 4.7 (Local TDG) A TDG G is a local TDG, i� the start description (with an
empty set of marked names) and all elementary descriptions in G are local.

4.1.3 Local derivations

The notion of locally derivable with respect to a local TDG G, �1 ) �2, for descriptions �1
and �2 can be inductively de�ned. As already explained, the main ideas of the de�nition of

a local derivation step �1
 
) �2 are
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1. to use only names from one elementary description  d in the old description �1,

2. to use each name at most once for a derivation step by which the properties (a), (b), (c)
mentioned on page 114 encoded in the states may be changed for this name, and

3. to insert \subtree descriptions" (e.g. the part with k2; k3; k4 in the description  1 of Fig.
4.3) into strong dominances �1 `s k �

� k0 with k0 2 node( d).

The derivation steps shown in Fig. 4.5 are for example local. In the �rst step �S
 d) � the

state of �S is modi�ed. In the second step �
 
) �0 only the state of  d in the old � is changed:

k7 and k8 are used to introduce new node name equivalences, and the subdescription of  
between k11 and k15 is inserted into the strong dominance � `s k5 �

� k8 with k8 2 node( d).
The only modi�cation of properties of a name not occuring in  d concerns k6. In �, k6 is
strongly dominated whereas in �0, k6 has a parent, i.e. the properties (a) and (c) are changed
for k6. However, the properties of k6 are the same as those of k8. Since k6 cannot be used
any more for \state changing" new equivalences (it has already been used for k6 � k8), it
is suÆcient to observe k8 instead of k6. Similarly, after the derivation of �0, k8 is no longer
directly observed but the properties of k15 are then important. When deciding whether �0 has
a minimal tree, the properties of k15 must be such that strong dominances can be eliminated.
If this is the case, then the same holds for k6 and k8 as well.

Local derivation step �
 
) �0 with an underspeci�cation pair:

� k1

k2

k3 k4 k7

k5

k6

 k8

k9

k10 k11

k�12

�0 k1 � k8

k2 k9

k3 k4 k7 k10 k11

k5 � k12

k6

Figure 4.6: Local derivation step with an underspecification pair

Exceptions from the idea to insert the part between two marked or minimal names into
one strong dominance are the parts of a description that are between two names of an
underspeci�cation pair, e.g. between k8 and k12 in  in Fig. 4.6. In derivation steps involving
underspeci�cation pairs the derivation must be such that the decision whether a derived
description � has a minimal tree or not depends only on the single states of the elementary
descriptions used to derive �. To guarantee this, it will not be allowed to use a bottom-
underspeci�ed name in the old description for the introduction of a new equivalence with a
name that is not bottom-underspeci�ed. Fig. 4.6 shows an example of a local derivation step
resulting in an underspeci�ed representation.
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In the following de�nition of local derivation, axiom (L1) is the same as (A1) in the
derivation de�nition 3.13, p. 76 for TDGs, and (A2) is a consequence of (L2). (A3) is a
consequence of (L3)(ii) and the form of the local descriptions. (A4) follows from (L3) and
(L4). Therefore, a result of a local derivation step satis�es the axioms (A1) to (A4) for
derivations in TDGs.

De�nition 4.8 (Local derivation in a local TDG) Let G be a local TDG, �1 and �2 be
descriptions with �S

�
) �1, and let  be K-equivalent to a (local) elementary description in

G.
�1

 
) �2 holds i� there is a  d with  d = �S or �S

�
) �

 d) �0
�
) �1, such that:

(L1) �2 ` �1 ^  .

(L2) For all k 2 node( ): k 2M 

i� there is a k� 2 node(�1) with �2 ` k� � k 
i� there is exactly one kd 2 node( d) with �2 ` k � kd and �1 ` k� � kd for all
k� 2 node(�1) with �2 ` k� � k .

(L3) For all k 2M ; kd 2 node( d) with �2 ` k � kd:

(i) If there is a k 6= kd with �1 ` k � kd such that either  d = �S or (�S
�
) �

 d)
�0
�
) �1) �

0 6` k � kd, then:

- either k is a leaf name or there is a km 2M with  ` k �
� km, or k and

k are both top-underspeci�ed.

- either k is minimal or there is a km 2 M with  `s km �
� k or k and k

are both bottom-underspeci�ed, and

- for all a 2 A; v 2 V [ f?g: if  ` a(Æ(k )) � v, then �1 ` a(Æ(kd)) � v.

(ii) If there is no km 2M n fk g with  ` k �
� km, then either kd is leaf name in

�1 or k leaf name in  .

(iii) If there is a km 2 M n fk g with  ` km �
� k and no more marked names

between km and k such that (km; k ) is no underspeci�cation pair, and if there
is a k 6= k with  `s km �

� k and  ` k �� k , then:

kd is not bottom-underspeci�ed in  d, and there is a k0 with �1 `s k
0
�
� kd such

that for all k00: if  ` k �� k00, then �2 ` k
0
�
� k00.

(iv) If k is top-underspeci�ed, then there is a k with �1 `s kd �
� k.

If k is bottom-underspeci�ed, then there is a k with �1 `s k �
� kd.

(L4) For all �3 ful�lling (L1) to (L3), the following holds:

Let f1; f2 2 KK be mappings with f1(k) = f2(k) = k for all k =2 M , and for all
km 2 M , there are k1; k2 2 node(�1) with �2 ` k1 � km and �3 ` k2 � km such that
f1(km) = k1 and f2(km) = k2.

Then the following holds: if f̂1(�2) ` f̂2(�3), then f̂2(�3) ` f̂1(�2).

 d is called the derivation description of the derivation step �1
 
) �2.

Note that the result of a local derivation step need not satisfy the axioms of local descrip-
tions (e.g. �0 in Fig. 4.6).

With (L2), all names in �1 used in one derivation step to add new node name equivalences
are part of one single elementary description, the derivation description. Furthermore, as in
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the case of general TDGs, for a k 2 node( ) there is a new equivalence i� k is marked or
minimal and for each marked or minimal name there is exactly one equivalent name in the
derivation description.

(k1; k2) is no underspeci�cation pair in  :

�1 : : :  : : :

k3
k1

k
insert
 

k4

k2
: : : : : :

�1
 
) �2
;

�2 : : :

k1�k3

k

k2�k4

: : :

(k1; k2) is an underspeci�cation pair in  

: : : : : :
�1  

k3 k1

insert
 

k4 k2

: : : : : :

�1
 
) �2
;

: : :
�2

k1�k3

k2�k4

: : :

Figure 4.7: General form of local derivations

Because of (L3), the following holds:

- With (i) for a marked k , the equivalent name kd in �1 may be a name that was already
used to introduce an equivalence kd � k in a preceding derivation step. But this is only al-
lowed if k (a) is a leaf name or dominates another marked name, (b) is minimal or strongly
dominated by some other name, and (c) does not add any information concerning the la-
bels of the equivalent node names. Furthermore, if k is top- (or bottom-)underspeci�ed,
then k must also be top- (or bottom-)underspeci�ed.
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In other words, a name kd in the old �1 may be used in more than one derivation step to
introduce new node name equivalences, but this is only allowed if, apart from the �rst, all
further new equivalences with this name do not modify the information with respect to
kd encoded in the state of the derivation description.

- With (ii) a marked or minimal name in  not dominating any other marked name either is
a leaf name or it is identi�ed with a leaf name in �1, i.e. an operation similar to substitution
in TAGs takes place.

- With (iii) everything between two marked or minimal names must be \inserted" into
one single strong dominance. Furthermore, only minimal names or bottom-underspeci�ed
names k can be identi�ed with bottom-underspeci�ed names kd in the old description.

- With (iv), for two names k1; k2 in  that are are minimal or marked and that form an
underspeci�cation pair (k1; k2), k1 must be identi�ed with a name that is on the left side
of a strong dominance in �1, and k2 must be identi�ed with a name that is on the right
side of a strong dominance.

As in the case of general TDGs, the result of a derivation step must be maximally under-
speci�ed. This is expressed by (L4).

With the local derivation mode, for two names k1; k2 in  with  ` k1 �
� k2 that are

either minimal or marked with no more marked names in between such that  `s k1 �
� k2

does not hold: let k3; k4 be in �1 with �2 ` k3 � k1 ^ k4 � k2. Then the derivation has one
of the two forms shown in Fig. 4.7.

The languages generated by a local TDG are de�ned similar to those generated by TDGs,
but with a local derivation mode.

De�nition 4.9 (Language of a local TDG) Let G = (A; V; T;D; �S) be a local TDG.

1. The local description language of G is LlD(G) := f� j�S
�
) �g.

2. The local tree language of G is

LlT (G) := fB j there is a � 2 LlD(G) such that B is a minimal tree of �g.

3. The local string language of G is

LlS(G) := fw j there is a B 2 LlT (G) with w = yield(B)g.

A language L is a local Tree Description Language (local TDL) i� there is a local TDG G
with L = LlS(G).

A sample local TDG is given in Fig. 4.8. This local TDG generates the string language
fw1w2 jw1w2 2 fa; bg

� and w1 and w2 are letter-equivalentg in such a way that for each
w2 2 fa; bg

� one single description is derived. The minimal trees of this description yield all
w1w2 with w1 letter-equivalent to w2.

Clearly the languages fak1a
k
2 : : : a

k
n j k 2 INg for n � 5 and the copy languages fwn jw 2 T �g

for n � 3 (see Fig. 3.10 on page 83 and 3.11 on page 84) are local Tree Description Languages.
It is easy to construct an equivalent local TDG GL for each TAG GA. (This will be done in
the proof of Prop. 4.8.) Consequently, local TDLs are a proper superset of TALs.

Derivation steps similar to substitution and adjunction in TAGs as in Fig. 3.5 (p. 78) and
3.7 (p. 80) are possible in local TDGs. In contrast to TDGs as presented in Chapter 3, even
the following holds: if an elementary description  with K = ; is added in a derivation



4.1. DEFINITION OF LOCAL TDGS 123

Local TDG G for the string language fw1w2 jw1w2 2 fa; bg
� and w1 and w2 are

letter equivalentg:

S k1

�S S k2

S k3

� k4

 1 S k5

S k6

a k7 S k8

S� k9

S k10

a k11 S� k12

 2 S k13

S

b S

S� k17

S

b S� k20

For w2 = aba, the following description � is derived:

� S

S S S

a S a S b S

S

S

a S

b S

a S

�

with fw1w2 jw1w2 = yield(B) for a minimal tree B of �g
= faababa; abaaba; baaabag

Figure 4.8: Sample local TDG
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step, then the minimal name must be identi�ed with a leaf name in the old description and
therefore the derivation step must be a kind of TAG-substitution. Consequently a derivation
step as shown in Fig. 3.6, p. 79 is not local. Similarly, for adjunction-like derivation steps:
if an elementary description with exactly one marked name is added such that this marked
name is a leaf name, then all node names except the minimal name must be inserted into
one single strong dominance in the old description, and therefore the derivation step must be
similar to adjunction.

Subsertion-like derivation steps as in Fig. 3.23 (p. 103) are also possible. In the case of
Fig. 3.23, all node names used for new equivalences are taken from the description �1 that
is an elementary description anchored by the verb penses-tu. Therefore this derivation step
is local. However, subsertion in TDGs also can be non-local, and therefore such derivation
steps are not generally possible in local TDGs.

Concerning underspeci�cation, derivations as shown in Fig. 3.24 on page 105 are still pos-
sible because in the new elementary description the minimal name and the marked name have
the same attribute value pairs, and they are identi�ed with names from the same elementary
description. In contrast to this, underspeci�ed representations for PP-attachment as in Fig.
3.25 on page 106 are no longer allowed because the node names chosen for new equivalences
belong to di�erent elementary descriptions. A derivation of underspeci�ed representations for
PP-attachment ambiguities is not generally excluded, but if the linguistic principles underly-
ing TAGs, in particular the uniqueness of the anchor for an elementary tree or description are
adopted, then a single description must be derived for each of the two readings. Nevertheless
local TDGs seem to be more suitable for natural languages than (general) TDGs because,
as we will see later, as a consequence of the local derivation certain restrictions (e.g. island
conditions for quanti�er scope) result from the grammar formalism.

Obviously the properties (LP), (D) and (L) (see Lemmata 3.3, 3.4 and 3.5 in Section
3.3) hold also for derivations in local TDGs. Therefore the derivation procedure given in
Section 3.3 can be easily modi�ed for local TDGs, and it can be shown that for lexicalized
local TDGs the word problem is decidable.

4.2 Formal properties of local TDGs

In this section, �rst the semilinearity of local TDLs is shown, and then set-local MC-TAGs
and local TDGs are compared. Although there are obvious similarities between these two
formalisms, we will see that they are not derivationally equivalent.

4.2.1 Semilinearity of local TDLs

The semilinearity of local TDLs is proven by showing that each local TDL is letter-equivalent
to a context-free language. Since context-free languages are semilinear (Parikh 1966), it can
then be concluded that local TDLs are also semilinear.

To facilitate further considerations concerning formal properties of local TDGs, I will
now introduce the notion of label complete local TDGs. Roughly said, a local TDG is label
complete if for all node names the labels are fully speci�ed.
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De�nition 4.10 (Label complete) A local TDG G is label complete, i� for all elementary
or start descriptions  in G and for all k 2 node( ): for each a 2 A there is a v 2 V [ f?g
with  ` a(Æ(k)) � v, and for all t 2 T [ f�g either  ` Æ(k) � t holds or  ` :Æ(k) � t.

It can be easily shown that for each local TDG a weakly (and even derivationally) equiv-
alent label complete local TDG can be constructed:

Lemma 4.1 For each local TDG G there is a label complete local TDG G0 such that G and
G0 are weakly and derivationally equivalent.

Proof Assume G = (A; V; T;D; �S) to be a local TDG with V = fv1; : : : ; vng and T =
ft1; : : : ; tmg.
Construction of a label complete equivalent TDG G0 = (A0; V 0; T;D0; �0S):

1. A0 := A [ fstartg with start =2 A, V 0 := V [ fyes; nog.

2. Elementary descriptions:

D0 := D [ fh�S ; ;ig.

For all h ;K i 2 D
0 and all k 2 node( ): add the conjunct start(Æ(k)) � no to  .

Dtemp := D0.

(�) For all h ;K i 2 Dtemp: if there is a k 2 node( ) and an a 2 A such that there is no
v 2 V [ f?g with  ` a(Æ(k)) � v, then:

(i) If  0 :=  ^ a(Æ(k)) � ? is a description, then add h 0;K i to D
0.

(ii) For all i, 1 � i � n (n = jV j): if  i :=  ^ a(Æ(k)) � vi is a description, then
add h i;K i to D

0.

(iii) Remove h ;K i from D0.

Dtemp := D0.

Repeat (�) until for all h ;K i 2 D0, for all k 2 node( ) and for all a 2 A there is a
v 2 V [ f?g with  ` a(Æ(k)) � v.

(��) For all h ;K i 2 Dtemp: if there is a k 2 node( ) such that for all a 2 A there is no
v 2 V with  ` a(Æ(k)) � v, and such that there is no t 2 T [ f�g with  ` Æ(k) � t,
then:

(i) If  0 :=  ^ Æ(k) � � is a description, then add h 0;K i to D
0.

(ii) For all i, 1 � i � m (m = jT j): if  i :=  ^ Æ(k) � ti is a description, then add
h i;K i to D

0.

(iii) Remove h ;K i from D0.

Dtemp := D0.

Repeat (��) until the condition for label completeness holds for G0.

For all h ;K i 2 D
0 where  was obtained from �S :

if km minimal in  , choose a new name k and then:

 new :=  ^ k � km ^ start(Æ(k)) � yes
V
fa(Æ(k)) � ? j a 2 Ag.

Replace h ;K i by h new;K i.
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3. Start description: �0S := start(Æ(ks)) � yes
V
fa(Æ(ks)) � ? j a 2 Ag for some new node

name ks.

The result is a local TDG G0 = (A0; V 0;D0; �0S) that is label complete.

Clearly, LlS(G) = LlS(G
0) holds and G and G0 are even derivationally equivalent.

2

Note that the only reason why G and G0 in this lemma are not strongly equivalent, is
the introduction of an additional name k with start(Æ(k)) � yes for all descriptions obtained
form the start description in G. This is necessary in order to have one single start description.
For each B 2 LlT (G), there is exactly one tree in LlT (G

0) consisting of one root node with the
tree B as single daughter.

Up to now I have only considered the strings yielded by trees. For the proof of the
semilinearity of local TDGs I need the notion of the set of strings yielded by a description �.
These are the strings that can be obtained by reading the terminals in the leaf names from
left to right. Since linear precedence is not necessarily completely speci�ed, there might be
more than one string in the yield of a description. (E.g., the yield of the description � in
Fig. 4.8 is the set faababa; abaaba; baaabag.) Even for descriptions with leaf names labelled
by nonterminals, the yield is de�ned. In this case, only the leaf names with terminal labels
are taken into account.

De�nition 4.11 (Yield of a description) Let � be a description with terminals T such
that for all leaf names k1; k2 in �, either � ` k1 � k2 or � ` k1 6� k2.
KT
� := fk j k is leaf name in � and there is a t 2 T [ f�g with � ` Æ(k) � tg.

Let n be the number of equivalence classes of the relation R � KT
� �K

T
� with hk1; k2i 2 R i�

� ` k1 � k2. Then the yield of � is
Y ield(�) := fw = t1 : : : tn j there are k1; : : : ; kn 2 K

T
� with � ` :ki � kj

and � 6` :ki � kj for all 1 � i < j � n,
and � ` Æ(ki) � ti for 1 � i � ng

The elements in the yield of a description are all letter-equivalent. Clearly, if a description
has a minimal tree, then the yield of this tree is in the yield of the description.

Now semilinearity of local TDLs will be shown by proving letter equivalence of local TDLs
and context-free languages. As already explained above, the main idea of the proof is that the
productions of the context-free grammar describe possible derivation steps. The nonterminal
symbols of GCF describe states of elementary descriptions used in the course of the derivation
of some description �. They should contain enough information to determine in which way
the corresponding description can be used for another derivation step. These nonterminals
are pairs consisting of an elementary or start description  and a conjunction containing for
each k 2 node( ) the following conjuncts:

� par(k) or :par(k) which signi�es either that k has a parent in the derived � or that there
is no parent of k in �,

� child(k) (signifying that k is parent of some k0 in �) or :child(k)

� leaf(k), which means that k is a leaf name in �, or :leaf(k),

� min(k) (i.e. k is minimal in �) or :min(k),
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� equ(k), signifying that k was already used for the introduction of a new node name equiv-
alence, or :equ(k),

� top(k), meaning that there is a top-underspeci�ed k0 with � ` k � k0, or :top(k),

� bot(k), meaning that there is a bottom-underspeci�ed k0 with � ` k � k0, or :bot(k),

� for each X � A� (V [ f?g), either dom"(k;X) (this means that k is strongly dominated
by some name with feature structure X) or :dom"(k;X) is one of the conjuncts.

As an example, I will give the letter-equivalent context-free grammar for the local TDG
G in Fig. 4.8 with LlS(G) = fw1w2 jw1w2 2 fa; bg

� and w1 and w2 are letter equivalentg. In
the productions of the context-free grammar only the relevant parts of the conjunctions are
given, i.e. those parts that are not already implied by  itself.

The context-free grammar contains the following productions:

p1: S ! h�S ; : : :i

p2: h�S ; : : :i ! �

p3: h�S ; : : :i !

a a

h�S ; equ(k1) ^ equ(k2) ^ equ(k3) ^ par(k3) ^ top(k1) ^ bot(k2) : : :i

h 1; child(k12) : : :i

p4: h�S ; : : :i !

b b

h�S ; equ(k1) ^ equ(k2) ^ equ(k3) ^ par(k3) ^ top(k1) ^ bot(k2) : : :i

h 2; child(k20) : : :i

p5: h�S ; equ(k1) ^ equ(k2) ^ equ(k3) ^ par(k3) ^ top(k1) ^ bot(k2) : : :i ! �

p6: h 1; child(k12) : : :i ! �

p7: h 1; child(k12) : : :i !

a a

h 1; child(k12) ^ equ(k5) ^ equ(k9) ^ equ(k10) ^ par(k10) : : :i

h 1; child(k12) : : :i

p8: h 1; child(k12) : : :i !

b b

h 1; child(k12) ^ equ(k5) ^ equ(k9) ^ equ(k10) ^ par(k10) : : :i

h 2; child(k20) : : :i

p9: h 1; child(k12) ^ equ(k5) ^ equ(k9) ^ equ(k10) ^ par(k10) : : :i ! �

p10: h 2; child(k20) : : :i ! �

p11: h 2; child(k20) : : :i !

a a

h 2; child(k20) ^ equ(k13) ^ equ(k17) ^ equ(k18) ^ par(k18) : : :i

h 1; child(k12) : : :i

p12: h 2; child(k20) : : :i !

b b

h 2; child(k20) ^ equ(k13) ^ equ(k17) ^ equ(k18) ^ par(k18) : : :i

h 2; child(k20) : : :i
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p13: h 2; child(k20) ^ equ(k13) ^ equ(k17) ^ equ(k18) ^ par(k18) : : :i ! �

The production p1 signi�es that the derivation (in the TDG) has to start with �S . Ac-
cording to p2, the derivation can already stop with �S, in other words �S has a minimal tree.
With p3 and p4,  1 or  2 can be added to �S using k1; k2 and k3 in �S for new equivalences.
The production p5 is the only production with h�S ; equ(k1) ^ equ(k2) ^ equ(k3) ^ par(k3) ^
top(k1) ^ bot(k2) : : :i on the left side. This corresponds to the fact that �S cannot be used
more than once as derivation description. With p6 to p9, the description  1 can be used at
most once as derivation description. If it is used as derivation description, then either  1 or
 2 is added and in this derivation step the names k5; k9 and k10 in  1 are used to introduce
new equivalences. Similarly, with p10 to p13,  2 can be used at most once as derivation
description, and in this case new equivalences for the names k13; k17 and k18 are added.

The derivation leading to the description � in Fig. 4.8 in the local TDG is then described
by the following context-free derivation:

S ) h�S ; : : :i

) aah�S ; equ(k1) ^ equ(k2) ^ equ(k3) ^ par(k3) ^ top(k1) ^ bot(k2) : : :i

h 1; child(k12) : : :i

) aah 1; child(k12) : : :i

) bbaah 1; child(k12) ^ equ(k5) ^ equ(k9) ^ equ(k10) ^ par(k10) : : :i

h 2; child(k20) : : :i

) bbaah 2; child(k20) : : :i

) aabbaah 2; child(k20) ^ equ(k13) ^ equ(k17) ^ equ(k18) ^ par(k18) : : :i

h 1; child(k12) : : :i

) aabbaah 1; child(k12) : : :i

) aabbaa

The string derived here is letter-equivalent to all words in the yield of �.

Proposition 4.2 (Letter-equivalence of local TDLs and CFLs) Let GT be a local
TDG. Then there is a context-free grammar GCF such that LlS(GT ) is letter-equivalent to
L(GCF ).

Proof Let GT = (A; V; T;D; �S) be a local TDG. Without loss of generality let GT be label
complete.

Construction of a letter-equivalent context-free grammar GCF := (N;T; P; S):

1. GCF has the same terminals T as GT .

2. For each node name k de�ne
Fk := fpar(k); child(k); leaf(k);min(k); top(k); bot(k); equ(k)g

[ fdom"(k;X) jX � A� (V [ f?g) such that for each a 2 A
there is exactly one v 2 V [ f?g with ha; vi 2 Xg

The nonterminals are states Z of the form Z = �Z ^ �Z with:

- �Z = �S or there is a K� � node(�Z) such that h�Z ;K�i 2 D.

- �Z is a conjunction containing for all k 2 node(�Z) and all formulas  2 Fk either  
or : as conjunct. These are all conjuncts in �Z .
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Additionally N contains a start symbol S di�erent from all other nonterminals.

An entailment relation between descriptions derived from �s and states is de�ned:

Let Z� = ��Z ^ �
�
Z be equivalent to a Z 2 N (\equivalent" is used in the sense of K-

equivalence, i.e. it means that Z and Z� only di�er in a bijection of K).

De�nition: entailment of Z� by a description � with �S
�
) � (written � j= Z�) is

inductively de�ned:

(a) � j= equ(k) i� there are �1; �2 such that �S
�
) �1 ) �2

�
) �, k 2 node(�1) and there

is a k0 =2 node(�1) such that �2 j= k � k0.

(b) � j= par(k) i� either � j= equ(k) or there is a k0 such that � j= k0 � k.

(c) � j= child(k) i� either � j= equ(k) or there is a k0 such that � j= k � k0.

(d) � j= leaf(k) i� either � j= equ(k) or k is a leaf name in �.

(e) � j= min(k) i� k is minimal in �.

(f) � j= top(k) i� there is a  and a top underspeci�ed k0 in  with �S
�
) �1

 
) �2

�
) �

and � ` k � k0.

(g) � j= bot(k) i� there is a  and a bottom underspeci�ed k0 in  with �S
�
) �1

 
)

�2
�
) � and � ` k � k0.

(h) � j= dom"(k;X) i� either � j= equ(k) or there is a k0 with � `s k
0
�
� k and � j=

a(Æ(k0)) � v for all ha; vi 2 X.

(i) Apart from this, entailment is de�ned as usual (see Def. 3.3 on page 57).

3. S is the start symbol in GCF .

4. Productions P :

(i) If ZS = �S ^ �S is a state with �S j= �S , then for one (arbitrarily chosen) ws 2
Y ield(�S):

S ! wsZS 2 P

(ii) Let Z and Z 0 be states either for the same elementary description or both for the
start description, let Znew be a state for some elementary  , and let w 2 Y ield( ).
Then

Z ! w Z
0Znew 2 P

i� for all � with �S
�
) � such that there is a Z� = �� ^ �� equivalent to Z with

� j= Z�:

There are states Z 0� = �0� ^ �0� and Z�new =  �new ^ �
�
new equivalent to Z 0 and Znew

respectively such that: there is a �0 with

- �
 �new) �0,

- �0 j= Z 0� ^ Z�new,

- �� = �0� and

- �� is the derivation description of the derivation step �
 
) �0.

(iii) For all Z 2 N n fSg, Z = �Z ^ �Z :
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Z ! � 2 P

i� for all k 2 node(�Z): if there is no t 2 T [ f�g with �Z ` Æ(k) � t and if X is the
set of all pairs ha; vi such that �Z ` a(Æ(k)) � v, then either par(k) or dom"(k;X)
or equ(k) or min(k) is in �Z .

(iv) These are all productions in P .

GCF is a context-free grammar.
A homomorphism ' : (N [ T )� ! T � is de�ned: '(X) := � for all X 2 N , '(t) := t for all
t 2 T and '(w1w2) := '(w1)'(w2).

By induction on the length n of the derivation the following can be shown: For all n � 0:

S
n+1
) wn wrt GCF without applying �-productions, and Z1; : : : Zn are all occurrences of

nonterminals in wn
i� there is a derivation �S

n
) �n wrt GT such that there are pairwise di�erent Z�1 ; : : : ; Z

�
n

with Z�i = ��i ^ �
�
i equivalent to Zi (1 � i � n) and:

� the descriptions that are elementary or start description and that have been used in
the course of the derivation of �n, are exactly �

�
1 ; : : : ; �

�
n .

� �n j= Z�i for all 1 � i � n,

� and each w 2 Y ield(�n) is letter-equivalent to '(wn).

1. Induction start: n = 0: Induction claim holds because of the production with S on the
left side in GCF .

2. Induction step: Let the induction claim hold for n � 1 with S
n
) wn�1 in GCF and

�S
n�1
) �n�1 in GT .

Let  d be one of those elementary or start descriptions added in the course of the derivation
of �n�1, and let  be a new elementary description.

In order to decide whether there is a �n such that �n�1
 
) �n with derivation description

 d, the following information must be available for each k 2 node( d) (additionally to the
information given by  d itself):

(a) (in order to check (L3) (i)) one needs to know, whether �n�1 j= equ(k) or �n�1 j=
:equ(k), whether �n�1 j= top(k) or �n�1 j= :top(k) and whether �n�1 j= bot(k) or
�n�1 j= :bot(k). Furthermore, all ha; vi, a 2 A; v 2 V [f?g with �n�1 ` a(Æ(k)) � v
must be known,

(b) (in order to check (L3) (ii)) one needs to know, whether �n�1 j= leaf(k) or �n�1 j=
:leaf(k),

(c) (in order to check (L3) (iii)) one needs to know, whether k is bottom-underspeci�ed
in  d and whether �n�1 j= dom"(k;X) for some X 2 A� (V [ f?g).

(d) (in order to check (L3) (iv)) one needs to know, whether �n�1 j= pred(k) or �n�1 j=
:pred(k) for pred 2 fpar; child;min; leafg.

There is one state Zd of  d occuring in wn�1 containing all these information such that
there is a Z�d equivalent to Zd with Z

�
d =  d ^ �d and �n�1 j= Z�d .

Clearly, for none of the names k 2 node(�n�1) n node( d), the properties described in the
states are in
uenced in a derivation step with derivation description  d.
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Then, because of the construction of the productions in 4.(ii):

There is a production Zd ! w Z
0
dZ (w 2 T �) that introduces a new state for  and,

using this production, a word wn can be derived from wn�1
i�

there are Z 0�d =  d ^ �
0
d and Z� =  ^ � equivalent to Z 0d and Z respectively such

that there is a �n with �n�1
 
) �n with derivation description  d and �n j= Z 0�d and

�n j= Z� . Furthermore, each w 2 Y ield(�n) is letter-equivalent to '(w )'(wn�1) and
therefore letter-equivalent to '(wn).

Consequently, the induction claim holds for wn and �n.

With the construction of productions Z ! � and with (L3): for wn; �n (as above): There is
a w0n 2 T

� that can be derived from wn by applying only �-productions i� �n has a minimal
tree.

As productions in a context-free grammar can be applied in any order, in general the following
holds:

�S
�
) � wrt GT , � has a minimal tree B with w = yield(B) i� there is a w0 letter-equivalent

to w such that S
�
) w0 wrt GCF .

2

As a consequence the following holds:

Proposition 4.3 (Semilinearity of local TDLs) Each local Tree Description Language
is semilinear.

As a corollary of the semilinearity of local TDLs the Constant Growth Property holds for
local TDLs and each local TDL is letter-equivalent to a regular language.

Since there are indexed languages that are not semilinear, another consequence of Prop. 4.3
is that the set of indexed languages is not a subset of the set of local TDLs. An example of an
indexed language that is not semilinear is the language L := f(ab)n

2
d(ab)2

m
d(ab)n

2
jm;n � 0g

(see H�umpel-Sch�okel 1993 for a restricted indexed grammar generating L). L is not semilinear
for the following reason: if L was semilinear, then the Constant Growth Property would hold
for L. This means that there would be a constant c and a �nite set C of constants such that
for each w 2 L; jwj > c there would be a w0 2 L with jwj = jw0j+c0 for some c0 2 C. However,
for cmax := maxC, n := maxf2; cmax; cg, m � log2cmax + 2 and w = (ab)n

2
d(ab)2

m
d(ab)n

2

there is no such w0.

4.2.2 Set-local MC-TAGs and local TDGs

I will show in the following that, although local TDGs are very similar to set-local MC-TAGs
(de�ned in Chapter 2, 2.4.1), these two formalisms are not equivalent. The crucial di�erence
is that the locality of TDGs concerns only the derivation process but not the construction of
a minimal tree for a derived description.

First, I will prove that for each set-local MC-TAG a local TDG can be constructed that is
derivationally equivalent to the MC-TAG. Then, by giving a local TDG for an indexed string
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language that cannot be generated by a set-local MC-TAG, I will show that local TDGs are
more powerful than set-local MC-TAGs with respect to their derivational generative capacity.

The construction of a derivationally equivalent local TDG for a given set-local MC-TAG is
as follows: I suppose that the MC-TAG is such that adjunction is not allowed at foot nodes of
auxiliary trees. (This can be assumed without loss of generality, since the proof of Lemma 2.2,
p. 29 for TAGs can be easily extended to MC-TAGs.) Then all elementary trees in the MC-
TAG are replaced by corresponding descriptions. In these descriptions, for each node in a tree
there is one top name kt and one bottom name kb with a dominance kt �

� kb. An attribute
adj controls adjunction in the following way: for the bottom name kfoot of a foot node,
adj(Æ(kfoot)) � foot holds and top and bottom names of foot nodes are equivalent. For all
other nodes with top name kt and bottom name kb, adj(Æ(kt)) � root holds, and if adjunction
is not allowed at that node, this is expressed by adj(Æ(kb)) � root. If there is an auxiliary
tree � that must not be adjoined at this node, this constraint is expressed by �(Æ(kb)) � no
(for the bottom name kfoot of the foot node of an auxiliary tree �, �(Æ(kfoot)) � yes holds).
Obligatory adjunction for this node is expressed by adj(Æ(kb)) � foot.

The elementary descriptions in the local TDG consist of a minimal node name and a
\bottom" part. The minimal name has an attribute cat with a new nonterminal Snew as
value. It dominates the descriptions in the bottom part. As an example, in Fig. 4.9 an
MC-TAG for fanbncndn jn � 0g is given together with the derivationally equivalent local
TDG constructed according to the proof of Prop. 4.4. The bottom part contains either
the description of an initial tree where the minimal name is marked (see  1 in Fig. 4.9) or
descriptions of all elementary trees in one auxiliary set where the minimal names are removed
and the names corresponding to the foot nodes are marked (see  2 in Fig. 4.9). The start
description is �S = k1 � k2 ^ cat(Æ(k1)) � Snew.

Proposition 4.4 For each MC-TAG GM there is a local TDG GD such that the two gram-
mars are derivationally (and therefore also weakly) equivalent.

Proof: Let GM = hI;A;N; T;Ai be a set-local MC-TAG. Without loss of generality suppose

that for all � 2 A, C�(u
�
f ) = ; holds (u

�
f is the foot node of �), that there are no substitution

nodes in GM , and that jU
 j > 1 for all 
 2 I [A.
First, a description d(
; kt) for a 
 derived in GM and a kt 2 K is de�ned:

d(
; kt) (unique up to K-equivalence), is a description that can be inductively constructed in
the following way:

(a) Let ur be the root of 
 and f�1; : : : �kg := A n C
(ur).

If ur is a leaf in 
, then kb := kt, else choose a new name kb (kb 6= kt).

d(
; kt) := kt �
� kb.

kt is called the top name, and kb the bottom name of ur.

(b) If ur is no leaf in 
, then d(
; kt) := d(
; kt) ^ adj(Æ(kt)) � root.

(c) If �
(ur) = X for some X 2 N ,

then d(
; kt) := d(
; kt) ^ cat(Æ(kt)) � X ^ cat(Æ(kb)) � X.

(d) If �
(ur) = t for some t 2 T [ f�g, then d(
; kt) := d(
; kt) ^ Æ(kt) � t.

(e) If C
(ur) = ; and ur is no leaf, then d(
; kt) := d(
; kt) ^ adj(Æ(kb)) � root.

(f) If C
(ur) 6= ;, then d(
; kt) := d(
; kt) ^ �1(Æ(kb)) � no ^ : : : ^ �k(Æ(kb)) � no
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Set-local MC-TAG GM :

� SNA

S1 S2

� �

f
�1 S1

a S�1NA b

,

�2 S2

c S�2NA d

g

Derivationally equivalent local TDG:

�S cat : Snew

�

 1

cat : Snew

cat : S �

cat : S1
adj : root

cat : S2
adj : root

cat : S1 cat : S2

� �

 2

cat : Snew

cat : S1 cat : S2

a
cat : S1
�1 : yes
adj : foot

� b c
cat : S2
�2 : yes
adj : foot

� d

Figure 4.9: A sample set-local MC-TAG and the corresponding local TDG

(g) If O
(ur) = 1 (obligatory adjunction), then d(
; kt) := d(
; kt) ^ adj(Æ(kb)) � foot.

(h) If 
1; : : : 
n are from left to right the trees that are immediately dominated by ur in 
,
then choose new names k1; : : : kn and let d(
i; ki) (for 1 � i � n) be a description of

i with minimal name ki such that the sets fkt; kbg; node(d(
1; k1)); : : : ; node(d(
n; kn))
are pairwise disjoint.

d(
; kt) := d(
; kt) ^ kb � k1 ^ : : : kb � kn
^k1 � k2 ^ : : : kn�1 � kn
^d(
1; k1) ^ : : : ^ d(
n; kn)

(i) If 
 2 A and kfoot is the bottom name of the foot node, then d(
; kt) := d(
; kt) ^

(Æ(kfoot)) � yes ^ adj(Æ(kfoot)) � foot.

Construction of a TDG GD = hA0; V; T;D; �Si:

1. A0 := fcat; adjg [A, V := N [ fyes; no; root; footg [ fSnewg with Snew =2 N .

2. �S := k1 � k2 ^ cat(Æ(k1)) � Snew
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3. for all � 2 I there is a k 2 K, a  := d(�; k) and a k0 =2 node( ) such that

h ^ k0 �
� k ^ cat(Æ(k0)) � Snew; fkgi 2 D

4. for all f�1; : : : ; �ng 2 A:

there are k1; : : : ; kn 2 K and  1 := d(�1; k1); : : : ;  n := d(�n; kn) where  
0
1; : : : ;  

0
n are

such that for all 1 � i � n,  0i can be obtained from  i by removing all conjuncts with an
occurrence of ki, and node( 

0
1); : : : ; node( 

0
n) are pairwise disjoint.

Let k0i be minimal in  0i for 1 � i � n, and let fkf1 ; : : : ; k
f
ng be the bottom names of the

foot nodes in  1; : : : ;  n.

Then there is a k0 =2
Sn
i=1 node( 

0
i) with

hk0 �
� k01 ^ : : : ^ k0 �

� k0n ^ cat(Æ(k0)) � Snew ^  
0
1 ^ : : : ^  

0
n; fk

f
1 ; : : : ; k

f
ngi 2 D

These are all elementary descriptions in D. The result is a local TDG GD.

To show: GM and GD are derivationally equivalent.
By induction on n, the following holds for all n � 0:

there is an � 2 I and a tree 
 with �
n
) 
 in GM

i�

there is a description �0
 with �S
n+1
) �0
 in GD such that

- there is a description d(
; kmin) of 
 and a k =2 node(d(
; kmin)) such that: let �
 be
the description that can be obtained by

� taking � := d(
; kmin) ^ k � kmin ^ cat(Æ(k)) � Snew,

� and then for all k1 and k2 where k1 is top and k2 bottom name of a foot node added
in the course of the derivation of 
: replacing all occurrences of k1 in � by k2, and
afterwards replacing the conjunct adj(Æ(k2)) � root by adj(Æ(k2)) � foot

Then there is a function f : node(�0
)! node(�
) such that: f̂(�
0

) ` �
 and �
 ` f̂(�

0

)

and for all k 2 node(�0
): �
0

 ` f(k) � k and f(k) has not been used to add a new

equivalence in the course of the derivation of �0
 .

- for all u1; u2 2 U
 and the corresponding bottom names kf1 ; k
f
2 in �
 :

there is an elementary  d in GD with kf1 ; k
f
2 2 node( d) and �S

�
) �

 d) �0
�
) �0
 for

some � and �0 i� either u1; u2 2 U� or u1; u2 2
Sm
i=1 U�i for some f�1; : : : ; �mg 2 A.

Induction on n:

(i) Induction start: n = 0. Since exactly the descriptions constructed for initial trees can
be added to �S , the induction claim clearly holds for n = 0.

(ii) Induction step n! n+ 1:

suppose that �
n
) 
 in GM and �S

n+1
) �0
 such that induction claim holds for 
 and

�0
 with �
 and with f : node(�0
)! node(�
).

For all marked names k in a description  constructed for an auxiliary set, there is a
kp with  ` kp� k (this is the case because of step (c) in the construction and because
in these descriptions only bottom names of foot nodes are marked). Therefore (with
(L3)(i)) in a derivation step where  is added, k becomes equivalent to a kd in the
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old description that has not been used yet to introduce a new equivalence. In other
words for all kd 2 node(�

0

) that might be used for a new equivalence: f(kd) = kd and

therefore kd 2 node(�
).

In GM , in a further derivation step, a new auxiliary set must be added.

In GD, in a further derivation step, a description constructed for some auxiliary set
must be added because:

suppose that h ;K i with km minimal in  was constructed for an � 2 I

then K = fkg for some k with  `s km �
� k and k is no leaf name. Consequently

(because of (L3)(ii)): if �0

 
) �new, then there must be a leaf name kl in �

0

 with

�new ` kl � k. This is a contradiction since for all leaf names k0 in �0
 , there is a
t 2 T [ f�g with �0
 ` Æ(k

0) � t.

In �
 , all names kb with �
 `s kt �
� kb for some kt 2 node(�
) are bottom names of

some u 2 U
 .

Because of the construction of the description of a tree and since when constructing
�
 from �0
 only for nodes withl NA-constraints (foot nodes) equivalences between top
and bottom names were aded, the following holds for 
 and �
 :

(*) for all u 2 U
 and kt; kb 2 node(�
) such that kt is top and kb bottom name of u:

- C
(u) 6= ;

i�

�
 `s kt�
�kb, �
 ` adj(Æ(kt)) � root, �
 6` adj(Æ(kb)) � root and for all � 2 A:

�
 ` �(Æ(kb)) � no i� � =2 C
(u).

- O
(u) = 1 i� �
 ` adj(Æ(kb)) � foot.

- for all X 2 N : �
(u) = X i� �
 ` cat(Æ(kt)) � X ^ cat(Æ(kb)) � X.

Let f�1; : : : ; �mg 2 A be an auxiliary set and h 0; fkf1 ; : : : ; k
f
mgi a corresponding ele-

mentary description in GD with node( 0) \ node(�0
) = ; and k 0 minimal name in
 0.

Let u1; : : : ; um 2 U
 be nodes in 
, k
t
1; : : : ; k

t
m the top and kb1; : : : ; k

b
m the bottom names

in �
 of u1; : : : ; um respectively, and let k
 be the minimal name in �
 .

When adding  0 to a description derived in GD, k 0 must become equivalent to the
minimal name of this description. Let k1; : : : ; km be the names with  0 `s k 0 �

� ki
and  0 ` ki �

� kfi for 1 � i � m.

With the induction claim for n:

There is an elementary  d in GD with kb1; : : : ; k
b
m 2 node( d) and �S

�
) �

 d) �0
�
)

�0
 for some � and �0 i� either u1; : : : ; um 2 U� or u1; : : : ; um 2
Sl
i=1 U�i for some

f�1; : : : ; �lg 2 A.

Therefore (with (*)):



f�1;:::;�mg
) 
n+1 with 
n+1 = 
[u1; �1] : : : [um; �2]

i�

there is a �0
n+1
with �0


 0

) �0
n+1
, �0
n+1

` k
 � k 0 ^ k
b
1 � kf1 ^ : : : ^ k

b
m � kfm,

�0
n+1
`s k

t
i �
� ki and �

0

n+1

` cat(Æ(kti)) � cat(Æ(ki)) for all 1 � i � m.

In such a case, 
n+1 and �
0

n+1

clearly satisfy the conditions speci�ed in the induction
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claim.

Therefore, the induction claim holds also for n+ 1.

For GM and GD, the following holds:

for all � 2 LD(GD) and all k1; k2 2 node(�): either � ` k1 � k2 or � ` :k1 � k2,

and for each 
 2 I [A and a description d(
; k) of 
: for all u1; u2 2 U
 where kb1 and k
b
2

are the bottom names of u1 and u2 respectively: d(
; k) ` k
b
1 � k

b
2 i� hu1; u2i 2 L
 .

Consequently (with the construction of the descriptions) for each pair 
, �0
 as in the induction
claim: O
(u) = 0 for all u 2 U
 i� �

0

 has exactly one minimal tree 
0. In this case yield(
) =

yield(
0), and therefore GM and GD are weakly and even derivationally equivalent.

2

The next propostition states that the set of indexed string languages generated by local
TDGs is a proper superset of the set of indexed string languages generated by set-local
MC-TAGs:

Proposition 4.5 There are languages Lind such that there is a local TDG G with Lind =
Lind(G), and there is no MC-TAG generating Lind as indexed string language.

Proof Lind := SCRind = fn[�(1)] : : : n[�(m)]v[1] : : : v[m] jm � 0 and � 2 Smg.

1. The following local TDG G = hA; V; T;D; �Si (see also Fig. 3.21) generates L
ind as indexed

string language:

(a) A = fcatg, V = fN;V g, T = fn; vg.

(b) Start description:

�S = k1 �
� k2 ^ k2 � k3 ^ k3 �

� k4 ^ k4 � k5

^cat(Æ(k1)) � N ^ cat(Æ(k2)) � N ^ cat(Æ(k3)) � V

^cat(Æ(k4)) � V ^ Æ(k5) � �

(c) D = f( ;K )g with

 = k1 �
� k2 ^ k2 � k3 ^ k2 � k4 ^ k3 � k4 ^ k4 �

� k5 ^ k5 �
� k6

^k6 � k7 ^ k6 � k8 ^ k7 � k8 ^ cat(Æ(k1)) � N ^ cat(Æ(k2)) � N

^Æ(k3) � n ^ cat(Æ(k4)) � N ^ Æ(k5)) � N ^ cat(Æ(k6)) � V

^cat(Æ(k7)) � V ^ Æ(k8) � v

K = fk5; k7g
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�S N

N

V

V

�

 N

N

n N

N�

V

V� v

2. As shown by Rambow (1994a), there is no MC-TAG generating Lind as indexed string
language (see also Prop. 2.3 on page 38).

2

This proposition shows that, although the derivation process is still local, local TDGs are
more powerful than set-local MC-TAGs. The additional power of local TDGs results from the
possibility to generate underspeci�ed representations. The locality condition restricts only
the derivation of descriptions but not the way minimal trees are obtained from underspeci�ed
descriptions. In this last step, arbitrary node names can become equivalent to each other as
long as the resulting description is still satis�able.

4.3 A hierarchy of local TDLs

The construction of an equivalent local TDG for a given set-local MC-TAG shows that TALs
can be generated by local TDGs with at most one marked node name in each elementary
description. In fact, as we will see in the proof of Prop. 4.8, a projection equivalent local TDG
for a given TAG is even easier to construct than the local TDG in the proof of Prop. 4.4.
The extra power of local TDGs in contrast to TAGs arises from the possibility of marking
more than one node name in an elementary description. This suggests the introduction of a
hierarchy of local TDGs de�ned with respect to the maximal number of marked node names
in an elementary description. In this section such a hierarchy will be de�ned and we will see
that context-free languages are the �rst class and TALs are a subset of the second class of
this hierarchy. Using a pumping lemma that can be shown for the set of local TDLs of rank
n, I will prove that the i-th class is as proper subset of the (i+ 1)-th class for i > 0.

This hierarchy of local TDGs together with the pumping lemma is also presented in
Kallmeyer 1998.

4.3.1 Local TDGs of rank i

The hierarchy for local TDLs is such that the rank of the grammar depends on the marked
node names. I will distinguish between marked names where in a derivation step the part
of the description dominating this name can be inserted somewhere \in between" on the one
hand, and on the other hand marked node names that must be identi�ed with a leaf name.
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 1 k1

k2 k4

k�3 k�5

k6

k�7

k8

k9

 2 k10

k11

k12

k�13

k14

In  1, k3 and k5 are a-marked and k7 is s-marked.
ma( 1) = 2;ms( 1) = 1.
In  2, k12 is both, s-marked and a-marked.
ma( 2) = 1;ms( 2) = 1.

Figure 4.10: A-marked and s-marked node names

The �rst are marked names that either dominate some other marked name or that are leaf
names or bottom-underspeci�ed. The latter are marked names dominating other names but
not dominating any other marked names. These two characterizations are not exclusive, i.e.
there are marked names that have both properties. Since there is a similarity between foot
nodes of auxiliary trees in TAGs and the �rst kind of marked node names, these are called
adjunction-marked (a-marked). For similar reasons, the second kind of marked names are
called substitution-marked (s-marked). We will see that a-marked names contribute more to
the generative capacity of a grammar than s-marked names.

De�nition 4.12 (A-marked, s-marked) Let G be a local TDG and  an elementary de-
scription in G with k 2 K . k is called

1. adjunction-marked (a-marked), i� it is either bottom-underspeci�ed or a leaf name or there
is a k0 2 K ; k

0 6= k with  ` k �� k0.

ma( ) := jfk j k is a-marked in  gj.

2. substitution-marked (s-marked), i� it is no leaf name and if there is no k0 2 K ; k
0 6= k

with  ` k �� k0.

ms( ) := jfk j k is s-marked in  gj.

Examples of elementary local descriptions containig both, a-marked node names and s-
marked node names, are the descriptions  1 and  2 in Fig. 4.10. k3 is a-marked because it is
a leaf name, k5 dominates another marked names and is therefore a-marked, and k7 is not a
leaf name and does not dominate other marked names and is consequently s-marked. k13 is
even both, a-marked and s-marked: it is bottom-underspeci�ed and therefore a-marked, and
it is s-marked, since it is not a leaf name and does not dominate other marked names.
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Roughly said, in a derivation step, for each s-marked name in the new elementary de-
scription, there is one substring added to the yield of the description, and for each a-marked
name, two substrings are added. Fig. 4.11 gives an example of a derivation step showing
that for bottom-underspeci�ed names that are s-marked such as k15 in Fig. 4.10, even three
substrings are added. In this �gure, Y ield(�) = fbbg holds and Y ield(�0) = fabccba; baccabg.
The name k4 in the elementary  is both, a- and s-marked. For this name, when adding  ,
the substrings a; cc and a are added.

� A k1

A

b A b

A k2

 A k3

A

a A a

A k4

c c

�0 k1 � k3

A A

b A b a A a

k2 � k4

c c

�
 
) �0 with �0 = � ^  ^ k1 � k3 ^ k2 � k4

Figure 4.11: Sample derivation step with a name that is both, s-marked and
a-marked

Because of the number of new substrings, a-marked names count twice as much as s-
marked names for the rank of a local TDG:

De�nition 4.13 (Rank of a local TDG) Let i 2 IN.

1. A local TDG G is of rank i

i� maxfn jn = 2ma( ) +ms( ) for some elementary  in Gg = i.

TDGLi is the set of all local TDGs of rank i.

2. A local TDL L is of rank i

i� there is a G 2 TDGLi with LlS(G) = L.

TDLLi is the set of all local TDLs of rank i.

Another alternative would be a de�nition of the rank as the maximal number of marked
node names in an elementary description. Then TAGs would exactly generate the local TDLs
of rank 1 whereas with the de�nition of rank given here, I can only show that TALs are a
subset of the local TDLs of rank 2. Equality of TALs and local TDLs is not excluded but it is
at least diÆcult to shown. On the other hand, a de�nition of the rank by way of the maximal
number of marked names would not show the di�erence between s-marked and a-marked
names. Later, when proving a pumping lemma for local TDGs of rank n in 4.3.3, we will see
more clearly that this distinction is important. Therefore I have chosen to de�ne the rank of
a local TDG as above.
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For a given local TDG it is always possible to �nd a weakly equivalent local TDG with
one more s-marked name per elementary description. Therefore TDLLi � TDLLi+1 holds for
i � 0.

4.3.2 Relation to CFL and TAL

Clearly, the class TDLL0 is exactly the class of all context-free languages: suppose that each
elementary description contains more than one node name (otherwise it would not contribute
any new information when added to a derived description). Then, because of the local
derivation axiom (L3)(ii) (see Def. 4.8, page 120), in a derivation step where an elementary
description with minimal name k is added to a description �, k must be identi�ed with a
leaf name in �, i.e. we only have a kind of context-free substitution operation. Therefore it
is easy to construct a projection equivalent context-free grammar for each G 2 TDGL0 .

The other direction, i.e. the construction of a strongly equivalent local TDG without
marked names for a given context-free grammar is even more straightforward. An example
is shown in Fig. 4.12.

Context-free grammar:

hfSg; fa; bg; P; Si with
P = fS ! �; S ! aSbg

Equivalent local TDG of rank 0:

�S  1 S  2 S
S

a S b �

Figure 4.12: A context-free grammar and an equivalent local TDG of rank

0 for fanbn j 0 � ng

Proposition 4.6 (CFL = TDLL0 ) Each language L 2 TDLL0 is a context-free language and
vice-versa.

Instead of proving this, I will show a more general proposition, namely that even TDLL1
is the class of context-free languages. This is the case because even there we only have
some kind of substitution operation. Each elementary description  with one s-marked name
consists of a minimal name strongly dominating a description  0 such that, when adding  
in a derivation step,  0 must be substituted for a leaf name.

Proposition 4.7 (CFL = TDLL1 ) Each language L 2 TDLL1 is a context-free language and
vice-versa.

The proof idea is as follows: the construction of a TDG for a context-free grammar is
as illustrated in Fig. 4.12. For the construction of an equivalent context-free grammar for a
given local TDG G of rank 1, the following is done: suppose that G is label complete and
that the start and elementary descriptions of G have pairwise disjoint sets of node names. A
derivation step in G where an elementary description  with minimal name km is added, can
have one of the following forms:
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1. either K = ; and km becomes equivalent to a leaf name in the derivation description  d.

k

km
;

k � km

For all such leaf names k, there is a production k ! km in the context-free grammar.

2. or K = fk g,  `s km �
� k , and k becomes equivalent to a leaf name.

k

km

k 
;

k � k 

For all such leaf names there is a production k ! k , if k either has a parent or is strongly
dominated by a node name with the same label as k.

3. or K = fk g and there is a name kd with  `s km �
� kd and  ` kd �

� k . In this case,
k becomes equivalent to a leaf name k such that there is a ks with  d ` ks �

� k and
�0 `s ks �

� kd.

k

ks

km

kd

k 

;

ks

kd

k � k 

For all such k and kd where ks and kd have the same labels there is a production k ! kd.

For the start description and elementary descriptions without marked names, the substi-
tution root is de�ned as the minimal names, and for elementary descriptions with one marked
name, the substitution root is the name strongly dominated by the minimal name. Besides
the productions above, the following is needed:

- for each start or elementary description  with substitution root kr and leaf names k1 : : : kn
ordered from left to right (linear precedence is fully speci�ed in TDGs of rank 1) there
is a production kr ! k1 : : : kn i� there is no strong dominance  `s k1 �

� k2 where k2 is
neither a leaf name nor the substitution root in  and k1 and k2 have di�erent labels.

- for each leaf name k with a terminal label t that is not strongly dominated by a node
name with a di�erent label there is a production k ! t.

Proof of Prop. 4.7 To show: TDLL1 = CFL.

1. To show: CFL � TDLL1 (see also example in Fig. 4.12).
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Let Gc = (N;T; P; S) be a context-free grammar. Construction of an equivalent local
TDG GD = (A; V; T;D; �S) without marked names:

A = fcatg, V = N , �S = cat(Æ(k)) � S.

For each X ! X1 : : : Xn 2 P , there is a h ; ;i 2 D with

 = k0�k1^ : : :^k0�kn^k1 � k2^ : : :^kn�1 � kn^ 1^ : : :^ n such that for 1 � i � n:
if Xi 2 N , then  i = cat(Æ(ki)) � Xi, else  i = Æ(ki) � Xi.

These are all elements of D.

Since there is a direct correspondence between the derivation steps in Gc and those in GD,
it is obvious that L(Gc) = LlS(GD) holds.

2. To show: TDLL1 � CFL.

Let G = (A; V; T;D; �S) be a local TDG of rank 1. Without loss of generality assume that
G is label complete (the label complete TDG G0 constructed for G in the proof of Lemma
4.1 is of the same rank as G). Furthermore, assume that there is no elementary description
 with jnode( )j = 1, and that for all  1;  2 2 D [ f�Sg: node( 1) \ node( 2) = ;.

Clearly, for each elementary  in G with K 6= ;, the following holds: if km minimal in
 , then (because of jK j � 1 and the 2. axiom in Def. 4.5) there is exactly one k with
 `s km �

� k and k is no leaf name (otherwise k 2 K would hold and then k would be
a-marked).

Construction of an equivalent context-free grammar Gc = (N;T; P; S):

D0 := D [ fh�S ; ;ig.

First the notion of substitution root rs( ) for an elementary  with minimal name km
is de�ned: If K = ;, then rs( ) := km. Else, rs( ) := k where k is the name with
 `s km �

� k.

(a) N := fk j k 2 node( ) for some  occuring in D0g.

(b) The start symbol S is the name ks that is minimal in �S .

(c) Productions: for all ( ;K ) 2 D
0:

- if for all k1; k2 2 node( ) with  `s k1 �
� k2, k2 is no leaf name in  and either

k1 not minimal or K = ;:  6` :k1 � k2,

then there is a production rs( )! k1 : : : kn in P where

k1; : : : ; kn are all leaf names in  , and  ` ki � ki+1 for 1 � i < n.

- for all leaf names k in  : if there is a t 2 T [ f�g with  ` Æ(k) � t, and if there
is no kd with  `s kd �

� k and  ` :kd � k,

then there is a production k ! t in P .

- for all leaf names k in  such that there is no t 2 T [ f�g with  ` Æ(k) � t and
for all ( 0;K 0) 2 D,  0 6= �S with K 0 = ;:

if

1. either there is a kp with  ` kp � k or there is a kd with  `s kd �
� k and for

all a 2 A; v 2 V [ f?g:  ` a(Æ(kd)) � v i�  ` a(Æ(k)) � v, and

2. for all a 2 A and v 2 V [ f?g:  ` a(Æ(k)) � v i�  0 ` a(Æ(rs( 
0))) � v,

then there is a production k ! rs( 
0) in P .

- for all leaf names k in  such that there is no t 2 T [ f�g with  ` Æ(k) � t and
for all ( 0;K 0) 2 D

0, with K 0 6= ; and km minimal in  0 such that there is a
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k0 6= k with  ` k0 �� k and  ` a(Æ(k0)) � v i�  0 ` a(Æ(km)) � v for all a 2 A
and v 2 V [ f?g:

if

1. either: rs( 
0) marked and then:

either there is a kp with  ` kp � k or there is a kd with  `s kd �
� k and

for all a 2 A; v 2 V [ f?g:  ` a(Æ(kd)) � v i�  ` a(Æ(k)) � v,

or rs( 
0) is not marked, and then there is a kd 2 node( ) with  `s kd �

� k
and  ` a(Æ(kd)) � v i�  0 ` a(Æ(rs( 

0))) � v for all a 2 A and v 2 V [ f?g,
and

2. for all a 2 A and v 2 V [ f?g and for the marked k 0 2 K 0 :  ` a(Æ(k)) � v
i�  0 ` a(Æ(k 0 )) � v,

then there is a production k ! rs( 
0) in P .

These are all productions in P .

The result is a context-free grammar.

By induction on n, the following can be easily shown:

in GCF there is a derivation S ) w1
2n
) wn = x1 : : : xm such that no production X ! �

for some X 2 N has been applied and each xi (1 � i � n) is a leaf name in one of the
descriptions in D0

i�

there is a derivation in G �s
n
) �n such that

(a) for all k; k0 2 node(�) where � `s k �
� k0, and k0 is no leaf name: � ` Æ(k) � Æ(k0),

(b) if k1; : : : ; km are all leaf names in �n such that � ` ki � kj for i < j, then for
all i, 1 � i � m: if  is the description added in one of the derivation steps with
ki 2 node( ) and if  0 with  �K  0 is in D0 such that  0 = f̂( ), then xi = f(ki).

Induction start n = 0:

The start symbol S is the minimal name of �S . There is a production S ! x1 : : : xm
in GCF i� (construction of the productions)

(a) for all k; k0 2 node(�S) with �S `s k�
�k0 and k0 is no leaf name in �S : �S ` k � k

0,
and

(b) x1; : : : ; xm are all leaf names in �S with �S ` xi � xj for i < j.

Induction step n! n+ 1:

Suppose that S ) w1
2n
) wn = x1 : : : xm in GCF and �s

n
) �n in G such that the

induction claim holds for these two derivations.

Let  be a description with node( ) \ node(�n) = ; such that there is a  0 2 D0 with
 �K  0 and  0 = f̂ ( ). Let km be the minimal name in  and let k1; : : : ; kr be all
leaf names in  such that  ` ki � kj for i < j.

1. if K = ;, then:

there is an i (1 � i � n)) such that ki is part of the elementary description  d and
there are productions xi ! f (km) and f (km)! f (k1) : : : f (kr) i�

(a) either there is a kp with  d ` kp � ki (and therefore �n ` kp � ki) or there is a
kd with  d `s kd�

� ki (and, since there are no a-marked names and ki is a leaf
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name in �n, �n `s kd �
� ki) and �n ` Æ(kd) � Æ(ki),

(b) for all a 2 A; v 2 V [ f?g: �n ` a(Æ(ki)) � v i�  ` a(Æ(km)) � v, and

(c) for all k; k0 with  `s k �
� k0 and k0 is no leaf name in  :  ` Æ(k) � Æ(k0).

i� �n
 
) �n+1 in G with �n+1 = �n ^  ^ ki � km and �n+1 satis�es condition (a)

in the induction claim.

2. if K = frs( )g, then:

there is an i (1 � i � n) such that ki is part of the elementary description  d and
there are productions xi ! f (rs( )) and f (rs( ))! f (k1) : : : f (kr) i�

(a) there is a k 6= ki, k 2 node( d) with �n ` k�
� ki and for all a 2 A; v 2 V [f?g:

�n ` a(Æ(k)) � v i�  ` a(Æ(km)) � v,

(b) either there is a kp with �n ` kp � ki or there is a kd with �n `s kd �
� ki and

�n ` Æ(kd) � Æ(ki),

(c) for all a 2 A; v 2 V [ f?g: �n ` a(Æ(ki)) � v i�  ` a(Æ(rs( ))) � v, and

(d) for all k; k0 with  `s k �
� k0 and k0 is no leaf name in  and k 6= km:  `

Æ(k) � Æ(k0).

i� �n
 
) �n+1 in G with �n+1 = �n ^  ^ k � km ^ ki � rs( ) and �n+1 satis�es

condition (a) in the induction claim.

3. if K = fk g with k 6= rs( ), then:

there is an i (1 � i � n) such that ki is part of the elementary description  d and
there are productions xi ! f (rs( )) and f (rs( ))! f (k1) : : : f (kr) i�

(a) there is a k 6= ki, k 2 node( d) with �n ` k�
� ki and for all a 2 A; v 2 V [f?g:

�n ` a(Æ(k)) � v i�  ` a(Æ(km)) � v,

(b) there is a kd with �n `s kd�
�ki and for all a 2 A; v 2 V [f?g: �n ` a(Æ(kd)) � v

i�  ` a(Æ(rs( ))) � v,

(c) for all a 2 A; v 2 V [ f?g: �n ` a(Æ(ki)) � v i�  ` a(Æ(k )) � v, and

(d) for all k; k0 with  `s k �
� k0 and k0 is no leaf name in  and k 6= km:  `

Æ(k) � Æ(k0).

i� �n
 
) �n+1 in G with �n+1 = �n ^  ^ k � km ^ ki � k ^ kd �

� rs( ) and �n+1

satis�es condition (a) in the induction claim.

For wn = x1 : : : xm and �n as in the induction claim, the following holds because of the
construction of the productions with terminals or � on the right side:

there are productions xi ! ti with ti 2 T [ f�g for all i, 1 � i � n i� �n has a minimal
tree B with t1 : : : tm = yield(B).

2

Note that since TDLL0 � TDLL1 holds and since the local TDG constructed in the �rst
part for a context-free grammar is of rank 0, I have also proven Prop. 4.6 by proving Prop.
4.7.

For TDLL2 it might be expected that these languages are exactly the TALs. At least
TAL � TDLL2 is easy to see because it is quite obvious how to construct an equivalent TDG
for a TAG where for each foot node in the TAG there is a corresponding a-marked name in the
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TDG. The construction is similar to the one in the proof of Prop. 4.9 where a derivationally
equivalent local TDG was constructed for a given set-local MC-TAG. In the case of simple
TAGs, the top node name of the elementary descriptions is not necessary. Examples of a
local TDGs of rank 2 for a Tree Adjoining Language are shown in Fig. 4.13 and Fig. 4.14
where local TDGs for fak1a

k
2a
k
3a
k
4 j k � 0g are given, and in Fig. 4.15 and 4.16 where local

TDGs of rank 2 are shown for fww jw 2 fa; bg�g.

�S
S

S1 S2

 1 S

S�1 S�2

� �

 2 S

S�1 S�2

a1 S1 a2 a3 S2 a4

ms( i) = 2;ma( i) = 0 for i 2 f1; 2g

Figure 4.13: A local TDG for fan1a
n
2a

n
3a

n
4 j 0 � ng with s-marked names

�S S

T

�

 1 S

S

T�

 2 S

S

a1 S a4

T

a2 T� a3

ms( i) = 0;ma( i) = 1 for i 2 f1; 2g

Figure 4.14: A local TDG for fan1a
n
2a

n
3a

n
4 j 0 � ng with a-marked names

Proposition 4.8 (TAL � TDLL2 )
For each TAG, there is a projection equivalent TDG of rank 2.

Proof Let GA = hN;T; I;Ai be a TAG. Without loss of generality suppose that adjunction
is not allowed at foot nodes and that GA is without substitution.

Construction of an equivalent local TDG GD = (A0; V; T;D; �S) of rank 2 (with jma(GD)j =
1; jms(GD)j = 0):

1. A0 := fcat; adjg [A, V := N [ fyes; no; root; footg.
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�S
S

S1 S2

 1 S

S�1 S�2

� �

 2 S

S�1 S�2

a S1 a S2

 3 S

S�1 S�2

b S1 b S2

ms( i) = 2;ma( i) = 0 for i 2 f1; 2; 3g

Figure 4.15: A local TDG for fww jw 2 fa; bg�g with s-marked names

2. Elementary descriptions:

For each elementary tree 
 in GA:

Choose an arbitrary name kr. Let  := d(
; kr) be a description for 
 with minimal name
kr as de�ned in the proof of Prop. 4.9.

If 
 2 I, then h ; ;i 2 D,

if 
 2 A and kfoot is the bottom name of the foot node in  , then h ; fkfootgi 2 D.

These are all elementary descriptions in GD.

3. �S := k � k.

Clearly, there is a direct correspondence between one derivation step (adjunction) in GA and
one step in GD, and derivational and projection equivalence of GA and GD are easy to see.

2

Whether even TAL = TDLL2 holds, is an open question. The problem is that it is not
clear how to �nd an equivalent TAG for a local TDG with elementary descriptions with two
s-marked node names.

�S S

T

�

 1 S

S

T�

 2 S

S

a S

T

T� a

 3 S

S

b S

T

T� b

ms( i) = 0;ma( i) = 1 for i 2 f1; 2; 3g

Figure 4.16: A local TDG for fww jw 2 fa; bg�g with a-marked names
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Generalizing from the examples in Fig. 4.13 to Fig. 4.16, it is clear that each language
fak1 : : : a

k
2n j k � 0g is in TDLLn , and that fwn jw 2 fa; bg�g 2 TDLLn holds. In the next

subsection, I will show that for l > 2n, fak1 : : : a
k
l j k � 0g =2 TDLLn holds.

4.3.3 A pumping lemma for local TDLs of rank n

As already mentioned, it is clear that TDLLi � TDL
L
i+1 holds. In this subsection I will show

that the set of local TDLs of rank i is even a proper subset of the set of local TDLs of rank
i+ 1. First I will prove a pumping lemma for TDLs of rank i, and then, using the pumping
lemma for i = n I will show that fak1 : : : a

k
2n+1 j 0 � kg =2 TDL

L
n holds.

Before considering the pumping lemma itself, I will introduce the notion of derivation
grammar for local TDGs. The derivation grammar is in principle the context-free grammar
constructed in the proof of Prop. 4.2, but the terminals are removed from the productions.
Only for label complete local TDGs, derivation grammars are de�ned.

De�nition 4.14 (Derivation grammar of a local TDG) Let G be a label complete local
TDG, and let Gc = (N;T; P; S) be the context-free grammar constructed as in the proof of
Prop. 4.2 for G. Let a homomorphism ' : (N [ T )� ! N� be de�ned by '(X) := X for all
X 2 N and '(t) := � for all t 2 T .
The context-free grammar Gd(G) := (N;T; P 0; S) with

P 0 := fA! � j there is a A! �0 2 P such that '(�0) = �g

is called the derivation grammar of G.

There is an obvious similarity to the notion of derivation grammar for TAGs. But in
the case of TAGs, one production in the derivation grammar describes all adjunctions or
substitutions of elementary trees to nodes of one single elementary tree at the same time, i.e.
one production may describe several derivation steps in the TAG. In the case of local TDGs,
however, each production describes only one single derivation step in the TDG. Therefore
there is a direct correspondence between a derivation step in the TDG and a derivation step
in the derivation grammar.

The following considerations with respect to the derivation grammar are in principle
the same as those leading to the pumping lemma for TALs in Vijay-Shanker 1987. Since
the derivation grammar of a local TDG is context-free, the pumping lemma for context-free
grammars must hold for it. This means that in a derivation tree (of the context-free derivation
grammar) from a certain tree height on, there is a nonterminal Z occuring twice on a path
in the tree and therefore there is a subtree 
 that can be iterated. The question is what this
means for the underlying local TDG and what this tells us about local TDLs.

Before adding  again, corresponding to the second occurrence of Z on one
path, we have the following situation for a string w yielded by the old description:
w = x10v1 : : : x1m�1vmx1m where x1i 2 T � for 0 � i � m, v1 : : : vm is the string yielded
by the subdescription derived from  (ordered by linear precedence). As a next derivation
step,  is added again. If the grammar is of rank n, then by adding  , the string w can
be split by inserting at most n new strings. Before the next adding of  (corresponding to
another iteration) takes place, these substrings will have expanded to substrings w1; : : : ; wn
with w1 : : : wn = v1 : : : vm. These wi may be split into several words with other words in
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Z 




Z 

between but the order of the letters is as in v1 : : : vm. If this is repeated k times, k � 1, then
we end up with a word contaning the letters of x1 := x10 : : : x1m and k occurrences of all
symbols of w1 : : : wn that are for each of these occurrences (from left to right) ordered as in
w1 : : : wn. In the last steps (after the iterations of the tree 
), the symbols of some string
x2 2 T

� are added.
To formalize the pumping lemma, the following two de�nitions are useful. The remove

set �(x;w) for some x;w 2 T � is the set of words that can be obtained by removing from w
the letters of x:

De�nition 4.15 (Remove set �(x;w)) Let T be an alphabet, x;w 2 T �. The remove set
�(x;w) � T � is recursively de�ned:
If x = �, then �(x;w) := fwg.
Else x = x1x

0 with x1 2 T; x
0 2 T �. Then:

1. if w = �, then �(x;w) := ;.

2. if w = vw0 for some v 2 T and v 6= x1, then �(x;w) := fvŵ
0 j ŵ0 2 �(x;w0)g.

3. if w = vw0 with v = x1, then �(x;w) := fvŵ
0 j ŵ0 2 �(x;w0)g [ �(x0; w0).

This means that when reading w from left to right, �rst one occurrence of the �rst letter
of x, then one occurrence of the second letter, etc. are removed. Of course, there may be
more than one word in a remove set, e.g. �(ab; adbeab) = fadbe; dbea; deabg.

Related to this de�nition is the following de�nition of a k-partition of a word w for a
k 2 IN, k � 0. A k-partition is a vector of k nonempty words such that the original word w
can be obtained by taking from left to right each time the left symbol of one of the words in
the partition.

De�nition 4.16 (k-partition of a word) Let T be an alphabet, k > 0 and w 2 T � with
jwj � k.
Pwk = hw1; : : : ; wki with wi 2 T

� for 1 � i � k is a k-partition of w i� the following holds:

� If k = 1, then Pwk = hwi.

� If k > 1, then there is a ŵ 2 �(w1; w) such that hw2; : : : ; wki is a (k � 1)-partition of ŵ.

habc; aad; cdi for example is a 3-partition of aaacbcdd.
The notions of remove set and k-partition facilitate the formalization of the pumping

lemma.

Proposition 4.9 (Pumping lemma for local TDLs of rank n) For each n � 1 and
each local TDG G of rank n there is a constant cG such that for all w 2 LlS(G) with jwj > cG:
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There are x1; x2; w1; : : : ; wn 2 T � with w1 : : : wn 6= � such that hx1; x2; w1 : : : wni is a 3-
partition of w, and for each k � 1 there is a w(k) 2 LlS(G) and a 3-partition hx1; x2; ŵ

(k)i of
w(k) with

(i) ŵ(k) = u0w1u1 : : : un�1wnun for some u0; : : : ; un 2 T
�, and

(ii) there is a k-paritition Pk = hŵ1; : : : ; ŵki of ŵ
(k) such that ŵi = w1 : : : wn for all i,

1 � i � k.

Note that w1; : : : ; wn need not necessarily be substrings of w.
Roughly said, according to the pumping lemma, for each word w in the string language

of a local TDG of rank n with a length greater than some constant cG, the following holds:
after removing the letters of some words x1 and x2 from w, the resulting word has the form
w1 : : : wn. Then for each k there is a word w(k) in the language containing also the letters
of x1 and x2, such that: if these letters are removed from w(k), the result ŵ(k) is a word
that can be obtained by taking k occurrences of w1 : : : wn and then, starting with �, taking
(in arbitrary order) always the left letter of one of these k words as the next letter in ŵ(k).
Furthermore, ŵ(k) still contains as substrings one occurrence of each of the words w1; : : : ; wn
(in this order).

The lemma for rank n holds for example for L2n := fa
k
1 : : : a

k
2n j 0 � kg with:

- cG = 2n� 1,

- x1 = x2 = � and

- if w = ak1 : : : a
k
2n, then wi = ak2i�1a

k
2i for 1 � igleqn.

Proof of the pumping lemma Let G = hA; V; T;D; �Si be a local TDG of rank rG.
Without loss of generality let G be label complete. Furthermore, suppose that for all ele-
mentary  in G, jY ield( )j = 1 holds (i.e. linear precedence is fully speci�ed for the leaf
names).
Let Gc = (N;T; P; S) := Gd(G) be the derivation grammar of G.
cD := maxfjw j j fw g = Y ield( ) for some  elementary in Gg

To show: With cG := cD
PjN j
i=0 2

i the pumping lemma for rG holds for G.

�rst
derivation
tree:

iteration:




Z  u2

Z  u1




Z 

Z 




Z 

Z 

: : :

Let w 2 LS(G) with jwj > cG. In the derivation tree in Gc corresponding to the derivation
of the description with a minimal tree yielding w in G, there must be at least one path from
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the root to a leaf with two di�erent nodes u1 and u2, u1 dominating u2, such that u1 and u2
have the same label Z 2 N , because:

if this was not the case, each path in the tree would contain at most jN j + 1 nodes.
Since each internal node in the tree, apart from those that have a daughter labelled

by �, has two daughters, there would be then at most
PjN j�1
i=0 2i nodes representing a

derivation step in G. This means that the derivation of a description � with a minimal

tree yielding w would be at most of length
PjN j�1
i=o 2i, and therefore, including �S , we

have in � at most 1 +
PjN j�1
i=0 2i �

PjN j
i=0 2

i descriptions that are elementary or start
descriptions. Then the string w (yielded by a minimal tree of �) would have a maximal

length of lmax := cD + cD
PjN j�1
i=0 2i with lmax � cG.

Contradiction to lmax � jwj > cG.

Furthermore, u1 and u2 as above can be found such that even the following holds: if the label
Z is a state of the elementary  , then for all k 2 node( ), :equ(k) is a conjunct in Z (i.e.
this corresponds to a derivation step where  is added). This is the case because in each
production, the state Z on the left side and the Z 0 on the right side for the same  di�er
at least in so far as there is one k 2 node( ), such that :equ(k) occurs in Z and equ(k) in
Z 0 . This means that none of the states for  is repeated unless there is some new Z with
Z j= :equ(k) for all k 2 node( ).
Then, in the derivation tree, the subtree 
 of nodes dominated by u1 without being dominated
by u2 can be iterated as shown in the �gure.

For the corresponding descriptions derived in G, the following holds:
Suppose that  is elementary in G with r := 2ma( ) + ms( ) and Y ield( ) = fw g.
Without loss of generality, w 6= � holds.

Let �S
�
) �1

 
) �2

�
) �3

 
) �4 be a derivation such that 
 is the derivation tree corresponding

to �2
�
) �3

 
) �4 (this means that none of the derivation descriptions used in the steps

�2
�
) �3 has been added in the course of the derivation of �1).

To show:

(*) For all w�3 2 Y ield(�3): For each a-marked k 2 K , there are w1(k); w2(k) 2 T
� and for

each s-marked k 2 K , there is one w(k) 2 T
� such that: there is one order w1; : : : ; wr 

of these r words and there is a x1 2 Y ield(�1) such that:

1. w1 : : : wr 6= �.

2. There is a ŵ 2 �(x1; w�3) with ŵ = w1 : : : wr .

3. For all n � 2: if �S
�
) �1

 
) �2

�
) �3

 
) �4

�
) : : :

�
) �2n�1

 
) �2n where 
 is the

derivation tree for each part �2i
�
) �2i+1

 
) �2i+2 for 1 < i < n, then:

For each w�2i+1
2 Y ield(�2i+1) (2 < i < n):

(i) There are u0; : : : ; ur 2 T
� with u0w1u1 : : : ur �1wr ur = w�2i+1

.

(ii) There is a ŵ�2i+1
2 �(x1; w�2i+1

) such that there is a i-partition hŵ1; : : : ; ŵii
of ŵ�2i+1

with ŵj = w1 : : : wr for all 1 � j � i.

Proof of (*): Let w�3 2 Y ield(�3) and k
�3
1 ; : : : ; k�3m3

be all leaf names in �3 with �3 6` k
�3
j �

k�3i for i < j and �3 ` Æ(k
�3
i ) � t�3i for 1 � i � m3 and w�3 = t�31 : : : t�3m3

.
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De�nition of a homomorphism '1 : fk�31 ; : : : ; k�3m3
g� ! T �: for all i, 1 � i � m3, if

k�3i 2 node(�1), then '1(k
�3
i ) = �, else '1(k

�3
i ) = t�3i .

and a homomorphism '2 : fk�31 ; : : : ; k�3m3
g� ! T �: for all i, 1 � i � m3, if k

�3
i 2

node(�1), then '2(k
�3
i ) = t�3i , else '2(k

�3
i ) = �.

x1 := '2(k
�3
1 : : : k�3m3

).

First, the w1(k) andw2(k) for a-marked and the w(k) for s-marked names k are speci�ed:

(i) For each a-marked k 2 node( ): suppose that �2 ` k2 � k for k2 2 node(�1) and
that k0 is the next minimal or marked name dominating k in  .

(a) If (k0; k) is no underspeci�cation pair, then there is a k1 with �1 `s k1 �
� k2

and a k00 with  `s k
0
�
� k00, such that �2 ` k2 � k, and �2 `s k1 �

� k00.

k a-marked:

�3 : : :

k1

k00

w1(k) k w2(k)

Let i1; j1 be the smallest and i2; j2 the greatest numbers with 1 � i1 � i2 �
j1 � j2 and

for all i, i1 � i � i2: �3 ` k1 �
� k�3i ^ k

�3
i � k, and

for all j, j1 � j � j2: �3 ` k1 �
� k�3j ^ k � k

�3
j ,

then w1(k) := t�3i1 : : : t
�3
i2

and w2(k) := t�3j1 : : : t
�3
j2
.

Clearly, there are x; y; z 2 T � with w�3 = xw1(k)yw2(k)z.

(b) If (k0; k) is an underspeci�cation pair, then:

k a-marked:

�3 k0

v1 k4 v2

k

v1 and v2 are
substrings of
w1(k) and w2(k)

Let i1; j1 be the smallest and i2; j2 the greatest numbers with 1 � i1 � i2 �
j1 � j2 and

for all i, i1 � i � i2: �3 ` k
0
�
� k�3i ^ k

�3
i � k, and

for all j, j1 � j � j2: �3 ` k
0
�
� k�3j ^ k � k

�3
j ,
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then w1(k) := '(k�3i1 ) : : : '(k
�3
i2
) and w2(k) := '(k�3j1 ) : : : '(k

�3
j2
).

Here, w1(k) and w2(k) are not necessarily substrings of w�3 , but they are

substrings of '(k�31 : : : k�3m3
) 2 �(x1; w�3).

(ii) For each s-marked k 2 node( ) with k0 next marked or minimal name dominating
k: there is a leaf name kl in �1 with �2 ` kl � k. Then

k s-marked: either

�3 : : :

k�1

k

w(k)

or

�3 : : :

k � kl

w(k)

(a) either (k0; k) is no underspeci�cation pair, and there is a k�1 with �1 `s
k�1 �

� kl.

Then: if i1 is the smallest and i2 the greatest number with 1 � i1 � i2 � m3

and �3 ` k�1 �
� k�3i for all i, i1 � i � i2, then w(k) := t�3i1 : : : t

�3
i2
.

(b) or: there is either a k�1 with �1 ` k�1 � kl or (k
0; k) is an underspeci�cation

pair.

Then: if i1 is the smallest and i2 the greatest number with 1 � i1 � i2 � m3

and �3 ` kl �
� k�3i for all i, i1 � i � i2, then w(k) := t�3i1 : : : t

�3
i2
.

Clearly, in both cases, there are x; y 2 T � such that w�3 = xw(k)y.

Now, the claims 1., 2. and 3. will be shown:

Suppose that w1; : : : ; wr are the ordered words obtained for the marked names. Then:

1. w1 : : : wr 6= � because w 6= �.

2. w1 : : : wr = '1(k
�3
1 : : : k�3m3

) 2 �(x1; w�3). This is the case because for each i (1 �

i � m3): k
�3
i =2 node(�1) i�

- either there are marked k 2 K and k1 2 node(�1) as described in (i)(a) such

that either �3 ` k1 �
� k�3i ^ k

�3
i � k or �3 ` k1 �

� k�3i ^ k � k
�3
i

- or there are marked k0; k 2 K as described in (i)(b) such that either �3 `

k0 �� k�3i ^ k
�3
i � k or �3 ` k

0
�
� k�3i ^ k � k

�3
i

- or there is a k�1 as described in (ii)(a) with �3 ` k�1 �
� k�3i .

- or there is a kl as described in (ii) with �3 ` kl �
� k�3i .

3. When pumping n � 1 times, each time again w1; : : : wr are inserted in this order,
and this time, in the case (i)(b) it is possible to choose such a dominance relation
for the minimal tree that all w1; : : : ; wr are really substrings of the new word.

Therefore 3.(i) and (ii) hold.

Now that (*) is shown, it is only necessary to look at the part �2n
�
) � of the derivation

with the tree with root u2 as derivation tree. In these steps, only �nitely many terminals are
added. This means that there is a x2 2 T

� such that there is a w(n) 2 Y ield(�) and then a
v 2 �(x2; w

(n)) and a ŵ(n) 2 �(x1; v) with:
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(i) ŵ(n) = u0w1u1 : : : ur �1wr ur for some u0; : : : ; ur 2 T
�, and

(ii) there is a n-paritition Pn = hŵ1; : : : ; ŵni of ŵ
(n) such that for all i, 1 � i � n:

ŵi = w1 : : : wr .

Since r � rG, the pumping lemma for rG holds for G with the constant cG.

2

The fact that a-marked names introduce two substrings whereas s-marked names introduce
only one explains why a-marked names contribute twice as much to the generative capacity
as s-marked names.

With the pumping lemma, the following can be shown:

Proposition 4.10 For each i, 1 � i, TDLLi
�
6= TDLLi+1 holds.

Proof It is suÆcient to show that TDLLi 6= TDLLi+1 holds.

I consider the languages Ln := fa
k
1 : : : a

k
n j k � 0g.

As we have already seen, Li 2 TDL
L
n holds for i � 2n.

To show: L2n+1 =2 TDL
L
n

Proof by contraposition: suppose that L2n+1 2 TDL
L
n .

Then the pumping lemma for n must be ful�lled by L2n+1.

Let cn be the corresponding constant, w 2 L2n+1 with jwj � cn.

w = al1 : : : a
l
2n+1 for some l � 1. Since x1 and x2 in the pumping lemma are not iterated,

w1 : : : wn = am1 : : : a
m
2n+1 for some m � 1 must hold.

There must be at least one i, 1 � i � n such that there are at least three di�erent symbols
occuring in wi. Suppose wi = y1a

m0

j�1a
m
j a

m00

j+1y2 for some y1; y2 2 T
� and 1 �m0;m00;� m.

For each 1 � k and each w(k), ŵ(k) := amk1 : : : amk2n+1 holds.

But, because of (i) in Prop. 4.9, wi = y1a
m0

j�1a
m
j a

m00

j+1y2 must be a substring of each ŵ(k).

Since this is only the case for k = 1, this is a contradiction.

Therefore, L2n+1 =2 TDL
L
n holds.

2

With this proposition, it has been shown that the hierarchy of local TDGs de�ned in this
section is a well de�ned hierarchy in the sense that there is a real progression of classes of
languages.

With the pumping lemma, it is not possible to show Lcopyn+1 := fwn+1 jw 2 T �g =2 TDLLn
because for each n 2 IN, the pumping lemma for TDLs of rank n holds for all Lcopyi , 0 � i.
Here it might be interesting to look at the closure properties of local TDGs. Perhaps then
Lcopyn+1 =2 TDL

L
n might be shown by applying the pumping lemma to the intersection of Lcopyn+1

with some other language. As a consequence, one would know that local TDGs of rank n for
a speci�c n 2 IN allow only limited cross-serial dependencies, which is one of the conditions
for mild context-sensitivity. I leave this issue for further research.
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4.4 Synchronous local TDGs

In this section I will deal with the de�nition and the formal properties of synchronous local
Tree Description Grammars. Similar to synchronous TAGs (see Chapter 2, 2.4.2), a pair
of synchronous local TDGs consists of two local TDGs that are related by a synchroniza-
tion relation. Derivation in the two TDGs takes place simultaneously and is controlled by
the synchronization relation. The use of synchronous grammar formalisms is motivated by
the desire to describe two languages that are closely related to each other but that do not
have the same structures. This is for example the case in Machine Translation or for the
relation between syntax and semantics. Semantics clearly depends on the syntax but the
way a semantic expression is built does not correspond exactly to the syntactic structure.
Therefore Shieber and Schabes (1990) propose to use synchronous TAGs to describe the
syntax-semantics interface. In Chapter 5, I will show that synchronous local TDGs might
be used for a syntax-semantics interface and that they are more adequate than synchronous
TAGs.

I will follow the idea of synchronous TAGs by de�ning synchronous local TDGs and I will
show that, in contrast to TAGs, the synchronization of a local TDG with a second local TDG
does not increase the generative capacity.

4.4.1 Synchronization

The idea of synchronous local TDGs is that two grammars are related by a synchronization
relation and the derivation in the two grammars is done in parallel.

In this subsection, �rst the synchronization of two local TDGs is de�ned and then the
derivation mode for synchronous local TDGs is introduced.

Synchronous local TDGs are ordered pairs of local TDGs with an additional synchro-
nization relation between the elementary descriptions of the two grammars. This relation
is such that for each elementary description  1 in the �rst local TDG G1 there is one ele-
mentary description  2 in the second local TDG G2 related to  1. For each pair h 1;  2i in
the synchronization relation, there is an additional relation between node( 1) and node( 2)
specifying which node names are treated in parallel in a synchronous derivation step.

The objects derived in synchronous TDGs are triples consisting of one description de-
rived in G1, one description derived in G2, and a relation between the node names of these
descriptions. Such triples are called con�gurations.

De�nition 4.17 (Con�guration) A triple h�1; �2; �i is a con�guration i� �1 and �2 are
descriptions and � 2 node(�1)� node(�2).

Synchronization is not universally allowed for marked names but only for s-marked names.
The underlying idea is that the synchronization mechanism is used to express dependencies
between argument slots (leaf names) and between arguments (minimal names of descriptions
 with K = ; or s-marked names). In Chapter 5 we will see that in the case of the syntax-
semantics interface presented there, it is in fact suÆcient to control only substitution-like
new equivalences via synchronization. Adjunction-like new equivalences are controlled only
by the properties of local derivations. Therefore the synchronization relation between two
sets of node names is de�ned in such a way that marked names can occur in the relation
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only if they are not a-marked and if they cannot (in some further derivation step) become
equivalent to a bottom underspeci�ed name.

This restriction is also motivated by the fact that it enables the proof given in the next
subsection that synchronization does not increase the generative capacity of local TDGs.

De�nition 4.18 (Synchronous local TDGs) A quadruple Gs = hG1; G2;�; �si is a pair
of synchronous local TDGs i�

1. G1 = hA1; V1; T1;D1; �
s
1i and G2 = hA2; V2; T2;D2; �

s
2i are local TDGs.

2. � � D1 �D2 � (K �K) such that

(i) for all  1 2 D1, there is a  2 and a � with h 1;  2; �i 2 �.

(ii) for all h 1;  2; �i 2 �: � 2 node( 1) � node( 2) and for all hk1; k2i 2 � and all
i 2 f1; 2g:

if ki 2M i , then

- ki is no leaf name in  i,

- there is no marked km 6= ki in  with  i ` ki �
� km,

- and there are no k; k0; k00 with  i `s k�
� k0,  i `s k

00
�
� ki,  i ` k�

� k00^k0�� ki
and  i 6` :Æ(k) � Æ(ki).

Each element in � is called an elementary con�guration of Gs.

3. �s = h�
s
1; �

s
2; �si is a con�guration, the start con�guration.

The idea of the derivation de�nition for synchronous local TDGs is similar to the one
of synchronous TAGs. Derivation takes place simultanously in both TDGs. In one parallel
derivation step the new elementary descriptions added in this step must be related by the
synchronization relation �. Furthermore the derivation descriptions of this step must be
such that they have been added previously in the same derivation step. This means that
a derivation step depends not only on the history of one single local TDG derivation but
on a global derivation history that speci�es which descriptions were added in parallel. In
this respect, synchronous local TDGs di�er from synchronous TAGs. In a derivation step in
synchronous TAGs, the two nodes that are replaced by new elementary trees (by adjunction or
substitution) need not be part of two elementary trees that were added in the same derivation
step.

With respect to new node name equivalences, the synchronization signi�es the following:
if there is a new equivalence in one of the TDGs and if there are related node names in the
other TDG, then these node names also must become equivalent.

For the de�nition of the derivation for TDGs, an equivalence relation �K was needed in
order to make sure that in a derivation step descriptions with disjoint sets of node names
can be chosen. Similarly, in a derivation step in a pair of synchronous local TDGs, the
two old con�gurations must be such that their �rst descriptions have disjoint sets of node
names, and their second descriptions also have disjoint sets of node names. In order to
choose an appropriate new con�guration in a derivation step, the equivalence relation �K for
descriptions (see Def. 3.12, p. 74) is extended to con�gurations:
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De�nition 4.19 (K-equivalence of con�gurations) Let h�1; �2; �i and h�01; �
0
2; �
0i be

two con�gurations. h�1; �2; �i is K-eqivalent to h�01; �
0
2; �
0i (written h�1; �2; �i �K

h�01; �
0
2; �
0i) i� there are bijections f1 : K ! K and f2 : K ! K such that

(a) f̂1(�1) = �01
(b) f̂2(�2) = �02
(c) �0 = fhk01; k

0
2i j there is a hk1; k2i 2 � with k01 = f1(k1) and k

0
2 = f2(k2)g

For the de�nition of f̂ for a mapping f : K ! K, see also Def. 3.12.

De�nition 4.20 (Derivation in synchronous local TDGs) Let Gs be a pair of syn-
chronous local TDGs, Gs = hG1; G2;�; h�

1
S ; �

2
Sii, and let h�1; �2; �i and h�

0
1; �
0
2; �
0i be two

con�gurations such that �1S
n
) �1 with respect to G1 and �2S

n
) �2 with respect to G2 for an

n 2 IN.

h�1; �2; �i ) h�
0
1; �
0
2; �
0i wrt Gs i� there is a con�guration h 1;  2; � i and a h 

0
1;  

0
2; �
0
 i 2 �

with h 1;  2; � i �K h 
0
1;  

0
2; �
0
 i, such that:

1. �1
 1
) �01

2. �2
 2
) �02

3. If  1
d and  2

d are the derivation descriptions of these steps, then either  1
d = �1S and

 2
d = �2S or there is an i, 1 � i � n such that  1

d and  2
d were both added in the i-th

derivation step when deriving �1 and �2 respectively.

4. For all names k1; k2; k3; k4 with hk1; k3i 2 � and hk2; k4i 2 � :

(a) If �01 ` k1 � k2, then there must be k; k0 with hk1; ki 2 � and hk2; k
0i 2 � and

�02 ` k � k
0.

(b) If �02 ` k3 � k4, then there must be k; k0 with hk; k3i 2 � and hk0; k4i 2 � and
�01 ` k � k

0.

5. �0 = � [ � .

Note that there may be new node name equivalences in one of the derivation steps (�1
 1)

�01 or �2
 2) �02) with names that do not occur in the synchronization relation. Only if both

names of a new equivalence occur in � or � , then there must be an equivalence with related
names in the other grammar.

With synchronous local TDGs sets of pairs of descriptions are derived as description
language. The tree language consists of pairs of trees and the string language of pairs of
strings:

De�nition 4.21 (Language of synchronous local TDGs) Let Gs be a pair of syn-
chronous local TDGs, Gs = hG1; G2;�; �si.

1. The description language (set of description pairs) of Gs is

LD(Gs) := fh�1; �2i j there is a � 2 K �K such that �s
�
) h�1; �2; �ig

2. The tree language of Gs is

LT (Gs) := fhB1; B2i j there is a h�1; �2i 2 LD(Gs), such that B1 is minimal
tree of �1 and B2 is minimal tree of �2g
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�1S S

k2 NP VP

V NP k6

loves

�2S prop

pred ind k12

pred ind k11

love

�s = h�
1
S ; �

2
S ; fhk2; k12i; hk6; k11igi

 1 NP k13

NP

Mary

 2 ind k16

ind

Mary

 3 NP k19

NP

John

 4 ind k22

ind

John

� = fh 1;  2; fhk13; k16igi; h 3;  4; fhk19; k22igi

Figure 4.17: A sample pair of synchronous local TDGs

3. The string language of Gs is

LS(Gs) := fhw1; w2i j there is a hB1; B2i 2 LT (Gs), such that w1 = yield(B1)
and w2 = yield(B2)g

4. The left projection string language of Gs is

Lleft(Gs) := fw j there is a w0 such that hw;w0i 2 LS(Gs)g

The right projection string language of Gs is

Lright(Gs) := fw j there is a w0 such that hw0; wi 2 LS(Gs)g

With this de�nition of a tree language of synchronous local TDGs, the synchronization
relation does not in
uence the choice of minimal trees for a given pair of descriptions in the
description language.

A simple example of a pair of synchronous local TDGs is shown in Fig. 4.17. In this case
the synchronization relations between the sets of node names are used to express relations
between arguments: with hk6; k11i in �s, the predicate love0 (in �2S) is �rst applied to the
denotation of the object of loves (in �1S), and (with hk2; k12i) the resulting predicate is then
applied to the denotation of the subject.

4.4.2 Expressivity of synchronous local TDGs

Concerning TAGs there arise some problems with synchronous grammars, or at least some
unintended and unexpected phenomena. As shown in Shieber 1994, the class of left projec-
tion string languages of synchronous TAGs is a proper superset of the class of Tree Adjoin-
ing Languages. Shieber gives the synchronous TAG shown in Fig. 2.14 with the language
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fanbn : : : hn jn � 0g as left projection. As mentioned before, this language is not a TAL.
This is something that obviously was not intended because synchronous TAGs have been
developed to establish a relation between two Tree Adjoining Languages. Whether this is a
problem in the case of TAGs is diÆcult to say. We have seen that TAGs are not powerful
enough to deal with all natural language phenomena, and therefore it might even be inter-
esting to increase the generative capacity of TAGs by controlling the derivation by a second
TAG.

In the case of synchronous local TDGs I will prove in this section that each left or right
projection string language of a pair of synchronous local TDGs is a local TDL and vice versa.
This is a nice result because local TDGs are already more powerful than TAGs and probably
powerful enough to handle natural languages. Therefore it would not be desirable to increase
the set of string languages of local TDGs by the synchronization mechanism.

It is obvious that each local TDL can be de�ned as a right or left projection string language
of a pair of synchronous TDGs. But the reverse is not easy to see.

Proposition 4.11 (Expressivity of synchronous local TDGs) For each language L
that is either the right or the left projection string language of a pair Gs of synchronous
local TDGs, there is a local TDG G such that L = LS(G).

In order to facilitate the proof of this proposition, I will �rst show the following lemma.
This lemma says that for each pair of synchronous local TDGs, there is an equivalent pair
of synchronous local TDGs where minimal or marked names occuring in the synchronization
relation cannot be used to introduce new node name equivalences in further derivation steps.

Lemma 4.2 For each synchronous pair Gs of local TDGs there is a pair G
0
s = hG

0
1; G

0
2;�

0; �0si
of local TDGs such that

(i) LS(Gs) = LS(G
0
s), and

(ii) for all h 01;  
0
2; �
0i 2 �0 and all h 1;  2; �i K-equivalent to h 01;  

0
2; �
0i:

for all i 2 f1; 2g and all k 2M i such that there is a k0 with hk; k0i 2 � or hk0; ki 2 �:

if there is a derivation �s
�
) �1

h 1; 2;�i
) h�1; �2; ��i,

then there is no derivation h�1; �2; ��i
�
) h�01; �

0
2; �
0
�i such that there is a k� with

�i 6` k � k� and �0i ` k � k�.

The proof idea for this lemma is to construct the equivalent local TDGs G0s as follows: a
new attribute derive is introduced with possible values yes or no which signi�es either that a
node name can be used to introduce new equivalences in further derivation steps or that this is
not allowed. In Gs, a marked or minimal name k in some elementary description  occuring
in the synchronization relation is no leaf name and does not dominate any other marked
names (see Def. 4.18). When  is added in a derivation step in Gs, k must be identi�ed with
a leaf name kd in the derivation description  d. kd either 1) is unmarked and has a parent or
2) is unmarked and is strongly dominated or 3) is marked and not bottom-underspeci�ed. In
Gs, kd may be used later for a new equivalence. This should not be possible in G0s. Therefore
 d is replaced by an elementary descriptions  0d that can be obtained from  d by adding
another name knew. This name can be used later instead of kd.
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In the case 1) (kd has a parent in  d), knew is a daughter of kd and has the same labels.
Additionally, derive(Æ(knew)) � no is added and kd is replaced by knew in the synchronization
relation (see (a)(ii) in the proof).

 d

kd

;
 0d

derive : no knew

kd

In the case 2), i.e. kd is strongly dominated by some ks, even two new names k1 and k2
must be introduced. k1 has the same attribute value pairs as ks and k2 has the same as kd.
derive(Æ(ks)) � yes^derive(Æ(kd)) � yes^derive(Æ(k1)) � no^derive(Æ(k2)) � no is added
(see (a)(iii) in the proof).

 d

kd

ks ;
 0d

derive : no k2

ks

derive : no k1

kd

In the case 3) (kd is marked and not bottom-underspeci�ed) kd might be identi�ed with
a leaf when adding  d. For this case, a new daughter knew of kd is added with the same
labels and derive(Æ(knew)) � no. kd is replaced by knew in the synchronization relation (see
(a)(iv)).

 d
kd

;

 0d

derive : no knew

kd

Furthermore, in all three cases, there must also be a second description  00d that can be
obtained from  d by adding derive(Æ(kd)) � yes. This description is used for equivalences
with leaf names (see (a)(i)).

In Gs, the name k from  is not a leaf name and may be later used for a new equivalence
with an a-marked name. Therefore, also in  a new name must be added (either as daughter
or as mother of k) that can be used instead of k. For k, the conjunct derive(Æ(k)) � no is
added to  .  is replaced by one new elementary description that can be obtained by adding
a new daughter knew to k with the same attribute value pairs as k (see (b)(i)):

 
k ;

 0

k derive(Æ(k)) � no

knew
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�1S start : yes �2S start : yes �s = h�
1
S ; �

2
S ; ;i

 1

start : yes

cat : S

cat : NP

k1
cat : NP
derive : no

cat : V P

cat : V cat : NP

loves
cat : NP
derive : no

k2

 2

start : yes

cat : prop

cat : pred

cat : pred cat : ind

love k3
cat : ind
derive : no

cat : ind

k4
cat : ind
derive : no

 3

k5

cat : NP
derive : no
start : no

cat : NP

cat : NP

Mary

 4

k6

cat : ind
derive : no
start : no

cat : ind

cat : ind

Mary

 5

k7

cat : NP
derive : no
start : no

cat : NP

cat : NP

John

 6

k8

cat : ind
derive : no
start : no

cat : ind

cat : ind

John

� = fh 1;  2; fhk1; k4i; hk2; k3igi; h 3;  4; fhk5; k6igi; h 5;  6; fhk7; k8igi

Figure 4.18: Synchronous local TDGs satisfying Lemma 4.2 equivalent to the

local TDGs in Fig. 4.17
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Furthermore, if there is a kd strongly dominating k in  , then a second elementary de-
scription  00 is added where the new name knew is a parent of k and not a daughter (see
(b)(ii)).

 
k

;  00

knew
derive(Æ(k)) � nok

For all names k0 that are either unmarked or that cannot occur in the synchronization
relation, derive(Æ(k0)) � yes is added (see (c)). Therefore, when k and kd are no longer leaf
names, they cannot be used for further node name equivalences.

Fig. 4.18 shows the synchronous local TDGs constructed according to the proof of Lemma
4.2 for the local TDGs in Fig. 4.17.

Proof Let Gs = hG1; G2;�; �si be a pair of synchronous local TDGs.
Without loss of generality let G1 and G2 be label complete.
Construction of G0s = hG01; G

0
2;�

0; �0si with G01 = (A01; V
0
1 ; T1;D

0
1; �
0
S1) and G02 =

(A02; V
0
2 ; T2;D

0
2; �
0
S2):

1. A01 := A1 [ fderive; startg and A
0
2 := A2 [ fderive; startg where derive; start =2 A1 [A2.

2. V 01 := V1 [ fno; yesg, V
0
2 := V2 [ fno; yesg.

3. Synchronization �0 and start con�guration �0s: �s := � [ f�sg.

(*) If there is a � = h 1;  2; �i 2 �s, a i 2 f1; 2g, and a k 2 node( i) such that

-  6` derive(Æ(k)) � yes,

-  6` derive(Æ(k)) � no,

- and there is no t 2 T [ f�g with  i ` Æ(kl) � t

then:

(a) if k is leaf name, then:

(i) a con�guration �1 is added to �s that can be obtained from � by replacing
 i by  i ^ derive(Æ(k)) � yes,

(ii) if k =2 M i , and there is a kp with  i ` kp � k, then a con�guration �2 is
added to �s that can be obtained from � as follows:

take a new kl =2 node( i),

replace  i by  i ^ k � kl ^ derive(Æ(kl)) � noV
fa(Æ(kl)) � v j i ` a(Æ(k)) � v; a 2 Ai; v 2 Vi [ f?gg,

and replace k by kl in �.

(iii) if k =2M i , and there is a kd with  i `s kd �
� k,

then a con�guration �3 is added to �s that can be obtained from � as
follows:

take two new names k1; k2 =2 node( i),
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replace  i by

 i ^ kd � k ^ k � k1 ^ k1 �
� k2

^derive(Æ(k)) � yes ^ derive(Æ(k1)) � no ^ derive(Æ(k2)) � noV
fa(Æ(k1)) � v j i ` a(Æ(kd)) � v; a 2 Ai; v 2 Vi [ f?ggV
fa(Æ(k2)) � v j i ` a(Æ(k)) � v; a 2 Ai; v 2 Vi [ f?gg

(iv) if k 2M i , and k is not bottom underspeci�ed,

then a con�guration �4 is added to �s that can be obtained from � as
follows:

take a new kl =2 node( i),

replace  i by  i ^ k � kl ^ derive(Æ(k)) � yes ^ derive(Æ(kl)) � noV
fa(Æ(kl)) � v j i ` a(Æ(k)) � v; a 2 Ai; v 2 Vi [ f?gg,

(v) then � is removed from �s.

(b) if k 2M and k occurs in �,

then

(i) a con�guration �1 is added that can be obtained from � as follows:

take a new knew =2 node( i),

replace k by knew in all conjuncts of the form k�� k0 or k� k0 for some
k0 2 node( i) in  i,

and replace  i by

 i ^ k � knew ^ derive(Æ(k)) � no ^ derive(Æ(knew)) � yesV
fa(Æ(knew)) � v j ` a(Æ(k)) � v; a 2 Ai; v 2 Vi [ f?gg

(ii) if there is a kd with  i `s kd�
� k, then a second con�guration �2 is added

that can be obtained from � by

taking a new knew =2 node( i) and

replacing  i by

 i ^ kd �
� knew ^ knew � k

^ derive(Æ(k)) � no ^ derive(Æ(knew)) � yesV
fa(Æ(knew)) � v j ` a(Æ(k)) � v; a 2 Ai; v 2 Vi [ f?gg.

(iii) then � is removed from �s.

(c) if neither condition (a) nor (b) holds for k, then replace  i in � by  i ^
derive(Æ(k)) � yes

Repeat (*) until no such k is left.

4. �0s := hstart(Æ(k1)) � yes; start(Æ(k2)) � yes; ;i

For each con�guration � = h�1; �2; �i constructed from �s, for each i 2 f1; 2g: if km is
the minimal name in �i, then take a new name k =2 �i and replace �i by �i ^ k � km ^
start(Æ(k)) � yes.

For each con�guration � = h�1; �2; �i that was not constructed from �s, for each i 2 f1; 2g:
if km is the minimal name in �i, then replace �i by �i ^ start(Æ(km)) � no.

�0 := �s.

The result is a synchronous pair G0s of local TDGs satisfying condition (ii) in the lemma.

To show: LS(Gs) = LS(G
0
s).
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First, it can be shown that, roughly said, in a con�guration � derived in G0s, names with
no as value of derive that are no leaf names can be removed without modifying the set of
derivable pairs of strings:
let � = h�1; �2; �i be a con�guration with �0s

�
) � in G0s. Then the con�guration mod(�) can

be obtained from � as follows:

(M) if there is an i 2 f1; 2g and a k 2 node(�i) coming from the elementary  such that
 i ` derive(Æ(k)) � no and k is no leaf name,

then

1. if, when constructing  , k was added as kl in (a)(ii) or (a)(iv) or as knew in (b)(i),
and if k0 is the name with  ` k0 � k,

then remove the conjuncts k0� k and derive(Æ(k)) � no from �i and replace in �i all
occurrences of k by k0.

2. if, when constructing  , k was added as k1 in (a)(iii), and if k0 was added as k2, then:

if k01; k
0
2 are the old names in (a)(iii) with  ` k01 � k02, then remove the conjuncts

k01�k
0
2, k

0
2�k, derive(Æ(k)) � no and derive(Æ(k

0)) � no, and replace all occurrences
of k by k01 and all occurrences of k0 by k02.

3. if, when constructing  , derive(Æ(k)) � no was added as in (b)(ii), and if knew was
the new name with  ` knew � k, then

remove the conjuncts knew � k and derive(Æ(k)) � no from �i and replace in �i all
occurrences of k by knew.

repeat (M) until no such k is left.

The following can be easily shown: for each � with �0s
�
) � in G0s and each elementary �e in

G0s:
�
�e) �0 with new equivalences k1 � k01; : : : ; kn � k0n i� mod(�)

�e) �00 with new equivalences
k1 � k

0
1; : : : ; kn � k

0
n and mod(�0) = mod(�00).

Since the modi�cation does not in
uence the strings yielded by the two descriptions, this
means that, instead of one derivation step �1 ) �2 in G0s, a derivation mode )mod can be
used with
�1 )mod �2 i� there is a � with �1 ) � (in G0s) and �2 = mod(�).
Then, with the construction of G0s, for all con�gurations �: �s

�
) � in Gs i� there is a �0 that

can be constructed for � as in (a) to (c) with �0s
�
)mod �

0.

2

With this lemma, the proof of Prop. 4.11 is easy to do. For a pair of synchronous local
TDGs Gs, a local TDG G generating the left (or right) projection string language of Gs can
be constructed in the following way (in general, G is not one of the TDGs in the pair Gs):

In one elementary description of G, the two elementary descriptions of one pair in Gs
occur as two subdescriptions. In the case of the left projection language, all terminals in the
second TDG are replaced by �. For the right projection, of course all terminals in the �rst
TDG are replaced by �.

The start description consists of the two descriptions in �s together with a new name
that is parent of the minimal names of these two descriptions. New attributes k are added
for all leaf names k with nonterminal labels. Instead of the synchronization relation, these
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attributes control the derivation process. Their values are 0 or 1. For each of these leaf names
k, k(Æ(k)) � 1 holds.

An elementary description in the new TDG is obtained from two descriptions  1;  2

related by � and, furthermore, it depends on the pairs of derivation descriptions  1
d;  

2
d that

can be used in a dervation step where  1 and  2 are added. The idea is that for a marked
name km in a description  that occurs in the synchronization relation, the attributes k
specify the node name that must become equivalent to km in a derivation step where  is
added. If kd is this name, then kd(Æ(km)) � 1 holds and for all k with k 6= kd, k(Æ(km)) � 0.
The elementary description consists of  1 and  2 with the additional attributes k and a new
name dominating the minimal names of  1 and  2.

Fig. 4.19 shows the local TDG constructed in such a way for the left projection language
of the synchronous TDGs in Fig. 4.18 (some of the new attributes k and the attributes derive
are omitted in this �gure).

Without loss of generality, one can suppose that for none of the names k with k0(Æ(k)) � 0
for some k0, any further equivalences are possible (see Lemma 4.2). Therefore these attributes
are used to control only one derivation step and there arise no problems with further new
equivalences.

Proof of Prop. 4.11 I will consider only the case of the left projection string language,
the other case is analogous.

Let Gs = hG1; G2;�; �si be a synchronous local TDG with G1 = (A1; V1; T1;D1; �
1
S) and

G2 = (A2; V2; T2;D2; �
2
S).

Without loss of generality, I assume that Gs satis�es the conditions of the G0s in Lemma
4.2 and that the sets of node names of all elementary descriptions occuring in � or �s are
pairwise disjoint.

To show: L := Lleft(Gs) is a local TDL.

Construction of a local TDG G = (A; V; T;D; �S) with L = LlS(G):

�s := �[ f�sg. Without loss of generality suppose that for all h 1;  2; �1i; h 3;  4; �2i 2 �s:
node( i) \ node( j) = ; for i 6= j, i; j 2 f1; 2; 3; 4g.

First, a set �G will be constructed, and then from each element in �G, one elementary
description in G can be obtained.

�G := ;.

For each h 1
d;  

2
d ; �di 2 �s and for all � 2 �s n f�sg, � = h 1;  2; �i:

For all k1; : : : ; kn 2 node( 1) [ node( 2) and k
0
1; : : : ; k

0
n 2 node( 

1
d) [ node( 

2
d) such that:

(a) k 2 fk1; : : : ; kng i� k 2M 1 [M 2 , and there is a k0 such that hk; k0i 2 � or hk0; ki 2 �,

(b) k01; : : : ; k
0
n are leaf names in  1

d or  
2
d,

(c) for all i; 1 � i � n: ki 2 node( 1) i� k
0
i 2 node( 

1
d).

(d) for all i; j; 1 � i; j � n: if hki; kji 2 �, then either hk0i; k
0
ji 2 �d, or there is no k with

hk0i; ki 2 �d or hk; k
0
ji 2 �

0.

(e) for all i; j; 1 � i; j � n: if hk0i; k
0
ji 2 �d, then hki; kji 2 �.

hh 1;  2; �i; fhk1; k
0
1i; : : : ; hkn; k

0
nigi 2 �G.

These are all elements in �G.

For all hh 1;  2; �i;Xi 2 �G, replace all terminals occuring in  2 by �.
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�S cat : Snew

start : yes
k1 : 1

start : yes
k2 : 1

cat : Snew  1

start : yes
k2 : 0

� start : yes
k1 : 0

�

cat : S cat : prop

cat : NP cat : V P cat : pred cat : ind

cat : NP
k3 : 1

cat : V cat : NP cat : pred cat : ind
cat : ind
k6 : 1

loves
cat : NP
k4 : 1

�
cat : ind
k5 : 1

 2 cat : Snew

cat : NP
k4 : 0

� cat : ind
k5 : 0

�

cat : NP cat : ind

cat : NP cat : ind

Mary �

 3 cat : Snew

cat : NP
k3 : 0

� cat : ind
k6 : 0

�

cat : NP cat : ind

cat : NP cat : ind

Mary �

 4 cat : Snew

cat : NP
k4 : 0

� cat : ind
k5 : 0

�

cat : NP cat : ind

cat : NP cat : ind

John �

 5 cat : Snew

cat : NP
k3 : 0

� cat : ind
k6 : 0

�

cat : NP cat : ind

cat : NP cat : ind

John �

Figure 4.19: Local TDG for the left projection language of the synchronous

TDGs in Fig. 4.18
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AK := fk j k is a leaf name in some  in �G and there is no t 2 T [ f�g with
 ` Æ(k) � tg

Now the local TDG G will be constructed:

1. T := T1.

2. A := A1 [ A2 [ AK [ fcatg (without loss of generality I suppose that AK ; A1 [ A2 are
pairwise disjoint).

3. V := V1 [ V2 [ f1; 0; Snewg (without loss of generality I suppose that 1; 0; Snew =2 V1 [ V2).

4. Elementary descriptions D:

For all hh 1;  2; �i;Xi 2 �G with X 6= ; and with km1 and km2 minimal in  1 and  2

respectively, there is a h ;K i 2 D of the following form:

There is a new k =2 node( 1) [ node( 2) such that K = K 1 [K 2 [ fk
m
1 ; k

m
2 g and

 =  1 ^  2 ^ k �
� km1 ^ k �

� km2 ^ cat(Æ(k)) � Snew^
fk(Æ(k)) � 1 j k 2 AK and k 2 node( 1) [ node( 2)g

^
fk0(Æ(k)) � 0 j k0 2 AK ; hk; k

0i =2 X; and there is a k00 with hk; k00i 2 Xg

These are all elementary descriptions in D.

5. Start description: let km1 ; k
m
2 be the two minimal names of �1S and �2S respectively. Take

a new k =2 node(�1S) [ node(�
2
S). Then the start description is

�S := �1S ^ �
2
S ^ k � k

m
1 ^ k � k

m
2 ^ k

m
1 � k

m
2 ^ cat(Æ(k)) � Snew

The result is a local TDG.

LlS(G) = Lleft(Gs) is easy to see.

2

With respect to the rank of the local TDG constructed in the preceding proof, the following
holds: if Gs = hG1; G2;�; �si is the original pair of synchronous local TDGs and if G1 is of
rank n1 and G2 of rank n2, then the rank of the resulting local TDG generating the left (or
right) projection string language of Gs is 2+n1+n2. In other words, the proof of Prop. 4.11
shows not only that the left and right projection string languages of synchronous local TDGs
are local TDLs but also that the rank of these languages is limited by the ranks of the two
synchronous local TDGs.

4.5 Conclusion: properties of local TDGs

In this chapter, a local variant of the TDGs presented in Chapter 3 has been proposed. I will
now summarize some of the results shown for local TDGs, and I will raise some interesting
issues for further work.

Local TDGs preserve the attractive properties of TDGs with respect to natural languages,
namely the extended domain of locality, the possibility of multicomponent derivation, a uni-
form distinction between complementation and modi�cation, and the possibility to gener-
ate underspeci�ed representations. As an example for natural language applications, I will
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present a syntax-semantics interface in the following chapter. We will see then, that local
TDGs enable us to derive underspeci�ed representations for quanti�er scope ambiguities.
For these phenomena local TDGs are even more appropriate than general TDGs since island
constraints hold simply as a consequence of the locality restriction in the grammar formalism.

With respect to the formal properties of local TDGs, some of the results shown for gen-
eral TDGs still hold for local TDGs, in particular the decidability of the word problem for
lexicalized local TDGs.

Concerning the generative capacity of local TDGs, I have shown that local TDGs gen-
erate only semilinear languages. This indicates that local TDGs are suitable to describe
natural languages, since the languages generated by local TDGs satisfy the Constant Growth
Property. Furthermore, I have shown that local TDGs are at least as powerful as set-local
MC-TAGs. Their derivational generative capacity is even greater than the one of set-local
MC-TAGs.

It is interesting that the local TDG for an indexed string language that cannot be gener-
ated by a set-local MC-TAG contains elementary descriptions with underspeci�cation pairs.
The fact that the locality restriction concerns only the derivation of descriptions and not the
construction of corresponding minimal trees, seems to be crucial for the generative power of
local TDGs. Local TDGs without underspeci�cation pairs are probably less powerful than lo-
cal TDGs with arbitrary local descriptions. It might be no problem to show that local TDGs
without underspeci�cation are equivalent to linear context-free rewriting systems as presented
by Weir (1988). Then it would be desirable to �nd a characterization of the extension of the
generative capacity caused by the possibility of underspeci�ed dominance relations. However,
this issue is not in the scope of this dissertation and I leave it for further research.

Another question that suggests itself concerns a comparison between (general) TDGs and
local TDGs. One might suppose that there are at least languages generated by general TDGs
that are not local TDLs. But it seems hard to compare the two formalisms in a general way.
There is perhaps even no subset relation between the two classes of languages, i.e. it might
be the case that there are also local TDLs that are not generated by TDGs.

A subject that has been left aside in this thesis is the problem of parsing and in particular
parsing complexity. I hope to deal with this question in the future. Perhaps it is possible to
show that for a speci�c n 2 IN, local TDGs of rank n are mildly context-sensitive, i.e. that
besides their restriction to semilinear languages, they are polynomially parsable and they
allow only limited cross-serial dependencies.

A further problem that I would like to consider in future research is the question whether
there is a description-based grammar de�ning (local) TDLs that is not derivation-based, and
how such a grammar looks like. For monadic second order logic for example, Rogers (1994,
1996) has shown that only context-free languages or more precisely only local tree sets can
be characterized with this logic, i.e. it is not possible to de�ne local TDLs using a monadic
second order logic. The problem of de�ning local TDLs without derivations is probably a
complex issue and shall be left for further work.
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Chapter 5

A syntax-semantics interface

In the preceding chapter, local TDGs, a variant of the TDGs introduced in Chapter 3, were
presented. In particular, synchronous local TDGs, which can be used to describe relations
between two languages, were introduced. This formalism will be used to describe the relation
between syntax and semantics.

In Chapter 2, we saw the shift from trees to tree descriptions to be motivated by a number
of linguistic observations: Kroch and Joshi (1987) have shown that the derivational generative
capacity of TAGs is insuÆcient for natural languages and that a kind of multicomponent
derivation is necessary. This can be captured by tree descriptions. Furthermore, Rambow
(1994a) treats certain non-local dependencies such as long-distance scrambling by relaxing the
parent relation, which means a replacing of trees with tree descriptions. Another advantage
of tree descriptions is the possibility to have a uniform complementation operation besides
adjunction-like operations. And of course, the use of tree descriptions allows us to obtain
underspeci�ed representations without adding any special mechanisms (as in Bos 1995 and
Reyle 1993 for example). Tree descriptions are underspeci�ed by nature and therefore, in a
formalism based on tree descriptions, underspeci�ed representations can be obtained in an
elegant and natural way.

To incorporate semantics into the TAG formalism, Shieber and Schabes (1990) propose
to use a second TAG for semantic representations besides the one for syntactic structures.
These two TAGs are connected by a synchronization relation (see also 2.4.2 on page 38 in
Chapter 2). Following these ideas, I will present a syntax-semantics interface for French using
synchronous local TDGs. For semantic representations a TDG Gsem will be developed that
gives a truth conditional semantics of French. This TDG depends on the syntax in some
compositional way which is realized by synchronizing the syntax TDG Gsyn (with French as
its string language) with Gsem.

Most theories in the Montagovian tradition assume syntax and semantics to be closely
related. Usually, one syntactical phrase structure rule is connected to a semantic rule. In other
words, a tree of height 1 (with one mother and n daughters) is related to a rule describing
how to obtain the semantic interpretation of the mother node from the interpretations of
the daughters. Because of this close relation, these systems need higher order logics for
truth conditions and rules like Quanti�er Raising or Quantifying In. Furthermore, in some
cases di�erent types and interpretations of a lexical item (i.e. di�erent readings) must be
distinguished depending on the syntactic context in which the lexical item may occur. As
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we will see, with synchronous local TDGs, the semantics also depends on the syntax in
a compositional way, but the relation between syntax and semantics is less close than in
Montagovian theories. In the framework used in this chapter, a syntactic tree description is
related to a second tree descriptions that characterizes the contribution of the �rst one to
the semantic interpretation. Since these tree descriptions can be larger than a tree of height
1 and since there need not be a direct correspondence between the node names in these two
descriptions, syntax and semantics are less closely related to each other. As a consequence of
this, no additional mechanisms are required to account for di�erences between (surface) word
order and semantic interpretation. Furthermore, the truth-conditional logic can be relatively
simple, and, except in cases of lexical ambiguity, each lexical item has a unique type and
interpretation.

The work presented here is limited to certain selected phenomena, and there are many
important issues in the context of underspeci�ed semantics that are not taken into account
here, e.g. the problem of reasoning with underspeci�ed representations. They must be subject
of further research. This chapter is mainly concerned with the generation of (underspeci�ed)
semantic representations.

Parts of this work are also presented in Kallmeyer 1997b, 1999a.
The syntax-semantics interface presented in the course of this chapter covers a fragment

including the following data:

� Restrictive relative clauses, e.g.

un �etudiant, qui est dans la biblioth�eque, lit un livre

(`a student who is in the library reads a book')

� Quanti�er scope ambiguities, e.g.

un homme aime chaque femme

(`a man loves every woman')

� De re - de dicto ambiguities, e.g.

Jean croit que Marie lit un livre

(`Jean believes that Marie reads a book')

� Structural ambiguities with nominal modi�ers, e.g.

ancien château royal

(`former royal castle / royal former castle')

For the local TDG Gsyn describing the syntax of French, I will adopt analyses proposed
by Anne Abeill�e for a TAG framework (see Abeill�e 1988a,b, 1994).

This chapter is structured in the following way: �rstly I will give a brief and informal
introduction to synchronous local TDGs. In Section 5.2 I will present Montague's approach
to quanti�ers and Cooper's quanti�er storage. Furthermore, I will list some constraints
that hold for quanti�er scope. In the following two sections (5.3 and 5.4) a fragment of a
syntax-semantics interface for French will be presented: in Section 5.3 a logic for the truth
conditional semantics is proposed. In the fourth section, the elementary con�gurations of
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the synchronous local TDGs are presented. After that I will show in 5.5 that this grammar
allows the derivation of underspeci�ed representations for scope ambiguities and that these
underspeci�ed representations are such that so-called \island" constraints for quanti�er scope
are respected. The approach presented in this chapter will be compared to other related
theories. Finally, in the conclusion, the main properties of the syntax-semantics interface
presented in this chapter wil be summarized.

5.1 Synchronous local TDGs

In this section, I will brie
y and informally revise the formalism of synchronous local TDGs
as it is de�ned in Sections 4.1 and 4.4 in Chapter 4. This is mainly for those readers who
want to follow this chapter without reading all the formal details in the previous chapter.

5.1.1 Local TDGs

First, I will repeat the idea of local TDGs: local TDGs consist of tree descriptions, so-called
elementary descriptions, and a speci�c start description. These tree descriptions are formulas
in a quanti�er-free �rst order logic. They are negation- and disjunction-free. The tree logic
was presented in Section 3.1 in Chapter 3. It allows the description of relations between node
names k1; k2 such as parent relation (i.e. immediate dominance) k1�k2, dominance (re
exive
transitive closure of the parent relation) k1 �

� k2, linear precedence k1 � k2 and equality
k1 � k2. Furthermore, nodes are supposed to be labelled by terminals or by atomic feature
structures (see Def. 3.2, page 57). The labeling function is denoted by the symbol Æ, and for a
node name k, Æ(k) � t signi�es that k has a terminal label t, and a(Æ(k)) � v signi�es that k
is labelled by a feature structure containing the attribute value pair ha; vi. In an elementary
description  , some of the node names are marked (those in the set K ).

A sample local TDG is shown in Fig. 5.1. In the graphical representations, the marked
names are those with an asterisk. Later I will often omitt some of the node names, sometimes
even all node names, in the graphical representations. Only labels and parent and dominance
relations are always depicted.

In order to avoid confusion, I want to emphasize once again that local TDGs are
description-based, i.e. that the elements of a local TDG are descriptions and not structures.

Local TDGs generate tree descriptions. A derivation in a local TDG starts with the start
description. In each derivation step, a derived description �1 and an elementary description
 are used to obtain a new description �2. Roughly said, �2 can be viewed as a conjunction of
�1,  and new equivalences between node names from �1 and from  , i.e. �2 = �1 ^ ^ k1 �
k01 ^ � � � ^ kn � k

0
n where ki are names from �1 and k

0
i are names from  for 1 � i � n.1 This

derivation step must be such that

1. for a node name k in  , there is a new equivalence i� k is either marked (i.e. in K 

as k9 in  1 in Fig. 5.1) or k is minimal (dominated by no other name, e.g. k4 in  1 in
Fig. 5.1),

1In some cases new dominance relations are also added, but I will leave this aside for this informal presen-
tation. The derivation steps in this chapter are all such that only node name equivalences are added.
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Local TDG with start description �S and elementary descriptions  1;  2:

�S = k1 �
� k2 ^ k2 � k3 ^ cat(Æ(k1)) � N ^ cat(Æ(k2)) � N ^ Æ(k3) � professor

 1 = k4 �
� k5 ^ k5 � k6 ^ k6 � k7 ^ k5 � k8 ^ k8 �

� k9 ^ k6 � k8
^ cat(Æ(k4)) � N ^ cat(Æ(k5)) � N ^ cat(Æ(k6)) � AP ^ Æ(k7) � former

^ cat(Æ(k8)) � N ^ cat(Æ(k9)) � N
K 1 = fk9g

 2 = k10 �
� k11 ^ k11 � k12 ^ k12 �

� k13 ^ k11 � k14 ^ k14 � k15 ^ k12 � k14
^ cat(Æ(k10)) � N ^ cat(Æ(k11)) � N ^ cat(Æ(k12)) � N ^ cat(Æ(k13)) � N
^ cat(Æ(k14)) � PP ^ Æ(k15) � in T�ubingen

K 2 = fk13g

Graphical representations:

�S
cat : N k1

cat : N k2

professor

 1

cat : N k4

cat : N k5

k6 cat : AP cat : N k8

k7 former cat : N �
k9

 2

cat : N k10

cat : N k11

k12 cat : N cat : PP k14

k13 cat : N � in T�ubingenk15

Figure 5.1: Sample local TDG

2. the names k1; : : : kn from �1 that are used for the new equivalences must be part of
one single elementary or start description, the so-called derivation description of this
derivation step (locality condition),

3. and the result �2 must be as underspeci�ed as possible, i.e. up to some renaming of
node names, �2 must not entail any other possible result of the derivation step.

Of course, some details are omitted here. But this presentation of the derivation is
suÆcient to understand the examples treated in this chapter. For a more detailed and formal
presentation see Section 4.1 in Chapter 4.

Sample derivation steps with the local TDG in Fig. 5.1 are the following: �S
 1
) �2 with

�2 = �S ^  1 ^ k1 � k4 ^ k2 � k9 and also �2
 2
) �3 with �3 = �2 ^  2 ^ k1 � k10 ^ k2 � k13.

Graphical representations of �2 and �3 are shown in Fig. 5.2. (The fact that one node name
is depicted left of another node names does not necessarily mean that there is really a linear
precedence relation between the two, e.g. k8 is depicted left of k12 in �3 but �3 ` k8 � k12
does not hold.) In the second derivation step, �3 is the only description that can be derived
by putting �2 and  2 together with �S as derivation description because the result of a
derivation step must be maximally underspeci�ed (for a formalization of this condition, see
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�2
cat : N k1�k4

cat : N k5

cat : AP cat : N k8

former cat : N k2�k9

professor

�3
cat : N k1�k10

cat : N cat : N

cat : AP cat : N cat : N cat : PP

former in T�ubingen

cat : N k2�k13

professor

Figure 5.2: Sample derived descriptions

axiom (L4) in Def. 4.8, p. 120).

5.1.2 Synchronization

Synchronous local TDGs are presented in Section 4.4, page 154 in Chapter 4. A pair Gs of
synchronous local TDGs (see Def. 4.18) consists of two local TDGs G1; G2 and a synchro-
nization relation � between the elementary descriptions of these two TDGs. For each pair of
descriptions  1 and  2 in �, there is an additional relation � between the node names of the
two descriptions, i.e. the elements of � are triples h 1;  2; �i, so-called elementary con�gura-
tions. Besides �, there is a start con�guration �s that consists of the two start descriptions
of G1 and G2 and a relation between the two sets of node names of these descriptions. For a
sample pair of synchronous local TDGs see Fig. 4.17 on page 157.

Derivation in the two TDGs is done in parallel. Starting from the start con�guration,
further con�gurations (triples of two descriptions and a relation between node names) are
derived by adding an elementary con�guration in each derivation step. In such a derivation
step h�1; �2; �i ) h�

0
1; �
0
2; �
0i with an elementary h 1;  2; � i, the following must hold (see

Def. 4.20):

1. �1
 1) �01 is a local derivation step in G1, and �2

 2) �02 is a local derivation step in G2,

2. the derivation descriptions used in these two steps are related by �,

3. and if equivalences k1 � k2 and k3 � k4 are added to derive �1 and �2 respectively,
such that k1 is related to k3 and there is a node name related to k2 or k4, then k2 and
k4 must be also related to each other.

4. �0 is the union of � and � .
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1

former

cat : AP

professor

cat : N

in T�ubingen

cat : PP

cat : N

cat : N 
2

former

cat : AP

professor

cat : N

cat : N

in T�ubingen

cat : PP

cat : N

Figure 5.3: Syntactic structures of former professor in T�ubingen

5.1.3 Minimal trees

The set generated by a pair Gs of synchronous local TDGs is a set of pairs of descriptions,
those pairs h�1; �2i where there is a relation � � node(�1) � node(�2) such that �s

�
)

h�1; �2; �i. This set of pairs of description is called the descripition language of Gs (written
LD(Gs)).

From these pairs of descriptions, corresponding pairs of so-called minimal trees (see Def.
3.15 on page 79 in Chapter 3) can be obtained. The notion of minimal trees is motivated
by the following consideration: a description such as �3 in Fig. 5.2 is satis�ed by an in�nite
number of trees. However, as \smallest" models this description is intended to desribe the two
syntactic structures of former professor in T�ubingen, i.e. the two trees in Fig. 5.3. Therefore,
a tree 
 is a minimal tree of a description �, if 
 satis�es � in such a way that

1. all parent relations in 
 are described in �, and

2. if two di�erent node names in � denote the same node in 
, then these two names
neither have both a parent in � nor have both a daughter in �.

The �rst condition makes sure that everything in 
 is described in �, and the second condition
says that no parent relation in the tree is described more than once in �.

For a given description, the corresponding minimal trees can be obtained by adding equiv-
alences between node names and equivalences between labels. A detailed example was shown
in Chapter 3, page 80 after the de�nition of minimal trees. In the case of �3 in Fig. 5.2, the
minimal tree 
1 can be obtained by adding the equivalences k1 � k5, k8 � k11 and k12 � k2
whereas 
2 can be obtained by adding k1 � k11, k12 � k5 and k8 � k2.

The tree language of a pair of synchronous local TDGs is then the set of pairs of trees
h
1; 
2i such that there is a pair of descriptions h�1; �2i in the description language and 
1
is a minimal tree of �1 and 
2 a minimal tree of �2. The synchronization relation � is not
considered in this case. It might be interesting to view � also as a restriction on the choice
of new equivalences when constructing a pair of minimal trees. However, I suspect that this
would in
uence the result of Prop. 4.11, page 158, which says that the synchronization with
a second local TDG does not increase the generative capacity of local TDGs. The problem
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in the case of minimal trees is that the process of constructing a minimal tree is non-local
in the sense that the choice of the names for new equivalences is not restricted by a locality
restriction similar to the one for the choice of node name equivalences in a local derivation
step. Since the main motivation for the work presented in this dissertation is the desire to
generate suitable underspeci�ed representations, I will leave this issue aside and de�ne the
pair of minimal trees for a pair of descriptions independent from the synchronization between
the node names of these descriptions.

5.2 Quanti�er scope

In this section I will sketch two important approaches proposed for quantifying noun phrases,
namely the proper treatment of quanti�cation (PTQ) in Montague 1974 (see also Dowty
et al. 1981 and Morrill 1994 for introductions to PTQ), and the quanti�er storage approach
in Cooper 1983.

5.2.1 Montague's treatment of quanti�ers

A �rst question when dealing with quanti�ers concerns the nature of the denotation of noun
phrases such as une femme ('a woman') and chaque homme ('every man'). Clearly, these
noun phrases cannot denote single individuals. An alternative would be the assumption that
noun phrases denote sets of individuals, e.g. chaque homme denotes the set of all men.

(14) a. chaque homme chante
every man sings

b. un homme chante
a man sings

The truth conditions of a sentence such as (14)a. could be stated in terms of the set of all
men and set of all individuals that are singing: (14)a. is true i� the �rst set is a subset of the
second set. However, the problem with this approach is that in (14)b. the truth conditions
depend also on the set of all men and the set of all individuals that are singing: (14)b. is true
i� the intersection of these two sets is not empty. un homme does not denote a single man,
since (14)b. does not say about a speci�c man that this man sings as it is for example the
case in (15):

(15) Jean chante

The di�erence between the truth conditions of (14)a. and b. is caused by the di�erent
determiners which occur inside the noun phrases. Therefore it is preferable to have di�erent
denotations for the noun phrases in (14)a. and b. depending on the di�erent determiners.
But then the denotations of noun phrases cannot be sets of individuals.

As a solution, in his \proper treatment of quanti�cation" (PTQ), Montague (1974) pro-
poses to analyse noun phrases as sets of properties. The denotation of chaque homme is the
set of all properties that are true for all men, and the denotation of un homme is the set
of properties that are true for at least one man. The determiner takes a property and gives
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a set of properties. In the case of (14)b. the sentence can be interpreted in the following
way: there is some individual x such that: x is a man and x is singing. The part \there
is some individual x such that: x is P1 and x is P2" can be regarded as the denotation of
the determiner un. This must be applied to two predicates (P1 and P2), in this case the
denotations of homme and chante. An analysis of (14)b. is then as follows:

[[un]] = �P1�P2(there is an x such that P1(x) and P2(x))

[[un homme]] = [[un]]([[homme]])

= �P2(there is an x such that [[homme]](x) and P2(x))

[[un homme chante]] = [[un homme]]([[chante]])

= there is an x such that [[homme]](x) and [[chante]](x)

There are several terminologies concerning the interpretations of determiners and of noun
phrases. I will follow Barwise and Cooper 1981 by calling the interpretation of a noun phrase
quanti�er. The interpretation of a determiner will be called quantifying phrase. A quantifying
phrase has two arguments denoting both properties. Applied to these arguments it gives a
proposition. Henceforward the �rst argument of a quantifying phrase is called its restriction
and the second is called its body. In (14)b. for example the restriction of the quantifying
phrase un is the predicate homme, and the body is the predicate chante.

Montague's PTQ contains one rule for the combination of a subject NP and an intran-
sitive verb that works as illustrated above for (14)b. Furthermore, another rule combines a
transitive verb with an object NP. Transitive verbs take a quanti�er and give a predicate, i.e.
in this case the verb is applied to the quanti�er.

(16) chaque homme aime une femme
every man loves a woman

With these rules, an analysis of (16) is as follows:

[[chaque homme]] = �P1(for all x : if [[homme]](x); then P1(x))

[[une femme]] = �P2(there is an y such that [[femme]](y)

and P2(y))

[[aime]] = �X�z(X(�v(z loves v)))

[[aime une femme]] = [[aime]]([[une femme]])

= �z(there is an y such that [[femme]](y)

and z loves y

[[chaque homme aime une femme]] = for all x : if [[homme]](x); then there is an y

such that [[femme]](y) and x loves y

However, with this analysis only the reading of (16) with narrow scope of une femme is
obtained. (16) has a second reading, namely the wide scope reading of une femme: there is
an y such that y is a woman and for all x: if x is a man, then x loves y. For wide scope of
quanti�ers Montague proposes a quantifying-in mechanism. Roughly said, the idea is that a
sentence can be formed by lowering an NP with denotation � into a position marked by a
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une

Det

femme

N

NP

+

chaque

Det

homme

N

NP

aime

V

x

NP

V P

S

[[une femme]] [[chaque homme]]([[aime]](�P (P (x))))

quantifying�in
�!

chaque

Det

homme

N

NP

aime

V

une

Det

femme

N

NP

V P

S

[[une femme]](�x([[chaque homme]]([[aime]](�P (P (x))))))

Figure 5.4: Quantifying-in for wide scope of une femme in (16)

variable x, and then the sentence is true i� �(�x�) is true, where � is the denotation of the
sentence with the variable x. Cooper (1983) calls this mechanism the rule of NP-lowering.
This name indicates more clearly that Montague's quantifying-in is a syntactic mechanism,
i.e. the wide scope reading is accounted for by a speci�c derivation of the syntactic structure.
The di�erence on the semantic level is a consequence of the syntactic ambiguity.

As an example, Fig. 5.4 shows an application of quantifying-in that leads to the wide
scope reading of une femme for (16):
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[[une femme]](�(x)([[chaque homme]]([[aime]](�P (P (x))))))
) there is a y such that [[femme]](y) and [[chaque homme]]([[aime]](�P (P (y))))
) there is a y such that [[femme]](y) and for all x: if [[homme]](x), then

[[aime]](�P (P (y)))(x)
) there is a y such that [[femme]](y) and for all x: if [[homme]](x), then

�X�z(X(�v(z loves v)))(�P (P (y)))(x)
) there is a y such that [[femme]](y) and for all x: if [[homme]](x), then

�P (P (y))(�v(x loves v))
) there is a y such that [[femme]](y) and for all x: if [[homme]](x), then x loves y

5.2.2 Quanti�er Storage

As Cooper (1983) points out, Montague's quantifying-in mechanism creates unnecessary syn-
tactic ambiguity. Even examples as in (14) can be derived either by quantifying-in or by the
rule for the combination of a subject-NP and an intransitive verb. In the case of (16), there
is also more than one syntactic derivation for each of the two scope orders. Furthermore,
the syntactic structures derived for di�erent scope orders are the same, they di�er only in
the way they are derived, and they can also be derived without quantifying-in. For these
reasons, Cooper argues that there is no syntactic motivation for including such a rule into
the grammar.

Cooper proposes a storage mechanism, known as Cooper Storage, a technique of semantic
interpretation, in order to eliminate the operation of quantifying-in from the syntactic domain.
With this technique, additional wide-scope readings can be obtained without a corresponding
NP-lowering in the syntax. Quantifying-in becomes a semantic mechanism.

The idea of this storage mechanism is the following: if a quanti�er is supposed to have
wide scope, it is put into a store, and later, at an appropriate moment, it is quanti�ed in. The
store is part of the meaning, i.e. meaning consists of a semantic expression (e.g. a �-term) and
a store. It gives a way to defer the disambiguation process: quanti�ers or logical operators in
general with underspeci�ed scope can be put in a kind of temporary store and by doing so,
an underspeci�ed representation is obtained. This process is called quanti�er storage. In the
course of a disambiguation called quanti�er retrieval, the order of the quanti�ers is speci�ed.

In Cooper 1983 this storage mechanism is integrated in a Montague style grammar frag-
ment for English. Pollard and Sag (1994) incorporate the Cooper Storage mechanism into
Head-Driven-Phrase-Strucure Grammar (HPSG). This storage mechanism is also adopted in
the Quasi Logical Form (QLF) of the Core Language Engine (see Alshawi 1990, 1992, Alshawi
and Crouch 1992 and Pulman 1994).

The idea of putting operators with underspeci�ed scope into some extra set provides
underspeci�ed representations. However the problem is that this approach does not exclude
any readings. Quanti�ers can stay arbitrarily long (between their storage and their retrieval)
in the storage and there is no restriction with respect to the order of retrieval. Therefore by
quanti�er retrieval, all combinatorially possible combinations of quanti�er scope are created.
Afterwards the ungrammatical readings must be explicitely excluded.

Therefore, if such a storage mechanism is adopted, extra rules are needed to exclude
ungrammatical scope orders. In the disambiguation process for QLF for example such rules
are explicitely stated.
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Clearly, it would be preferable if the ungrammaticality of certain scope orders was already
predicted by the form of the underspeci�ed representation without the necessity of any extra
rules.

5.2.3 Constraints for quanti�er scope

In this subsection I will list some constraints for quanti�er scope that hold universally. Be-
sides these strict rules there are a lot of preferences that should be taken into account in a
disambiguation process. But this is not within the scope of this work.

The strict constraints for quanti�er scope should already hold for the readings of an under-
speci�ed representation, since they depend only on the syntactic structure and the semantic
(i.e. the logical) representation. Later, in Section 5.5, we will see that these restrictions are
respected within the analysis of quanti�er scope ambiguities presented in this chapter.

I will distinguish two kinds of restrictions, island constraints and logical scope restrictions.

Island constraints

The islands pointed out by Ross (1968) for wh-movement are also relevant for quanti�er
raising (see Fauconnier 1976 and Rodman 1976). Relative clauses and coordinations give rise
to island constraints for quanti�er scope.

Coordination constraint: A quanti�er cannot be raised out of a coordination.

This means that a quanti�er occuring in the second conjunct of a coordination cannot
have scope over the �rst conjunct. As an example consider (17):

(17) a. chaque grenouille est enchant�ee et une princesse arrive
each frog is enchanted and a princess arrives

b. [chaque grenouille]i est enchant�ee et une princesse lai jete contre le mur
[each frog]i is enchanted and a princess throws iti against the wall

c. une grenouille enchant�ee veut être sauv�ee et chaque princesse arrive
an enchanted frog wants to be saved and each princess arrives

In (17)a. the quanti�er chaque grenouille occurs in the �rst conjunct and can have wide
scope: one can interprete (17)a. such that for each enchanted frog, a princess arrives. This
is shown in (17)b. In contrast to this, (17)c. does not allow a wide scope reading of the
quanti�er chaque princesse. The interpretation of (17)c. is that there is one single frog that
is enchanted and wants to be saved, and for this single frog each princess arrives (probably
to throw him against the wall).

The second constraint says that relative clauses are islands with respect to quanti�er
scope:

Relative clause constraint: A quanti�er cannot be raised out of a relative clause.

In other words, a quanti�er occurring in a relative clause cannot have scope over the
element modi�ed by this relative clause.
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(18) chaque homme qui aime une femme est heureux
each man who loves a woman is lucky

In (18) for example, a wide scope reading of une femme is not possible.

Logical restrictions

Logical restrictions for quanti�er scope are pointed out by Hobbs and Shieber (1987) (see
also Alshawi 1992). The following constraint holds for the relative scope of quanti�ers:

Logical rule: A quanti�er A that is not in the restriction of a quanti�er B and that occurs
within the scope of B cannot outscope any of the quanti�ers in the restriction of B.

This formulation of the logical rule is taken from Alshawi 1992. The logical rule concerns
examples such as (19):

(19) every representative of a company saw most samples

In (19) there are three quanti�ers and therefore, if each permutation was allowed for the
scope order, there would be 3! = 6 readings. This is not the case however because the scope
order where every representative has scope over most samples and most samples has scope
over a company is not possible.

This restriction is called logical because it follows from the logical structure of the sentence:
if every representative is not outscoped by a company, then the restriction of the quantifying
phrase every must be a predicate of the following form:

�r(a(company)(�c(representative-of(c)(r))))

(The quanti�er phrase a has an existential interpretation similar to un.)

Then there are only two possibilities for the quanti�er most samples: either is is in the
scope of every representative, and then it must be in the body of every which means that
most samples is outscoped by both, every representative and a company. Or most samples
has wide scope over every representative (and then also over a company).

An example where some scope orders are excluded by the relative clause constraint and
some are excluded by the logical rule, is given in (20):

(20) chaque �el�eve lit un livre qu'un professeur recommande
each student reads a book that a professor recommends

Here we have three quantifers, chaque �el�eve, un livre and un professeur, but not all 3! = 6
scope orders are possible. The quanti�er un professeur may not have scope over un livre
because of the relative clause constraint. Furthermore, chaque �el�eve may not be in the scope
of un livre and at the same time outscope un professeur. This is excluded by the logical rule.
Therefore (20) has only the following two readings:

1. un(�x((livre(x)) ^ (un(professeur)(�y(recommander(x)(y))))))

(�z(chaque(eleve)(�v(lire(z)(v)))))
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2. chaque(eleve)(�v(un(�x((livre(x)) ^ (un(professeur)(�y(recommander(x)(y))))))

(�z(lire(z)(v))))

In the Cooper Storage mechanism neither island constraints nor logical restrictions are
taken into account (at least in the general quanti�er storage approach). In the general
disambiguation process, island constraints are not respected and for scope orders excluded
by the logical rule, expressions containing free variables are generated.

5.3 Architecture of the local TDG for the semantics

In the following two sections I will propose a syntax-semantics interface based on synchronous
local TDGs. This system covers a fragment of French. The architecture of the system is such
that one local TDG Gsyn describes the syntactic structure of French expressions, and a second
local TDG Gsem gives a truth-conditional semantics for these expressions. We will see that
the relation between syntax and semantics is less close than in a Montagovian system. This
enables one to account for wide scope readings of quanti�ers without producing unnecessary
syntactic ambiguities and without an additional storage mechanism. Furthermore, in Sec-
tion 5.5 we will see that underspeci�ed representations for quanti�er scope ambiguities are
generated in such a way that island constraints are respected because of the locality of the
local TDG formalism. The incorporation of this locality restriction into TDGs in Chapter 4
was motivated by the desire to show semilinearity, i.e. by reasons independent from island
constraints.

In this section, I will discuss the architecture of Gsem. The developement of Gsem com-
prises the following tasks:

� The design of a logic (syntax and semantics) describing the truth conditions. The string
language of Gsem then contains expressions of this logic.

� The nonterminal symbols of Gsem must be chosen. This could be types or some kind
of syntactic categories (`syntactic' with respect to the truth conditional logic) or names
of semantic operations.

� Depending on the logic and the nonterminals, the form of the minimal trees and the
elementary descriptions must be de�ned.

There are two di�erent alternatives with respect to the architecture of Gsem:

1. Either semantic interpretations are de�ned only for the logic, i.e. for the expressions in
the string language of Gsem. Then the trees of the tree language are only syntax trees for
logical expressions, they do not have a meaning themselves. In this case the nonterminals
might be symbols for syntactic categories, e.g. types or classes of types.

2. Or the semantic interpretation depends on the whole minimal trees: �rst interpretations of
atomic expressions in the logic are given. In each tree for a more complex logical expression
the internal nodes are labelled by speci�cations of operations (e.g. functional application),
perhaps together with type speci�cations. Then the interpretation of a complex expression
depends on the tree of this expression. The operation speci�ed in the root of this tree is
applied to the interpretations of the subtrees.
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In both cases, the derivation process in the local TDG (i.e. the derivation of tree descriptions)
is purely syntactical. The semantics is later given either for the trees in the tree language or
for the strings yielded by these trees.

I choose the �rst alternative, i.e. I will regard the trees of the tree language only as syntax
trees of some logic expressions. This decision is based on the following considerations:

One of the advantages of TDGs (and also of TAGs) is that we have an extended domain
of locality, i.e. that the elementary descriptions can describe more than one node and its
daughters as it is the case in context-free grammars. Therefore the semantics can be relatively
independent from word order phenomena, in contrast to most frameworks in the Montagovian
tradition, e.g. the approach proposed by Muskens (1995) or the system described by von
Stechow and Nohl (1995), where each phrase structure rule must be connected with a semantic
operation. This independence from the syntax allows us to choose elementary descriptions in
such a way that it is possible to use functional application as the only semantic operation (if �-
abstraction is possible). Rules such as Montague's quantifying-in rule are not necessary here
because there need not be a direct correspondence between the syntactic position of a lexical
item and its position in the semantic expression. It can be interpreted at a position that is
di�erent from its surface position. Clearly, if functional application is the only operation,
then it is not necessary to specify any operations for internal nodes. Therefore it is possible
to choose the simpler alternative by de�ning a truth conditional semantics only for the string
language and not for the whole tree language.

This decision means that the following must be done to develop a TDG Gsem for the
semantics that is synchronized with the syntactic TDG Gsyn: �rst a logic must be de�ned that
should contain all expressions of the string language of Gsem. After that for each elementary
description of Gsyn the contribution of this description to the semantic interpretation of the
whole sentence must be speci�ed in a syntactic way. In other words it must be speci�ed which
part of the syntactic structure of the truth-conditional logical expression for a whole sentence
is determined by the description of Gsyn. According to this a corresponding elementary
description in Gsem must be introduced and connected with the elementary description in
Gsyn by the synchronization relation.

In the course of this section, the logic for the semantic expressions is de�ned and the
nonterminals (attribute value pairs) are chosen that are necessary for the fragment presented
in this chapter.

5.3.1 Syntax of semantic expressions

In this subsection, the syntax of the string language of Gsem, i.e. of the truth-conditional
logic is introduced.

As a truth-conditional logic for the semantics I choose a classical typed �rst order logic
allowing �-abstraction. Basic types are individuals, truth values and situations. This means
that the logic is a kind of intensional typed lambda calculus in the style of Montague's
Intensional Logic (IL) (see Dowty et al. 1981 and Carpenter 1997).

In contrast to Montague's IL, only individual variables are allowed, the logic is a typed
�rst order logic. The logic is called TY (2) indicating that there are two other basic types
besides truth values.

Starting from the basic types, types are inductively de�ned in the usual way:
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De�nition 5.1 (Types of TY (2))

1. Basic types of TY (2) are e, t and s.

2. If T1 and T2 are types of TY (2), then hT1; T2i is also a type of TY (2).

3. Nothing else is a type of TY (2).

Expressions (terms) in TY (2) are words on an alphabet containing constants of all types,
individual variables, the �-abstractor and brackets. Henceforth I assume that V is a set of
(individual) variables and for all types T , KT is a set of constants of type T .

Terms in TY (2) must be such that they are well formed with respect to types, i.e. the
argument of an expression of type hT1; T2i must be of type T1. This restriction is a syntac-
tical one, functional applications that are excluded because the types do not �t are already
excluded in the syntax, i.e. such terms cannot occur.

De�nition 5.2 (Terms in TY (2))

1. For each type T , each constant in KT is a term of type T .

2. Each variable in V is a term of type e.

3. For all types T1; T2: if �1 is a term of type hT1; T2i and �2 a term of type T1, then �1(�2)
is a term of type T2.

4. For each type T : if � is a term of type T and x is a variable, then �x(�) is a term of type
he; T i.

5. Nothing else is a term in TY (2).

5.3.2 Semantics of TY (2)

In this subsection I will give a model-theoretic semantics in the traditional way for the terms
de�ned above.

A model consists of objects where each object is of a (unique) type. Furthermore there
is an interpretation function from constants to objects of appropriate type in the model. In
a model, only the objects of basic types are explicitely speci�ed. All other objects (of some
type hT1; T2i) are inductively de�ned as functions from one set of objects to another.

De�nition 5.3 (TY (2)-model)

A TY (2)-model is a tuple hDt;De;Ds; Ii such that:

1. Dt;De and Ds are pairwise disjoint nonempty sets of objects such that:

Dt = ftrue; falseg is called the set of truth values. De is a �nite set and is called the set
of individuals, and Ds is called the set of situations.

2. For all types T1; T2, the set of objects of type hT1; T2i is DhT1 ;T2i := D
DT1
T2

(set of all
functions from DT1 to DT2).

3. I is a function from constants to objects such that for each type T and each cT 2 KT :
I(cT ) 2 DT .

The interpretation of a term with respect to a given model M depends also on the in-
terpretation of the variables. This is given by a variable assignment function g that maps
variables to individual constants.
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De�nition 5.4 (Interpretation)
Let M = hDt;De;Ds; Ii be a model, g : V ! De a variable assignment function. The
interpretation of a term � wrt M and g, [[� ]]gM is inductively de�ned:

(a) For all constants c: [[c]]gM = I(c).

(b) For all variables x: [[x]]gM = g(x).

(c) For all terms of the form �1(�2): [[�1(�2)]]
g
M = [[�1]]

g
M ([[�2]]

g
M ).

(d) For all terms �x(�) with � of type T , [[�x(�)]]gM is the (unique) function f 2 Dhe;T i with

f(a) = [[� ]]
g[x:=a]
M for all a 2 De, where [[� ]]

g[x:=a]
M is de�ned as follows:

[[� ]]
g[x:=a]
M := [[� ]]hM for the assignment h with h(x) := a and h(y) := g(y) for all y 6= x.

Each minimal tree of a description generated in Gsem yields a unique string and there-
fore has a unique interpretation. Since descriptions may have several minimal trees, the
interpretation of a description might be underspeci�ed in the sense that there are several
corresponding strings in the string language with di�erent interpretations. I will de�ne the
interpretation of a description generated by Gsem as the set of all interpretations of strings
yielded by minimal trees of this description.

De�nition 5.5 (Interpretation of a description)
Let � be a description in LD(Gsem).
The interpretation of � in a model M wrt an assignment function g is
[[�]]gM := f[[� ]]gM j � = yield(B) for a minimal tree B of �g.

5.3.3 Nonterminal symbols in Gsem

Before coming to the elementary descriptions in Gsem it must be decided which kind of
nonterminal symbols should be used.

As the trees in the tree language should describe the syntax of logical expressions in
TY (2), nonterminals should be names of some kind of syntactic categories. It might be a
problem to use types as nonterminals, since there is (at least theoretically) an in�nite number
of types. Furthermore, names for syntactic categories are preferable for reasons of readability.
Therefore I will summarize several types under one semantic category.

There will be an attribute cat with these semantic categories as possible values. The
categories used for the fragment presented in this chapter are

� prop for propositions (type hs; ti),

� ind for individuals (type e),

� pred for predicates that take individuals as arguments and that give a proposition (types
he; hs; tii or he; he; hs; tiii or he; he; he; hs; tiiii etc.),

� ppred for predicates taking a proposition as argument and and giving a predicate of cate-
gory pred (types hhs; ti; he; hs; tiii, etc.),

� mod for objects of a type hT; T i, where T is a type,

� qp for quantifying phrases (type hhe; hs; tii; hhe; hs; tii; hs; tiii),

� quant for quanti�ers (type hhe; hs; tii; hs; tii)

� con for objects that take an argument of some type T and then give a modi�er of type
hT; T i (e.g. hhs; ti; hhs; ti; hs; tiii)
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5.4 Elementary con�gurations

In this section, the synchronous local TDGs hGsyn; Gsem;�i for a basic fragment of the
syntax-semantics interface are presented. More precisely, the elementary con�gurations are
presented, i.e. the triples h 1;  2; �i where  1 is an elementary description in Gsyn,  2 an
elementary description in Gsem and � � node( 1) � node( 2) a relation. In particular,
elementary con�gurations for proper names, common nouns, verbs, adjectives (intersective
and non-intersective adjectives), quanti�ers and relative clauses are introduced. For each
lexical item, the elementary description in Gsyn and the one in Gsem together with their
synchronization relation must be speci�ed.

In order to render the graphical representations more readable, henceforth I will adopt
the following notations: elementary descriptions in Gsyn are named  ; 1; : : : and elementary
descriptions in Gsem are named �; �1; : : :. Derived descriptions in Gsyn are named �; �1; : : :
and derived descriptions in Gsem are named ';'1; : : :. Node names occurring in Gsyn are
named k1; k2; : : : whereas node names in Gsem are named n1; n2; : : :. Furthermore, in the
�gures, the description on the left side is always the one in Gsyn and the one on the right side
is the corresponding description in Gsem. As usual, marked node names are those with an
asterisk. With respect to the labels, If cat is the only attribute, then for simplicity cat : value
is replaced by value.

5.4.1 Verbs and proper names

First, I will introduce the elementary con�gurations that are needed to analyse simple sen-
tences such as

(21) a. Marie dort
Marie sleeps

b. Jean aime Marie
Jean loves Marie

Verbs

In order to derive a description in Gsyn for the sentences in (21), one has to start with the
elementary description for the verb, since this is the anchor of the whole sentence. Therefore,
I will start by introducing elementary con�gurations for intransitive and transitive verbs.

The intransitive and transitive verbs in (21) denote objects of category pred. The verb dort
takes an individual argument and gives a proposition, i.e. its denotation is of type he; hs; tii,
and aime takes two individual arguments and gives a proposition, i.e. its denotation is of type
he; he; hs; tiii. Since these verbs are anchors of whole sentences, the minimal names of the
corresponding elementary descriptions in the syntax TDG Gsyn have the category S. Accord-
ingly, the semantic category of the minimal names of the related elementary descriptions in
Gsem must be prop because expressions anchored by verbs denote propositions. Elementary
con�gurations of verbs selecting for individual arguments are shown in Fig. 5.5.

The synchronization relation between the node names of the two descriptions of an ele-
mentary con�guration mainly expresses correspondences between argument slots. In the case
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Verbs denoting unary predicates (intransitive verbs):

 1 S k1

S

k2 NP VP

V

hverbi

�1 prop n1

prop

pred ind n2

hverb0i

h 1; �1; fhk1; n1i; hk2; n2igi

Binary predicates (transitive verbs):

 2 S k1

S

k2 NP VP

V NP k3

hverbi

�2 prop n1

prop

pred ind n3

pred ind n2

hverb0i

h 2; �2; fhk1; n1i; hk2; n3i; hk3; n2igi

Figure 5.5: Elementary configurations for verbs

of an intransitive verb, the predicate denoted by the verb is applied to an individual argu-
ment. This argument corresponds to the subject-NP. (This does not necessarily mean that it
is denoted by the subject-NP. If this NP is a quanti�er, then it does not denote an individual
but it introduces an argument to the verb.) Such correspondences between argument slots
are expressed by the pair hk2; n2i in the elementary con�guration for intransitive verbs and
by the pairs hk2; n3i and hk3; n2i in the elementary con�guration for transitive verbs.

The pairs hk1; n1i in the two elementary con�gurations express a denotation relation:
the truth-conditional logical expression dominated by n1 represents the denotation of the
syntactic structure under k1.

Proper names

Proper names shall be treated as rigid designators (see Kripke 1972), i.e. they are supposed
to denote always the same individual, independently from the situation. Therefore proper
names are constants of type e.
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 NP k1

hnamei

� ind n1

hname0i

h ; �; fhk1; n1igi

Figure 5.6: Elementary configurations for proper names

For proper names, I adopt elementary con�gurations as shown in Fig. 5.6. The relation
between k1 and n1 signi�es not only that n1 dominates the denotation of the expression
under k1. Furthermore, it makes sure that, when adding  as an argument to a syntactic
structure (anchored for example by a transitive verb), the related descriptions � must be
inserted at the corresonding argument slot in the semantics. This must be the case because
the two argument slots are also related to each other and because of the third condition for
derivation in synchronous local TDGs on page 173.

As an example consider the derivation shown in Fig. 5.7 and 5.8 for (21)b. This derivation
starts with the elementary con�guration for the transitive verb aime. In a �rst derivation
step, the elementary con�guration h 2; �2; fhk4; n4igi for Jean is added. Since Jean precedes
the verb, the minimal name k4 of  2 must be identi�ed with the leaf name k2 in  1, i.e. the
equivalence k2 � k4 must be added in Gsyn. In Gsem, an equivalent name for the minimal
n4 in �2 must be found. This must be a leaf name with category ind, i.e. either n2 or n3.
Since n4 is related to k4, and n3 is the only name related to k2, n3 must be chosen and the
equivalence n3 � n4 is added in Gsem. In a second derivation step, in a similar way the
elementary con�guration for Marie is added with the new equivalences k3 � k5 and n2 � n5.
The description '2 derived in Gsem has one minimal tree. If subtrees are viewed as bracketed
expressions, the string yielded by this minimal tree is ((aimer)(Marie))(Jean).

In order to derive a con�guration for (21)b., it is obligatory to start with the elementary
con�guration of the verb. But the two elementary con�gurations for Jean and Marie can be
added in any order, one could as well start with adding the descriptions for Marie and in the
second step adding those for Jean. The result would be the same.

5.4.2 Quanti�ers

(22) a. chaque �lle chante
every girl sings

b. Jean ach�ete une maison
Jean buys a house

In this subsection, elementary con�gurations for quantifying phrases and common nouns
are introduced, such that con�gurations for the sentences in (22) can be derived.

Since the predicate denoted by the noun in an NP such as chaque �lle is an argument
(the restriction) of the quantifying phrase, an analysis of such an NP must start with the
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Elementary con�guration for aime:
�1 = h 1; �1; fhk1; n1i; hk2; n3i; hk3; n2igi with

 1 S k1

S

k2 NP VP

V NP k3

aime

�1 prop n1

prop

pred ind n3

pred ind n2

aimer

Elementary con�guration for Jean: �2 = h 2; �2; fhk4; n4igi with

 2 NP k4

Jean

�2 ind n4

Jean

First derivation step: �1
�2) � with � = h�1; '1; �i,

�1 =  1 ^  2 ^ k2 � k4; '1 = �1 ^ �2 ^ n3 � n4
and � = fhk1; n1i; hk2; n3i; hk3; n2i; hk4; n4ig

�1 S k1

S

NP
k2 � k4

VP

Jean V NP k3

aime

'1 prop n1

prop

pred
ind

n3 � n4

pred ind n2 Jean

aimer

Figure 5.7: First derivation step for Jean aime Marie
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� = h�1; '1; �i with � = fhk1; n1i; hk2; n3i; hk3; n2i; hk4; n4ig and

�1 S k1

S

NP
k2 � k4

VP

Jean V NP k3

aime

'1 prop n1

prop

pred
ind

n3 � n4

pred ind n2 Jean

aimer

Elementary con�guration for Marie: �3 = h 3; �3; fhk5; n5igi with

 3 NP k5

Jean

�3 ind n5

Jean

Second derivation step: �
�3) �0 with �0 = h�2; '2; �

0i,
�2 = �1 ^  3 ^ k3 � k5; '2 = '1 ^ �3 ^ n2 � n5
and �0 = fhk1; n1i; hk2; n3i; hk3; n2i; hk4; n4i; hk5; n5ig

�2 S

S

NP VP

Jean V
NP

k3 � k5

aime Marie

'2 prop

prop

pred ind

pred
ind

n2 � n5
Jean

aimer Marie

Figure 5.8: Second derivation step for Jean aime Marie
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NP k1

Det N k2

hquanti

� prop

prop

quant pred

qp pred n1 �x prop

hquant0i prop� n2

ind� n3

x

h ; �; fhk1; n3i; hk2; n1igi

Figure 5.9: Elementary configurations for quantifying phrases

elementary con�guration for the quantifying phrase, and then the elementary con�guration
for the noun can be added.

Quantifying phrases

Following Montague, I will analyse quanti�ed NPs as sets of predicates, and determiners (or
quantifying phrases) as objects that take a predicate and give a set of predicates. Conse-
quently, quantifying phrases are of type hhe; hs; tii; hhe; hs; tii; hs; tiii.

The elementary descriptions of quantifying phrases in Gsem must be such that the fol-
lowing holds: when the quantifying phrase is applied to the noun predicate of the NP, the
result must be a quanti�er. This quanti�er can then be applied to a second predicate (the
body of the quantifying phrase). This second predicate can be obtained by �-abstraction of
the whole proposition with respect to the argument corresponding to the NP. In other words,
�rst the �-abstraction of the proposition with respect to this argument is built and then the
quanti�er corresponding to the argument is applied to the result of the abstraction.

Because of this, for quantifying phrases I propose elementary con�gurations as shown in
Fig. 5.9. The relation between k2 and n1 guarantees that the noun added in Gsyn under k2
denotes the restriction of the quantifying phrase. Furthermore, with the relation between
k1 and n3, the body of the quantifying phrase must be a predicate that is applied to the
individual corresponding to the whole NP (node name n3). Each time such an elementary
con�guration is used, the variable x must be instantiated with a new individual variable.

We will see that these elementary con�gurations for quanti�ers allow us to obtain wide
scope readings without any quanti�er raising and quantifying-in. The reason is that the
relation between syntax and semantics is less close in this system than in a Montagovian
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 N k1

N k2

hnouni

� pred n1

pred n2

hnoun0i

h ; �; fhk1; n1i hk2; n2igi

Figure 5.10: Elementary configurations for common nouns

framework. The descriptions in Gsem can be seen as partial descriptions of a kind of Logical
Form.

The quantifying phrases un and chaque shall have the following usual existential and
universal interpretations:

I(un) with I(un)(P1)(P2) = p, such that p(s) = true i� there is an
a 2 De with P1(a)(s) = true and P2(a)(s) = true

I(chaque) with I(chaque)(P1)(P2) = p, such that p(s) = true i� for all
a 2 De: if P1(a)(s) = true, then P2(a)(s) = true

In a similar way the interpretation of other quantifying phrases such as plusieurs (`several')
and quelques (`some') can be de�ned. I will leave this aside, I assume that for each quantifying
phrase there is an appropriate interpretation of type hhe; hs; tii; hhe; hs; tii; hs; tiii.

Common Nouns

Common nouns like maison (`house'), chien (`dog'), lettre (`letter') etc. denote unary predi-
cates that take an individual argument, i.e. they are of type he; hs; tii and their category is
pred. (Relational nouns are not taken into account here.)

Nouns are usually embedded into an NP. Therefore it can be supposed that in a descrip-
tion derived in Gsem before adding the elementary description of the noun, there is a node
name with category pred. This node name is part of the elementary description of the de-
terminer of the NP the noun is embedded in. It must be identi�ed with the minimal name
in the elementary description of the noun. According to this, elementary con�gurations for
predicates denoted by nouns are as shown in Fig. 5.10. The dominances between k1 and k2
and between n1 and n2 account for the fact that the predicate might be modi�ed in further
derivation steps (by adjectives or relative clauses). The synchronization relation between k1
and n1 guarantees that the noun and its denotation are inserted into corresponding slots in
Gsyn and Gsem. The relation of k2 and n2 signi�es that the interpretation of the semantic
expression under n2 is the denotation of the string under k2.
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Elementary con�guration �1 = h 1; �1; fhk1; n1i; hk3; n3igi for chante:

 1 S k1

S k2

NP k3 VP

V

chante

�1 prop n1

prop n2

pred ind n3

chanter

Elementary con�guration �2 = h 2; �2; fhk4; n7i; hk5; n5igi for chaque:

 2

NP k4

Det N k5

chaque

�2 prop n4

prop

quant pred

qp pred n5 �x prop

chaque prop� n6

ind� n7

x

�1
�2) h�1; '1; fhk1; n1i; hk3; n3i; hk4; n7i; hk5; n5igi with

�1 =  1 ^  2 ^ k3 � k4 and '1 = �1 ^ �2 ^ n1 � n4 ^ n2 � n6 ^ n3 � n7

�1 S k1

S k2

NP
k3 � k4

VP

Det N k5 V

chaque chante

'1 prop n1 � n4

prop

quant pred

qp pred n5 �x prop

chaque
prop

n2 � n6

pred
ind

n3 � n7

chanter x

Figure 5.11: First derivation step for chaque �lle chante
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Con�guration derived in Fig. 5.11:
� := h�1; '1; fhk1; n1i; hk3; n3i; hk4; n7i; hk5; n5igi with

�1 S k1

S k2

NP
k3 � k4

VP

Det N k5 V

chaque chante

'1 prop n1 � n4

prop

quant pred

qp pred n5 �x prop

chaque
prop

n2 � n6

pred
ind

n3 � n7

chanter x

Elementary con�guration �3 = h 3; �3; fhk6; n8i; hk7; n9igi for �lle:

 3 N k6

N k7

�lle

�3 pred k8

pred k9

�lle

�
�3) h�2; '2; fhk1; n1i; hk3; n3i; hk4; n7i; hk5; n5i; hk6; n8i; hk7; n9igi with

�2 = �1 ^  2 ^ k5 � k6 and '2 = '1 ^ �2 ^ n5 � n8

�2 S

S

NP VP

Det
N

k5 � k6
V

chaque N chante

�lle

'1 prop

prop

quant pred

qp
pred

n5 � n8
�x prop

chaque pred prop

�lle pred ind

chanter x

Figure 5.12: Second derivation step for chaque �lle chante
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As an example consider the analysis of (22)a. chaque �lle chante (page 187). The deriva-
tion starts with the elementary con�guration for the verb chante, the anchor of the sentence.
In the �rst step (see Fig. 5.11), the elementary con�guration for chaque is added, and in
the second step (Fig. 5.12), the elementary con�guration for �lle is added. In this case this
is the only possible order of the derivation since the quantifying phrase introduces an ar-
gument of the verb and the noun introduces an argument of the quantifying phrase. The
resulting description '2 derived in Gsem has exactly one minimal tree and the corresponding
interpretation is:

p = [[chaque(�lle)(�x(chanter(x)))]]

with p(s) = true

i� for all a 2 De : if [[�lle]](a)(s) = true; then [[chanter]](a)(s) = true

5.4.3 Complement clauses

In this subsection, I will introduce elementary con�gurations for verbs selecting for a com-
plement clause such as croire in (23):

(23) Marie croit que Jean arrive
Marie believes that Jean arrives

Verbs of category ppred, i.e. selecting a propositional argument, can be treated similarly
to verbs of category pred. The elementary con�guration for the �nite verb croit is shown in
Fig. 5.13. In both cases (verbs of category pred as in Fig. 5.5 and verbs of category ppred),
the synchronization relations express the correspondence between syntactic and semantic
argument slots.

The verb croit creates a so-called oblique or referentially opaque construction. This means
that if an expression with the verb croit is evaluated in a situation s, then the propositional
argument of croit might be evaluated in a situation di�erent from s. If (23) for example is
true in a situation s, then this does not necessarily mean that Jean arrive is also true in s.
It signi�es only that Jean arrive is true in all situations where everything is the case that
Marie believes to be true in s.

This property of croire (and also d�esirer (`wish', `desire'), penser (`think'), imaginer
(`imagine') etc.) does not in
uence the elementary con�guration but it concerns the lexical
semantics of croire: croire is a constant of type hhs; ti; he; hs; tiii and its interpretation must
be something similar to the following (I will not discuss the lexical semantics of verbs such
as croire here in detail because this is not within the scope of this work):

I(croire) with I(croire)(q)(x) = p with p(s) = true i� for all s0 2 Ds,
such that in s0 everything is true that x believes in s,
q(s0) = true holds.

The elementary con�guration of a verb such as arrive in (23) that is the anchor of a
complement clause di�ers from those shown in Fig. 5.5 in so far as there is one more name
with category S in the syntax and one more name of category prop in the semantics. The
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h 1; �1; fhk1; n1i; hk2; n3i; hk3; n2igi

Figure 5.13: Elementary configuration for croit (`believes')

elementary con�guration of arrive in (23) is shown in Fig. 5.14. In this work I will not deal
with the organization of the lexicon, but following proposals made for TAGs (see Abeill�e
1990 and Vijay-Shanker and Schabes 1992), I assume that there are \basic" elementary
con�gurations (e.g. those introduced for verbs in Fig. 5.5 and 5.13), whereas other elementary
con�gurations are generated from these basic con�gurations by lexical rules. Elementary
con�gurations for verbs that are anchor of a complement clause as in Fig. 5.14 are derived
via a lexical rule. The same holds for anchors of relative clauses that will be introduced in
5.4.5.

The reason for the additional node name n4 with category prop in � in Fig. 5.14 is that
it must be possible to move quanti�ers out of the complement clause, in contrast to relative
clauses for example.2 This contrast is exempli�ed in (24).

(24) a. une �lle croit que chaque grenouille est un prince enchant�e
a girl believes that every frog is an enchanted prince

b. le roi a une �lle qui aime chaque grenouille enchant�ee
the king has a daughter who loves every enchanted frog

(24)a. has a reading with wide scope of chaque grenouille, i.e. a reading where for each
frog there is a girl believing that this frog is an enchanted prince. Consequently complement
clauses are no islands for quanti�er raising. In (24)b. chaque grenouille enchant�ee is embedded
in a relative clause and in this case wide scope of chaque grenouille enchant�ee is not possible.

When adding the elementary con�guration for arrive h 2; �2; fhk5; n5i; hk6; n6igi in
Fig. 5.14 to the con�guration h 1; �1; fhk1; n1i; hk2; n3i; hk3; n2igi for croit in Fig. 5.13, the
new equivalences in Gsem are n1 � n4 and n2 � n5. Therefore n4 is minimal in the resulting

2This raising of quanti�ers out of complement clauses is similar to wh-movement out of complement clauses
as shown in Fig. 3.23 on page 103.
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h 2; �2; fhk5; n5i; hk6; n6igi

Figure 5.14: Elementary configuration for arrive as anchor of a complement

clause

description, and a quanti�er added to the complement clause can have wide scope. This phe-
nomenon will be examined more closely when de re { de dicto ambiguities will be considered
on page 208 (see Fig. 5.25).

Fig. 5.15 shows the description that is derived in Gsem for (23). This description has only
one minimal tree, and the string yielded by this tree has the following interpretation:

[[croire(arriver(Jean))(Marie)]]gM (s) = true

i� for all s0 2 Ds, such that in s0 everything is true that Marie believes in s:
[[arriver]]gM (Jean)(s0) = true.

5.4.4 Adjectives

In this subsection I will consider adjectives that modify nouns as in (25):

(25) a. petit papillon bleu
small butter
y blue
small blue butter
y / blue small butter
y

b. futur pr�esident
future president

Two kinds of adjectives must be distinguished. On the one hand, adjectives such as petit
and bleu in (25)a. are adjectives that modify a predicate and that are predicates themselves.
These are called intersective adjectives. Intersective adjectives are for example color adjectives
or adjectives as beau (`beautiful'), grand (`big, huge'), etc. On the other hand, adjectives such
as futur in (25)b. also modify a predicate. But, in contrast to petit and bleu in (25)a., they
are not predicates themselves. These are the non-intersective adjectives. Because of this
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Figure 5.15: Description derived for (23) Marie croit que Jean arrive in Gsem

di�erence in interpretation intersective and non-intersective adjectives should be assigned
di�erent types.

Intersective adjectives

Since intersective adjectives denote predicates, they are of type he; hs; tii. Combining such
an adjective with a noun yields a predicate that is true for an individual a in a situation s i�
both the interpretation of the adjective and the interpretation of the noun are true for a in s.
In other words, there are two sets of situations, those situations where the predicate denoted
by the adjective is true for a and those where the predicate denoted by the noun is true for
a. These two sets of situations are intersected, and this is the reason why these adjectives
are called intersective.

The problem now is how to analyse intersective adjectives in the logic TY (2) that al-
lows only functional application and �-abstraction as operations. Obviously, if intersective
adjectives are supposed to denote predicates, then it is not possible to apply an intersective
adjective directly to the predicate it modi�es. This is excluded because both predicates have
the same type. But using �-abstraction and a constant et (a conjunction) to combine two
propositions, an elementary description can be constructed that captures the intersective
combination of the two predicates. The idea of the elementary description in Gsem for an
intersective adjective that modi�es a predicate denoted by a noun is the following: �rst both
predicates are applied to a variable x, then the conjunction of the resulting propositions is
built, and �nally the �-abstraction of the conjunction with respect to x is obtained.

The combination et of two propositions is the conjunction of the two propositions and its
type is hhs; ti; hhs; ti; hs; tiii. The interpretation of et is:
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Figure 5.16: Elementary configurations of intersective adjectives preceding

the modified noun

I(et) 2 Dhhs;ti;hhs;tihs;tiii with I(et)(p1)(p2)(s) = true i�
p1(s) = true and p2(s) = true

Fig. 5.16 shows the form of elementary descriptions for intersective adjectives preceding
the noun as petit in (25)a. (As in the case of quantifying phrases, each time such a description
is added in a derivation step, the variable x in � must be instantiated by a new individual
variable.) The synchronization signi�es that the syntactic constituent under k2 denotes the
predicate under n2 and the constituent under k3 denotes the predicate under n3. For inter-
sective adjectives as bleu in (25)a. that follow the noun, the semantic description is the same
and the syntactic description di�ers from  in Fig. 5.16 in so far as k3 and k4 are left of the
node names with AP, A and the adjective (e.g. see Fig. 5.26 for the elementary con�guration
of bleue).

Combining such an elementary description with the elementary description of a noun, the
result is the desired interpretation. Fig. 5.17 shows the description that is derived in Gsem
for the semantics of papillon bleu (`blue butter
y'). This description has one minimal tree,
the yield of this tree is the following term of type he; hs; tii:

�x1(et(bleu(x1))(papillon(x1)))

The interpretation of this term is the intersection of the predicates bleu and maison.

This analysis of intersective adjectives shows that in contrast to systems like Montague's
IL, here it is not necessary to use other semantic operations besides functional application.
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et bleu(x1) pred x1
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Figure 5.17: Description for papillon bleu (`blue butter
y') in Gsem

The larger domains of locality enable us to choose di�erent semantic contexts for an expression
depending on its elementary syntactic description in Gsyn.

Non-intersective adjectives

Non-intersective adjectives modify predicates (e.g. nouns or other adjectives) but they are
not predicates themselves and they do not have an intersective interpretation. Therefore
their type is hhe; hs; tii; he; hs; tiii. Examples are ancien (`former'), futur (`future'), pr�etendu
(`alledged') and soi-disant (`so-called'). The elementary descriptions for these adjectives (see
Fig. 5.18) are simpler than those for intersective adjectives, since non-intersective adjectives
can be directly applied to the predicate they modify.

Similar to verbs such as croire, penser etc., these adjectives also create an oblique context.
E.g. the phrase futur pr�esident denotes a predicate. If this predicate is true in a situation s
for some individual a, then this signi�es that there is some future situation s0 such that a is
a president in s0. Therefore the interpretations of futur and ancien might be as follows:

I(futur) 2 Dhhe;hs;tii;he;hs;tiii with [[futur]](P1) = P2 such that for all a 2 De

and all s 2 Ds: P2(a)(s) = true i� there
is a s0 2 Ds in the future (wrt s) with
P1(a)(s) = true

I(ancien) 2 Dhhe;hs;tii;he;hs;tiii with [[ancien]](P1) = P2 such that for all a 2 De

and all s 2 Ds: P2(a)(s) = true i� there
is a s0 2 Ds temporally preceding s with
P1(a)(s) = true

I won't discuss the notions \in the future" and \temporally preceding" used in the interpre-
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Figure 5.18: Elementary descriptions for non-intersective adjectives preced-

ing the modified noun

tations of futur and ancien. But see Prior 1968 for further reading on tense logic.

5.4.5 Relative clauses

Relative clauses may have di�erent kinds of interpretations, depending on the context they
occur in. On the one hand there are relative clauses similar to intersective adjectives as in
(26):

(26) Marie lit un livre que Jean connnait
Marie reads a book that Jean knows

Roughly, the interpretation of this sentence can be described as follows: there is an object
that is a book and that is known by Jean. For this object it holds that Marie reads it. The
relative clause is then a restriction of the predicate livre. From the set of all books only those
books are considered that are known by Jean. Therefore such relative clauses are called
restrictive relative clauses.

On the other hand there are relative clauses as in (27):

(27) Jean, qui est arriv�e hier soir, a commenc�e de travailler
Jean who arrived yesterday evening has started working

This sentence does not mean that among the persons named Jean one of those who arrived
yesterday (in contrast to some other person called Jean who has not arrived yet) has started
working. It means that Jean (the unique Jean) has arrived yesterday and has started working.
In other words, the set of persons called `Jean' is not restricted but the relative clause
gives additional information about Jean. These relative clauses are called non-restrictive or
appositive relative clauses.

In this subsection, I will only treat restrictive relative clauses, since for appositive relative
clauses even the syntactic analysis is controversal. A restrictive relative clause as in (26)
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Figure 5.19: Elementary descriptions for recommande in restrictive relative

clauses
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Figure 5.20: Elementary descriptions for a relative pronoun

forms a constituent with the noun that it modi�es. However, for an appositive relative clause
as in (27), it is not obvious whether the NP Jean and the relative clause form a constituent
or not (see Lehmann 1993). As far as I see, once a speci�c syntactic analysis is adopted for
appositive relative clauses, it should be no problem to extend the fragment presented here to
such phenomena.

Restrictive relative clauses modify predicates in a way similar to intersective adjectives.
A predicate P1 is modi�ed by adding a new predicate P2. (In (26) the predicate livre is
modi�ed.) The resulting predicate is true for an individual a in a situation s i� both P1
and P2 are true for a in s. In order to account for this intersective interpretation, I propose
elementary con�gurations as in Fig. 5.19 for verbs that are anchors of relative clauses. This
con�guration captures the case that the object-NP is relativized. Therefore, the slot for the
relative pronoun in  1 is related to the two slots n4 and n5. These node names describe the
argument slots the predicates P1 and P2 are applied to. Then the conjunction of the resulting
propositions is built.

The relative pronoun is a �-abstractor, i.e. it introduces �x for a new variable x. This
variable must occur twice in the scope of �x, once as argument of P1 and once as argument
of P2. In the case of Fig. 5.19 it must be inserted under n4 and under n5. Therefore I
propose elementary con�gurations for relative pronouns as shown in Fig. 5.20 for que. If
such a con�guration is added to h 1; �1; fhk4; n4i; hk5; n6i; hk4; n5i; hk6; n5igi in Fig. 5.19, the
synchronization relation makes sure that the NP with the empty word is inserted under k6
and that the two variables x are inserted under the node names that are related to the relative
pronoun in  1.

It is easy to see that using these con�gurations (26) is analyzed in the desired way. Starting
from the con�guration derived for the matrix clause Marie lit un livre, �rst the con�guration
h 1; �1; fhk4; n4i; hk5; n6i; hk4; n5i; hk6; n5igi for recommande (see Fig. 5.19) is added such that
the derivation descriptions in this step are the two descriptions in the elementary con�gura-
tion of the predicate livre. In the following two derivation steps, the elementary con�guration
h 2; �2; fhk8; n9i; hk8; n10i; hk9; n10igi for the relative pronoun que and the elementary con�g-
uration for Jean are added (in arbitrary order). When adding the con�guration for que, the
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Figure 5.21: Elementary descriptions for the conjunction et

synchronization relation guarantees that the new equivalences are k3 � k7^k4 � k8^k6 � k9
in Gsyn and n1 � n7 ^ n2 � n8 ^ n4 � n9 ^ n5 � n10 in Gsem. Instead of the predicate livre

the modi�ed predicate �x(et(livre(x))(recommander(x)(Jean))) is then obtained.

5.4.6 Coordination

In the fragment presented in this chapter, I will restrict myself to coordination of sentences
as in (28). Deletion phenomena as in (29) are left aside.

(28) Jean aime Marie et Pierre aime Lucile
Jean loves Marie and Pierre loves Lucile

(29) a. Jean ach�ete et Pierre pr�epare les poissons
Jean buys and Pierre prepares the �shes

b. Jean aime la cuisine proven�cale et adore la bouillabaisse
Jean loves Proven�cal cooking and adores the Bouillabaisse

For coordination of sentences as in (28), I adopt the elementary con�guration shown in
Fig. 5.21 for the conjunction et. This con�guration is added to the �rst conjunct (which is
then dominated by the marked names), and then the two elementary descriptions for the
anchor of the second conjunct are inserted under k1 and n1. An example will be shown later
when considering island constraints.

5.5 Underspeci�cation

A lot of attention has been paid to underspeci�cation recently, mainly to underspeci�ed
semantic representations. There are two reasons for replacing several analyses of a single
expression by one underspeci�ed analysis. The more practical reason is the desire to avoid
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combinatorial explosion. (1) in Chapter 1 for example, repeated as (30), is such a case of
combinatorial explosion where we have 14400 readings (see also Poesio 1996).

(30) A politician can fool most voters on most issues most of the time, but no politician can
fool all voters on every single issue all of the time.

Such examples clearly show that it is desirable to allow scope ambiguities to exist for some
time instead of resolving them immediately. For this purpose a level of underspeci�ed repre-
sentations is necessary.

The second reason for exploring underspeci�cation concerns considerations of psycholog-
ical plausibility. From a cognitive point of view it does not seem plausible that we process
sentences by �rst generating all readings and then testing them. (30) clearly shows that this
is probably not the case. It appears more cognitively adequate to generate underspeci�ed
representations and to postpone the resolution of ambiguities.

Most recent theories of underspeci�ed semantics propose to obtain underspeci�ed repre-
sentations by a relaxation of a relation that represents scope. Approaches of this kind are
Underspeci�ed Discourse Representation Structures (UDRT), proposed by Reyle (1993), the
Ambiguous Logical Forms introduced by Muskens (1995), the context constraints in Niehren
et al. 1997b or the Hole Semantics presented by Bos (1995). Richter and Sailer (1996, 1997)
present a de�nition of Bos' semantic representation language in King's formalization of HPSG
(King 1994).

A common property of these proposals is that scope relations are presented by a partial
order. For UDRTs this is the subordination relation between DRSs, in Muskens' Ambiguous
Logical Form scope is represented by a dominance relation between nodes in a tree, in the
context constraints by Niehren, Pinkal and Ruhrberg it is the subtree relation and in Bos'
Hole Semantics the partial order is also called subordination. Since the underspeci�ed repre-
sentation in these approaches are partial descriptions of semantic representations, the logical
rule is respected.

The theories that are closest to the syntax-semantics interface presented in this chapter
are Muskens' Ambiguous Logical Form and the context constraints in Niehren et al. 1997b
because they both represent scope ambiguities by partial tree descriptions. In contrast to
local TDGs, both theories assume a close relation between syntax and semantics in the sense
that one phrase structure rule (or one subtree consisting of a mother node and its immediate
daughters) is connected to a speci�c rule generating parts of a semantic expression. Since
phrase structure rules do not o�er an extended domain of locality, island constraints must be
explicitely stated in order to be respected. In the last section of this chapter, we will have a
more detailed look at Ambiguous Logical Form and context constraints, and both proposals
will be compared to synchronous local TDGs.

In this section underspeci�ed representations for scope ambiguities are presented that can
be derived within the syntax-semantics interface introduced in the previous section. We will
see that in the case of synchronous local TDGs, island constraints are a consequence of the
grammar (i.e. the elementary con�gurations) and the locality of the derivation. Since the
form of the elementary con�gurations is motivated by the predicate argument cooccurrence
principle, island constraints follow from this principle and from the locality of the derivation.
The de�nition of the locality restriction was motivated by the desire to show semilinearity of
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the string languages generated by the grammar formalism. In other words, there are more
general reasons for local derivations, and island constraints arise as a consequence of this.

5.5.1 Scope ambiguities

In the following, we will see that the fragment of the syntax-semantics interface presented
in the previous sections allows for the derivation of suitable underspeci�ed representations
for scope ambiguities. Examples of quanti�er scope ambiguities, de re { de dicto ambiguities
and structural ambiguities with nominal modi�ers are presented.

Quanti�er scope

(31) un homme aime chaque femme
a man loves every woman

A well known example of a quanti�er scope ambiguity is given in (31). We have already
seen Montague's account of the two scope orders of (31) in 5.2.1. (31) has the following
two readings with respect to the relative scope of the two quanti�ers un homme and chaque
femme:

1. either un homme has wide scope, and then in some situation s (31) signi�es that there
is one single man who loves all the women in this situation s.

2. or chaque femme has wide scope, and then in some situation s (31) signi�es that for
each woman in that situation s there is at least one man who loves this woman in s. In
this case, the women need not necessarily all be loved by the same man.

Although the �rst reading implies the second interpretation, and is therefore stronger,
there is good reason to believe that these are distinct readings of (31): Chierchia and
McConnell-Ginet 1990, p. 118 points out that under negation the second reading becomes
the stronger reading, i.e. the negation of the second reading implies the negation of the �rst
reading.

For the quanti�er scope ambiguity in (31), the derived con�guration is the one shown in
Fig. 5.22. The description ' that is derived in Gsem has two minimal trees: since all parent
relations in minimal trees must occur in the description, either n1 and n2 denote the same
node or n1 and n6. In the �rst case, n5 and n6 and also n9 and n10 denote the same nodes
as well and a minimal tree for the stronger reading is obtained. In the second case, n9 and
n2 also denote the same node and n5 and n10 as well. The two minimal trees of ' are shown
in Fig. 5.23. The interpretations of the terms yielded as strings by these two trees are:

1. [[un(homme)(�x1(chaque(femme)(�x2(aimer(x2)(x1)))]]
g
M = p with

[[un(homme)(�x1(chaque(femme)(�x2(aimer(x2)(x1)))]]
g
M (s) = true

i� there is a a 2 De with [[homme]]gM (a)(s) = true and

[[�x1(chaque(femme)(�x2(aimer(x2)(x1))))]]
g
M (a)(s) = true

i� there is a a 2 De with [[homme]]gM (a)(s) = true and
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Figure 5.22: Configuration derived for (31) un homme aime chaque femme
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Figure 5.23: Minimal trees of ' in Fig. 5.22

[[chaque(femme)(�x2(aimer(x2)(x1)))]]
g[x1=a]
M (s) = true

i� there is a a 2 De with [[homme]]gM (a)(s) = true, such that for all b 2 De:

if [[femme]]gM (b)(s) = true, then [[�x2(aimer(x2)(x1)))]]
g[x1=a]
M (b)(s) = true

i� there is a a 2 De with [[homme]]gM (a)(s) = true, such that for all b 2 De:

if [[femme]]gM (b)(s) = true, then [[aimer(x2)(x1)]]
g[x1=a;x2=b]
M (s) = true

i� there is a a 2 De with [[homme(a)]]gM (s) = true, such that for all b 2 De:

if [[femme]]gM (b)(s) = true, then [[aimer]]gM (b)(a)(s) = true

2. [[(chaque(femme)(�x2(un(homme)(�x1(aimer(x2)(x1)))]]
g
M = p with

[[(chaque(femme)(�x2(un(homme)(�x1(aimer(x2)(x1)))]]
g
M (s) = true i�

...

i� for all b 2 De: if [[femme]]gM (b)(s) = true, then there is a a 2 De with
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[[homme]]gM (a)(s) = true and [[aimer]]gM (b)(a)(s) = true

As this example shows, synchronous local TDGs allow the derivation of underspeci�ed
representations for quanti�er scope ambiguities in the style proposed in Fig. 2.22, page 51 in
Chapter 2. The underspeci�cation in this case arises from not fully specifying dominance and
linear precedence for the node names in the description in Gsem. The description derived in
Gsyn is not ambiguous, i.e. in contrast to Montague's PTQ, in this system quanti�er scope
ambiguities are analyzed as semantic ambiguities and unnecessary syntactic ambiguities do
not arise. Since syntax and semantics are less close than in Montague's PTQ or in Cooper
1983, a (syntactic or semantic) quantifying-in rule is not necessary in order to account for
wide scope of quanti�ers.

De dicto { de re ambiguities

(32) Jean croit que Marie lit un livre
Jean believes that Marie reads a book

De dicto { de re ambiguities are scope ambiguities that arise when a quanti�er is embedded
in an oblique construction. The quanti�er un livre in (32) for example can have a so-called
speci�c or de re interpretation or an unspeci�c or de dicto interpretation. These two readings
can be analyzed as involving a scope ambiguity (see Quine 1960 p. 139). In Montague's PTQ,
the wide scope reading of the embedded quanti�er can be obtained by quantifying-in.

The de re interpretation of (32) is the wide scope reading, i.e. the reading where there
is one single speci�c book, and Jean believes about this speci�c book that Marie is reading
it. The narrow scope or de dicto reading of un livre is the one where Jean only believes that
Marie is reading some book but he does not have a speci�c book in mind. In other words, if
this sentence is interpreted in a situation s, then in the de re reading, there must be a book
in s whereas in the de dicto reading, a book must exist in all situations where everything is
the case that Jean believes in s.

In the course of the derivation of a con�guration for (32), in Gsem �rst the con�guration
h�1; '1; �i shown in Fig. 5.24 is derived for Jean croit que Marie lit, and then the elemen-
tary con�gurations for un and livre must be added. When the elementary con�guration
h 1; �1; fhk2; n8i; hk3; n6igi of un is added, the derivation descriptions must be those added
for the verb lit. In Fig. 5.24 only those node names in �1 and '1 are explicitely mentioned
that are relevant for this derivation step. These are k1 in �1, since k1 must become equiv-
alent to the minimal name of  1, and in '1, the names n1; n2; n3; n4 are important. n1; n2
and n3 are all node names from the elementary con�guration of lit that have the category
prop and are therefore candidates for an equivalence with the minimal n5 and the marked
n6 in �1. Since que Marie lit un livre is a complement clause of croit, the minimal name
n1 in the elementary description of lit in Gsem was identi�ed with a minimal name in the
elementary description of croit (see Fig. 5.13 and 5.14 for the elementary con�gurations of
croit and of anchors of complement clauses). Therefore n1 is among those that can be chosen
for new equivalences in this derivation step, and it is possible to move the quanti�er out of
the complement clause. n4 must become equivalent to n8. As the result of a derivation step
in a local TDG must be maximally underspeci�ed, the equivalences n1 � n5 and n3 � n7
must be chosen. Therefore, the description �0 shown in Fig. 5.25 is derived.
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Con�guration � := h�1; '1; �i for Jean croit que Marie lit with hk1; n4i 2 �,
and n1; n2 and n3 are all node names with category prop from the elementary
description in Gsem for lire.

�1 S

S

NP VP

V
Jean S

croit

que S

S

VP
NP

V NP k1

Marie

lit

prop n1

�1

prop

pred ind

ppred prop n2 Jean

croire prop n3

pred ind

pred ind n4 Marie

lire

Elementary con�guration �1 for un: �1 := h 1; �1; fhk2; n8i; hk3; n6igi

 1

NP k2

Det N k3

un

�1 prop n5

prop

quant pred

qp pred n6 �x prop

un prop� n7

ind� n8

x

Figure 5.24: Configuration derived for Jean croit que Marie lit and elementary

configuration for un
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�
�1) �0 with �0 = h�2; '2; � [ fhk2; n8i; hk3; n6igi with

'2 prop n1 � n5

prop prop

quant pred pred ind

qp pred n6 �x prop ppred prop Jean

un croire

�1 S

S

NP VP

V
Jean S

croit

que S

S

VP
NP

V NP k1 � k2

Marie

lit Det N k3

un

prop
n3 � n7

pred ind

pred
ind

n4 � n8
Marie

lire x

�2 := h 2; �2; fhk4; n9igi

 2 N k4

N

livre

�2 pred n9

pred

livre

Figure 5.25: Configuration derived for Jean croit que Marie lit un and elementary

configuration for livre



5.5. UNDERSPECIFICATION 211

In the last derivation step, the elementary con�guration h 2; �2; fhk4; n9igi for livre in
Fig. 5.25 must be added, such that the derivation descriptions are the descriptions added for
un. Consequently, the new equivalences must be k3 � k4 in Gsyn and n6 � n9 in Gsem. The
description '2 ^ �2 ^ n6 � n9 derived in Gsem for (32) has two minimal trees yielding the
following terms:

1. un(livre)(�x(croire(lire(x)(Marie))(Jean)))

2. croire(un(livre)(�x(lire(x)(Marie))))(Jean)

The interpretation of the �rst term is the de re or speci�c reading whereas the interpre-
tation of the second term is the de dicto or unspeci�c reading.

Nominal modi�ers

(33) a. grande maison bleue
large house blue
large blue house / blue large house

b. ancien château royal
former castle royal
former royal castle / royal former castle

Expressions with several nominal modi�ers as in (33) are also ambiguous. However,
in contrast to the quanti�er scope ambiguities considered above, the examples in (33) are
even ambiguous with respect to their syntactic structure and, corresponding to the two
syntactic readings, there arises also a semantic ambiguity. This is not the case in English,
since modifying adjectives in English must always precede the noun they are modifying. In
French, some adjectives (e.g. color adjectives) must and some can follow the noun.

The elementary con�gurations for maison, grande and bleue are shown in Fig. 5.26. When
deriving a con�guration for (33)a., the con�guration for maison is taken and �2 and �3 are
added (no matter in which order), and the resulting description is such that the equivalences
k1 � k3 ^ k3 � k7 ^ k2 � k6 ^ k6 � k10 in Gsyn and n1 � n3 ^ n3 � n7 ^ n2 � n6 ^ n6 � n10
in Gsem hold. The resulting con�guration is shown in Fig. 5.27.

The two descriptions in the con�guration derived for (33)a. both have two minimal trees.
The strings yielded by the description �sem derived in Gsem are the following two terms of
type he; hs; tii:

1. �x(et(grand(x))((�y(et(bleu(y))(maison(y))))(x)))

(equivalent to �x(et(grand(x))(et(bleu(x))(maison(x)))))

2. �y(et(bleu(y))((�x(et(grand(x))(maison(x))))(y)))

(equivalent to �y(et(bleu(y))(et(grand(y))(maison(y)))))

Since the interpretation of et is an associative and commutative function (i.e. for all
models M and assignments g: [[et(p1)(p2)]]

g
M = [[et(p2)(p1)]]

g
M and [[et(p1)(et(p2)(p3))]]

g
M =

[[et(et(p1)(p2))(p3)]]
g
M ), the interpretations of these two terms are the same.
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Elementary con�gurations for maison, grande and bleue:

�1 := h 1; �1; fhk1; n1igi

 1 N k1

N k2

maison

�1 pred n1

pred n2

maison

�2 := h 2; �2; fhk4; n4i; hk5; n5igi

N k3

 2

N k4

AP N k5

A N� k6

grande

pred n3

�2
pred n4

�x prop

mod prop

con prop pred n5 ind

et pred ind pred� n6 x

grand x

�3 := h 3; �3; fhk8; n8i; hk9; n9igi

N k7

 3

N k8

N k9 AP

N� k10 A

bleue

pred n7

�3
pred n8

�y prop

mod prop

con prop pred n9 ind

et pred ind pred� n10 y

bleu y

Figure 5.26: Elementary configurations for grande, maison and bleue
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Con�guration derived for grande maison bleue:
� := h�; '; fhk1 ; n1i; hk4; n4i; hk5; n5i; hk8; n8i; hk9; n9igi

N k1 � k3 � k7

�

N k4

AP N k5

A

grande

N k8

N k9 AP

A

bleue

N k2 � k6 � k10

maison

pred n1 � n3 � n7

'

pred n4

�x prop

mod prop

con prop pred n5 ind

et grand(x) x

pred n8

�y prop

mod prop

con prop pred n9 ind

et bleu(y) y

pred n2 � n6 � n10

maison

Figure 5.27: Description derived in Gsem for grande maison bleue



214 CHAPTER 5. A SYNTAX-SEMANTICS INTERFACE

(33)b. is also syntactically ambiguous. The following similar example in English was
already shown in Chapter 1:

(34) former professor in T�ubingen

In (34) one of the modi�ers is a PP. Since PPs follow the noun they modify, such examples
in English are syntactically ambiguous.

The con�guration derived for (33)b., shown in Fig. 5.28, is very similar to the one derived
for (33)a. The two descriptions in the con�guration for (33)b. each have two minimal trees.
These minimal trees are shown in Fig. 5.29. The two strings yielded by the two minimal trees
of the description in Gsem and their interpretations are:

1. ancien(�y(et(royal(y))(chateau(y)))):

[[ancien(�y(et(royal(y))(chateau(y))))]](a)(s) = true

i� there is a s0 2 Ds temporally preceding s such that

[[�y(et(royal(y))(chateau(y)))]](a)(s0) = true

i� there is a s0 2 Ds temporally preceding s such that [[royal]](a)(s0) = true and

[[chateau]](a)(s0) = true.

2. �y(et(royal(y))((ancien(chateau))(y))):

[[�y(et(royal(y))((ancien(chateau))(y)))]](a)(s) = true

i� [[royal]](a)(s) = true and there is a s0 2 Ds temporally preceding s such that

[[chateau]](a)(s0) = true.

According to this, the interpretation of ancien(�y(et(royal(y))(chateau(y)))) is a predicate
that is true for some object a in a situation s i� in some former days a was a royal castle
(wide scope reading of ancien). The interpretation of �y(et(royal(y))((ancien(chateau))(y)))
(narrow scope of ancien) is a predicate that is true for some object a in a situation s i� a is
royal (in s), and in some former days, a was been a castle (in s there is perhaps only a ruin
left).

Looking at the minimal trees for the descriptions in the con�guration for (33)b., one can
see that the �rst syntactic structure corresponds to the �rst minimal tree of ' (the wide
scope reading of ancien), whereas the second syntactic structure corresponds to the second
minimal tree for '. This correspondence is expressed by the synchronization relation between
the node names of � and ' in Fig. 5.28.

5.5.2 Island constraints

In the following, I will consider the restrictions for quanti�er scope mentioned in the beginning
of this chapter, and I will show that these restrictions are respected within the syntax-
semantics interface presented above.

In 5.2.3 we have seen that the following constraints for quanti�er scope should hold:

Coordination constraint: A quanti�er cannot be raised out of a coordination.
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Con�guration derived for ancien château royal: � = h�; '; �i with

pred
'

pred

mod pred

ancien

pred

�x prop

mod prop

et(royal(x)) pred ind

x

N
�

N

AP N

A

ancien

N

N AP

A

royal

N

château

pred

chateau

Figure 5.28: Configuration derived in Gsem for ancien château royal
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Minimal trees of �:

N

AP N

N AP
ancien

château royal

N

N AP

AP N
royal

ancien château

Minimal trees of ':

pred

mod pred

ancien �x prop

mod prop

et(royal(x)) pred ind

chateau x

pred

�x prop

mod prop

et(royal(x)) pred ind

mod pred x

ancien chateau

Figure 5.29: Minimal trees of the descriptions derived for ancien château royal
shown in Fig. 5.28
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Relative clause constraint: A quanti�er cannot be raised out of a relative clause.

Logical rule: A quanti�er A that is not in the restriction of a quanti�er B and that occurs
within the scope of B cannot outscope any of the quanti�ers in the restriction of B.

In the course of this subsection we will see that within the grammar presented in Section
5.4, these constraints are satis�ed without being explicitely stated. The island constraints,
i.e. the �rst two constraints, follow from the locality of the derivation and from the speci�c
form of the elementary con�gurations. The logical rule holds as a consequence of the fact
that Gsem describes the syntactic structure of logical terms.

As an example for the coordination constraint consider (35):

(35) une princesse dort et chaque prince arrive
a princess sleeps and each prince arrives

In (35) wide scope of the quanti�er chaque prince is not possible. The derivation of a
con�guration for (35) is shown in Fig. 5.30, 5.31 and 5.32. First the con�guration � for the
�rst conjunct une princesse dort is derived. In the next step, the elementary con�guration �1
(see Fig. 5.30) for etmust be added with the new equivalences k1 � k3 and k2 � k4 inGsyn and
n1 � n3 and n2 � n4 inGsem. The anchor of the second conjunct is the verb arrive. Therefore
in the following derivation step �2, the elementary con�guration for arrive must be added.
Since there are no marked names in �2, the two minimal names k6 and n6 both must become
equivalent to leaf names in the old con�guration. Consequently, the new equivalences k5 � k6
and n5 � n6 must be added, and the con�guration h�3; '3; � [ fhk5; n5i; hk8; n8igi shown in
Fig. 5.31 is obtained. In the last two derivation steps, �rst the elementary con�guration for
chaque must be added and then the elementary con�guration for prince. The con�guration
for chaque must be added in such a way that the elementary descriptions for arrive are the
derivation descriptions, since chaque introduces an argument of arrive. Therefore the minimal
name (with category prop) of the elementary description for chaque in Gsem must become
equivalent to n6, i.e. the quanti�er is \inserted" between n6 and n7. Finally, a con�guration
h�4; '4; �

0i is derived for (35) where '4 is as shown in Fig. 5.32. Clearly, '4 has two minimal
trees. The terms yielded by these minimal trees are:

1. un(princesse)(�x(et(dormir(x))(chaque(prince)(�y(arriver(y))))))

2. et(un(princesse)(�x(dormir(x))))(chaque(prince)(�y(arriver(y))))

With the analysis obtained here, a quanti�er occurring in the �rst conjunct can have wide
scope whereas for a quanti�er in the second conjunct, wide scope (i.e. scope over the �rst
conjunct) is not possible. This is exactly what is predicted by the coordination constraint.
The reason why the coordination constraint is respected in this framework is the fact that
the conjuncts are matrix clauses and therefore the second conjunct must be inserted at two
leaf names in Gsyn and Gsem. This creates an island with respect to the locality restriction
on the derivation.

Next, the relative clause constraint is considered. An example is (36).

(36) Jean aime une princesse qui adore chaque grenouille
Jean loves a princess who adores each frog
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Con�guration derived for une princesse dort: � := h�1; '1; �i with

S k1

�1 S k2

NP VP

Det N V

une N dort

princesse

prop n1

'1 prop

quant pred

�x
qp pred prop

un pred prop n2

princesse pred ind

dormir x

Elementary con�guration �1 = h 1; �1; fhk5; n5igi for et:

 1

S k3

S

S� k4 et S k5

prop n3

�1
prop

mod prop n5

et prop

prop� n4

Elementary con�guration �2 = h 2; �2; fhk6; n6i; hk8; n8igi for arrive:

S k6

 2 S k7

NP k8 VP

V

arrive

prop n6

�2 prop n7

pred ind n8

arriver

Figure 5.30: Configuration derived for une princesse dort and elementary con-

figurations for et and arrive
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�
�1) h�2; '2; � [ fhk5; n5igi

�2) h�3; '3; � [ fhk5; n5i; hk6; n6i; hk8; n8igi with

�3
S k1 � k3

S

S k2 � k4 et S k5 � k6

S k7

une princesse dort
NP k8 VP

V

arrive

prop n1 � n3

'3

prop

quant pred

�x prop
un(princesse)

prop

mod prop n5 � n6

et prop prop n7

pred ind n8

arriver

prop n2 � n4

pred ind

dormir x

Figure 5.31: Configuration derived by adding the elementary configurations

for et and arrive to the configuration derived for une princesse dort
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prop

'4

prop

quant pred

�x prop
un(princesse)

prop

mod prop

et prop prop

quant pred

�y

chaque(prince) prop

prop

arriver(y)
prop

pred ind

dormir x

Figure 5.32: Description derived in Gsem for une princesse dort et chaque prince
arrive

In (36) for the quanti�er chaque grenouille it is not possible to outscope une princesse.

The derivation of a con�guration for (36) is outlined in Fig. 5.33, 5.34 and 5.35. First
the con�guration � in Fig. 5.33 for Jean aime une princesse is derived. In the next step, the
elementary con�guration with the verb of the relative clause, adore, as anchor must be added
where the subject is relativized. This is the con�guration �1 shown in Fig. 5.33. Since the
noun princesse is modi�ed by the relative clause, the new equivalences are k1 � k3 and k2 � k8
in Gsyn and n1 � n3 and n2 � n5 in Gsem. In the next derivation step, either the elementary
con�guration �2 (Fig. 5.34) of the relative pronoun or the elementary con�guration of the
quanti�er chaque can be added. (The order is of no importance.) When adding �2, the
new equivalences must be k5 � k9, k6 � k10 and k8 � k11 in Gsyn and n3 � n9, n4 � n10,
n6 � n11 and n8 � n12 in Gsem and the result is a con�guration where the description
derived in Gsem is the description '2 shown in Fig. 5.34. The elementary con�guration of
the quantifying phrase chaque in the relative clause must be added in such a way that the
derivation descriptions are the elementary descriptions for adore, the anchor of the relative
clause. Therefore the quanti�er must be \inserted" between n13 and n14 in '2. The resulting
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Con�guration derived for Jean aime une princesse: � := h�1; '1; �i with

S

�1 S

NP VP

V NP
Jean

aime

Det N k1

une N k2

princesse

prop

'1 prop

quant pred

�x
qp pred n1 prop

un pred n2 prop

princesse pred ind

pred ind Jean

aimer x

Elementary con�guration �1 = h 1; �1; fhk6; n6i; hk7; n8i; hk6; n8i; hk8; n7igi
for adore:

N k3

 1

N

N� k4
cat : S
rel : +

k5

k6 Rpro S

S

k7 NP VP

V NP k8

adore

pred n3

�1
prop n4

mod prop

con prop prop

n5 pred� ind n6

et pred ind n8

pred ind n7

adorer

Figure 5.33: Configuration derived for Jean aime une princesse and elementary

configurations for adore as anchor of a relative clause
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Elementary con�guration �2 = h 2; �2; fhk10; n11i; hk10; n12i; hk11; n12igi for qui:

 2

cat : S
rel : +

k9

Rpro� k10 NP� k11

qui �

pred n9

�2 pred

�y prop� n10

ind� n11 ind� n12

y y

�
�1) �0

�2) h�2; '2; �
0i with

prop

'2 prop

quant pred

qp pred �x prop

un pred prop

�y prop aimer(x)(Jean)

mod prop n13

et(princesse(y)) prop n14

pred ind

pred ind n7 y

adorer

Figure 5.34: Configuration derived for Jean aime une princesse qui adore
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prop

'3 prop

quant pred

qp pred �x prop

un pred prop

�y prop aimer(x)(Jean)

mod prop n13

et(princesse(y)) prop

quant pred

chaque(grenouille) �z prop

prop

adorer(z)(y)

Figure 5.35: Description derived in Gsem for Jean aime une princesse qui adore
chaque grenouille
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description derived for (36) in Gsem is '3 in Fig. 5.35. '3 has only one minmal tree yielding
the following term:

un(�y(et(princesse(y))(un(grenouille)(�z((adorer(z))(y))))))(�x((aimer(x))(Jean)))

In other words, only the reading with narrow scope of chaque grenouille is allowed, i.e. the
relative clause constraint is respected. The reason for this restriction is the fact that the
elementary con�guration for the anchor of the relative clause is added to the elementary
descriptions of the modi�ed noun. The locality restriction for the derivation in synchronous
local TDGs then signi�es that a quanti�er occurring in the relative clause cannot raise out
of the predicate denoted by the modi�ed noun, i.e. this predicate is an island for quanti�er
scope.

As a further example where the relative clause constraint and the logical rule both exclude
some of the combinatorially possible scope orders, consider (37):

(37) chaque �el�eve lit un livre qu'un professeur recommande
each student reads a book that a professor recommends

In (37), it should not be possible for un professeur to outscope un livre. This is excluded
by the relative clause constraint. Furthermore, because of the logical rule, either chaque �el�eve
has wide scope or chaque �el�eve is in the scope of un livre and un professeur.

For this example, I will not mention the single derivation steps. The description derived
in Gsem for (37) is shown in Fig. 5.36. This description has two minimal trees, and the terms
yielded by these trees are the following:

1. un(�z(et(livre(z))(un(professeur)(�v(recommander(z)(v))))))

(�x(chaque(eleve)(�y(lire(y)(x)))))

2. chaque(eleve)

(�y(un(�z(et(livre(z))(un(professeur)(�v(recommander(z)(v))))))

(�x(lire(y)(x)))))

Only two of the 3! = 6 combinatorially possible readings are allowed. There are two
restrictions that apply in this case: �rstly, the quanti�er un professeur occurring in the
relative clause modifying the predicate livre may not outscope un livre. This corresponds to
the relative clause constraint. By this restriction, 3 of the 6 readings are excluded. Secondly,
the term (lire(x))(y) must be part of the body of the quantifying phrase chaque and it must
be part of the body of the quantifying phrase un in un livre. Therefore, the quantifying
phrase chaque cannot be in the restriction of un in un livre. Consequently, if chaque �el�eve
is in the scope of un livre, then it must be in the body of the quantifying phrase of un livre
and therefore cannot outscope un professeur. This last restriction corresponds to the logical
rule. It follows from the syntax of the logic TY (2), namely from the fact the restriction of a
quantifying phrase is left of the body of a quantifying phrase and consequently a quanti�er
cannot occur both in the restriction and the body of another quanti�er.

As this example has shown, the logical rule holds in the framework presented here. Since
elementary descriptions in Gsem are supposed to describe the syntactic structure of semantic
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prop

'3 prop prop

quant pred quant pred

qp pred �x prop chaque(eleve) �y prop

un pred

�z prop
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prop

recommander(z)(v)

Figure 5.36: Description derived in Gsem for chaque �el�eve lit un livre qu'un professeur
recommande

expressions, it is not surprising that the elementary descriptions of Gsem do not allow scope
orders that do not satisfy the logical rule.

The con�gurations derived for (35) and (36) have shown that island constraints hold as a
consequence of the locality of the derivation in synchronous local TDGs. This is one of the
advantages of local TDGs. As in the case of TAGs, the elementary objects in the grammar
allow the de�nition of larger local domains. This gives a way of including island constraints
without explicitely stating them.3 Island constraints arise as a consequence of the speci�c
form of the elementary con�gurations which is motivated by the principles observed for the
construction of elementary trees in TAGs for natural language, in particular the predicate-
argument cooccurrence principle. In frameworks that do not o�er this extended domain of

3For similar reasons, island constraints for wh-movement are respected within a TAG-analysis (see Kroch
1987).
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locality such constraints must be explicitely stated, they are not given by the lexical entries
themselves.

5.5.3 Comparison to related work

Among recent theories of underspeci�ed semantics, there are two approaches that both cap-
ture scope ambiguities using tree descriptions as underspeci�ed representations and that are
therefore similar to the approach presented in the course of this chapter. These are �rst the
Ambiguous Logical Forms proposed by Muskens (1995) and second the context constraints
over �nite trees proposed in Niehren et al. 1997a,b (see also Pinkal 1995).

Ambiguous Logical Form

Muskens (1995) proposes to represent scope ambiguities by partial tree descriptions that are
very similar to those generated with local TDGs. These tree descriptions consist of node
names l1; l2; : : : together with dominance (��) and parent (�) relations. The node names are
labels of Compositional DRT (CDRT, see Muskens 1996) formulas. For simplicity, in this
presentation I will use a �rst order logic with 8 and 9 instead of CDRT. A node name li is
label of the formula pi.

(38) every boy adores a girl

For the quanti�er scope ambiguity in (38), the following underspeci�ed representation is
generated:

l1 �
� k14

l1 �
� k16

l14 � l15 p14 = 8u1 : boy(u1)! p15
l16 � l17 p16 = 9u2 : girl(u2) ^ p17
l17 �

� l2 p2 = adores(u2)(u1)
l15 �

� l2

Disambiguation leads to the two desired readings: either p1 = p14, p15 = p16 and p17 = p2
which corresponds to wide scope of the universal quanti�er, or p1 = p16, p17 = p14 and
p15 = p2 which corresponds to wide scope of the existential quanti�er.

The similarity to the underspeci�ed representations derived with local TDGs is obvious.
However, there are some crucial di�erences concerning the way underspeci�ed representations
are generated.

Muskens' Ambiguous Logical Forms are generated in the following way: a phrase structure
grammar is used to describe the syntactic structure. Each phrase structure rule is connected
to an l-description and an s-description. l-descriptions are used to build a tree description
representing scope and s-descriptions are used to generate formulas that are connected to the
node-names of the tree description.

Since each phrase structure rule is connected to l- and s-descriptions, the relation between
syntactic structure and logical form is closer than with synchronous local TDGs. Therefore it
is necessary to introduce island constraints in an explicit way. For each node name, an island
must be de�ned in the l-descriptions that are related to the phrase structure rules. The rule
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RC ! RPRO S for example (relative clause to relative pronoun and sentence) is connected
to the l-description lM � lD2; I(lD2) = lD2. \M" stands for \mother" and \D2" for \second
daughter". This l-description signi�es that the node name of the second daughter (i.e. the
label of the interpretation of the relative clause) is an island.

The result is that island constraints are respected but they are not predicted by more
general rules. Whereas with synchronous local TDGs, island constraints are a consequence
of general principles such as locality and the predicate-argument cooccurrence principle that
were introduced for reasons independent from island constraints.

A second limitation of Muskens' approach is that underspeci�cation concerns only the
logical form and not the syntactic structure. The phrase structure rules used for the gener-
ation of syntactic trees do not allow underspeci�cation of the dominance relation. However,
we have seen that this is desirable to account for structural ambiguities such as the nom-
inal modi�er ambiguities considered in (33) on page 211. With synchronous local TDGs,
underspeci�cation of syntax and semantics is allowed in the same way.

Context constraints over �nite trees

Niehren, Pinkal and Ruhrberg (1997b) propose to describe underspeci�ed semantic informa-
tion by constraints interpreted over �nite trees. These constraints are called context con-
straints. The language of context constraints is powerful enough to describe equality, subtree
and \equality-up-to" relations over trees.

Context constraints contain variables X1;X2; : : : for trees and variables C1; C2; : : : for a
tree with a hole, i.e. a slot where a subtree must be inserted.

(39) two languages are spoken by many linguists

With these context constraints, underspeci�ed representations can be described. For the
ambiguity in (39), the following context constraint is derived:

X1 = C1(((two)(language))(�x(C3(X2))))

^X1 = C2(((many)(linguist))(�y(C4(X2))))

^X2 = (spoken-by)(y)(x)

If �rst order variables are viewed as node names and second order variables as strong
dominances, then this context constraint corresponds to the underspeci�ed representations
obtained with local TDGs.

Context uni�cation leads to a disjunction of the following solved constraints:

1. X1 = C1(((two)(language))(�x(C5(((many)(linguist))(�y(C4((spoken-by)(y)(x))

2. XS = C2(((many)(linguist))(�y(C6(((two)(language))(�x(C3((spoken-by)(y)(x))

To obtain the minimal solutions, a closure operation is applied that consists of identifying
the remaining free variables C1; C2; : : : with the identity context.

The context constraints are obtained from syntax trees. For each node, conjuncts are
added depending on the node and its daughters.
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Niehren et al. (1997b) show that context constraints can even capture parallelism between
trees since the equality up-to relation over trees can be expressed by them. This can be used
to capture parallelism between scope orders of quanti�ers in elliptic clauses.

However, with context constraints, there arise the same problems as in the case of
Muskens' Ambiguous Logical Form: �rstly, the formalism of context constraints does not
o�er an extended domain of locality and therefore islands must be explicitely speci�ed. Sec-
ondly, underspeci�cation is limited to the semantic representation.

A further problem is that, according to Niehren et al. (1997a), the decidability of context
uni�cation is an open problem. In contrast to this, the disambiguation process for local
TDGs, i.e. the construction of all minimal trees, is decidable, as I have shown in the proof of
Prop. 3.9, page 96.

5.6 Conclusion

In this chapter, I have presented a fragment of a syntax-semantics interface for French, based
on the formalism of synchronous local TDGs introduced in Section 4.4 in Chapter 4. The
architecture of the syntax-semantics interface is such that one TDG Gsyn is related to a
second local TDG Gsem by a synchronization relation � such that hGsyn; Gsem;�i form a
pair of synchronous local TDGs. The �rst TDG, Gsyn, describes the syntactic structure of
French whereas the second TDG, Gsem describes the syntactic structure of expressions in a
truth conditional logic.

The use of synchronous local TDGs has several advantages:

� Tree descriptions as underspeci�ed representations: since the grammars consist of tree
descriptions, i.e. of representations that are underspeci�ed by nature, we do not need
any extra mechanisms in order to obtain underspeci�ed representations for scope am-
biguities. No metavariables and constraints on these variables must be introduced as it
is the case in Bos 1995, Richter and Sailer 1997 or Reyle 1993. Therefore local TDGs
enable us to generate underspeci�ed representations in a very elegant and natural way.

� Extended domain of locality: syntax and semantics depend on each other in a com-
positional way but this dependence is less close than in more traditional Montagovian
approaches where each syntactic phrase structure rule is connected to a semantic op-
eration. This is a consequence of the larger domain of locality provided by TAG-like
formalisms such as local TDGs, in other words it follows from the possibility to have
larger elementary descriptions. Jacobs (1995) for example also argues that there is a
systematic compositional relation between syntax and semantics but that this connec-
tion is less close than most traditional theories assumed. Both, syntax and semantics,
have their own and independent structural principles.

As a consequence of this weakening of the relation between syntax and semantics, a
quantifying-in mechanism is not needed. Furthermore, it is not necessary to de�ne
di�erent types for a lexical item depending on the di�erent syntactic constructions
it occurs in (except in cases of real lexical ambiguities, of course). In general, types
of constants may be less complex. The way they are combined with other constants
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depends on the syntactic context and is speci�ed by the form of the correponding
elementary descriptions.

Another consequence is that trees in the tree language of Gsem can be simply seen
as syntactic trees of logical expressions. There is no need to de�ne speci�c semantic
operations for internal nodes.

� Locality of the derivation: in the preceding section we have seen that as a consequence of
the locality of the derivation island constraints for quanti�er scope are respected. This
means that island constraints are a consequence of the more general locality principle
together with the principles that hold for the elementary descriptions of a local TDG,
in particular the predicate-argument cooccurrence principle.

Summarizing one can say that the architecture of synchronous local TDGs combines the
advantages of TAG-like formalisms, in particular the extended domain of locality, with the
idea of partial representations for scope ambiguities. Therefore the use of this formalism for
the description of a syntax-semantics interface o�ers an attractive alternative to theories in
the tradition of Montague that assume a close relation between syntax and semantics.
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Chapter 6

Conclusion

In this thesis I have presented a formal framework for the generation of tree descriptions. This
framework, called (local) Tree Description Grammar (TDG) was motivated by the following
two goals:

� the formalism was supposed to be an extension of Tree Adjoining Grammars in the
following sense: its generative capacity should be greater than the generative capacity
of TAGs, and TDGs should generate tree descriptions from elementary descriptions in
such a way that an extended domain of locality was allowed, as it is also the case in
TAGs.

� the formalism should allow the generation of underspeci�ed representations for scope
ambiguities. In particular an underspeci�cation of the dominance relation between the
nodes in a tree should be possible, since this is necessary to account for structural
ambiguities.

In a �rst approach, a general de�nition of TDGs has been presented. This comprises a
de�nition of the tree logic and the speci�c descriptions allowed in TDGs, and a de�nition of
the derivation mode. Motivated by the desire to show a limitation of the generative power
of the formalism, TDGs have been further restricted. This has lead to the central formalism
of the thesis, local Tree Description Grammars.

I have shown that a consequence of the locality restriction is that the derivation process
becomes context-free. Therefore, semilinearity of the string languages can be shown via letter
equivalence to context-free languages. This implies that local Tree Description Languages
are of constant growth, a property generally ascribed to natural languages.

The requirements mentioned above are satis�ed by local TDGs:

Local TDGs are an extension of TAGs, since I have shown that local TDGs are more
powerful than set-local MC-TAGs. The extra power in comparison to set-local MC-TAGs
arises from the fact that the locality restriction concerns only the derivation of descriptions,
whereas the de�nition of a minimal tree does not contain any locality restriction.

As the elementary objects of local TDGs are tree descriptions, an extended domain of
locality as in TAGs is provided by this formalism. Consequently, local TDGs can be lexical-
ized, and local dependencies such as �ller gap dependencies can be expressed in elementary
descriptions. For lexicalized local TDGs, the word recognition problem is decidable.
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The generation of underspeci�ed representations is possible in the local TDG framework.
Even underspeci�cation of the dominance relation is allowed and therefore structural ambi-
guities can be analyzed by one single tree description.

Local TDGs of di�erent rank can be distinguished depending on the form of derivation
steps that are possible in these grammars. I have introduced a hierarchy of local TDGs. For
the string languages generated by local TDGs of a certain rank, a pumping lemma has been
shown. With this pumping lemma, it is possible to prove that local TDGs of rank n can
generate a language Li := fa

k
1 � � � a

k
i j k � 0g i� i � 2n holds.

In order to describe the relation between two languages, I have introduced synchronous
local TDGs. For this formalism, I have shown that the synchronization with a second local
TDG does not increase the generative power of the grammar in the sense that each language
generated by a local TDG that is part of a synchronous pair of local TDGs, also can be
generated by a single local TDG. However, it might be the case that the rank of the local
TDG is increased.

As a linguistic application, this formalism of synchronous local TDGs has been used to
describe a syntax semantics interface for a fragment of French. This illustrates the derivation
of underspeci�ed representations for scope ambiguities with local TDGs. I have shown that,
as a consequence of the extended domain of locality together with the locality restriction
for derivations, island constraints for quanti�er scope hold in this framework without being
explicitely stated.

Besides several points concerning details of the formalism, there are mainly two issues that
have been left aside and that are obviously of interest: �rstly, parsing has not been considered,
and therefore no result concerning parsing complexity has been shown. Secondly, I have not
treated the question whether there is a description-based formalization of local TDGs that
is not derivation-based and how such a formalization could look like. The consideration of
these two issues awaits future research.
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Additional Proofs

In this appendix, those proofs are listed that are more technical and not relevant for the
intuition of the reader and that were therefore left aside in the chapters of the thesis.

Proofs from Chapter 3

First the proof of Lemma 3.3, page 85 is shown.

Lemma 3.3 If �1
 
) �2 is a derivation step in a TDG, then

(LP) for all k1; k2: �2 ` k1 � k2 i� there are k01; k
0
2 with �2 ` k01 �

� k1 ^ k
0
2 �
� k2 and

�1 ^  ` k
0
1 � k

0
2.

Proof Let �1
 
) �2 be a derivation step in a TDG.

Suppose that �2 ` k1 � k2 for some k1; k2 such that there are no k01; k
0
2 with �2 ` k

0
1 �
� k1 ^

k02 �
� k2 and �1 ^  ` k

0
1 � k

0
2.

) either k1 � k2 is a conjunct in �2 or it can be derived by inference rules trL or T6.

If there are node names k with �2 ` k1 � k ^ k � k2, then there are kl; k
0
l such that:

�2 ` k1 � kl ^ kl � k
0
l ^ k

0
l � k2 and there is no k00l with �2 ` kl � k

00
l ^ k

00
l � k

0
l, and there are

no kd; k
0
d with �2 ` kd �

� kl ^ k
0
d �
� k0l and �1 ^  ` kd � k

0
d.

) either k1 � k2 is a conjunct in �2
or there are kl; k

0
l with �2 ` k1 � kl _ k1 � kl and �2 ` k

0
l � k2 _ k

0
l � k2, such that

- �2 ` kl � k
0
l and there is no k00l with �2 ` kl � k

00
l ^ k

00
l � k

0
l,

- there are no kd; k
0
d with �2 ` kd �

� kl ^ k
0
d �
� k0l and �1 ^  ` kd � k

0
d,

- and either kl � k
0
l is a conjunct in �2 or there are k

1
d; k

2
d with �2 ` k

1
d�
�kl^k

2
d�
�k0l^k

1
d � k

2
d

and �1^ 6` k
1
d � k

2
d, and there are no k

10
d 6= k1d; k

20
d 6= k2d with �2 ` k

10
d �
�k1d^k

20
d �
�k2d^k

10
d �

k2
0

d . (In this case k1d � k
2
d is a conjunct in �2.)

) there are kl1; k
l
2 such that �2 contains kl1 � kl2 as conjunct, and if �02 is obtained from �2

by removing this conjunct, then �02 6` k
l
1 � k

l
2 holds.
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) �02 is a description (since �1 ^  6` kl1 � kl2 and because of (A3), there is no k with
�02 ` k � k

l
1 ^ k � k

l
2), and �

0
2 also satis�es (A1) to (A4), but �2 ` �

0
2 and �

0
2 6` �2 holds.

Contradiction to (A5).

2

The following proof is the proof of Lemma 3.4 on page 86.

Lemma 3.4 If �1
 
) �2 is a derivation step in a TDG, and �� :=

V
fk� � k j k� 2

node(�1); k 2 node( ); �2 ` k� � k g, then

(D) for all k1; k2 with �2 `s k1 �
� k2:

(a) either �1 ^  ^ �� ` k1 �
� k2

(b) or there are km 2M , k 2 node(�1) and k
0 2 node(�2) such that

- �2 ` km � k,

- either  `s km �
� k2 and �1 ` k � k

0, or �1 `s k �
� k2 and  ` km � k

0,

- and �2 ` k
0
�
� k1.

Proof Let �1
 
) �2 be a derivation step in a TDG with �� as in Lemma 3.4.

To show: there is a D = fk11 �
� k21; � � � ; k1n �

� k2ng such that

(a) �2 ` k11 �
� k21 ^ � � � ^ k1n �

� k2n,

(b) for all i; 1 � i � n, �1 ^  ^ �� 6` k1i �
� k2i

(c) for all k 2 node( ): there is exactly one kd 2 node(�) [ node( ) with kd �
� k 2 D i�

1. there is a km 2M with �1 `s km �
� k ,

2. there are k; k0 2 node(�1) with �� ` k � km and �1 ` k � k
0,

3. and there is no k0m 2 K with  ` k �
� k0m.

(Then for one kd such that �1 ` k�
� kd and there is no kp with �1 ` kd�kp, the formula

kd �
� k is in D.)

(d) for all k� 2 node(�1): there is exactly one kd 2 node(�)[ node( ) with kd �
� k� 2 D i�

1. there is a ks with �1 `s ks �
� k�,

2. there is a km 2M with �� ` km � ks such that there is a k with  ` km � k.

3. there are no k0� 2 node(�1) and km 2 K with  ` k1 �
� km, �� ` k

0
� � km and

�1 ` k� �
� k0�.

(Then for one kd 2 node( ) with  ` km�
� kd such that there is no kp with  ` kd�kp,

the formula kd �
� k� is in D.)

Suppose that

- either there is a k 2 node( ) such that conditions 1. to 3. in (c) hold for k and there is
no kd with �2 ` kd �

� k .

) there are k01; k
0
2 with �2 ` k �

� k01 ^ k
0
1 � k

0
2 and �2 `s k

0
1 �
� k .

- or there is a k� 2 node(�1) such that conditions 1. to 3. in (d) hold for k� and there is no
kd with �2 ` kd �

� k�.

) there are k01; k
0
2 with �2 ` kmlhd

�k01 ^ k
0
1 � k

0
2 and �2 `s k

0
1 �
� k�.
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) (because of condition 4. in Def. 3.10) �2 is no description. Contradiction.

�02 := �1 ^  ^ �� ^ k11 �
� k21 ^ � � � ^ k1n �

� k2n
�02 is a description satisfying (A1) to (A4) because:

It is easy to see that conditions 1. to 3. and the 5. condition in Def. 3.10 hold because �1
and  are descriptions and for the minimal name in  , there is an equivalent name in �1.

Condition 4. in Def. 3.10 holds because of the addition of the dominances in D.

(A1) to (A4) also hold.

Since �2 ` �
0
2 holds and �2 satis�es (A5), also �02 ` �2 must hold, and therefore (D) holds

for �2.

2
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Table of notation

The following table lists symbols that are used in the thesis without being explicitely de�ned.
Symbols that are explicitely introduced �gure in the index.

Symbol Explanation

2 end of a proof
2 membership sign
fx jY g set of all x such that Y holds
� inclusion
� proper inclusion
[,
S

union
\,
T

intersection
n set di�erence
A�B set of all pairs ha; bi with a 2 A and b 2 B
Pow(A) powerset of A, i.e. set of all subsets of A
AB set of all mappings from B to A
IN set of non-negative integers
An (n 2 IN) set of all n-tuples ha1; : : : ; ani with ai 2 A for

1 � i � n
Sn (n 2 IN n f0g) group of permutations of degree n (i.e. bijec-

tions of f1; : : : ; ng)
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(A; V; T )-formulas, 55

K-equivalence of con�gurations, 155
K-equivalent, 74

K-minimal, 87
K , 74

M , 74

TDGLi , 139
TDLLi , 139

TY (2), 182
TY (2)-model, 183

X�, 15
X+, 15

�, 15
a-length of a word, 15

k-partition of a word, 148
ma( ), 138

ms( ), 138

a-marked, 138
adjunction, 18

alphabet, 15
auxiliary tree, 22

between (node names), 73

bottom-underspeci�ed, 117
branch, 58

branch schema, 59

CFG, 15
clause, 58

clause schema, 59
closed branch, 64

con�guration, 154
Constant Growth Property, 112

context-free grammar, 15

d-edge, 44
d-tree, 44

derivation algorithm, 95
derivation description, 120
derivation grammar of a local TDG, 147
derivation in synchronous local TDGs, 156
derivation in TAGs, 22
derivation in TDGs, 76
derivational generative capacity, 36
derivationally equivalent, 37
description, 73
description language of a TDG, 78
description language of synchronus local

TDGs, 156
Description Tree Grammars, 43
description-based, 1

elementary con�guration, 155
elementary description, 74
elementary tree, 22
equality rules, 61
equivalence rules, 61

�nite atomic feature structures, 57
�nite labelled tree, 16
foot node, 17
foot-marked tree, 17
formula schema, 59

homomorphism, 15

i-edge, 44
indexed string, 37
indexed string language, 37
inference rule, 59
initial tree, 22
internal node, 16

label complete, 124
label rules, 61
language, 15
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language of a CFG, 15
leaf, 16
leaf name, 72
left projection string language, 157
length of a word, 15
letter-equivalent, 112
lexicalized TDG, 96
lexicalized Tree Adjoining Grammar, 30
linear (subset of INn), 112
local derivation, 120
local description, 116
local TDG, 118
local Tree Description Language, 122
logical rules, 60

marked name, 74
mildly context-sensitive grammar, 13
minimal name, 72
minimal tree, 79
Multi-Component TAG, 33
multicomponent derivation, 34

open branch, 64

Parikh mapping, 112
Parikh-Theorem, 113
pre�x, 15
projection, 25
projection equivalent, 26
pumping lemma for TDLLn , 148
pumping lemma for TALs, 23

quantifying-in, 176

rank of a local TDG, 139
remove set �, 148
right projection string language, 157
root, 16

s-marked, 138
satis�ability (tree logic), 57
satis�able branch, 64
saturated branch, 64
semilinear, 112
semilinearity of local TDLs, 124
sister-adjunction, 45
spine, 18

string language of a TAG, 23
string language of a TDG, 82
string language of synchronus local TDGs,

157
strong dominance, 72
strongly equivalent, 26
structural rules, 60
structure-based, 1
subsertion, 44
substitution, 19
substring, 15
suÆx, 15
synchronous local TDGs, 155
syntactic consequence (tree logic), 66

TDG, 74
terminal tree, 17
top-underspeci�ed, 117
Tree Adjoining Grammar, 22
Tree Adjoining Language, 23
Tree Description Grammar, 74
Tree Description Language, 82
tree isomorphism, 22
tree language of a TAG, 23
tree language of a TDG, 82
tree language of synchronus local TDGs,

156
tree logic for TDGs, 55
type of TY (2), 183

underspeci�cation pair, 117
Unordered Vector Grammars with Domi-

nance Links, 45

weakly equivalent, 26
word, 15

Yield, 126
yield of a description, 126
yield of a tree, 17


