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1
Epidemiology of cardiometabolic diseases: the importance of sex

Cardiometabolic health encompasses cardiovascular and metabolic diseases, including 
type 2 diabetes (T2D), cardiovascular disease (CVD) and their associated risk factors 
such as obesity, hypertension and unhealthy lifestyle 1. Over 17.7 million CVD-related 
deaths were reported in 2015, amounting for 31% of all the deaths that year and making 
CVDs still the leading cause of mortality in both men and women globally 2. Also for 
T2D, as a major risk factor for CVD, the estimated number of deaths caused directly by 
diabetes were 1.6 million in 2016 and these numbers are expected to increase since 
both the prevalence and incidence of T2D continuous to rise3. In addition to the burden 
on patients and their families, cardiometabolic diseases also affect the healthcare sys-
tem worldwide. As a result, research and clinical practice are moving towards precision 
medicine for which sex differences are a critical component in prevention, diagnosis 
and treatment of cardiometabolic diseases. Differences due to sex in cardiometabolic 
outcomes have been described in several stages of diseases such as in prevalence, se-
verity, prognosis and also in risk factors. Women and men seem to respond differently to 
cardiometabolic conditions such as T2D, dyslipidaemia, and smoking may play a bigger 
role in the origination and development of CVD in women compared to men4-8. Similarly, 
the risk of development of CVD due to obesity is greater among women than men also 
because the prevalence of obesity is higher in women than in men9 10. Moreover, studies 
on physical activity report increasing levels of exercise to be associated with a better car-
diovascular profile in men than in women11. In addition to lifestyle factors, sex disparities 
exist also in manifestation and severity of cardiometabolic diseases with middle-aged 
men having higher mortality rates and higher CVD prevalence than same age women12. 
However, this female advantage in CVD rates compared with same aged men, gradually 
disappears with increased age and the menopause transition and particularly changes 
in sex hormones during this transition seem to play a crucial role13 14. Indeed, the 
postmenopausal state in women is associated with a worsening of the cardiometabolic 
risk profile including adverse changes in body composition, blood pressure and blood 
lipids, suggesting that sex hormones, and the relative balance between oestrogens 
and androgens, play some role in modulating sex-based differences in cardiometabolic 
diseases15 16. Although the obvious changes during the menopause transition, evidence 
from interventional studies comparing cardiometabolic risk profiles and the underlying 
biological factors in pre-vs. postmenopausal women is very limited.

Reproductive factors and cardiometabolic diseases

The menopause transition is a major life event in women’s life which results in the loss 
of ovarian follicle development that leads to a permanent cessation of the menstrual 
period17. Although menopause is a universal phenomenon in women, timing of the final 
menstrual period differs greatly between women17 18 and it is considered a marker of 
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ageing and cardiovascular health 18. Women with early onset of menopause (<45 years) 
have an increased CVD risk and overall mortality, whereas late onset of menopause is 
linked to a reduced risk of CVD and mortality19. While the relationship between age at 
menopause and CVD risk is well established, its association with T2D, one of the major 
CVD risk factors, remains unclear. Some evidence from women who have undergone 
oophorectomy report less favourable glucose and insulin levels in these women20 21, 
which is suggestive of a link between early menopause and diabetes risk. However, the 
few epidemiological studies that have investigated the association of menopause and 
diabetes have been scarce in numbers, of low quality, with small numbers of participants 
and have even reported conflicting results. Some studies have suggested no association 
between age at menopause and T2D onset22 23. In contrast, some others found early 
age at menopause to be associated with an increased risk of T2D24 25, whereas other 
studies even found that late age at menopause was a risk factor for T2D26 27. Besides the 
conflicting results, seems that all studies agree that sex hormones and the subsequent 
decline in endogenous oestrogens during the menopause transition are the main de-
terminants in cardiometabolic disease risk 21 25 28 29. Findings from observational studies 
have shown that higher androgen and lower oestrogen levels are associated with CVD 
risk factors in post-menopausal women, including blood pressure, C-reactive protein, 
glucose tolerance and insulin resistance30-34. In addition, emerging evidence indicates an 
association between low dehydroepiandrosterone (DHEA) and heart failure and CVD35-37 
by influencing DHEA and its sulphate conjugate (DHEAs) are the most abundant sex 
hormones with serum concentrations up to 20-fold higher than the other sex steroids38 
and it is suggested that they could play a role in cardiometabolic health by modulating 
the natriuretic peptides levels in blood37. Nevertheless, these changes in hormonal bal-
ance explain partly the differences in several cardiometabolic risk factors39, and the role 
of other factors such as lifestyle factors may be of great importance in understanding 
these disparities in cardiometabolic diseases.

Lifestyle, cardiometabolic risk and longevity

Another factor that may explain sex differences in cardiometabolic diseases are differ-
ences in lifestyle risk factors. For years it was thought that the excess male mortality was 
explained by unhealthy behaviours that were more socially acceptable for men than 
women. These behaviours include cigarette smoking, heavy alcohol use, eating more 
red meat and fewer fruits and vegetables, obesity, and exposure to physical hazards40. 
The differences in behaviour were thought to play a more important role explaining 
the higher male mortality than inherent sex differences in physiology41. The search 
to discover and establish risk factors for CVD has started in the early 1940s in the 
community-based Framingham Heart Study and since then other global efforts are daily 
made42. These efforts have established that modifiable risk factors such as smoking, hy-
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pertension, diabetes, abdominal obesity, poor diet, psychosocial factors, lack of physical 
activity and alcohol use, play an important role in the development and progression of 
CVD in both men and women42 43.

Smoking is the leading avoidable cause of death in the world by killing around 6 mil-
lion people a year and is a key cardiac risk factor for development of CVD in both women 
and men44. Although the difference has been getting smaller in the past decades , the 
prevalence of smoking remains much higher in men than in women. Based on statistics 
from 2014, prevalence of smoking in men versus women was respectively 21.4% vs. 
14.8% in Canada and 16.7% vs. 13.6% in the U.S. Besides the well-documented risk for 
cancer and cardiovascular disease from smoking, a recent meta-analysis reported a 37% 
increased risk of developing T2D for current smokers compared to never smokers45. The 
beneficial effects of smoking cessation in reducing the risk of disease and in prevent-
ing T2D is supported by a large amount of evidence46 47. However, smoking cessation is 
often accompanied by weight gain, with various studies reporting average increases of 
4–8 kg, but with 10% to 13% of quitters gaining at least 11 kg 48 49. Consequently, post 
smoking cessation weight gain is reported among smokers who have tried to quit as 
the main cause for their relapse, and among women, as the main reason for not trying 
to quit50 51. As obesity is a main risk factor for T2D, this increase in adiposity could blur 
the benefits of smoking cessation and paradoxically increase the risk of having T2D52. 
Besides smoking and obesity for cardiometabolic diseases, other factors such as low 
to moderate levels of alcohol53, moderate to high physical activity54 and adherence to 
dietary guidelines55 56 have also been associated with better cardiometabolic risk profiles 
and longer life expectancy in both men and women. Therefore, better overall healthy 
lifestyle seems to be crucial in reducing cardiovascular and mortality risk56. People that 
engage in multiple unfavourable lifestyle behaviours have a higher risk for mortality 
and incidence of chronic diseases than people who have no unfavourable lifestyle be-
haviours or only one and the sum of these single components might be more important 
than the single components itself. Although its importance, seems that only a few stud-
ies have investigated the combined impact of the lifestyle-related factors and mortality 
outcomes and total life expectancy. Research to quantify the overall impact of lifestyle-
related factors on mortality outcomes will provide important information valuable for 
disease prevention. Moreover, for highly lifestyle dependent conditions such as obesity 
and diabetes mellitus identifying patterns and markers in lifestyle could help not only in 
prevention but also in management and progression to reverse such condition.

Epigenetic evidence and cardiometabolic outcomes

Recent evidence shows that several lifestyle and environmental risk factors may partly 
affect health via epigenetic changes. The epigenome includes a series of chemical modi-
fications that occur on the DNA or its associated proteins and are very important in gene 
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function57. The field of epigenetics is rapidly growing, with increasingly more focus and 
highlight on the link between our epigenetic makeup and CVD aetiology and predispo-
sition. Several GWAS have identified loci that explain a fraction of the variance in T2D 
and CVD or their related risk factors58 59. Beyond this, the role of epigenetic determinants 
is increasingly recognized as a potential important link between environmental expo-
sure and disease risk. Thus, epigenetic determinants may be a benchmark to capture 
the influences of environmental exposures and disease risk in cardiometabolic health60. 
Epigenetic mechanisms may subsequently influence gene expression, independently 
of the genetic code61. DNA methylation, histone modification, and noncoding RNA are 
three major types of epigenetic marks62. The best understood and most studied epi-
genetic mechanism is DNA methylation, the attachment of a methyl group to a CpG 
site. While the amount of research linking epigenetics and cardiometabolic outcomes 
is climbing, it is of critical importance that these studies should be stratified according 
to sex63. Epigenetic mechanisms ensure the inactivation of the second X-chromosome 
in women, securing dosage compensation of the X-chromosome between men and 
women64, they are thought to control sex-specific gene expression during development 
65 and they might play a role in the sex-specific disease profiles later in life65. In addi-
tion, the sex chromosomes contain multiple epigenetic modifiers that are differentially 
expressed between the sexes, which might influence the autosome in a sex-specific 
manner66. Furthermore, steroid sex hormones such as oestrogen and testosterone have 
been shown to affect epigenetic modifications63 67 68.

Aim and outline of this thesis

The overall aim of this thesis was to study traditional and novel sex specific risk factors 
of cardiometabolic diseases and longevity. Therefore, the objectives to achieve this aim 
were as following in the respective chapters and are presented in Table 1.1.

In chapter 2 of this thesis, we investigated the association of reproductive factors such 
as age at menopause and sex hormones with cardiometabolic risk. We investigated the 
causality and direction of the relation between age at natural menopause and blood 
pressure using genetic variants as instrumental variables in a bi-directional Mendelian 
Randomization analysis (Chapter 2.1). Further, we examined the association between 
age at natural menopause and risk of T2D and calculate total life expectancy and the 
number of years lived with and without T2D (Chapter 2.2 and 2.3). Moreover, we assessed 
the associations between sex hormones and natriuretic peptide levels and examined 
whether the observed association with dehydroepiandrosterone sulphate is causal 
(Chapter 2.4 and 2.5).
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In chapter 3 we assessed the associations between lifestyle factors and cardiometabolic 
risk and life expectancy for men and women separately. We calculated total life expec-
tancy and life expectancy with and without T2D for smokers, overweight and obese 
ex-smokers, by comparing them to non-smokers and normal weight current smokers 
(Chapter 3.1). We further identified change of body mass index trajectories prior to 
diabetes development. Within these patterns, additional exploration of trajectories of 
other cardiometabolic risk factors including glycaemic indices (such as glucose, insulin, 
insulin resistance, beta cell dysfunction), blood pressure and lipid profile are examined 
(Chapter 3.2). By combining the most relevant lifestyle factors in a score and categorizing 
it in healthier, moderate and unhealthier score, in chapter 3.3, we aimed to calculate total 

Table 1.1. General overview of the studies included in the thesis.

Chapter Exposure Outcome Epidemiological 
method used

Data source Article type

2.1 Genetic risk score of age 
at natural menopause/ 
blood pressure

Age at natural 
menopause/ 
blood pressure

Mendelian 
randomization

The Rotterdam 
Study

Original data 
analysis

2.2 Age at natural 
menopause

Type 2 Diabetes Cox Regression The Rotterdam 
Study/Publicly 
available GWAS 
results

Original data 
analysis

2.3 Age at natural 
menopause

Type 2 Diabetes/
Mortality

Life tables The Rotterdam 
Study

Original data 
analysis

2.4 Sex steroids, sex 
hormone-binding 
globulin

N-terminal pro-
brain natriuretic 
peptide

The Rotterdam 
Study

Original data 
analysis

2.5 Genetic risk score of 
dehydroepiandrosterone 
sulphate

N-terminal pro-
brain natriuretic 
peptide

Mendelian 
randomization

The Rotterdam 
Study/ Publicly 
available GWAS 
results

Original data 
analysis

3.1 Smoking status/ Body 
Mass Index

Type 2 Diabetes/
Mortality

Life tables The Rotterdam 
Study

Original data 
analysis

3.2 Lifestyle score Type 2 Diabetes/
Mortality

Life tables The Rotterdam 
Study

Original data 
analysis

3.3 Body Mass Index Type 2 Diabetes Latent class 
trajectory analysis

The Rotterdam 
Study

Original data 
analysis

4.1 Type 2 Diabetes Cardiovascular 
disease/Mortality

Life tables THIN study Original data 
analysis

5.1 DNA-methylation Cardiometabolic 
outcomes

NA Literature search 
from electronic 
databases

Systematic 
Review

5.2 DNA-methylation/ 
Histone modifications

Type 2 Diabetes NA Literature search 
from electronic 
databases

Review (Book 
chapter)
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life expectancy and the number of years lived with and without diabetes for individuals 
with an overall healthier or unhealthier lifestyle.

In chapter 4 we studied several CVD risk factors and their associations with longevity. The 
association between T2D and incident CVD and total life expectancy is investigated in 
chapter 4.1 comprising more than 17 million participants from UK using data from the 
THIN database.

In chapter 5 we quantitatively summarize current evidence on the relation between DNA 
methylation and cardiometabolic health. Chapter 5.1 describes the potential role of DNA 
methylation and histone modifications in explaining the sex differences in cardiometa-
bolic diseases. In chapter 5.2 we summarize some of the most up to date findings in the 
field of epigenetics for diabetes and its risk factors. Thus, the role of chromatin landscape 
and epigenetic biomarkers for clinical diagnosis and prognosis of type 2 diabetes mel-
litus was reviewed

Finally, in Chapter 6, we discuss the main findings of this thesis and we further ad-
dress the methodological considerations, potential clinical implications and directions 
for future research.

Methods

Study design

Rotterdam Study
The studies described in this thesis are performed within a large population based 
cohort study, the Rotterdam Study (RS), also known in Dutch as “Erasmus Rotterdam 
Gezondheid Onderzoek (ERGO)69 (Figure 1.1). The study started in Ommoord, a well-
defined suburb of Rotterdam, the Netherlands. In 1989, all residents aged 55 years or 
older were invited to participate in the study (RSI). Seventy eight percent of the invitees 
agreed to participate (n= 7,983). In 1999, the Rotterdam Study was extended by includ-
ing 3,011 participants from those who either moved to Ommoord or turned 55 (RSII). 
The third cohort was formed in 2006 and included 3,932 participants 45 years and older 
(RSIII). There were no eligibility criteria to enter the Rotterdam Study cohorts except the 
minimum age and residential area based on postal codes. In total, the Rotterdam Study 
comprises 14,926 individuals. All participants were examined in detail at baseline. In 
summary, a home interview was conducted (approximately 2 hours) and the subjects 
had an extensive set of examinations (~ 5hours) in a specially built research facility in 
the centre of their district. Participants have been re-examined every 35 years, and have 
been followed up for a variety of diseases. Genotyping was conducted, in self-reported 
white participants in all three cohorts using the Illumina Infinium HumanHap550K Bead-
chip in RSI and RSII and the Illumina Infinitum HumanHap 610 Quad chip in RSIII at the 
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Genetic Laboratory of the Erasmus MC, Department of Internal Medicine, Rotterdam, 
the Netherlands. SNPs were imputed based on the 1000 Genomes cosmopolitan phase 
1 version 3 reference. The Rotterdam Study has been approved by the medical ethics 
committee according to the Population Screening Act: Rotterdam Study, executed by 
the Ministry of Health, Welfare and Sports of the Netherlands. All participants provided 
written informed consent to participate and to obtain information from their treating 
physicians.

The Health Improvement Network (THIN) database
The study presented in chapter 4.1 was conducted within the Health Improvement 
Network Database (THIN). THIN is a national database of electronic primary care records 
generalizable to the UK population70. It contains coded information for more than 15 
million patients from 787 primary care general practices, including patient demograph-
ics, symptoms, diagnoses, drug prescriptions, consultations, and laboratory test results70 
(Figure 1.2). Cardiovascular diseases, diabetes, and hypertension are included in the 
Quality and Outcomes Framework, a scheme that incentivizes appropriate identification 
and management of patients with these diagnoses.

Systematic Reviews
Some projects included in chapter 5 are systematic reviews and reviews of the literature. 
Relevant research articles were identified using different electronic medical databases. 

 

Patient information
•Demographic data
•Eg. age, sex, entry date, transfer-out date

Medical information
•Medical symptoms, diagnosis, diseases
•Hospital admissions, types of interventions, medical procedures

Treatment Information
•Drug prescription and use
•Quantity, frequency, dose, type of medication

Additional health data
•Information on preventive health care and lifestyle
•Biological tests, imunisations, birth details

Figure 1.2. Structure of the health improvement network (THIN) database and information of the data 
collected
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The studies were conducted using a predefined protocol and in accordance with PRISMA 
guidelines71. Two independent reviewers screened the retrieved titles and abstracts 
and selected eligible studies. Discrepancies between the two reviewers were resolved 
through discussion and consensus with a third independent reviewer. We retrieved full 
texts for studies that satisfied all selection criteria. Further, reference lists of the included 
studies were screened to identify additional relevant studies. Study quality was judged 
on the selection criteria of participants, comparability of cases and controls, exposure 
and outcome assessment. Details on the methods can be found in chapter 5.
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Abstract

Objective

Age at natural menopause (ANM) varies considerably and has been associated with 
hypertension and cardiovascular health. We aimed to study the causality and direction 
of the relation between ANM and blood pressure using genetic markers as instrumental 
variables in a bi-directional Mendelian randomization analysis.

Methods

We studied 3,994 postmenopausal women participants of the Rotterdam Study. Mul-
tivariable linear and logistic regression models were used to assess the association 
between ANM (continuous), systolic blood pressure (SBP), diastolic blood pressure (DBP) 
and presence of hypertension (HTA). We also compared levels of blood pressure and 
prevalence of HTA by categories of ANM (early; 40-44 years, intermediate; 45-49 years, 
normal: 50 to 54 years (reference) and late menopause ≥ 55 years). We used genetic 
variants related to SBP, DBP and ANM to compute genetic risk scores and performed 
bi-directional Mendelian randomization analysis.

Results

There was a non-linear association between ANM and SBP (p for non-linearity = 0.026). 
Early menopause, compared to menopause age 50-54 years, was associated with lower 
SBP (β = -3.39, 95%CI: -5.8; -1.01) after adjustment for age, cardiovascular risk factors and 
medication, presence of comorbidity, hormone replacement therapy and estradiol lev-
els. No association was found between ANM and DBP. Early menopause was associated 
with lower prevalence of HTA (early menopause vs. menopause age 50-54: odds ratio 
(OR) = 0.72, 95%CI: 0.54-0.95). Also, younger age at menopause was associated with 
lower prevalence of HTA (per 1 year younger age at menopause, OR= 0.97, 95%CI: 0.95-
0.99). Bi-directional Mendelian randomization analysis showed no association between 
ANM genetic risk score, SBP, DBP or HTA. Higher genetic risk score of SBP (β=0.025; 
95%CI: 0.002-0.04) and DBP (β=0.028; 95%CI: 0.01-0.05). Higher genetic risk score of SBP 
(p<0.0001) and DBP (p<0.0001) were also associated with a higher probability of taking 
antihypertensive medication.

Conclusion

These results suggest that higher blood pressure, or some environmental exposure 
related with higher blood pressure, such as use of antihypertensive medications, are 
causally associated with a later onset of natural menopause.
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Introduction

Menopause, or the permanent cessation of menstruation, is a marker of the end of a 
woman’s reproductive life. Approximately 40 million women will experience menopause 
over the next decade1. The age at menopause varies considerably, with some women 
experiencing menopause around the age of 40 and other later in their 50s. Women with 
early onset of menopause (<45 years) have increased risk of cardiovascular disease, and 
late menopause onset (>50) is linked to reduced risk of CVD2. The increase in CVD risk 
associated with early onset of menopause is believed to be due to its adverse effects on 
CVD risk factors, but the independent influence of age at natural menopause on levels 
of cardiovascular risk factors remains unclear.

Hypertension is a major risk factor for CVD and by far, the most important risk fac-
tor that affects women in the early postmenopausal years. About 30 to 50% of women 
develop hypertension (RR >140/90 mmHg) before the age of 603 4. Early menopause has 
been suggested to lead to increased blood pressure, due to the early cessation of the 
vascular protective effects of endogenous oestrogen5. Also, loss of the ovarian function 
is associated with the activation of the renin-angiotensin-aldosterone system, leading to 
downstream endothelial dysfunction6. However, findings from epidemiological studies 
on the association between age at natural menopause and blood pressure are scarce 
and inconclusive5 7. Also, most of the studies available in the literature that explore the 
association between age of menopause and hypertension, have a cross-sectional design, 
therefore causality cannot be determined. Although increased blood pressure has been 
proposed as consequence of menopause, the alternative hypothesis, that fluctuations in 
blood pressure in premenopausal women may promote early menopause, has also been 
suggested8. Hypertension is associated with changes in vasculature that may affect the 
ovarian blood flow, which in turn could result in follicle loss and therefore influencing 
the age at which natural menopause occurs9-11.

In the Mendelian randomization (MR) approach, causality is inferred from associations 
between genetic variants of a predictor variable and the outcome of interest. If there is 
indeed a causal effect of age of natural menopause on blood pressure, genetic determi-
nants related to age at natural menopause should be associated with blood pressure12. 
Conversely, if blood pressure leads to onset of age at menopause, then genetic variants 
associated with higher blood pressure should be related to menopause onset. These 
associations, unlike the directly observed associations for age at natural menopause/
blood pressure, are less prone to confounding and free from reverse causation as ge-
netic variants are invariant and assigned at random before conception13.

We investigated the association between age at natural menopause (ANM) and blood 
pressure in the Rotterdam Study. Furthermore, we evaluated potential causal effect by us-
ing genetic variants as instruments in bi-directional Mendelian randomization analyses.
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Methods

Population for Analyses

The Rotterdam Study (RS) is a population-based cohort study of individuals 45years and 
over living in the Ommoord district of Rotterdam, the Netherlands. The rationale and 
design of RS is described elsewhere14In brief, all inhabitants of the Ommoord district 
aged 55 years or older were invited to participate (n = 10,215). At baseline (1990-1993), 
7,983 participants were included (RS-I). In 2000, an additional 3011 participants were 
enrolled (RS-II), consisting of all persons living in the study district who had become 
55 years of age. A second extension of the cohort was initiated in 2006, in which 3,932 
participants aged 45 years or older were included (RSIII). Follow-up visits were held 
every 3-5years. The present study includes data from postmenopausal women from the 
third visit of the first cohort of RS (RS I-3), and from the first visits of the second (RSII-1) 
and third cohort (RSIII-1). The RS has been approved by the medical ethics committee 
according to the Population Study Act Rotterdam Study, executed by the Ministry of 
Health, Welfare and Sports of the Netherlands. A written informed consent was obtained 
from all participants.

Assessment of Age at Menopause

During the home interview, women were asked a special section of questions pertaining 
to menopausal status. One set of questions dealt with timing of the last menstrual pe-
riod, gathering information on whether the respondent had a natural menstrual period 
within the 12 months, the past 3 months, and the age at last period for women who had 
no period for at least 3 months. One question addressed period regularity and the num-
ber of menstrual cycles. For women with natural menopause, age at menopause was 
defined as self-reported age at the time of last menstruation. Postmenopausal women 
were defined women who reported absence of menstrual periods for 12 months.

Assessment of Blood Pressure

At the research centre, after a resting period of 5 minutes, blood pressure was measured 
twice in a single visit using a random-zero sphygmomanometer (cuff size of 32×17) on 
the right arm of participants in sitting position by a trained research assistant. Systolic 
BP was recorded at the appearance of sounds (first-phase Korotkoff ) and diastolic BP 
at the disappearance of sounds (fifth-phase Korotkoff ). Systolic and diastolic BP were 
calculated as the average of the 2 measurements. Hypertension was defined as a systolic 
BP ≥140 mm Hg, a diastolic BP ≥90 mm Hg, or the use of antihypertensive medication. 
At the research centre, a physician ascertained the indication for which the medication 
had been prescribed. 15.
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Assessment of Covariates

Information on current health status, medical history, smoking behaviour, and education 
was obtained by trained research assistants. Participants were classified as current, and 
former/never smokers. Education was defined as low (primary education), intermediate 
(secondary general or vocational education), or high (higher vocational education or uni-
versity). Alcohol intake was assessed in grams of ethanol per day. History of cardiovascular 
disease was defined as a history of coronary heart diseases (myocardial infarction, revas-
cularization, coronary artery bypass graft surgery or percutaneous coronary intervention) 
and was verified from the medical records of the general practitioner. Diabetes mellitus was 
defined as the use of blood glucose–lowering medications or a random nonfasting glucose 
>11.1 mmol/L16. Estimated glomerular filtration rate was calculated using the simplified 
Modification of Diet in Renal Disease equation17. Medication use information was based 
on home interview. Antihypertensive medication use was defined as diuretics, β blockers, 
angiotensin-converting enzyme inhibitors, and calcium channel blockers. Physical height 
(m) and body weight (kg) were measured at baseline with the participants standing without 
shoes and heavy outer garments. Body mass index (BMI) was calculated as weight divided 
by height squared (kg/m2). All biochemical parameters were assessed in fasting serum. 
Total cholesterol was measured on the COBAS 8000 Modular Analyser (Roche Diagnostics 
GmbH). Total estradiol levels were estimated in duplicate using the ultrasensitive RIA.

Genotyping

Genotyping was conducted, in self-reported white participants, using the Illumina 550K 
array. Participants were excluded if they had excess autosomal heterozygosity, mismatch 
between called and phenotypic sex, or recognized as being outlier with identical-by-
state clustering analysis. Moreover, SNPs with allele frequency ≤1%, Hardy–Weinberg 
equilibrium P<10–5, or SNP call rate ≤90% were excluded. Imputation was done with 
reference to HapMap release 22 CEU (Utah residents of northern and western European 
ancestry) using the maximum likelihood method implemented in Markov Chain based 
haplotyper (version 1.0.15).

Population For Analyses

Age at natural menopause and blood pressure traits
There were 6760 women eligible for the analysis. 731 participants were excluded be-
cause they were premenopausal and 1464 women had non-natural menopause, surgical 
or unknown type of menopause. Also, 97 participants did not have information on age 
at menopause and 97 women had menopause before 40 years and after 60 years old, 
therefore were not included in the analyses. Data on blood pressure traits were not avail-
able for 528 participants, leaving 3843 women for the cross-sectional analyses on ANM 
and blood pressure traits (Supplemental material).
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Genetic risk score of age at natural menopause and blood pressure traits
Among 4371 women who experienced natural menopause between age 40 and 60, 528 
women had no information on blood pressure traits and 550 women had no genetic 
data, leaving 3293 women for the analysis on genetic risk score of age at menopause 
and blood pressure traits (Supplemental material).

Genetic risk score of systolic and diastolic blood pressure and age at natural menopause
Among 4371 postmenopausal women, 849 participants were excluded because of no 
information data on blood pressure SNPs. Hence, 3522 were included in the final analy-
ses on genetic risk scores of blood pressure traits and ANM (Supplemental material).

Statistical Analyses

Multivariable linear and logistic regression models were used to assess the association 
between ANM (continuous), systolic blood pressure (SBP), diastolic blood pressure (DBP) 
and presence of hypertension (HTA). We also compared levels of blood pressure and 
prevalence of HTA by categories of ANM (early; 40-44 years, intermediate; 45-49 years, 
normal: 50 to 54 years (reference) and late menopause ≥ 55 years). We used genetic vari-
ants related to ANM, SBP and DBP and to compute genetic risk scores. We selected SNPs 
previously reported to have an association with systolic blood pressure from a GWAS of 
>200 000 European ancestry individuals18 and with ANM from a GWAS of 40 000 women 
of European descent3 19. GRS were compiled using 24 SNPs associated with systolic 
blood pressure, 23 with diastolic blood pressure and 16 with age at menopause. We 
calculated a weighted GRS by multiplying the number of risk alleles at each locus by the 
corresponding reported β coefficient from the previous GWAS and then summing the 
products. The total score was then divided by the average effect size multiplied by 100 
to rescale the scores to a range between 0 and 100. To examine the strength of the allele 
scores as instruments, the F-statistic was approximated from the proportion of variation 
in the respective phenotype (R2) explained by the allele score, [F-stat = (R2×(n−2))/(1−
R2)]20. We performed linear regression and logistic regression analyses to examine the 
association between the genetic risk scores and their respective phenotypes. First we 
adjusted for age, cohort effect, and estimated glomerular filtration rate. In the second 
model, we additionally adjusted for antihypertensive medications, body mass index, al-
cohol consumption, prevalent diabetes mellitus, history of cardiovascular diseases, total 
cholesterol, smoking, statin use, hormone replacement therapy, estradiol and education 
level. When HTA was the outcomes, we did not adjust for antihypertensive medications. 
Also, we did not adjusted for age when examining the associations between genetic 
risk scores of blood pressure traits and observed ANM. To minimize the possibility of 
pleiotropic associations influencing results, we performed sensitivity analyses excluding 
SNPs with a more significant association with ANM/blood pressure traits than expected 
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by chance. As a further sensitivity analysis, for the factor (ANM, SBP or DBP) that showed 
evidence of a causal association with the corresponding outcome (p < 3.8 × 10−3), we 
also performed a “leave one out” analysis to further investigate the possibility that the 
causal association was driven by a single SNP. Furthermore, we rerun all analysis among 
participants who had information available on ANM, blood pressure traits and genetic 
information (N=3293). A P-value lower than 0.05 was considered as statistically signifi-
cant. To adjust for potential bias associated with missing data from the covariates we 
used multiple imputation procedure (N=5 imputations). We did not impute ANM, blood 
pressure traits or genetic risk scores, but we did enter them as predictor variables in our 
imputation model. All analyses were done using SPSS statistical software (SPSS, version 
21.0; SPSS Inc., Chicago, Illinois).

Results

Baseline characteristics are shown in Table 2.1.1. Average age of participants was 68.78 
years, with mean ANM of 50.08 years and mean SBP and DBP of 140.93 mmHg and 77.56 
mmHg respectively. 45% of women were hypertensive and 35% of them were using 
antihypertensive medications.

Table 2.1.1. Characteristics of the Study Participants

Covariates N=3843

Age at menopause y, mean (SD) 50,18 (3,95)

Systolic Blood Pressure mm Hg, mean (SD) 140,93 (29,03)

Diastolic Blood Pressure mm Hg, mean (SD) 77,56 (23,93)

Hypertension n (%) 1800 (45,1)

Alcohol intake g/d, median (IQR) 1,7 (13,18)

Smoking, Current smoker n (%) 444 (14,2)

Body Mass Index kg/m2, mean (SD) 27,34 (4,47)

Total cholesterol mmol/L, mean (SD) 5,97 (0,98)

Statin n (%) 437 (10,9)

GFR, mL/min per 1.73 m2, mean (SD) 74,78 (15,87)

Diabetes mellitus n (%) 308 (10,6)

Prevalent CVD n (%) 345 (8,7)

Hormone replacement therapy n (%) 70 (2,3)

Estradiol median (IQR) 30,75 (1048,65)

Education Low n (%) 1952 (48,9)

Primary n (%) 900 (22,4)

High,n (%) 1105 (27,7)

Antihypertensive medication use, n (%) 1081 (35)

*Was defined as use of the diuretics, β blockers, angiotensin- converting enzyme inhibitors and calcium 
channel blockers
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Association between ANM and blood pressure traits

We observed a non-linear association between ANM and SBP (p for non-linearity = 0.026). 
Early menopause, compared to menopause age 50-54 years, was associated with lower 
SBP (β = -3.39, 95%CI: -5.8; -1.01) after adjustment for age, cardiovascular risk factors 
and medication, presence of comorbidity, hormone replacement therapy and estradiol 
levels. No association was found between ANM and DBP (Table 2.1.2). Women who 
experienced menopause at age 45-49 years or ≥55 years old did not show difference 
in levels of SBP compared to women who experienced menopause at age 50-54 (Table 
2.1.2). Early menopause was associated with lower prevalence of HTA (early menopause 
vs. menopause age 50-54: odds ratio (OR) = 0.72, 95%CI: 0.54-0.95) while no difference 
was observed for other groups of menopause age (Table 2.1.2). Also, younger ANM was 
associated with lower prevalence of HTA (per 1 year younger age at menopause, OR= 
0.97, 95%CI: 0.95-0.99).

Association between ANM genetic risk score and blood pressure traits

Genetic risk of ANM was associated with observed ANM and the variance in ANM ex-
plained by genetic risk score of ANM was 3% in our study (Supplemental material). We 
found no association between genetic risk score of ANM, SBP, DBP or HTA (Table 2.1.3).

Association between genetic risk scores of blood pressure traits and age of 
menopause

Both genetic risk scores of SBP and DBP were associated with their traits (SBP: p-
value=0.012 and DBP: p-value <0.001) (Supplemental material). Further adjustment for 
antihypertensive medications did not affect the association between genetic risk score 
of SBP and observed SBP, but abolished the association between genetic risk of DBP and 
observed DBP. The variance in phenotype explained by genetic risk scores was 5.4% for 
SBP and 4.6% for DBP (Supplemental material). Also, both genetic risk scores of SBP and 
DBP were associated with higher odds of taking antihypertensive medications, indepen-
dent of observed SBP and DBP (p<0.001) (Supplemental material). Higher genetic risk 
scores of SBP and DBP were associated with higher ANM (per 1 mm Hg of SBP, β=0.025; 
95%CI: 0.002-0.04; per 1 mm Hg of DBP, β=0.028; 95%CI: 0.01-0.05)(Table 2.1.4). Further 
adjustment of SBP, DBP and antihypertensive medications did not abolish the associa-
tion.

Sensitivity analyses

To test for pleiotropy , we assessed the association between the SNPs that were used for 
making the genetic risk score(as independent variable) and the outcome (as dependent). 
We used the Bonferroni Correction p-value as the threshold of significance and we did 
not find any association (Supplemental material). In the “leave one out” analyses, where 
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the genetic risk scores where recalculated excluding SNPs one by one, we didn’t find 
any evidence that the association was driven by a specific SNP (Supplemental material). 
Restriction of analyses to participants who had information on ANM, blood pressure and 
genetic data did not affect any of the associations n=3293).

Discussion

In the current study we report higher burden of hypertension with increase age of 
natural menopause, but we did not find any evidence for a casual effect of ANM on 
blood pressure. Contrary, using genetic variants associated with blood pressure traits, 
we found evidence for a potential causal relationship between higher blood pressure 
and later onset of natural menopause.

Age at menopause has been associated with hypertension 7 21. However, uncertain-
ties remain over the nature of the association5 7 21, perhaps complicated by the cross-
sectional design of small-scale studies, reliability of age at menopause, especially after 
a long follow-up, or the ethnicity and age of study participants5 7 21 22. A cross-sectional 
study23 of 150 Chinese postmenopausal women found an inverse association between 
age at menopause, SBP and DBP, whereas a large study22 of 22,426 Japanese women 
reported that women who experienced later onset of natural menopause were more 
likely to have hypertension, but it did not remain significant after further adjustment for 
age. In the current study, after adjustment for a broad range of confounding factors, we 
found that later onset of natural menopause was associated with higher SBP, DBP and 
higher odds of having hypertension. However, we did not find any causal effect of age 
at menopause on blood pressure. In line with our findings, a prospective study of 1288 
women did not show any effect of age at menopause on blood pressure changes24. Also, 
a large number of studies, while show an effect on cholesterol levels, have not observed 
significant differences in blood pressure levels with menopause10 25.

Contrary to common belief, recent data show that medical conditions, such as 
hypertension can be related to menopause onset8. Hypertension may induce a reduc-
tion in the ovarian blood flow, which results in irreversible follicle loss and substantial 
diminished ovarian reserve with acceleration of the timing of entering menopause9-11. 
Strikingly, as opposed to the current limited literature, our findings suggest that geneti-
cally elevated levels of SBP and DBP are not predisposing to early onset of menopause 
but in fact are delaying the age at which natural menopause occurs. The significant 
causal role of blood pressure for age at natural menopause is in line with the direction 
of the observational findings we report for ANM and blood pressure traits. Also, the 
leave out analysis revealed that the genetic overlap between blood pressure levels and 
age at natural menopause we observed was not driven by a single SNP. Few studies 
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examining whether premenopausal hypertension is associated with age at menopause 
have shown overall no association8 21. However, a recent study of 6650 postmenopausal 
Korean women showed that women with hypertension after the age of 50 years were 
more likely to undergo a later menopause21. Given that blood pressure is a major risk 
factor for cardiovascular disease26, our observation that a genetically determined 
marginal increase in the level of SBP and DBP is likely to delay menopause onset, does 
not advocate raising blood pressure to delay menopause onset, yet these findings offer 
intriguing etiological insight. Also, the SNPs associated with SBP overlap extensively 
with those associated with DBP18 as well as with pulse pressure and pulse wave veloc-
ity27, so it remains unclear, if the association is causal, which of the components of blood 
pressure drives the effect.

In line with other studies, we also found that genetically predicted higher SBP and 
DBP were associated with higher probability of being on antihypertensive medication28. 
Also, in our study, the genetic risk score of SBP was associated with observed SBP inde-
pendent of use of antihypertensive medications, while the genetic risk score of DBP was 
not associated with observed DBP after adjustment for antihypertensive medications. 
Therefore, if antihypertensive medications delay menopause onset, they may confound 
the association between genetically predicted systolic blood pressure and age at meno-
pause onset. However, in our study, the analysis by use of antihypertensive medication 
did not show any difference. Furthermore, adjustment for antihypertensive medications 
did not have any effect on our results. On the other hand, if antihypertensive medica-
tions have a causal effect on menopause onset, their effect is likely to be independent 
on blood pressure, since the variants associated with SBP are associated with SBP inde-
pendent of treatment with antihypertensive medication. We could not find any study 
to investigate the association between use of anti-hypertensive medications and onset 
of age at menopause. It would be of interest for future studies to further investigate 
whether antihypertensive medications may delay menopause onset independently of 
their effects on blood pressure.

Major strengths of our study are the large sample size for measurement of both ANM 
and blood pressure, and a comprehensive assessment of this association using both ob-
servational and genetic data. We are the first study to investigate the causal relationship 
between ANM and blood pressure through the Mendelian randomization approach. 
Some limitations should be acknowledged. A key advantage of using a genetic ap-
proach over a traditional epidemiologic approach to investigate an association such as 
that between ANM and blood pressure is that, genotypes (because they are randomly 
distributed at birth) are unlikely to be confounded by lifestyle or environmental fac-
tors29. Regardless of whether such factors are known or unknown, they can indepen-
dently affect the exposure and the outcome and lead to a spurious association between 
them. It is nonetheless possible that the genetic variants themselves affect ANM and 
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blood pressure through entirely different mechanisms. However, given the big number 
of variants that we included in the analysis, all of which were selected because of their 
association with ANM or blood pressure, it is likely that at least some of the processes 
are shared. A limitation of the MR approach is the limited strength of the SNPs to explain 
variation in the intermediate traits, restricting statistical power. Therefore, we used mul-
tiple SNPs combined into a single genetic instrument to increase the statistical power 
of our study. The results presented in Supplemental material show that our genetic risk 
scores are not weak instruments, as indicated by their F-values. Another caveat of MR is 
that developmental compensation might occur, through a genotype being expressed 
during foetal development that in turn buffers the effects of either environmental or 
genetic factors, a process called canalization29 30. Therefore, buffering mechanisms could 
hamper the associations between genetic variants and the outcome of interest.

Also the poor biology understanding is another limitation of the MR approach12 13 29. 
Although thousands of SNP-trait associations have been discovered by GWASs, little is 
typically understood about the underlying biology or mechanisms of association. This 
limitation can sometimes lead to counterintuitive results31. On the other hand, genetic 
polymorphisms are sometimes associated with multiple aspects or dimensions of a 
single trait. Even though, we did sensitivity analyses (Supplemental material) further 
biological investigation is needed to identify the pathways in which these SNPs are 
involved and avoid the pleiotropic effect.

In conclusion, we found associations between higher genetic risk score of SBP/DBP 
and later onset of menopause. However, since there is a strong association between 
higher SBP gene scores and use of antihypertensive treatments, there is a need to evalu-
ate the possible role of some of these medications in delaying the timing of menopause, 
independent of their effects on blood pressure.
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Abstract

Objective

We aimed to examine the association between age at natural menopause (ANM) and 
the risk of type 2 diabetes (T2D), and to assess whether this association is independent 
of potential mediators.

Methods

We included 3,639 postmenopausal women from the prospective population-based 
Rotterdam Study. ANM was self-reported retrospectively and was treated continuously 
and in categories (premature, <40 years; early, 40-44 years; normal, 45 to 55 years and 
late menopause > 55 years (reference)). T2D events were diagnosed on the basis of 
medical records and glucose measurements from Rotterdam Study visits. Hazard ratios 
(HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards 
models, adjusted for confounding factors and, in another model, additionally adjusted 
for potential mediators, including total estradiol, androgen levels, obesity, C-reactive 
protein, glucose and insulin.

Results

During a median follow-up of 9.2 years, we identified 348 incident cases of T2D. After 
adjustment for confounders, HRs of T2D were 3.1 (95% CI 1.5–6.4), 2.1 (1.2–4.0), and 1.60 
(0.9–2.7) for women with premature, early and normal menopause, respectively, relative 
to those with late menopause (P-trend = 0.001). The HR for T2D per one year older age 
at menopause was 0.96 (0.94–0.99). Further adjustment for body mass index, glycaemic 
traits, metabolic risk factors, C-reactive protein, endogenous sex hormone levels or 
shared genetic factors did not affect this association.

Conclusion

Early onset of ANM is an independent marker for T2D in postmenopausal women.
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Introduction

Menopause marks a major life transition for women, resulting in the loss of ovarian folli-
cle development1. Although menopause is a universal phenomenon among women, the 
timing of the final menstrual period differ greatly between women1 2, and is considered 
a marker of ageing and cardiovascular health2. Women with early onset of menopause 
(<45 years) have an increased risk of cardiovascular disease (CVD) and overall mortal-
ity, whereas menopause onset at age 50-54 years is linked to reduced risk of CVD and 
mortality3. The increased risk of CVD and mortality is believed to be due to the adverse 
effects that early onset of menopause has on CVD risk factors , but the influence of age 
at menopause on levels of cardiovascular risk factors remains unclear3.

Type 2 diabetes (T2D) is a major risk factor for CVD and it remains unclear whether 
age at menopause is associated with risk of T2D3 4. Data from cross-sectional studies 
examining the association between age at menopause and T2D are conflicting, with 
few studies reporting no association and some other reporting higher odds of having 
T2D with early onset of menopause5-7. Recently, a nested case-cohort study presented 
an increased risk of T2D associated with early onset of menopause, but it lacked ad-
justment for estradiol and other endogenous sex hormone-levels8. Hormonal changes 
associated with the menopause transition, in particular the decline in oestrogen levels 
and the relative androgen excess9, have been postulated as mediators of the adverse 
cardiometabolic health profile observed with early onset of menopause3 10 11. Also, 
estradiol and sex hormone-binding globulin are associated with risk of type 2 diabetes 
in postmenopausal women12. Therefore, it is not clear whether the observed association 
between early onset of menopause and risk of T2D is explained by differences in sex 
hormones levels between women who experience early and late menopause. Also, no 
study has examined whether potential intermediate factors such as obesity, glucose 
metabolism, insulin or shared genetic factors can explain the association between age 
at menopause and risk of T2D. Menopause transition is associated with weight gain and 
an increase in visceral fat, as well as with impairment of glucose homeostasis, important 
risk factors for T2D13-15.

This study aims to investigate the association between age at natural menopause 
(ANM) and risk of developing T2D, and to assess whether this association is independent 
of endogenous sex hormone levels and intermediate risk factors for T2D.
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Methods

Study Population

The Rotterdam Study is a population based, prospective cohort study in the Netherlands. 
This project was initiated in 1990-1993 in the Ommoord district of the port city of Rotterdam. 
Design and rationale of the Rotterdam study have been described in detail elsewhere16. In 
summary, all inhabitants of this district aged 55 years and over were invited to participate, 
leading a baseline cohort of 7,983 subjects (RS-I). Over the years, two more allocation rounds 
were held, one in 2000-2001 for all inhabitants aged 55 years and over, leading to an ad-
ditional 3,011 participants (RS-II)16. A second extension was initiated in 2006, in which 3,932 
participants aged 45 years and over were included (RS-III)16. For follow-up, examinations 
were scheduled every 3-5 years16. The Rotterdam Study has been approved by the medical 
ethics committee according to the Population Study Act Rotterdam Study, executed by the 
Ministry of Health, Welfare and Sports of the Netherlands. All participants provided written 
informed consent to obtain and process data from their treating healthcare providers.

Population for Analysis

The present study used data from the third visit of the first cohort (RSI-3) and the 
baseline examinations of the second (RSII-1) and third cohort (RSIII-1). There were 6,816 
women eligible for the analysis. Of those, 2,053 women were excluded because (i) there 
was no information on their menopause status (n=9); (ii) were non-postmenopausal 
women (n=732); (iii) age at menopause was not known (n=145); (iv) did not give inform 
consent for T2D follow-up (n=56); (v) had prevalent T2D (n=609); and (vi) no information 
on incident T2D was available (n=502) (Figure 2.2.1). Furthermore, 1,124 women were 
excluded because experienced non-natural menopause (n=1,109) or type of menopause 
was not known (n=15), leaving 3639 women for final analysis (Figure 2.2.1).

Assessment of Age at Menopause

Menopausal status was evaluated using a subsection in the home interview question-
naire. One set of questions dealt with timing of the last menstrual period, gathering in-
formation on whether the respondent had a natural menstrual period within the past 12 
months, and the age at last period for women who had no period for at least 12 months. 
Postmenopausal women were defined as women who reported absence of menstrual 
periods for 12 months. For women with natural menopause, age at menopause was 
defined as self-reported age at the time of last menstruation. For all women reporting 
menopause after gynaecologic surgery or radiation therapy and for those reporting any 
other operations before age 50 that might have led to menopause, information on the 
exact date and type of operation was verified using general practitioners’ records, which 
included correspondence from medical specialists.
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Ascertainment of Type 2 Diabetes

The participants were followed from the date of baseline centre visit onwards. At base-
line and during follow-up, prevalent and incident cases of T2D were ascertained through 
active follow-up using general practitioners’ records, glucose hospital discharge letters, 
and glucose measurements from Rotterdam Study visits which take place approximately 
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9 Menopause status not known 

732 non post-menopausal women 

145 age of menopause not known 

56 not informed consent for incident 
type 2 diabetes follow up  

609 prevalent type 2 diabetes 

502 no information on type 2 
diabetes follow-up 

4763 women with available information on age 
of menopause and diabetes incidence 

Excluded: 

1124 non-natural menopause 
(n=1109) or menopause type not 
known (n=15) 

3639 women included in the final analysis 

N=6.816 

RS I-3, RS II-I and RS III-I 

Figure 2.2.1. Flow Chart of Participants in the Study, the Rotterdam Study
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every 4 years17. Prevalent and incident T2D was defined according to recent WHO guide-
lines, as a fasting blood glucose ≥ 7.0 mmol/L, a non-fasting blood glucose ≥ 11.1 mmol/L 
(when fasting samples were absent), or the use of blood glucose lowering medication18. 
Information regarding the use of blood glucose lowering medication was derived from 
both structured home interviews and linkage to pharmacy records17. At baseline, more 
than 95% of the Rotterdam Study population was covered by the pharmacies in the 
study area. All potential events of T2D were independently adjudicated by two study 
physicians. In case of disagreement, consensus was sought with an endocrinologist. 
Follow-up data was complete until January 1st 2012.

Potential Confounding Variables

Information on current health status, medical history, medication use, smoking behav-
iour, socioeconomic status and other factors was obtained at baseline (RSI-3, RSII-1 and 
RSIII-1). Education was defined as low (primary education), intermediate (secondary 
general or vocational education), or high (higher vocational education or university). 
Data on age at menarche were collected by asking women, “How old were you when 
you had your first menstrual period?”, The retrospective data on self-reported number of 
pregnancies of at least 6 months and use of hormone replacement therapy were collect-
ed by a questionnaire during the home interview. Participants were asked whether they 
were currently smoking cigarettes, cigars, or pipes. Alcohol intake was assessed in grams 
of ethanol per day. History of cardiovascular disease was defined as a history of coronary 
heart diseases (myocardial infarction, revascularization, coronary artery bypass graft 
surgery or percutaneous coronary intervention), heart failure and stroke, and was veri-
fied from the medical records of the general practitioner. Blood pressure was measured 
in the sitting position at the right upper arm with a random-zero-sphygmomanometer. 
The mean of two consecutive measurements was taken. Medication use information 
was based on home interview. Antihypertensive medication use was defined as use of 
diuretics, β blockers, angiotensin-converting enzyme inhibitors, and calcium channel 
blockers. All biochemical parameters were assessed in fasting serum. Thyroid stimulat-
ing hormone (TSH) was measured on the Vitros Eci (Ortho Diagnostics). Total choles-
terol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and C-reactive 
protein (CRP) were measured on the COBAS 8000 Modular Analyser (Roche Diagnostics 
GmbH). Low density lipoprotein cholesterol (LDL-C) levels were estimated indirectly 
from measurements of TC, HDL, and TG by means of the Friedewald equation19. The 
corresponding interassay coefficients of variations are the following: TSH<13.2%, lipids 
<2.1%, and CRP <16.9%. Physical activity was assessed using the LASA Physical Activity 
Questionnaire (LAPAQ) and is expressed in METhours/week 20.
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Potential Intermediate Variables

All intermediate variables were assessed at baseline (RSI-3, RSII-1 and RSIII-1). Physical 
height (m) and body weight (kg) were measured at baseline with the participants stand-
ing without shoes and heavy outer garments. Body mass index (BMI) was calculated 
as weight divided by height squared (kg/m2). ). Fasting insulin and glucose were mea-
sured on the COBAS 8000 Modular Analyser (Roche Diagnostics GmbH). The interassay 
coefficients of variations are <8% and <1.4% for insulin and glucose respectively. Total 
estradiol levels were measured with a radioimmunoassay and sex hormone-binding 
globulin (SHBG) with the Immulite platform (Diagnostics Products Corporation Breda, 
the Netherlands). The minimum detection limit for estradiol was 18.35 pmol/L. Serum 
levels of total testosterone were measured with liquid chromatography-tandem mass 
spectrometry (LC-MS/MS). The corresponding interassay coefficients of variations for 
total estradiol, SHBG and total testosterone are <7%, <5%, and <5%. Serum levels of de-
hydroepiandrosterone (DHEA), and dehydroepiandrosterone (DHEAS) were estimated 
in 12 batches by coated-tube or double-antibody radioimmunoassays, purchased from 
Diagnostic Systems Laboratories (Webster, TX, USA). Genotyping was conducted, in 
self-reported white participants, using the Illumina 550K array. We selected 54 SNPs 
previously reported to have an association with ANM from a GWAS of 70,000 women21. 
We calculated a weighted GRS by multiplying the number of risk alleles at each locus by 
the corresponding reported β coefficient from the previous GWAS and then summing 
the products. The total score was then divided by the average effect size multiplied by 
100 to rescale the scores to a range between 0 and 100.

Statistical Analysis

Main analyses
Person years of follow-up were calculated from study entrance (March 1997- December 
1999 for RSI-3, February 2000-December 2001 for RSII-1, and February 2006-December 
2008 for RSIII-1) to the date of diagnosis of T2D, death, or the censor date (date of last 
contact of the living), whichever occurred first. Follow-up was until January 1st 2012. Cox 
proportional hazards models were used to evaluate whether ANM as continues and in 
categories (premature menopause: <40 years; early: 40-44 years, normal; 45-55 years 
and late menopause > 55 years (reference)) was associated with risk of T2D. Hazard ratios 
(HR) and 95% confidence intervals (95% CIs) were reported. The proportional hazard as-
sumption of the Cox model was checked by the visual inspection of log minus log plots, 
and by performing a test for heterogeneity of the exposure over time. There was no 
evidence of violation of the proportionality assumption in any of the models (P for time-
dependent interaction terms >0.05). To study the relations across increasing categories 
of ANM, trend tests were computed by entering the categorical variables as continues 
variables in multivariable Cox’s proportional hazard models. To achieve normal distribu-
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tions, skewed variables (DHEAS, testosterone, SHBG, CRP, TSH, TG and insulin) were natu-
ral log transformed. In the base model (Model 1), we adjusted for age, cohort (I, II and 
III), use of hormone replacement therapy, and reproductive factors (age at menarche 
and number of pregnancies of at least 6 months). To examine whether the relations of 
ANM with risk of T2D were independently of potential intermediate factors, model 2 
included terms of model 1, body mass index (BMI) (continuous), glucose (continuous), 
and insulin (continuous). Model 3 included all covariates in model 2 and further poten-
tial confounding factors or intermediate factors: metabolic risk factors (total cholesterol, 
systolic blood pressure (continuous), indication for hypertension (yes vs. no) and use 
of lipid-lowering medications (yes vs. no)), lifestyle factors (alcohol intake (continuous), 
smoking status (current vs. former/never) and physical activity (continuous)), education 
level (low, intermediate and high), and prevalent coronary heart disease (yes vs. no), and 
CRP (continuous). Moreover, to explore whether a nonlinear association was present, a 
quadratic term of the ANM (continuously) was tested.

Potential mediators
Levels of estradiol and other endogenous sex hormone levels, TSH and SHBG, as well as 
shared genetic (as assessed by genetic risk score of ANM) are suggested to explain the 
association between ANM and chronic diseases, including T2D10. Therefore, the models 
were further adjusted for these factors.

Sensitivity analyses
We performed a series of sensitivity analyses. Since waist circumference is a better mea-
sure of visceral adiposity, an important risk factor for diabetes, and because menopause 
is associated with accumulation of abdominal fat, we performed a sensitivity analysis 
substituting BMI with waist circumference13. To account for the specific effects of lipid 
particles on diabetes, we substituted total cholesterol with HDL-C, TG, and LDL-C. Also, 
we restricted the analysis among participants who did not report use of lipid-lowering 
medication. Parental history of diabetes was collected by trained research assistants 
during home visits at RSI and RSII, but not at RSIII. Therefore we further adjusted in 
the multivariable model for parental history of diabetes restricting the analysis in the 
first two cohorts of the RS (RSI-3 and RSII-1). Since smoking and hormone replacement 
therapy are important determinant of ANM and are associated with risk of T2D22 23, 
we restricted the analysis among women who were not current smokers and did not 
report use of hormone replacement therapy. To explore the potential of survival bias, we 
stratified the analysis by baseline age (< 65 years and ≥65 years old). Also we rerun the 
analysis by excluding the first three years of follow up and by excluding the participants 
with prevalent cardiovascular disease. Moreover, we included women with non-natural 
menopause or menopause type non-known in the analysis to investigate the role of 
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both age at natural and non-natural menopause no the risk of T2D. There were missing 
values on one or more covariates (Table 2.2.1). Because the missing values were likely 
to be missing at random and for avoidance of loss in efficiency, missing values were 
imputed using a multiple imputation technique (5 imputation sets). No significant dif-
ferences were observed in ANM or in incidence cases of T2D in subjects with complete 
information on all covariates (n=1884) compared to subjects who had missing values on 
at least one of the covariates included in model 3 (n=1755). Rubin’s method was used for 
the pooled coefficients (HR) and 95% Confidence Intervals24. A p-value of less than 0.05 
was considered as statistically significant. All analyses were done using SPSS statistical 
software (SPSS, version 21.0; SPSS Inc, Chicago, Illinois).

Results

Table 2.2.1 summarizes the baseline characteristics of the women included in the 
analysis. The mean (standard deviation) age at entry in the study was 69.6 (9.6) years. The 
mean ANM was 50.0 (4.4) years and 2.3% and 7.6% of women experienced menopause 
before age of 40 and between ages 40 to 44, respectively (Table 2.2.2).

Of the 3,639 postmenopausal women without diabetes at baseline, 348 women devel-
oped incident T2D over a median follow-up of 9.2 years. Premature and early onset of 
natural menopause was associated with higher risk of T2D (Table 2.2.2). In model 1, the 
HRs for the association between ANM and T2D were 3.43 (95% CI 1.65–7.12), 2.00 (1.08–
3.70), and 1.41 (0.82–2.41) for women with menopause at ages <40, 40–44, and 45–55, 
respectively, relative to those with menopause at age >55 years (P-trend <0.001, Table 
2.2.2). The HR for T2D per one year older ANM was 0.96 (0.94–0.98) (Table 2.2.2). Control-
ling for BMI, glycaemic traits, metabolic risk factors, lifestyle factors, inflammatory markers, 
and prevalent cardiovascular disease did not affect this association (Table 2.2.2). Also, no 
evidence of nonlinear relationship was observed (P-quadratic term > 0.05, Table 2.2.2). 
In the analysis of potential mediators, further adjustment for endogenous sex hormones 
levels, SHBG, TSH or genetic risk score of ANM did not affect the association (Table 2.2.3).

Sensitivity analysis
In sensitivity analyses, substituting BMI with waist circumference as a measure of adipos-
ity, substituting total cholesterol for other blood lipids, restricting analysis to subjects 
who did not report use of lipid-lowering medications, adjusting further for physical 
activity, serum TSH, total estradiol and other endogenous sex hormone levels, SHBG, or 
parental history of diabetes, excluding subjects with prevalent cardiovascular disease, 
and excluding the first three years of follow up did not affect the association between 
ANM and risk of T2D (Table 2.2.3). Also, results did not change when the analysis were 
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restricted only to women who were no current smokers or did not use hormone replace-
ment therapy (Table 2.2.3). Furthermore, stratification by age did not show any differ-
ence in the results (Table 2.2.3). Although the results were attenuated after inclusion of 
women with non-natural menopause, the association between early age at (natural and 
non-natural) menopause and risk of T2D remained significant.

Table 2.2.1 Selected Characteristic of Study Participants, the Rotterdam Study.

Women (N=3,639)

Age (years) 66.9 ± 9.6

Age of menopause (years) 50.0 ± 4.4

Number of pregnancies of at least 6 months 2.2 ± 1.4

Age of menarche, (years) 13.4 ± 1.7

Current smokers, n (%) 718 (19.7)

Alcohol intake g/day 2.9 (13.0)a

Low education, n (%) 544 (14.9)

Intermediate education, n (%) 2714 (74.6)

High education, n (%) 381 (10.5)

Body mass index (kg/m2) 27.0 ± 4.4

Waist circumference (cm) 89.2 ± 11.6

Prevalent cardiovascular disease, n (%) 189 (5.2)

Physical activity (METhours/week) 82.5 ± 50.7

Total Estradiol (pmol/l) 30.2 (36.3)a

Total testosteron (nmol/l) 0.8 (0.5) a

Sex-hormon binding globuline (nmol/l) 60.7 (39.2) a

Dehydroepiandrosterone sulfate (nmol/l) 1649 (1533.8) a

Dehydroepiandrosterone (nmol/l) 9.6 (8.7) a

Androstenedione (nmol/l) 2.3 (1.4) a

Thyroid-stimulating hormone (mU/l) 2.0 (1.7)a

Hormone replacement therapy, n (%) 95 (2.6)

Insulin (pmol/l) 68 (47)a

Glucose (mmol/l) 5.4 ± 0.6

C-reactive protein (mg/ml) 1.6 (2.7)a

Total cholesterol (mmol/l) 6.0 ± 1.0

Low density lipoprotein cholesterol (mmol/l) 5.1 ± 1.2

High density lipoprotein cholesterol (mmol/l) 1.5 ± 0.4

Lipid-lowering medication use, n (%) 502 (13.8)

Triglycerides (moml/l) 1.3 (0.75) a

Systolic Blood pressure (mm/Hg) 139.1 ± 21.4

Antihypertensive medications, n (%) 1131 (31.1)

Incident type 2 diabetes, n (%) 348 (9.6)

Plus minus values are mean ± SD	 a Median (interquartile range)
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Discussion

In this large population based study of postmenopausal women free of T2D at baseline, 
we showed that early onset of natural menopause is associated with increased risk of 
T2D, independently of potential intermediate risk factors for T2D, including body mass 
index, glucose, insulin, levels of estradiol and other endogenous sex hormone, and levels 
of SHBG. Also, we showed that shared genetic factors could not explain the association 
between ANM and risk of T2D.

While majority of studies have studied age at menopause with cardiovascular out-
comes, reporting increased risk of cardiovascular disease associated with early onset 
of menopause, few studies have examined age at menopause with risk of T2D3. Cross-
sectional studies examining the association between age at menopause and T2D have 
yielded conflicting results, showing no association or increased prevalence of T2D 
among women who experience early onset of menopause5-7. Similar to our findings, 
Brand and colleagues, in a nested case-cohort study, showed an increased risk of T2D 
with early onset of age at menopause, reporting similar size effects as the current in-
vestigation (HR of 0.93 per one year older age at menopause) 8. However, we further 
extended their findings and showed that this association was independent of potential 
mediators, including endogenous sex hormone levels.

Table 2.2.2 Associations of age at natural menopause with the risk of type 2 diabetes in postmenopausal 
women with natural menopause, the Rotterdam Study (N=3639)

Age at menopause Women at risk/ 
Incident type 2 
diabetes cases

Model 1
HR (95% CI)

Model 2
HR (95% CI)

Model 3
HR (95% CI)

Continuous 3639/348 0.96 (0.94; 0.98) 0.96 (0.94; 0.98) 0.96 (0.94; 0.99)

Premature menopause (<40 years) 83/15 3.65 (1.76; 7.6) 3.23 (1.56; 6.73) 3.06 (1.47; 6.37)

Early menopause (40-44 years) 298/39 2.37 (1.47; 3.84) 2.20 (1.19; 4.1) 2.13 (1.15; 3.95)

Normal menopause (45-55 years) 3015/280 1.62 (0.95; 2.78) 1.65 (0.96; 2.83) 1.60 (0.93; 2.74)

Late menopause (>55 years) 243/14 Reference Reference Reference

P-trend 3639/348 <0.001 <0.001 0.001

P-quadratic 3639/348 0.40 0.68 0.50

Model 1 included age at natural menopause (continuous or in categories), age (continuous), Rotterdam 
Study cohort (I, II and III), hormone replacement therapy (yes vs. no), age at menarche (continuous), num-
ber of pregnancies of at least 6 months (continuous). Model 2 included all variables in Model 1 and body 
mass index (continuous), glucose (continuous) and insulin (continuous). Model 3 included all variables of 
model 2 and total cholesterol (continuous), lipid lowering medications (yes vs. no), systolic blood pressure 
(continuous), antihypertensive medications (yes vs. no), alcohol intake (continuous), smoking (current vs. 
former/never), education (low, intermediate and high), prevalent cardiovascular disease (presence vs. non-
present), physical activity (continuous) and C-reactive protein (continuous).
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Early onset of natural menopause has been suggested to increase the risk of cardio-
metabolic diseases, including T2D, due to the early cessation of the protective effects 
of endogenous oestrogen[5]. Data from animal studies show that estradiol decreases 
adipose tissue and have a protective role in glucose metabolism25 26. Also, trials in 
postmenopausal women link oral oestrogen therapy with a lower risk of T2D among 
postmenopausal women27-29. In contrast, observational data do not support a protec-
tive effect of oestrogen in cardiometabolic health. In postmenopausal women, higher 
endogenous estradiol levels have been associated with higher levels of glucose and 
insulin, and an increase rather than a decrease in diabetes risk30-33. Moreover, an early 
start of oestrogen exposure (i.e., an early age at menarche) and a state of high endog-
enous estradiol have been linked with insulin resistance and increased risk of T2D34-36. 
This evidence, which is also supported by our study, suggests that other menopause-
related factors may explain the association between age at menopause and risk of T2D. 
In the current study, we showed that neither levels of SHBG, nor androgen levels, both 
of which are associated with menopause and with T2D, could explain the association 
between early onset of natural menopause and risk of T2D. A possible explanation for 
the observed association between ANM and risk of T2D could be the disruption of the 
hypothalamus-pituitary-ovarian axis resulting in increased release of the gonadotropins 
and follicle-stimulating hormone by the pituitary gland. In our study we did not have 
levels of follicle-stimulating hormone. However, observational studies show that low 
levels of follicle-stimulating hormone rather than high levels, are associated with in-
creased risk of T2D in postmenopausal women10 37. Also, lifestyle factors such as smoking 
and alcohol consumption are closely linked to age at menopause; e.g. smokers reach 
menopause on average 2 years earlier than non-smokers22 38. Therefore, the relationship 
between age at menopause and T2D is likely confounded by these factors. However, in 
our analysis we adjusted for both smoking and alcohol consumption, and restriction of 
analysis to women who did not currently smoke, did not have any impact on our results. 

DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate;HDL, high density lipoprotein 
cholesterol; TG, triglycerides; LDL, low density lipoprotein cholesterol.
a Values are per 1 unit increase.
b �Analysis restricted to third round of the first cohort and first round of second cohort (n=2541, 311 incident 

cases of type 2 diabetes); there were 218 participants reporting parental history of diabetes.
c �Multivariable model included the following variables (model 3 in Table 2): age at natural menopause (con-

tinuous or in categories), age (continuous), Rotterdam Study cohort (I, II and III), hormone replacement 
therapy (yes vs. no), age at menarche (continuous), number of pregnancies of at least 6 months (con-
tinuous), body mass index (continuous), glucose (continuous) and insulin (continuous), total cholesterol 
(continuous), lipid lowering medications (yes vs. no), systolic blood pressure (continuous), antihyperten-
sive medications (yes vs. no), alcohol intake (continuous), smoking (current vs. former/never), education 
(low, intermediate and high), prevalent cardiovascular disease (presence vs. non-present), physical activity 
(continuous) and C-reactive protein (continuous).
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Moreover, we found that ANM was associated with T2D independently of glucose and 
insulin levels. Therefore, the mechanisms linking ANM with risk of T2D remain unclear 
and future studies are needed to explore potential pathways.

Recent data show that early ANM may be a marker of premature ageing and is related 
to pathways linked to longevity21. Also, ANM is associated with DNA damage repair, 
which is linked to risk of T2D21 39 40. Menopause, therefore, might be a marker of ageing 
of the soma15. In women equipped with the less efficient DNA repair and maintenance 
genes, soma might age faster compared to women with the more efficient repair and 
maintenance genes15. Hence, early menopause might be a consequence of ageing ac-
celeration of the soma and might be a very good predictor of general health in later 
life, including T2D15. However, in our analysis we adjusted for shared genetic factors 
and the results did not change. Nevertheless, genome-wide association studies have 
identified approximately 56 single-nucleotide polymorphism (SNP) across human ge-
nome that explain only a minor fraction of the inter-individual variation in the age at 
menopause21. Epigenetic modifications - such as DNA methylation of cytosine residues 
in CpG dinucleotides and histone modifications might constitute an additional pathway 
leading to menopause onset and T2D. Future studies should explore epigenetic marks 
related to menopause onset and whether epigenetic signatures can explain the associa-
tion between ANM and risk of T2D.

Strengths of our study include its prospective design, the long follow-up and adequate 
adjustments for a broad range of confounders and possible intermediate risk factors for 
T2D. Also, the diagnosis of incident diabetes was done by standardized blood glucose 
measurements at the repeated study centre visits and electronic linkage with pharmacy 
dispensing records in the study area. However, there are several limitations that need to 
be taken into account. A limitation is the reliance on retrospective self-report of ANM, 
which is subject to fault memory and reporting bias, particularly in older women. How-
ever, the results did no differ when we stratified by age at enrolment. Also, because the 
outcome (T2D incidence) was assessed prospectively, the subjective measure of ANM 
would likely lead to non-differential misclassification with respect to the outcome, and 
therefore would likely bias the estimates toward the null. Furthermore, there are studies 
reporting that the validity and reproducibility of self-reported age at menopause is fairly 
good3 41. Despite the prospective design, we cannot rule out that the observed associa-
tions may partially reflect unmeasured residual confounding or that diabetes can lead 
to early onset of menopause as suggested recently42. Survival bias may be present since 
women included in our study may represent survivors of early menopause who did not 
develop T2D or die prior to enrolment. Also, there is a time difference since stepping into 
menopause and the start of Rotterdam Study (mean age of years since menopause for 
women included in the analysis is 15.3 years). However, when we stratified by age of en-
rolment, we did not find any difference in the results. Furthermore, if survival bias would 
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be present, the true point estimate for the relationship between early menopause and 
T2D may be larger than we observed. Furthermore, all confounding factors and media-
tors considered in the current investigation were assessed years after menopause and 
not at time when menopause started, and estradiol was measured using an immunoas-
say with a detection limit of 18.35 pmol/L, which is considered suboptimal particularly in 
postmenopausal women. Therefore our results should be considered with caution. Also, 
the Rotterdam Study mainly includes individuals from European Ancestry (98%). Thus, 
our findings may not be extended to non-Caucasian ethnicities.

Early onset of ANM is an independent marker for T2D in postmenopausal women. Fu-
ture studies are needed to examine the mechanisms behind this association and explore 
whether timing of natural menopause has any added value in diabetes prediction and 
prevention.
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Abstract

Objective

Effective interventions of future health-care require a better understanding of the health 
risks associated with early onset of menopause and diabetes, but the necessary data are 
scarce. Little quantitative information is available about the combined association of 
early menopause and diabetes on life expectancy and the number of years lived with 
and without diabetes.

Methods

We included 3,650 postmenopausal women aged 45+ years from the Rotterdam Study, a 
prospective population-based cohort study. Age at menopause categories were defined 
as: early (≤44 years old), normal (45-54 years old) and late (≥55 years old). For life table 
calculations, we used prevalence, incidence rates and hazard ratios for three transitions 
(free of diabetes to diabetes, free of diabetes to death and diabetes to death) stratifying 
by age at menopause categories and adjusting for confounders.

Results

Compared to late menopause, the difference in life expectancy for women who experi-
enced early menopause was -3.5 95%CI: -6.6,-0.8 years overall and -4.6 95%CI: -8.9,-0.9 
years without diabetes. Compared to age at normal menopause, the difference in life 
expectancy for women who experienced early menopause was -3.1 95%CI: -5.1,-1.1 
years overall and -3.3 95%CI: -6.0,-0.6 years without diabetes.

Conclusion

Women who experienced early menopause lived less long and spent fewer years with-
out diabetes than women who experienced normal or late menopause.
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Introduction

Diabetes is one of the major causes of premature illness and death in most countries 
and imposes a substantial financial burden to society, especially in women 1 2. Almost 
1 in 2 women will develop type 2 diabetes (T2D) during their lifetime, and recent data 
has shown that the age-standardised prevalence of diabetes among adult women has 
increased in the past 30 years from 5.0% to 7.9% 3 4.

In women, T2D often manifests during mid-life and thus coincides with the timing 
of the menopausal transition 5. Emerging evidence shows an association between age 
at menopause and diabetes with studies reporting almost a 2-fold increased risk of 
T2D with early onset of menopause 6 7. Also, it is well established that early onset of 
menopause is associated with early death8-10. This could be important because, while 
mortality rates for women with non-T2D have declined over time 11, mortality rates for 
women with T2D may have instead increased 11.

Effective interventions and accurate projections of future health-care costs require 
a better understanding of the health risks associated with early onset of menopause, 
but the relevant data are scarce. To our knowledge, no study up to date has quantified 
(calculating the number of years lived with and without diabetes) the combined associa-
tion of early menopause and T2D with life expectancy. Previous estimates reflecting the 
association of age at menopause with diabetes have been limited to absolute risks or 
lifetime risk without combining information about the number of the remaining years 
lived with or without diabetes, raising a gap in the intuitive understanding of risk and 
impact communicated among doctors and patients 6 7 12.

Two studies have examined the association of age at menopause with total life expec-
tancy 13 14. Ossewaarde and colleagues, in a breast cancer-screening cohort, reported 
that both premature and early onset of menopause were associated with a decrease in 
life expectancy of approximately 1 to 2 years 13. Snowdon et al. concluded that each-one 
year decrease in age at menopause was associated with a 0.47-year decrease in the age 
at death in women with natural menopause before the age of 47 years 14. However, these 
studies did not distinguish between life expectancy with and without diabetes and 
did not provide a direct observation of a well-defined population, as the results were 
obtained through modelling and simulation using nation-wide mortality data.

In a large population of postmenopausal women, we aimed to calculate and compare 
the association of age at natural menopause with total life expectancy and the number 
of years lived with and without T2D.



70

Chapter 2.3  |  Menopause age, life expectancy, and diabetes

Methods

Population for analyses

The Rotterdam Study (RS) is a population-based prospective cohort study of individuals 
aged 45years and over, living in Rotterdam, the Netherlands. The rationale and design of 
the RS have been previously described 15.

The present study used data from the third visit of the first cohort, RSI-3 (March 1997- 
December 1999) and the baseline examinations of the second, RSII-1 (February 2000-De-
cember 2001) and third cohort, RSIII-1 (February 2006-December 2008). Information 
about the visits and participants used for this study are presented in Supplemental 
Digital Content Figure S1. A total of 6816 women were eligible for the analysis. Women 
who were not postmenopausal (N=741), had missing information on age of menopause 
(N=145), experienced non-natural (N=1408) or unknown type of menopause (N=20) 
were excluded from the analyses. Furthermore, we excluded 434 women who reported 
using oral contraceptives during the menopause transition, since these may mask or 
influence the onset of menopause 16 and are associated with an increased risk of T2D in 
postmenopausal women 17. The remaining 3650 postmenopausal women were eligible 
for the analyses (Figure 2.3.1).

Study population

The Rotterdam Study (RS) is a population-based prospective cohort study ongoing 
since 1990 in the city of Rotterdam in The Netherlands. Potential participants aged 55 
years and over were invited in random clusters. Names and addresses were drawn from 
the municipal register which is reliable, complete and up to date. The baseline cohort 
(RSI) included 7983 participants (78% of 10,215 invitees)18. Over the years, two more 
rounds were held. The first, in 2000–2001, included all inhabitants aged 55 years and 
over, recruiting 3011 participants (out of 4472 invitees) (RSII)18. The second extension 
initiated in 2006, included 3932 participants aged 45 years and over, out of 6057 invited 
(RSIII)18. Detailed information about the visits and participants of the Rotterdam study 
are presented in Supplemental Digital Content Figure S1. The overall response figure 
for all three cycles was 72.0% (14,926 of 20,744). RS complies with the Declaration 
of Helsinki and has been approved by the Medical Ethics Committee of the Erasmus 
Medical Centre and complies with the Dutch Ministry of Health, Welfare and Sport. All 
participants provided written informed consent to obtain and process data from their 
treating healthcare providers.

Assessment of age at menopause

The self-reported age at menopause was assessed during the baseline interview using a 
questionnaire. Age at menopause was defined in retrospect as the age at final menstrual 
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N=6.816 

RS I-3, RS II-I and RS III-I 

Excluded: 

741 Non post-menopausal women 

145 No info on menopausal age  

20 Unknown type of menopause 

1408 Non-natural menopause 

417 No available information on type 
2 diabetes  

1 No informed consent for type 2 
diabetes follow up  

 

4084 women with available information on age 
at menopause and type 2 diabetes  

Excluded: 

434 women who reported using oral 
contraceptives 

3650 women included in the final analysis 

Figure 2.3.1. Flow Chart of Participants in the Study, the Rotterdam Study (1997-2012).
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period, which was followed by cessation of menses that lasted at least 12 months 19. In 
addition, to define the nature of menopause, women were asked to report if bleeding 
was ceased naturally or was ceased because of other reason. For all women reporting 
menopause after gynaecologic surgery or radiation therapy and for those reporting any 
other operations that might have led to menopause, information on the exact date and 
type of operation was verified using general practitioners’ records.

Ascertainment of type 2 diabetes

The participants were followed from the date of baseline centre visit onwards. Cases 
of T2D were ascertained at baseline and during follow-up through: (i) active follow-
up using general practitioners’ records, (ii) hospital discharge letters and (iii) glucose 
measurements from RS visits that took place approximately every 4 years 20. T2D was 
defined according to recent WHO guidelines, as a fasting blood glucose ≥ 7.0 mmol/L, 
a non-fasting blood glucose ≥ 11.1 mmol/L (when fasting samples were absent), or the 
use of glucose-lowering medication. Information regarding the use of glucose-lowering 
medication was derived from both structured home interviews and linkage to pharmacy 
records 20. Two study physicians independently adjudicated all potential events of T2D. 
In case of disagreement, consensus was sought with an endocrinologist. Follow-up data 
were through January 1st 2012.

Follow-up for mortality

Mortality data were obtained by notification from the municipal administration. Par-
ticipants were followed from the first day they entered the study till the day of death, 
the day of lost to follow-up or the last date of contact, whichever came first. Data on 
all-cause mortality and living status were updated biweekly until August 1st 2016. The 
method applied requires all outcomes to have the same end date. In our data, the fol-
low up for diabetes was until January 1st 2012, therefore all the analyses were truncated 
accordingly.

Assessment of potential confounders

Based on previous literature7 10 16 17 21-24, biological plausibility and data availability in the 
RS, potential confounding variables (including age, smoking, alcohol, education level, 
hormone therapy, physical activity, age at menarche, number of pregnancies and oral 
contraceptive use) were selected for the analyses. Also, to account for any potential ef-
fect of the cohorts in the RS, we additionally adjusted all our analyses for cohort (I, II and 
III). Information on current health status, medical history, medication use and smoking 
behaviour was obtained at baseline (RSI-3, RSII-1 and RSIII-1). Participants were asked 
whether they were currently smoking cigarettes, cigars, or pipes. Alcohol intake was 
assessed in grams of ethanol per day. Education was defined according to the standard 
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international classification of education as low (primary education), intermediate 
(secondary general or vocational education), or high (higher vocational education or 
university). Data on age at menarche were collected by asking women, “How old were 
you when you had your first menstrual period?”. The retrospective data on self-reported 
number of pregnancies and use of hormone therapy were collected by a questionnaire 
during the home interview. Physical activity was assessed using the LASA Physical Activ-
ity Questionnaire (LAPAQ) and is expressed in METhours/week.

Data analysis

Data are presented as mean (± SD) for normally distributed continuous variables and 
median (range) for continuous variables that are not normally distributed. When fitting 
the models and checking for multicollinearity, in our analyses variance inflation factor 
(VIF) was lower than 3, suggesting no evidence of collinearity. The One-way ANOVA 
test (for continuous variables) and χ2 (for categorical variables) were used to compare 
parameters between the groups. We created population-based multistate life tables to 
calculate life expectancy and years lived with and without T2D in early (≤44 years old), 
normal (45-54 years old) and late menopause (≥55 years old, reference) categories. The 
multistate life table is a demographic tool that allows the experience of individuals in 
different health states to be combined in order to calculate the total life expectancy and 
the amount of years that individuals could expect to live in the different health states. 
We considered 3 different health states: free of T2D, T2D, and death. Participants could 
experience the following transitions: from free of T2D to T2D or death and from T2D to 
death. No backflows were allowed (eg. from having T2D to not having T2D), and only the 
first entry into a state was considered.

To obtain transition rates, we first calculated the overall age-specific rates for each 
transition. Next, we calculated the prevalence of early, normal, and late menopause by 
10-year age groups, and separately for women with and without diabetes. Hazard ratios 
(HRs) comparing women who experienced early and normal menopause to women who 
experienced late menopause were calculated using Poisson regression (“Gompertz” 
distribution) in two models. In model 1 we adjusted for age and cohort. In model 2 
we additionally adjusted for potential confounders including: smoking status (current 
smokers vs former/ever smokers), alcohol intake (continuous), education level (low, 
intermediate and high), physical activity (continuous), use of oral contraceptives (yes vs. 
no), use of hormone therapy, and reproductive factors (age at menarche and number of 
pregnancies of at least 6 months). Finally, we calculated three sets of transition rates for 
each menopausal age category using (i) the overall transition rates, (ii) the adjusted HRs 
for T2D and mortality, and (iii) the prevalence of age at natural menopause categories by 
presence of T2D. Similar calculations have been described previously 25 26. Considering 
the age range of participants in RS and the small number of participants between 45 to 
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50 years old (N=34) we a priori decided to start the multistate life tables at the age of 
50 years. We used Monte Carlo simulation (parametric bootstrapping) with 10,000 runs 
to calculate the 95 % confidence intervals of our life expectancy estimates with @RISK 
software (Palisade Corporation, Ithaca, New York) runs 27. To deal with missing values, we 
used multiple imputation in SPSS (IBM SPSS Statistical for Windows, Armonk, New York: 
IBM). To calculate the HRs and the transition rates we used STATA version 12 for Windows 
(StataCorp, College Station, Texas).

Sensitivity analyses

Several sensitivity analyses were performed. To examine the impact of women who 
reported use of oral contraceptive at onset of menopause, we included them in the 
analyses (n=434). Also, to investigate both, the association of natural and non-natural 
menopause with T2D risk and life expectancy, we included in the analyses women 
with non-natural menopause. Furthermore, to explore whether there were significant 
differences between early and normal age at menopause in risk of T2D and mortality, 
life expectancy, and years lived with and without T2D, we repeated the analysis using 
normal age at menopause category as reference.

Results

Baseline characteristics

Mean age at menopause in the early, normal and late categories were respectively 
41years (SD = 3.0), 50 years (SD=2.5) and 56 years (SD=1.6) (Table 2.3.1). Compared to 
women who experienced late menopause, early menopausal women had lower educa-
tion levels, drank less and were more likely to smoke (Table 2.3.1).

Diabetes events and death

Of the 3240 postmenopausal women free of diabetes at baseline, 305 women devel-
oped incident T2D over a median follow-up of 9.2 years (Table 2.3.2). Among women 
free of diabetes, 489 women died during the follow-up (median= 6.9 years), whereas 
164 women died among women with T2D (median follow-up= 4.9 years). Both models 
yielded similar estimates; therefore, we further report the results of the most adjusted 
model (model 2). Compared to late menopause, early (HR=1.42, 95% CI: 1.01, 2.00), but 
not age at normal menopause (HR=1.13, 95% CI: 0.85, 1.49) was associated with an 
increased risk of mortality among women free of diabetes. Among diabetic women with 
early and normal menopause, the HRs for mortality were 1.64 95% CI: 0.93, 2.88, and 
0.85 95% CI: 0.52, 1.39 respectively, relative to those with late menopause (Table 2.3.2).
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Table 2.3.1. Baseline Characteristics of 3.650 Women by Age at Menopause Categories, the Rotterdam 
Study (1997-2012).

Characteristics

Categories of age at menopause*

Early (n= 414) Normal (n=2787) Late (n= 449)

Age, mean (SD), y 69.0 (10.6) 67.4 (9.8) 67.9 (8.6)

Age at menopause, mean (SD) 40.8 (3.0) 50.2 (2.5) 56.0 (1.6)

Type 2 Diabetes, Yes (%) 54 (13.0) 304 (10.9) 52 (11.6)

Age at menarche, mean (SD) 13.4 (1.9) 13.4 (1.7) 13.6 (2.0)

Education, No. (%)

Primary 97 (23.4) 427 (15.3) 55 (12.2)

Lower 200 (48.3) 1451 (52.1) 234 (52.1)

Intermediate 88 (21.3) 622 (22.3) 108 (23.0)

Higher/university 29 (7.0) 287 (10.3) 52 (11.6)

Smoking Status, Yes. (%) 119 (28.7) 539 (19.3) 54 (12.0)

Alcohol, mean (SD), g/day 8.7 (11.9) 9.5 (12.5) 11.4 (13.6)

Physical activity (METhours/week) 81.4 (44.4) 85.3 (50.4) 83.5 (43.7)

Hormone replacement therapy (HRT), Yes (%) 9 (2.2) 73 (2.6) 9 (2.0)

Oral contraceptive use, yes (%) 190 (45.9) 1464 (52.5) 230 (51.2)

Number of pregnancies, mean (SD) 2.5 (2.3) 2.3 (1.9) 2.3 (1.8)

Total cholesterol, mean (SD), mg/dl 5.9 (1.0) 5.9 (0.9) 6.0 (1.0)

Statin use, Yes (%) 57 (13.8) 420 (15.1) 59 (13.1)

Systolic blood pressure (SBP), mean (SD) 138.8 (21.2) 140.3 (21.6) 140.7 (21.7)

Anti-hypertensive medication, Yes (%) 160 (38.6) 919 (33.0) 173 (3805)

Estradiol, median (IQR) 32.7 (323) 33.6 (1066.9) 36.3 (442.1)

Total testosterone, median (IQR) 0.8 (5.7) 0.8 (12.5) 0.8 (18.5)

SHBG, median (IQR) 57.1 (190.8) 59.8 (189.7) 58.8 (157.6)

DHEA, median (IQR) 8.2 (50.7) 9.5 (67.3) 9.6 (82.5)

TSH, median (IQR) 2.0 (58.7) 2.0 (70.6) 2.0 (74.4)

Glucose, mean (SD) 5.8 (1.6) 5.8 (1.4) 5.8(1.3)

Insulin, mean (SD) 105.0 (157) 91.5 (101.6) 96.6 (106.3)

Body mass index, BMI, mean (SD), kg/m2 27.6 (4.9) 27.3 (4.5) 28.1 (4.8)

C-reactive protein, CRP, mean (SD) 3.7 (6.1) 3.1 (5.3) 3.3 (7.1)

Prevalent Cancer, Yes (%) 39 (9.4) 282 (10.1) 44 (9.8)

Prevalent COPD, Yes (%) 33 (8.0) 148 (5.3) 15 (3.3)

Prevalent CVD, Yes (%) 40 (9.7) 215 (7.7) 26 (5.8)

*Menopause categories are defined as: Early ≤44 years old, Normal 45-54 and Late ≥55years old.
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Total life expectancy and life expectancy with and without type 2 diabetes

The association of early, normal, and late menopause with the risk of each health/
disease/death transition was translated into the number of years lived with and with-
out diabetes (Figure 2.3.2). Total life expectancy at the age of 50 years was lower in 
women who had an early menopause and higher in women who had a late menopause. 
Compared to women with late menopause, the difference in life expectancy for women 
with normal and early age at menopause was 0.5 95% CI: -2.1, 1.3 and 3.5 95% CI: -6.6,​
-0.8 years, respectively. Compared to women with late menopause, the difference in life 
expectancy for women with normal and early age at menopause was 1.3 95% CI: -4.3, 0.8 
and 4.6 95% CI: -8.9,-0.9 years without T2D as well as 0.8 years 95% CI: -1.3, 2.4 and 1.1 
years 95% CI: -1.8, 4.4 years with T2D, respectively.

Sensitivity analyses

Total life expectancy and the number of years lived with and without T2D did not sig-
nificantly differ after including women who reported using oral contraceptives. These 
results are presented in Supplemental Digital Content Table S1, Table S2, Figure S2. The 

Table 2.3.2. Hazard Ratios by Transition Among Categories of Age at Menopause.*

Transition
No. Of  
Cases

Person-
years

Age at 
Menopause 
Categories HR† 95% CI HR‡ 95% CI

Incident T2D 305 28448 Late 1.00 1.00

Normal 1.22 0.84,1.78 1.14 0.78,1.67

Early 1.89 1.20,2.97 1.69 1.07,2.67

No T2D to Death 489 26229 Late 1.00 1.00

Normal 1.16 0.88,1.54 1.13 0.85,1.49

Early 1.49 1.05,2.09 1.42 1.01,2.00

T2D to Death 164 5213 Late 1.00 1.00

Normal 0.91 0.56,1.48 0.85 0.52,1.39

Early 1.73 0.99,3.00 1.64 0.93,2.88

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; T2D, Type 2 Diabetes.
*Age 50 and over at start of follow-up
† Adjusted for age and cohort
‡ Adjusted for age, cohort, smoking, alcohol, education, PA, OC, HRT, menarche, nr of pregnancies.

Table 2.3.3. Differences of age at menopause categories on life expectancy.

Age at menopause 
categories

Difference in total LE Difference in LE free of DM Difference in LE with DM

HR 95% CI HR 95% CI HR 95% CI

Early vs. Late -3.5 -6.6,-0.8 -4.6 -8.9,-0.9 1.1 -1.8,4.4

Normal vs. Late -0.5 -2,1,1.3 -1.3 -4.3,0.8 0.8 -1.3,2.4

Early vs. Normal -3.1 -5.1,-1.1 -3.3 -6.0,-0.6 0.2 -2.0,2.8
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results were attenuated, but did not substantially change after the inclusion of women 
with non-natural menopause (results are shown in Supplemental Digital Content, Table 
S4 and Figure S3). Furthermore, the difference in life expectancy for women who expe-
rienced early menopause, compared to women with normal age at menopause was -3.1 
95% CI: -5.1,-1.1) and -3.3 95% CI: -9.5, -0.6 years overall and without T2D respectively, 
and 0.2 95% CI: -2.0,2.8 years with T2D, although the latter was not a statistically signifi-
cant difference. Results using the normal menopause group as the reference category 
are presented in Supplemental Digital Content.

Discussion

At the age of 50 years, women who experienced early menopause lived less years and 
spent fewer years without diabetes than women who experienced normal or late meno-
pause. Compared to women with normal or late age at menopause, women with early 
menopause lived at least 3.1 years fewer overall and at least 3.3 years fewer without 
diabetes, respectively.

The decreased life expectancy without diabetes among women with early menopause 
might be due to the increased risk of T2D and mortality associated with early meno-
pause. The higher risk of diabetes in women with early age at natural menopause might 
reflect an earlier diagnosis of diabetes across the lifespan and therefore, a decreased life 
expectancy without T2D, although the difference in years lived overall and without T2D 
did not differ significantly. Furthermore, early menopause was also associated with an 
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Figure 2.3.2. LE at 50 Years, Among Women With Late, Normal and Early Menopause.
Abbreviations: HR, hazard ratio; LE life expectancy; T2D type 2 diabetes
*Results after adjusted for: age, cohort, education levels, alcohol, smoking, menarche, HRT, physical activity, 
number of pregnancies and OC use.
**Late menopause group is the reference category.
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increased mortality risk among participants without T2D, resulting in a further decrease 
in total life expectancy and number of years lived without T2D. The number of years lived 
with diabetes was a result of incident diabetes risk and mortality risk among those with 
diabetes. In our study, no significant association was observed of age at menopause 
with mortality among women with diabetes, which could be due to the small number 
of cases in this transition (transition 3). Life expectancy with diabetes was at least 0.2 
and 1.1 years more for women with early age at menopause compared with those 
who experienced normal and late menopause respectively. This reflects two opposing 
results: 1) higher incidence of diabetes in women who experienced early menopause 
increasing the time spent with diabetes; and 2) increased mortality associated with early 
menopause in diabetic patients, decreasing the time spent with diabetes. The net result 
is that women who experienced early menopause lived shorter and did not spend more 
years with diabetes.

In our study, total life expectancy in women aged 50 years and over was very similar 
between normal and late menopause and significantly decreased in the early meno-
pause group. Consistent with our findings, data from a breast cancer screening cohort 
reported that a later menopause is associated with a longer overall survival and higher 
life expectancy 13. In that study, women who experienced menopause at the age of 55 
years or after lived 2 and 1 years longer than those who experienced menopause before 
the age of 40 and at age 40-44 respectively, which is slightly less than our findings. This 
discrepancy could be explained by differences in: (i) age of participants; (ii) categorization 
of age at menopause and (iii) in the calendar time of baseline measurements. Also, our 
study included only women who experienced natural menopause, whereas the previous 
study included women experiencing natural and not-natural menopause. Furthermore, 
in the previous study, the calculations for the life tables were made using a hypothetical 
population of women aged 50 years, obtaining estimates by modelling and simulation. 
In contrast, our study calculated the life expectancy with and without diabetes from 
direct observation of a well-defined population using multistate life tables.

Previous studies have reported that among major modifiable risk factors, never smok-
ing was associated with the largest gain in total life expectancy in women (up to 4.1 
years), followed by high physical activity (3.4 years) and normal weight (1.0 year) 28. In 
our study, adjustment for these factors to rule out their influence on the association 
between age at menopause and T2D did not materially change the results. Previous 
studies investigating the association of age at menopause and mortality or diabetes, 
have also reported no changes in estimates when adjusting for smoking 7 13, suggesting 
that smoking habits could not explain our findings. However, it would be of interest to 
explore whether smoking and early menopause are related through epigenetic mecha-
nisms which can further affect women’s health later in life.
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To our knowledge, this is the first study that investigated the association of age at 
natural menopause with life expectancy with and without T2D. Other major strengths 
include the prospective design with a long-term follow-up; the large number of partici-
pants and the adjustments for a broad range of potential confounders.

Several limitations of this study should be addressed. Age at menopause was assessed 
by questionnaires that could be subject to some measurement error. Another limitation 
was the reliance on retrospective self-report of age at menopause that could be subject 
to memory and reporting bias, particularly in older women. In addition, inaccuracy from 
reporting bias would have been non-differential in relation to the menopausal catego-
ries. Hence, it is unlikely that this would have created any difference between groups. 
However, because T2D and mortality were assessed prospectively, the subjective mea-
sure of age at menopause would likely lead to non-differential misclassification with 
respect to the outcome, and therefore would likely bias our estimates toward the null. 
Furthermore, studies have reported that the validity and reproducibility of self-reported 
age at menopause is fairly good 8 29.

Moreover, diabetes might have been subclinical at baseline and because age at meno-
pause was retrospectively self-reported, the possibility of reverse causality should be 
considered. However, all women in our study were already postmenopausal years before 
incident diabetes occurred. Also, all women in RS had an assessment of fasting plasma 
glucose which would have helped to detect subclinical diabetes and therefore reverse 
causality is less likely to have happened.

Further, a time difference was observed between the start of the RS and the onset of 
menopause, which might have introduced immortal-time bias. Nevertheless, if immor-
tal-time bias was present, the true point estimate for the relationship between early 
menopause, T2D and mortality may be larger than we observed. Also, all population-
based cohorts involving active participation are subject to the healthy volunteer effect 
30 therefore the mortality rates in our study might be lower than those in the general 
population, thus leading to underestimation of the results 31. Finally, the generalizability 
of our findings can be limited to middle-aged and older white European populations, 
and therefore, our results need confirmation in other populations.

These results support findings of prior studies that suggest that age at natural meno-
pause might be a risk factor for mortality. Another hypothesis might be that both early 
menopause and premature death could be associated by a third factor, which may also 
partly explain the underlying mechanisms of the greater risk of T2D in women with early 
menopause. Epigenetic modifications such as DNA methylation of cytosine residues in 
CpG dinucleotides histone modification and micro RNAs might constitute an additional 
pathway linking the timing when menopause occurs with longevity and type 2 diabetes 
32. Future studies should explore epigenetic modifications associated with age at natural 
menopause and whether epigenetic signatures can explain the association between 
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the onset of natural menopause with mortality and type 2 diabetes risk. In addition, 
our results provide supporting evidence for public health interventions aiming at de-
laying in menopause to reduce the incidence of T2D, postpone mortality and prolong 
total life expectancy as well as the years lived free of diabetes. Studies have shown 
that various lifestyle factors 22 such as smoking cessation 23 33, low to moderate alcohol 
consumption 23, better nutrition and lower body mass index 21 34, better socioeconomic 
status 22, are associated with a later menopause. Considering the observational nature 
of the studies so far, it is unclear whether these factors have a causal effect on age of 
menopause. Therefore, more research is needed to understand the direction of these as-
sociations to help define better health policies. Also, our findings might be important for 
the health care sector since diabetes poses a significant financial burden on healthcare 
and nations’ welfare budget 35.

Conclusions

In our study, women who experienced early menopause lived fewer years overall and 
spent less years without diabetes than women who experienced normal or late meno-
pause. Future studies are needed to examine the mechanisms behind the association of 
age at natural menopause with type 2 diabetes and mortality, in order to tailor preven-
tion and treatment strategies to improve women’s health across all age-categories of 
menopause.
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Abstract

Objective

Amino-terminal pro-B-type natriuretic peptide (NT-proBNP) has a well-documented 
prognostic value for cardiovascular disease and sex-hormones are suggested to modu-
late NT-proBNP levels. Therefore, our aim was to examine whether endogenous sex-
hormones and sex hormone-binding globulin (SHBG) are associated with NT-proBNP 
levels in postmenopausal women free of clinical cardiovascular diseases.

Methods

Total estradiol (E2), total testosterone (TT), androstenedione (AD), dehydroepiandros-
terone (DHEA), dehydroepiandrosterone sulfate (DHEAS), sex hormone-binding 
globulin (SHBG) and NT-proBNP were assessed in 4,112 postmenopausal women free 
of cardiovascular diseases from the prospective population-based Rotterdam Study. 
Free androgen index (FAI) was calculated as ratio of TT to SHBG concentration. TT, AD, 
DHEA(S), SHBG, FAI and NT-proBNP were natural log transformed. Regression coefficients 
and 95% Confidence Intervals (CI) were calculated using multivariable linear regression 
models adjusting for confounders.

Results

In models adjusted for multiple confounders (age, reproductive, life style and cardiovas-
cular risk factors) higher SHBG (per 1 SD increase, β= 0.15, 95% CI=0.12, 0.18), and lower 
levels of TT (per 1 SD increase, β= -0.05, 95%CI=-0.08, -0.02), FAI (per 1 SD increase, β= 
-0.13, 95%CI=-0.15, -0.09), DHEAS (per 1 SD increase, β= -0.06, 95% CI=-0.09, -0.04) and 
DHEA (per 1 SD increase, β= -0.06, 95%CI=-0.09, -0.04) were associated with higher lev-
els of NT-proBNP. However, no association was found between E2 and AD and NT-proBNP 
levels. Additionally, stratification by BMI did not affect any of observed associations.

Conclusion

Our findings support the hypothesis that higher androgens might be associated with 
lower natriuretic peptide levels in postmenopausal women.
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Introduction

After menopause, sex differences in coronary heart disease (CHD) risk gradually disap-
pear resulting in a similar incidence of CHD by the sixth decade in women as compared 
to men 1.

Accordingly, differences in sex and menopause status have been observed in the levels 
of N-terminal pro b-type natriuretic peptide (NT-proBNP) 2, which has prognostic value 
in CHD 3 4 and it has potential beneficial role in the etiology of diabetes mellitus type II 5. 
Accumulating evidence suggests that women present with consistently higher levels of 
circulating NT-proBNP than men, reaching the values in healthy premenopausal women 
about 2-fold higher than men at the same age 2 6. Also, in women, NT-proBNP levels 
change by menopause status, with women after menopause having lower levels of 
NT-proBNP 4 6-8. The mechanisms underlying the sex and menopause related difference 
in circulating NT-proBNP have not been established yet. However, evidence suggested 
that sex hormones play an important role in the regulation of natriuretic peptides 9. 
Before menopause, women have higher levels of estradiol (E2) and lower levels of an-
drogens than men, while after menopause, there is a decline in endogenous estradiol 
levels and a period of relative androgen excess 4 10. Recently, oestrogen receptors, which 
mediate oestrogen actions, have been reported to be involved in atrial natriuretic pep-
tide synthesis in the heart of mouse 11. Also, studies in postmenopausal women show 
exogenous estradiol to increase levels of NT-proBNP, but findings are not consistent 6 7. 
No study to date has examined the influence of endogenous oestrogens on circulat-
ing NT-proBNP levels in postmenopausal women. In contrast, studies in young women 
showed that testosterone is independently and inversely associated with BNP, but there 
is uncertainty whether this effect persists after menopause 6. Evidence from animal stud-
ies show that dehydroepiandrosterone (DHEA) significantly inhibit BNP mRNA levels 12. 
Nevertheless, there is a lack of studies examining the associations of DHEA and its deriva-
tives with NT-proBNP levels in humans, and in particularly in women. Furthermore, sex 
hormone-binding globulin (SHBG) is associated with cardiovascular risk in both pre-and 
postmenopausal women, as well as with BNP levels in pre-menopausal women 6 13 14. It 
remains unclear, however, whether SHBG is associated with levels of NT-proBNP in older 
women.

Therefore, we aimed to investigate whether endogenous sex-hormones and SHBG 
levels associated with NT-proBNP in postmenopausal women free of clinical cardiovas-
cular diseases.
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Methods

Study population

The Rotterdam Study (RS) is a population-based cohort study of individuals 45 years and 
over living in the Ommoord district of Rotterdam, the Netherlands. The rationale and 
design of RS is described elsewhere 15. The Rotterdam Study has been approved by the 
Medical Ethics Committee according to the Wet Bevolkingsonderzoek: ERGO (Popula-
tion Study Act: Rotterdam Study), executed by the Ministry of Health, Welfare and Sports 
of The Netherlands. All participants gave informed consent to participate in the study 
and to obtain information from treating physicians and pharmacies, separately.

Population for Analyses

The present study includes data from postmenopausal women from the third visit of the 
first cohort of the RS (RS I-3), and from the first visits of the second (RSII-1) and the third 
cohort (RSIII-1). There were 6,760 women eligible for the analysis. Of those, 2,648 women 
were excluded because (i) they were non-postmenopausal or due to no information 
on their menopausal status (n=731); (ii) they did not have information on sex steroids 
(n=1296) or on NT-proBNP levels (n=18); (iii) had prevalent cardiovascular disease (CHD, 
stroke or heart failure) (n=267); (iv) there was no available information on the presence 
of cardiovascular disease (n=31), (v) used postmenopausal hormone therapy (n=168) or 
(vi) there was no available information on hormone therapy use (n=137) (Figure 2.4.1). 
Therefore, 4112 postmenopausal women were included in the final analysis.

Assessment of Exposure, Outcome and Covariates can be found in supplemental 
material.

Statistical analyses

Continuous variables are reported as mean ± standard deviation (SD) unless stated oth-
erwise and categorical variables were presented as percentages. Correlations between 
endogenous sex hormones and SHBG were assessed by a non-parametric test (Spear-
man, Rs). To achieve approximately normal distribution, skewed variables (NT-proBNP, 
SHBG, testosterone, FAI, DHEA, DHEAS, androstenedione, triglycerides, insulin, C-reactive 
protein, and thyroid-stimulating hormone) were natural log transformed. Regression 
analysis was used to evaluate whether sex steroids and SHBG were associated with NT-
proBNP. All sex hormones variables were assessed continuously in separate models. In 
the basic model (Model 1), we adjusted for age, age at onset of menopause, body mass 
index (BMI) and RS cohort (I, II and III), glucose (continuous), insulin (continuous), physi-
cal activity (continuous), total serum cholesterol (continuous), statin use (yes vs. no), 
smoking status (yes vs. no) and alcohol consumption (continuous), prevalent diabetes 
mellitus (yes vs. no), systolic blood pressure (continuous), antihypertensive medication 
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(yes vs. no), glomerular filtration rate (eGFR) (continuous), C-reactive protein (CRP) (con-
tinuous). We also controlled (in Model 2) for upstream precursor hormones which may 
have acted as confounders. Collinearity analysis demonstrated high correlation between 
DHEA and DHEAS (variance inflation factor, VIF>3), and therefore, when applicable, we 
did not adjust for DHEA in model 2, but only for DHEAS. There were missing values on 
one or more covariates (Table 2.4.1). Because the missing values were likely to be miss-
ing at random and for avoidance of loss in efficiency, missing values were imputed using 
a multiple imputation technique (5 imputation sets). Rubin’s method was used for the 
pooled coefficients (β) and 95% Confidence Intervals 16. In total, 21 variable has been 
imputed. Percentage of missing values for the majority of imputed variables (n=19) 
was below 5%. However, we imputed 28.4% of missing data on alcohol consumption 
and 11.2 of missing data on physical activity. A P-value lower than 0.05 was considered 
as statistically significant, but as sensitivity analysis, to account for multiple testing, 

N=6760
Women in RS-I, RS-II and RS – III cohorts

N=731
Excluded women in perimenopause or women 
for whom the data on menopausal status was 

missing 

N=1296
Excluded postmenopausal women with no 

information on sex hormones (Estradiol, SHBG, 
Testosterone, DHEA, DHEAs, Androstenedioen),  

data N=4733
Postmenopausal women with available 

data on sex hormones  

N=6029
Postmenopausal women eligible for sex 

hormone measurements

N=4715
Postmenopausal women free of 

cardiovascular disaases included in the 
analysis with sex hormones with NT-

proBNP measurements 

N=18
Excluded postmenopausal women with no 

information on NT-proBNP levels  

N=4112
Postmenopausal women free of 

cardiovascular diseases included in 
the analysis

N=603
Excluded postmenopausal women with no 

information on CVD diseases/had prevalent CVD 
(n=298), and hormone therapy users (n=168) or 

had missing information (n=137)

 

Figure 2.4.1. Flowchart for selection of study participants.
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we adjusted the p-value from 0.05 to 0.007 by applying the Bonferroni correction for 
the number of exposures studied (N=7). All analyses were done using SPSS statistical 
software (SPSS, version 21.0; SPSS Inc, Chicago, Illinois).

Table 2.4.1. Characteristics of the Study Population

Age at baseline, mean (SD), y 65.9±9

Education

Primary 612 (14.9%)

Lower/intermediate or lower vocational 2143 (52.8%)

Intermediate vocational or higher general 912 (22.2%)

Higher vocational or university 431(10.5%)

BMI, kg/m² 27.5 ±4.6

Waist to hip ratio 0.7 (0.9)

Smoking

yes 568 (13.8%)

no 3526 (85.8%)

Alcohol intake g/day 2.1 (0.01-11.4)

Health indicators

Systolic BP, mmHg 139.5±21.8

Diastolic BP, mmHg 77.9 ±11.3

Antihypertensive therapy with indication, yes 1022 (24.9%)

Total cholesterol, mmol/l 5.9 ± 0.9

LDL, mmol/l 4.1 (0.9)

HDL, mmol/l 1.5 ±0.4

Triglycerides, mmol/l 1.3 (1-1.8)

Fasting blood glucose, mmol/l 5.7±1.4

Insulin, pmol/l 72 (51-104)

Serum lipid lowering medication, yes 610 (14.8)

Prevalent diabetes mellitus 426 (10.4%)

CRP mg/l 1.6 (0.7-3.4)

eGFR 77.1±15

Physical activity, total MET hours 78.5 (53-111)

Hormones

Estradiol, pmol/l 31.4 (18.4-56.5)

Testosterone, nmol/l 0.8 (0.6-1.1)

SHBG, nmol/l 57.5 (41.6-79.4)

FAI 1.4 (0.9-2.1)

DHEA, nmol/l 9.5 (6-.14.7)

DHEAS, nmol/l 1669.7 (1025.8-2582.3)

Androstenedione nmol/l 2.3 (1.7-3.2)
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Sensitivity Analysis

We performed a series of sensitivity analyses using imputed data. Firstly, we compared 
baseline characteristics of postmenopausal women who were not included in our study 
due to missing data on exposure and outcome (n=922) with women included in analy-
ses. Since waist circumference is a better measure of visceral adiposity, an important 
determinant of sex steroid levels and SHBG after menopause, and because NT-proBNP 
levels correlate with abdominal fat, we performed a sensitivity analysis substituting 
BMI with waist circumference. To account for the specific effects of lipid particles on 
NT-proBNP levels, we substituted total cholesterol (TC) with high-density lipoprotein 
cholesterol (HDL-C), triacylglycerol (TG) and low-density lipoprotein (LDL) . Thyroid 
stimulating hormone (TSH), physical activity, number of pregnancies, age of menarche 
and type of menopause (non-natural vs. natural) are associated with sex hormone levels, 
therefore, the models were further adjusted for these factors. Since DHEA showed col-
linearity with DHEAs, we performed a sensitivity analysis substituting DHEAs with DHEA. 
Furthermore, we restricted the analysis among women (i) who had NT-proBNP levels 
within age specific value for the diagnosis of heart failure as proposed by Januzzi et al, 
i.e. 50 to 75 years, 108 pmol/L; >75 years, 216 pmol/L) 17 and (ii) who had NT-proBNP 
levels > 125 pg/ml/14.78 pmol/l (30.7 % of our population) because this portion of 
women might have heart failure with preserved ejection fraction (HFpEF) or heart failure 
with mid-range ejection fraction (HFmrEF) according to the 2016 ESC Guidelines 18. Also, 
to explore whether the associations were independent of downstream hormones, we 

Table 2.4.1. Characteristics of the Study Population (continued)

Age at baseline, mean (SD), y 65.9±9

TSH mU/l 2 (1.3-3)

NT-proBNP, pmo/l 9.2 (5.3-16.8)

NT-proBNP, ng/l 77.8 (44.8-142.1)

Women-specific variables

Age at menopause, years¹ 48.7±5.6

Years since menopause 17.2±10.2

Menopause type, natural menopause¹ 2803 (68.2%)

Age at menarche, years 13.4 ±1.7

Number of pregnancies 2 (1-3)

Values are reported as number 9percentage) for categorical variables, and mean ± SD or median (25th-75th 
quartile) for continuous variables
¹Age at menopause and type of menopause were not available for all women, the present values are based 
on 4425 and 4497 respectively
* body mass index (BMI), dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), glo-
merular filtration rate (eGFR), free androgen index (FAI), High-density lipoprotein L (HDL), low-density lipo-
protein L (LDL), amino-terminal pro-brain natriuretic peptide (NT-proBNP), sex hormone binding globulin 
(SHBG), thyroid stimulating hormone (TSH), high-sensitivity C reactive protein (CRP)
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further adjusted for hormones including the downstream metabolites that might be 
casual intermediates. Effect modifications of sex hormones by BMI, age and years since 
menopause were tested by adding an interaction term in the final multivariable model 
in addition to performing stratified analysis. We preformed stratified analysis excluding 
women who had diabetes or were on antihypertensive therapy. Furthermore, to show 
the clinical relevance, we showed the associations of endogenous sex hormones and 
SHBG with NT-proBNP levels in tertiles for the 2nd Model. To study the relations across 
increasing tertiles, trend tests were computed by entering the categorical variables 
as continuous variables in the linear regression models. Additionally, we run the main 
analysis among subjects with available information on all covariates including 2582 
postmenopausal women.

Results

The mean age of the study population was 65.9 years (SD 9). Women were on average 
17.2 years (SD 10.2) into menopause, and the majority of women (68.2%%) experienced 
natural menopause (Table 2.4.1). There was strong positive correlation between DHEA 
and DHEAS (Spearman’s correlation coefficient: rs=0.73) and between DHEA and an-
drostenedione (rs =0.67), and moderate negative correlation between FAI and SHBG (rs 
=-0.58), FAI and TT (rs =0.62), and FAI and androstenedione (rs =0.41) (Supplemental 
Table 2). In addition, there was a weak negative correlation between SHBG and E2 (rs 
=-0.15) and a weak positive correlation between SHBG and testosterone (rs =0.21).

Estradiol and NT-proBNP levels

After adjusting for potential confounders and intermediate factors (Model 2) we did not 
observe significant associations between E2 and NT-proBNP levels (per 1 SD increase in 
estradiol levels, β= 0.014, 95% CI=-0.013, 0.040) (Table 2.4.2).

Androgens, Sex hormone-binding globulin and NT-proBNP levels

After adjustments for multiple confounders (Model 1), lower levels of TT (per SD 
increase in natural log transformed variable, β= -0.03, 95%CI=-0.054, -0.005), FAI (per 
unit increase in natural log transformed variable, β= -0.115, 95%CI=-0.141, -0.09), 
DHEAS (per SD increase in natural log transformed variable, β= -0.066, 95%CI=-0.092, 
-0.041), androstenedione (per SD increase in natural log transformed variable, β= -0.026, 
95%CI=-0.05, 0.002) and DHEA (per SD increase in natural log transformed variable, β= 
-0.053, 95%CI=-0.092, -0.041), and higher levels of SHBG (per SD increase in natural log 
transformed variable, β= 0.144, 95%CI=0.115, 0.172) were associated with higher levels 
of NT-proBNP. Further adjustment for upstream sex steroids did not affect the associa-
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tions of TT, FAI, DHEA, DHEAs and SHBG with NT-proBNP, but abolished the association 
between androstenedione and NT-proBNP levels (Table 2.4.2).

Sensitivity Analysis

The associations between TT, SHBG, FAI, DHEA and DHEAS and NT-proBNP levels 
remained significant after we applied the Bonferroni correction (p<0.007). There were 
significant differences in age, systolic blood pressure, BMI, hsCRP, prevalent T2D, statin 
and alcohol use, and smoking status among women included in our analysis and women 
that were excluded because of incomplete data on sex hormones and NT-proBNP. In 
sensitivity analyses, substituting BMI with waist circumference as a measure of adiposity, 
total cholesterol for other blood lipids, adjustment for DHEAs with DHEA in Model 2, 
adjusting further for serum TSH, number of pregnancies, age of menarche and type of 
menopause, or further adjustment for downstream sex hormones and excluding women 
who reported use of HRT, or exclusion of women who came non-fasting in the visit 
center did not affect the associations of sex steroid and SHBG with NT-proBNP levels. 
Also, the results did not change after exclusion of (i) 329 postmenopausal women with 
an NT-proBNP level above the age-specific cutoff value for the diagnosis of heart failure; 
(ii) 1234 women who had NT-proBNP levels > 125 pg/ml/14.78 pmol/l, (iii) 426 women 
who had diabetes; and (iv) 1022 women who used antihypertensive medications. In 
the stratified analysis, no significant interactions were found for sex steroids and SHBG 
with BMI, age or years since menopause. The results of endogenous sex hormones and 
SHBG in tertiles provided same conclusions as the analysis of sex steroids and SHBG as 
continuous variables (Figure 2.4.2A and Figure 2.4.2B). Furthermore, when restricting 
the analysis to women who had available information on all covariates he results did not 
change. Estimates for testosterone and DHEA had the same direction, however, were not 
significant probably due to loss of power.

Discussion

In this large population-based study of postmenopausal women free of clinical CVDs, 
lower levels of androgens (TT, FAI, DHEA and DHEAS) and higher level of SHBG were 
associated with higher levels of serum NT-proBNP, irrespective of known confounders 
(Figure 3). However, no consistent association was found between E2, AD and NT-
proBNP levels.

Androgens and NT-proBNP

Several studies suggest that testosterone has suppressive effect on natriuretic plasma 
levels. In line with our results on an inverse association between androgens and NT-
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proBNP, in a clinical trial of 51 women with hypoandrogenemia due to hypopituitarism, 
levels of NT-proBNP decreased after transdermal application of testosterone 19. Also, 
Chang et al., in a study of 682 young adult women age 35 to 49 years reported that 
free testosterone was inversely associated with NT-proBNP levels 6. Furthermore, Lam 
et al. in a study of 1798 premenopausal women and 181 postmenopausal women re-
ported inverse associations between FAI and NT-proBNP 9. Unlike previous population 
based-studies, which were included mainly young adult women, our study extends 
these findings to postmenopausal women and shows that the association between 
testosterone and NT-proBNP is independent of other sex steroids, including estradiol 
which in a downstream hormone and might be in the pathway between testosterone 
and NT-proBNP.

We show that other androgens such as DHEA and its derivate DHEAs are inversely 
associated with NT-proBNP levels in postmenopausal women, supporting the hypoth-
esis that androgens have inhibitory effect on NPs in older women. In a neonatal rat 
cardiocyte culture system, DHEA significantly inhibited BNP mRNA levels 12. Similarly, 
studies in men have reported inverse correlations between DHEAs and BNP. DHEA and 
its sulphate conjugate DHEAS are the major secretory steroidal products of the human 
adrenal glands 20. In either gender, serum level peaks of DHEA and DHEAs occur by 
the second decade and then declines steadily by an average of about 10%/decade 21. 
Mechanisms of action of DHEA are still to be described. DHEA(S) is converted to tes-
tosterone or 17β-estradiol and therefore it is unclear whether DHEA directly exerts its 

 

NT- proBNP 

Figure 2.4.3. Summary of study results
Androgens (testosterone, DHEA, DHEAS, FAI) were negatively associated with NT-proBNP levels (lower lev-
els of androgens higher NT-proBNP levels), SHBG was positively associated with NT-proBNP (higher levels 
of SHBG, higher levels of NT-pro-BNP), Estradiol was positively associated with NT-pro-BNP, however, the 
association was not statistically significant.
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effects or if it acts after conversion to these hormones. However, in our study we cor-
rected for levels of estradiol and testosterone, supporting an independent role of DHEA 
on NT-proBNP levels. Recent evidence shows that there are specific DHEA-bindings sites 
in the cardiovascular system, including the heart tissue 22 23. Therefore, DHEA might 
have a direct effect in the vascular system, and might play a role in the development 
of cardiovascular disease independent of its derivate. However, to date, little is known 
about the role of DHEA and DHEAs in the risk cardiovascular disease, including the 
risk of developing heart failure. In a sample of 942 postmenopausal women, although 
higher DHEAS levels were associated with several major cardiovascular risk factors, such 
as elevated total cholesterol and blood pressure, they were unrelated to the risk of fatal 
cardiovascular disease 23. Additional studies should be undertaken to further elucidate 
the exact mechanisms of how DHEA(S) might affects the levels of NT-proBNP and the 
risk of developing heart failure.

SHBG and NT-proBNP

We found positive association between SHBG and NT-proBNP levels, independent of 
potential confounding factors. The main role of SHBG is sex steroids transport within the 
blood stream to extravascular target tissues. Testosterone have higher SHBG binding 
affinity than estradiol, thus SHBG regulates balance between bioavailable testosterone 
and oestrogens. It has been hypothesized that SHBG plays an indirect role in rising NT-
pro BNP levels, by binding more testosterone which have negative effect on natriuretic 
peptides. Findings from Framingham Heart Study showed that each unit increase in log 
SHBG was associated with a 19% increase in NT-proBNP among men, and a 40% increase 
in NT-proBNP among young adult women, adjusting for clinical covariates 9 . However, in 
our study, positive association between SHBG and NT-proBNP remains significant after 
adjustment for potential confounders but also for TT, DHEA, DHEAS and E2, implicating 
that SHBG does not modify only the balance between circulating steroids, but might di-
rectly influence NT-proBNP levels. Indeed, in recent years, it has been shown that SHBG 
may directly mediate cell-surface signalling, cellular delivery and biologic action of sex 
hormones via activation of a specific plasma receptor 24-26.

Low levels of SHBG have been associated with increased cardiovascular risk in women, 
irrespective of menopause status 13 14. Our data and other evidence show that lower 
SHBG levels are associated with lower NT-proBNP levels in both pre- and postmeno-
pausal women. Natriuretic peptides have antiproliferative and vasodilator effects, as well 
as antagonism of the renin-angiotensin- aldosterone and adrenergic axes 27. Therefore, 
given the cardioprotective effects on NPs, future studies should explore whether lower 
natriuretic peptide concentrations may explain, in part, the excess cardiovascular risk 
associated with low SHBG concentrations.
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Estradiol and NT-proBNP

This is the first study to examine the association between endogenous estradiol levels 
and NT-proBNP in postmenopausal women, showing no association. To our knowledge, 
no study has examined whether endogenous estradiol levels are associated with NT-
proBNP in menopausal women, which would shed more light whether the decline in 
oestrogen levels after menopause would be, in part, responsible for the increased risk 
of cardiovascular disease observed after menopause. Female hormones are consid-
ered as important determinants of the lower risk of CVD observed in premenopausal 
women, while lack of oestrogens disadvantages men with regard to CVD risk. Therefore, 
menopause and drop in endogenous oestrogens, suggested that HRT might have an 
important cardio protective role in women 28.

In line with this hypothesis and in contrast with our findings, a clinical trial of 22 
healthy postmenopausal women, reported that administration of hormone replace-
ment therapy with transdermal estradiol produced a rise in plasma levels of BNP 29. Also, 
a study conducted in female rats reported that treatment with estradiol and proges-
terone stimulated atrial NP gene expression30. Oral oestrogen leads to an increase in 
SHBG, which binds more testosterone and therefore leads to an increase of NT-proBNP 
levels 4. In contrast to this, a population based study in 682 women showed no associa-
tion between oral oestrogen use and NT-proBNP levels 6. Also, results of Women’s Health 
Initiative showed that HRT in postmenopausal women was not cardio protective 7.

Body composition, sex steroids and NT-proBNP

Sex differences in body composition were identified as major determinant of metabolic 
profile and CVD risk differences among genders 2. Also, it is suggested that endocrine 
cardiac function is regulated by sex steroids. BNP/NT-proBNP levels are constantly 
higher in women than in men, while after menopause sex differences in NPs tend to 
decrease 2. Several studies reported negative correlation between NT-proBNP and BMI 
values, in healthy subjects, and also in subjects with heart failure 2. The majority of post-
menopausal women enrolled in our study were overweight (median BMI 27.5 kg/m² (SD 
4.6)), therefore, we performed sensitivity analysis by stratifying the analysis across the 
3 categories of BMI, (BMI<25, BMI 25-29.9, BMI ≥30 kg/m²), but the results were similar 
across strata of BMI.

Strengths and limitations

To the best of our knowledge, this is the first and most comprehensive study to examine 
the associations of estradiol, androgens and SHBG with NT-proBNP levels in a large sam-
ple of postmenopausal women, with consistent findings. Also, androgens are measured 
using chromatography-tandem mass spectrometry, which is at the moment considered 
to be a gold standard method 31. However, there are several limitations that need to be 
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taken into account. First, the cross-sectional design does not allow us to address the 
temporality of the observed associations. Therefore, we cannot draw any conclusions 
with regard to the causality of the observations. Second, we did not have measures 
of bioavailable estradiol in the RS, which could have strengthened our results. Also, E2 
was measured using an immunoassay with a detection limit of 18.35 pmol/L, which is 
considered suboptimal particularly in postmenopausal women. In our population 1502 
women (33.18 %) had values of E2 lower than 18.35 pmol/l. However, we performed 
sensitivity analysis using E2 tertiles instead of E2 as continuous variable, which provided 
similar results. Third, free T levels were not measured directly in the blood and therefore 
have to be interpreted with caution. Nevertheless, free T levels in this study were derived 
from the ratio of T to SHBG, which is considered a precise proxy for bioavailable T 32. 
Furthermore, NT-proBNP is hormonally inactive N-terminal portion of its pro-hormone, 
and we do not have measurement of BNP which is the active hormone. However, recent 
systematic reviews and meta-analyses demonstrated that both BNP and NT-proBNP have 
similar diagnostic and prognostic accuracy in CVDs 2. Finally, we found differences in 
baseline characteristics between participants included in our analysis and participants 
that were not. However, it has been shown that using a selected source population for a 
cohort study usually leads to bias toward the null, but may affect the generalizability of 
our results regarding mean sex hormone levels and NT-proBNP 33.

In summary, our findings support the hypothesis that higher androgens might be 
responsible for lower natriuretic peptides levels in postmenopausal women. Given the 
known cardioprotective effect of NPs, future studies should elucidate mechanisms of 
actions and to examine whether androgens levels are prospectively associated with 
NT-proBNP and risk of CVD, in particularly of heart failure, in postmenopausal women.

Clinical Perspectives

Findings from our study support the hypothesis that higher androgens, and not estradiol, 
might be responsible for lower natriuretic peptides levels in postmenopausal women. 
Considering that NT-proBNP levels are associated with risk of type 2 diabetes and CVD, 
our results may also suggest that androgens might be responsible for the change in 
risk of developing cardiometabolic outcomes after menopause. This raise a question, 
whether menopausal women might benefit more from androgen agonists/inhibitors 
than from oral oestrogens. Future studies should elucidate mechanisms of actions and 
to examine whether androgens levels are prospectively associated with NT-proBNP and 
risk of CVD, in particularly of heart failure, in postmenopausal women. Also, future stud-
ies should examine whether free estradiol, the active form of the hormone, is associated 
with NT-proBNP levels and risk of CVD in women.
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Abstract

Objective

Observational evidence indicates an inverse association between the levels of the 
most abundant hormone in the human body, dehydroepiandrosterone (DHEA) and its 
sulphate ester (DHEAs) and N-terminal pro B-type natriuretic peptide (NT-ProBNP). We 
aimed to generate estimates of the associations of DHEA and DHEAs (exposures) with 
NT-proBNP (outcome) that were free from confounding and reverse causation, and thus 
to assess the causal role of this endogenous sex hormone.

Methods

Serum DHEA, DHEAs and NT-proBNP were assessed in 7,390 men and women free of 
cardiovascular diseases from the prospective population-based Rotterdam study. DHEA, 
DHEAS and NT-proBNP were naturally log transformed. Regression coefficients and 95% 
confidence intervals (CI) were calculated from multivariable linear regression models 
adjusting for confounders to explore the cross-sectional association of DHEA and DHEAs 
with NT-proBNP. To investigate the causal association between DHEAs and NT-proBNP, 
allele score of exposure was used as an instrumental variable to perform a Mendelian Ran-
domization (MR) analysis using two-stage least squares (2SLS) method. Pleiotropic effect 
was evaluated through Egger plots. A pathway analysis was used to give a complementary 
information about biological causal association paths among these two hormones.

Results

In models adjusted for multiple confounders (age, sex, lifestyle and cardiovascular risk 
factors), high levels of DHEA (β=-0.146, 95%CI: -0.190; -0.101, p<0.001) or DHEAs (β=-
0.214, 95%CI: -0.262; -0.166, p<0.001) were associated with lower levels of NT-proBNP. 
Genetic risk score of DHEAs explained 0.75% and 29.39% variance of the circulating 
levels of NT-proBNP in crude and full adjusted models, respectively. The Mendelian 
Randomization analysis showed evidence for a causal association between DHEAs and 
NT-proBNP, with a causal coefficient of -0.450 (95% CI: -0.792; -0.107, p<0.010). Sex differ-
ences were observed with significant association only in women. A pathway analysis, to 
identify common networks, showed inflammatory and immunologic pathways linking 
genes associated with DHEAs and NT-pro-BNP.

Conclusions

The causal association between DHEAs and NT-proBNP observed in this study suggests 
new metabolic pathways linking DHEAs with NT-proBNP. Our results should stimulate 
future research to evaluate the potential role of DHEAs in prevention and management 
of chronic heart failure.
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Introduction

DHEA and DHEAs are the most abundant sex hormones with serum concentrations up 
to 20-fold higher than the other sex steroids1. Plasma levels of DHEAs increase after 
birth reaching the peak by the second decade of life, afterwards serum levels of DHEAs 
have a stable decline so, by the age of 80 years old, concentration drops to 10-20% of 
peak levels1. Emerging evidence indicates an association between low DHEAs, impaired 
longevity and common age-related diseases, including cardiovascular disease (CVD)2. 
Pooled estimates from several studies showed low DHEAs to be associated with a 47% 
higher risk of future CVD mortality events2. Furthermore, plasma levels of DHEAs are also 
decreased in proportion to the severity of heart failure (HF), which is the final common 
pathway of the majority of CVD3. B-type natriuretic peptide (BNP) and its hormonally in-
active N-terminal portion (NT-proBNP) are sensitive biochemical markers of HF, particu-
larly of left ventricular dysfunction and have similar diagnostic and prognostic accuracy 
in CVDs4. BNP is released from the myocardium in response to increased mechanical 
stress in order to maintain cardiac function by mediating vasodilation, natriuresis, and 
via its anti-fibrotic effects5.

Emerging evidence showed that endogenous sex hormones levels play a role in the 
regulation of natriuretic peptides (NP); oestrogens may exert a stimulating effect on the 
NP system, while androgens may exert an inhibitory effect on the NP system6. In line 
with previous evidence from observational studies, we have showed in the Rotterdam 
Study inverse associations of DHEA and DHEAs with serum NT-proBNP levels in post-
menopausal women without CVD7. Similarly plasma level of DHEAs was significantly 
inversely correlated with plasma levels of BNP independently of age and other clinical 
variables in subjects with HF1. In line with this, the experimental evidence from human 
heart showed that cardiac production of DHEA was suppressed in the failing heart3. 
Evidence from animals showed that DHEA significantly inhibited BNP mRNA levels in a 
neonatal rat cardiocyte culture system3.

However, due to observational nature of previous studies affected by the possibility 
of residual confounding and reverse causation, it is not possible to draw conclusion re-
garding the causal association between DHEAs and NPs. Mendelian randomization (MR) 
method may be used to study the causal associations in presence of such limitations. 
The method is considered as a ‘natural’ randomized control trial since it uses selected 
common genetic variants related to a specific exposure of interest as an instrumental 
variable to evaluate causality between exposure and outcome. Since genotypes are 
assorted randomly during meiosis, MR avoids the issue of reverse causality. In addition, 
the distribution of genetic variants is thought to be unrelated to confounders, a com-
mon source of false positives in epidemiological studies8. Although, the physiological 
function of DHEAs and its importance in maintaining health are poorly understood, 
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several common single nucleotide polymorphisms (SNPs) were associated with changes 
in gene expression levels, and the related genes are connected to biological pathways 
linking DHEAs with ageing9 10.

Therefore, we aimed to study the causal association between serum DHEA(s) and NT-
proBNP, in subjects free of cardiovascular diseases, using the MR approach of identified 
genetic variants combined into genetic risk score (GRS) as an instrumental variable.

Methods

Study Population

This study was conducted among participants of the prospective population-based 
Rotterdam Study (RS)11. RS is a study of individuals aged 45 and over living in the Om-
moord district of Rotterdam, the Netherlands. The rationale and design of RS have been 
described previously. In brief, all residents of the Ommoord district aged 55 or older 
were invited to participate (n=10,215). At baseline (1990-1993), 7,983 participants were 
included (RS-I). In 2000, an additional 3,011 participants were enrolled (RS-II), consist-
ing of persons living in the study district who had become 55 years of age. A second 
extension of the cohort was initiated in 2006, in which 3,932 participants aged 45 or 
older were included (RS-III). Follow-up visits were held every 3-5 years, with follow-up 
for a variety of diseases. The RS has been approved by the medical ethics committee 
according to the Population Study Act Rotterdam Study, executed by the Ministry of 
Health, Welfare and Sports of the Netherlands. Written informed consent was obtained 
from all participants11.

Population for Analyses

The present study includes data from individuals from the third visit of the first cohort 
of the RS (RS I-3), and from the first visits of the second (RSII-1) and the third cohort 
(RSIII-1). There were 11,732 subjects eligible for the analysis. Of those 4,342 participants 
were excluded because (i) information was not available on NT-proBNP (n=814), DHEAs 
(n=205) or on the genetic risk score (n=2,318); (ii) they had prevalent cardiovascular 
disease (coronary heart disease, stroke or HF) (n=947); and (iv) there was no information 
on history of cardiovascular disease (n=58). Finally, there were 7,390 participants left for 
the analysis (Figure 2.5.1).

Exposure and Outcome Measurement

DHEA and DHEAs were exposure variables. They were measured on a Waters XEVO-TQ-S 
system (Waters, Milford, MA, USA) using CHS™ MSMS Steroids Kit (Perkin Elmer, Turku, 
Finland). Inter-assay coefficients of variation of androstenedione, DHEAs and DHEA were 
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<6.5%. NT-proBNP levels were obtained from serum. After blood collection, samples 
were left to clot for 30 minutes and then centrifuged for 20 minutes at 3000 rotations per 
minute at 4ºC. Serum was stored at -80°C. NT-proBNP was measured using a commer-
cially available electrochemiluminescence immunoassay (Elecsys proBNP, F. Hoffman-La 
Roche Ltd., Basel, Switzerland) on an Elecsys 2010 analyser. Precision, analytical sensitiv-
ity and stability characteristics of the system have been previously described12.

Assessment of Covariates

At baseline interview, all participants provided information on current health status, 
medical history, medication use, alcohol intake, smoking and physical activity. History of 
cardiovascular disease was defined as the history of coronary heart disease (myocardial 
infarction, revascularization, coronary artery bypass graft surgery or percutaneous coro-
nary intervention) and was verified from the medical records of the general practitioner. 
Diabetes mellitus was defined as the use of blood glucose–lowering medications or a 
random non-fasting glucose >11.1 mmol/L13. Antihypertensive or antidiabetic therapy 
and statins were collected by questionnaire during home interview. Alcohol intake was 
assessed in grams of ethanol per day and grouped into 4 categories (0-0.99, 1-19.9, 20-
39.9 and ≥40 g/day); smoking status was assessed by asking participants whether they 
were current smokers of cigarettes, cigars, or pipe and were classified (yes/no). Physical 
activity was assessed with adapted version of the Zutphen Physical Activity Question-
naire14. Every activity mentioned in the questionnaire was attributed a MET-value ac-
cording to the 2011 Compendium described in detail elsewhere15. Blood pressure was 
measured in sitting position on the right upper arm with a random-zero sphygmoma-

 

Participants from the 
RS-1, RS-2 and RS-3 

cohorts 

N=11,732 

Participants excluded due to missing data on 
DHEAs GRS (n=2,318), NT-proBNP (n=814), 
DHEAs (n=205), CVD (n=58) or who had 
prevalent CVD at baseline (n=947) 

N=4,342 

Participants included in 
the final analyses 

N=7,390 

Figure 2.5.1. Flowchart for selection of study participants (n=7,390)
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nometer. Body mass index (BMI) was calculated as weight (kg) divided by height square 
(m2). Glomerular filtration rate (eGFR) was estimated using the simplified Modification 
of Diet in Renal Disease (MDRD) equation16. Thyroid stimulating hormone (TSH) was 
measured on the Vitros Eci (Ortho Diagnostics). Insulin, glucose, total cholesterol (TC), 
high-density lipoprotein cholesterol (HDL-C), triacylglycerol (TG) and C-reactive protein 
(CRP) were measured on the COBAS 8000 Modular Analyzer (Roche Diagnostics GmbH). 
Corresponding interassay coefficients of variations are as follows: TSH<13.2%, insulin 
<8%, glucose <1.4%, lipids <2.1% and CRP <16.9%. LDL-cholesterol level was estimated 
indirectly from measurements of total cholesterol, HDL and triglycerides by means of 
the Friedewald equation17. Total estradiol (TE) levels were measured with a radioimmu-
noassay and sex hormone binding globulin (SHBG) by means of the Immulite platform 
(Diagnostics Products Corporation Breda, the Netherlands). Minimum detection limit 
for estradiol was 18.35pmol/l. Undetectable estradiol was scored as 18.35pmol/l. Serum 
levels of total testosterone (TT) were measured with liquid chromatography-tandem 
mass spectrometry (LC-MS/MS). Corresponding interassay coefficients of variations for 
TE, SHBG and TT are <7%, <5%, and <5%. Free androgen index (FAI), calculated as (T/
SHBG)*100 is used as a surrogate measure of bioavailable testosterone (BT). All bio-
chemical parameters were assessed in fasting serum.

Genotyping

Genotyping was conducted in all three cohorts using the Illumina Infinium Human-
Hap550K Beadchip in RS-I and RS-II and the Illumina Infinitum HumanHap 610 Quad chip 
in RS-III at the Genetic Laboratory of the Erasmus MC, Department of Internal Medicine, 
Rotterdam, The Netherlands. Participants were excluded if they had excess autosomal 
heterozygosity, mismatch between called and phenotypic sex, or recognized as being 
outlier with identical-by-state clustering analysis. Moreover, SNPs with allele frequency 
≤1%, Hardy–Weinberg equilibrium p<10–5, or SNP call rate ≤90% were excluded. Impu-
tation was done with reference to HapMap release 22 CEU (Utah residents of northern 
and western European ancestry) using the maximum likelihood method implemented 
in Markov Chain based haplotyper (version 1.0.15).

Construction of DHEAs Genetic Risk Score (GRS)

We searched PubMed using key words ‘genome-wide association study’, ‘GWAS’, ‘DHEAS’, 
‘Dehydroepiandrosterone sulfate’, GWAS catalogue, and Genome- Wide Repository of 
Associations between SNPs and Phenotypes (GRASP). We identified two large genome-
wide association studies conducted on >14,846 individuals of European descent9 10. Nine 
SPNs identified from these GWAS were used to build the genetic risk score of DHEAs 
(rs148982377, rs11761528, rs2637125, rs7181230, rs2497306, rs2185570, rs740160, 
rs17277546 and rs6738028) (Supplemental Table 1). The effect allele (coded 0–2) was 
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the DHEAs raising allele. A weighted GRS was calculated by multiplying the number of 
risk alleles at each locus by the corresponding reported β coefficient from the previous 
GWAS and then summing the products18. The total score was then divided by the aver-
age effect size multiplied by 100 to rescale the scores to a range between 0 and 100. We 
could not identify genome-wide association studies published for DHEA, and therefore 
we could only build a genetic risk score for DHEAs.

Pathway analysis

To explore the pathways in which the genes identified by GWAS for DHEAs and NT-
proBNP may be related, we used Ingenuity Pathway Analysis (IPA) (http://www.ingenu-
ity.com/products/ipa/), which is a web-based functional analysis tool to identify the 
biological mechanisms, pathways, and functions most relevant to the genes of interest. 
To this end, we uploaded a list of all DHEAs genes and performed a core analysis with the 
default settings in IPA. We mapped these genes to biological functions or diseases. We 
further sought to determine whether these genes are enriched in specific networks link-
ing NT-proBNP and DHEAs to heart failure (or cardiovascular disease). The p-values are 
calculated using the right-tailed Fisher Exact Test and a p-value less than 0.05 indicates 
a statistically significant, non-random association.

Statistical Analyses

Cross-sectional Analyses
DHEA, DHEAs, NT-proBNP, hsCRP, 17-hydroxyprogesterone and cortisol levels were log-
transformed using a natural log to obtain normal distribution. Cross-sectional associa-
tion between log transformed continuous DHEA/DHEAs and NT proBNP was assessed 
using ordinal linear regression (OLR) models. Betas were calculated after adjusting for 
age, sex, interaction term between sex and DHEA/DHEAs (sex*DHEAs p=0.000 and 
sex*DHEA p=0.002), RS cohort, BMI, physical activity, smoking, alcohol, cholesterol, 
statin use, glucose, systolic blood pressure, antihypertensive therapy, type 2 diabetes 
(T2D), eGFR, hsCRP, 17-hydroxyprogesterone and cortisol. Additionally, to explore po-
tential sex differences we run the analysis stratified by gender.

Association of DHEAs Genetic Risk score and NT-proBNP
The MR approach is used to investigate the causality of associations between DHEAs 
and NT-proBNP. Since no SNPs genome-wide significant for DHEA have been published, 
we could not assess the causality between DHEA and NT-proBNP. In the current study 
we used the genetic risk score (GRS) of DHEAs (calculated based on nine publically avail-
able SNPs) as an instrumental variable (IV). Valid instrumental variable is a factor that is 
associated with the exposure, but is not associated with any confounder of the expo-
sure–outcome association, nor is there any pathway by which the IV can influence the 
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outcome other than via the exposure of interest/no pleiotropy19 (Figure 2.5.2). Given a 
continuous outcome (NT-proBNP) and assuming the linear associations between DHEAs 
and NT-proBNP without interaction, we estimated the casual association between GRS 
of DHEAs and serum NT-proBNP through a 2-stage least squares (2SLS) regression20. 
The 2SLS estimation proceeds by first fitting the regression of DHEAs (exposure) on the 
GRS of DHEAs (instrument), and the second step assesses the association of DHEAs with 
NT-proBNP (outcome) on the fitted values from the first-stage regression. Within these 
models, age, sex, RS cohort, BMI, physical activity, smoking, alcohol, total cholesterol, 
statin use, glucose, systolic blood pressure, antihypertensive therapy, T2D, glomerular 
filtration rate (eGFR), hsCRP, 17-hydroxyprogesterone and cortisol were included as 
covariates in order to generate estimates from the IV analyses that were comparable to 
those from the observational regressions. We also evaluated the instrument strength 
using F-statistics from the first-stage regressions, where F-statistics >10 has been used 
to indicate sufficient strength, and by R2 (%) as a measure of the percentage contribution 
of GRS to the variation of NT-proBNP levels. Standard MR analysis assume that genetic 
instruments only influence the outcome (i.e. NT-proBNP) through the exposure of inter-
est (serum DHEAs), however, DHEAs associated SNPs may influence serum NT-proBNP 
through pathways other than serum DHEAs concertation. We therefore tested the 
robustness of our findings by MR Egger regression which helps to control for biases 
though horizontal pleiotropy. The slope of the weighted regression line provides an 
estimate of the causal effect of the exposure on the outcome free from the effects of 
horizontal pleiotropy. While the intercept in the regression is a function of extent of 
directional pleiotropy in the data aggregated across all the different variants used in 
the analysis, and statistical tests of the degree to which the intercept differs from zero 
are using to test the overall presence of directional pleiotropy in the data21. In case of 
significant intercept (and therefore evidence of directional effects) the estimate from 
the Eggers would be a better estimate, however, if no evidence of directional pleiotropy 
then the 2SLS is better powered.

To validate the causal estimate derived from the 2SLS method, we obtained MR 
estimations using the Wald ratio method. As follows, two normal linear regressions 
were performed: regression of DHEAS on GRS of DHEAS (the first-stage regression) and 
regression of NT-proBNP on GRS of DHEAs (reduced-form regression). The ratio of these 
estimates (the Wald estimate) and corresponding confidence intervals were obtained 
using suest and nlcom commands in Stata22, this estimations were adjusted by age, sex 
and RS cohort. A multiple imputation (chained equations method) was applied for miss-
ing data. For most baseline clinical variables, <2% was missing, whereas this was up to 
12% and 26% for self-reported variables such as physical activity and alcohol intake, 
respectively. All statistical analyses were carried out using Stata/IC statistical Software, 
version 15 and MR package of R software.
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Results

Baseline characteristics of the population used for analysis are shown in Table 2.5.1. 
Median age (Q1-Q3) of participants was 63 (58-71) years, and 59.9% of included subjects 
were women. The median levels of NT-proBNP were 7.9 pmol/l (Q1=4.3; Q3=14.9), DHEA 
9.6 nmol/l (Q1=6.2; Q3=15.0), DHEAs 2,099nmol/l (Q1=1,257; Q3=3,365) and DHEAs GRS 
48.2 (Q1=45.1; Q3=50.8).

Observational associations between DHEA, DHEAs and NT-proBNP

Based on 7,390 subjects, we observed an inverse association between serum DHEAs lev-
els and NT-proBNP levels. In crude model for each one-point increase in levels of natural 
log transformed DHEAs, NT-proBNP levels decreased -0.395 (β; 95%CI: -0.423; -0.366; 
p<0.001). In multivariable linear regression model (adjusted for age, sex, interactions 
of DHEAs*sex, RS cohort, BMI, physical activity, smoking, alcohol, cholesterol, statin use, 
glucose, systolic blood pressure, antihypertensive therapy, diabetes mellitus type 2, 
eGFR, hsCRP, 17-hydroxyprogesterone and cortisol) for each one-point increase in levels 
of natural log transformed of DHEAs, NT-proBNP levels decreased -0.214 (β; 95%CI: 
-0.262; -0.166; p<0.001) (Table 2). Stratification by gender did not materially change the 
results. Among both, men and women in fully adjusted models, high levels of serum 
DHEAs were associated with low levels of NT-proBNP levels (Supplemental table 2). 
Furthermore, in fully adjusted model for each one-point increase in levels of natural 
log transformed DHEA, NT-proBNP levels decreased by -0.146 (β; 95%CI: -0.190; -0.101; 
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Figure 2.5.2. Assessing the causality of DHEAS and NT-proBNP levels
(1) GRS of DHEAs is associated with DHEAs (exposure)
(2) GRS of DHEAs is not associated with measured or unmeasured confounders
(3) GRS of DHEAs is only associated with NT-proBNP (outcome) through the exposure
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p<0.001), also, gender stratification did not yield any changes (Supplemental table 3). 
Assumptions of linearity, homoscedasticity and normality were assessed; but no major 
violations were observed.

Causal estimates for the effect of DHEAs genetic risk score on NT-proBNP levels

A weighted gene score composed of 9 genetic variants for elevating DHEAs was used as 
the genetic instrument. DHEAs GRS was strongly associated with circulating NT-proBNP 
levels, explaining on average 0.75% and 29.39% of NT-proBNP variation, in crude and 
adjusted models, respectively, with F-statistics=58.26 (Table 2.5.2), indicating that GRS 
is unlikely to be affected by weak instrument bias. Neither individual genetic variants 

Table 2.5.1. Characteristics of study population.

Characteristics Median
(Q1-Q3)/ n (%)

Characteristics Median
(Q1-Q3)/ n (%)

Age (years) 63 (58-71) Health indicators

Sex (female) 4,431 (59.96)

Health behaviours

Body mass index (kg/m2) 27 (24-29) Systolic blood pressure (mmHg) 138 (125-152)

Smoking (yes) 1,528 (20.68) Diastolic blood pressure (mmHg) 79 (71-86)

Alcohol intake (g/day) Total cholesterol (mmol/l) 5.8 (5.1-6.4)

0-0.99 2,541 (34.38) HDL-C (mmol/l) 1.4 (1.1-1.7)

1-19.9 2,559 (34.63) Triglycerides in serum (mmol/l) 1.3 (1.0-1.8)

20-39.9 1,890 (25.58) Fasting blood glucose (mg/dl) 5.5 (5.1-6.0)

≥40 400 (5.41) Insuline (pmol/l) 71 (50-103)

Physical activity (total MET hours) 70 (41-103) hs-CRP (mg/ml) 1.6 (0.6-3.5)

Hormones eGFR (mL/min/1.73m2) 80 (69-90)

Estradiol (pmol/l) 63 (25-103) Antihypertensive use (yes) 2,085 (28.21)

Testosterone (nmol/l) 1.3 (0.7-15.1) Serum lipid lowering medication (yes) 980 (13.26)

SHBG (nmol/l) 52 (38-73) Prevalent diabetes mellitus 781 (10.57)

DHEA (nmol/l) 9.6 (6.2-15.0)

DHEAs (nmol/l) 2,099 (1,257-3,365)

DHEAs GRS 48.2 (45.1-50.8)

Androstenedione 2.7 (2.0-3.6)

17-hydroxyprogesterone (nmol/l) 1.5 (0.8-2.7)

NT-proBNP 7.9 (4.3-14.9)

Values are presented absolute value and percentage for categorical variables, and median (25th-75th quar-
tile) for continuous variables.
Abbreviations: HDL=high density lipoprotein cholesterol; hs-CRP=high-sensitivity C reactive protein; 
eGFR=glomerular filtration rate; SHBG= sex hormone binding globulin; DHEA=dehydroepiandrosterone; 
DHEAs=dehydroepiandrosterone sulfate; DHEAs GRS= dehydroepiandrosterone sulfate genetic risk score; 
TSH=thyroid stimulating hormone; NT-proBNP=amino-terminal pro-B-type natriuretic peptide.
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nor the gene score were associated with potential confounders including sex, age 
and BMI (Supplemental Table 4). Also, using ordinal lineal regression model adjusted 
by age, sex and RS cohort, we investigated the association between individual DHEAs 
SNPs and NT-proBNP and none of the SNPs was statistically significant at p-value<0.05 
(Supplemental Table 5). In the MR analysis, applying 2SLS approach in the entire study 
group, using DHEAs genetic risk score as the instrumental variable, significant causal 
association was observed between DHEAs and NT-proBNP levels, either in the crude 
or adjusted analysis. Genetically predisposed higher levels of DHEAs were associated 
with decreased serum NT-proBNP levels [crude model β=-0.530 (95%CI:-0.863; -0.198; 
p=0.002) and adjusted model β=-0.450 (95%CI:-0.792; -0.107; p=0.010)] (Table 2). As in 
the observational analysis, we found significant interaction between DHEAs and sex we 
run the 2SLS analysis separate for men and women. After stratification by sex, in both 
men and women, results were similar to overall findings. However, in men the value of F 
statistics the GRS of DHEAs was close to value considered as a weak instrument (F <10), 
which could be due to low power, as we confirmed in the power calculation analysis. 
We applied an extension of MR, Eggers regression to test for horizontal pleiotropy. The 
intercept of the MR-Egger regression captures the average pleiotropic effect across all 
genetic variants. None of the analyses performed had a significant intercept indicating 
no directional pleiotropy.

Pathways analysis

The IPA core analysis was performed to determine the canonical pathways that link genes 
associated with NT-proBNP and DHEAs with heart failure and its related phenotypes 

Table 2.5.2. Summary statistics describing observational and causal relationship DHEAs and NT-proBNP 
(n=7,390)

Method β SE Error 95% CI p-value F-statistics R2

Overall Crude Model

OLR -0.395 0.014 -0.423; -0.366 0.000 ---- 0.0898

2SLS -0.530 0.169 -0.863; -0.198 0.002 56.02 0.0075

Overall Adjusted Model

OLR -0.214 0.024 -0.262; -0.166 0.000 ---- 0.3252

2SLS -0.450 0.174 -0.792; -0.107 0.010 58.28 0.2939

Coefficients represent the decrease in log-NT-proBNP for each unit increase in log-DHEAs.
Adjusted model: age, sex, sex*DHEAs, cohort, BMI, physical activity, smoking, alcohol, total cholesterol, 
statin use, glucose, systolic blood pressure, antihypertensive therapy, diabetes mellitus type 2, glomerular 
filtration rate (eGFR), hsCRP, 17-hydroxyprogesterone and cortisol; DHEAs, NT-proBNP, hsCRP, 17-hydroxy-
progesterone and cortisol levels were log-transformed using a natural-log.
Abbreviations: OLR= Ordinal lineal regression (Observational analysis); 2SLS=Two-stage least squares re-
gression; DHEAs=dehydroepiandrosterone sulfate; NT-proBNP=amino-terminal pro-B-type natriuretic pep-
tide; BMI=body mass index; eGFR: glomerular filtration rate; hs-CRP=high-sensitivity C reactive protein.
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(Supplemental Table 7). This analysis indicated that the studied genes are directly or 
indirectly linked with inflammatory-related pathways and immunological diseases. We 
further generated common networks linking the genes associated with NT-proBNP and 
DEHAs to heart failure and its related phenotypes. As shown in supplementary table, 
these two are both linked by NPPA and NPPB genes from natriuretic peptide to ARPC1A 
gene from DHEAs indicating potential mechanisms explaining the association between 
NT-proBNP and DHEAs. Indeed, NPPA and NPPB are associated with cardiovascular mor-
bidities as acute and chronic heart failure, atrial fibrillation and arrhythmia.

Discussion

Overall, in this large population-based study among individuals free of CVD we found 
statistically significant inverse associations between DHEA and DHEAs and serum NT-
proBNP. In Mendelian randomization approach genetically predisposed higher levels 
of DHEAs were associated with lower NT-proBNP concentrations; therefore, providing 
evidence for potential causal, inverse association between DHEAs and NT-proBNP.

Our findings complement the preceding publication from the RS, where cross-
sectional data from postmenopausal women free of CVD disease, have shown inverse 
association between DHEA and DHEAs and serum NT-proBNP7. Also, our results are in 
line with previous observational data. Several epidemiological studies have demon-
strated an association between low serum levels of DHEAs with elevated CVD risk23 24, 
cardiovascular morbidity25-27, coronary artery disease 28 29 and vascular atherosclerotic 
disease30. Moriyama et al. reported positive association between DHEAs levels and left 
ventricular ejection fraction (LVEF), as well as inverse association with BNP levels in an 
Asian population, independently of age and other clinical variables1. Also, Kawano et al. 
showed DHEAs levels to increase upon improvement of ventricular function in patients 
undergoing HF treatment31. It has also been reported that DHEAS can be produced in 
cardio myocytes of structurally healthy hearts, but not in failing hearts32.

Despite increasing evidence suggesting its beneficial cardiovascular effects, an in-
tracellular steroid hormone receptor for DHEA has not been identified3. Recent reports 
suggested specific DHEA-binding sites in cardiovascular tissue33 34, and that this putative 
receptor is present in the rat heart34. However, it is unclear if DHEA directly exerts its 
effects or if it acts after conversion to testosterone/17β-estradiol, via binding specific 
receptors for testosterone and 17β-estradiol that are present in the heart35. The inverse 
association between DHEAs and NT-proBNP can be explained by the opposite biological 
effect they produce. DHEA and DHEAs may play a beneficial role in cardiovascular system 
through modulation of several processes such as nitric oxide production stimulation, 
oxidation stress inhibition, prevention of vascular remodelling, stimulated vasodila-
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tion36. Conversely, increased NPs production at both auricular and ventricular level, and 
progressively according to ventricular dysfunction, has been previously evidenced in 
patients with HF, which is in turn associated with increased oxidative stress, that might 
alter the electron transport mechanism at P450C17 cytochrome level, selectively sup-
pressing 17,20 lyase enzyme activity, resulting in decreased DHEAs serum levels 23.

Recently, nine common genetic variants were associated with serum DHEAs, suggest-
ing its key role in aging mechanisms37. Genes at or near these genetic variants include 
ARPC1A, BCL2L11, ZKSCAN5, ZNF789, TRIM4, CYP2C9, BMF and  SULT2A1. These genes 
have various associations with steroid hormone metabolism co-morbidities of ageing 
including type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic 
metabolism, and zinc finger proteins—suggesting a wider functional role for DHEAs 
than previously thought. Using DHEAs genetic risk score as an IV, our findings suggest 
that genetically predisposed higher DHEAs concentrations are inversely associated with 
NT-proBNP levels. Therefore, there might be a causal association between DHEAs and 
NPs. Still, the common biochemical pathways that link the metabolism of these two hor-
mones are largely unknown, and should further be investigated. However, our pathways 
analysis shown common biological paths linking DHEAs and NT-pro-BNP in special for 
NPPA and NPPB from natriuretic peptide with ARC1A from DHEAs, with multiple cardio-
vascular morbidities. (Supplemental figure 3)

To the best of our knowledge, this is the first study to examine the causal association 
between DHEAs and NT-proBNP levels in a large population based sample of CVD free 
men and women. Also, DHEA and DHEAs are measured using chromatography-tandem 
mass spectrometry, which is at the moment considered to be a gold standard method38. 
Although MR is considered as a flexible and robust statistical method, there is a number 
of MR limitations which need to be considered, also, the limitations of the observational 
part of our analysis merits further discussion. First, in the RS, serum BNP levels were 
not measured, but solely its inactive precursor NT-proBNP. However, recent systematic 
reviews and meta-analyses demonstrated that both BNP and NT-proBNP have similar 
diagnostic and prognostic accuracy in CVDs4. Second, there were no publically available 
SNPs on DHEA, therefore, we were not able to calculate GRS of DHEA and we could not 
study the causal association between DHEA and NT-proBNP. Also, within the RS we did 
not identify any SNPS associated with serum DHEA. However, DHEAs is more stable sul-
phate ester of DHEA, and it can be converted back to DHEA by steroid sulfatase, which 
can be considered a good proxy of the association between DHEA and NT-proBNP as 
confirmed in our regression analysis (cross-sectional associations between DHEA and 
DHEAs and NT-proBNP were in line)39. Third, calculation of allele score is considered to 
be a good approach to avoid weak IV bias for reasons and also may increase the power 
and simplicity18. However, due to complex biology, the effects of all the variants in an 
allele score may not be well known, the instrumental variable assumptions may not 
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be satisfied for all the variants18. Weakly associated instruments (F statistics < 10) can 
bias causal estimates towards the observational estimate for one-sample MR. Indeed, 
the strength of the GRS as an instrument, measured by the F statistic was satisfactory 
overall, and in females, but in men F statistics was close to 10 indicating that in males, 
DHEAS GRS might be a weak instrument. However, we consider this could be due to that 
the association of androgens with NT-pro-BNP levels are more robust in women than 
men, as has been previously reported, and low power, as we confirmed in the power 
calculation analysis. Fourth, an important assumption of Mendelian randomization is 
that the genetic variant must mediate its effect on outcome only via the risk factor, i.e., 
the genetic variant shows no pleiotropic effects. Therefore, this assumption cannot be 
proven formally in practice because of incomplete knowledge of the underlying biol-
ogy. However, we applied an extension of MR approach: MR Egger regression, to test for 
the causal effect free of pleiotropy. In simple words, provided the underlying assump-
tions are met, the slope of the MR Egger regression analysis should yield an estimate 
of the causal effect of DHEA on NT-proBNP that is free from any confounding effects 
due to horizontal pleiotropy. However, it is important to mention that the validity of MR 
Egger regression rests on the ‘INSIDE assumption’ (INstrument Strength is Independent 
of Direct Effect) which states that across all instruments there should be no correlation 
between the strength with which the instrument proxies the exposure of interest, and 
its degree of association with the outcome via pathways other than through the expo-
sure40. This is a weaker requirement than the exclusion restriction criterion in normal 
MR which postulates that SNPs may only affect the outcome (NT-proBNP) through the 
exposure of interest (serum DHEAs), and so MR Egger regression is likely to be more 
robust to horizontal pleiotropy than standard MR approaches, although this appears 
to come at the cost of decreased power to detect a causal effect in one sample MR40. 
However, the MR-Egger intercept indicated no presence of horizontal pleiotropy.

Conclusions

In cross-sectional analysis DHEA and DHEAs were significantly inversely associated with 
serum NT-ProBNP levels. Causal association we have observed between DHEAs and NT-
proBNP suggests a new metabolic pathway linking DHEAs with NT-proBNP, which merits 
detailed experimental investigation in the future. Altering the serum DHEAs might play 
an important role in prevention and management of chronic heart failure, therefore, 
after exploring the biology behind our findings; clinical studies shall address health 
benefit of modifying serum DHEAs in subjects with heart failure.
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Abstract

Objective

We aimed to examine whether total life expectancy and life expectancy with and without 
type 2 diabetes differs between smokers and non-smokers, and between normal-weight 
smokers and overweight or obese ex-smokers.

Methods

10 738 participants aged 50+ years old were included from the population-based Rot-
terdam Study. Multistate life tables were developed to calculate life expectancy for indi-
viduals who were (i) current, former and never smokers as well as for (ii) normal-weight 
current smokers, overweight and obese ex-smokers.

Results

Compared to never smokers, currently smoking men at the age of 50 years, lived 6.3 
years fewer overall, of which 0.9 years fewer with type 2 diabetes; whereas current 
smoker women lived 5. years fewer overall of which 0.4 years more with type 2 diabetes. 
Obese and overweight former smoker men lived 4.8 and 4.0 years longer than normal-
weight current smoking men, of which 4.7 and 1.6 years longer with type 2 diabetes, 
respectively. For women, obese and overweight ex-smokers lived 9.2 and 8.0 years 
longer than their current normal-weight counterparts, of which 7.8 and 4.6 years longer 
with type 2 diabetes, respectively.

Conclusions

In our study, the benefits of quitting smoking outweigh the risk of weight gain in terms 
of overall life expectancy, but a great part of this increased life expectancy is spent with 
type 2 diabetes. Due to the increased risk of type 2 diabetes, people who quit smok-
ing and gain weight may be a group to target for proactive type 2 diabetes prevention 
strategies.
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Introduction

Smoking is the leading avoidable cause of death in the world by killing around 6 million 
people a year1. Besides the well-documented risk for cancer and cardiovascular disease 
from smoking, a recent meta-analysis reported a 37% increased risk of developing type 
2 diabetes (T2D) for current smokers compared to never smokers2. Also, studies evalu-
ating the association between smoking and life expectancy have shown that current 
smokers live shorter compared to nonsmokers, with a reduction of 9 years3. However, 
despite declines in smoking rates in the last decades, more updated scientific evidence 
is needed, considering that the absolute number of smokers is increasing along with 
improvements in prevention and treatment of T2D4.

The beneficial effects of smoking cessation in reducing the risk of disease and in pre-
venting T2D is supported by a large amount of evidence5 6. However, smoking cessation 
is often accompanied by weight gain, with various studies reporting average increases 
of 4–8 kg, but with 10% to 13% of quitters gaining at least 11 kg 7 8. Consequently, post 
smoking cessation weight gain is reported among smokers who have tried to quit as 
the main cause for their relapse, and among women, as the main reason for not trying 
to quit9 10. This increase in adiposity could blur the benefits of smoking cessation and 
paradoxically increase the risk of having T2D11. In addition, overweight increases the risk 
of other diseases such as cardiovascular diseases mortality12. Therefore, it is of interest 
to examine which is least detrimental with regard to risk of T2D and mortality; being a 
normal-weight smoker or to quit smoking and possibly become an overweight or obese 
ex-smoker? Previous studies have reported that, compared to current normal-weight 
smokers, overweight or obese ex-smokers are at lower risk of mortality13-15. No study 
to date has examined how incidence of diabetes is different between normal-weight 
smokers and overweight or obese ex-smokers. Further, there is no information about 
the burden of T2D associated with smoking cessation and obesity, and their combined 
net effect on mortality and life expectancy, which would help to shape health policy, 
effective interventions and accurate projections of future health-care costs.

Using data from a population-based study of subjects 45+years, we evaluated the im-
pact of smoking status on overall life expectancy and years lived with and without T2D. 
Further, we investigated whether risk of T2D and mortality, and consequently total life 
expectancy and life expectancy with and without T2D differed between normal-weight 
smokers and overweight/obese ex-smokers.
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Methods

Assessment of Smoking Status and Obesity

Information on smoking behaviour was obtained using a computerized questionnaire 
during the home visit. Participants were classified as current smokers, former smokers, 
or never smokers. Current smokers were participants who answered yes to the question: 
“are you currently smoking?” Former smokers were participants who answered no to this 
question but who positively answered the question: “are you a former smoker?” Height 
and weight at baseline were measured in our research center. BMI at baseline was cal-
culated as weight in kg/height in m2. We defined three BMI categories based on World 
Health Organization guidelines16: normal weight, BMI of 18.5 to 24.9 kg/m2; overweight, 
BMI of 25 to 29.9 kg/m2; and obese, BMI greater than or equal to 30 kg/m2.

Ascertainment of Type 2 Diabetes

The participants were followed from the date of baseline centre visit onwards. Cases of 
T2D were ascertained at baseline and during follow-up through: (i) active follow-up us-
ing general practitioners’ records, (ii) glucose hospital discharge letters and (iii) glucose 
measurements from RS visits that take place approximately every 4 years17. T2D was 
defined according to recent WHO guidelines, as a fasting blood glucose ≥ 7.0 mmol/L, a 
non-fasting blood glucose ≥ 11.1 mmol/L (when fasting samples were absent), or the use 
of blood glucose lowering medication. Information regarding the use of blood glucose 
lowering medication was derived from both structured home interviews and linkage 
to pharmacy records17. At baseline, more than 95% of the population was covered by 
the pharmacies in the study area. Two study physicians independently adjudicated all 
potential events of T2D. In case of disagreement, consensus was sought with an endo-
crinologist. Follow-up data was complete until January 1st 2012.

Follow up for Mortality

Mortality data were obtained by notification from the municipal administration. Data 
on all-cause mortality and living status were updated until August 1st 2016. Participants 
were followed from the first day they entered the study till the day of death, the day of 
lost to follow-up or the last date of contact, whichever came first.

Information on Study Population, Population for Analyses and Assessment of Potential 
Confounders and Intermediates is presented in the supplementary material.

Data Analysis

We created multistate life tables to calculate the differences in life expectancy and years 
lived with and without T2D by sex in: (i) current, former and never smokers, as well for (ii) 
normal-weight smokers, overweight ex-smokers and obese ex-smokers. We considered 
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three different health states: free of T2D, T2D, and death. Participants could experience 
the following transitions: from free of T2D to T2D, from free of T2D to death, and from T2D 
to death. No backflows were allowed, and only the first entry into a state was considered.

To obtain transition rates, we first calculated the overall age and sex-specific rates 
for each transition. Next, we calculated the prevalence of (i) current, former and never 
smokers and, of (ii) normal-weight smokers, overweight and obese ex-smokers, by 10-y 
age groups and sex , and separately for subjects with and without diabetes. Hazard 
ratios (HRs) comparing participants who were (i) current and former smokers with never 
smokers, and participants who were (ii) overweight and obese ex-smokers with normal-
weight smokers, were calculated using Poisson regression (“Gompertz” distribution) 
in 2 models. Model 1 adjusted for age, education level, alcohol intake (continuous), 
physical activity (continuous), diet quality score (ordinal), coffee intake and cohort (I, 
II and III) and model 2 additionally adjusted for the following potential intermediates: 
systolic blood pressure, cholesterol levels, antihypertensive medication, statin use and 
comorbidities (prevalent cardiovascular disease (CVD), cancer and chronic obstructive 
pulmonary disease (COPD)). For the analysis on current, former and never smokers, 
we also added BMI in the second model. In our data, time since quitting smoking was 
not associated with diabetes risk, therefore we did not adjusted for it in our models. 
Finally, we calculated three sets of transition rates for each category using (i) the overall 
transition rates, (ii) the adjusted HRs for T2D and mortality, and (iii) the prevalence of 
smoking and smoking by BMI categories by presence of T2D. Similar calculations have 
been described previously18.

The multistate life table started at age 50 years and closed at age 90 years. Multiple 
imputations were performed in case of missing covariates. Statistical analyses were 
conducted using IBM SPSS, version 21 (IBM Corp) and STATA, version 13 for Windows 
(StataCorp). We used Monte Carlo simulation (parametric bootstrapping) to calculate 
the confidence intervals of our life expectancy estimates with @RISK software (Palisade) 
10 000 runs19.

Results

Baseline characteristics

The final study population consisted of 10 738 individuals: 4 615 men and 6 123 women 
as shown in Table 3.1.1. In total, we observed 884 incident diabetes events and 3 484 
overall deaths during 14 years of follow-up. The mean age (standard deviation) of the 
population was 62 (SD=8.2) (Table 3.1.1). For the analysis on overweight or obese for-
mer smokers and normal-weight current smokers, there were 363 incidence T2D cases 
and 934 deaths.
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Smoking status, diabetes incidence, mortality and life expectancy

Diabetes incidence and mortality
The association between smoking categories and the risk of incident type 2 diabetes and 
mortality is shown in Table 3.1.2. In multivariable adjusted model, current smoking, but 
not smoking cessation, was associated with an increased risk of T2D in men 1.52 (95% 
CI, 1.06, 2.18) and women 1.54 (95% CI, 1.2, 1.96) compared to never smoking. Among 
those free of T2D, compared to never smokers, current but not former smokers, had an 
increased risk of mortality among men 1.98 (95% CI, 1.54, 2.55) and women 2.17(95% CI, 
1.82, 2.58). Among those with T2D, the HRs for mortality were 2.81 (95% CI, 1.74, 4.54), 
and 1.42 (95% CI, 1.0, 2.03) for current smoker men and women, respectively, relative to 
never smokers (Table 3.1.2).

Table 3.1.1. Baseline characteristics of 10 738 participants

Characteristics Men (n= 4 615) Women (n=6 123)

Age, mean (SD), y 61.6 (8.0) 62.3 (8.8)

Type 2 diabetes, Yes (%) 662 (14.3) 651 (10.6)

Education, No. (%)

Primary 430 (9.3) 926 (15.1)

Lower 1310 (28.4) 3072 (50.2)

Intermediate 1697 (36.8) 1407 (23.0)

Higher/university 1178 (25.5) 718 (11.7)

Smoking Categories, Yes. (%) 709 (15.4) 2581 (42.2)

Never smoker

Former smoker 2709 (58.7) 2328 (38.0)

Current smoker 1197 (25.9) 1213 (19.8)

Smoking/BMI categories, Yes. (%) 385 (8.3) 441 (7.2)

Current Normal weight

Former Overweight 1949 (42.2) 1335 (21.8)

Former Obese 848 (18.4) 1089 (17.8)

Physical activity (METhours/week) 65.0 (45.4) 82.1 (49.7)

Diet quality score, mean (SD) 53.4 (9.9) 57.0 (10.2)

Coffee intake g/day, mean (SD) 529.4 (293.1) 456.3 (261.3)

Systolic blood pressure (mm/Hg), mean (SD) 142.4 (39.1) 140.3 (39.2)

Serum total cholesterol (mmol/l), mean (SD) 5.5 (0.9) 5.9 (1.0)

Anti-hypertensive medication use, Yes (%) 1516 (32.8) 2027 (33.1)

Body mass index, BMI, mean (SD), kg/m2 27.1 (3.7) 27.5 (4.6)

Alcohol, mean (SD), g/day 13.5 (18.4) 7.8 (12.3)

Prevalent Cancer, Yes (%) 622 (13.5) 696 (11.4)

Prevalent COPD, Yes (%) 281 (6.1) 284 (4.6)

Prevalent CVD, Yes (%) 787 (17.0) 449 (7.3)
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Total life expectancy and life expectancy with and without diabetes
Compared to never smoker men, the total life expectancy of 50-y-old men in the current 
smoking group was 6.3 years (95% CI, -10.2, -2.7) shorter and for women, the difference 
was 5.0 (95% CI, -7.2, -3.3) years shorter (STable 1). For both men 5.4 (95% CI, -8.9, -2.9) 
and women 5.4 (95% CI, -7.2, -3.5), current smoking was associated with fewer years 
lived without diabetes, but not with years lived with diabetes. Moreover, compared to 
never smokers, former smoker men, but not women lived 1.5 (95% CI, -4.0, -0.2) fewer 
free of T2D.

Smoking status by BMI categories, diabetes incidence, mortality and life 
expectancy

Diabetes incidence and mortality
The association between smoking categories by weight status and the risk of diabetes 
and mortality among men and women is shown in Table 3.1.3. Obese ex-smoker men 
1.89 (95% CI, 1.15, 3.12) and women 2.19 (95% CI, 1.3, 3.68) had an increased risk of 
developing T2D, compared to normal-weight current smokers. Among those free of 
T2D, overweight ex-smoker men 0.62 (95% CI, 0.48, 0.78) and women 0.4(95% CI, 0.29, 
0.55), as well as obese ex-smoker men 0.5 (95% CI, 0.35, 0.71) and women 0.36 (95% CI, 
0.25, 0.51) had a reduced risk of mortality compared to normal-weight current smokers 

Table 3.1.2. Hazard ratios for incident type 2 diabetes (T2D) and death among categories of smoking.*
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Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; T2D, Type 2 Diabetes, BMI, Body Mass Index.
*Age 50 and over at start of follow-up
a Adjusted for age, cohort, alcohol intake, education, coffee, physical activity and diet quality score.
b �Adjusted for age, cohort, alcohol intake, education, coffee, physical activity, systolic blood pressure, serum 

total cholesterol, anti-hypertensive medication use, statin use, BMI, diet quality score, and comorbidities.
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(Table 3.1.3). Also among those with T2D, obese ex-smoker men 0.44 (95% CI, 0.27, 0.73) 
and women 0.34 (95% CI, 0.15, 0.73) and overweight ex-smoker men 0.51(95% CI, 0.34, 
0.78) and women 0.32 (95% CI, 0.15, 0.7) had a reduced risk of mortality (Table 3.1.3).

Total life expectancy and life expectancy with and without diabetes
Compared to normal-weight current smoker men, the total life expectancy of obese and 
overweight ex-smoker men, was 4.8 (95% CI, 3.4, 5.9) and 4.0 (95% CI, 3.2, 4.9) years lon-
ger (Fig 1 and STable 2). The total life expectancy of 50-year-old obese and overweight 
ex-smoker women, were 8.3 (95% CI, 7.4, 9.2) and 7.6 (95% CI, 6.8, 8.4) years longer than 
their current smoker normal-weight counterparts. For overweight ex-smoking men and 
women, this increased life expectancy included more years with and more years without 
diabetes; whereas for obese ex-smoking men and women this increased life expectancy 
was explained by only more years with diabetes. Overweight ex-smoker men lived 2.4 
(95% CI, 1.0, 4.2) years more free of T2D and 1.6 (95% CI, 0.3, 2.8) with T2D; whereas obese 
ex-smoker men lived 4.8 (95% CI, 1.1, 8.8) years more with T2D. For women, compared 
to normal weight current smokers, overweight an obese ex-smokers, lived 3.5 (95% CI, 
0.4, 5.9) and 1.4 (95% CI, -0.4, 6.6) years more free of T2D and 4.1 (95% CI, 1.3, 7.0) and 6.8 
(95% CI, 1.6, 11.8) years more with T2D (Fig 2 and STable 2).

Table 3.1.3. Hazard ratios for incident type 2 diabetes (T2D) and death among categories of smoking by 
BMI.*
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Sensitivity analysis

The results did not change substantially after adjusting for potential intermediate risk 
factors, cancer and comorbidities (STable 2, 3 and S Fig 3, 4), or excluding participants 
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with prevalent chronic diseases like cancer, CVD and COPD (STable 5, 6 and S Fig 9, 10). 
Furthermore, we repeated the analyses for 7 and 10 years of follow-up (S Table 3, 4, 5, 6 
and S Fig 5, 6, 7, 8) and the results did not materially change.

Discussion

Total life expectancy for men and women who were current smoker, at age 50 years was 
6.3 and 5 years shorter, respectively, than for people who never smoked, with less years 
spending free of T2D, but with no difference in years lived with T2D. Similarly, men who 
were former smoker, but not women, lived overall 1.9 years less than never smokers, 
and spent fewer years free of T2D. However, former smokers who were overweight or 
obese presented a higher risk of developing T2D but also an extended number of years 
lived with diabetes, when compared with normal weight current smokers. Moreover, 
overweight but not obese ex-smokers spend more years free of T2D. On average, total 
life expectancy of an obese ex-smoker was 4.8 years higher in men and 8.3 years higher 
in women compared to current smoker normal weight, with most of these years spent 
with T2D.

In our study, total life expectancy in individuals aged 50 years and over for both men 
and women decreased drastically from never smokers to current smokers, with never 
and former smokers living longer than current smokers. Similar to our results, a long-
term prospective cohort study from the Netherlands, based on 1 373 men participants 
showed earlier that at the age of 40 years, smoking cessation was associated with up to 5 
years increase in total life expectancy3. We extended the previous evidence by calculat-
ing life expectancy in both men and women using multi state life tables and adjusting 
for a broader range of confounders and potential intermediate factors. Further, for the 
first time we show that smoking reduces the diabetes-free years with no impact on 
years lived with diabetes. Previous studies report an increase in number of disease-free 
life-years by 3 years associated with smoking cessation, but the disease free state did 
not include diabetes3. Therefore, our study supports the positive impact that smoking 
cessation has on cardiometabolic health and overall life expectancy.

Weight gain after smoking cessation is reported to be an important reason for not 
quitting7. Moreover, weight gain has adverse health effects as increased risk of diabetes 
and mortality11. Our results show that overweight/obese ex-smokers, especially women, 
compared to current normal-weight smokers are at increased risk of developing T2D, 
but they have lower risk of mortality. In line with our findings, Siahpush et al. show 
in their paper that compared with normal-weight smokers, the risk of mortality from 
T2D was 4% and 98% higher in overweight and obese ex-smokers, respectively13. Our 
study extended these results by calculating the association of obese and overweight 
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ex-smokers with incidence T2D and life expectancy, showing that normal-weight smok-
ers lived shorter and spent more years with T2D than overweight or obese ex-smokers. 
The longer total life expectancy observed for obese ex-smokers was the result of the 
higher number of years lived without diabetes and the longer life expectancy with T2D. 
The increased life expectancy with T2D among participants, who were former smokers 
and overweight compared with the current smoker normal weight group, was statisti-
cally significant. The number of years lived with diabetes is a consequence of incident 
diabetes risk and mortality risk among those with diabetes. Higher incidence of diabetes 
would lead to an earlier occurrence of diabetes, whereas lower risk of mortality among 
those with diabetes would lead to greater number of years lived with diabetes.

The longer T2D–free life expectancy for overweight ex-smokers but not for obese ex-
smokers, might be due to a harmful effect of a higher BMI on the incidence of diabetes 
combined with a protective effect of smoking cessation on mortality, among partici-
pants free of T2D. On the other hand, the longer life expectancy with T2D might be from 
the effect of BMI on mortality among participants with T2D: people with T2D, obese 
but former smokers lived longer and therefore experienced an increased burden of T2D. 
Another reason for the increase in years with T2D is that smoking cessation is associated 
with increased survival to advanced ages when the risks of diabetes are higher.

In our study, there is a difference in total life expectancy and in the number of years 
lived with diabetes among men and women. This gender difference might be influenced 
by the differential distribution of ever smokers (85% in man and 58% in woman), mainly 
due to the differences in former smokers, which could also explain some of the non-
significant associations in women. Compared to men, women had an increased risk 
of diabetes when categorized by smoking status and BMI. These differences could be 
explained by the effects of smoking and obesity on T2D and mortality, expressed dif-
ferently in men and women. Smoking has an anti-oestrogenic effect, which is related 
to hormonal imbalance that could lead to more adverse health effects in women 20. 
Furthermore, genetic studies have found that levels of DNA adducts are higher21 and 
DNA repair capacity lower22 in women compared to men, suggesting that women may 
be more susceptible to the DNA damaging effects of smoking than men. Further, it 
should be taken in consideration the potential association and linkage to substance 
abuse, obesity and cardiovascular diseases, including hypertension, as a response to 
environmental mental stressor, which are attenuated by cigarette and alcohol use23.

Several limitations of this study must be considered. Smoking status was assessed 
retrospectively by self-reported questionnaires. However, because T2D and mortality 
were assessed prospectively, the subjective measure of smoking would likely lead to 
non-differential misclassification with respect to the outcome, and therefore would 
likely dilute our estimates toward the null. Moreover, we did not have data on BMI before 
and after smoking cessation, therefore our results comparing normal weight current 
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smokers with overweight/obese ex-smokers should be interpreted with caution. Other 
longitudinal studies should investigate the process of weight gain and its occurrence in 
post smoking cessation. Further, the generalizability of these findings could be limited 
to middle-aged and older white European populations.

Conclusions

Our findings suggest that a potential risk of being overweight due to smoking cessation 
does not outweigh the benefits of smoking cessation in terms of reductions in mortal-
ity risks or spending more years diseased. In addition, healthcare providers and public 
health professionals should advise people who smoke that even if they gain weight 
because of quitting, it is still a healthier option than continuing to smoke. Nevertheless, 
due to the increased risk of diabetes, people who quit smoking and gain weight may be 
a group to target for proactive T2D prevention strategies.
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Abstract

Objective

Although obesity remains one of the most important risk factors for type 2 diabetes, the 
complexity of diabetes pathophysiology among individuals with different BMI has the 
potential to open new prevention strategies based on BMI trajectories. We investigated 
BMI trajectories and examined associated changes in other cardiometabolic risk factors 
before diabetes diagnosis.

Methods

We included 6223 participants from the Rotterdam Study, an observational prospective 
cohort study, followed over 20 years with clinical investigations every 4 years. Latent 
class trajectory analysis was used to identify BMI patterns before diagnosis of diabetes. 
Longitudinal changes of other cardiometabolic risk factors were studied using adjusted 
mixed-effects models.

Results

During a mean follow-up of 13.7 years, 565 participants developed diabetes among 
whom we identified 3 distinct trajectories of BMI including the “progressive overweight” 
group (n= 481, 85.1%), “progressive weight loss” group (n= 59, 10.4%), and “persistently 
obese” group (n=25, 4.4%). The majority, the “progressive overweight” group, was char-
acterized a sharp increase of BMI 10-years before diabetes diagnosis. Moreover, they 
experienced a constant decrease of insulin levels and insulin resistance during the 
last 5 years prior to diabetes. The second group of “progressive weight loss” exhibited 
increased fluctuations of glucose levels during the follow-up and marked beta cell func-
tion loss, whereas insulin levels were constant with a slight increase in insulin resistance. 
The group of “persistently obese” were severely obese throughout the follow-up time 
before diabetes diagnosis. They were characterized by sharp increases of insulin levels 
and insulin resistance but modest decreases of beta cell function.

Conclusions

Our results suggest heterogeneity in BMI changes in a middle-aged and elderly white 
populations prior to diabetes diagnosis. Since the majority group of “progressive over-
weight” had incremental small gains of weight, strategies for weight loss are recom-
mended to be applied for the whole population rather than focus in high-risk (obese) 
individuals. These findings highlight the value of tailored intervention according to BMI 
for diabetes prevention.
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Introduction

Observational studies have extensively shown body mass index (BMI) to be associated 
with risk of type 2 diabetes 1. Notably, the number of people with diabetes is expected 
to increase dramatically in the forthcoming years given the parallel increase in obesity 
rates worldwide 2 3. However, patients with diabetes show great variability in terms of 
weight, weight gain and duration of obesity at the time of diagnosis 4-6. Consequently, 
understanding diabetes complex pathophysiological pathways with regard to patterns 
of change in BMI might provide new insights into personalized prevention strategies to 
confront the new epidemiological challenges of obesity.

Former population studies investigating BMI changes in association with chronic dis-
eases such as cardiovascular disease (CVD) and diabetes have showed heterogeneous 
signatures of disease development across BMI trajectories. Previously, we identified 
three distinct patterns of BMI prior to CVD development and the majority of participants 
who developed the disease were characterized with a stable BMI over time, highlight-
ing a heterogeneous nature of CVD not entirely attributed to BMI 7. Similarly, another 
study among 6705 British participants showed three BMI patterns accompanied with 
distinctive cardiometabolic risk profiles, with the majority of individuals showing mod-
est weight gain prior to diabetes diagnosis 8. This finding goes against the common 
assumption that people who experienced recent weight gain are more likely to be 
diagnosed with diabetes. Therefore, we aimed to explore this hypothesis in a population 
of middle-aged and elderly and identify BMI trajectories before diabetes development. 
Additionally, trajectories of cardiometabolic risk factors including glycaemic traits, lipids, 
blood pressure and waist circumference within each BMI pattern were further examined.

Methods

Study population

The study was performed among participants of the prospective population-based Rot-
terdam Study (RS). In 1989, all residents aged 55 years or older in Ommoord, a suburb 
of Rotterdam, the Netherlands, were invited to participate in the study (RS-I). Seventy-
eight percent of the invitees agreed to participate (n= 7,983). In 1999, the Rotterdam 
Study was extended by including 3,011 participants from those who either moved 
to Ommoord or turned 55 (RS-II). The third cohort was formed in 2006 and included 
3,932 participants 45 years and older (RS-III). There were no eligibility criteria to enter 
the Rotterdam Study cohorts except the minimum age and residential area based on 
postal codes. The participants of the Rotterdam Study have been followed-up for more 
than 22 years for a variety of diseases and clinical data have been collected across five 
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subsequent phases every 3-4 years. A more detailed description of the Rotterdam Study 
can be found elsewhere 9. The Rotterdam Study has been approved by the medical eth-
ics committee according to the Population Screening Act: Rotterdam Study, executed 
by the Ministry of Health, Welfare and Sports of the Netherlands. All participants in the 
present analysis provided written informed consent to participate and to obtain infor-
mation from their treating physicians.

For this study, we used the third visit of the first cohort (1997-1999). From 7983 par-
ticipants at baseline, we excluded 225 without informed consent, 916 with prevalent 
diabetes, 743 without BMI measurement throughout phases 1-5 and 1 with missing infor-
mation of diabetes follow-up. The final sample included 6098 individuals (Figure 3.2.1).

Assessment of cardio-metabolic risk factors

Information on cardio-metabolic risk factors were obtained through home interviews 
or measured at the study centre, as described previously 10 11. Height and weight were 
measured in all five phases, whereas systolic and diastolic blood pressure and waist 
circumference were measured in phases 1, 3, 4 and 5, and fasting total cholesterol, 
high-density lipoprotein (HDL) cholesterol and fasting plasma glucose were measured 

 Rotterdam Study, Cohort 1
n=7983 Excluded:

No informed consent 
(n=225)
Prevalent diabetes (n=916)
Missing information on 
BMI measures and diabetes 
follow-up data at any of the 
Phases 1-5 (n=744)

Phase 1 (RS I-1)
n=6098

Phase 2 (RS I-2)
n=4761 

Phase 3 (RS I-3)
n=3686

Phase 4 (RS I-4)
n=2613

Phase 5 (RS I-5)
n=1488

Measures included in the 
study:

Body mass index (Phase 
1,2,3,4)

Waist circumference (Phase 
1,3,4,5)

Systolic and diastolic blood 
pressure (Phase 1,3,4,5)

Total and high density 
lipoprotein (HDL) 
cholesterol, triglycerides 
(Phase 3,4,5 measured as 
fasting)

Glucose, Insulin (Phase 
3,4,5 measured as fasting)

Figure 3.2.1. Flow diagram of the study participants for each phase.
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in phases 3, 4 and 5 (Figure 3.2.1). Height and weight were measured with the partici-
pants standing without shoes and heavy outer garments. BMI was calculated as weight 
divided by height squared (kg/m2). Waist circumference was measured at the level 
midway between the lower rib margin and the iliac crest with participants in standing 
position without heavy outer garments and with emptied pockets, breathing out gently. 
Serum total cholesterol, HDL cholesterol, and glucose were measured using standard 
laboratory techniques. Blood pressure was measured at the right brachial artery with a 
random-zero sphygmomanometer with the participant in sitting position, and the mean 
of two consecutive measurements was used. Smoking status was classified as current 
smoking or others (former and never) in all phases. We assessed medication use for 
hypertension, hyperlipidaemia and diabetes through interview data.

Clinical outcome

The participants were followed from the date of baseline centre visit onwards. At base-
line and during follow-up, cases of T2D were ascertained by use of general practitioners’ 
records (including laboratory glucose measurements), hospital discharge letters, and 
serum glucose measurements from Rotterdam Study visits, which take place roughly 
every 4 years. According to the WHO guidelines, type 2 diabetes was defined as a fast-
ing blood glucose > 7.0 mmol/L, or the use of blood glucose lowering medication 12. 
Information regarding the use of blood glucose lowering medication was derived from 
both structured home interviews and linkage to pharmacy records. At baseline, more 
than 95% of the Rotterdam Study population was covered by the pharmacies in the 
study area. All potential events of prediabetes and type 2 diabetes were independently 
adjudicated by two study physicians. In case of disagreement, consensus was sought 
with a specialist. Follow-up data was complete until January 1st 2012 13.

Statistical analysis

We used chi-square test for categorical variables and t-tests for continuous data when 
comparing the general characteristics between groups. Latent class trajectory analysis 
was performed to identify groups of participants with similar trajectories of BMI change 
during the follow-up until the occurrence of diabetes as previously described 7 14. Next, 
within each identified BMI group, the trajectories of change in other cardio-metabolic 
risk factors during the time before diabetes diagnosis were developed 7.

The analysis is conducted by taking in account information from the population 
retrospectively from the date of diagnosis with diabetes. The model used for latent 
class trajectories are linear mixed-effects model with BMI as the dependent variable and 
time before diagnosis (time 0), age, sex, and phase of study as independent variables. 
The variable “time before diabetes diagnosis” describes the shape of the trajectories of 
BMI and was entered in the model as a covariate in a cubic specification. To assign the 
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number of classes in the analysis, the Bayesian information criterion (BIC) was used. The 
latent class trajectory model calculates a posterior probability of membership in each 
latent class for each participant, who is latter assigned to the class for which his/her 
posterior probability is the highest. To ensure that all obtained classes were of clinically 
meaningful size, we imposed the condition that each class should include at least 5 % 
of participants and the mean posterior probability of each class should be higher than 
75 %.

Since the trajectories of change in BMI could differ between individuals who die during 
follow-up and among individuals who do not die or develop diabetes 15 during follow 
up we divided the rest of the population into two subgroups: (1) diabetes-free and alive 
until end of follow-up and (2) non-diabetes mortality. For each identified BMI group 
(among individuals diagnosed with diabetes) and the two other groups (diabetes-free, 
and non-diabetes mortality), we examined the trajectories of other cardio-metabolic risk 
factors including waist circumference, systolic and diastolic blood pressure, fasting total 
Cholesterol, LDL cholesterol, HDL cholesterol, fasting plasma glucose and fasting plasma 
insulin. The homeostasis model assessment was used to estimate insulin resistance 
(HOMA-IR) and beta cell function (HOMA-%B) 16. The absolute 8-year risk of developing 
type 2 diabetes was calculated in all participants using the Framingham diabetes risk 
score 17 and Framingham cardiovascular disease (CVD) risk score was used to estimate 
absolute risk of developing CVD 18. In our study, cardiovascular disease is composed of 
coronary heart disease (including fatal and non-fatal myocardial infarction and other 
CHD mortality) and stroke (fatal and non-fatal stroke) as previously described 10 19 20.

Because the aggregated effect of combined risk factors on diabetes might differ from 
each risk factor alone, we examined the trajectories of 8-years diabetes risk and 10-year 
diabetes risk in each group of BMI. The predicted 10-year CVD risk was calculated using 
the American College of Cardiology/American Heart Association (ACC/ AHA) Pooled 
Cohort Equation coefficients, which includes age, sex, total cholesterol, HDL cholesterol, 
systolic blood pressure, blood pressure lowering medication use, diabetes status, and 
smoking status in the prediction model [15]. These trajectories of cardio-metabolic risk 
factors were estimated using linear mixed-effects models controlling for follow-up time, 
age, sex, and study phase. Analyses of lipids were further adjusted for lipid-lowering 
treatment, analyses of blood pressure were further adjusted for antihypertensive treat-
ment, and analyses of glucose were additionally adjusted for diabetes treatment. Qua-
dratic and cubic terms for follow-up time were included in the BMI groups (latent classes) 
when significant (p< 0.05). For individuals not developing diabetes during follow-up 
(diabetes-free and non-diabetes mortality groups), year 0 is merely a time point in a nor-
mal life course, and we therefore fitted the trajectories by using linear models. Pair-wise 
differences in growth curves between BMI groups were tested using F-tests for each 
cardio-metabolic risk factor. Paired Chi square test (for categorical variables) was used to 
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compare participant characteristics between the groups. To account for multiple testing 
due to comparing three pairs of BMI groups, we used a Bonferroni-adjusted significance 
level of 0.05/3 = 0.0167 for the F-tests for each cardiometabolic risk factor. All other 
statistical tests used a significance level of 0.05, and all statistical tests were two sided. 
Analyses were conducted using R statistical software, version 3.0.1 (R Foundation for 
Statistical Computing, Vienna, Austria), with the package ‘‘lcmm’’ [10].

Results

Baseline characteristics of the study population are presented in Table 3.2.1. Overall, 
6223 participants with a mean age of 68.8 years, mostly women (n=3681, 59.2%), and 
overweight (mean BMI= 26.24) were included in the study. The mean (SD) follow-up 

Table 3.2.1. Characteristics of study participants in the first clinical visit

Overall

n 6223

Age (years) 68.82 (8.85)

Gender (Women) 3681 (59.2)

Time before diagnosis/last visit (years) 13.75 (6.55)

Body Mass Index (kg/m2) 26.24 (3.70)

Waist circumference (cm) 90.15 (11.10)

Systolic blood pressure (mm Hg) 138.54 (22.00)

Diastolic blood pressure (mm Hg) 73.82 (11.44)

Total cholesterol (mmol/L) 5.83 (0.99)

LDL cholesterol (mmol/L) 3.76 (0.91)

Triglycerides (mmol/L) 1.49 (0.71)

HDL cholesterol (mmol/L) 1.41 (0.40)

Glucose (mmol/L) 5.68 (0.93)

Insulin (pmol/L) 78.68 (61.44)

HOMA-IR (units) 123.54 (119.42)

HOMA-%B (units) 1642.76 (1111.59)

Antihypertensive treatment (%) 894 (17.0)

Lipid lowering medication (%) 474 (13.6)

Current smoker (%) 1393 (23.1)

Data are n (%), mean(SD)
Abbreviations
HDL, high density lipoprotein; HOMA-IR: homeostatic model assessment –insulin resistance; HOMA-%B: 
homeostatic model assessment –beta cell function; LDL, low density lipoprotein. Fasting measurements 
of lipids and glycaemic indices were available in the third, fourth and fifth visits of the original Rotterdam 
Study cohort
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time was 13.7 (6.5) years during which 565 participants developed diabetes. Among 
individuals who did not develop diabetes, 1891 (30 %) remained alive until the end of 
follow-up and 3767 (60.5 %) died from non-diabetes causes. The baseline characteristics 
of these subgroups are presented in Table S1 in the Supplementary Material.

Patterns of BMI change over time

Among 565 participants who developed diabetes, we identified three distinct trajectories 
of change in BMI levels (Figure 3.2.2). The first group (n=481, 85.1%) representing the 
majority of individuals who developed diabetes, entered the study with a mean BMI of 
28.0 kg/m2 and experienced an increase in BMI within the overweight range. This group 
was named “progressive overweight”. Thereafter, the second group (n= 59, 10.4%) who 
initially started with an average BMI of 26.6, continued to experience a decrease in BMI 
during all time of follow-up. We named this group the ‘‘progressive weight loss’’. The third 
group comprised 25 (4.4%) individuals who entered the study with an average BMI of 35.4 
and maintained their obese status with fluctuating BMI values during the entire follow-up 
until the diagnosis of diabetes. Therefore, we named this group “persistently obese”.

Among 1891 subjects who did not develop diabetes event and were alive until the 
end of follow-up, the “diabetes-free” group, the average BMI remained relatively stable 
(ranging from 25.9 to 27.3 during the follow-up). Among 3767 who died of other causes 
during the follow up, the “non-diabetes mortality” group, the average BMI at the start of 
the follow-up was in the overweight range (average BMI= 26.4) and reached the normal 
range just before. The analysis was performed in the total population but in order to plot 
the trajectories of change in BMI and other cardiometabolic risk factors, we assumed a 
hypothetical individual to be male with 65 years of age. Similar trajectories for a hypo-

 
Figure 3.2.2. Trajectories of body mass index and waist circumference during 22 years of follow-up until 
diagnosis of type 2 diabetes, death or censoring from the study. The figures represent a hypothetical man 
of 65 years old. Light blue “progressive overweight” (including 85.1% of diabetes patients); red “persistently 
obese” (4.4% of diabetes patients); dark blue “progressive weight loss” (10.4%); grey “diabetes-free”; black 
“non-diabetes mortality”.
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thetical woman of 65 years of age are shown in Figures S1-S4B in the Supplementary 
Material.

Trajectories of waist circumference

Trajectories of waist circumferences differed significantly between the three groups (p 
<0.001 for all pairwise comparisons) (Figure 3.2.2). The trajectories for the ‘‘progres-
sive overweight’’, ‘‘persistently obese’’ and “progressive weight loss” groups broadly 
resembled the trajectories of BMI in these groups. The mean waist circumference in the 
‘‘diabetes-free’’ and ‘‘non-diabetes mortality’’ groups decreased slightly during follow-up.

Trajectories of glycaemic indexes (glucose, insulin and HOMA-IR measurements)

Trajectories between fating glucose levels differed between “progressive overweight” 
and “persistent obese” when compared to “progressive weight loss” group (Figure 3.2.3). 

Figure 3.2.3. Trajectories of fasting plasma glucose, insulin, homeostatic model assessment –insulin resis-
tance (HOMA-IR), homeostatic model assessment –beta cell function (HOMA-%B) during 14 years of follow-
up until diagnosis of type 2 diabetes, death or censoring from the study. The figures represent a hypo-
thetical man of 65 years old. Light blue “progressive overweight” (including 85.1% of diabetes patients); red 
“persistently obese” (4.4% of diabetes patients); dark blue “progressive weight loss” (10.4%); grey “diabetes-
free”; black “non-diabetes mortality”.
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The mean glucose levels of the latter were fluctuating for the whole follow-up time. For 
the “progressive overweight” and “persistent obese” groups, we observed an increase in 
mean levels of fasting glucose from 4.9 mmol/L to 9.4 mmol/L during follow up.

All three groups showed significantly different trajectories for fasting insulin. The 
“progressive overweight” group experienced an increase in mean insulin levels (from 67 
mmol/l to 109 mmol/L) during follow-up. A slight increase was observed for “persistent 
obese” who exhibited high insulin levels throughout the period, whereas modest de-
crease in insulin levels were observed for “progressive weight loss” group.

Trajectories of HOMA-IR differed between all three groups (p <0.01 for all pairwise 
comparisons) demonstrating an incremental trend. The biggest increase change was 
observed for “progressive overweight” group (from 67 mmol/L to 258 mmol/L), followed 
by “persistent obese” group, which was characterized by the highest average HOMA-IR 
and lastly, “progressive weight loss” group. Contrary, a decreasing trend was observed 
for HOMA-%B for all the trajectories between the groups. The “persistent obese” group 
exhibited the highest average levels of HOMA-%B accompanied by a steep decrease 
during follow up. The “progressive overweight” group showed a stable trend with an 
average of 1500 mmol/L, whereas the “progressive weight loss” group experienced 
lowered HOMA-%B levels from 1200 mmol/L to 700 mmol/L (Figure 3.2.3).

Trajectories of lipid profile and blood pressure

We found no differences in fasting total cholesterol levels HDL, LDL and triglycerides 
between the three groups of individuals who developed diabetes during follow-up (Fig-
ure 3.2.4). For total cholesterol, we evidenced a mark increase in the “persistent obese” 
group starting from 4.5 mmol/L. The other two groups kept a lowering trend throughout 

Table 3.2.2. Characteristics of study participants at the time of the diagnosis for the three groups with 
diabetes or at last visit for the groups without diabetes

Individuals developing diabetes 
during follow-up (n = 565)

Individuals free of diabetes 
during follow-up (n = 5658)

Weight
loss

Progressive 
weight 
gainers

Persistently
obese

Diabetes-
free

Non-diabetes
mortality

n = 59 n = 481 n = 25 n = 1891 n = 3767

Age at diagnosis/last contact (years) 67.2 (7.2) 66.4 (7.0) 64.5 (5.2) 62.2 (5.0) 72.4 (8.5)

Women (%) 30 (50.8) 282 (58.6) 20 (80.0) 1230 (65.0) 2119 (56.3)

Body Mass Index (kg/m2) 24.9 (2.9) 28.9 (3.3) 39.0 (3.8) 27.3 (4.1) 26.2 (3.9)

Waist circumference (cm) 90.5 (9.9) 98.3 (10.3) 117.7 (20.8) 91.3 (11.9) 92.6 (11.5)

Antihypertensive treatment (%) 23 (39.7) 200 (42.8) 20 (83.3) 883 (47.6) 1021 (29.3)

Lipid lowering medication (%) 11 (22.9) 62 (23.9) 5 (29.4) 420 (26.6) 255 (16.2)

Current smoker (%) 22 (43.1) 113 (32.7) 6 (30.0) 325 (18.4) 866 (32.2)
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the study, with all groups having an average total cholesterol level within the reference 
range (< 5.5 mmol/L). On the other hand, decreasing levels of HDL were observed for 
both “progressive overweight” and “persistent obese” groups while the average levels 
of “progressive weight loss” group remained stable throughout the follow-up. For LDL 
and triglycerides levels, “persistent obese” group exhibited an increasing trend before 

Figure 3.2.4. Trajectories of total cholesterol, high density lipoprotein (HDL) cholesterol, low density lipo-
protein (LDL) cholesterol, triglycerides, systolic blood pressure and diastolic blood pressure. The figures 
represent a hypothetical man of 65 years old. Light blue “progressive overweight” (including 85.1% of diabe-
tes patients); red “persistently obese” (4.4% of diabetes patients); dark blue “progressive weight loss” (10.4%); 
grey “diabetes-free”; black “non-diabetes mortality”.
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diabetes event. The average levels of LDL cholesterol demonstrated a modest decrease 
in the “progressive overweight” and “progressive weight loss” groups meanwhile, the 
trend was reversed in both groups for triglycerides levels during the follow-up.

Trajectories of systolic and diastolic blood pressure differed significantly between all 
BMI groups. Both “progressive overweight” and “persistent obese” groups showed in-
creasing trend before diagnosis of diabetes in both systolic and diastolic blood pressure 
levels whereas “progressive weight loss” group was relatively stable during the follow- 
up (Figure 3.2.4).

Trajectories of estimated 8-year Type 2 Diabetes risk

Framingham 8-year diabetes risk followed nearly the same stable trend for “progres-
sive weight loss”, diabetes-free and non-diabetes mortality groups (Figure S4A). The 
“persistent obese” group demonstrated an increase of 8-year diabetes risk from 6% 
to 19% before diabetes diagnosis. A decreasing trend was shown for the “progressive 
overweight” group with a difference of nearly 4-5%.

Discussion

We examined BMI trajectories in a middle-aged and elderly population based study fol-
lowed for over 20 years using latent class trajectory analysis and identified three distinct 
groups of BMI changes: a “progressive overweight” group, a “persistent obese” group and 
a group of “progressive weight loss”. Within the BMI groups that developed diabetes, tra-
jectories of obesity, visceral fat as measured with waist circumference, glucose, insulin, 
HOMA-IR, HOMA-%B showed distinct patterns throughout the follow-up of the study. 
This study shed further insights into the timing and the extent of pathophysiological 
changes before diabetes diagnosis in a middle-aged and elderly European population 
highlighting the heterogeneous nature of diabetes diagnosis depending on the level of 
obesity.

The majority of individuals in our study diagnosed with diabetes were progressively 
gaining weight within the overweight range. Development of diabetes was not preceded 
by a recent weight gain, as commonly believed, but rather by a continuous, weight gain 
over the years. While there were relatively stable HOMA beta cell function, they exhibit 
progressively increasing trends of insulin levels and HOMA-insulin resistance starting 
from the beginning of the follow-up, whereas glucose levels worsened approximately 5 
years before the diagnosis. In the same line, the “persistent obese group” showed accen-
tuated parameters patterns of glucose metabolism as compared with “progressive over-
weight” group. When we measured the Framingham 8-year diabetes risk, we observed 
a decreasing trend throughout the period of follow-up in the “progressive overweight” 
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group, but the model was predicting well for the “persistently obese”. This might indi-
cate that prediction models do not perform well in the former group of individuals. The 
diagnosis of diabetes in the Rotterdam Study is done by active collection of information 
from general practitioners and screening at the research centre based on clinical values 
of glucose. Another interpretation of the result suggests that the diagnosis of diabetes 
might be bias towards enhanced screening efforts reserved to obese individuals rather 
than overweight. Similar findings are reported in an investigation of obesity trajectories 
prior to diabetes development in a UK cohort 8. The “stable overweight” group was less 
often diagnosed with diabetes from the general practitioners than the “persistently 
obese” group. This indicate an inclination of physicians to more effectively screen obese 
individuals in comparison to overweight individuals.

We found that 10.4% our participants (second largest group) experienced progressive 
weight loss before diagnosis of diabetes, a pattern not observed in the UK study. Among 
the elderly, the relation between body weight, body composition and health behaviours 
is different than in younger adults 21 22. Weight loss has been often been associated with 
a high risk of mortality 15 23 24 while its association with cardiovascular disease still remain 
inconclusive 24 25. In this group, waist circumference trajectories followed the same de-
creasing trend as BMI while fluctuations of fasting glucose levels with a sharp increase 
5 year before diabetes diagnosis were observed. However, these changes did not cor-
respond to an increase of insulin levels, while HOMA-%B levels were the lowest among 
the three groups and decreased constantly. Despite the weight loss progression prior to 
diabetes diagnosis, the inability to respond adequately to high glucose levels together 
with the impaired beta-cell compensation from the pancreas in this category of indi-
viduals seems to be involved in the disease development regardless of obesity levels. 
Because of the low beta-cell function in this group before diagnosis, individuals might 
benefit from early prevention strategies focusing on prevention of further loss of beta 
cell function rather than tackling peripheral insulin sensitivity. This concept has shown 
familiarity before 26 27. Notably, the predicted 8-year diabetes risk was nearly constant 
during follow-up for this category, similar to the diabetes-free group. These findings 
question the validity of diabetes prediction score in a population with heterogeneous 
disease development. One-size-fits-all model seems to be not a good metric.

Despite the differences in BMI trajectories, most of the other cardiometabolic risk fac-
tors including blood pressure and lipid profile developed without substantial changes in 
the three groups. Moreover, we were able to assess medication data for all BMI subgroups 
and we found that antihypertensive medication and lipid lowering drugs were bearing 
the highest proportionality of use among the persistently obese individuals followed by 
progressive overweight and progressive weight lost group. This data showed that most 
probably, overweight individuals and those losing weight over time are less likely to 
receive medication. Notably, the progressive overweight group and progressive weight 
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loss group constitute more than 95% of the middle aged and elderly population devel-
oping diabetes events. Therefore, treating in rightly manner these category of patients 
could have a big impact on decreasing the overall burden of diabetes and associated 
comorbidities in the total population.

Strength of our study include the prospective design with availability of repeated 
measurements for BMI and other cardiometabolic risk factors including medication 
use data over a long follow up time, which altogether allowed to perform latent class 
trajectories analysis. Previous literature has used BMI in pre-defined categories which 
might introduced some misclassification bias, whereas our analysis allows full explo-
ration of heterogeneous patterns of BMI changes that might influence diabetes risk. 
Nevertheless, one of the drawbacks of this method is the assigned not-balanced sample 
size pertaining to the groups which make comparisons of the result difficult in the light 
of statistical power. Also, generalizability of the study may be limited due to the specific 
population analysed. The majority of individuals were middle aged and elderly with a 
mean age of 68.8 years old.

Conclusions

In conclusion, we identified three distinct patterns of BMI changes prior to diabetes 
diagnosis. These population growth curves contribute to our understanding of aetiol-
ogy and pathophysiology of type 2 diabetes, as a heterogeneous disease with complex 
mechanism involved in its development. In general, the majority of individuals develop-
ing diabetes were characterized by weight gains within the overweight range before 
diabetes diagnosis suggesting strategies focusing in small weight reductions for the 
entire population rather than high risk groups in the total population. Future studies 
should establish whether there might be different treatment needs for diabetes preven-
tion and management depending on disease subgroups.
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Abstract

Objective

Several modifiable lifestyle factors are independently associated with increased risk 
for type 2 diabetes and mortality. However, the combined effect of combined lifestyle 
factors on type 2 diabetes and life expectancy remains unknown. Therefore, we aimed 
to assess and quantify the association of lifestyle score with diabetes risk and life expec-
tancy among men and women.

Methods

This study was performed among 10,546 participants (mean age 63.0±10.1 year; 57.1% 
women) from a large prospective population-based cohort study among middle-aged 
and older adults. An overall lifestyle score was calculated including five lifestyle factors: 
smoking, alcohol consumption, diet quality, physical activity and body mass index. 
The lifestyle score was categorized as: unhealthier (reference), moderate and healthier. 
Multistate life tables were constructed to calculate the number of years lived overall as 
well as those lived with and without type 2 diabetes, adjusted for confounders.

Results

During an average follow-up of 11 years, 575 incident diabetes events and 1659 deaths 
occurred. In men, the healthier lifestyle category was associated with a lower risk of dia-
betes HR, 0.47 (95% CI 0.29-0.75), mortality among those without diabetes HR, 0.57 (95% 
CI 0.41-0.78) and mortality among participants with diabetes HR 0.50 (95% CI 0.29-0.86) 
compared to the unhealthier lifestyle category. A similar trend was observed in women, 
with HRs of respectively, 0.51 (95% CI 0.31-0.84), 0.63 (95% CI 0.43-0.93) and 0.96 (95% CI 
0.44-2.09) for diabetes and mortality.

At the age of 45 years, men in the healthier lifestyle category lived overall 4.9 years 
longer compared to men in the unhealthier lifestyle category. Among women, this dif-
ference in total life-expectancy was 2.5 years. Men and women in the healthier lifestyle 
category lived 1.5 and 3.1 years shorter with diabetes. Life expectancy without diabetes 
was 6.4 years longer in men and 5.7 years longer in women with a healthy lifestyle.

Conclusion

A healthier lifestyle was associated with a decreased risk of developing diabetes by 
50% among men and women. Overall, men and women who had a healthier lifestyle 
lived up to 5 years longer compared to participants who had an unhealthier lifestyle. 
More attention should be given in clinical practice and preventive care to adopting a 
healthy lifestyle since it could substantially reduce diabetes risk, premature mortality 
and prolong life expectancy.
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Introduction

Lifestyle choises such as poor diet, physical inactivity, tobacco use, high adiposity and 
alcohol abuse, have been linked to an increased risk of multiple chronic diseases and 
premature death. According to a recent WHO report, altogether these lifestyle factors 
explain more than one third of the global burden of chronic diseases (WHO, 2015).

Smoking, physical inactivity, unhealthy diet, obesity and other lifestyle behaviors are 
associated with the development of diseases such as type 2 diabetes and mortality1. In 
2010, approximately 25.6 million adults (prevalence of 11.3%) in the United States had 
diagnosed diabetes, including 10.9 million adults aged ≥ 65 years (prevalence 26.9%) 
(ref ). Pharmacological management of diabetes has proven benefits, but these efforts 
are often costly, include side effects, and may not be as effective as lifestyle interven-
tions2. Primary prevention of diabetes, therefore, would have major positive public 
health consequences.

Moreover, a few studies have investigated the combined impact of these lifestyle-
related factors and mortality outcomes and total life expectancy. Research to quantify 
the overall impact of lifestyle-related factors on mortality outcomes will provide im-
portant information valuable for disease prevention. A recent prospective cohort study 
among 20,244 British men and women aged 45–79 y reported a 4-fold increase in risk of 
all-cause mortality for participants with no health behaviors compared to participants 
who had four health behaviors (nonsmoker, plasma vitamin C levels indicative of ≥5 
daily servings of fruits and vegetables, moderate alcohol intake, and physically active)3

Furthermore, although a few strong examples exist, the independent and combined 
effect of lifestyle on overall health, have not been studied extensively. People that 
engage in multiple unfavorable lifestyle behaviors have a higher risk for mortality and 
incidence of chronic diseases than people who have no unfavorable lifestyle behaviors 
or only one and the sum of these single components might be more important than 
the single components itself. Another prospective cohort study of 78,865 participants 
of the Nurse’s Health Study (NHS) and 44,354the Health Professionals Follow-up found 
that adherence to 5 low-risk lifestyle-related factors (never smoking, a healthy weight, 
regular physical activity, a healthy diet, and moderate alcohol consumption) could pro-
long life expectancy at age 50 years by 14.0 and 12.2 years for female and male US adults 
compared with individuals who adopted zero low-risk lifestyle factors.

However , to our knowledge, no study up to date has investigated the benefits of a 
healthier lifestyle in diabetes and their combined net effect on total life expectancy in 
Europe. Therefore, the aim of this study was to estimate the impact of lifestyle factors 
on total life expectancy and the number of years lived with and without diabetes in the 
Dutch population.
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Methods

Study Population

The Rotterdam Study is a population-based cohort study of individuals aged 45 years and 
over, living in the Ommoord district of Rotterdam, the Netherlands. The rationale and de-
sign of the study is described elsewhere4. In brief, all inhabitants of the Ommoord district 
aged 55 years and older were invited to participate (n = 10,215). A second extension of 
the cohort was initiated in 2006, in which 3,932 participants aged 45 years and older were 
included. The RS has been approved by the medical ethics committee according to the 
Population Study Act Rotterdam Study, executed by the Ministry of Health, Welfare and 
Sports of the Netherlands. A written informed consent was obtained from all participants.

For this study we used data from the third visit of the first cohort (RSI-3), first visit of the 
second (RSII-1) and third cohort (RSIII-1). From the 14,926 participants, we excluded: (i) 
3,576 participants who didn’t have information on lifestyle score; (ii) 798 were excluded 
because no information on T2D was available; or (iii) did not give informed consent for 
T2D follow-up (n=6). After exclusion, 10,546 participants (6,024 women) were available 
for the analyses on lifestyle score categories (healthier, moderate and unhealthier) and 
risk of T2D and mortality (Figure 3.3.1).

Assessment of Lifestyle score

Dietary quality
Dietary intake was assessed with a Food Frequency Questionnaire (FFQ)5. For RS-I and 
RS-II, a previously validated, two-step dietary assessment was used that comprised a 
simple self-administered questionnaire followed by a structured interview with a trained 
dietitian based on the completed questionnaire6. For RS-III, a validated FFQ based on 
389 items was used7. Follow-up data from RS-I-3 did not include measurement of dietary 
intake, therefore data from RS-I-1 were used as a proxy. Participants’ dietary quality was 
defined as adherence to the Dutch dietary guidelines, as previously applied to the Rot-
terdam Study5. For all participants, we examined adherence (yes/no) to fourteen items 
of the guidelines: vegetables, fruit, whole-grains, legumes, nuts, dairy, fish, tea, whole-
grains, fats and oils, red and processed meat, sugar-containing beverages, alcohol, and 
salt. Total adherence was calculated as sum-score of the adherence to the individual 
items (0–14). For the analyses, we divided the dietary quality score into tertiles (low 
(0–6), medium (6–8) and high adherence (8–14)).

Physical activity
Physical activity was measured using two different questionnaires. For RS-I and RS-II, a 
validated adapted version of the Zutphen Physical Activity Questionnaire (ZPAC)8 was 
used and for RS-III the validated LASA Physical Activity Questionnaire (LAPAQ)9. Both 
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questionnaires included items regarding walking, cycling, gardening, sports, hobbies 
and housekeeping activities. Participants’ physical activities were weighted by their 
intensity with the use of metabolic equivalent of task (MET). Questionnaire-specific ter-
tiles of MET hours per week (low (<57MET/h for RS-I-1 and RS-II-1; <27MET/h for RS-III-1), 
moderate (57–93MET/h for RS-I-1 and RS-II-1; 27–65MET/h for RS-III-1) and high physical 
activity (>93MET/h for RS-I-1 and RS-II-1; >65MET/h for RS-III-1) were calculated.

Alcohol intake
Alcohol intake was measured using the previously described FFQ. Data were collected 
as the number of glasses consumed per week in a wide-range of alcoholic beverages. Al-
cohol consumption was divided into three sex-specific categories: (1) low alcohol intake 
(<2 glasses per day for men and <1glass per day for women), (2) moderate alcohol intake 
(2 to <4 glasses per day for men, 1to <3 glasses per day for women) and (3) harmful 
alcohol intake (≥4 glasses per day for men and ≥3 glasses per day for women). Harmful 
alcohol intake was defined according to the Dutch diagnostic classification system for 
mental disorders (DSM-IV-TR).
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Figure 3.3.1. Flowchart of study participants
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Smoking status
Smoking status was determined by self-reported computerized questionnaires during 
the home interview. Smoking status was categorized into current smoking, former 
smoking and never smoking and included the use of cigarettes, cigars, and/or pipes. 
Current smokers were participants who answered yes to the question: “are you currently 
smoking?” Former smokers were participants who answered no to this question but who 
positively answered the question: “are you a former smoker?”

Lifestyle score
An overall lifestyle score was calculated by combining dietary quality, physical activity, 
alcohol intake and smoking into one score. All four individual lifestyle variables were di-
vided into three categories. The unhealthiest category was coded as 0, the moderate as 
1, and the healthiest category as 2. Scores for all these individual lifestyle variables were 
summed up for each participant, resulting in a combined lifestyle score ranging from 
0 to 8. According to the ranges the participants were categorized in three categories. 
Participants who had a score from 0 to 2 were categorized as the unhealthier lifestyle 
score category, from 3 to 5 as the moderate lifestyle category and from 6 to 8 as the 
healthier lifestyle category. The lifestyle score was calculated for participants whose 
data were available in at least two lifestyle variables.

Ascertainment of Type 2 Diabetes

The participants were followed from the date of baseline centre visit onwards. Cases of 
T2D were ascertained at baseline and during follow-up through: (i) active follow-up us-
ing general practitioners’ records, (ii) glucose hospital discharge letters and (iii) glucose 
measurements from RS visits that take place approximately every 4 years10. T2D was 
defined according to recent WHO guidelines, as a fasting blood glucose ≥ 7.0 mmol/L, a 
non-fasting blood glucose ≥ 11.1 mmol/L (when fasting samples were absent), or the use 
of blood glucose lowering medication. Information regarding the use of blood glucose 
lowering medication was derived from both structured home interviews and linkage 
to pharmacy records10. At baseline, more than 95% of the population was covered by 
the pharmacies in the study area. Two study physicians independently adjudicated all 
potential events of T2D. In case of disagreement, consensus was sought with an endo-
crinologist. Follow-up data was complete until January 1st 2012.

Ascertainment of Deaths

Mortality data were obtained by notification from the municipal administration. Data 
on all-cause mortality and living status were updated until August 1st 2016. Participants 
were followed from the first day they entered the study till the day of death, the day of 
lost to follow-up or the last date of contact, whichever came first.
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Assessment of Potential Confounders

Information on current health status, medical history, medication use and potential 
intermediate variables was obtained at baseline (RSI-3, RSII-1 and RSIII-1). Education was 
defined as low (primary education), intermediate (secondary general or vocational edu-
cation), or high (higher vocational education or university). Blood pressure was measured 
in sitting position at the right upper arm with a random-zero-sphygmomanometer. The 
mean of two consecutive measurements was taken. Antihypertensive medication use 
was defined as use of diuretics, β-blockers, angiotensin-converting enzyme inhibitors, 
and calcium channel blockers. All biochemical parameters were assessed in fasting se-
rum. Serum total cholesterol was measured in fasting serum on the COBAS 8000 Modular 
Analyser (Roche Diagnostics GmbH). Comorbidity was considered present when cancer 
or chronic obstructive pulmonary disease was prevalent at baseline. Pathology data of 
the cancers was obtained from linkage to the national cancer registry and the Dutch 
pathology database (PALGA). Chronic obstructive pulmonary disease was defined as 
a type of obstructive lung disease characterized by airflow limitation that is not fully 
reversible11. Height and weight at baseline were measured in our research center. BMI at 
baseline was calculated as weight in kg/height in m2. We defined three BMI categories 
based on World Health Organization guidelines12: normal weight, BMI of 18.5 to 24.9 kg/
m2; overweight, BMI of 25 to 29.9 kg/m2; and obese, BMI greater than or equal to 30 kg/
m2.

Data Analysis

We created multistate life tables to calculate the differences in life expectancy and years 
lived with and without T2D in: healthier, moderate and unhealthier lifestyle score. We 
considered three different health states: free of T2D, T2D, and death. Participants could 
experience the following transitions: from free of T2D to T2D, from free of T2D to death, 
and from T2D to death. No backflows were allowed, and only the first entry into a state 
was considered.

To obtain transition rates, we first calculated the overall age-specific rates for each 
transition. Next, we calculated the prevalence of healthier, moderate and unhealthier 
lifestyle score, by 10-y age groups, and separately for subjects with and without diabe-
tes. Hazard ratios (HRs) comparing participants who were classified as having a healthier, 
moderate or unhealthier lifestyle score, were calculated using Poisson regression (“Gom-
pertz” distribution) in 2 models. Model 1 adjusted for age, education level, BMI and co-
hort effect and model 2 additionally adjusted for the following potential intermediates: 
systolic blood pressure, cholesterol levels, antihypertensive medication, statin use and 
comorbidities (prevalent cardiovascular disease (CVD), cancer and chronic obstructive 
pulmonary disease (COPD)). Finally, we calculated three sets of transition rates for each 
category using (i) the overall transition rates, (ii) the adjusted HRs for T2D and mortality, 
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and (iii) the prevalence of lifestyle score categories by presence of T2D. Similar calcula-
tions have been described previously13.

The multistate life table started at age 45 years and closed at age 95 years. Multiple impu-
tations were performed in case of missing covariates. Statistical analyses were conducted 
using IBM SPSS, version 21 (IBM Corp) and STATA, version 13 for Windows (StataCorp). 
We used Monte Carlo simulation (parametric bootstrapping) to calculate the confidence 
intervals of the life expectancy estimates with @RISK software (Palisade) runs14.

Sensitivity Analysis

To exclude any potential bias caused by prevalent comorbidities at baseline, we re-
peated the analysis among those who were without COPD, cancer and CVD (n = 7933). 
In addition, to check whether any of the lifestyle factors was driving the association of 
the overall score with diabetes risk and mortality, we excluded one by one each of the 
factors in separate models. Furthermore, to account for the variability in time of lifestyle 
habits, we evaluated the effects of lengths of follow-up on the relation between lifestyle 
score categories, T2D and mortality. Therefore, all analyses were repeated for different 
periods of follow-up: 7 and 10 years.

Results

Baseline characteristics

The final study population consisted of 10,546 individuals: 4,522 men and 6,024 women. 
In total, we observed 575 incident diabetes events and 1659 overall deaths during a 
median follow up time of 11 years. The mean age (standard deviation) of the population 
was 64.4 (SD=9.8). Compared to women, men at baseline were on average higher edu-
cated, consumed higher alcohol amounts, and smoked more, but showed lower levels 
of physical activity (Table 3.3.1).

Diabetes incidence and mortality

Table 3.3.2 shows the association between lifestyle score categories and risk of incident 
T2D and mortality. In multivariable adjusted model, the HRs for the association between 
a healthier lifestyle score and T2D for men and women accordingly were: 0.47 (0.29 to 
0.75) and 0.51 (0.31-0.84). Among those free of T2D, compared to the unhealthier lifestyle 
score category, the healthier and moderate lifestyle categories, had a decreased risk of 
mortality among men 0.57 (0.41 to 0.78) and 0.72 (0.55 to 0.96) and women 0.63 (0.43 to 
0.93) and 0.78 (0.53 to 1.14), respectively. Among those with T2D, the HRs for mortality in 
men were 0.50 (0.29 to 0.86), and 0.64 (0.42 to 0.96) for healthier and moderate lifestyle 
score , respectively, relative to the unhealthier lifestyle score category (Table 3.3.2). For 
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this transition, the HRs for women with a healthier and moderate lifestyle score were in 
the same direction although not significant; 0.96 (0.44 to 2.09) and 0.94 (0.43 to 2.02) 
compared to their unhealthier counterparts.

Total life expectancy and life expectancy with and without diabetes

Compared to men in the unhealthier lifestyle category, the total life expectancy of 
45-y-old men in the healthier lifestyle group was 4.9 years longer and for women, the 
difference was 2.5 years longer (Table 3). The difference in life expectancy free of dia-
betes for both men and women, in the healthier category was 6.4 years longer and 5.7 
years longer. Moreover, compared to the unhealthier lifestyle group, the difference in 
life expectancy with diabetes for the healthier lifestyle category was 1.5 years shorter for 
men and 3.1 years shorter for women (Table 3.3.3).

Table 3.3.1. Baseline characteristics of 10546 participants

Characteristics Men (n= 4522) Women (n=6024)

Age, mean (SD), y 64.4 (9.4) 63.0 (10.1)

Diabetes mellitus*, Yes (%) 1017 (22.5) 1132 (18.8)

Education, Nr. (%)

Primary 421 (9.2) 889 (14.8)

Lower 1272 (28.0) 3006 (49.9)

Intermediate 1671 (36.7) 1373 (22.8)

Higher/university 1158 (25.5) 711 (11.8)

Lifestyle Score (LS), Nr. (%)

Unhealthier 1353 (29.9) 1040 (17.3)

Moderate 2567 (56.8) 3227 (53.6)

Healthier 602 (13.3) 1757 (29.2)

Body mass index, BMI, mean (SD), kg/m2 27.2 (3.7) 27.5 (4.6)

Physical activity (METhours/week) 66.6 (47.4) 83.1 (50.1)

Smoking status, Nr. (%)

Current 1218 (26.9) 1193 (19.8)

Former 2606 (57.6) 2278 (37.8)

Never 697 (15.4) 2552 (42.4)

Alcohol intake, Nr. (%)

Harmful 172 (3.8) 210 (3.5)

Moderate 407 (9.0) 758 (12.6)

Low 3064 (67.8) 4100 (68.1)

Diet quality score, mean (SD) 7.2 (3.3) 6.8 (3.0)



168

Chapter 3.3  |  Lifestyle factors, diabetes risk and life expectancy

Sensitivity analysis

The results did not change substantially after adjusting for potential intermediate risk 
factors, cancer and comorbidities (Supplemental tables), or excluding participants 
with prevalent chronic diseases like cancer, CVD and COPD (Supplemental tables). 
Additionally, when excluded one by one the lifestyle factors from the overall score, we 
observed that smoking and BMI were the main drivers of the associations. Furthermore, 
we repeated the analyses for 7 and 10 years of follow-up (Supplemental tables) and the 
results did not materially change.

Table 3.3.2. Hazard ratios by transition among categories of lifestyle score.*

Transition Categories Men Women

Cases, Number/
Person-Years

Model 1 HR 
(95% CI)a

Cases, Number/
Person-Years

Model 1 HR 
(95% CI)a

Incident T2D

Unhealthier LS

256/ 19240

1.00

319/ 29218

1.00

Moderate LS 0.69 (0.47-1.00) 0.64 (0.39-1.04)

Healthier LS 0.47 (0.29-0.75) 0.51 (0.31-0.84)

No T2D to 
mortality

Unhealthier LS

611/ 20482

1.00

631/ 30911

1.00

Moderate LS 0.72 (0.55-0.96) 0.78 (0.53-1.14)

Healthier LS 0.57 (0.41-0.78) 0.63 (0.43-0.93)

T2D to 
mortality

Unhealthier LS

236/ 4042

1.00

181/ 4805

1.00

Moderate LS 0.64 (0.42-0.96) 0.94 (0.43-2.02)

Healthier LS 0.50 (0.29-0.86) 0.96 (0.44-2.09)

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; T2D, Type 2 Diabetes.
*Age 45 and over at start of follow-up; The Unhealthier LS is the reference category.
a Adjusted for age, cohort and education.

Table 3.3.3. Effect of Lifestyle score on life expectancy at age 45*.

Total LE Difference in 
Total LE†

LE free of 
T2D

Difference 
in LE free of 
T2D†

LE with T2D Difference 
in LE with 
T2D†

Men

Unhealthier LS 29,7 Ref. 24,1 Ref. 5,6 Ref.

Moderate LS 32,5 2,9 27,5 3,4 5,0 -0,5

Healthier LS 34,5 4,9 30,5 6,4 4,1 -1,5

Women

Unhealthier LS 35,6 Ref. 28,0 Ref. 7,7 Ref.

Moderate LS 37,1 1,4 31,6 3,6 5,5 -2,2

Healthier LS 38,2 2,5 33,6 5,7 4,5 -3,1

Abbreviations: LE, Life Expectancy; T2D, Type 2 Diabetes; Ref, Reference.
* All life expectancies have been calculated with hazard ratios adjusted for age, cohort and education.
† Differences are calculated using Unhealthier LS as reference: moderate vs. unhealthier and healthier vs. 
unhealthier.
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Discussion

Overall we found that compared to unhealthy lifestyle, moderate and healthy lifestyle 
in middle aged and elderly were associated with longer total life expectancy and years 
lived without type 2 diabetes in both men and women. A healthier lifestyle decreased 
the risk of developing diabetes by 50% among men and women. Moreover, men and 
women who had a healthier lifestyle lived up to 5 years longer compared to participants 
who had an unhealthier lifestyle.

The increased life expectancy without diabetes in men and women with a healthier 
lifestyle might be due to the lower risk of diabetes and mortality associated with the 
healthier and moderate lifestyle categories. A lower risk of diabetes in men and women 
with a healthier lifestyle might reflect a later diagnosis of diabetes across the lifespan 
and therefore lead to a higher life expectancy without diabetes. This is also reflected 
in the total life expectancy which is also longer in men and women with a healthier 
lifestyle compared to an unhealthy lifestyle. Furthermore, being free from diabetes 
reduces the mortality risk and therefore leads to an increase in number of years lived 
and consequently the numbers of years lived without diabetes.

Lifestyle factors were quantified by combining five lifestyle factors, which were later 
categorized in three categories: ‘unhealthy’, ‘moderate’ and ‘healthy’. The distribution 
of the lifestyle score was slightly different between men and women. The majority 
of both males and females was as expected in the moderate lifestyle category. But in 
women only a small percentage was represented in the unhealthy group, whereas the 
remaining part in men was more equally divided between the unhealthy and healthy 
categories. This could partially explain the differences in life expectancy estimates we 
see among genders. In addition, these findings show that a healthy lifestyle reduced 
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the risk of diabetes in men and women. This could indicate that not only single lifestyle 
factors but also the combination of several lifestyle factors is associated with a reduced 
risk of diabetes and mortality. It was not the case in transition 3 of our analysese where 
we assessed the mortality risk among for women who had diabetes (HR 0.96 (95%CI 
0.44-2.09)).This could be due to the small number of mortality cases in this group and 
consenquently a lack of statistical power. However, the possibility that the associations 
of lifestyle factors on diabetes and mortality risk work differently in males and females 
should be considered. Previous evidence suggests sex differences in the association 
between lifestyle behaviors and important health outcomes15 16. In line with this, we we 
noted a difference in the number of years lived with diabetes among men and women. 
Compared to women, the healthier lifestyle in men was slightly lower risk of diabetes, 
indicating an earlier occurrence of diabetes during their life. Taken these results to-
gether, we could explain why women spend more years with diabetes than men. This 
is in accordance with previous research conducted in the US concluding that women 
spend more years living with diabetes than men17 18, possibly due to larger differences in 
probabilities of death between males and females observed for patients with diabetes 
relative to those without diabetes 18 19.

Similar method on assessing the association of lifestyle factors on disease risk and 
life expectancy was used in a few recent studies20 21. Both studies, one in the general 
Chinese population and the other in the US population calculculated the cumulative 
effects of the main lifestyle factors and tranlated it into a score. Participants could score 
on all five lifestyle factor either a zero or one (representing the unhealthy or healthy 
category) resulting in composite score ranging from zero to five. Pan et al in the Chinese 
population. found a gain in life expectancy at age 50 years of 8.1 years in women and 6.6 
years in men when adhering to 4-5 of the healthy lifestyle factors compared to adhering 
to none. In the study of Li et al. in the US population even higher number of years gained 
were found, 14.1 years in women and 12.1 years men. Although, our findings are in line 
with this evidence, our life expectancy estimates in the healthier category compared to 
unhealthy category were lower. This could be explained by the fact that in the studies of 
Li and Pan the two outer ranges are compared with each other, adhering to (almost) all 
lifestyle factors compared to adhering to none. In our study the unhealthy and healthy 
categories are a broader and less extreme in values. Another reason for this discrepancy 
could the differences in population sizes; in which our study population was much lower 
in numbers. However, our study is unique regarding the approach used for estimating 
life expectancy with and without diabetes. While Pan et al. and Li et al. obtained the 
mortality rates by modelling from the national register data , we calculated the mortality 
rates in the same population used for the analyses and estimated life expectancy with 
and without diabetes from direct observation of a well-defined population.



171

3

Strengths of our study include the prospective design with a long-term follow-up, the 
large number of participants and the adjustment for a broad range of potential con-
founders. The diagnosis of incident diabetes was done by standardized blood glucose 
measurements at the repeated study centre visits and electronic linkage with pharmacy 
dispensing records in the study area. Nevertheless, several limitations of this study must 
be acknowledged. First, diet and lifestyle factors were self-reported; thus, measurement 
errors are inevitable. This study included multiple waves of the Rotterdam Study, differ-
ent questionnaires were used to measure physical activity rates and dietary quality. Yet, 
because we adjusted for cohort and calculated questionnaire-specific categories, the 
effect may be limited. Additionally, in the first cohort we used dietary intake at baseline 
as proxy for dietary intake at the third measurements, assuming that dietary patterns 
remained stable over time22. The generalizability of these findings could be limited to 
middle-aged and older white European populations, our results need confirmation in 
other populations. Additionally, this study was performed in a Dutch population which 
is on average a highly physically active population. Hence, confirmation of these find-
ings in other study populations are needed.

A healthier lifestyle was associated with a decreased risk of developing diabetes by 
50% among men and women. Overall, men and women who had a healthier lifestyle 
lived up to 5 years longer compared to participants who had an unhealthier lifestyle. 
More attention should be given in clinical practice and preventive care to adopting a 
healthy lifestyle since it could substantially reduce diabetes risk, premature mortality 
and prolong life expectancy.
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Abstract

Objective

Total life expectancy may have increased over time together with the number of years 
spent diseased, due to improvements in treatment and preventive medicine. Therefore, 
the objective of this study was to estimate the association of type 2 diabetes with total 
life expectancy and calculate the number of years lived with and without cardiovascular 
disease.

Methods

Using data from the THIN Study including 2,304,408 participants, we built life tables to 
calculate the associations of having diabetes with life expectancy and years lived with 
and without cardiovascular disease among participants 50 years and older. For the life 
table calculations, we used hazard ratios for 3 transitions (healthy to death, healthy to 
cardiovascular disease, and cardiovascular disease to death), stratifying by sex and the 
presence of diabetes at baseline and adjusting for confounders.

Results

Participants with diabetes had a higher cardiovascular disease and mortality risk, with 
HRs of 1,41 (95%CI 1,39-1,43) and 1,45 (95%CI 1,43-1,47), respectively. The total life 
expectancy of men and women with diabetes at age 50 years and older was respectively 
3.7 and 3.5 years shorter when compared to their counterparts without diabetes. The 
years lived without cardiovascular disease in men and women with diabetes was 3.6 and 
3,5 years shorter compared to non-diabetic participants, respectively. Moreover, there 
were no differences in the number of years lived with cardiovascular disease between 
diabetic and non-diabetic men and women.

Conclusion

Our results suggest that people with diabetes have a higher risk of developing CVD and 
CVD mortality. However, when quantifying these risks into life expectancies we did not 
observe significant differences in years spent with and without CVD among diabetics 
and non-diabetics, suggesting that management, care and treatment of CVD in patients 
with diabetes might have improved in recent years.
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Introduction

Epidemic of diabetes is one of the main threats to human health in our century, affect-
ing about 3–5% of Western populations[1]. The global number of people with diabetes 
has risen dramatically over the past two decades and is expected to be more than 500 
million adults by 2030, with most having type 2 diabetes[2].

Type 2 diabetes (T2D) is a chronic disease associated with increased morbidity and 
mortality[3, 4], mainly from cardiovascular disease[5]. Cardiovascular disease (CVD) is 
responsible for ~70% of all mortality among patients with type 2 diabetes[6] and is also 
a major contributor to diabetes-related healthcare strategies[1]. Previous research has 
shown that people with T2D live up to 10 years in total, less than those without T2D and 
approximately 8 years less free of CVD[7, 8]. Improvements in diabetes treatment and 
care have played a crucial role in decreasing mortality rates among diabetics. However, 
as life expectancy is increasing, the importance of whether the additional life year gains 
are spent in good or in poor health is increasing as well. Also, there is limited evidence 
on how life expectancy has changed over time among these individuals. Due to the 
heterogeneous results from current evidence, more research on the development of 
type 2 diabetes and cardiovascular disease is needed. Even though the mortality among 
people with diagnosed diabetes is decreasing due to better diabetes care, it still remains 
high. The decrease in mortality means an increase in longevity but does not necessarily 
lead to an increase of the number of healthy years in a person’s life. Over the long term, 
living with type 2 diabetes decreases quality of life and increases the use of health care 
services[7]. Many studies has covered a limited age span (focused mainly in elderly) or 
were based on low case numbers. Our hypothesis is that total life expectancy may have 
increased over time together with the number of years spent diseased, due to improve-
ments in treatment and preventive medicine. Therefore, our aim was to estimate the 
association of T2D with total life expectancy and calculate the number of years lived 
with and without CVD, using data from a large cohort.

Methods

Study population and study sample

We undertook a cohort study with prospectively collected data from The Health Improve-
ment Network (THIN) database, which contains computerized primary care records from 
primary care physicians who use the Vision IT system and have agreed at the practice 
level to participate (covering 6.2% of the U.K. population)[9]. THIN captures diagnoses, 
prescriptions, and tests from primary care, and referrals to specialists, hospital admis-
sions, and diagnoses made in secondary care, which are typically reported back to the 
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primary care physician. THIN data are representative of the U.K. population[10], and 
comparisons to external statistics and other independent studies have shown that both 
the clinical diagnostic and prescribing information are well recorded and accurate  [9, 
10]. Data collection began in January 1995, and we used all data to September 2015. For 
this study, THIN’s independent Scientific Review Committee granted approval in August 
2016 (scientific review committee reference number: 16THIN078).

Out of 2,387,055 participants that were 50 years and older we excluded those with 
type 1 diabetes (n=19,642) and participants who didn’t meet quality measures (63,005), 
which left us with 2,304,408 study participants for our analyses (Figure 4.1.1).

 

 

Eligible patients aged 
between 50 and 111 

[2,387,055]

Patients without type 1 
diabetes* 

[2,367,413]

Patients who meet 
quality measures ¬ 

<PRIMARY ANALYSIS>
[2.304,408]

Patients without 
prevalent CVD 

<Sensitivity Analysis 1> 
[1,994,630]

Patients without incident 
type 2 diabetes 

<Sensitivity Analysis 2>
[2,198,416]

Patients without 
prevalent CVD 

<Sensitivity Analysis 2&1>
[1,906,930]

Figure 4.1.1. Flowchart of study participants
*Patients with type 1 diabetes are identified as pa-
tients with type 1 diabetes. Read Codes or patients 
with diabetes code (unspecified as type 1 or type 2) 
with insulin prescription and no oral drug prescrip-
tion (acarbose/DPP4i, glitazones, glinides, GLP1, 
Sus, SGLT2) and age at diagnosis of diabetes < 40



181

4

Assessment of exposure

A clinical diagnosis of T2D by the general practitioner was the outcome of interest. In 
the UK, the Quality Outcome Framework (QOF) in general practices ensures high‐qual-
ity data on important comorbidities such as cardiovascular disease, hypertension and 
T2D[11, 12].  Within the database, diagnostic codes for T2D were identified based on 
Read codes, a hierarchical coding system to record signs, symptoms, procedures and 
diagnosis in primary care[12, 13].

Assessment of outcomes

The primary outcome of our study was incident CVD. The endpoints were the first record 
of one of the following presentations of CVD:  coronary heart and heart failure. Any 
events occurring after the first CVD presentation were ignored. A second outcome of the 
current study was mortality in the total study population. The definition of the primary 
outcome in THIN database has already been validated[14].

Assessment of Covariates

Covariates that are independent predictors of T2D other than the exposure of interest 
were selected on the basis of biological plausibility and previous literature[15]. Par-
ticipant’s age, sex, self-reported smoking status, and social deprivation were included 
in models. Data recorded at study entry were used to classify participants as never 
smokers, ex-smokers, or current smokers. Social deprivation was included as quintiles 
of the index of multiple deprivation[16], a score calculated for each participant’s 
neighbourhood on the basis of indices such as income, education, and employment. 
BMI was defined using World Health Organization criteria as follows: underweight (BMI 
of<18.5kg/m2), normal weight (BMI of 18 kg/m2 to <25 kg/m2), overweight (BMI of 25 
kg/m2 to <30 kg/m2), and obese (BMI of ≥30 kg/m2). Other covariates used were gly-
cated haemoglobin A1c, systolic blood pressure, lipid-lowering medication, estimated 
glomerular filtration rate, presence of hypertension, Townsend social deprivation index, 
and comorbidities.

Data Analysis

We created life tables to calculate the differences in life expectancy and years lived with 
and without CVD by presence of diabetes. We used a period multistate life table. This 
type of life table combines information from people of different ages and from differ-
ent birth cohorts[17, 18]. We considered 3 different health states: free of CVD, CVD, and 
death. Participants could experience the following transitions: from free of CVD to CVD 
or death and from CVD to death. Participants were not allowed to move back from a 
disease state (eg, from having CVD to not having CVD), and only the first entry into a 
state was considered[19]. To evaluate the differences in risk of mortality and CVD among 
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participants by presence of diabetes at baseline, we first calculated the overall sex- and 
age-specific rates for each transition. Hazard ratios (HRs) comparing diabetic with non-
diabetic participants were calculated using Poisson regression (“Gompertz” distribution) 
in models adjusted for confounders[18].[8]. Model 1 adjusted for age; model 2 adjusted 
for for age, alcohol, Townsend, smoking and BMI in addition to age; and model 3 ad-
justed for lipid lowering medication, cholesterol, hypertension, eGFR, and comorbidities 
in addition to the variables in model 2. Finally, we calculated 3 sets of transition rates for 
diabetic and nondiabetic subjects using the overall transition rates, the adjusted HRs for 
CVD and mortality, and the prevalence of diabetes by sex and presence of CVD. Similar 
calculations have been described previously[8, 17, 18]. For our statistical analyses, we 
used STATA version 6.0 for Windows (StataCorp, College Station). We built life tables 
stratified by sex and presence of diabetes. The multistate life table started at age 50 years 
and closed at age 110 years. We calculated confidence intervals for all life expectancies 
and their differences using Monte Carlo simulation (parametric bootstrapping)[20]. To 
calculate the confidence intervals, we used @RISK software (MathSoft Inc, Cambridge, 
Mass; 1999), with 10 000 runs.

Results

In Table 4.1.1 are shown the baseline characteristics of your study population. Overall, 
there were slightly more men with type 2 diabetes and CVD than women. Also, men 
were more likely to smoke and drink while women were more hypertensive and suffered 
more from diseases such as depression and dementia.( Table 4.1.1)

In total, we observed 181,804 incident CVD cases and 387,781 deaths. The hazard 
ratios (HRs) calculated in the overall population and those calculated separately for men 
and women were similar. Therefore, we decided to calculate the life tables with the HRs 
obtained using the whole population. Overall, participants with diabetes had a higher 
CVD and mortality risk, with HRs respectively, HR 1,41 (95%CI 1,39-1,43) and HR1,45 
(95%CI 1,43-1,47) (Table 4.1.2). As expected, also life expectancy estimates when using 
sex specific HRs in the sensitivity analyses did not differ from those calculated using the 
overall HRs.

The total life expectancy of men and women at age 50 years and older was respec-
tively 3.7 and 3.5 years shorter when compared to their counterparts without diabetes 
(Table 4.1.3 and Figure 4.1.1). Diabetic men free of CVD lived 3.6 years shorter and 
diabetic women without CVD lived 3.5 years shorter compared to non-diabetic par-
ticipants. Moreover, there were no differences in the number of years lived with CVD 
between diabetic and non-diabetic men and women.
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For the statistical analyses we build several models and in all of them the estimates 
where comparable. The most important models were Model 1 ( main model) in which 
was adjusted for age, alcohol, Townsend (deprivation), smoking and BMI. Additionally, 
in Model 2 was adjusted for lipid lowering medication, cholesterol, hypertension, eGFR, 
and comorbidities. In a third model, adding Hba1c did not significantly attenuate the 

Table 4.1.1. Baseline characteristics of study participants

Men Women

Age, mean (SD), y 62.31(18.06) 63.69(19.66)

Diabetes mellitus, Yes (%) 135,573(4.15) 110,813(3.22)

Cardiovascular Disease, Yes (%) 202,786(6.21) 168,342(4.89)

Smoking Categories, Yes. (%)

Never smoker 1,523,737(46.67) 2,059,423(59.79)

Former smoker 590,379(18.08) 551,273(16.00)

Current smoker 780,469(23.90) 682,337(19.81)

Missing 370,410(11.34) 151,634(4.40)

Drinker Categories, Yes. (%)

Never drinker 395,633(12.12) 696,625(20.22)

Drinker no excess 1,803,058(55.22) 1,945,667(56.48)

Excessive drinker 114,718(3.51) 60,239(1.75)

Missing 951,586(29.15) 742,136(21.54)

Townsend, Yes. (%)

1 663,609(20.32) 695,705(20.20)

2 603,392(18.48) 641,050(18.61)

3 625,280(19.15) 662,942(19.25)

4 579,702(17.76) 616,621(17.91)

5 423,326(12.97) 431,405(12.52

Missing 369,686(11.32) 396,744(11.52)

Body mass index, BMI, mean (SD), kg/m2 26.29(4.84) 25.89(5.83)

Hypertension, Yes (%) 391,898(12.00) 473,561(43.75)

Cholesterol (mmol/l), mean(SD) 4.96(1.10) 5.21(1.10)

Lipid lowering medication in the last 60 days, Yes. (%) 379,906(11.64) 339,761(9.86)

eGFR 84.76(22.87) 83.82(24.35)

Hba1c (%), mean(SD) 6.71(1.58) 6.45(1.51)

Prevalent Cancer, Yes (%) 69,588(2.13) 101,199(2.94)

Depression, Yes (%) 308,668(9.45) 586,429(17.02)

Dementia, Yes (%) 16,000(0.49) 36,073(1.05)

Chronic liver disease, Yes (%) 15,396(0.47) 11,727(0.34)

Prevalent COPD, Yes (%) 52,592(1.61) 19,101(1.43)

Prevalent Atrial Fibrilation, Yes (%) 106,523(3.269) 93,898(2.73)
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results. Moreover, we performed several sensitivity analyses in which we 1) excluded 
prevalent CVD cases for transition 2 (in the whole population and sex specifically), 2) 
excluded incident T2D cases and 3) excluded incident T2D cases overall and prevalent 
CVD for transition 2 altogether. The results did not significantly differ in any of the sen-
sitivity analyses.

Table 4.1.2. Hazard ratios for CVD and mortality by presence of T2D.

Transition Categories Cases/ Number of 
people

Model 1 HR 
(95% CI)a

Model 2 HR 
(95% CI)b

Model 3 HR 
(95% CI)c

Incident CVD
No T2D

181,804/ 6,241,606
1,00 1,00 1,00

Yes T2D 1,41 (1,39-1,43) 1,14 (1,11-1,17) 1,28 (1,26-1,31)

No CVD to 
mortality

No T2D
250,763/ 6,241,606

1,00 1,00 1,00

Yes T2D 1,51 (1,49-1,53) 1,38 (1,35-1,41) 1,41 (1,39-1,43)

CVD to 
mortality

No T2D
137,018/ 510,266

1,00 1,00 1,00

Yes T2D 1,45 (1,43-1,47) 1,40 (1,37-1,43) 1,45 (1,43-1,47)

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; T2D, Type 2 Diabetes; CVD, cardiovascular disease.
a Adjusted for age, alcohol, Townsend, smoking and BMI.
b �Adjusted for age, alcohol, Townsend, smoking, BMI, lipid lowering medication, cholesterol, hypertension, 

eGFR, Hba1c and comorbidities.
c �Adjusted for age, alcohol, Townsend, smoking, BMI, lipid lowering medication, cholesterol, hypertension, 

eGFR and comorbidities.

Table 4.1.3. Life expectancy in years at age 50 years and older, stratified by gender.

Total LE Difference in 
Total LE†

LE free of CVD Difference in LE 
free of CVD †

LE with CVD Difference in LE 
with CVD †

Men

No T2D 32,4 Ref 26,9 Ref 5,4 Ref

Yes T2D 28,7 -3.7 23,3 -3.6 5,4 0.0

Women

No T2D 35,1 Ref 31,0 Ref 4,1 Ref

Yes T2D 31,6 -3.5 27,5 -3.5 4,0 0.0

Abbreviations: LE, Life Expectancy; T2D, Type 2 Diabetes; CVD, cardiovascular disease; Ref, Reference.
* All life expectancies have been calculated with hazard ratios adjusted for age, alcohol, Townsend, smok-
ing and BMI.
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Discussion

In our study, participants with diabetes had a higher cardiovascular disease and mortal-
ity risk, with HRs of 1,41 (95%CI 1,39-1,43) and 1,45 (95%CI 1,43-1,47), respectively. The 
total life expectancy of men and women with diabetes at age 50 years and older was 
respectively 3.7 and 3.5 years shorter when compared to their counterparts without dia-
betes. The years lived without cardiovascular disease in men and women with diabetes 
was 3.6 and 3,5 years shorter compared to non-diabetes participants, respectively. Fur-
ther, there were no differences in the number of years lived with cardiovascular disease 
between men and women with and without diabetes.

The shorter CVD-free life expectancies among diabetic subjects is due to their higher 
incidence of CVD combined with a higher risk of non-CVD mortality. We found no sig-
nificant difference between the years spent with CVD between diabetic and nondiabetic 
subjects. This is not surprising, given that while those with diabetes are at a greater risk 
of developing CVD, once they have it, they are at a greater risk of dying.

The HRs that we used in our life tables fall within the range of the recently published 
associations of diabetes with CVD and mortality however,[21] previous studies mainly 
using cohort data from decades ago have reported higher HRs in comparison to what 
we observed [22-28]. This discrepancy could be explained due to the historical differ-
ences in diagnoses, treatment and prevention and lifestyle of type 2 diabetes and CVD. 
Improvement in cardiometabolic health prevention has led to an earlier diagnosis of 
diabetes now than decades ago. In addition, factors leading to diabetes could have 
changed; for example patients in the Framingham study were more family history type 
as opposed to now that are heavily driven by BMI. The sensitivity analysis illustrates the 
effects of smaller or larger associations of diabetes, none of which attenuated our results.
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Figure 4.1.2. Effect of diabetes on life expectancy with and without cardiovascular disease at age 50 years 
and older .
All life expectancies have been calculated with hazard ratios adjusted for age, alcohol, Townsend, smoking 
and BMI.
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Historical comparisons between cohorts showed that the HRs for CVD among diabet-
ics compared to age, sex and BMI controls where higher in the earlier subcohort (1997-
2007); HR 1.79 (95% CI 1.55-1.86) than in the second subcohort (2007-2017); HR 1.51 
(95% CI 1.40-1.63). When looking at the HRs for mortality in diabetics with and without 
CVD in the 2 subcohorts we found similar HRs between the cohorts. Surprisingly, dia-
betics without CVD had lower mortality risks compared to diabetics with CVD. These 
discrepancies could be due to the shorter follow up time in the second subcohort and 
the different medical follow-up patients with and without CVD receive.

The above estimates and differences in life expectancy could explain also the smaller 
differences we find in life expectancy estimates and number of years lived with and 
without CVD when comparing participants with and without diabetes. Franco et al. 
using data from the Framingham study found that men and women with diabetes 50 
years and older lived on average 7.5 (95% confidence interval, 5.5-9.5) and 8.2 (95% con-
fidence interval, 6.1-10.4) years less than their nondiabetic equivalents. The differences 
in life expectancy free of CVD were 7.8 and 8.4 years, respectively[28]. Using data from 
NHANES I, another study found that median LE was 8 years lower for diabetic subjects 
aged 55 to 64 years[29]. Similarly, using cross-sectional data from the National Health 
Interview Surveys (NHIS) and Markov models, Narayan et al estimated that the presence 
of diabetes among non-Hispanic, 50-year-old men would result in a loss of 8 years in 
LE[30]. However, our study includes recent patient data and also it is much larger and 
diverse in sample size.

To the best of our knowledge, this is the largest prospective study of the association 
between body size phenotypes with or without metabolic abnormalities and a range of 
incident CVD events with unprecedented precision and power.Moreover our mortality 
recordings and data on T2D and CVD are very accurate and validated.

Nevertheless, some limitations of this study must be considered. The current study 
has inhereted all the limitations of routinely collected data. Unlikely in a cohort study 
where every participant is screened, in routinely collected data many of the patients 
could be undiagnosed which could lead to missclassification of the exposure. Moreover, 
although we had validated data on all cause mortality, it is not the case for cause specific 
mortality data. Some of the acute deaths from CVD we may not have attributed it to 
cardiovascular disease.Further, some of the covariates had not been uniformly collected, 
such as smoking and alcohol data thus they should be viewed with caution. In addition, 
we did not have any data on physical activity levels among the participants. Lifestyle fac-
tors such as physical activity, smoking, alcohol and BMI play an important role especially 
in developing T2D and subsequently as well in cardiometabolic health in general[18, 
31]. Li et al. showed that adherence to a healthy lifestyle at mid-life is associated with 
a longer life expectancy free of major chronic diseases[31].While two other studies in-
vestigating the effects of physical activity on diabetes, CVD and mortality risk conclude 
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that avoiding a sedentary lifestyle during adulthood not only prevents cardiovascular 
disease independently of other risk factors but also substantially expands the total life 
expectancy and the cardiovascular disease–free life expectancy for men and women. 
This effect is already seen at moderate levels of physical activity, and the gains in car-
diovascular disease–free life expectancy are twice as large at higher activity levels[18, 
32]. Moreover, recent evidence suggests that adhering to the healthy range of lifestyle 
factors at 12 months after the first diagnoses of diabetes, patients could achieve remis-
sion to a non-diabetic state and off antidiabetic drugs[33].In the future, better designed 
randomized control studies or large national and international cohort studies should 
investigate the new trends of cardiometabolic diseases in order to determine which 
factors or what type of care could be appropriate in current times for these patients.

The total life expectancy of men and women with diabetes at age 50 years and older 
was respectively 3.7 and 3.5 years shorter when compared to their counterparts without 
diabetes. The years lived without cardiovascular disease in men and women with diabe-
tes was 3.6 and 3,5 years shorter compared to non-diabetic participants, respectively. 
Our results suggest that people with diabetes have a higher risk of developing CVD and 
CVD mortality. However, when quantifying these risks into life expectancies we did not 
observe significant differences in years spent with and without CVD among diabetics 
and non-diabetics, suggesting that management, care and treatment of CVD in patients 
with diabetes might have improved in recent years.
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Abstract

Sex is a major determinant of cardiometabolic risk. DNA methylation (DNAm), an im-
portant epigenetic mechanism that differs between sexes, has been associated with 
cardiometabolic diseases. Therefore, we aimed to systematically review studies in adults 
investigating sex-specific associations of DNAm with intermediate cardiometabolic 
traits and incident cardiovascular disease including stroke, myocardial infarction (MI) 
and coronary heart disease (CHD). Five bibliographic databases were searched from 
inception to 15 July 2019. We selected 35 articles (based on 30 unique studies) from 
17,023 references identified; including a total of 14,020 participants from European, 
North American and Asian ancestries. Four studies reported sex differences between 
global DNAm and blood lipid levels and stroke risk. In 25 genome wide and candidate 
gene approach studies, DNAm at 31 gene sites were associated with sex differences 
in cardiometabolic diseases. The identified genes were PLA2G7, BCL11A, KDM6A, LIPC, 
ABCG1, PLTP, CETP, ADD1, CNN1B, HOOK2, GFBP-7, PTPN1, GCK, PTX3, ABCG1, GALNT2, 
CDKN2B, APOE, CTH, GNASAS, INS, PON1, TCN2, CBS, AMT, KDMA6A, FTO, MAP3K13, CCDC8, 
MMP-2 and ER-α. Prioritized pathway connectivity analysis associated these genes 
with biological pathways such as vitamin B12 metabolism, statin pathway, plasma 
lipoprotein, plasma lipoprotein assembly, remodeling and clearance and cholesterol 
metabolism. Our findings suggest that DNAm might be a promising molecular strategy 
for understanding sex differences in the pathophysiology of cardiometabolic diseases 
and that future studies should investigate the effects of sex on epigenetic mechanisms 
in cardiometabolic risk. In addition, we emphasize the gap between the translational 
potential and the clinical utilization of cardiometabolic epigenetics.
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Introduction

Cardiometabolic diseases include cardiovascular diseases (CVD), type 2 diabetes (T2D) 
and their associated risk factors including components of the metabolic syndrome and 
obesity[1]. Aging is associated with development of unfavorable cardiometabolic profile 
which in large contributes to increased incidence of major cardiovascular events and 
mortality[2]. Intermediate cardiometabolic risk factors are unequally distributed among 
sexes, and sex differences are also described in cardiometabolic diseases prevalence, 
clinical characteristics and prognosis[3, 4, 5]. Generally, before menopause women have 
better cardiometabolic risk profiles than same aged men; however, this sex advantage 
gradually disappears with advancing age, particularly after menopause[6]. Mechanisms 
underlying sex differences in CVD have been extensively studied in the past two decades 
and signaling pathways including epigenetic modifications of the genome emerged as 
possible pathways leading to sexual dimorphism in cardiometabolic diseases [7].

Epigenetic modifications comprise dynamic changes in the genome engaged in the 
modification of important cellular processes such as gene expression, chromosomal 
stability and genomic imprinting [8, 9]. DNA methylation (DNAm) is the best under-
stood and most extensively studied epigenetic mechanism in regard to CVD risk [8, 9]. 
DNAm refers to the transfer of a methyl group into the C5 position of the cytosine to 
form 5-methylcytosine (5mC) and increases or decreases in genomic 5mC are referred 
as DNA hyper- and hypomethylation respectively [8, 9]. The global DNAm assessed at 
long-interspersed nuclear element (LINE-1) has been inversely associated with interme-
diate CVD risk factors and higher risk of metabolic status worsening[10]. Conversely, 
a higher degree of global DNA methylation measured at Alu repeats or by the LUMA 
method was associated with the presence of CVD[10]. Also, gene specific hyper- or DNA 
hypomethilation was associated with changes in gene expression and was shown to 
affect cardiometabolic risk including atherosclerosis, inflammation, blood pressure, 
serum lipid and glucose levels, subsequently leading to increased risk of developing 
T2D, stroke and myocardial infarction[11]. Also, sex-specific differences in DNAm have 
been found in brain, human pancreatic islets and blood[12, 13]. Men in general seem 
to have lower levels of methylation in their genome as compared to women[14, 15], 
indicating that similarly to sex chromosomes, methylation at the autosomes might be 
subject to sex differences. Despite this, only a relatively small number of studies in the 
ample field of cardiometabolic epigenetics stratify according to sex or focus in sex dif-
ferences. Although a few studies[11, 16, 17] have summarized the existing literature on 
this complex topic, they did not focus on epigenetically induced sex differences in CVD, 
intermediate CVD risk factors or T2D, with the exception of a recent review that focused 
only on major CVD events[16].
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Therefore, we aimed to systematically review the available evidence in human studies 
exploring the association between sex-specific DNAm and cardiometabolic diseases.

Methods

Data Sources and Searches

This review was conducted using a predefined protocol (which was not registered at 
online platforms) and following a recently published guideline on how to perform sys-
tematic reviews[18] and in accordance with PRISMA guidelines[19]. A literature search 
was done using 5 electronic databases (Medline ALL via Ovid (1946-current), EMBASE 
(1974-current) via embase.com, Web of Science Core Collection (1900-current), Cochrane 
CENTRAL registry of trials (issue 7 2019) via Wiley and Google Scholar) until 15 July 2019 
(date last searched) with the help of an experienced medical information specialist 
(WMB). All references were imported in an EndNote library and deduplicated with the 
algorithm developed by Bramer et al[20]. Additionally, we searched the reference lists 
of the included studies and relevant reviews. Two independent reviewers screened the 
titles and abstracts of all studies identified initially, according to the selection criteria. 
Full texts were retrieved from studies that satisfied all selection criteria. All disagree-
ments were resolved through consensus or consultation with two other independent 
reviewers.

Study Selection
Observational (cross-sectional, case-control, prospective) studies conducted in adults 
and investigating the associations of global or gene-specific DNAm with cardiometa-
bolic outcomes were selected. Studies were included if they investigated sex-stratified 
associations between DNAm and intermediate cardio-metabolic traits (blood lipids, 
glucose, blood pressure, inflammatory markers, atherosclerosis, T2D) and CVD (MI, CHD, 
stroke). Also, we included studies that reported a significant interaction term with sex 
but did not stratify by sex in their analysis. Furthermore, studies conducted only in men/
women were not included in the current review.

Data Extraction
A predesigned electronic data abstraction form was used to extract relevant information. 
This included questions on study location, percentage of men and women included in 
the study, participants’ age, cardio-metabolic outcome, tissue type, DNAm technique 
used and general and sex-specific findings. Two authors independently extracted the 
data and a consensus was reached in case of any inconsistency with involvement of an 
additional author.
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Assessing the Risk of Bias
Two independent investigators used the Newcastle-Ottawa Scale[21] to assess the risk 
of bias of the included observational studies. The Newcastle-Ottawa Scale uses a star 
system (maximum of nine stars) to evaluate three domains: selection of participants; 
comparability of study groups; and the ascertainment of outcomes and exposures of 
interest. Studies that received a score of nine stars were judged to be of low risk of bias; 
a score of seven or eight stars was medium risk and those that scored six or less were 
considered at high risk of bias.

Pathway connectivity analysis
To identify biological pathways of the differentially methylated genes previously linked 
to CVD, we used the CPDB (ConsensusPathDB-human) tool from the Max Plank Institute 
for Molecular Genetics[22]. This tool integrates interaction networks in humans (in this 
study) and includes information on binary and complex protein-protein, genetic, meta-
bolic, signaling, gene regulatory and drug-target interactions, as well as biochemical 
pathways[22]. Data that explains interactions was derived from 32 public resources.

Results

Search Results and Study Characteristics

The search strategy identified 17,023 potentially relevant studies; after titles and ab-
stracts were screened 16, 814 references were excluded (Figure 5.1.1). For the remaining 
209 references, full-text articles were reviewed, 174 of which were excluded for various 
reasons outlined in Figure 5.1.1. A total of 35 articles based on 30 unique studies were 
included in this systematic review including a total of 14,020 non-overlapping partici-
pants, of whom approximately 53% were women. The studies included population with 
European (n=13), North American (n=3) and Asian (n=14) ancestries with age ranging 
from 32 to 75 years. Due to differences in the epigenetics marks and outcomes inves-
tigated, as well as different study designs of the included studies, we were not able to 
quantitatively pool the estimates from various studies. Therefore we report in this review 
a detailed descriptive summary of the available published literature. The characteristics 
of the included studies are described in Table 5.1.1. The median Newcastle-Ottawa 
quality score for the included studies was 7 of 9 possible points. The Table 5.1.1 depicts 
the methodologic quality of all included studies.
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The Role of Sex-Specific DNAm in Intermediate Cardio-metabolic Traits

Blood Lipids
Global DNA methylation is a frequent used marker for epigenetic screening since it 
captures the DNA methylation also at unknown genetic locations while the results of av-
erage DNA methylation correlate with the methylation of some trait-relevant genes[23, 
24]. Ten articles[14, 25-33] investigated sex-specific associations between DNAm and 
blood lipid concentrations applying global (n=2), epi-genome wide (n=1) and candidate 

17, 023 Potentially relevant citations identified 
11,765 Embase 

1,573 Medline Ovid 
3,096 Web of Science 
211 Cochrane Central 

378 Google Scholar 

16,814 unique citations excluded on the basis of title and abstract:
Review, letter, editorial or case reports 
In vitro, ecological, functional or animal studies

174 unique citations excluded due to: 
No relevant exposure/outcome 
No relevant population (e.g. men or women only) 
Absence of sex stratification 

*35 Articles (30 unique studies)
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Figure 5.1.1. The flowchart of included studies
*In a specific study more outcomes might have been investigated, therefore, numbers refer to number of 
articles and not numbers of unique studies
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gene (n=7) approaches. In total 2,443 non-overlapping participants (1,174 women and 
1,269 men) from USA, Canada, Finland, UK and China were included in these studies.

Two cross-sectional studies[14, 25] investigating global DNAm and blood lipid levels 
reported sex differences. In the study conducted by Cash et al, LINE-1 methylation was 
significantly higher in men than in women, and among the entire sample, lower levels of 
LINE-1 methylation was associated with higher levels of fasting low-density lipoprotein-
cholesterol (LDL) and lower levels of fasting high-density lipoprotein-cholesterol (HDL)
[14]. However, when stratifying by sex, the inverse association between global LINE-1 
methylation, LDL and HDL remained significant only in men[14]. Malipatil et al, in their 
study reported that an increase of 10% in LINE-1 methylation was associated with de-
creased cholesterol/HDL ratio by 0.4 mmol/L in the overall sample of men and women. 
However, when stratifying by sex, the inverse association remained significant only in 
women[25]. In an EWAS performed by Garcia-Calzon et al, female samples displayed 
on average higher methylation in the X-chromosome, whereas males presented higher 
methylation in the autosomes. Further, women showed higher HDL levels, which were 
associated with higher KDM6A expression and epigenetic differences in human liver[31]. 
The results were not replicated. Further, the authors integrated DNA regulatory regions 
and other epigenetic factors for CpGs in the autosomal and X-chromosome based on 
sex (q < 0.05) for only four liver donors. Particularly, 42% of the autosomal CpG sites 
(13,817 CpGs) and 27% of the X-chromosome sites (2601 CpGs) differentially methylated 
by sex overlapped with histone marks related to active chromatin and enhancer regions 
(H3K4me1), whereas 14% of the autosomal sites (4760 CpGs) and 11% of the X-chromo-
some sites overlapped with histone marks related to heterochromatin (H3K27me3)[31].

In three candidate gene-studies PTPN1[32], PLA2G7[26] and BCL11A[27] DNAm was 
positively associated with serum lipids in women, but not in men. Another study report-
ed that methylation at ABCG1 was negatively associated with triglycerides in women 
only[28], whereas methylation at LIPC was negatively associated with triglycerides only 
in men[27]. This latter study also reported sex-specific associations for total cholesterol: 
whereas ABCG1 was associated with triglycerides only in women, methylation at this 
CpG site was inversely associated with total cholesterol only in men[28]. For some 
CpG sites there were specific associations with HDL for males; methylation at PLTP[28], 
CETP[29], and LIPC[28] were negatively associated with HDL in men, but not in women. 
Moreover, a male-specific association was found between GCK CpG4 methylation at GCK 
and total cholesterol concentration[33]. However, a single study performed among 739 
African Americans in the Genetic Epidemiology Network of Arteriopathy (GENOA) did 
not find overall or sex-specific significant associations between DNA methylation and 
lipid levels[30].
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Blood pressure
Seven articles[25, 34-39] based on five unique studies reported associations between 
sex-specific DNAm and essential hypertension (EH), while one study investigated the 
cross-sectional association between DNAm and blood pressure[25]. Among these, five 
studies investigated candidate gene methylation[34-36, 38], while another study inves-
tigated epi-genome wide methylation[40] in regard to hypertension. Studies included 
3,561 non-overlapping participants (2,029 women and 1,373 men) from China and UK.

In the study conducted by Malipatil et al, in the overall sample of men and women, 
a 10% increase in LINE-1 methylation was associated with a 2.5 mmHg lower baseline 
diastolic blood pressure. The stratified analysis by sex did not show any significant 
influence of sex on this association[25]. One candidate gene study reported higher 
methylation levels of the two CpG sites at SCNN18 in women compared with men as con-
trols (CpG1: t=‑2.283, P=0.025; CpG2: t=‑2.568, P=0.012) and incident EH cases (CpG1: 
t=‑2.694, P=0.009; CpG2: t=‑2.583, P=0.011)[35]. However, for these two CpG sites no 
significant difference was observed between males and females in the prevalent cases 
group (CpG1: t=0.409, P=0.068; CpG2: t=0.621, P=0.536)[35]. These results indicated a 
significant association between EH and SCNN1B methylation, which was affected by 
age, sex and antihypertensive therapy. Similarly, in one other study, higher ADD1 DNAm 
levels were observed in females as compared to males (CpG1: P = 0.016; CpG2-5: P = 
0.021)[34]. Further, the study showed that lower ADD1 CpG1 methylation levels were 
significantly associated with EH in females (cases versus controls (%, SD): 10.00±1.41 
versus 11.36±3.63, adjusted P =0.042) but not in males (adjusted P = 0.133). In contrast, 
lower levels of ADD1 CpG2-5 methylation were associated with an increased risk of EH 
in males (cases versus controls: 22.48% versus 31.86%, adjusted P = 0.008) but not in 
females[34]. The prediction potential of EH for ADD1 CpG1 and CpG2-5 methylation 
levels was assessed by the ROC curves. CpG2-5 methylation was reported as a significant 
predictor of EH in males (area under curve (AUC) = 0.855, P = 0.001), while CpG1 meth-
ylation showed a trend toward being an EH indicator in females (AUC= 0.699, P =0.054)
[34]. In the same population, AGTR1 CpG1 methylation was a significant predictor of EH 
in both sexes[36] and hypomethylation of CpG3 site at IL-6 promotor was significantly 
associated with EH risk in both, men and women. Further, sex-specific DNAm levels were 
observed only at CpG1 and CpG2 sites of IL-6 promoter (males were hypomethylated 
as compared to females)[38]. Another study by Han et al, investigated the interactions 
between alcohol consumption and DNA methylation of the ADD1 gene promoter and its 
association with EH, involving 2040 cases and controls[36]. The researchers concluded 
that CpG1 methylation was associated with EH in females while CpG2-5 methylation 
was significantly associated with EH in males, suggesting that these interactions in the 
ADD1 gene promoter might play a role in modifying EH susceptibility[36]. Finally, Bao 
et al reported that hypomethylation of the IFNG promotor region was associated with 
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a higher risk of EH. However, the authors did not observe any sex differences overall, 
except that in the control group DNAm levels were found to be higher in males when 
compared to females[39].

Inflammation and Atherosclerosis
Three articles[41-43], investigated the associations between epi-genome wide DNAm 
(n=2), candidate gene methylation and inflammatory markers. Also, we did not identify 
any study investigating the sex-specific role of DNAm in atherosclerosis. Studies in in-
flammatory markers included 2,771 non-overlapping participants (713 women and 317 
men and one study did not report the number of men and women separately[41]) from 
Germany, China and USA. None of the epi-genome wide studies reported sex specific 
associations between global DNAm and inflammatory markers[41, 42]. Nevertheless, 
Guo et al, reported men-specific association between lower PTX3 promoter methyla-
tion levels and higher neutrophil to lymphocyte ratio. Also, the level of PTX3 promoter 
methylation in the coronary artery disease group (mean, SD: 62.69% ± 20.57%) was sig-
nificantly lower than that of the group free of coronary artery disease (mean, SD: 72.45% 
±11.84%), suggesting a role of this gene in developing coronary artery disease[43].

Glycemic Traits and T2D
Eight articles[12, 27, 32, 33, 44-47] reported sex-specific associations between DNAm 
and glycemic traits and T2D. Five studies were candidate gene studies and three were 
epi-genome wide studies. Among them, six studies focused on DNAm and T2D, one 
investigated the association between DNAm and metabolic syndrome and another 
investigated insulin metabolism. Studies included 2,239 non-overlapping participants 
(353 women and 554 men, with one study not specifying the number of men and 
women[46]) from Israel, Spain, Sweden, China and USA.

In a case-control study including 1,169 individuals, individual methylation levels at 
the FTO gene showed that CpG sites in the first intron were slightly (3.35%) hypometh-
ylated in T2D cases relative to controls[46]. The odds of developing T2D increased by 
6.1% for every 1% decrease in DNAm. Men were hypomethylated relatively to women 
and the effect of DNAm was stronger in males compared to females (P =0.034 for sex 
interaction, AUC = 0.675 among men and 0.609 among women)[46]. Also, in another 
case-control study association between PTPN1 promoter methylation and the risk of 
T2D was observed in the overall population and in females[32] .

In the study by Burghardt et al., a significant increase in CDH22 gene methylation in 
subjects with metabolic syndrome was identified in the overall sample[44]. However, 
when investigating males and females separately; differential methylation levels were 
observed within the MAP3K13 gene in females and the CCDC8 gene in males with meta-
bolic syndrome. In the validation sample a significant difference in methylation was 
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again observed for the CDH22 and MAP3K13 genes, but not for CCDC8 gene[44]. Another 
study investigated the impact of sex on the genome-wide DNAm pattern in human 
pancreatic islets from 53 males and 34 females, and relate the methylome to changes 
in expression and insulin secretion[12]. The study identified both chromosome-wide 
and site-specific sex differences in DNA methylation at the X chromosome of human 
pancreatic islets. However, the autosomal chromosomes showed differences in DNA 
methylation only on the level of individual CpG sites between sexes. Importantly, they 
found higher insulin secretion in pancreatic islets from females compared with males, 
as well as sex differences in gene expression[12]. Additionally, the authors did not find 
any difference in β-cell number between females and males. This could suggest that 
the DNA methylation differences seen between males and females might not be due to 
altered β-cell composition in the islets[12].

In a case-control study conducted by Rodriguez-Rodero et al[45], hypermethylation 
at CpG sites annotated to the HOOK2 gene was associated with the presence of T2D. 
Interestingly, when these results were analyzed by sex, female T2D samples were found 
hypermethylated at the cg04657146-region and the cg11738485-region of the HOOK2 
gene, whilst male samples were found hypomethylated in this latter region only[45]. 
Tang et al. reported a significant association only in males when investigating the 
overall BCL11A methylation in T2D patients[27]. While in another study among the same 
population, significantly elevated methylation levels of GCK CpG4 were observed in T2D 
patients than in the healthy controls. Also, this association was characteristic to males 
only[33]. Further, serum IGFBP-7 protein levels were similar among newly diagnosed 
and treated T2D patients and were not correlated with IGFBP7 DNAm overall, but solely 
in males[47].

The Role of Sex-Specific DNAm in CVD

Coronary Heart Disease
Eight articles[48-55] investigated the associations between DNAm and CHD and MI. All 
studies applied a candidate-gene approach and included a total of 2,353 participants 
(1,010 women and 1,343 men) from China, Italy and the Netherlands.

One study reported that a higher DNAm at the imprinted loci of INS and GNASAS was 
associated with the incidence of MI in women (INS: +2.5%, P = 0.002; GNASAS: +4.2%, 
P = 0.001)[48]. Hypermethylation at one locus and at both loci was associated with 
odds ratios (ORs) of 2.8 and 8.6, respectively (Ptrend = 3.0 × 10−4) while no association 
was observed among men. Similarly, one study revealed a female-specific significant 
association between methylation at PLA2G7 promoter and risk of CHD[49]. Another 
study reported a female specific association of CDKN2B methylation with CHD [women 
with CHD (mean, SD: 7.21±2.40%) compared with women without CHD. In contrast, 
four studies reported men-specific associations between DNAm of various genes and 
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CHD[43, 50, 51]. Peng et al, reported significant associations of the methylated promoter 
of the ABCG1 and GALNT2 genes with an increased risk of CHD overall and among men 
only[50]. Also, CHD patients had significantly lower levels of APOE methylation than non-
CHD controls. In addition, rs7412-T and rs7259620-A were protective factors for CHD 
in males (rs7412-T: OR=0.527, allele P=0.004; rs7259620-A: OR=0.743, allele P=0.029)
[54]. Giannakopoulou et al reported a sex specific increased methylation in the CTH 
promoter gene in 34 patients who had coronary artery bypass surgery (CABG) (19.1%) 
compared to 16 control subjects (10.3%). Increased methylation levels were observed 
in male CABG patients compared to male control subjects while in females this was not 
observed[51]. Furthermore, Xu at al., showed that CHD cases had a significantly lower 
methylation level of the GCK gene (mean, SD: 49.77 ± 6.43%) compared with controls, 
while there was no difference of GCK methylation level between males and females and 
no significant interaction between gender and disease[52]. However, a significant differ-
ence of the CpG2 methylation level with CHD was observed in males only[52]. On the 
other hand, one study evaluated the association between the DNA methylation profiles 
of genes involved in One-Carbon Metabolism (OCM) and the homocysteine (Hcy) path-
way, with the myocardial infraction risk due to the low B-vitamins intake[53], based in 
the rationale that B-vitamins and folates pathway may modulate DNA methylation[53]. 
The results from this study showed an inverse association between B-vitamins intake 
and the hypermethylation in three genes (TCN2 promoter, CBS 50UTR, AMT gene-body) 
in male cases, as well as two genes (PON1 gene-body, CBS 50UTR) in female cases[53].

Stroke
Four articles[15, 56-58] reported sex-specific associations between DNAm and stroke. 
Among these, three articles[56-58] used data from the same population for their 
analyses. Two studies applied global and two others candidate gene approaches. These 
studies applied a cross-sectional design, used blood samples and included a total of 
1,045 non-overlapping participants (459 women and 586 men) from diverse ethnic 
backgrounds, such as Chinese-Taiwanese[56-58] and Spanish[15].

Two of the studies used a candidate gene approach and performed pyrosequencing 
to assess methylation of the targeted regions in the gene promoter[57, 58], while the 
two other studies investigated the global DNAm of the LINE-1 elements using pyro-
sequencing[56] or luminometric methylation assay (LUMA)[15]. Further, two studies 
found a significant decrease in LINE-1 methylation in men compared to women in cases 
of stroke[15, 56]. One of them also reported that cases of ischemic stroke presented 
a lower methylation level compared to controls. In addition, this hypomethylation of 
LINE-1 in men was associated with an increased stroke risk by 1.2-fold after adjusting for 
risk factors, while no significant association was observed in women[56]. On the other 
hand, among the two studies investigating the estrogen receptor alpha ERα[57] and 
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the matrix metalloproteinase-2 (MMP-2)[58] respectively, the methylation levels were 
lower in individuals with stroke compared to controls, in all the CpG sites analyzed in 
both studies. Further, when exploring the sex-specific associations, the two studies 
obtained contrary results. One study found a significant difference in methylation levels 
in all the investigated CpGs annotated to the gene ERα only between female cases and 
controls[57]. Whereas the other study reported a significant difference between the 
methylation levels in one out of eight CpGs annotated to MMP-2 only between male 
cases and controls[58]. None of these studies investigated the difference between male 
and female cases.

Genes, pathways and cardiovascular disease

Studies included in this systematic review report that methylated CpG sites annotated 
to KDM6A, PLA2G7, CETP, ABCG1, LIPC, BCL11A, ADD1, CNN1B, HOOK2, PLTP, GALNT2, PON1, 
TCN2, CBS, AMT, CTH, INS, GNAS-AS1, MMP2, CCDC8, MAP3K13, FTO, ESR1, CDKN2B, APOE, 
IGFBP7, PTPN1, GCK and PTX3 were differently methylated for men and women. An over-
view of these genes, function and their sex specific methylations is provided in Table 
5.1.1. In addition, Figure 5.1.2 shows the prioritized pathway connectivity between 
cardio-metabolic genes that were found to be differentially methylated in men and 
women. The most significant pathways, that in Figure 5.1.2 are shown with darker red 
nodes with more representative enrichment include the Vitamin B12 Metabolism, Statin 
Pathway, Plasma lipoprotein, Plasma lipoprotein assembly, remodeling and clearance 
and Cholesterol metabolism. Hence, the most important genes connecting these path-
ways that merit further consideration were: ABCG1, APOE, PLTP, LIPC, CETP, CTH and INS. 
Overall, the majority of the genes reported in this review were previously known to be 
associated with CVD risk factors or CVD outcomes.

Discussion

In this review, we systematically summarized the current evidence on sex differences in 
DNA methylation in relation to cardiometabolic diseases. We included 30 unique studies 
that had either stratified their analyses by sex and/or specified that their results did not 
differ among sexes by testing for statistical sex-interaction. Overall, our findings indicate 
that global DNAm might influence cardiometabolic risk in a sex-specific manner, and 
that DNAm at 31 gene sites could be differentially associated with various cardiometa-
bolic traits in men and women.
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Global DNA methylation

We identified four studies suggesting that altered LINE-1 DNAm may play a role in CVD 
risk in a sex-specific manner: (i) DNAm measured in LINE-1 repeats was inversely associ-
ated with different serum lipids in men and women[14, 25], (ii) decreased LINE-1 was 
associated with higher stroke risk in the overall sample and in men[56] and (iii) DNAm 
measured using genomic 5-methyl cytosine content and LUMA indicated hypomethyl-
ation in male as compared to female stroke cases[15].

In the current review, global DNA hypomethylation was associated with poorer out-
comes. In particular, global DNA hypomethylation was associated with higher LDL and 
lower HDL levels in the overall sample and in Samoan men, but not in women[14] and 
increased stroke risk in Chinese men but not in women53. These findings are in line with 
observations in healthy Caucasian men where subjects with decreased LINE-1 methyla-

 
Figure 5.1.2. Pathway Connectivity between Nodes Harbouring Genes from cardio-metabolic genes that 
were found to be differentially methylated in men and women.
Circles represent nodes and their size reflect the number of genes ranging between 10 (small circle), 81 
(medium-sized circles) up to 666 (largest circle) genes. Dark red and light red clusters have significant en-
richment at P<10–8 and P<10–4 levels, respectively. Thicker connection lines represent larger number of 
shared genes across nodes, while coloured lines (dark and light red) represent higher number of input 
genes driving the connection between nodes. The nodes with more representative enrichment include the 
Vitamin B12 Metabolism, Statin Pathway, Plasma lipoprotein assembly, remodelling and clearance, Choles-
terol metabolism, One carbon metabolism and Glycine, serine and threonine metabolism and HDL remod-
elling. The pathway diagram was constructed using the ConsensusPathDB (CPDB) web-based software.
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tion were more likely to develop ischemic heart disease and stroke (women were not 
included in this study)[59]. Global DNA hypomethylation has been previously reported 
in stroke patients as compared with healthy[59] and in a large study with participants 
from European ancestry, decreased global DNAm was observed in male as compared to 
female stroke cases56. In experimental studies, global DNA hypomethylation has been 
shown to precede the formation of atherosclerosis in Apoe-/- mice, and has been associ-
ated with hyperhomocysteinemia and aortic lipid deposition in mutant mice deficient 
in methylenetetrahydrofolate reductase[60]. While in humans global loss of DNAm has 
been previously associated with atherosclerosis in both, atherosclerotic lesions[61] and 
peripheral blood leukocytes[62] but also with blood lipids, inflammation and blood 
pressure[10] implying that LINE-1 hypomethylation could be associated with an unfa-
vorable cardiovascular risk profile. Global DNAm is considered a robust measurement of 
the overall genomic methylation which is reported to be one of the earliest molecular 
changes in the transition of a cell from a normal to a diseased state[63]. Blood DNA 
hypomethylation might be easily measured and could be used to identify people at risk 
of cardiovascular events. Our findings emphasize the need of sex-specific approaches 
when further exploring the possible role of global DNAm as a biomarker and potential 
intervention target in cardiometabolic diseases.

Epigenome wide-association studies and candidate gene approach

We identified only six studies[12, 31, 41, 42, 44, 46] that investigated differentially 
methylated regions in the genome with cardiometabolic diseases in a hypothesis-free 
approach. Among these, three EWAS[12, 31, 44] reported sex-specific associations, and 
KDMA6A, FTO, MAP3K13 and CCDC8 were some of the important genes that were found 
to be methylated in a sex-specific manner with blood lipids and glycaemia traits. Among 
25 candidate gene studies, 22 studies reported sex-specific associations between 
DNAm and cardiometabolic diseases at the following genes PLA2G7, BCL11A, KDM6A, 
LIPC, ABCG1, PLTP, CETP, ADD1, CNN1B, HOOK2, GFBP-7, PTPN1, GCK, PTX3, ABCG1, GALNT2, 
CDKN2B, APOE, CTH, GNASAS, INS, PON1, TCN2, CBS, AMT, MMP-2 and ER-α. Based on the 
prioritized pathway connectivity analysis, although, limited, the evidence suggests an 
involvement of biological pathways related to vitamin B12 metabolism, statin pathway, 
plasma lipoprotein, plasma lipoprotein assembly, remodeling and clearance and choles-
terol metabolism, with sex differences in cardiometabolic diseases (Figure 5.1.2). Some 
of the most relevant genes from the pathway analysis were ABCG1, APOE, PLTP, LIPC, CETP, 
CTH and INS. Overall, these genes have been associated to cardiometabolic outcomes, 
however little evidence links them to epigenetics and cardiometabolic diseases and 
even less to sex differences in cardiometabolic diseases.

ABCG1 gene is a transmembrane cholesterol transporter that effluxes cellular choles-
terol from macrophages by delivering cholesterol to mature high-density lipoprotein 
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particles. Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to 
glucose and lipid metabolism by controlling the secretion and activity of insulin and 
lipoprotein lipase. Moreover, there is a growing body of evidence suggesting that 
modulation of ABCG1 expression might contribute to the development of diabetes and 
obesity[64], which are major risk factors of CVD. The ABCG1, GALNT2 and HMGCR genes 
have been previously associated with pathogenesis and progression of CHD through 
manipulating the various lipid pathways[65, 66]. In the current review, hypermethyl-
ation of these three genes was associated with higher levels of total cholesterol and 
LDL , and increased CHD risk in men[50], while it was linked to higher levels of TG in 
women but not with risk of CHD7. The expression of ABCG1 gene reduces cholesterol 
accumulation in macrophages by promoting the transfer of intracellular cholesterol into 
HDL pathway[67]. In contrast to this, hypermethylation at PLA2G7 was associated with 
levels of total cholesterol, triglycerides and ApoB in females but not in males, and also 
only female CHD cases were hypermethylated as compared to controls5. PLA2G7 is the 
coding gene for Lp-PLA2 whose abnormal activity can cause high risk of CHD and may 
serve as a diagnostic marker for CHD[68]. Therefore, the sex disparities in the ABCG1 
and PLA2G7 methylation may have an effect in the molecular mechanisms underlying 
the sex-specific pathophysiology of CHD and may provide epigenetic clues to explain 
the inconsistency in the epidemiological studies. However, both studies were done in 
Han Chinese population, and sample size was rather small (only 85 CHD patients and 54 
participants without CHD[50] and 36 CHD cases and 36 controls). Hence, further replica-
tion studies with larger sample size and in different ethnic populations are required to 
confirm these findings.

The APOE gene encodes apolipoprotein ε (ApoE), a protein that associates with lipids 
to form lipoproteins that package and traffic cholesterol and lipids through the blood-
stream and has been linked with numerous physiological conditions, including healthy 
aging[69], cardiovascular disease[70], diabetes[71] and cognitive function[72]. One study 
using samples of 563 blood-bank donors, found that 1% of the inter-individual varia-
tion in plasma ApoE levels was attributable to variation of age and sex[73]. Researchers 
from the ApoEurope project, reported a sex-differential effect of age on mean levels of 
ApoE[74]. In men, the levels of ApoE levelled off after the age of 45 years, whereas they 
continued to increase in women[74].

PLTP (phospholipid transfer protein) is essential for the transfer of excess surface 
lipids from TG-rich lipoproteins to HDL particles. PLTP-mediated phospholipid transport 
among HDL particles is also known to be associated with HDL particle size and lipid 
composition. Sex disparities for HDL levels associated with PLTP have been previously 
reported[75]. In the PAGE study, the major allele of rs7679 was associated with higher 
HDL levels in women only. The locus with the most consistent evidence for sex dispari-
ties across the studies is LPL, or lipoprotein lipase. Different SNPs in this gene exhibited 



208

Chapter 5.1  |  DNA-methylation in cardiometabolic health

sex disparities for HDL levels in two prior studies, with a larger effect in males[76, 77]. 
In two other studies, LPL exhibited sex differences for TG levels, also with a stronger 
effect in males[75, 78]. LPL is the rate-limiting enzyme for hydrolysis of triglycerides in 
lipoproteins and polymorphisms and mutations in LPL have been associated with lipid 
metabolism disorders. Hormone levels have been shown to affect regulation of LPL, 
including thyroid hormone, estrogen, and testosterone[79], which could possibly and 
partially explain the observed association in cardiometabolic diseases.

Although these pathways and the respective reported genes need further investiga-
tion, confirmation and translational research, the current evidence suggests they could 
be biologically relevant and could hold the key for future drug discovery, diagnosis and 
treatment of cardiometabolic diseases overall and in a sex specific manner. Determin-
ing the relationships between genes is essential for molecular biology and medicine. 
These relationships often cluster together into functional and disease pathways, and 
the characterization of these pathways is necessary to improve disease classification, 
patient stratification and, ideally, personalized treatment[80].

Epigenetic mechanisms in biological processes of sex differences

Sex differences in pathophysiology of cardiometabolic diseases could be attributed to 
several gender and sex-specific factors[81]. Lifestyle factors (smoking, diet, stress) can 
determine gender differences by modifying cardiometabolic risk directly, and they can 
also modify the epigenetic marks in a sex-specific manner leading to sex differences 
in cardiometabolic diseases[81](Figure 5.1.2). Sex differences may also be driven by 
biological dissimilarities rather than different environmental exposures among men 
and women[81]. In particular, the major mechanisms by which sex might influence 
cardiometabolic diseases epigenetics may include: (i) the genomic and non-genomic 
effects of steroid hormones and their receptors on DNAm enzymes, histone modifiers 
and miRNAs, (ii) genomic imprinting, leading to DNAm of either maternal or paternal al-
leles and (iii) increased expression of X-chromosomal escape genes in women targeting 
epigenetic modifications and the expression of non-pseudo-autosomal Y-chromosomal 
epigenetic modifiers in men[16] .

Sex hormones have been extensively studied in the past decade in regard to 
cardiometabolic diseases due to the better cardiometabolic profiles in women as 
compared to their male counterparts. In the current review, we found some implica-
tions for the interactions between sex hormones and methylation in modifying sex 
differences cardiometabolic diseases. Three[15, 57, 58] of the studies included in the 
current review, investigating epigenetic changes and stroke and reporting differences 
between men and women, highlight the importance of sex hormones and their recep-
tors. Using a global DNA methylation approach, Soriano-Tarraga et al[15], found that 
global hypomethylation was independently associated with stroke subtypes only in 
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females. Moreover, there was an association between lower ERα methylation levels 
and large-artery and cardio-embolic stroke subtypes in women, while in men this as-
sociation was not observed. It might be that women suffering from a major ischemic 
stroke may cause a more significant change in ERα methylation levels to reduce the 
brain injury[57]. In line with this, differential DNAm profiles mediated sex differences in 
the endogenous neuroprotective response to middle cerebral artery occlusion (MCAO) 
in mice were reported. In female mice, MACO induced selective demethylation of the 
ERα gene promoter, leading to the increase in ERα expression[82]. Also, sex differences 
were observed in MMP-2 methylation, with expression of MMP-2 being closely related 
to sex hormones[58]. Males with small-vessel ischemic stroke had lower methylation 
levels at all MMP-2 CpG sites, while no association was observed in women[58]. Further 
exploration of the underlying mechanisms is needed. Sex- and stroke-subtype-specific 
effects must be taken into consideration when investigating potential strategies to alter 
the activity of MMP-2 in patients with ischemic stroke. Steroid hormones can induce, 
among others, modification of histones. Androgen or estrogen receptors act by binding 
to hormone response elements in the DNA and attract various cofactors that have inher-
ent histone acetyltransferase or methyl transferase activity. This is particularly known 
for the CREB binding protein and E1A binding protein p300[83]. The histone-modifying 
enzymes alter the epigenetic state of gene promoters to which the nuclear receptors 
bind, thereby changing gene expression.

It is known that DNAm contributes to X-chromosome inactivation in females[84], and 
findings by Garcia-Calzon et al, demonstrated that DNA methylation in the X-chromo-
some in human liver mirrors the methylome in other human tissues[31]. They reported 
higher average degree of X-chromosome methylation in females than in males with 37% 
of the significant sites on the X-chromosome having higher methylation in males[31]. 
Around 95% of the CpG sites in the X-chromosome that had differential DNAm in 
human liver between sexes also had different methylation levels between males and 
females in pancreatic islets and brain independently of the clinical characteristics of the 
population[12, 85]. Further, they identified four genes on the X-chromosome with large 
differences in DNA methylation between males and females and being more expressed 
in liver from females than males: XIST, ARSE, RPS4X, and KDM6A[31]. Also, higher ARSE 
and RPS4X mRNA expression has been found in pancreatic islets, and higher XIST and 
RPS4X mRNA expression was also found in brain from females compared with males[15, 
85]. These differences in gene expression in several tissues may explain some metabolic 
differences between males and females. Interestingly, these four genes are known to es-
cape X-chromosome inactivation[86-88]. In this study serum HDL levels were positively 
associated with KDM6A mRNA expression in human liver in addition to higher serum 
HDL levels and higher KDM6A expression in females. Also, silencing KDM6A in hepato-
cytes resulted in lower HDL levels and lower expression of key genes encoding proteins 
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that regulate HDL levels, supporting the direct contribution of KDM6A in the differences 
found in HDL levels between males and females[31].

Potential clinical implications and recommendations for future research

Although the clinical use of epigenetic marks in the field of cardiometabolic diseases is 
still in its infancy this is not the case with cancer research. Molecular risk stratification us-
ing (epi)genetic marks have been focused on identifying molecular features associated 
with clinical outcome and have applied them to patients’ risk stratification and treatment 
guidance[89, 90]. Such results indicated that a gene expression score that incorporates 
prognostic genetic and epigenetic information could be used as a model for treat-
ment response but also for risk stratification and early disease detection. In particular, 
sex-specific epigenetic marks against or as a supplement to existing risk scores (such 
as the Framingham Risk Score[91]) may be an added value when predicting the risk of 
cardiometabolic diseases. This is also supported by our findings suggesting that for car-
diometabolic traits epigenetic markers may not be equally good predictors in men and 
women, emphasizing the role of sex in epigenetic patterns of cardiometabolic diseases. 
Further, as sex is one of the strongest predictors of treatment response, the epigenetic 
signatures may be used as markers to indicate the successfulness of pharmacological 
or dietary/lifestyle interventions in cardiometabolic diseases among sexes. Given the 
lack of sex-stratification in studies focusing on epigenetic mechanisms and the fact 
that the majority of the studies were focused to epigenetic changes in autosome chro-
mosomes in regard of cardiometabolic diseases, our review underscores the emerging 
need for future studies to investigate the influence of sex on epigenetic mechanisms in 
cardiometabolic diseases. In complex phenotypes such as cardiometabolic diseases, the 
collection of high-quality blood samples and metabolically active tissues could provide 
the basis for the creation of large data sets that should accurately incorporate the many 
sources of variability (age, sex/gender, race/ethnicity). In particular, future prospective 
observational studies should aim to explore the role of sex when studying the associa-
tions between epigenetic marks and mechanistic pathways of cardiometabolic diseases 
by stratifying their analyses by sex and comparing male and female participants. Second, 
studying the associations between DNAm and intermediate CVD risk factors is valuable, 
however, from the clinical perspective, the value of DNAm as a biomarker of the risk fac-
tor is as good as the intermediate risk factor itself. Therefore, as we did not identify stud-
ies focusing on outcomes such as stroke or myocardial infarction, it might be of great 
value for future research to investigate the role of sex on the epigenetic determinants 
of stroke and myocardial infarction. Third, potential biological mechanisms underlying 
sex-specific associations should be further explored in an experimental setting. It is now 
known that sex differences in morphology and in response to stress exist also in cellular 
levels[92-94]. Therefore, when translating the observational findings into experimental 
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settings a clear distinction between male and female animal models or cell cultures is of 
high importance in order to obtain non-biased results on the sex-specific pathophysiol-
ogy of cardiometabolic diseases.

Strengths and limitations

In this systematic review on sexually dimorphic DNAm, we critically appraised the litera-
ture following an a priori designed protocol with clearly defined inclusion and exclusion 
criteria using a comprehensive literature search in five databases. While previous sys-
tematic reviews on the topic are limited only to major CVD outcomes[16], our study took 
in consideration a broad range of cardiometabolic risk factors and diseases. However, 
the limitations of the findings from this study merit careful consideration. The included 
studies in this review were limited in sample size and the majority of studies included 
were cross-sectional assessments, making it difficult to conclude whether DNAm pat-
terns are a cause or consequence of cardiometabolic changes. In addition, the results 
of some of the studies need cautious interpretation when it comes to the biological 
or functional relevance of their findings. Even though a study may report a significant 
difference in DNAm the biological relevance of small differences could be likely minimal 
and unknown. Studies investigating associations between metabolic syndrome and 
DNAm also need to be interpreted with caution given the heterogeneity of metabolic 
syndrome and that the subjects may or may not have dyslipidemia, elevated BP, and 
hyperglycemia. Therefore interpreting associations between changes in DNAm and sub-
jects classified as having metabolic syndrome is Moreover, although individual studies 
attempted to adjust for established CVD risk factors, adjustment levels were inconsistent 
across the studies. Also, DNAm patterns reported in blood samples may not mirror the 
methylation patterns in the relevant targeted tissues. Further, we did not perform the 
search for non-coding microRNAs and histone modifications because the scope of our 
search was DNA methylation. Given the importance of microRNAs and histone modifica-
tions as epigenetic mechanisms, future systematic reviews and meta- analyses on mi-
croRNAs, histone modifications and sex differences in different types of cardiovascular 
tissues would be an added value on the topic. Moreover, we hand searched relevant 
reviews and references of studies included in the current review in order to minimize 
the possibility of missing important studies. Also, we cannot exclude the possibility of 
publication bias from underreporting negative findings. Lastly, a meaningful quantita-
tive pooling of the existing data was unfeasible due to the heterogeneity in the input 
parameters, assumptions and study design.

Conclusions

Although a growing body of evidence suggests biological, genetic and epigenetic sex 
differences in cardiometabolic diseases, only a small number of studies in the field 
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stratify or present their results by sex. Nevertheless, the cumulative evidence from the 
studies that reported sex-based results, suggest that epigenetic changes in specific 
individual genes might be differently associated with cardiometabolic traits in males 
and females, encouraging further and larger-scale investigation. Robust, replicable 
results from carefully designed studies have the potential to uncover the molecular 
biological processes involved in disease onset and progression. In addition, future stud-
ies should help characterize gene regulatory effects of non-coding genetic variations, 
and, hopefully, give indications into disease-relevant biological pathways which could 
be addressed by preventive or therapeutic interventions. Clearly, a considerable amount 
of functional work is required in the future to expand our field of view beyond the classic 
biological mechanisms involved in sex differences of cardiometabolic diseases, and that 
could be important to design new drugs that target sex-specific mechanisms and permit 
more precise and efficient care.



213

5

References

	 1.	 Manach, C., et al., Addressing the inter-individual variation in response to consumption of plant 
food bioactives: Towards a better understanding of their role in healthy aging and cardiometa-
bolic risk reduction. Mol Nutr Food Res, 2017. 61(6).

	 2.	 Park, Y.W., et al., The metabolic syndrome: prevalence and associated risk factor findings in the US 
population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch 
Intern Med, 2003. 163(4): p. 427-36.

	 3.	 Bjornerem, A., et al., Endogenous sex hormones in relation to age, sex, lifestyle factors, and 
chronic diseases in a general population: the Tromso Study. J Clin Endocrinol Metab, 2004. 89(12): 
p. 6039-47.

	 4.	 Humphries, K.H., et al., Sex differences in cardiovascular disease - Impact on care and outcomes. 
Front Neuroendocrinol, 2017. 46: p. 46-70.

	 5.	 Appelman, Y., et al., Sex differences in cardiovascular risk factors and disease prevention. Athero-
sclerosis, 2015. 241(1): p. 211-8.

	 6.	 Mehta, L.S., et al., Acute Myocardial Infarction in Women: A Scientific Statement From the Ameri-
can Heart Association. Circulation, 2016. 133(9): p. 916-47.

	 7.	 Boyne, D.J., et al., Endogenous sex hormone exposure and repetitive element DNA methylation in 
healthy postmenopausal women. Cancer Causes Control, 2017. 28(12): p. 1369-1379.

	 8.	 Feinberg, A.P., Epigenetics at the epicenter of modern medicine. JAMA, 2008. 299(11): p. 1345-50.
	 9.	 Robertson, K.D., DNA methylation and human disease. Nat Rev Genet, 2005. 6(8): p. 597-610.
	 10.	 Muka, T., et al., The role of epigenetic modifications in cardiovascular disease: A systematic review. 

Int J Cardiol, 2016. 212: p. 174-83.
	 11.	 Braun, K.V., et al., The role of DNA methylation in dyslipidaemia: A systematic review. Prog Lipid 

Res, 2016. 64: p. 178-191.
	 12.	 Hall, E., et al., Sex differences in the genome-wide DNA methylation pattern and impact on gene 

expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol, 2014. 
15(12): p. 522.

	 13.	 Yousefi, P., et al., Sex differences in DNA methylation assessed by 450 K BeadChip in newborns. 
BMC Genomics, 2015. 16: p. 911.

	 14.	 Cash, H.L., et al., Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat 
region in peripheral blood from Samoan Islanders. Epigenetics, 2011. 6(10): p. 1257-1264.

	 15.	 Soriano-Tarraga, C., et al., Global DNA methylation of ischemic stroke subtypes. PLoS One, 2014. 
9(4): p. e96543.

	 16.	 Hartman, R.J.G., S.E. Huisman, and H.M. den Ruijter, Sex differences in cardiovascular epigenetics-
a systematic review. Biol Sex Differ, 2018. 9(1): p. 19.

	 17.	 Stoll, S., C. Wang, and H. Qiu, DNA methylation and histone modification in hypertension. Int J Mol 
Sci, 2018. 19(4).

	 18.	 Muka, T., et al., A 24-step guide on how to design, conduct, and successfully publish a systematic 
review and meta-analysis in medical research. Eur J Epidemiol, 2019.

	 19.	 Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA 
statement. Int J Surg, 2010. 8(5): p. 336-41.

	 20.	 Bremer, W.M., Reference checking for systematic reviews using Endnote. Journal of the Medical 
Library Association, 2018. 106(4): p. 542-546.

	 21.	 Lewis, J.E., et al., A randomized controlled trial of the effect of dietary soy and flaxseed muffins on 
quality of life and hot flashes during menopause. Menopause, 2006. 13(4): p. 631-642.



214

Chapter 5.1  |  DNA-methylation in cardiometabolic health

	 22.	 Kamburov, A., et al., The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res, 
2013. 41(Database issue): p. D793-800.

	 23.	 Ohka, F., et al., The Global DNA Methylation Surrogate LINE-1 Methylation Is Correlated with 
MGMT Promoter Methylation and Is a Better Prognostic Factor for Glioma. Plos One, 2011. 6(8).

	 24.	 Knothe, C., et al., Disagreement between two common biomarkers of global DNA methylation. 
Clinical Epigenetics, 2016. 8.

	 25.	 Malipatil, N., et al., Assessment of global long interspersed nucleotide element-1 (LINE-1) DNA 
methylation in a longitudinal cohort of type 2 diabetes mellitus (T2DM) individuals. Int J Clin 
Pract, 2018: p. e13270.

	 26.	 Jiang, D., et al., Elevated PLA2G7 Gene Promoter Methylation as a Gender-Specific Marker of Ag-
ing Increases the Risk of Coronary Heart Disease in Females. PLoS One, 2013. 8(3).

	 27.	 Tang, L., et al., BCL11A gene DNA methylation contributes to the risk of type 2 diabetes in males. 
Exp Ther Med, 2014. 8(2): p. 459-463.

	 28.	 Guay, S.P., et al., Epipolymorphisms within lipoprotein genes contribute independently to plasma 
lipid levels in familial hypercholesterolemia. Epigenetics, 2014. 9(5): p. 718-729.

	 29.	 Guay, S.P., et al., DNA methylation variations at CETP and LPL gene promoter loci: New molecular 
biomarkers associated with blood lipid profile variability. Atherosclerosis, 2013. 228(2): p. 413-
420.

	 30.	 Wright, M.L., et al., Joint Influence of SNPs and DNA Methylation on Lipids in African Americans 
From Hypertensive Sibships. Biol Res Nurs, 2018. 20(2): p. 161-167.

	 31.	 Garcia-Calzon, S., et al., Sex Differences in the Methylome and Transcriptome of the Human Liver 
and Circulating HDL-Cholesterol Levels. J Clin Endocrinol Metab, 2018. 103(12): p. 4395-4408.

	 32.	 Huang, Q., et al., Elevation of PTPN1 promoter methylation is a significant risk factor of type 2 
diabetes in the Chinese population. Exp Ther Med, 2017. 14(4): p. 2976-2982.

	 33.	 Tang, L., et al., Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes 
in Chinese males. Gene, 2014. 547(2): p. 329-33.

	 34.	 Zhang, L.-N., et al., Lower ADD1 gene promoter DNA methylation increases the risk of essential 
hypertension. PLoS One, 2013. 8(5): p. e63455.

	 35.	 Zhong, Q., et al., Association of SCNN1B promoter methylation with essential hypertension. Mol 
Med Rep, 2016. 14(6): p. 5422-5428.

	 36.	 Han, L., et al., The interactions between alcohol consumption and DNA methylation of the ADD1 
gene promoter modulate essential hypertension susceptibility in a population-based, case-
control study. Hypertens Res, 2015. 38(4): p. 284-90.

	 37.	 Fan, R., et al., Association of AGTR1 Promoter Methylation Levels with Essential Hypertension Risk: 
A Matched Case-Control Study. Cytogenet Genome Res, 2015. 147(2-3): p. 95-102.

	 38.	 Mao, S.Q., et al., Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hyper-
tension: a matched case-control study. J Hum Hypertens, 2017. 31(8): p. 530-536.

	 39.	 Bao, X.J., et al., Hypomethylation of the Interferon gamma Gene as a Potential Risk Factor for 
Essential Hypertension: A Case-Control Study. Tohoku J Exp Med, 2018. 244(4): p. 283-290.

	 40.	 Bostrom, A.E., et al., Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass 
patients reveals novel CpG sites associated with essential hypertension. BMC Med Genomics, 
2016. 9: p. 20.

	 41.	 Marzi, C., et al., Epigenetic Signatures at AQP3 and SOCS3 Engage in Low-Grade Inflammation 
across Different Tissues. PLoS One, 2016. 11(11): p. e0166015.

	 42.	 Sun, Y.V., et al., Gene-specific DNA methylation association with serum levels of C-reactive protein 
in African Americans. PLoS One, 2013. 8(8): p. e73480.



215

5

	 43.	 Guo, T.M., et al., Pentraxin 3 (PTX3) promoter methylation associated with PTX3 plasma levels 
and neutrophil to lymphocyte ratio in coronary artery disease. J Geriatr Cardiol, 2016. 13(8): p. 
712-717.

	 44.	 Burghardt, K.J., et al., The Influence of Metabolic Syndrome and Sex on the DNA Methylome in 
Schizophrenia. Int J Genomics, 2018. 2018: p. 8076397.

	 45.	 Rodriguez-Rodero, S., et al., Altered intragenic DNA methylation of HOOK2 gene in adipose tissue 
from individuals with obesity and type 2 diabetes. PLoS One, 2017. 12(12): p. e0189153.

	 46.	 Toperoff, G., et al., Genome-wide survey reveals predisposing diabetes type 2-related DNA meth-
ylation variations in human peripheral blood. Hum Mol Genet, 2012. 21(2): p. 371-83.

	 47.	 Gu, H.F., et al., Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in 
Swedish subjects with and without type 2 diabetes. Clin Epigenetics, 2013. 5(1): p. 20.

	 48.	 Talens, R.P., et al., Hypermethylation at loci sensitive to the prenatal environment is associated 
with increased incidence of myocardial infarction. Int J Epidemiol, 2012. 41(1): p. 106-15.

	 49.	 Jiang, D., et al., Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging 
increases the risk of coronary heart disease in females. PLoS One, 2013. 8(3): p. e59752.

	 50.	 Peng, P., et al., A preliminary study of the relationship between promoter methylation of the 
ABCG1, GALNT2 and HMGCR genes and coronary heart disease. PLoS One, 2014. 9(8): p. e102265.

	 51.	 Giannakopoulou, E., et al., Epigenetics-by-Sex Interaction for Coronary Artery Disease Risk Con-
ferred by the Cystathionine gamma-Lyase Gene Promoter Methylation. OMICS, 2017. 21(12): p. 
741-748.

	 52.	 Xu, L., et al., GCK gene-body hypomethylation is associated with the risk of coronary heart dis-
ease. Biomed Res Int, 2014. 2014: p. 151723.

	 53.	 Fiorito, G., et al., B-vitamins intake, DNA-methylation of One Carbon Metabolism and homocyste-
ine pathway genes and myocardial infarction risk: the EPICOR study. Nutr Metab Cardiovasc Dis, 
2014. 24(5): p. 483-8.

	 54.	 Ji, H., et al., APOE hypermethylation is significantly associated with coronary heart disease in 
males. Gene, 2019. 689: p. 84-89.

	 55.	 Chen, X., et al., Elevated methylation of cyclin dependent kinase inhibitor 2B contributes to the 
risk of coronary heart disease in women. Exp Ther Med, 2019. 17(1): p. 205-213.

	 56.	 Lin, R.T., et al., LINE-1 methylation is associated with an increased risk of ischemic stroke in men. 
Curr Neurovasc Res, 2014. 11(1): p. 4-9.

	 57.	 Lin, H.F., et al., Demethylation of Circulating Estrogen Receptor Alpha Gene in Cerebral Ischemic 
Stroke. PLoS One, 2015. 10(9): p. e0139608.

	 58.	 Lin, H.F., et al., Methylation in the matrix metalloproteinase-2 gene is associated with cerebral 
ischemic stroke. J Investig Med, 2017. 65(4): p. 794-799.

	 59.	 Baccarelli, A., et al., Ischemic heart disease and stroke in relation to blood DNA methylation. 
Epidemiology, 2010. 21(6): p. 819-28.

	 60.	 Chen, Z., et al., Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocyste-
inemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. 
Hum Mol Genet, 2001. 10(5): p. 433-43.

	 61.	 Hiltunen, M.O., et al., DNA hypomethylation and methyltransferase expression in atherosclerotic 
lesions. Vasc Med, 2002. 7(1): p. 5-11.

	 62.	 Castro, R., et al., Increased homocysteine and S-adenosylhomocysteine concentrations and DNA 
hypomethylation in vascular disease. Clin Chem, 2003. 49(8): p. 1292-6.

	 63.	 Mikeska, T. and J.M. Craig, DNA methylation biomarkers: cancer and beyond. Genes (Basel), 2014. 
5(3): p. 821-64.



216

Chapter 5.1  |  DNA-methylation in cardiometabolic health

	 64.	 Tavoosi, Z., et al., Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood 
Mononuclear Cells in Patients with Metabolic Syndrome. Cholesterol, 2015. 2015: p. 682904.

	 65.	 Jeemon, P., et al., Implications of discoveries from genome-wide association studies in current 
cardiovascular practice. World J Cardiol, 2011. 3(7): p. 230-47.

	 66.	 Tietjen, I., et al., Segregation of LIPG, CETP, and GALNT2 mutations in Caucasian families with 
extremely high HDL cholesterol. PLoS One, 2012. 7(8): p. e37437.

	 67.	 Oram, J.F. and A.M. Vaughan, ATP-Binding cassette cholesterol transporters and cardiovascular 
disease. Circ Res, 2006. 99(10): p. 1031-43.

	 68.	 Grallert, H., et al., Eight genetic loci associated with variation in lipoprotein-associated phospholi-
pase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association 
studies from five community-based studies. Eur Heart J, 2012. 33(2): p. 238-51.

	 69.	 Garatachea, N., et al., ApoE gene and exceptional longevity: Insights from three independent 
cohorts. Exp Gerontol, 2014. 53: p. 16-23.

	 70.	 Kathiresan, S., et al., Polymorphisms associated with cholesterol and risk of cardiovascular events. 
N Engl J Med, 2008. 358(12): p. 1240-9.

	 71.	 Yin, Y.W., et al., Influence of apolipoprotein E gene polymorphism on development of type 2 
diabetes mellitus in Chinese Han population: a meta-analysis of 29 studies. Metabolism, 2014. 
63(4): p. 532-41.

	 72.	 Rubino, E., et al., Apolipoprotein E polymorphisms in frontotemporal lobar degeneration: a meta-
analysis. Alzheimers Dement, 2013. 9(6): p. 706-13.

	 73.	 Boerwinkle, E. and G. Utermann, Simultaneous effects of the apolipoprotein E polymorphism on 
apolipoprotein E, apolipoprotein B, and cholesterol metabolism. Am J Hum Genet, 1988. 42(1): p. 
104-12.

	 74.	 Haddy, N., et al., The importance of plasma apolipoprotein E concentration in addition to its com-
mon polymorphism on inter-individual variation in lipid levels: results from Apo Europe. Eur J 
Hum Genet, 2002. 10(12): p. 841-50.

	 75.	 Asselbergs, F.W., et al., Large-scale gene-centric meta-analysis across 32 studies identifies mul-
tiple lipid loci. Am J Hum Genet, 2012. 91(5): p. 823-38.

	 76.	 Teslovich, T.M., et al., Biological, clinical and population relevance of 95 loci for blood lipids. 
Nature, 2010. 466(7307): p. 707-13.

	 77.	 Aulchenko, Y.S., et al., Loci influencing lipid levels and coronary heart disease risk in 16 European 
population cohorts. Nat Genet, 2009. 41(1): p. 47-55.

	 78.	 Taylor, K.C., et al., Investigation of gene-by-sex interactions for lipid traits in diverse populations 
from the population architecture using genomics and epidemiology study. BMC Genet, 2013. 14: 
p. 33.

	 79.	 Wang, H. and R.H. Eckel, Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab, 
2009. 297(2): p. E271-88.

	 80.	 Barabasi, A.L., N. Gulbahce, and J. Loscalzo, Network medicine: a network-based approach to 
human disease. Nat Rev Genet, 2011. 12(1): p. 56-68.

	 81.	 Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates 
intrinsic and environmental signals. Nature Genetics, 2003. 33: p. 245-254.

	 82.	 Westberry, J.M., A.K. Prewitt, and M.E. Wilson, Epigenetic regulation of the estrogen receptor 
alpha promoter in the cerebral cortex following ischemia in male and female rats. Neuroscience, 
2008. 152(4): p. 982-9.

	 83.	 Leader, J.E., et al., Epigenetic regulation of nuclear steroid receptors. Biochemical Pharmacology, 
2006. 72(11): p. 1589-1596.



217

5

	 84.	 Carrel, L. and H.F. Willard, X-inactivation profile reveals extensive variability in X-linked gene 
expression in females. Nature, 2005. 434(7031): p. 400-4.

	 85.	 Xu, H., et al., Sex-biased methylome and transcriptome in human prefrontal cortex. Hum Mol 
Genet, 2014. 23(5): p. 1260-70.

	 86.	 Brown, C.J., et al., A gene from the region of the human X inactivation centre is expressed exclu-
sively from the inactive X chromosome. Nature, 1991. 349(6304): p. 38-44.

	 87.	 Lan, F., et al., A histone H3 lysine 27 demethylase regulates animal posterior development. Nature, 
2007. 449(7163): p. 689-94.

	 88.	 Lee, M.G., et al., Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitina-
tion. Science, 2007. 318(5849): p. 447-50.

	 89.	 Figueroa, M.E., et al., DNA methylation signatures identify biologically distinct subtypes in acute 
myeloid leukemia. Cancer Cell, 2010. 17(1): p. 13-27.

	 90.	 Marcucci, G., et al., Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a 
novel seven-gene score. J Clin Oncol, 2014. 32(6): p. 548-56.

	 91.	 Wannamethee, S.G., et al., Metabolic syndrome vs Framingham Risk Score for prediction of 
coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med, 2005. 165(22): p. 
2644-50.

	 92.	 Addis, R., et al., Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the 
phenotype of male and female cells. Biol Sex Differ, 2014. 5(1): p. 18.

	 93.	 Lorenz M, K.J., Kaufmann K, Kreye C, Mertens M, Kuebler WM, Baumann G, Gossing G, Marki A, 
Zakrzewicz A, Miéville C, Benn A, Horbelt D, Wratil PR, Stangl K, Stangl V, Does cellular sex matter? 
Dimorphic transcriptional differences between female and male endothelial cells. Atherosclero-
sis, 2015. 240(1): p. 61-72.

	 94.	 Du L, H.R., Bayir H, Watkins SC, Tyurin VA, Guo F, Kochanek PM, Jenkins LW, Ren J, Gibson G, Chu CT, 
Kagan VE, Clark RS, Starving neurons show sex difference in autophagy. J Biol Chem, 2009. 284(4): 
p. 2383-96.





5.2
Chromatin landscape and epigenetic 
biomarkers for clinical diagnosis 
and prognosis of type 2 diabetes 
mellitus



220

Chapter 5.2  |  Epigenetic biomarkers and type 2 diabetes

Abstract

Type 2 diabetes and its accompanying complications constitute a major health burden 
worldwide, which can be partly attributed to the interplay between genetics and 
environments. Extensive research over the last decades has shown that our genome is 
not the only determinant of disease risk. Epigenetic marks induced by lifestyle and en-
vironmental factors are associated with altered gene expression patterns in important 
tissues, leading to altered susceptibility to disease later in life. Hence, the identification 
of epigenetic biomarkers unfolds the possibility for a novel personalized disease pre-
vention strategy and at the same time holds the potential to be a promising prognostic 
tool for diabetes. So far, evidence on the predictive value of epigenetics in diabetes 
management is very limited. Unlike in cancer pathology, where examples of important 
epigenetic tools are now widely used in clinical practice as predictive/diagnostic bio-
markers, for complex pathophysiological diseases such as diabetes, this still remains a 
challenge. These topics are discussed extensively in this chapter.
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1.	I ntroduction

Diabetes has become a major public health problem with type 2 diabetes (T2D) being 
the predominant condition that accounts for at least 90% of the cases 1. According to 
the World Health Organization (WHO) reports in 2012, the estimated number of people 
living with T2D by 2030 would have been 366 million 2. However, these numbers are ex-
pected to be higher since until 2017, 425 million people were reported having diabetes 3 
overcoming all predictions 4.

T2D is characterized by insulin deficiency and insulin resistance 5, and its major com-
plications comprise macrovascular, microvascular and neurologic changes which can 
lead to organ damage including heart, kidneys, eyes, feet and nerves 5. According to the 
American Diabetes Association (ADA), diabetes diagnosis is defined as: fasting plasma 
glucose ≥ 126 mg/dL (≥ 7.0 mmol/L) where fasting is defined as no caloric intake for at 
least 8 hours or 2-h plasma glucose ≥ 200 mg/dL (≥ 11.1 mmol/L) during a 75-g oral glu-
cose tolerance test (OGTT, the test should be performed as described by the WHO, using 
a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water) 
or A1C ≥ 6.5% (≥ 48 mmol/mol) or in a patient with classic symptoms of hyperglycaemia 
or hyperglycaemic crisis, a random plasma glucose ≥ 200 mg/dL (≥ 11.1 mmol/L) 6. These 
definitions go in line with the current WHO diagnostic criteria, except for the glycosyl-
ated haemoglobin (HbA1c) test, which remains controversial7.

Studies investigating the aetiology of T2D have been primarily focused into the ge-
netic determinants of the disease. Recent evidence shows epigenetics could be a major 
player in the pathophysiology of the disease, through which environmental and lifestyle 
factors could affect T2D pathogenesis8. Lifestyle and other environmental factors could 
lead to changes in DNA methylation and histone modifications, which on the other hand, 
might affect the development of pancreatic β cells and the function of insulin secretion, 
contributing to the decline of insulin sensitivity resulting in the occurrence of T2D 8. 
Animal and human studies investigating the genome-wide maps of epigenetic markers 
using islet tissue have provided a reliable resource for understanding the importance of 
the epigenetic mechanisms in T2D susceptibility 9.

In clinical practice, biomarkers are used routinely to identify individuals at risk and 
are of great importance in disease diagnosis. For T2D, fasting blood glucose, HbA1c and 
2-hours oral glucose are commonly used, but they come with some drawbacks. Blood 
glucose levels do not reflect the impaired b-cell function or insulin resistance 10; the 
optimal value for HbA1c for diagnosis of prediabetes state still remain controversial 11 12, 
whereas the 2 hours oral glucose tolerance test is a time consuming procedure. It is not 
known whether the deterioration in glucose tolerance and beta-cell function is linear 
or whether there is an accelerated loss of function at some point prior to the onset of 
diabetes 7. Therefore, the early identification of high-risk individuals demands novel bio-
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markers that adequately account for the inter-individual variance in the different patho-
logical mechanisms underlying impaired fasting glucose (IFG) and impaired glucose 
tolerance (IGT), each of which have distinct progression patterns towards diabetes 13. 
Moreover, the different kind of complications from diabetes might leave different meth-
ylation signatures which could result in type-specific and predictive signatures with 
potential use as future prognostic biomarkers for T2D. Further, considering the rapidly 
increase in incidence and prevalence of T2D, it has become relevant to extend current 
knowledge and discover new biomarkers that could be identified and/or monitored 
during the diagnosis and progression of the disease.

In this chapter, the topics of epigenetic alterations, particularly DNA methylation and 
histone modifications and the importance of epigenetic biomarkers for risk prediction, 
diagnosis and prognosis of T2D will be discussed.

2.	E pigenetic alterations involved in glucose 
homeostasis and insulin metabolism

The association between glucose homeostasis related traits and DNA methylation has 
been assessed through different approaches, such as global DNA methylation assess-
ment, DNA methylation in candidate genes, and Epigenome-Wide Association Studies 
(EWAS).

Global DNA methylation refers to the overall level of 5-methylcitosine in the genome, 
expressed as percentage of total cytosine. Repetitive and transposable elements, such 
as LINE-1 and Alu, represent a large portion of the human genome and contain much 
of the CpG methylation found in normal human postnatal somatic tissues 14. Given the 
existing correlation of methylation at such elements with the total genomic methylation 
content, they are considered surrogate markers for global genome methylation 14.

In a candidate gene methylation approach, the association is evaluated only for 
specific genes of interest that have been selected based on their possible role in the 
phenotype of interest. Therefore, the methylation level is assessed only in specific re-
gions of the DNA.

EWAS, scan genome-wide epigenetic variants, such as DNA methylation, which might 
be associated with the phenotype of interest. EWAS are mainly performed using micro-
arrays, which profile the methylation level of thousands of CpG islands in the genome, 
surveying multiple samples.

Information about the function of the genes mentioned in this chapter that have been 
studied in relation with T2D and glycaemic traits can be found in Table 5.2.1.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147

Gene Alias Chr Function

IGF1R Insulin Like Growth 
Factor 1 Receptor

15 It encodes a receptor which binds insulin-like growth factor 1 (IGF1) 
with a high affinity, and IGF2 and insulin (INS) with a lower affinity. 
It is involved in cell growth and survival control, being crucial for 
tumor transformation and survival of malignant cell. Among its 
related pathways are Apoptotic Pathways in Synovial Fibroblasts 
and NFAT and Cardiac Hypertrophy. Associated diseased include 
Insulin-Like Growth Factor I Deficiency and Ring Chromosome 15 
Syndrome.

IGFBP3 Insulin Like Growth 
Factor Binding 
Protein 3

7 It encodes a protein with an IGFBP domain and a thyroglobulin 
type-I domain. The protein forms a ternary complex with insulin-like 
growth factor acid-labile subunit (IGFALS) and either insulin-like 
growth factor (IGF) I or II. In this form, it circulates in the plasma, 
prolonging the half-life of IGFs and altering their interaction with 
cell surface receptors. Diseases associated with IGFBP3 include 
Insulin-Like Growth Factor I and Acid-Labile Subunit Deficiency.

IGFBP7 Insulin-like Growth 
Factor (IGF) Binding 
protein 7

4 It encodes a protein that binds IGFs to regulate their binding to 
its receptors. It also stimulates prostacyclin production, which is a 
potent inhibitor of platelet aggregation and a strong vasodilator 
that inhibits the growth of vascular smooth muscle cells. Associated 
diseases include Diabetic Angiopathy.

IGFBP1 Insulin-like growth 
factor binding 
protein 1

7 It encodes a protein that binds IGF-I and –II to regulate their binding 
to their receptors. It is mainly expressed in liver. Low levels of this 
protein may be associated with impaired glucose tolerance, vascular 
disease and hypertension in human patients. Associated diseases 
include Pancreatic Cancer, Childhood and Ovarian Disease.

IGF2 Insulin Like Growth 
Factor 2

11 It encodes a member of the insulin family of polypeptide growth 
factors, which are involved in development and growth. It plays 
a key role in regulating fetoplacental development. In adults, it 
may be involved in glucose metabolism in adipose tissue, skeletal 
muscle and liver. It undergoes glucose-mediated co-secretion with 
insulin, and acts as physiological amplifier of glucose-mediated 
insulin secretion. Associated diseases include Growth Restriction 
and Silver-Russell Syndrome.

C8orf31 Chromosome 8 Open 
Reading Frame 31 
(Putative)

8 It is an RNA gene, and it is affiliated with the ncRNA class.

TXNIP Thioredoxin 
Interacting Protein

1 It encodes a protein that may act as an oxidative stress mediator 
by inhibiting thioredoxin activity or by limiting its bioavailability. It 
also functions as a transcriptional repressor, possibly by acting as 
a bridge molecule between transcription factors and corepressor 
complexes, and over-expression will induce G0/G1 cell cycle arrest. 
It is required for the maturation of natural killer cells. Associated 
diseases include Hyperglycemia.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

MMP-9 Matrix 
Metallopeptidase 9

20 It encodes an enzyme member of the Metallopeptidase (MMP) 
family, which are involved in the breakdown of extracellular matrix 
in normal physiological processes, such as embryonic development, 
reproduction, and tissue remodeling, as well as in disease processes, 
such as arthritis and metastasis. Specifically, MMP-9 degrades 
type IV and V collagens. Associated diseases include Metaphyseal 
Anadysplasia 2 and Metaphyseal Anadysplasia.

EP300 Histone 
Acetyltransferase 
P300

22 It encodes a protein that functions as histone acetyltransferase, 
which regulates transcription via chromatin remodeling and is 
important in the processes of cell proliferation and differentiation. 
It mediates acetylation of histone H3 at Lys-122 (H3K122ac) and 
at Lys-27 (H3K27ac). It also functions as acetyltransferase for 
non-histone targets. Associated diseases include Rubinstein-Taybi 
Syndrome 2 and Colorectal Cancer.

SSTR5-AS1 SSTR5 Antisense 
RNA 1

16 It is a non-protein coding gene. It is an RNA Gene, and is affiliated 
with the non-coding RNA class

SSTR5 Somatostatin 
Receptor 5

16 It encodes a cyclic polypeptide which is an abundant neuropeptide 
and has a wide range of physiological effects on neurotransmission, 
secretion and cell proliferation. The activity of this receptor is 
mediated by G proteins which inhibit adenylyl cyclase, and different 
regions of this receptor molecule are required for the activation of 
different signaling pathways. Associated diseases include Pituitary 
Adenoma

LY86 Lymphocyte Antigen 
86

6 It encodes a protein which is involved in the innate immune 
system. It may cooperate with CD180 and TLR4 to mediate the 
innate immune response to bacterial lipopolysaccharide (LPS) and 
cytokine production. Important for efficient CD180 cell surface 
expression. Associated diseases include Parametritis and Interstitial 
Emphysema.

TLR2 Toll-like Receptor 2 4 It encodes a cell-surface protein that cooperates with TLR1 or TLR6 
to mediate the innate immune response after recognition of the 
pathogen-associated molecular patterns (PAMPs), such us bacterial 
lipoproteins or lipopeptides, and it is also thought to promote 
apoptosis in response to them. It is implicated in the pathogenesis 
of several autoimmune diseases.

SLC30A8 Solute Carrier Family 
30 member 8

8 It encodes a zinc ion efflux transporter that is highly expressed only 
in the pancreas, particularly in islets of Langerhans. It provides zinc 
to insulin maturation or storage in the pancreatic beta-cells. Allelic 
variants of this gene can confer susceptibility to T2D.

GCK Glucokinase 
(Hexokinase 4)

7 It encodes an enzyme that phosphorylates glucose to glucose-6-
phosphate, the first step in most glucose metabolism pathways. It 
is expressed in pancreas and liver. In the pancreas, it plays a role in 
glucose-stimulated insulin secretion. In the liver, it is important in 
glucose uptake and conversion to glycogen. Mutations in this gene 
are associated with multiple types of diabetes and hyperinsulinemic 
hypoglycemia.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

PRKCZ Protein Kinase C Zeta 
type

1 It encodes an enzyme that plays a role as activator or downstream 
effector in diverse signaling cascades in different cell types. In 
adipocytes, upon insulin treatment may contribute to the activation 
of translocation of the glucose transporter SLC2A4/GLUT4 and 
subsequent glucose transport.

CTGF Connective Tissue 
Growth Factor

6 It encodes a protein that is secreted by vascular endothelial cells, 
and plays a role in chondrocyte proliferation and differentiation, 
cell adhesion in many cell types, and it is related to platelet-derived 
growth factor. Polymorphisms in this gene can be related to a 
higher incidence of systemic sclerosis.

LEP Leptin 7 It encodes a protein that is secreted by white adipocytes into 
the circulation and plays a major role in the regulation of energy 
homeostasis. Circulating leptin binds to its receptor in the brain, 
activating downstream signaling pathways that inhibit feeding 
and promote energy expenditure. It also has endocrine functions, 
participates in the regulation of immune and inflammatory 
responses, hematopoiesis, angiogenesis, reproduction, bone 
formation and wound healing. Mutations in this gene can cause 
severe obesity, morbid obesity with hypogonadism and T2D.

IRS-1 Insulin Receptor 
Substrate 1

2 It encodes a protein which, when is phosphorylated by insulin 
receptor tyrosine kinase, binds specifically to various cellular 
proteins, thus controlling diverse cellular processes. Mutations 
in this gene are associated with T2D and susceptibility to insulin 
resistance.

GIPR Gastric Inhibitory 
Polypeptide Receptor

19 It encodes a G-protein coupled receptor for gastric inhibitory 
polypeptide (GIP), demonstrated to stimulate insulin release in 
the presence of elevated glucose. Defect in this gene thus may 
contribute to the pathogenesis of diabetes

CAMK1D Calcium/Calmodulin 
Dependent Protein 
Kinase I Delta

10 It encodes an enzyme that is a component of the calcium-regulated 
calmodulin-dependent protein kinase cascade. It has been 
associated with the regulation of granulocyte function, activation 
of CREB-dependent gene transcription, aldosterone synthesis and 
secretion, differentiation and activation of neutrophil cells, and 
apoptosis of erythroleukemia cells.

CRY2 Cryptochrome 
Circadian Regulator 2

11 It encodes a transcriptional repressor which forms a core 
component of the circadian clock. It regulates various physiological 
processes, including metabolism, sleep, body temperature, blood 
pressure, endocrine, immune, cardiovascular and renal function. I 
also plays a key role in glucose and lipid metabolism modulation, 
in part, through the transcriptional regulation of genes involved in 
these pathways.

CALM2 Calmodulin 2 
(Phosphorylase 
Kinase, Delta)

2 It encodes a calcium binding protein that plays a role in signaling 
pathways, cell cycle progression and proliferation. It mediates 
the control of a large number of enzymes, aquaporins and other 
proteins through calcium-binding and ion channels, such us the 
calcium-activated potassium channel KCNN2. Diseases associated 
with CALM2 include Long Qt Syndrome 15 and Long Qt Syndrome 
1.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

MCP1 Monocyte 
Chemoattractant 
Protein 1

17 It encodes a cytokine that displays a chemotactic activity, attracting 
monocytes and basophils but not neutrophils or eosinophils. It 
augments monocyte anti-tumor activity and has been implicated 
in diseases characterized by monocytic infiltrates, like psoriasis, 
rheumatoid arthritis or atherosclerosis.

TLR4 Toll-Like Receptor 4 9 It encodes a receptor that cooperates with LY96 and CD14 
to mediate the innate immune response to bacterial 
lipopolysaccharide (LPS). It is also involved in LPS-sindependent 
inflammatory responses triggered by free fatty acids, such as 
palmitate, and Ni(2+). In complex with TLR6, promotes sterile 
inflammation in monocytes/macrophages in response to oxidized 
low-density lipoprotein (oxLDL) or amyloid-beta 42. Mutations 
in this gene have been associated with differences in LPS 
responsiveness.

FFAR3 Free Fatty Acid 
Receptor 3

19 It encodes a receptor that is activated by a major product of dietary 
fiber digestion, the short chain fatty acids (SCFAs), for the regulation 
of whole-body energy homeostasis, glucose homeostasis, intestinal 
immunity and indirectly LEP/Leptin production.

PP2Ac Protein Phosphatase 
2 Catalytic Subunit 
Alpha

5 It encodes the alpha isoform of the catalytic subunit of the Protein 
Phosphatase 2A, which can modulate the activity of some kinase 
enzymes. It is involved in signal transduction and in the negative 
control of cell growth and division. Diseases associated include 
Usher Syndrome, Type I.

PPARG Peroxisome 
Proliferator-Activated 
Receptor Gamma

3 It encodes PPAR-gamma (PPARγ) a member of the peroxisome 
proliferator-activated receptor (PPAR) subfamily of nuclear receptors 
which form heterodimers to regulate transcription of various 
genes. PPARγ is a regulator of adipocyte differentiation and has 
been implicated in the pathology of numerous diseases including 
obesity, diabetes, atherosclerosis and cancer. Associated diseases 
include Familial Partial Lipodystrophy Type 3 and Intimal Medial 
Thickness of Internal Carotid Artery.

PPARGC1A Peroxisome 
Proliferator-Activated 
Receptor Gamma 
Coactivator 1-Alpha

4 It encodes a transcriptional coactivator that regulates the genes 
involved in energy metabolism, such us mitochondrial genes, 
and the muscle fiber type determination. It also plays a role in 
metabolic reprogramming in response to dietary availability 
through coordination of the expression of genes involved in 
glucose and fatty acid metabolism, and in the integration of the 
circadian rhythms and energy metabolism. It may be also involved 
in controlling blood pressure, regulating cellular cholesterol 
homoeostasis, and the development of obesity.

PDX-1 Pancreatic and 
duodenal Homeobox 
1 / Insulin upstream 
factor 1

13 It encodes a transcriptional activator of several genes, including 
insulin, somatostatin, glucokinase, islet amyloid polypeptide and 
glucose transporter type 2. It is involved in the early development 
of the pancreas and plays a major role in glucose-dependent 
regulation of insulin gene expression. A defective gene can lead to 
early-onset insulin-dependent diabetes mellitus, as well as maturity 
onset diabetes of the young type 4.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

INS Insulin 11 It encodes a precursor form called proinsulin, which is cleaved to 
form the A and B chains, and then joined together to form insulin. 
It binds to the insulin receptor (INSR) to stimulate glucose uptake. 
It blood glucose concentration and increases cell permeability 
to monosaccharides, amino acids and fatty acids. It accelerates 
glycolysis, the pentose phosphate cycle, and glycogen synthesis in 
liver. Associated diseases include Hyperproinsulinemia and Insulin-
Dependent Diabetes Mellitus 2.

GLP1R Glucagon-Like 
Peptide 1 Receptor

6 It encodes a 7-transmembrane protein that functions as a receptor 
for glucagon-like peptide 1 (GLP-1) hormone, which stimulates 
glucose-induced insulin secretion, and plays an important role in 
the signaling cascades leading to insulin secretion. The protein is 
an important drug target for the treatment of type 2 diabetes and 
stroke. Polymorphisms in this gene are associated with diabetes, 
insulinoma and fasting hypoglycemia.

UBASH3A Ubiquitin Associated 
And SH3 Domain 
Containing A

21 It encodes one members of the T-cell ubiquitin ligand family, which 
can negatively regulate T-cell signaling by facilitating the growth 
factor withdrawal-induced apoptosis in T cells. It can also interfere 
in the down-regulation and degradation of receptor-type tyrosine 
kinases and promotes accumulation of activated target receptors, 
such as T-cell receptors on the cell surface. Diseases associated 
include Dirofilariasis and Erysipeloid.

GAPDH Glyceraldehyde-
3-Phosphate 
Dehydrogenase

12 It encodes an enzyme that catalyzes an important energy-
yielding step in carbohydrate metabolism, the reversible oxidative 
phosphorylation of glyceraldehyde-3-phosphate in the presence of 
inorganic phosphate and nicotinamide adenine dinucleotide (NAD). 
It also has uracil DNA glycosylase activity in the nucleus. Related 
diseased include Fragile X Mental Retardation 1.

TFAM Transcription Factor 
A, Mitochondrial

10 It encodes a protein involved in mitochondrial DNA replication and 
repair. Sequence polymorphisms in this gene are associated with 
Alzheimer’s and Parkinson’s diseases.

TRIM3 Tripartite Motif 
Containing 3

11 The protein encoded by this gene is a member of the tripartite 
motif (TRIM) family, also called the ‘RING-B-box-coiled-coil’ 
(RBCC) subgroup of RING finger proteins. This protein localizes to 
cytoplasmic filaments. It is similar to a rat protein which is a specific 
partner for the tail domain of myosin V, a class of myosins which are 
involved in the targeted transport of organelles. Among its related 
pathways are Cytokine Signaling in Immune system and Innate 
Immune System.

TCF7L2 Transcription Factor 
7 Like 2

10 This gene encodes a high mobility group (HMG) box-containing 
transcription factor that plays a key role in the Wnt signaling 
pathway. The protein has been implicated in blood glucose 
homeostasis. Genetic variants of this gene are associated with 
increased risk of type 2 diabetes. Associated diseases include 
Noninsulin-Dependent Diabetes Mellitus and Colorectal Cancer.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

PDK4 Pyruvate 
Dehydrogenase 
Kinase 4

7 It encodes a protein located in the matrix of the mitrochondria 
and plays a key role in the regulation of glucose and fatty acid 
metabolism and homeostasis via phosphorylation of the pyruvate 
dehydrogenase subunits PDHA1 and PDHA2. Expression of this 
gene is regulated by glucocorticoids, retinoic acid and insulin. 
Diseases associated include non-insulin-dependent diabetes 
mellitus.

HNF4A Hepatocyte Nuclear 
Factor 4 Alpha

20 It encodes a nuclear transcription factor which binds DNA and 
controls the expression of several genes, including hepatocyte 
nuclear factor 1 alpha, which regulates the expression of several 
hepatic genes. It also may play a role in development of the liver, 
kidney and intestines. Mutations in this gene have been related 
to with monogenic autosomal dominant non-insulin-dependent 
diabetes mellitus type I.

KLF11 Kruppel Like Factor 
11

2 It encodes a transcription factor that binds to SP1-like sequences in 
epsilon- and gamma-globin gene promoters. This binding inhibits 
cell growth and causes apoptosis. Defects in this gene are a cause of 
maturity-onset diabetes of the young type 7 (MODY7).

DUSP9 Dual Specificity 
Phosphatase 9

X It encodes an enzyme that regulates mitogen-activated protein 
(MAP) kinases by dephosphorylating both the phosphoserine/
threonine and phosphotyrosine residues. It shows selectivity for 
members of the ERK family of MAP kinases and is localized to 
the cytoplasm and nucleus. Aberrant expression of this gene is 
associated with type 2 diabetes and cancer progression in several 
cell types.

HHEX Hematopoietically 
Expressed Homeobox

10 It encodes a member of the homeobox family of transcription 
factors, many of which are involved in developmental processes 
and it may play a role in hematopoietic differentiation. Related 
diseases include Gangliosidosis Gm2 and Sandhoff Disease. Among 
its related pathways are transcriptional misregulation in cancer and 
mesodermal commitment pathway.

CDKN2A Cyclin Dependent 
Kinase Inhibitor 2A

9 It encodes several transcript variants which differ in their first exons. 
Two of them encode structurally related isoforms known to function 
as inhibitors of CDK4 kinase. The remaining transcript contains an 
alternate open reading frame (ARF) that specifies a protein that 
functions as a stabilizer of the tumor suppressor protein p53. The 
three share a common functionality in cell cycle G1 control. This 
gene is frequently mutated or deleted in a wide variety of tumors, 
and is known to be an important tumor suppressor gene.

KCNQ1 Potassium Voltage-
Gated Channel 
Subfamily Q Member 
1

11 It encodes a voltage-gated potassium channel required for 
repolarization phase of the cardiac action potential, and plays an 
important role in a number of tissues, including heart, inner ear, 
stomach and colon. Mutations in this gene are associated with 
hereditary long QT syndrome 1 (also known as Romano-Ward 
syndrome), Jervell and Lange-Nielsen syndrome, and familial atrial 
fibrillation.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
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Gene Alias Chr Function

CIDEC Cell Death Inducing 
DFFA Like Effector C

3 It encodes a member of the cell death-inducing DNA fragmentation 
factor-like effector family, which plays important roles in apoptosis. 
The protein binds to lipid droplets in adipocytes and regulates their 
enlargement, thereby restricting lipolysis and favoring storage. 
It also may mediate adipocyte apoptosis. This gene is regulated 
by insulin and its expression is positively correlated with insulin 
sensitivity. Mutations in this gene may contribute to insulin 
resistant diabetes. Diseases associated include Familial Partial 
Lipodystrophytype 5 and Adiposis Dolorosa.

ADCY5 Adenylate Cyclase 5 3 It encodes an enzyme that catalyzes the formation of the signaling 
molecule cAMP in response to G-protein signaling and regulates 
the increase of free cytosolic Ca (2+) in response to increased 
blood glucose levels and contributes to the regulation of Ca 
(2+)-dependent insulin secretion. Single nucleotide polymorphisms 
in this gene may be associated with low birth weight and type 2 
diabetes. Diseases associated include familial dyskinesia with facial 
myokymia.

CDKN2B Cyclin Dependent 
Kinase Inhibitor 2B

9 It encodes a cyclin-dependent kinase inhibitor, which forms 
a complex with CDK4 or CDK6, and prevents the activation of 
the CDK kinases, thus the encoded protein functions as a cell 
growth regulator that controls cell cycle G1 progression. Diseases 
associated include adult acute lymphocytic leukemia and scrotal 
carcinoma.

IDE Insulin Degrading 
Enzyme

10 It encodes a zinc metallopeptidase that degrades intracellular 
insulin, and thereby terminates insulins activity, as well as 
participating in intercellular peptide signalling by degrading diverse 
peptides such as glucagon, amylin, bradykinin, and kallidin. The 
preferential affinity of this enzyme for insulin results in insulin-
mediated inhibition of the degradation of other peptides such as 
beta-amyloid. Deficiencies in this protein’s function are associated 
with Alzheimer’s disease and type 2 diabetes mellitus but mutations 
in this gene have not been shown to be causitive for these diseases.

MTNR1B Melatonin Receptor 
1B

11 It encodes a high affinity form of a receptor for melatonin and 
it is likely to mediate the reproductive and circadian actions of 
melatonin. It is widely distributed, with high concentrations in 
the brain and in the retina. It is thought to participate in light-
dependent functions in the retina and may be involved in the 
neurobiological effects of melatonin. Diseases associated include 
noninsulin-dependent diabetes mellitus and idiopathic scoliosis.

TSPAN8 Tetraspanin 8 12 It encodes a transmembrane glycoprotein that mediates signal 
transduction events that play a role in the regulation of cell 
development, activation, growth and motility. This gene is 
expressed in different carcinomas. Diseases associated include 
annular pancreas and autosomal recessive nonsyndromic deafness 
3.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

APN Aminopeptidase N 15 It encodes an aminopeptidase of broad specificity which plays a 
role in the final digestion of peptides generated from hydrolysis 
of proteins by gastric and pancreatic proteases, as well as in the 
angiogenesis and promote cholesterol crystallization. It also 
participates in the processing of various peptides including peptide 
hormones, such as angiotensin III and IV, neuropeptides, and 
chemokines. It may be involved the cleavage of peptides bound 
to major histocompatibility complex class II molecules of antigen 
presenting cells. Defects in this gene appear to be a cause of various 
types of leukemia or lymphoma.

CDKN2A Cyclin Dependent 
Kinase Inhibitor 2A

9 It encodes a protein that acts as a tumor suppressor, capable of 
inducing cell cycle arrest in G1 and G2 phases. Its loss has been 
shown to be a significant event in a number of cancer types. 
Associated d diseases include Melanoma-Pancreatic Cancer 
Syndrome and Melanoma-Astrocytoma Syndrome.

CAV1 Caveolin 1 7 It encodes a scaffolding protein which is a main component of the 
caveolae plasma membranes found in most cell types. It is nvolved 
in the costimulatory signal essential for T-cell receptor (TCR)-
mediated T-cell activation. It is also considered a tumor suppressor 
gene candidate and a negative regulator of the Ras-p42/44 MAP 
kinase cascade. Mutations in this gene have been associated with 
Berardinelli-Seip congenital lipodystrophy, congenital cataracts.

WFS1 Wolfram Syndrome 1 
(Wolframin)

4 It encodes a transmembrane glycoprotein, which is located 
primarily in the endoplasmic reticulum and ubiquitously expressed 
with highest levels in brain, pancreas, heart, and insulinoma 
beta-cell lines. It participates in the regulation of cellular Ca(2+) 
homeostasis, at least partly, by modulating the filling state of the 
endoplasmic reticulum Ca(2+) store. Mutations in this gene are 
associated with Wolfram syndrome, also called DIDMOAD (Diabetes 
Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness), an 
autosomal recessive disorder. The disease affects the brain and 
central nervous system.

MALT1 Mucosa Associated 
Lymphoid Tissue 
Lymphoma 
Translocation Protein 
1

18 It encodes an aminopeptidase that catalyzes the removal of amino 
acids from the amino terminus of proteins and peptides. It may play 
a role in NF-kappaB activation in a BCL10-induced manner. Diseases 
associated with MALT1 include Immunodeficiency and Mucosa-
Associated Lymphoid Tissue Lymphoma.

FTO Alpha-Ketoglutarate 
Dependent 
Dioxygenase

16 It encodes an enzyme that repairs alkylated DNA and RNA by 
oxidative demethylation. It contributes to the regulation of the 
global metabolic rate, energy expenditure and energy homeostasis. 
In particular, it is involved in the regulation of thermogenesis and 
the control of adipocyte differentiation into brown or white fat cells. 
Diseases associated include growth retardation, developmental 
delay, facial dysmorphism and obesity.

ZNF668 Zinc Finger Protein 
668

16 It encodes a protein that may be involved in transcriptional 
regulation. It is related to DNA binding transcription factor activity.
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Gene Alias Chr Function

HSPA2 Heat Shock Protein 
Family A (Hsp70) 
Member 2

14 It encodes a chaperone protein implicated in a wide variety of 
cellular processes, including protection of the proteome from stress, 
the protein quality control system, by ensuring the correct folding 
of proteins, the re-folding of misfolded proteins and controlling 
the targeting of proteins for subsequent degradation, and the 
transport of newly synthesized polypeptides. It also plays a role in 
spermatogenesis. Diseases associated include inflammatory bowel 
disease and papillary cystadenocarcinoma. Heat Shock Protein 
Family A (Hsp70) Member 2

CD320 CD320 Molecule 19 It encodes a receptor for transcobalamin saturated with cobalamin 
(TCbl), that is expressed at the cell surface. It mediates the cellular 
uptake of transcobalamin bound cobalamin (vitamin B12), and 
is involved in B-cell proliferation and immunoglobulin secretion. 
Mutations in this gene are associated with methylmalonic aciduria.

HNF1A SFT2 Domain 
Containing 3

2 It encodes a protein that may be involved in fusion of retrograde 
transport vesicles derived from an endocytic compartment with the 
Golgi complex.

TWIST1 Twist Family BHLH 
Transcription Factor 1

7 It encodes a transcription factor that plays an important role in 
embryonic development, regulating the transcription of genes 
involved in neural crest differentiation and brown fat metabolism. 
It also represses the expression of proinflammatory cytokines such 
as TNFA and IL1B, and the activity of the circadian transcriptional 
activator: NPAS2-ARNTL/BMAL1 heterodimer. it is involved in the 
osteoblast differentiation. Represses Mutations in this gene cause 
Saethre-Chotzen syndrome and Craniosynostosis 1.

MYO5A Myosin VA 15 It encodes a class of actin-based motor proteins involved in 
cytoplasmic vesicle transport and anchorage, spindle-pole 
alignment and mRNA translocation, and it is abundant in 
melanocytes and nerve cells. Mutations in this gene cause Griscelli 
syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and 
neuroectodermal melanolysosomal disease, or Elejalde disease.

MAPK1 Mitogen-Activated 
Protein Kinase 1

22 It encodes a member of the MAP kinase family. The MAPK cascade 
plays also a role in initiation and regulation of meiosis, mitosis, and 
postmitotic functions in differentiated cells by phosphorylating 
a number of transcription factors. The activation of this kinase 
requires its phosphorylation by upstream kinases. Associated 
diseases include Chromosome 22Q11.2 Deletion Syndrome, Distal 
and Pertussis.

MYO18B Myosin XVIIIB 22 It encodes a protein which may be involved in intracellular 
trafficking of the muscle cell when in the cytoplasm, whereas 
entering the nucleus, may be involved in the regulation of muscle 
specific genes. May play a role in the control of tumor development 
and progression. Mutations in this gene are associated with lung 
cancer.
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Gene Alias Chr Function

HOXC6 Homeobox C6 12 It encodes a member of the homeobox family of transcription 
factors that play an important role in morphogenesis in all 
multicellular organisms. This is a sequence-specific transcription 
factor which is part of a developmental regulatory system that 
provides cells with specific positional identities on the anterior-
posterior axis.

PRKAB1 Protein Kinase, 
AMP-Activated, 
Beta 1 Non-Catalytic 
Subunit

12 It encodes a regulatory subunit of the AMP-activated protein 
kinase (AMPK), which is an energy sensor protein kinase that plays 
a key role in regulating cellular energy metabolism. In response 
to reduction of intracellular ATP levels, AMPK activates energy-
producing pathways and inhibits energy-consuming processes: 
inhibits protein, carbohydrate and lipid biosynthesis, as well as cell 
growth and proliferation. Associated diseases include Body Mass 
Index Quantitative Trait Locus 11.

NF-KB Nuclear Factor 
Kappa B

4 It encodes a transcription regulator that is activated by various 
intra- and extra-cellular stimuli such as cytokines, oxidant-free 
radicals, ultraviolet irradiation, and bacterial or viral products. It 
translocates into the nucleus and stimulates the expression of genes 
involved in a wide variety of biological functions. It is a homo- or 
heterodimeric complex formed by the Rel-like domain-containing 
proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/
p52 and the heterodimeric p65-p50 complex. Associated diseases 
include Immunodeficiency.

RELA RELA Proto-
Oncogene, NF-KB 
Subunit

It encodes the NF-Kappa-B transcription factor P65. The most 
abundant form of NF-kappa-B is NFKB1 complexed with the product 
of this gene, RELA. Associated diseases include Ependymoma 
and Reticuloendotheliosis. Can modulate chromatin function 
through deacetylation of histones and can promote alterations in 
the methylation of histones and DNA, leading to transcriptional 
repression.

Sirt1 Sirtuin 1 10 It encodes a NAD-dependent protein deacetylase that links 
transcriptional regulation directly to intracellular energetics and 
participates in the coordination of several separated cellular 
functions such as cell cycle, response to DNA damage, metabolism, 
apoptosis and autophagy. Associated diseases include Aging and 
Ovarian Endodermal Sinus Tumor.

IL-1A Interleukin 1 Alpha 2 It encodes cytokine member of the interleukin 1 cytokine family 
and it is involved in various immune responses, inflammatory 
processes, and hematopoiesis. It is produced by activated 
macrophages and released in response to cell injury, and thus 
induces apoptosis. Polymorphism may be associated with 
rheumatoid arthritis and Alzheimer’s disease, Irritant Dermatitis and 
Cholesteatoma of middle ear.
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Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

PTEN Phosphatase And 
Tensin Homolog

10 It encodes a phosphatidylinositol-3,4,5-trisphosphate 
3-phosphatase which functions as a tumor suppressor by negatively 
regulating AKT/PKB signaling pathway, and that is commonly lost 
in cancer. The isoform alpha plays a role in mitochondrial energetic 
metabolism by promoting COX activity and ATP production. It 
may also be a negative regulator of insulin signaling and glucose 
metabolism in adipose tissue. Related diseases are dysplastic 
gangliocytoma of the cerebellum, and macrocephaly multiple 
lipomas and hemangiomata.

TNF-α Tumor Necrosis 
Factor

6 It encodes a proinflammatory cytokine that belongs to the 
tumor necrosis factor (TNF) superfamily. It is mainly secreted by 
macrophages and can induce cell death of certain tumor cell lines. 
It is involved in the regulation of a wide spectrum of biological 
processes including cell proliferation, differentiation, apoptosis, 
lipid metabolism, and coagulation. It is implicated in a variety of 
diseases, including autoimmune diseases, insulin resistance, and 
cancer. Diseases associated include asthma and malaria.

COX-2 Cyclooxygenase 2 1 It encodes cyclooxygenase isoform 2, also known as prostaglandin-
endoperoxide synthase 2 (PTGS2). It is an inducible isozyme, 
which converts arachidonate to prostaglandin H2 (PGH2), during 
the prostanoid synthesis. It is constitutively expressed in some 
tissues in physiological conditions, such as the endothelium, 
kidney and brain, and in pathological conditions, such as in cancer. 
It is responsible for production of inflammatory prostaglandins. 
Up-regulation of PTGS2 is also associated with increased cell 
adhesion, phenotypic changes, resistance to apoptosis and tumor 
angiogenesis.

IL-8 C-X-C Motif 
Chemokine Ligand 8 ; 
interleukin-8

4 It encodes a protein that is secreted primarily by neutrophils, where 
it serves as a chemotactic factor by guiding the neutrophils to the 
site of infection. It may also be released from several cell types in 
response to an inflammatory stimulus. Is also attracts basophils and 
T-cells, but not monocytes. Associated diseases include Bronchiolitis 
and Extrinsic Allergic Alveolitis.

UNC13B Unc-13 Homolog B 9 This gene is expressed in the kidney cortical epithelial cells and it is 
upregulated by hyperglycemia. It contains three C2 domains and 
a diacylglycerol-binding C1 domain. Hyperglycemia increases the 
levels of diacylglycerol, which has been shown to induce apoptosis, 
thus contributing to the renal cell complications of hyperglycemia. 
Associated diseases include Hyperglycemia and Hemophagocytic 
Lymphohistiocytosis

PAI-1 Serpin Peptidase 
Inhibitor, Clade E 
(Nexin, Plasminogen 
Activator Inhibitor 
Type 1), Member 1

7 It encodes a member of the serine proteinase inhibitor (serpin) 
superfamily, which is the principal inhibitor of tissue plasminogen 
activator and urokinase, and hence is an inhibitor of fibrinolysis. 
Defects in this gene are the cause of plasminogen activator 
inhibitor-1 deficiency (PAI-1 deficiency), and high concentrations 
of the gene product are associated with thrombophilia. Associated 
diseases include Plasminogen Activator Inhibitor-1 Deficiency and 
Complete Plasminogen Activator Inhibitor 1 Deficiency.
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2.1. Glucose homeostasis

Epigenetic alterations can have great influence on islet cells and glucose homeostasis 
that can alter their pathophysiological processes and consequently result in T2D 15.

2.1.1. DNA methylation
Different studies have investigated the association between global DNA methylation 
and glucose levels, reporting inconsistent results 16-18. Increased levels of plasma glucose 
were associated with higher methylation levels in LINE-1 when assessed in adipose tis-
sue, blood or skeletal muscle 16 17 19. However, one study showed no association or an 
inverse association between LINE -1 methylation or other markers of global DNA meth-
ylation and glucose levels assessed in B and NK lymphocytes human cells 18. This stresses 
the relevance of using cell type-specific assays when investigating epigenetic signatures 
in clinical tissue samples especially those characterized by a high heterogeneity in cell 
types frequency and phenotype, such as blood.

Candidate gene studies have revealed lower methylation levels of GIPR gene and 
PPARGC1A gene in blood and skeletal muscle 20 21. Both genes are believed to contribute 
to improve insulin sensitivity, mitochondrial biogenesis and browning of white adipose 
tissue. In another study, the authors reported that high glucose levels affect human pan-
creatic islet gene expression and several of these genes also exhibit epigenetic changes 
22. This might contribute to the impaired insulin secretion seen in T2D. Moreover, one 
study reported that increased levels of plasma glucose might be associated with higher 
methylation levels of LY86 gene in blood, which has been suggested to play a role in 
inflammation, obesity and insulin resistance 23. Volkmar et al. have investigated DNA 
methylation in human pancreatic islets by exposing the pancreatic cells from nondia-
betic donors to high glucose levels 9. The study reported a non-significant association 
between DNA methylation and the 16 CpG sites tested, concluding that the methylated 
changes in the islets from T2D patients would not likely be a cause of hyperglycaemia 9.

Table 5.2.1. Overview of genes studied in association of Epigenetics with T2D and glycemic traits (Data-
base URL: www.genecards.org) 147 (continued)

Gene Alias Chr Function

RAGE Receptor For 
Advanced Glycation 
End-Products Variant 
20

6 It encodes a receptor for glycosylation end products (AGE). AGE 
accumulate in vascular tissue in aging and at an accelerated rate 
in diabetes. Besides AGE, it also interacts with other molecules 
implicated in homeostasis, development, and inflammation, and 
certain diseases, such as diabetes and Alzheimer’s disease. Acts 
as a mediator of both acute and chronic vascular inflammation 
in conditions such as atherosclerosis and in particular as a 
complication of diabetes. Associated diseases include Diabetic 
Angiopathy and Thymic Hyperplasia.
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Furthermore, studies conducted using placenta tissue and cord blood have yielded 
interesting results between methylation levels and fasting glucose. Lower DNA meth-
ylation levels of ADIPOQ, LPL, IGF1R and IGFBP3 on the fetal side of the placenta were 
associated with higher maternal 2-h post oral glucose tolerance test levels during preg-
nancy, although the association did not remain significant with 2 h post-oral glucose 
tolerance test levels 24. Also, the maternal gestational glucose levels were positively 
associated with placental DNA methylation, and negatively associated with cord blood 
DNA methylation of the PPARGC1A promoter in a CpG site-specific manner. The research-
ers concluded that epigenetic alteration of the PPAGRC1A promoter may be one of the 
potential mechanisms underlying the metabolic programming in offspring exposed 
to intrauterine hyperglycaemia 25. Another study investigating whether epigenetic 
dysregulations of the insulin-like growth factor system in placenta were exposed to 
maternal impaired glucose tolerance, confirmed their hypothesis 26. Also, in this study, 
maternal glucose 2 h post oral glucose tolerance test and fasting glucose at the second 
trimester of pregnancy were negatively correlated with GF1R-L4 (7 CpGs) and IGFBP3-L1 
DNA methylation levels 26. Both GF1R-L4 and IGFBP3-L1 are important genes in foetal 
metabolic programming and impaired glucose tolerance.

Limited evidence exists on EWAS and glucose metabolism. Also, the existing evidence 
so far is inconclusive and inconsistent with studies reporting no association 27 and 
another reporting a positive association between epigenome-wide DNA methylation 
levels and fasting glucose 28. Using whole blood samples from a population-based 
prospective study, one study recently reported 6 CpG sites related to fasting glucose 
and 2-hour glucose, independent of age, sex, smoking, and estimated white blood cell 
proportions 26. Moreover this study showed that effect strengths were reduced on aver-
age by around 30% after adjustment for BMI, suggesting an influence of BMI on the 
investigated phenotypes 26. The findings provide evidence for the first time that DNA 
methylation may be associated with glucose metabolism, a relationship which can be 
measured in DNA isolated from whole blood.

2.1.2. Histone modifications
Histone modifications may also play a pivotal role in glucose metabolism, but this is 
an understudied research topic 29. Studies have shown that TXNIP gene might be im-
portant in glucose metabolism, especially in diabetes-related phenotypes 30 31. TXNIP 
is a key component of pancreatic β-cell biology, nutrient sensing, energy metabolism, 
and regulation of cellular redox 30 31. Moreover, TXNIP expression is highly induced by 
glucose through activation of the carbohydrate response element-binding protein, 
which binds the TXNIP promoter, making it an attractive target for diabetes therapy. 
Previous studies have identified several critical transcription factors, enzymes important 
in histone activation and acetylation, like the ChREBP and p300, as the specific chro-
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matin modification mediating this glucose-induced transcription of beta cell TXNIP 31. 
Recently, another study published similar results confirming the findings 32. They found 
that the glucose-induced TXNIP gene expression is greatly reduced by p300 silencing, 
and Ep300 cells are protected from high glucose-induced cell death and have elevated 
insulin secretion 32. In the current study, elevated levels of EP300 and TXNIP gene 
expression in human diabetic islets were correlated with reduced glucose-stimulated 
TXNIP genes expression 32. These data provide evidence that histone acetylation could 
be a key regulator of glucose-induced increase in TXNIP gene expression and thereby 
glucotoxicity-induced apoptosis.

2.2. Insulin metabolism

A common feature of T2D that affects the liver and the peripheral tissues is insulin resis-
tance (IR). The most relevant tissues that develop insulin resistance are liver cells, skeletal 
muscle, and adipose tissue 33. Impaired response to insulin fails to clear the blood stream 
from glucose, and additionally, stimulates the secretion of adipokines from the adipose 
tissue which may further negatively affect the whole body glucose homeostasis 33.

2.2.1. DNA Methylation
Several studies have investigated the association between global DNA methylation and 
insulin metabolism, focusing on fasting plasma insulin levels, insulin secretion 19, and 
insulin resistance as measured by homeostatic model assessment 34 35. The studies on 
insulin secretion and insulin resistance did not report significant associations between 
insulin metabolism and global DNA methylation. However, one study reported an 
interaction of global DNA methylation with circulating folate concentrations in rela-
tion to insulin resistance 34. The authors found that a lower degree of methylation and 
lower plasma folate concentrations were associated with higher insulin resistance 34. 
Folate metabolism is linked to phenotypic changes through DNA methylation by the 
knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in 
methyl group transfer for DNA methylation, making them important epigenetic players. 
Another study assessed global DNA methylation as a percentage of 20-deoxycytidine 
plus 5-methyl-deoxy-cytidine (5mdC) in genomic DNA and reported a positive associa-
tion between insulin levels and global DNA methylation assessed in lymphocyte B cells 
but no association in natural killer cells 36. Zhao et al. assessed global DNA methylation 
in Alu elements in peripheral blood leukocytes, which was quantified by bisulphite 
pyrosequencing 35. The study showed a positive association with insulin resistance and 
reported that a 10% increase in mean Alu methylation was associated with an increase 
of 4.55 units in homeostatic model assessment 35.

Many candidate gene studies have examined methylation sites in or near known 
candidate genes in relation to plasma insulin, insulin expression and insulin resistance 15. 
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Most of them reported a positive correlation between plasma insulin and methylation at 
PPARGC1A in the liver and at HTR2A and LY86 in blood cells. Lower levels of methylation 
at PPARGC1A were identified in skeletal muscle and lower levels of methylation were 
identified at the insulin promoter gene associated with increased levels of plasma insu-
lin or mRNA insulin expression 15. Moreover, inverse associations were found between 
insulin resistance and the degree of methylation of TFAM and GIPR3 genes in blood cells 
and PPARGC1A gene in skeletal muscle 15. Furthermore, studies in pregnant women, 
reported a negative association of methylation levels of the maternal side of placenta 
of ADIPOQ gene with insulin resistance 37. While another study reported a positive 
correlation between the methylation of IGFBP3 with fasting insulin levels and insulin 
resistance 26.

Further, a few EWAS have been performed in regard to insulin metabolism 38 39. Hi-
dalgo et al. reported a significant association between the methylation of a CpG site 
in ABCG1gene on chromosome 21 with insulin and homeostatic model assessment-IR, 
suggesting that methylation of the CpG site within ABCG1 merits further evaluation as a 
novel disease risk marker 39.

The majority of the above mentioned genes are reported to have important func-
tions in metabolic traits and have been associated to insulin metabolism through 
different biological mechanisms. The HTR2C gene is involved in energy expenditure 
and polymorphisms in this gene coding for many receptors are thought to influence 
insulin homeostasis 40. While, PPARGC1A upregulates transcription of genes involved in 
mitochondrial oxidative metabolism and biogenesis as well as skeletal muscle glucose 
transport. Because mitochondrial defects have been associated with peripheral insulin 
resistance in healthy subjects it has been suggested that reduced PPARGC1A expres-
sion in skeletal muscle may be a primary feature of insulin resistance 41. Furthermore, 
PPARGC1A is involved in biological functions with implications in insulin action including 
protection against oxidative stress, formation of muscle fiber types as well as regulation 
of microvascular flow 41 42. Moreover, there is evidence linking the LY86, TFAM and GIPR3 
genes to insulin resistance, mainly their respective encoded proteins that play crucial 
roles in the pathophysiological regulation of inflammation and insulin resistance 42.

2.2.2. Histone modifications
The evidence pertaining the possible role of histone modifications in insulin metabolism 
is also very limited. One study investigated the effects of insulin on alterations in post-
translational modifications of histone H3 in L6 myoblasts under a hyperglycaemic condi-
tion 43. The authors demonstrated that insulin induced intracellular generated oxidative 
stress is involved in modulating multiple histone modifications under hyperglycaemic 
conditions 43. Their results also revealed that phosphorylation of histone H3 at Ser 10 
was independent of known histone kinases and suggest the role of serine/threonine 
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phosphatase in modulating insulin signalling, suggesting a possible role of phosphatase 
and its inhibitor in diabetes 43.

3.	E pigenetic alterations in diabetes

T2D is a complex disease, product of the interaction of genetic and environmental fac-
tors 44 (Figure 5.2.1). Epigenetic mechanisms could underlie the connection between 
environmental exposures and pathology of T2D 45. For this reason, in recent years, it has 
been of great interest to study DNA methylation and histone modifications in relation 
to T2D.

3.1. DNA methylation

When comparing diabetic versus non-diabetic individuals, no difference in global DNA 
methylation has been reported in overall peripheral blood 46 47, lymphocytes or mono-
cytes populations assessed separately 18, pancreatic islets 9, omental visceral adipose 
tissue and subcutaneous adipose tissue 17. Also studies that used skeletal muscle and 
subcutaneous adipose tissue from monozygotic twins discordant for T2D did not re-
port any differences in global DNA methylation 16. However, significant differences in 
the degree of global DNA methylation have also been reported. Luttmer et al reported 
hypomethylation in blood samples from T2D patients 48, whereas Simar et al reported 
an increased degree of global DNA methylation specifically in B-cells and natural killer 
cells from T2D donors 18.

In a candidate gene approach, DNA methylation at several selected genes has been 
investigated in different tissues, comparing diabetic and non-diabetic donors.

The genes that have been reported to have higher methylation levels in T2D patients 
are: IGFBP7 49, IGFBP1 50, TLR2 51, SLC30A8 52, GCK 53, PRKCZ 54, CTGF 46 and leptin gene in 
peripheral blood; PPARGC1A 55, PDX-1 56, insulin promoter gene 57 and GLP1R in pancre-
atic islets 56 and APN in adipose tissue 58.

On the other hand, in diabetic donors, lower levels of methylation have been found at 
genes: GIPR 59, CAMK1D, CRY2, CALM2 60, MCP1 61, TLR4, FFAR3 51, PP2Ac 62 and CTGF 46 in the 
in peripheral blood samples; UBASH3A in B-cells 18 and PDK4 in skeletal muscle tissue 63. 
Additionally, differential methylation between type 2 diabetic patients and matched 
controls has been found at TCF7L2 64.

Further, no clear difference was observed for genes IRS-1 in the peripheral blood 65; 
GADPH, TFAM and TRIM3 in B-cells 18; GLP1R in pancreatic islets 66 and PPARGC1A in the 
skeletal muscle 67.

When comparing monozygotic twins discordant for T2D, the genes that were hyper-
methylated in the diabetic subjects are: HNF4A, KLF11, DUSP9, HHEX and PPARGC1A in 
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muscle tissue and CIDEC, HNF4A, ADCY5, CDKN2B, IDE, KCNQ1, MTNR1B and TSPAN8 in 
subcutaneous adipose tissue. Whereas the hypomethylated genes found in the diabetic 
twins are CDKN2A, KCNQ1 and SLC30A8 in muscle tissue and CAV1, CDKN2A, DUSP9, IRS1 
and WFS1 in subcutaneous adipose tissue. However, after adjustment for multiple test-
ing only two methylation sites, at CDKN2A and HNF4A genes, in subcutaneous adipose 
tissue, remained significant 16.

EWAS have raised and evolved as the technology for epigenetics research gradually 
develops. Progressively, scientists have had more access to methylation arrays with a 
higher number of methylation probes and new sequencing techniques that have al-
lowed researches to perform genome-wide studies in shorter times. Thus, genome-wide 
DNA methylation profiling to find associations with T2D has allowed identifying new 
genes differentially methylated that might provide new insights in the pathogenesis of 
the disease and the search for biomarkers. To date, EWAS in association with T2D have 
been performed in peripheral blood, pancreatic islets, skeletal muscle and subcutane-
ous adipose tissue.

For the study of methylation in pancreatic islets, a Human Methylation 27 BeadChip 
array was used. It was observed that 276 CpGs affiliated to promotors of 254 genes were 
displaying differentially methylated sites in tissue from T2D donors compared with 
non-diabetic controls 9. Further, a Human Methylation 450 K BeadChip array was utilized 
to carry out the same approach. As a result, 1649 CpGs, annotated to 853 genes, were 
reported to have sites of differential methylation in diabetic islets 68. In skeletal muscle 
tissue, methylation levels were compared between monozygotic twins discordant 
for T2D using a Human Methylation 27 Bead Chip array. The test identified one CpG, 
annotated at IL8, to be differentially methylated 16. A similar analysis was performed 
in subcutaneous adipose tissue, revealing that in the diabetic donor, CpGs annotated 
to ZNF668, HSPA2, C8orf31, CD320, SFT2D3, TWIST1 and MYO5A genes had methylation 
levels significantly different from the non-diabetic twins 16. DNA methylation studies in 
blood samples reports dissimilar results, depending on the methylation assessment and 
multiple testing correction methods. When Human Methylation 450 K Bead Chip array 
was used, one study reported 51 significant CpGs associated to T2D (correction for mul-
tiple tests of FDR < 5%) 69, while other authors observed 5 CpGs associated to incident 
T2D (correction for multiple testing of P < 5 x 10-7) 30. A different study used Methylated 
DNA immunoprecipitation sequencing (MeDIP-seq). It identified as the strongest signal, 
a differential methylated region at the promoter of MALT1 (FDR < 5%). A study using the 
affimetrix SNP6 microarray with posterior in-deep sequencing of the tip-ranking regions 
showed that 13 out of 93 CpG sites exhibited differences between T2D patients and 
controls 70. The researchers found that, among those sites, a methylation site located in 
the first intron of FTO was significantly hypomethylated in blood samples from diabetic 
subjects 70.
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3.2. Histone modifications

Histone changes in acetylation or methylation patterns might induce modifications in 
chromatin structure and, as a consequence, it may promote dysregulated gene tran-
scription and disease progression 71 72.

A limited number of studies have explored the association of histone modifications 
with T2D. Histone methyltransferase Set7 is an enzyme involved in histones methylation. 
Using peripheral blood mononuclear cells from diabetic patients, it was found a Set7-
dependent monomethylation of lysine 4 of histone 3 (H3K4m1) on NK-kβ p65 promoter, 
along with an upregulation of the enzyme 73. Another study observed an increased level 
of histone H3 lysine 9 dimethylation (H3K9me2) around IL-1A promoter and PTEN coding 
regions in circulating monocytes from T2D patients relative to non-T2D controls 74. A 
different study investigating histone acetylation found that histone 3 (H3) acetylation at 
TNF-α promoter and COX-2 promoter was increased in peripheral blood monocytes from 
type 2 diabetics, compared to controls 75.

4.	E pigenetic mechanisms as biomarkers for risk 
prediction

When T2D is not well managed, it can lead to health complications in different organs 
of the body, increasing the risk of disability and premature death 76. Direct and indirect 
costs of T2D impose a large burden that impacts the economy of the country’s 77. These 
adverse consequences make the development of prevention strategies highly relevant, 
like the early identification of individuals at risk of developing T2D.

Recently, next to the traditional prevention methods, a novel approach to assess indi-
viduals risk is developed, by using statistical models that are able to predict future onset 
of the disease, based on epigenetic markers. The performance of a prediction model 
is evaluated by means of the area under the receiver operating characteristic (ROC) 
curve (AUC), being an AUC value of 1.0 a perfect discrimination of the outcome to be 
predicted. So far, the models using conventional components, such as anthropometric 
measurements, family history of diabetes, lifestyle factors and biomarkers like glucose, 
insulin and lipid levels, are able to predict T2D with an AUC that ranges from 0.7 to 0.9 78. 
However, a large number of predictor factors and measurements of different nature are 
required, and models do not perform similarly in different populations. As Genome-
Wide Association Studies (GWAS) have been developed, genetic markers associated 
with T2D, glucose, insulin and insulin resistance, have been included as predictors in 
prediction models. Unfortunately, the associated genetic variants have not improved 
the performance of the overall models 79 80, which might not be surprising since studies 
until now, agree that genetic variants explain up to 10% of the heritable risk 81.
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Based on findings from previous reports in the field of epigenetics, a limited number of 
studies have been conducted to explore the suitability of the reported epigenetic mark-
ers to predict the onset of T2D and, whether the findings in blood samples can be used 
as surrogate markers for epigenetic modifications in target tissues for this disease 82 83.

4.1. DNA methylation

Investigating global DNA methylation, a study examined the predictive value for LINE-1 
as a risk marker for T2D and other metabolic disorders. Worsening of metabolic status or 
T2D onset after 1 year of follow-up was assessed. A model based on classic risk factors 
(age, sex, body mass index and physical activity) showed an AUC of 0.64682. The addition 
of LINE-1 methylation measures to the previous model, significantly improved the pre-
dictive performance to an AUC of 0.650 82. The study was performed among European 
Spanish women 40 to 65 years old. No other evidence has been reporting the added 
value of global DNA methylation as a predictive tool in diabetes.

Methylation sites in the DNA, previously reported to be associated with T2D and 
glucose homeostasis in candidate gene studies or EWAS, have been taken into consid-
eration in the search for biomarkers. One longitudinal study found that the methylation 
marker cg06500161, annotated to gene ABCG1, was associated with a 9% increased risk 
for future T2D, whereas methylation at cg02650017 annotated to PHOSPHO1, was asso-
ciated with a 15% decreased risk for future T2D 83. Nevertheless, no further investigation 
of the predictive value of these CpGs was performed.

The role of DNA methylation in predicting onset of T2D is still in its infancy of investiga-
tions. An ongoing longitudinal effort is combining clinical investigation, omics profiling 
(metabolomics, lipidomics, transcriptomics and epigenomics) with exercise and dietary 
interventions to provide novel diagnostic and predictive biomarkers to effectively detect 
the progression towards diabetes in high risk individuals, and also to predict responsive-
ness to lifestyle interventions known to be effective in the prevention of diabetes 84. The 
study included 1455 participants from the DEXLIFE consortium and 400 participants in 
the intervention group. In the future, this comprehensive approach may provide some 
more insights on the contribution of DNA methylation sites as predictive markers.

4.2. Histone Modifications

Although a few studies have been conducted to examine the association between his-
tone modifications and T2D 73-75, none of these markers have been proposed as possible 
novel biomarkers to identify subjects at high risk for T2D. The lack of consistent evidence 
and replicated studies may explain the absence of a reliable candidate marker serving 
for clinical purposes.
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5.	E pigenetic changes associated with diabetic 
complications

Diabetes is associated with significantly accelerated rates of several debilitating micro-
vascular complications such as nephropathy, retinopathy, and macrovascular compli-
cations such as cardiovascular events. While several studies have been investigating 
genetic factors related to diabetes and associated complications, little is known about 
epigenetic changes that occur without alterations in the DNA sequence.

5.1. Epigenetic modifications in cardiovascular disease

Prospective studies have shown that diabetic patients have a two- to four fold risk to 
develop coronary artery disease, establishing that T2D is an independent risk factor for 
cardiovascular disease (CVD) 85. About 70% of T2D patients at an age ≥65 years die from 
CVD, while T2D cases with no history of coronary artery disease have an equal cardiovas-
cular risk as patients with previous myocardial infarction 86. CVD and T2D share several 
common pathophysiological features like the classical cardiovascular risk factors, such 
as dyslipidaemia, hypertension and obesity. However, all of the known pathways do not 
explain the complex pathophysiology behind cardiovascular complications of diabetes. 
Up to date, the underlying mechanisms are often addressed within a specific pathologi-
cal context, whereas an integrated approach should be preferred in order to capture all 
potential interlinks between T2D and CVD. New research investigations have linked the 
participation of epigenetic mechanisms in the process of inflammation, oxidative stress, 
and endothelial dysfunction, all representing the hallmark of cardiovascular complica-
tions of diabetes.

5.1.1. DNA methylation
Using human aortic endothelial cells exposed to high glucose and aortas of diabetic 
mice, one study found that the mitochondrial adaptor p66Shc was epigenetically up-
regulated by promoter CpG demethylation and H3 acetylation 87. Moreover the overex-
pression continued even after returning to normoglycaemia and could only be inhibited 
after pharmacologic intervention, providing molecular insights for the progression of 
diabetic vascular complications despite glycaemic control, which might help to define 
novel therapeutic targets 87.

Although emerging data has linked some aspects of hypertrophy, heart failure, and 
arrhythmias in cardiomyocytes to DNA methylation and PTMs of histones, less evidence 
has been reported in hearts of diabetic patients 88. Monkemann et al. reported that 
oxidative stress damages cardiomyocytes via p53-dependent apoptosis in diabetic 
cardiomyopathy 89. Interestingly, in animal studies, the methylation of the p21(WAF1/
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CIP1) gene that encodes several protein kinases at p53 showed the later to be an early 
step in the development of hyperglycemia-induced cardiomyopathy in diabetic rats 89.

Other epigenetic marks are linked to intermediate risk factors common to CVD and 
T2D and that could contribute in discovering diagnostic and prognostic factors. One 
study, investigating the association between IGF2 methylation and lipid profile, showed 
that higher triglyceride/HDL-cholesterol ratio were associated with hypermethylation of 
IGF2 gene, indicating that this gene might be an important marker of metabolic risk 90. 
The IGF2 gene provides instructions for making a protein called insulin-like growth fac-
tor 2, which plays an essential role in cell growth and insulin mechanisms. Another study 
that combined genome-wide transcriptome and CpG methylation profiling by array, 
reported many differentially methylated predicted sites in adipose tissue from insulin-
resistant patients compared to controls, which included genes involved in insulin signal-
ling and in the interaction with integrins 91.

Current therapies for diabetes are aimed to optimize glycaemic control and reduce the 
associated cardiovascular risk. Some preliminary studies have shown that DNA methyla-
tion plays an important role in the reversibility and treatment of diabetic complications 
such as CVD, including vascular inflammation 92. Resveratrol is a polyphenol with antioxi-
dative and anti-inflammatory properties. Numerous studies have shown that resveratrol 
might have cardiovascular protective effects and also might contribute in improving 
insulin sensitivity, reducing plasma glucose levels and reducing inflammation 92. Lou 
et al. aimed to investigate the effects of resveratrol (trans-3, 5, 40-trihydroxystilbene) 
on the expression of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and IFN-γ 
in diabetic rat aortas and the potential epigenetic mechanisms involved 92. It showed 
that the expression levels of pro-inflammatory cytokines were significantly lower in the 
resveratrol-treated diabetic group. Moreover, the untreated group showed reduced lev-
els of DNA methylation at the specific cytosine phosphate guanosine sites of IL-1β, IL-6, 
TNF-α and IFN-γ and these levels were reversed by resveratrol 92. Furthermore, incretins 
such as glucagon-like peptide 1 receptor (GLP1R) agonist are shown to have cardiovas-
cular protection beyond glycaemic control in diabetes subjects93. Recent data show that 
methylation of GLP1R is associated with glycaemic control but also cardiometabolic risk 
factors, such as obesity 94. Thus, although the studies of epigenetics marks and CVD in 
diabetes are scarce, they provide some insight on epigenetic modifications as possible 
targets to develop novel therapeutic agents at preventing and treating vascular com-
plications.

5.1.2. Histone modifications
Gaikwad et al. reported deacetylation and dephosphorylation of histone H3 in the heart 
and kidney of diabetic Sprague-Dawley rats leading to changes in gene expression in 
the extracellular matrix and therefore hypertrophy 95. A recent study used peripheral 
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blood mononuclear cells to measure histone deacetylases (HDACs) activity and expres-
sion in relation to glycaemia, inflammation and insulin resistance in patients with T2D. 
Low-grade chronic inflammation and insulin resistance induced HDAC3 activity and 
expression, and correlated positively with circulating levels of TNF-α, IL-6, and other 
proinflammatory markers, and negatively with Sirt1 expression 96. Using aortic endo-
thelial cells, another study showed that exposure to high glucose correlates with the 
inverse acetylation of the histone H3K9/K14 and modified DNA methylation patterns 97. 
Several histone lysine modifications have also been described following transient high 
glucose levels that may account for a persistent transcriptional induction of the RELA 
gene, encoding for the p65 subunit of NF-kB, even after subsequent incubation of 
endothelial cells with normal glucose concentrations 98. Miao et al. recently compared 
patients previously included in the conventional treatment arm of the Diabetes Control 
and Complications Trial who developed diabetic microangiopathy (cases) to patients 
who were allocated the intensive treatment and had no progression of microvascular 
complications (controls) 99. They reported a significantly greater number of promoter 
regions with enrichment in H3K9Ac (hyperacetylation) in monocytes, but not in lym-
phocytes, in cases versus controls 99. These findings further support the existence of an 
epigenetic component in the metabolic memory—the concept that early glycaemic 
control is a major determinant of diabetic complications later in life.

5.2. Epigenetic modifications in diabetic nephropathy

Diabetic nephropathy (DN) is a major chronic complication of diabetes and the most 
common cause of end-stage kidney disease 100. Approximately 50% of patients who have 
end-stage renal disease needing painful and costly dialysis are diabetic 100. The underly-
ing molecular mechanisms leading to DN are not fully elucidated. High glucose levels 
adversely impact all renal cell types including mesangial cells, tubular cells, podocytes 
and endothelial cells, and augment monocyte and macrophage infiltration 101. High 
glucose conditions also increase the formation of advanced glycation end-products and 
production of growth factors such as transforming growth factor β1 (TGF-β1) and an-
giotensin II in renal cells 101. Although several classic mechanisms and pathways leading 
to DN have been described over the years, new molecular and epigenetic mechanisms 
are emerging 102.

5.2.1. DNA methylation
The role of DNA methylation in DN has elicited much interest 102 mainly because most 
genome-wide association studies of DN have yielded few susceptibility loci. Studies 
of DNA methylation profiles in genomic DNA of diabetic patients with or without DN 
revealed differential methylation levels in several genes, including UNC13B, which has 
been suggested to mediate apoptosis in glomerular cells as a result of hyperglycaemia, 
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and hence the association could be relevant to the initiation and pathogenesis of DN 103. 
In DN, prolonged exposure to hyperglycemia induces production of cytokines, chemo-
kines, and growth factors including TGFβ1 and connective tissue growth factors, which 
leads to abnormal glomerular pathology. Brennan et al. measured DNA methylation in 
192 candidate genes previously identified to be differentially expressed in in vitro mod-
els of DN and in renal biopsies from individuals with DN. The study found that 301 CpGs 
in 38 out of 192 genes were differentially methylated 104. The gene ontology analysis of 
the differentially methylated genes revealed that the predominant biological function 
of the affected genes was organism development 104. Additional studies using various 
DNA methylation assays and DNA collected from peripheral blood samples or saliva 
identified specific DNA methylation profiles for diabetic patients with and without ne-
phropathy 105 106. These studies proposed using DNA methylation profiles as biomarkers 
to help predict disease status and progression; however, they did not report associated 
gene expression data.

5.2.2. Histone modifications
Growing evidence suggests that histone post-translational modifications can have key 
roles in the pathogenesis of diabetes. TGF-β1-induced expression of plasminogen acti-
vator inhibitor-1 (PAI-1) and p21 in renal mesangial cells plays a major role in glomeru-
losclerosis and hypertrophy, key events in the pathogenesis of diabetic nephropathy. 
However, the involvement of histone acetyl transferases (HATs) and HDACs that regulate 
epigenetic histone lysine acetylation, and their interaction with TGF-β1-responsive 
transcription factors, are not clear. In vitro studies in rat mesangial cells, have shown 
that TGF-β1, which is a central mediator of fibrogenesis and high glucose treatment, 
increased H3K9/14ac enrichment near Smad and SP1 binding sites (proteins related to 
the control of gene expression and cell growth) at the plasminogen activator inhibitor 1 
and p21 gene promoters, together with HATs p300 and CREB-binding protein 107. Histone 
H3K9/14ac was found to have a key role in transcription of these genes in response to 
TGF-β1 107. High glucose treatment also elicited similar histone post-translational modi-
fications at fibrotic and cell-cycle gene (p21) promoters, which were blocked by an anti-
TGF-β antibody 107. Therefore, it is conceivable that histone hyperacetylation and related 
chromatin events involved in TGF-β1-mediated PAI-1 and p21 expression play important 
roles in the pathogenesis of DN and could therefore serve as potential therapeutic 
targets for diabetes-induced renal dysfunction. In vivo animal models of DN have also 
demonstrated changes in histone post-translational modifications. NF-κB-dependent 
inflammatory gene expression has been extensively studied due to the involvement of 
these target genes in the pathology of several inflammatory diseases, including athero-
sclerosis, insulin resistance, diabetes and its complications. Studies demonstrated that 
H3K4me HMT SET7 could be a NF-κB coactivator at a subset of inducible inflammatory 
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genes in monocytes108. SET7/9 may therefore be a novel therapeutic target for inflam-
matory diseases, including diabetes, DN and related metabolic disorders. Interestingly, 
treatment of mice with losartan, an Ang II type 1 receptor blocker, ameliorated key 
indices of diabetic nephropathy, and reversed key changes in epigenetic enzymes and 
H3K9ac enrichment at promoters of genes encoding PAI-1 and RAGE, but did not reverse 
all the diabetes-induced epigenetic changes 109. Thus, the relative inefficiency of drugs 
commonly used for diabetic nephropathy, such as Ang II type 1 receptor blockers, to 
prevent progression to renal failure, in many patients could be due to the incomplete 
reversal of diabetic nephropathy-associated epigenetic changes 109. Also, several clinical 
trials (NCT01038089, NCT00937222) have been conducted testing resveratrol, (class III 
histone deacetylases group) which is thought to protect against development of dia-
betic nephropathy via changes in phosphorylation of histone H3 and Sir-2. The activity 
of resveratrol shows great potential in the prevention and therapy of diabetes and its 
complications especially to DN, nevertheless the compound is still in its experimental 
phases. These and other studies emphasize the role of epigenetic mechanisms in the 
regulation of possible biological and genetic pathways relevant to DN.

5.3. Epigenetic modifications in diabetic retinopathy

Retinopathy, a sight-threatening disease, remains one of the most feared complications 
of diabetes. Although altered levels of glucose are the main initiators, progression of 
diabetic retinopathy continues even after the hyperglycaemic insult is reversed by good 
glycaemic control, suggesting a ‘metabolic memory’ phenomenon 110 111.

5.3.1. DNA methylation
Recent studies have implicated epigenetic modification in the metabolic memory 
phenomenon associated with the continued progression of diabetic complications. T2D 
activates the enzymes responsible for maintaining DNA methylation status in the retina, 
increasing the activities of DNA methyltransferases (DNMTs) and ten-eleven transloca-
tion enzymes (Tets) which can lead to hypo- or hypo- DNA methylation of many genes 
responsible for mitochondrial homeostasis 112-114. A dynamic DNA methylation process 
of the matrix metalloproteinase gene MMP-9 is shown to maintain its transcriptional 
activation, though the transcription factor binding sites of the MMP-9 promoter, which 
are hypermethylated in diabetes. Due to concomitant increased binding of Tet at the 
same site, MMP-9 DNA remains hypomethylated resulting in its transcriptional activation 
114 and this continues to fuel into the mitochondrial damage 110. Abrogation of MMP-9 
gene protects against the development of retinopathy and it is considered to play an 
important role in the apoptosis of retinal capillary cells.
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5.3.2. Histone modifications
Histone acetylation and methylation (HDAs, HATs, SETs and LSD1) play also a crucial role 
in epigenetic modifications that occur during diabetic retinopathy. However, experi-
mental studies of diabetic retinopathy have provided contradictory results for histone 
acetylation, with some showing increased global acetylation of retinal histones with 
activation of HAT and inhibition of HDACs 115, and others reporting significant increase 
in retinal histone acetylation 116 117. The reasons for such discrepancies are still unknown. 
Although histone modifications and DNA methylation generally regulate gene transcrip-
tion independently, DNA methylation and histone modifications are also shown to work 
in concordance; e.g., cooperation of DNA methylation with histone methyltransferase 
SETDB1/ESET results in trimethylation of H3K9 (known for its function in condensing 
the chromatin) 110. DNMTs and histone modifying enzymes, SUV39h1 and EZH2 lysine 
histone methyltransferase, can work in coordination, and the agents that interact with 
histone methyl transferases, in addition to regulating histone methylation, also regulate 
DNA methylation 118.

Some of the studies have shown that even after the reverse of the hyperglycemic 
insult, H3K4 and H4K20 at Sod2 methylation levels continue to be altered. Also, the en-
zymes responsible for histone methylation (SUV420h2) and demethylation (LSD1) remain 
dysfunctional 116. Upregulation of MMP-9, which encodes another enzyme implicated in 
diabetic retinopathy, was associated with reduced promoter H3K9me2 and increased 
H3K9ac levels, along with increased recruitment of NF-κB in retinal endothelial cells from 
diabetic rats 119. Furthermore, mass spectrometry studies demonstrated that hypergly-
caemia causes acetylation of retinal histones, which was associated with increases in 
proinflammatory proteins 120. The HAT p300 was implicated in endothelial fibronectin 
expression related to diabetic retinopathy, and in gene expression relevant to diabetic 
cardiac hypertrophy 120.

5.4. Epigenetic modifications in diabetic neuropathy

Diabetic neuropathy is a common but irreversible complication that develops in up to 
50% of patients with diabetes and results in sensory loss, pain, and risk of amputation 121. 
The molecular mechanisms involved in the development of diabetic neuropathy is a 
complex process that includes activation of the polyol pathway, exaggerated oxidative 
stress, over activity of protein kinase C and increased formation of advanced glycation 
end-products in the presence of hyperglycaemia. Diabetic neuropathy entails decreased 
nerve conduction velocity, which indicates a prominent role for Schwann cells because 
they ensheath peripheral nerves and provide support for nerve conduction and axon 
regeneration 122. Moreover, high glucose induces oxidative damage in Schwann cells, 
considered a major factor in diabetic complications 122. With respect to diabetic neuropa-
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thy, several biological mechanisms have been studied, although the role of epigenetics 
has only recently been suggested 122.

5.4.1. DNA methylation
Previous studies have suggested that diabetic neuropathy involves dysregulation of the 
transcription factor peroxisome proliferator-activated receptor (PPRG or PPARγ) 123. Al-
though drugs that activate PPARγ improve glycaemic control in T2D, its role in metabolic 
memory has not been extensively examined. Because high glucose produces changes in 
gene expression that persist after cell division 124, a plausible mechanism for these stable 
changes is DNA methylation. Using quantitative PCR arrays for glucose and fatty acid 
metabolism, one study found that chronic high glucose induced a persistent increase 
in genes that promote glycolysis, while inhibiting those that oppose glycolysis and 
alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate 
pathway, and trichloroacetic acid cycle 122. These sustained effects were associated with 
decreased PPARγ binding and persistently increased reactive oxygen species, cellular 
NADH, and altered DNA methylation 122. Their results suggest that Schwann cells might 
exhibit features of metabolic memory that may be regulated at the transcriptional level 
therefore, targeting PPAR may prevent metabolic memory and the development of dia-
betic complications such as diabetic neuropathy.

5.4.2. Histone modifications
With respect to diabetic neuropathy and histone modifications, little evidence is avail-
able. Nevertheless, factors like dyslipidaemia, oxidative stress and inflammation have 
been reported to be particularly important for the development of neuropathy 125. 
Therefore, one could speculate that some of the reported mechanisms linking diabetes 
with dyslipidaemia, oxidative stress and inflammation through histone modifications, 
could play a role also in diabetic neuropathy. Nevertheless, future studies are needed 
to shed light about the role that epigenetic mechanisms such as histone modifications 
play in diabetic neuropathy.

6.	E pigenetic based biomarkers for diagnosis and 
prognosis of t2d

Extensive research over the last decades, has shown that our genome is not the only 
determinant of disease risk, and that epigenetic marks induced by lifestyle and envi-
ronmental factors are associated with altered gene expression patterns in important tis-
sues, leading to altered susceptibility to disease in later life 8. Thus, it should be possible 
to detect these altered epigenetic marks and use them as predictors of future metabolic 
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capacity, early detection of disease and better prognosis (Figure 5.2.2). A premature 
diagnosis of disease is crucial as it might greatly improve clinical outcomes for patients. 
For example, population screening for cancers and the surveillance of high-risk patients 
allows an early diagnosis of cancer and therefore reduces morbidity by using less in-
vasive treatment, resulting in fewer complications and side effects. However, constant 
screening for a broad range of diseases across whole populations is not routine and 
realistic and it poses a high economic burden to governments 77. Hence, the detection 
of epigenetic alterations has become a promising tool in many health areas for the 
diagnosis and prognosis of disease and for the prediction of drug response.

6.1 Epigenetic based biomarkers for diagnosis of T2D

Although great progress has been made in the description of epigenetic modifications 
in normal and diseased tissues, the studies so far have been mainly focused on cancer 
research. In prostate cancer, DNA hypermethylation at the glutathione S-transferase pi 
1 (GSTP1) enzyme gene has been suggested as the most relevant candidate biomarker. 
It has been detected in 69% of proliferative inflammatory atrophy lesions, that are 
considered precursor lesions for the development of prostate cancer and/or high-grade 
prostatic intraepithelial neoplasia, underlining its importance for diagnosis 126. This epi-
genetic mark was consistently validated in many studies, showing a sensitivity of 82% 
and a specificity of 95% 127, compared to serum prostate-specific antigen (PSA, 20%), 
which is the only biomarker currently used for the detection and monitoring of this 
cancer. However, GSTP1 can also be hypermethylated in some other types of cancers. 
Therefore, combinations with additional biomarker genes and PSA testing have been 
recommended in order to increase specificity. Nevertheless, later studies that combined 
DNA hypermethylation of GSTP1, APC, RASSF1, PTGS2, MDR1 and TIG1 resulted in both 
sensitivity and specificity up to 100% 128 129. Furthermore, for the detection of glioblas-
toma, the hypermethylation at the promoter of the gene O-6-Methylguanine-DNA 
Methyltransferase (MGMT) has been established as a promising biomarker, since it was 
possible to detect glioblastomas with a very high sensitivity and specificity (95% and 
60% respectively) in serum samples 130. Also, researchers were able to predict a lack of 
cancer progression and overall survival of the patient 130. A step further, in colorectal 
cancer (CRC), the Food and Drugs Administration (FDA) has already approved the use 
of epigenetic markers like SEPT9 (ColoVantage) and vimentin (ColoSure)131 in clinical 
practice, after showing a high sensitivity and a specificity for CRC diagnosis 132 133.

As the field has grown, efforts are made also in discovering candidate biomarkers in 
the diagnosis and prognosis of other types of diseases such as type 2 diabetes, but this 
research field is still in its early phases. Twin studies might be a powerful approach as, 
despite the identical genetic background, discordant twins for T2D have differences in 
DNA methylation 134 135.
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Recently a new classification of diabetes types has been proposed. Using a data-driven 
cluster analysis approach, newly diagnosed diabetic patients were stratified into five 
subgroups with differing disease progression and risk of diabetic complications 136. The 
study identified five replicable clusters of patients with diabetes, who had significantly 
different patient characteristics and risk of diabetic complications. Cluster 1 included 
severe autoimmune diabetes patients; cluster 2 included patients with severe insulin-
deficient diabetes; cluster 3 included severe insulin-resistant diabetes patients; cluster 
4 was labelled as mild obesity-related diabetes and cluster 5 was labelled as mild age-
related diabetes. They found that individuals in cluster 3 had significantly higher risk of 
diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed 
similar diabetes treatment. While, individuals in cluster 2 had the highest risk of reti-
nopathy compared to the other clusters. Moreover, genetic associations in the clusters 
differed from those seen in traditional T2D 136. Considering the high heterogeneity of 
T2D, epigenetics might be a promising path that could help to better disentangle the 
differences in diabetic phenotypes, which would provide more information on treat-
ment target, as well in prevention strategies individualized by diabetes type, thus evolv-
ing towards personalized medicine.

In type 1 diabetes mellitus, recent findings propose the circulating β cell-derived un-
methylated insulin (INS) DNA as a potential diagnostic tool for the early detection of type 
1 diabetes (T1D) 137. This is based in previous evidence showing that the autoimmune 
destruction conducted by immune cells in T1D leads to the release of unmethylated 
INS DNA from pancreatic β cells, into the circulation. Thus it is possible the detection of 
the circulating DNA in blood samples, and the consequent assessment of the unique 
methylation pattern present in the promotor of the INS gene in β cells from patients with 
early T1D, or in patients with islet transplantation therapy 138.

6.2 Epigenetic based biomarkers for prognosis of T2D

In addition to its diagnostic potential, DNA methylation could be informative for patient 
prognosis in terms of disease progression/recurrence, complications, treatment and 
survival. High resolution data usually used for cancer, subtypes-specific profiles can also 
be used for the identification of powerful single epigenetic biomarker genes and gene 
combinations at various stages of disease. This advanced screening strategy can be 
beneficial for many types of clinical applications.

Initially, the potential prognostic profile of DNA methylation has been reported in 
childhood acute lymphoblastic leukaemia 139. DNA methylation profiling classified these 
patients in lymphoblastic leukaemia subtypes and stratified them with high hyper-
diploidy and translocation t(12;21) into two subgroups with different probabilities of 
relapse. DNA methylation profiling therefore resulted in subtype-specific and predictive 
signatures with potential use as future prognostic biomarkers for this disease 139. In breast 
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cancer, DNA methylation profiling identified a previously unrecognized subtype associ-
ated with T lymphocyte infiltration. Importantly, profiling immune genes determined a 
prognostic value of the profile. In particular, the hypermethylation at the promoter of 
lymphocyte transmembrane adaptor 1 (LAX1) and CD3D significantly correlated with 
survival in certain breast cancer subtypes 140. Another study discovered and validated 
the epigenetic signature of NEFH and HS3ST2 as an independent prognostic factor for 
type II ovarian cancer 141. Moreover, they showed that 3-0 sulfation of HS was important 
to oncogenic signalling, such as IL-6 and EGF signalling, which could render useless cur-
rent targeted therapies for ovarian cancer without further patient stratification 141.

However, when it comes to the role of epigenetics used as a prognostic marker for T2D 
the data are very limited. Recent published studies have suggested that the differentially 
methylated circulating DNA might be a promising novel biomarker which reflects beta 
cell death and could predict the progression of diabetes 142. The novel beta cell death 
marker unmethylated insulin (INS) DNA has been studied in TPIAT (total pancreatectomy 
with islet autotransplantation) patients before and immediately after islet infusion, and 
also 90 days post-TPIAT concurrent with metabolic functional assessments 143. Universal 
early elevations in the beta cell death marker INS DNA after TPAIT were observed, with 
pronounced elevations in the islet supernatant pre-infusion, likely reflecting beta cell 
death induced by islet isolation. In addition, persistent post-transplant elevation of 
INS DNA predicted greater hyperglycaemia at 90 days 143. Although, more studies are 
needed to identify the best methylation target sites in the INS gene, differentially meth-
ylated circulating DNA may be a good method to evaluate progression, diagnosis and 
prognosis of islet related diseases and in diabetes patients for whom insulin production 
is impaired.

Aging is also an important risk factor for metabolic disorders, including obesity, 
impaired glucose tolerance, and T2D 144. Almost one third of the elderly in the United 
States of America have diabetes and three quarters have diabetes or prediabetes 145. 
Recent attempts have been done in identifying biomarkers of aging, which are thought 
of as individual-level measures of aging that capture inter-individual differences in the 
timing of disease onset, functional decline and death over the life course. In this context, 
DNA methylation has gained a lot of interest as a potential biomarker that could predict 
mortality 146. Successfully, a DNA methylation based biomarker of aging (PhenoAge) was 
developed, which is highly predictive of nearly every morbidity and mortality outcome 
tested, especially cardiovascular disease and coronary heart disease . In addition, the 
study observed that higher DNA methylation PhenoAge was associated with increases 
in the activation of proinflammatory pathways, such as NF-κB, increased interferon 
signalling and decreases in damage recognition and repair pathways 146. Given this, one 
could hypothesize that DNA methylation PhenoAge might have an influence also on 
T2D. Future studies could test this hypothesis in diabetes patients which would provide 
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some insights on whether methylation age of specific methylation sites would identify 
T2D patients who are at risk of early death.

7.	C onclusions and future research directions

Epigenetics promises an auspicious future in its role as clinical instrument to comple-
ment the current practice. Current evidence in the field suggests that study of the 
role of epigenetic changes in the onset and progression of the diseases is a promising 
opportunity for the development of prediction, diagnostic and disease progression 
monitoring tools, as well as novel therapeutic targets (Figure 5.2.2). Overall, changes in 
global DNA methylation, CpG islands methylation, and histone acetylation and methyla-
tion have been found in relevant genes for aorta, heart, kidney, retina, nerves and glia 
cells function in samples from diabetic human and rodent donors or after hyperglyce-
mic stimuli of the same type of tissues, albeit some of them exhibit contrary results. 
However, since epigenetic changes have shown to be dynamic and vary in response 
of environmental stimulations, epigenetic mechanisms are important to study also be-
cause it is believed that they may play a significant role in the reversibility and treatment 
of diabetic complications, contributing even as a protective mechanism against them, 
though which drugs and other therapeutic tools may exert their effect. Furthermore, 
not solely for risk prediction, epigenetic changes also arise as a promising tool in the 
diagnosis, stratification of the patients, prognosis and monitoring of therapy response. 
Various research methodologies and DNA methylation assessment methods have been 
used to disentangle the epigenetic network; however, the technological advances in 
DNA methylation arrays have permitted EWAS approach to analyze a higher number of 
CpGs, a larger samples size and a more standardized method to assess DNA methylation. 
Nevertheless, identifying optimal methods of detecting possible epigenetic biomark-
ers and implementing appropriate reference standards are rapidly evolving. The use of 
common plans in the study designs, methylation assessment methods and statistical 
models for data analysis with similar strategies for confounding control, would allow 
comparability and independent validation of the findings, thus better quality evidence 
to identify biomarkers for T2D precision medicine, reliable for both clinicians and the 
patients.
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Main findings

The main objective of the work described in this thesis was to study traditional and 
novel sex specific risk factors of cardiometabolic diseases and longevity. First we inves-
tigated the association of reproductive factors, mainly focusing on age at menopause, 
menopausal status and sex hormones with various cardiometabolic disease outcomes. 
We further focused on lifestyle and major CVD risk factors and investigated their associa-
tion with cardiometabolic risk and longevity in a sex specific manner. Upon the solid 
framework of value based health care principles, we attempted to create a comprehen-
sive overview of the burden of these risk factors on cardiometabolic health outcomes 
important to CVD and diabetes patients and valuable to health care policies. The next 
step was to explore epigenetic determinants for clinical diagnosis and prognosis of T2D 
and identifying epigenetic sex differences in the overall spectrum of cardiometabolic 
diseases and its traditional risk factors by comprehensively investigating current litera-
ture. In this discussion the main findings are summarized. Furthermore, some method-
ological considerations are addressed, and potential clinical implications of the findings 
together with directions for future research are discussed.

Reproductive health

In chapter 2.1 we investigated the direction of the association and causality between 
age at natural menopause and blood pressure 3,994 postmenopausal women partici-
pants of the Rotterdam Study. Age at menopause categories were defined as follows: 
early (44 y old), normal (45-54 y old), and late (55 y old).Using genetic variants related 
to systolic blood pressure, diastolic blood pressure and age at menopause, we created 
genetic risk scores and performed a bi-directional Mendelian Randomization analysis. 
This approach is discussed in details in the section of methodological considerations. 
Our findings suggested that higher blood pressure, or environmental exposure related 
with higher blood pressure, such as use of antihypertensive medications, might be caus-
ally associated with a later onset of natural menopause but we didn’t find any evidence 
that higher blood pressure could affect age at menopause. Further, in chapters 2.2 and 
2.3 we evaluated the association of age at menopause and T2D risk. We included 3 650 
postmenopausal women aged 45+ years from the Rotterdam Study, a prospective pop-
ulation-based cohort study. Early onset of natural menopause was associated with an 
increased risk of type 2 diabetes, independent of potential intermediate risk factors for 
type 2 diabetes (including BMI, glucose and insulin levels) and of levels of endogenous 
sex hormones and SHBG. Moreover, our findings suggested that shared genetic factors 
might not explain the association between age at natural menopause and risk of type 
2 diabetes. Therefore, we further explored the impact of age at menopause and T2D 
on total life expectancy and translated it in number of years that our participants lived 
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with and without T2D, depending on the age of onset of their menopause. To calculate 
life expectancy and number of years lived with and without T2D, we used multistate life 
tables. We constructed three different health states: 1) free of T2D, 2) T2D and 3) death 
and evaluated how participants in our study moved from one state to the other. Details 
about this method are discussed in the section of methodological considerations. Our 
findings showed that, at the age of 50 years, women who experienced early menopause 
lived fewer years and spent fewer years without diabetes than women who experienced 
normal or late menopause. Compared with women with normal or late age at meno-
pause, women with early menopause lived at least 3.1 years fewer overall and at least 
3.3 years fewer without diabetes, respectively. In chapters 2.4 and 2.5 we investigated 
the association between sex hormones and cardiometabolic risk. NT-proBNP has a well-
documented prognostic value for CVD and sex hormones are suggested to modulate 
NT-proBNP levels. Hence, we examined the associations of estradiol, androgens and 
SHBG with pro-BNP levels in postmenopausal women. In a cross-sectional analysis 
among 4,112 postmenopausal women free of CVD, lower levels of serum androgens 
(testosterone, free androgen index, DHEA and DHEAs) and higher level of SHBG were 
associated with higher levels of serum NT-proBNP, irrespective of known confounders. 
We further investigated whether the association between DHEAs and NT-proBNP was 
causal. In a large sample of individuals free of CVD from the Rotterdam Study (7 390 
men and women), we found inverse associations between DHEA and DHEAs and se-
rum NT-proBNP. Using a Mendelian Randomization approach, genetically predisposed 
higher levels of DHEAs were associated with lower NT-proBNP concentrations, providing 
evidence for potential causal effects of higher DHEAs on lower NT-proBNP.

Lifestyle and other major CVD risk factors

In chapter 3.1 we investigated whether total life expectancy and life expectancy with 
and without type 2 diabetes differs between smokers and non-smokers, and between 
normal-weight smokers and overweight or obese ex-smokers. In a large longitudinal 
data analysis, 10 738 participants aged 50+ years old from the population-based 
Rotterdam Study were included. We developed multistate life tables to calculate life 
expectancy for individuals who were (i) current, former and never smokers as well as for 
(ii) normal-weight current smokers, overweight and obese ex-smokers. Current smoker 
men and women lived up to 6.3 years shorter than never smokers and spent less years 
free of diabetes. No difference was observed in years lived with diabetes.

Similarly, men who were former smoker, but not women, lived overall 1.9 years less 
than never smokers, and spent fewer years free of diabetes. However, former smok-
ers, both men and women, who were overweight or obese presented a higher risk of 
developing diabetes but also an extended number of years lived with diabetes, when 
compared with normal weight current smokers. Moreover, overweight but not obese 
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ex-smokers spend more years free of diabetes. On average, for men, total life expectancy 
of an obese ex-smoker was 4.8 years higher than an current normal weight smoker ; 
and this difference was even larger (8.3 years) in women. Most of these extra years were 
years spent with diabetes. Further, in chapter 3.3 we tested the common assumption 
that people who experienced recent weight gain are more likely to be diagnosed with 
diabetes and explored more generally the patterns of body weight and composition in 
the years before developing diabetes. We used latent class trajectory analysis to identify 
several groups among all the people who eventually developed diabetes each with a 
distinct pattern of BMI development (with BMI measured based on a person’s weight 
and height). Latent class trajectory analysis subdivides a number of people into groups 
that differ based on specified parameters. By using this method, in our population, we 
identified three distinct trajectories of change in BMI before the diagnosis of diabetes. 
Notably, the majority of individuals who developed diabetes were progressively gaining 
weight within the overweight range but their Framingham 8 year diabetes risk showed 
a decreasing trend throughout the period of follow-up suggesting that the diagnosis 
of diabetes might be biased towards enhanced screening efforts reserved to obese 
individuals rather than overweight. In chapter 3.2 we investigated the impact of the 
most important lifestyle factors (diet, smoking, alcohol use, physical activity and BMI) 
altogether combined in a lifestyle score in regard to T2D and longevity. We again cre-
ated multistate life tables to calculate the differences in life expectancy in the: healthier, 
moderate and unhealthier lifestyle score. Compared to men in the unhealthier lifestyle 
category, the total life expectancy of 45-y-old men in the healthier lifestyle group was 
6.0 years longer and for women, the difference was 4.6 years longer. The difference in 
life expectancy free of diabetes for both men and women, in the healthier category was 
5.1 and 4.2 years. Moreover, compared to the unhealthier lifestyle group, the difference 
in life expectancy with diabetes for the healthier lifestyle category was 0.8 for men and 
0.8 for women.

Epigenetic and cardiometabolic health

Sex is a major determinant of cardiometabolic risk. DNA methylation and histone 
modifications, important epigenetic mechanisms that differ between sexes, have been 
recently involved in the development of cardiometabolic diseases. Therefore, in chapter 
5.1 we aimed to systematically review the observational studies in humans investigating 
the sex-specific associations of epigenetic mechanisms (DNA methylation and histone 
modifications) with intermediate cardiometabolic traits, T2D and CVD. We focused on 33 
studies that had either stratified the analyses by sex or specified that their results did not 
differ among sexes. The relative importance of epigenetic modifications to the establish-
ment of sex differences in cardio-metabolic health remains an open question, but that 
there is some role cannot be denied. Overall, our review suggests that epigenetic chang-
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es in specific individual genes could be differently associated with cardiometabolic traits 
in men and women. However, it must be kept in mind that although DNA methylation 
may modulate sex differences in cardiometabolic diseases, an inverse relationship may 
equally occur. In chapter 5.2, we discuss the topics of epigenetic alterations, particularly 
DNA methylation and histone modifications and the importance of epigenetic biomark-
ers for risk prediction, diagnosis and prognosis of T2D. Current evidence in the field 
suggests that study of the role of epigenetic changes in the onset and progression of 
the diseases is a promising opportunity for the development of prediction, diagnostic 
and disease progression monitoring tools, as well as novel therapeutic targets. Overall, 
changes in global DNA methylation, CpG islands methylation, and histone acetylation 
and methylation have been found in relevant genes for aorta, heart, kidney, retina, 
nerves, and glia cells function in samples from diabetic human and rodent donors or 
after hyperglycaemic stimuli of the same type of tissues, albeit some of them exhibit 
contrary results.

Methodological considerations

Multistate life tables

Most of the studies in this thesis are characterized by a prospective design with a long 
term follow-up time. As often observed in clinical practice also in cohort studies, partici-
pants can switch between different health statuses through follow-up time, sometimes 
leaving and then returning to the same health status. Such changes in health status 
include switching to obese or overweight for normal weight ranges; hypertension for 
normotensives; and changes between healthy, diseased and dead. However, for some 
states, such as death, severe stages of heart failure or other CVDs, the transition is ir-
reversible. Multistate life table is an appropriate and useful method to properly describe 
the complex transitions among multiple heath states in cohort studies1. It is a demo-
graphic tool that is often used to estimate the total life expectancy and disease-specific 
life expectancies2.

In this thesis, the life tables method was used in several studies (chapter 2.3, chapter 
3.1, chapter 3.3 and chapter 4.1). The overall concept of the method as described in more 
details in the respective chapters of this thesis included three different health states at 
baseline: “free of disease”, “disease,” and “death”. Participants can experience the follow-
ing transitions moving from state to state without return3: 1) from being free of disease 
to developing the disease, 2) from diseased to death and 3) from free of disease to death 
(Figure 6.1) . The age of the participants is calculated when entering the study (when the 
event occurs) and at the end of the follow-up4. Total life expectancy and disease-specific 
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life expectancy are calculated from age and sex-specific probabilities for mortality and 
rates of disease in every transition.

One of the model’s strengths is using epidemiological data within a single homog-
enous cohort such as Rotterdam Study. In this case, the multistate life table enables 
estimation of the potential burden of the disease in terms of years of life lost and lived 
with disease due to a risk factor of interest. However, this is also the subject of one of 
its major limitations. Because of the long follow-up and the broad age range at onset of 
the cohort, the impact of mortality and disease incidence by age are a mixture of cohort 
and period effects4. Consequently, people at younger ages have different disease and 
mortality rates from participants entering the study some decades ago. In addition, as 
people are surviving longer with cardiovascular disease, we expect the life expectancies 
with cardiovascular disease presented in this thesis to be less than those for current low 
mortality populations. Another factor that could contribute to different life expectan-
cies calculated in cohort studies compared to the current general population might be 
due to the healthy volunteer bias in cohort studies5.

A second limitation of this approach lies in the interpretation of the potential burden 
of morbidity, which can only be an approximation of the disease burden since this 
method does not take into account the severity or the improvement (in the case of T2D) 
of the disease over time. This is particularly an issue for the burden of CVD, which is 
derived from a very heterogeneous group of conditions. A great improvement of the 
method will be to add in one further layer of complexity: estimations of the severity of 
disease, disability, specific treatments associated with the specific health states.

One further limitation is that the current structure of the method is more useful for 
descriptive rather than interventional purposes. Here a unidirectional flow is used as 
the simplest way to capture all time spent with a history of disease without the creation 
of further mixed disease states. While this structure is appropriate for the descriptive 
analyses like the ones presented in chapter 2.3, chapter 3.1, chapter 3.3 and chapter 4.1, 
a more biological pathway would be preferred (for example allowing coronary heart 
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DeathFree of 
Disease

Figure 6.1. Graphic representation of health states 
in multistate life tables.
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disease to congestive heart failure transitions or reversing from T2D to non-T2D) for any 
interventional analyses.

Altogether, these findings approximately quantify the population burden of cardio-
metabolic diseases. Decisions regarding which treatment and prevention strategies to 
follow and how best to respond to changing secular trends are made difficult by the 
complexity of the interactions between mortality and morbidity at older ages. Multistate 
life tables are a simple and transparent method to enable meaningful conclusions about 
the potential impact on population morbidity and mortality of specific interventions 
and societal trends.

Mendelian Randomization

Establishing causality in observational epidemiological studies is often challenging as 
the observed associations can be hampered by reverse causation and residual confound-
ing. Mendelian Randomization (MR) is a method that can be used to discover causal re-
lationships between an exposure and outcome in the presence of such limitations using 
genetic variants as proxies for the exposure of interest (Figure 6.2). Following Mendel’s 
Laws of Inheritance, the meiotic alleles segregation happens randomly from parents to 
offspring. Thus, offspring genotypes are unlikely to be associated with confounders in 
the population. In addition, germline genotypes are fixed at genesis, therefore, tempo-
rally precede the variables under observation, avoiding the issue of reverse causality. 
Nevertheless, the following considerations need to be taken into account.

First, MR studies are based on the assumption that the genetic variants should be 
associated with the exposure. Given the small effect size of the SNPs in general, it is 
required for future studies to explore larger proportions of heritability for various phe-
notypes, such as age at menopause, blood pressure and DHEAs studied in this thesis. In 
addition, a way to increase the strength of the variants is to use multiple SNPs combined 
into a single genetic risk score (GRS) associated with the phenotype of interest that can 
be used as an instrumental variable (IV). In chapters 2.1 and 2.5, we constructed the GRS 
using a big number of SNPs from public available GWAS associated with DHEAs, age at 
menopause or blood pressure. The strength of the GRS as an instrument, measured by 
the F-statistic was satisfactory for both our MR studies (chapters 2.1 and 2.5).

Second, genetic variants themselves may affect various phenotypes and potential 
risk factors for disease, such as age at menopause, blood pressure and DHEAs, and can 
therefore be used as an IV assuming these genetic variants do not affect disease risk 
through other pathways or are not involved in other diseases. These multiple pheno-
typic effects are also known as pleiotropic effects6. Due to the incomplete knowledge 
in the underlying biology of the genes, this assumption cannot be avoided formally in 
practice. In attempt to minimize the possibility of pleiotropic associations in chapter 
2.1, we performed sensitivity analyses excluding the most significantly SNPs associated 
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with age at menopause/blood pressure traits. Furthermore, for the SNPs that showed 
evidence of a causal association with the corresponding outcome, we also performed 
a “leave one out” analysis to avoid the possibility that the causal association was driven 
by a single SNP.

Third, MR studies require very large sample sizes in order to have sufficient statisti-
cal power. In the case of quantitative approaches to MR, sample size calculations need 
to consider the magnitude of the predicted effect of the intermediate phenotype on 
disease outcome7. Failure to recognize the sample sizes required to detect plausible or 
predicted effects of genotype on disease can lead to studies being uninformative7.

Fourth, the effects of genetic variants could be buffered by compensatory develop-
mental processes. The developmental compensation may occur during foetal develop-
ment in which, a polymorphic genotype could influence development in such a way as 
to buffer against the effect of the polymorphism itself. Such compensatory processes 
have been discussed since C.H. Waddington introduced the notion of canalization in the 
1940s8.

Selection bias

Most studies included in this thesis were performed in the Rotterdam study, a large 
prospective population based cohort study. the study included in chapter 4.1 was per-
formed in the THIN database, a large primary care database in the UK. In the Rotterdam 
Study, participants were included in the original cohort if they were 55 years or older. 
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Figure 6.2. Schematic presentation of the MR method
In this figure “U” represents the Unknown/Confounders. The MR approach is based in three assumptions: 
“No association”- genetic variants should not be associated with confounding variables. “Reliable associa-
tion”- genetic variants should be associated with the exposure. “No independent association”- genetic vari-
ants are only associated with the outcome (disease) through the exposure.
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In this case, only persons that survived up to that age could participate in the study. 
Although the response rate was 72% at baseline (14,926 of 20,744 invited individuals), 
which is considered quite good, the included participants might not be a good represen-
tation of the general population since individuals that are frail, disabled or hospitalized 
are less likely to participate. Hence, it might be that chronic diseases such as CVD and 
T2D could be more prevalent among non-participants. It has been shown that cohort 
studies tend to represent a healthier population than the underlying general population 
that was eligible for inclusion in the study5. In the Rotterdam Study, participants had a 
slightly lower cardiovascular risk compared to all individuals that were invited, and non-
participation was associated with mortality risk5. Therefore, our results on chapters 2.2, 
2.3, 2.4, 2.5, 3.1, 3.2, 3.3, and 4.2 might have been underestimated. However, it is unlikely 
to influence our findings in chapters 2.4 and 2.5 since participants with prevalent CVD 
were excluded. Furthermore, if selection bias were present, then the true point estimate 
for the relationship between our exposure (e.g. early menopause ) and outcomes (e.g. 
type 2 diabetes ) might be larger than we observed.

Generalizability

Another concern that requires attention in cohort studies such as the Rotterdam Study is 
the generalizability of the results. The Rotterdam Study population is homogenous, con-
sisting of middle aged and elderly Caucasians. Therefore, our results might be applied 
to populations with similar characteristics. However, since participants are invited based 
on the postal code, they can be considered as a random sample of the general Dutch 
population. Also, in chapter 2 we included only postmenopausal women in the analysis, 
and therefore our findings cannot be generalized to pre-menopausal women or women 
in the menopausal transition. Further, in our studies calculating life expectancies, the 
mortality rates and the numbers of new cases of CVD and T2D could be lower than in 
the general population due to the healthy cohort effect. However, generalizability was 
less of a problem in our study in chapter 4.1 were we used data from the THIN database 
with routinely collected data from UK. THIN currently covers approximately 6.0% of the 
overall UK population encompassing participants of different ethnicities and a wide age 
range group (18-118 years old). Moreover, it has been shown that disease prevalence 
and mortality rates in THIN are very similar to the general population in UK9.

Assessment of menopause

Age at menopause in the Rotterdam Study is defined as the age at final menstrual 
period, which was followed by cessation of menses that lasted at least 12 months10. It 
is self-reported and was assessed retrospectively during the baseline interview using a 
questionnaire. The assessment of age at menopause by questionnaires could be subject 
to some measurement error, while the reliance on retrospective self-report of age at 
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menopause could be subject to memory and reporting bias, particularly in older women. 
Moreover, inaccuracy from reporting bias would have been nondifferential in relation to 
the menopausal categories. Hence, it is unlikely that this would have created any differ-
ence between the menopausal groups (early, normal and late menopause). Because the 
outcomes (such as T2D, CVD and mortality) were assessed prospectively, the subjective 
measure of age at menopause would, however, likely lead to nondifferential misclas-
sification with respect to the outcome, and therefore would likely bias our estimates 
toward the null. Furthermore, studies have reported that the validity and reproducibility 
of self-reported age at menopause are fairly good11 12. Moreover, the women of the Rot-
terdam Study and interviewers administering the women’s health questionnaire were 
unaware of the research questions under study. We therefore reasonably expect that any 
misclassification of the exposure would be non-differential, and if any, would provide a 
conservative approach given that the effect estimates would be less strong than if no 
misclassification would have occurred.

In most of the studies investigating age at menopause analyses were restricted to 
postmenopausal women with a natural menopause. This was done because health 
status’ can differ greatly between pre, peri and postmenopausal women, given that the 
menopausal transition is characterized by significant changes at the hormonal, physi-
ological, and metabolic level10 13. To what extent these changes affect later life health 
further differs according to menopausal type (i.e. natural vs. surgical menopause). These 
restrictions were applied to reduce the amount of bias in our effect estimates, since 
menopausal age, menopausal status and menopausal type are considered factors that 
are associated with both the exposures and the outcomes under study in this thesis.

Implications and directions for future research

Timing of menopause as an independent risk factor in women’s diseased risk

Our findings from studies in reproductive factors and cardiometabolic factors suggest 
that age at menopause could be in itself an important independent risk factor for future 
cardiometabolic risk and mortality in women, and that menopause could be a period to 
evaluate women’s risk for CVD and introduce prevention strategies. For women under-
going menopause before age of 45, general physicians should consider screening for 
the levels of risk factors such as obesity, glucose and insulin to identify women at risk of 
developing diabetes who could benefit from early interventions.

In the future, holistic comprehensive approaches on menopause are needed. Well-
designed large scale individual participant data meta-analysis are necessary to establish 
whether age of menopause is an independent risk factor of cardiometabolic health and 
could contribute to improvement of risk prediction models in T2D and CVD. In addition, 
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such studies could help to set a cut-off value of age of menopause for which the risk 
of cardiometabolic risk is increased, which currently is based on arbitrary categories. 
Mechanisms linking age of menopause with cardiometabolic risk remain unclear, and 
studies employing mediation analysis could investigate whether and to what extent 
certain pathways such as inflammation, lipids, atherosclerosis, sex hormone metabo-
lism, iron and oxidative stress mediate the association. Further, up to date, most studies 
have not assessed directionality of the association between age at menopause and risk 
of chronic diseases. Although increased risk of chronic disease, for instance CVD, has 
been proposed as consequence of early menopause, the alternative hypothesis, that 
fluctuations of cardiovascular risk factors in premenopausal women may promote early 
menopause, could also be true14 15. In chapter 2.1 we attempted to assess directionality 
and causality between age at menopause and blood pressure by using a bi-directional 
MR. However, our results need replication in studies with more statistical power in order 
to avoid possible false positive results. Recently, another hypothesis has emerged sug-
gesting that several other factors, such as epigenetic mechanisms could play a role in 
the relationship between menopause and appearance of chronic diseases. Epigenetic 
modifications such as DNA methylation of cytosine residues in CpG dinucleotides his-
tone modification and micro RNAs might constitute an additional pathway linking the 
timing when menopause occurs with co-morbidity and longevity16 17.

Lifestyle as “medicine”; can we reverse T2D?

Besides and/or through epigenetics, other modifiable factors such as lifestyle factors 
are thought to play an important role in the onset of menopause18-20. As such, lifestyle 
changes in order to improve future disease risk and symptoms targeting menopausal 
women have been recently suggested to be incorporated in some clinical guidelines21. 
Overall healthy lifestyle like, a healthy diet, avoiding alcohol and smoking, maintaining 
a healthy body weight and being physically active are not only important for women 
during menopause but are known to be important predictors of good health in both 
sexes and in all age ranges as also shown from our results in chapter 3.1 and 3.3. Despite 
their relevance especially in T2D, recommendations of switching to a healthier lifestyle 
are mainly given as an advice in the clinical practice. Indeed, current guidelines for 
management of type 2 diabetes focus heavily on multiple drug treatments, generally 
to reduce blood glucose and the associated elevated risks of cardiovascular disease. In 
addition to pharmaceutical interventions, lifestyle changes can also play a large role in 
managing and even reversing T2D22 23. Indeed, recent scientific evidence for reversibility, 
remission and even cure of T2D is accumulating, both from scientific studies and ‘case 
reports’23-25. The rationale behind it is that since type 2 diabetes involves several organs 
and biological processes making it a ‘systems disease’, it also needs to be treated as a 
system. This could be of great importance for both patients and healthcare providers 
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since it is “natural” and less costly than pharmaceutical treatments, has less side effects 
and it could be important for a better overall health. Therefore, future larger randomized 
clinical trials and observational studies should investigate more the influence, costs and 
benefits of a healthier lifestyle in type 2 diabetes. Further, healthcare providers need 
to be educated on reversal options so they can actively engage in counselling patients 
who may desire this approach to their disease.

Sex differences and sex stratification in research

Despite the knowledge that sex is a strong modulator in the pathophysiology, risk, 
diagnosis and response to treatment in cardiovascular disease, very often, sex is not 
considered in clinical practice when it comes to decision making26 27. The application of 
research evidence in clinical practice often takes time and it is challenging, but efforts 
to increase awareness of the importance of sex in disease and health among clinicians 
and the general public are essential. There is still a belief that research performed 
mostly in men is applicable to women as well. Also, because men die quicker from heart 
diseases while women live longer but even though they get sicker it is believed that 
heart diseases are not a big problem for women. Hence, increasing awareness and skills 
among researchers in all biomedical scientific fields will improve the quality of health 
research. A way to go, is to improve the enrolment of women in clinical trials, to report 
study results by sex, and to consider sex in both research and clinical practice could be 
important steps that can improve the evidence for prevention, diagnosis and treatment 
of cardiometabolic diseases in women by making it more personalized and accurate and 
could ultimately improve the quality of health care for both men and women. Indeed, 
a more broader inclusion of women must happen at all stages and fields of research. 
For example, sex must be considered in all phases of drug development, especially in 
the areas of efficacy and safety since we still use drugs that are tested predominantly in 
men26. This could have lead also to sex disparities in the prognosis and management of 
diabetes; while diabetes mortality over the last decades has decreased in diabetic men, 
in women, it has remained invariable. Even when women are included in clinical trials, 
the numbers are too low, so the lack of differences mainly reflects unpowered studies 
rather than a true absence of difference27 28. This was also the scope of our systematic 
review in chapter 5.2 were we underscore the need to investigate the effects of sex on 
epigenetic mechanisms as current research reflects a strong influence of sex on epigen-
etic regulatory processes.
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Conclusions

Overall, men and women have different cardiometabolic risks, which influences 
longevity in a sex-specific manner. More specifically, we showed that lifestyle factors 
could influence men and women differently, highlighting the need for sex-specific ap-
proaches. We found that the benefits of quitting smoking outweigh the risk of weight 
gain in terms of overall life expectancy and a great part of this increased life expectancy 
remains with T2D. However, the effects were more profound in women than in men. In 
addition, a healthier lifestyle was associated with a longer overall life expectancy of 5 
years longer. Sex-specific factors are another factor to be considered when investigating 
cardiometabolic risk. In women, reproductive factors such as age at menopause and 
alterations in sex hormones could be independent markers of cardiometabolic disease 
and ageing. Women experiencing menopause at an earlier age might have an increased 
risk of T2D and live shorter than women who experience menopause after the age of 55 
years. DNA methylation on the other hand, might be a promising tool to understand sex 
differences in the pathophysiology, diagnosis and prognosis of cardiometabolic diseases 
and why environmental factors can have sex-specific effects. However, the research on 
DNA methylation and cardiometablic disease is on its infancy and future studies on this 
topic should provide sex-specific estimates.



279

6

References

	 1.	 Peeters A, Mamun AA, Willekens F, et al. A cardiovascular life history. A life course analysis of the 
original Framingham Heart Study cohort. Eur Heart J 2002;23(6):458-66.

	 2.	 Dhana K, Nano J, Ligthart S, et al. Obesity and Life Expectancy with and without Diabetes in 
Adults Aged 55 Years and Older in the Netherlands: A Prospective Cohort Study. Plos Medicine 
2016;13(7).

	 3.	 Franco OH, de Laet C, Peeters A, et al. Effects of physical activity on life expectancy with cardio-
vascular disease. Arch Intern Med 2005;165(20):2355-60.

	 4.	 Peeters A, Mamun AA, Willekens F, et al. A cardiovascular life history - A life course analysis of the 
original Framingham Heart Study cohort. European Heart Journal 2002;23(6):458-66.

	 5.	 Leening MJG, Heeringa J, Deckers JW, et al. Healthy Volunteer Effect and Cardiovascular Risk. 
Epidemiology 2014;25(3):470-71.

	 6.	 Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J 
Epidemiol 2004;33(1):30-42.

	 7.	 Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to under-
standing environmental determinants of disease? Int J Epidemiol 2003;32(1):1-22.

	 8.	 Wilkins AS. Canalization: A molecular genetic perspective. Bioessays 1997;19(3):257-62.
	 9.	 Blak BT, Thompson M, Dattani H, et al. Generalisability of The Health Improvement Network 

(THIN) database: demographics, chronic disease prevalence and mortality rates. Inform Prim Care 
2011;19(4):251-5.

	 10.	 Harlow SD, Gass M, Hall JE, et al. Executive Summary of the Stages of Reproductive Aging Work-
shop+10: Addressing the Unfinished Agenda of Staging Reproductive Aging. J Clin Endocr Metab 
2012;97(4):1159-68.

	 11.	 Muka T, Oliver-Williams C, Kunutsor S, et al. Association of Age at Onset of Menopause and Time 
Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-
Cause Mortality A Systematic Review and Meta-analysis. Jama Cardiology 2016;1(7):767-76.

	 12.	 denTonkelaar I. Validity and reproducibility of self-reported age at menopause in women partici-
pating in the DOM-project. Maturitas 1997;27(2):117-23.

	 13.	 van Dijk GM, Kavousi M, Troup J, et al. Health issues for menopausal women: The top 11 condi-
tions have common solutions. Maturitas 2015;80(1):24-30.

	 14.	 Kok HS, van Asselt KM, van der Schouw YT, et al. Heart disease risk determines menopausal age 
rather than the reverse. J Am Coll Cardiol 2006;47(10):1976-83.

	 15.	 Sarnowski C, Kavousi M, Isaacs S, et al. Genetic variants associated with earlier age at menopause 
increase the risk of cardiovascular events in women. Menopause 2018;25(4):451-57.

	 16.	 Muka T, Nano J, Voortman T, et al. The role of global and regional DNA methylation and histone 
modifications in glycemic traits and type 2 diabetes: A systematic review. Nutr Metab Cardiovasc 
Dis 2016;26(7):553-66.

	 17.	 Laven JSE, Visser JA, Uitterlinden AG, et al. Menopause: Genome stability as new paradigm. 
Maturitas 2016;92:15-23.

	 18.	 Gold EB, Bromberger J, Crawford S, et al. Factors associated with age at natural menopause in a 
multiethnic sample of midlife women. Am J Epidemiol 2001;153(9):865-74.

	 19.	 Castelo-Branco C, Blumel JE, Chedraui P, et al. Age at menopause in Latin America (vol 13, pg 706, 
2006). Menopause 2006;13(5):850-50.

	 20.	 Luoto R, Kaprio J, Uutela A. Age at Natural Menopause and Sociodemographic Status in Finland. 
Am J Epidemiol 1994;139(1):64-76.



280

Chapter 6  |  General Discussion

	 21.	 Meeta, Digumarti L, Agarwal N, et al. Clinical practice guidelines on menopause: An executive 
summary and recommendations. J Midlife Health 2013;4(2):77-106.

	 22.	 Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 
2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2018;391(10120):541-51.

	 23.	 Lim EL, Hollingsworth KG, Aribisala BS, et al. Reversal of type 2 diabetes: normalisation of beta 
cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 
2011;54(10):2506-14.

	 24.	 Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabeto-
logia 2008;51(10):1781-9.

	 25.	 Steven S, Hollingsworth KG, Al-Mrabeh A, et al. Very Low-Calorie Diet and 6 Months of Weight 
Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders (vol 
39, pg 808, 2016). Diabetes Care 2018;41(6).

	 26.	 Yang Y, Carlin AS, Faustino PJ, et al. Participation of women in clinical trials for new drugs approved 
by the food and drug administration in 2000-2002. J Womens Health (Larchmt) 2009;18(3):303-
10.

	 27.	 Rosano GM, Lewis B, Agewall S, et al. Gender differences in the effect of cardiovascular drugs: a 
position document of the Working Group on Pharmacology and Drug Therapy of the ESC. Eur 
Heart J 2015;36(40):2677-80.

	 28.	 Humphries KH, Pilote L. Research in Women’s Cardiovascular Health-Progress at Last? Canadian 
Journal of Cardiology 2018;34(4):349-53.







7
Appendices





285

7

Summary

The aim of this thesis as described in chapter 1, was to investigate the role that sex 
specific reproductive factors, lifestyle, and epigenetics play in cardiometabolic health 
and longevity.

In chapter 2 we mainly focus on the role of age at menopause and sex hormones in 
cardiometabolic risk. In chapter 2.1 we investigated the causality and direction of the 
relation between age at natural menopause and blood pressure. For this aim we used 
using genetic variants as instrumental variables in a bi-directional Mendelian Random-
ization analysis. Our results suggest that higher blood pressure, or environmental ex-
posures related to higher blood pressure, such as use of antihypertensive medications, 
might result in a later onset of natural menopause, but not vice versa. In chapters 2.2 
and 2.3, we examined the association between age at natural menopause and risk of 
type 2 diabetes (T2D) and with total life expectancy and the number of years lived with 
and without T2D. Data from 3 650 postmenopausal women followed for a median of 
9 years in the Rotterdam Study showed that early onset of menopause might be an 
independent risk factor for diabetes risk and mortality. Therefore, we further explored 
the impact of age at menopause and T2D on total life expectancy and translated it in 
number of years that our participants lived with and without T2D, depending on the 
age of onset of their menopause. Women who experienced early menopause lived less 
long and spent fewer years without diabetes than women who experienced normal or 
late menopause. In chapter 2.4 we used data from 4,112 postmenopausal women of 
the Rotterdam Study cohort and showed that some androgens such as testosterone, 
dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulphate (DHEAs) and free 
androgen index but not estradiol might be responsible for lower cardioprotective 
natriuretic peptides levels in postmenopausal women. In chapter 2.5 we further ana-
lysed the data on DHEAs and amino-terminal-B-type-natriuretic peptide (NT-proBNP) 
in both male and female participants of the Rotterdam Study and observed that being 
genetically predisposed to higher DHEAs levels was associated with lower NT-proBNP 
levels. These findings suggest that androgens could in part play some role in the risk of 
developing cardiometabolic diseases after menopause while altering levels of DHEAs 
could be important in the prevention of chronic heart failure.

Chapter 3 focuses in the association between lifestyle, cardiometabolic risk and lon-
gevity. For several of these studies, we used some novel epidemiological methodologies 
such as multistate lifetables and latent class trajectories to investigate the data. In chapter 
3.1, we showed that the benefits of quitting smoking outweigh the risk of weight gain in 
terms of overall life expectancy. However, a great part of this increased life expectancy is 
spent with T2D. Hypothesizing that individuals who experience recent weight gain are 
more likely to be diagnosed with diabetes in chapter 3.2, we explored patterns of body 
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mass index changes before developing diabetes. We identified three distinct patterns 
of change in body mass index (BMI); “progressive overweight”, “persistent obese” and 
“progressive weight loss”. In general, the majority of individuals with diabetes within 
the overweight range, were characterized by gaining weight prior diagnosis of diabetes, 
suggesting that could be important to focus in small weight reductions for the total 
population rather than only in the high risk groups. Further, in chapter 3.3 we combined 
five most important lifestyle factors (BMI, diet, smoking, alcohol use and physical activ-
ity) in a score to see the combined effects of these modifiable risk factors in overall life 
expectancy and diabetes risk. Our findings showed that overall, men and women in the 
healthier lifestyle category lived up to 5 years longer compared to their counterparts in 
the unhealthier lifestyle category. In addition, the difference in life expectancy free of 
diabetes for both men and women, in the healthier category was up to 5 years, while the 
difference in life expectancy with diabetes was up to 1 year.

Chapter 4 describes the association of major cardiovascular disease (CVD) risk fac-
tors with mortality. In chapter 4.1 we analysed 6.5 million participants from the THIN 
database in the United Kingdom and explored their disease course from healthy or 
with T2D to being diagnosed with CVD and dying. We assessed their CVD risk and life 
expectancy starting from the age of 50 years and older. Our results suggest that people 
with diabetes have a higher risk of developing CVD and CVD mortality. However, when 
quantifying these risks into life expectancies we did not observe significant differences 
in years spent with and without CVD among diabetics and non-diabetics, suggesting 
that management, care and treatment of CVD in patients with diabetes might have 
improved in recent years.

In chapter 5 we conducted a systematic review on the role that epigenetics mecha-
nisms play on sex differences in cardiometabolic health and in the diagnosis and 
prognosis of T2D. In chapter 5.1 we conclude that only a small number of studies in 
the field of cardiometabolic health stratify or present their results by sex. However, our 
findings suggested that DNA methylation might be a promising molecular strategy for 
understanding sex differences in the pathophysiology of cardiometabolic disease, and 
that future studies in the topic should provide sex-specific estimates. In chapter 5.2 we 
summarize that epigenetic mechanisms might play a significant role in the reversibility 
and treatment of diabetic complications. Further, these “non-permanent” changes could 
be great targets for example for developing more effective drugs. They might also arise 
as a promising tool in the diagnosis, stratification of the patients, prognosis, and moni-
toring of therapy response.

In chapter 6, we discuss in a broader perspective the findings from the studies de-
scribed in this thesis. Moreover, methodological considerations, clinical implications 
and future research directions are discussed.
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Nederlandse samenvatting

Het doel van dit proefschrift zoals beschreven in hoofdstuk 1, was het onderzoeken 
welke rol geslacht specifieke reproductieve factoren, leefstijl, en epigenetica spelen in 
cardiometabole gezondheid en levensduur.

In hoofdstuk 2 richten we voornamelijk op de rol van leeftijd van menopauze en ge-
slachtshormonen. In hoofdstuk 2.1 hebben we de causaliteit en richting van de relatie 
tussen leeftijd van menopauze en bloeddruk. For dit doel gebruikten we genetische 
varianten als instrumentele variabele in een bi-directionele Mendelian Randomisatie 
analyse. Onze resultaten suggereren dat een hogere bloeddruk of omgevingsfactoren 
gerelateerd aan een hoge bloeddruk, zoals het gebruik van antihypertensiva, mogelijk 
leiden tot een latere start van menopauze, maar niet andersom. In hoofstukken 2.2 en 
2.3 onderzochten we de associatie tussen leeftijd van natuurlijke menopauze en het 
risico op type 2 diabetes (T2D). Data van 3650 postmenopauzale vrouwen gevolgd 
over een mediaan van 9 jaar in de Rotterdam Studie liet zien dat een vroeg begin van 
de menopauze mogelijk een onafhankelijk risicofactor is van diabetes en mortaliteit. 
We hebben om deze reden verder onderzocht wat de impact is van leeftijd van me-
nopauze en T2D op totale levensverwachting. Dit vertaalden we naar aantal jaren dat 
onze deelnemers leefden met en zonder T2D, afhangend van de leeftijd van het begin 
van de menopauze. Vrouwen met een vroeg begin van de menopauze leefden korter 
en hadden minder jaren zonder diabetes dan vrouwen met een normaal of laat begin 
van de menopauze. In hoofdstuk 2.4 gebruikten we data van 4,112 postmenopauzale 
vrouwen van de Rotterdam Studie en lieten we zien dat sommige androgenen zoals 
testosteron, dehydroepiandrosteron (DHEA), dehydroepiandrosteronsulfaat (DHEA’s) en 
vrije androgeenindex, maar niet estradiol, wellicht de reden zijn voor lagere cardiopro-
tectieve niveaus van natriuretische peptiden. In hoofdstuk 2.5 analyseerden we de data 
van DHEAs en amino-terminaal-B-type-natriuretisch peptide (NT-proBNP) in zowel man-
nelijke als vrouwelijk deelnemers van de Rotterdam Studie en we observeerden dat een 
genetische aanleg voor hogere DHEA waarden geassocieerd was met lagere NT-proBNP 
waarden. Deze bevindingen suggereren dat androgenen gedeeltelijk een rol kunnen 
spelen in het risico van het ontwikkelen van cardiometabole ziekten na menopauze, 
terwijl het veranderen van DHEAs belangrijk kan zijn in de preventie van chronisch 
hartfalen.

Hoofdstuk 3 richt zich op de associatie tussen leefstijl, cardiometabool risico en le-
vensduur. Voor een aantal van deze studies gebruikten we nieuwe epidemiologische 
methodologie, zoals multistate lifetables en latent class trajectories om de data te 
onderzoeken. In hoofdstuk 3.1 lieten we zien dat de voordelen van stoppen met roken 
zwaarder wegen dan het risico van gewichtstoename met betrekking tot verwachte 
levensduur. Echter is een groot gedeelte van deze toename in verwachte levensduur 
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gespendeerd met T2D. Met de hypothese dat individuen wie recent in gewicht zijn 
toegenomen ook vaker met diabetes worden gediagnosticeerd onderzochten we in 
hoofdstuk 3.2 de patronen van verandering in BMI voor het ontwikkelen van diabetes. 
We identificeerden 3 patronen van verandering in BMI: “progressief overgewicht”, “aan-
houdend obesitas”, en “progressief gewichtsafname”. De meerderheid van individuen 
met diabetes in de overgewichtsklasse werden gekarakteriseerd door gewichtstoename 
voor de diagnose van diabetes, wat suggereert dat het belangrijk kan zijn om te richten 
op kleine gewichtsreducties in voor de totale populatie in plaats van alleen te richten 
op de groepen met een hoog risico. In hoofdstuk 3.3 combineerden we de vijf meest 
belangrijke leefstijlfactoren (BMI, voeding, roken, alcohol en fysieke activiteit) in een 
score om te zien of er een gecombineerd effect is van deze aanpasbare risicofactoren in 
verwachte levensduur en risico op diabetes. Onze bevindingen lieten zien dat mannen 
en vrouwen in de gezondere leefstijl categorie tot 5 jaar langer leefden vergeleken met 
degene in een ongezondere leefstijl categorie. Daarnaast was het verschil in verwachte 
levensduur zonder diabetes tot 5 jaar voor mannen en vrouwen in de gezondere cate-
gorie, terwijl het verschil in verwachte levensduur met diabetes tot 1 jaar was.

Hoofdstuk 4 beschrijft de associatie van risicofactoren van hart en vaat ziekten met 
mortaliteit. In hoofdstuk 4.1 analyseerden we 6.5 miljoen deelnemers van de THIN 
database in het Verenigd Koninkrijk en onderzochten we het ziekteverloop van gezond 
of met T2D naar gediagnostiseerd worden met hart- en vaatziekten of sterfte. We be-
oordeelden het risico op hart- en vaatziekten en verwachte levensduur vanaf de leeftijd 
van 50 jaar oud. Onze resultaten suggereren dat mensen met diabetes een hoger risico 
hebben op het ontwikkelen van hart- en vaatziekten en mortaliteit door hart- en vaat-
ziekten. Echter wanneer we deze risico’s kwantificeerden in verwachte levensduur zagen 
we geen significant verschil in jaren met en zonder hart- en vaatziekten onder diabeten 
en niet-diabeten, wat suggereert dat management, zorg en behandeling van hart- en 
vaatziekten bij patiënten met diabetes mogelijk verbeterd is over de laatste jaren.

In hoofdstuk 5 voerden we een systematisch literatuuronderzoek uit naar de rol van 
epigenetische mechanismen bij geslachtsverschillen in cardiometabole gezondheid en 
de diagnose en prognose van T2D. in Hoofdstuk 5.1 concludeerden we dat slechts een 
klein aantal studies in het veld van cardiometabole gezondheid resultaten stratificeren 
of presenteren per geslacht. Echter suggereren onze bevindingen dat DNA methylatie 
mogelijk een veelbelovende moleculaire strategie is voor het begrijpen van geslachts-
verschillen in de pathofysiologie van cardiometabole ziekten en dat toekomstige 
studies van dit onderwerp geslacht specifieke resultaten zouden moeten laten zien. 
In hoofdstuk 5.2 vatten we samen dat epigenetische mechanismen mogelijk een aan-
zienlijke rol spelen in de omkeerbaarheid en behandeling van complicaties bij diabetes. 
Daarnaast kunnen deze “niet-permanente” veranderingen targets zijn, door medicatie. 
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Deze veranderingen kunnen ook een veelbelovende tool zijn in diagnose, stratificatie 
van patiënten, prognose, en monitoren van de reactie op therapie.

In hoofdstuk 6, discussiëren we in een breder perspectief de bevindingen van studies 
beschreven in dit proefschrift. Daarnaast worden methodologische afwegingen, klini-
sche implicaties en richtingen voor vervolgonderzoek beschreven.
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