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ABSTRACT

Introduction: Patient-reported smoking history is
frequently used as a stratification factor in NSCLC-
directed clinical research. Nevertheless, this classi-
fication does not fully reflect the mutational processes
in a tumor. Next-generation sequencing can identify
mutational signatures associated with tobacco smoking,
such as single-base signature 4 and indel-based signa-
ture 3. This provides an opportunity to redefine the
classification of smoking- and nonsmoking-associated
NSCLC on the basis of individual genomic tumor char-
acteristics and could contribute to reducing the lung
cancer stigma.

Methods: Whole genome sequencing data and clinical re-
cords were obtained from three prospective cohorts of
metastatic NSCLC (N ¼ 316). Relative contributions and
absolute counts of single-base signature 4 and indel-based
signature 3 were combined with relative contributions of
age-related signatures to divide the cohort into smoking-
associated (“smoking high”) and nonsmoking-associated
(“smoking low”) clusters.

Results: The smoking high (n ¼ 169) and smoking low (n ¼
147) clusters differed considerably in tumor mutational
burden, signature contribution, and mutational landscape.
This signature-based classification overlapped considerably
with smoking history. Yet, 26% of patients with an active
smoking history were included in the smoking low cluster,
of which 52% harbored an EGFR/ALK/RET/ROS1 alteration,
and 4% of patients without smoking history were included
in the smoking high cluster. These discordant samples had
similar genomic contexts to the rest of their respective
cluster.
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Conclusions: A substantial subset of metastatic NSCLC is
differently classified into smoking- and nonsmoking-
associated tumors on the basis of smoking-related muta-
tional signatures than on the basis of smoking history. This
signature-based classification more accurately classifies
patients on the basis of genome-wide context and should
therefore be considered as a stratification factor in clinical
research.

� 2022 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Keywords: Non–small cell lung cancer; Tobacco smoking;
Whole genome sequencing; Mutational signature;
Biomarker
Introduction
Lung cancer is the leading cause of global cancer-

related mortality.1 Approximately 85% of lung cancer
is NSCLC, which is a notoriously heterogeneous disease.2

It has become clear that within this heterogeneity, spe-
cific subgroups of NSCLC may be defined, which poten-
tially derive greater benefit from certain treatments.
Some of these subgroups, for example, squamous cell
carcinomas or tumors with KRAS transversion mutations
such as KRAS G12C or G12V mutations, are more prev-
alent in patients who smoke or have previously smoked,
whereas tumors harboring an EGFR mutation or ALK
translocation are more prevalent in patients who have
never smoked.3–5 Therefore, NSCLC is often divided into
smoking-associated and nonsmoking-associated tumors
on the basis of patient-reported smoking history.
Nevertheless, this division falls short because tumors
with nonsmoking-associated carcinogenesis may also
occur in patients who smoke. In addition, clinical
smoking history can be subject to recall bias and does
not account for possible passive smoke exposure.

Fortunately, more precise tools than clinical smoking
history are available to select individual patients for
specific treatments, such as targeted next-generation
sequencing and programmed death-ligand 1 (PD-L1)
tumor proportion score. Clinical smoking history might
still help guide molecular testing as some targets that are
much more common in patients who have never smoked,
such as gene fusions, might require additional testing to
confirm. Nevertheless, the current guidelines recom-
mend testing all patients with adenocarcinoma for mo-
lecular drivers, regardless of clinical smoking history.6

Therefore, in the era of personalized treatment and
precision medicine, clinical smoking history has limited
diagnostic or therapeutic consequences in daily clinical
practice. In contrast, in clinical research, the classifica-
tion of patients in “smokers” and “never smokers” on the
basis of clinical smoking history is still frequently used
as a stratification factor and as a basis for subgroup
analyses. This highlights a gap between clinical practice
and clinical research that could possibly come at the
expense of the external validity of clinical trials. There is
a need to bridge this gap by implementing a more pre-
cise classification method than patient-reported clinical
smoking history.

Several techniques enabling this classification
method are already in practice. Next-generation
sequencing, including targeted panels, whole exome
sequencing, and whole genome sequencing (WGS), allow
for an in-depth analysis of the lung cancer genome.
Several genome-based studies highlighted major differ-
ences in oncogenic events between lung cancer in pa-
tients who smoke and patients who have never smoked,
including different types of single-base substitutions
(SBS), doublet base substitutions (DBS), and small in-
sertions and deletions (indels), which can group together
to derive distinct biologically relevant mutational sig-
natures.7–9 For instance, the SBS signature 4 (SBS4) is
characterized by transcriptional strand bias for C>A
mutations. This signature was found to be strongly
associated with tobacco smoking and to correlate with
the extent of tobacco smoke exposure. Similar to SBS4,
the indel-based signature 3 (ID3) is associated with to-
bacco smoking.10 Therefore, these signatures seem to
provide an accurate way of classifying smoking- and
nonsmoking-associated tumors. Nevertheless, the to-
bacco smoking mutational signatures have not yet found
their way to randomized controlled trials.

In this study, we aim to provide a genomic classifi-
cation of smoking- and nonsmoking- associated NSCLC
on the basis of the observed frequencies of the smoking-
related signatures SBS4 and ID3. This could allow for a
more accurate subgrouping of NSCLC for future clinical
research. To this end, we leveraged high-quality WGS
data obtained from three uniform prospective cohorts of
metastatic NSCLC.

Material and Methods
Patient Cohort and Study Procedures

We selected patients with metastatic NSCLC who were
included under the protocol of the Center for Personal-
ized Cancer Treatment consortium (CPCT-02 Biopsy
Protocol, ClinicalTrial.gov number NCT01855477), the
Whole Genome Sequencing Implementation in standard
Diagnostics for Every Cancer Patient study (Samsom
et al.11), and the Drug Rediscovery Protocol study
(ClinicalTrial.gov number NCT02925234). All three trials
were approved by the local institutional review board and
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were conducted in accordance with good clinical practice
guidelines and the Declaration of Helsinki’s ethical prin-
ciples for medical research. All patients provided written
informed consent before any study procedure. Core
needle biopsies were taken following local institutional
guidelines, aiming to take two to four biopsies with 18 G
needles. A minimum tumor percentage of 20% and a
minimum DNA yield of 50 ng were needed. Matched
whole blood samples were collected to discriminate
somatic mutations from germline DNA background vari-
ations. The handling, processing, and sequencing of the
samples have previously been described in detail for
these cohorts.11–13 The WGS data were made available by
the Hartwig Medical Foundation.

Here, we present the in-depth analysis of patients
with metastatic NSCLC who were included between July
2012 and October 2020 in five different hospitals in the
Netherlands, and of whom clinical records were avail-
able. We collected demographic and clinical information
including age, sex, disease stage at diagnosis, date of
diagnosis of metastatic disease, smoking history, treat-
ment(s) before and after study biopsy, and pathologic
information from the local pathology reports including
histopathological diagnosis and PD-L1 expression.
Smoking history was abstracted from the electronic pa-
tient charts. Patients who had previously smoked or
were currently smoking were defined as having an active
smoking history. Patients with less than 1 pack-year
were considered to have never smoked.
Supervised Clustering of Samples Based on
Smoking-Related Mutational Signatures

The processing and analysis of the WGS data are
described in detail in Supplementary Data 1.7,12,14–22

Mutational signature contribution was determined by
the number of somatic mutations falling into the 96 SBS,
78 DBS, and 83 ID contexts (as described in the COSMIC
catalog; https://cancer.sanger.ac.uk/signatures/). These
contexts are defined by the substitution class and the
sequence context immediately 30 and 50 to the mutated
base. Each mutational signature is therefore character-
ized by the predominant substitutional class(es) and the
predominant sequences in those classes.23 The relative
mutational signature contribution was determined rela-
tive to the total tumor mutational burden (TMB).

To classify the samples as smoking or nonsmoking
associated, we calculated the proportion of the relative
contribution of single-base mutational signature SBS4
(tobacco smoking) compared with the summed relative
contributions of SBS1 (age), SBS4, and SBS5 (age). In
addition, we calculated the proportion of the indel
mutational signature ID3 (tobacco smoking) compared
with the summed relative contributions of ID1
(mismatch repair deficiency [MMRd]/age), ID2 (MMRd/
age), and ID3. As inspired by Lee et al.,7 we used these
relative proportions of SBS4 and ID3 together with the
absolute counts of SBS4 and ID3 to form two distinct
clusters (k-means; k ¼ 2), which we termed smoking
high and smoking low, respective to the presence of
these proportions and absolute counts. Before clustering,
these values were centered and scaled appropriately.
Statistics
Statistical analysis of the clinical characteristics was

performed using IBM SPSS Statistics software, version
25. Continuous data were compared with Student’s t test
or Mann-Whitney U test as appropriate. Means are pre-
sented with SDs, and medians with interquartile ranges
(IQRs). Categorical data were compared with a chi-
square test. Correlations were analyzed with the Spear-
man’s rho. Genomic differences were tested in the
statistical platform R (version 4.1.1) using the Wilcoxon
ranked sum test with multiple testing correction (Ben-
jamini-Hochberg). Mutational enrichment (or depletion)
of genes was tested using a Fisher’s exact test with
multiple testing correction (Benjamini-Hochberg). For
visualization, p values (or q values) are visualized as
* (p < 0.05), ** (p < 0.01), and *** (p < 0.001).
Results
Patient Cohort

The WGS data of 316 biopsies of metastatic NSCLC
were analyzed (Supplementary Fig. 1). The cohort con-
sisted mostly of females (57%), mean age at diagnosis
was 62 (±10) years, and adenocarcinoma was the most
prevalent histologic subtype (75%). With respect to
recorded clinical smoking history, 11% were currently
smoking, 58% had previously smoked, 28% had never
smoked, and 3% had an unknown smoking history. Pa-
tients with an active smoking history had a median of 25
pack years (IQR: 13–39).
Supervised Clustering Based on Tobacco
Smoking-Related Mutational Signatures

Median relative SBS4 contribution was 15% (IQR:
3.8–23.8) and median relative ID3 contribution was 38%
(IQR: 13.1–62.3) in the entire cohort. Of the patients
with an active smoking history, 10% of samples had low
(<3.8%) SBS4 contribution, of which six (3%) samples
had no SBS4 contribution at all and 7% had low
(<13.1%) ID3 contribution. Of the patients who had
never smoked, one sample had high (>23.8%) SBS4
contribution and one sample had high (>62.3%) ID3
contribution.

https://cancer.sanger.ac.uk/signatures/
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Figure 1. Signature-based clustering of NSCLC into smoking high and low groups. (A) Overview of two clustering features
which are used, with relationship between the absolute contribution of SBS4 (log10; y axis) and the proportion of relative SBS4
contribution out of the sum of the relative contributions of SBS1, SBS4, and SBS5 for each cluster and smoking history
category. (B) Chord diagram depicting the distribution of patients based on smoking history versus the genomic clusters. N is
indicated on the outer dial. SBS, single-base signature.
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On the basis of the supervised signature-based
clustering, we categorized 169 samples as smoking
high and 147 samples as smoking low (Fig. 1A and
Supplementary Fig. 2). The signature-based clusters
differed significantly with regard to sex, smoking his-
tory, prior treatment, and histopathological diagnosis
(Table 1). The distribution of recorded smoking history
within these signature-based clusters is depicted in
Figure 1B. Furthermore, 4% of the patients who had
never smoked were included in the smoking high
cluster and 26% of the patients with an active smoking
history were included in the smoking low cluster. Pa-
tients with an active smoking history in the smoking
high cluster had significantly more pack years than
those with an active smoking history in the smoking low
cluster (28 versus 14, p < 0.001). In addition, 30% of
squamous cell carcinomas (n ¼ 10) were included in
the smoking low cluster, of which five patients had an
active smoking history, four patients had never smoked,
and one patient had an unknown smoking history. PD-
L1 expression did not differ between clusters (p ¼
0.70) or between those with an active smoking history
and those who had never smoked (p ¼ 0.16).
Overview and Differences of the Genomic
Landscape Between Signature-Based Clusters

An overview of genomic characteristics has been
summarized in Figure 2A-O, grouped by signature-based
clustering and ordered by descending TMB. Recurrent
copy number alterations and chromosomal arm aberra-
tions (from GISTIC2 analysis) for the entire cohort, and
per the signature-based cluster, can be found within
Supplementary Figure 3. Comparing the samples with
and without putative chromothripsis events, chromo-
thripsis did not significantly affect driver genes, muta-
tional signatures, or TMB within the entire cohort and
within the separate clusters (adjusted p > 0.1).

When comparing the signature-based clusters, we
observed significant differences in genomic characteris-
tics regarding TMB and mutational signatures (Fig. 3A
and C). No major differences between genome-wide
ploidy and chromosomal arms copy number alterations
could be observed (Fig. 3B and Supplementary Fig. 3B
and C). Compared with the smoking low cluster, median
TMB was almost a fivefold higher within the smoking
high cluster (4 versus 19 mutations per megabase, p <

0.001) (Fig. 3A and Supplementary Table 1). In addition,
TMB was strongly correlated to absolute SBS4 contri-
bution (Spearman’s rho: 0.87, p < 0.001). Nevertheless,
26 (15%) of the samples in the smoking high cluster had
a low TMB (<5). In addition, 12 samples (8%) within the
smoking low cluster had a high TMB (�10), yet they
generally harbored mutational signatures related to
MMRd and APOBEC activity rather than those related to
smoking; three of these samples indeed were classified
as microsatellite instable (MSI) tumors.

Beyond the expected differences in SBS4 and ID3
abundance because of their usage as clustering features
(Supplementary Table 1), we also observed differences



Table 1. Demographic and Clinical Characteristics of the Patients Stratified by Signature-Based Clustering

Characteristic
NSCLC Smoking High
(n ¼ 169)

NSCLC Smoking Low
(n ¼ 147) p Value

Sex, n (%) 0.001
Female 82 (49) 99 (67)
Male 87 (51) 48 (33)

Age at diagnosis, n (%) 0.685
Mean (SD) 62 (10) 62 (11)

Tumor stage at diagnosis, n (%) 0.147
I 6 (4) 7 (5)
II 8 (5) 4 (3)
III 40 (24) 20 (14)
IV 112 (66) 114 (78)
Unknown 3 (2) 2 (1)

Smoking history, n (%) <0.001
Never 4 (2) 85 (58)
Former 133 (79) 49 (33)
Current 29 (17) 7 (5)
Unknown 3 (2) 6 (4)

Pack years <0.001
Median (IQR) 28 (17–40) 14 (6–25)
Unknown 30 10

Histopathological diagnosis, n (%) 0.002
Adenocarcinoma 114 (67) 124 (84)
Squamous cell carcinoma 23 (14) 10 (7)
Other 32 (19) 13 (9)

PD-L1 score, n (%) 0.70
<1% 41 (24) 39 (27)
1%–50% 36 (21) 41 (28)
�50% 26 (15) 22 (15)
Unknown 66 (39) 45 (31)

Prebiopsy regimen, n (%) <0.001
Chemotherapy/immunotherapy/other 103 (61) 36 (24)
TKI 20 (12) 91 (62)
Untreated 46 (27) 20 (14)

Lines of systemic treatment before biopsy <0.001
Median (IQR) 1 (0–2) 2 (1–3)

Note: Percentages may not add up to 100% owing to rounding.
IQR, interquartile range; PD-L1, programmed death-ligand 1; TKI, tyrosine kinase inhibitor.
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in additional mutational signatures between the two
clusters (Fig. 3C). Within the smoking high cluster, we
observed significantly higher contributions of SBS sig-
natures SBS18, SBS29, and SBS5 compared with the
smoking low cluster. SBS4, SBS18, and SBS29 are all
characterized by transcriptional strand bias for C>A
substitutions, which would explain why these signatures
cluster together. SBS18 is suggested to be related to
damage by reactive oxygen species, and SBS29 is asso-
ciated with tobacco chewing. SBS5 is still of unknown
cause, although its mutational spectrum seems to be
increased in cancers related to tobacco exposure and
seems to be related to age.10 With regard to the DBS
signatures, DBS2, which is also associated with exposure
to tobacco smoke, had the highest contribution in the
smoking high cluster.10

In the smoking low cluster, SBS40, SBS1, SBS13, and
SBS2 had the highest SBS contributions. SBS1 has a
clock-like mechanism related to age, and it is charac-
terized by C>T mutations caused by spontaneous
deamination of 5-methylcytosine. SBS2, mainly consist-
ing of C>T mutations, and SBS13, mainly consisting of
C>G mutations, are both linked to activity of the AID/
APOBEC enzymes.10 It has been suggested that the
activation of APOBEC in cancer could be caused by
previous viral infection or tissue inflammation, which
suggests a role of inflammation in the development of
nonsmoking-associated lung cancer.24 The relative
contribution of the two APOBEC signatures was signifi-
cantly higher in the smoking low cluster than in the
smoking high cluster (16% versus 6%, p < 0.001).
SBS40 is also correlated with age and has a large simi-
larity to SBS5.10 DBS6 had the highest DBS signature
contribution and ID1 had the highest ID signature
contribution in the smoking low cluster. DBS6 is still of
unknown cause, but it seems to be related to age.10 ID1
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Figure 2. Overview of the genomic landscape. For each sample (column), we display common genomic characteristics. (A)
Signature-based cluster designation. (B) Genome-wide TMB. (C) Total number of structural variants. (D) Relative frequency
per structural variant category; translocations, deletions, tandem duplications, insertions, inversions, and single break-
points. (E) Mean genome-wide ploidy. (F) Relative contribution of de novo SBS mutational signatures. (G) Same as in panel F,
but for DBS signatures. (H) Same as in panel F, but for ID signatures. (I) Histopathological diagnosis. (J) Reported clinical
smoking history. (K) MSI status. (L) HRD status as determined by CHORD. (M) Presence of chromothripsis. (N) Presence of
known driver alteration(s). (O) Previous systemic therapy before biopsy. DBS, doublet base substitution; HRD, homologous
recombination deficient; ID, indel-based; MSI, microsatellite instability; SBS, single-base signature; TMB, tumor mutational
burden.
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is associated with age and slippage of the template DNA
strand during DNA replication. It is often found in can-
cers with DNA MMRd and MSI.10

The differences in TMB and relative mutational
signature contribution between the two clusters
(Fig. 3A and C) were also investigated in the different
histologic subtypes (Supplementary Table 2). Most
observed differences were consistent over the histo-
logic subtypes; however, both APOBEC signatures (SBS2
and SBS13) did not differ significantly between the
smoking high and smoking low clusters in the squa-
mous cell subgroup (3% versus 5%, p ¼ 0.062, and 5%
versus 13%, p ¼ 0.237, respectively), but it did in the
adenocarcinoma subgroup (p < 0.001). The differences
in smoking-related signatures were consistent over all
histologic subgroups.

Altered Landscape of Putative Driver Genes
Next, we investigated differences and enrichment

within the somatic inventory of perturbed genes be-
tween the two signature-based clusters (Fig. 3D and
Supplementary Figs. 4 and 5). Of the known driver on-
cogenes, EGFR mutations and ALK fusions were
significantly more prevalent in the smoking low cluster
than in the smoking high cluster (50% versus 9%, p <

0.001; 13% versus 0%, p < 0.001; respectively). KRAS
mutations were significantly more prevalent in the
smoking high cluster (28% versus 5%, p < 0.001).
Table 2 illustrates the differences in frequency of onco-
gene driver alterations in the nonsquamous cell carci-
noma samples between the signature-based clusters and
the groups on the basis of clinical smoking history.

Discordances
We further analyzed the samples of patients who had

never smoked but were included in the smoking high
cluster (n ¼ 4) and found that all harbored high (>10) or
medium-high (>5) TMB. In addition, these samples re-
flected the mutational signatures found within the rest of
the smoking high cluster and revealed an absence of, or
minor, APOBEC signature contribution (Table 3). With
regard to oncogene driver alterations, we identified a
KRAS G12C mutation, an EGFR L858R mutation with
concomitant EGFR amplification, and a BRAF G469A-
activating mutation. The fourth sample did not harbor
a known driver oncogene.
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Figure 3. Genomic differences between signature-based smoking high and smoking low samples. (A) Box plot of TMB between
the signature-based classification of samples; the median, Q1, and Q3 are represented. Statistical significance is found on the
top. Cutoff of high TMB (�10 mutations/Mb) is indicated with a red horizontal line. (B) Same as in panel A but depicting
genome-wide ploidy. (C) Same as in panel A but depicting mutational signatures (SBS, DBS, and ID) with statistically sig-
nificant differences (q < 0.05) and harboring a minimal median relative contribution of greater than or equal to 5% in either
group. Proposed causes are found on the top. (D) Statistically significant enriched genes between the signature-based
classification of samples. Size of points represents the adjusted p (q value), with genes having greater enrichment (or
depletion) depicted as larger. DBS, doublet base substitution; ID, indel-based; Mb, megabase; Q1, quartile 1; Q3, quartile 3;
SBS, single-base signature; TMB, tumor mutational burden.
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The samples of patients with an active smoking his-
tory captured within the smoking low cluster (n ¼ 56)
contained only minor contributions of the dominant
signatures of the smoking high cluster (Table 3). The
APOBEC signatures SBS13 and SBS2 had median con-
tributions that were in line with the median contribu-
tions of these signatures in the rest of the smoking low
cluster. Of these samples, 77% harbored a known
oncogene driver alteration: 22 EGFR alterations, five
BRAF mutations, five ALK fusions, four ERBB2/Her2
amplifications, two KRAS mutations (one G12V and
one G12D), one MET amplification, one MET exon 14
skipping mutation, two RET fusions, and one ROS1
fusion.



Table 2. Frequency of Oncogene Driver Alterations in
Nonsquamous Cell NSCLC

Oncogene Driver
Alterations

Total
N

Smoking Low
Cluster, n (%)

Never
Smoked, n (%)

EGFRalteration 85 72 (85) 49 (58)
Exon 19 deletion 38 35 (92) 24 (63)

L858R 28 22 (79) 17 (61)
Exon 20 insertion 4 2 (50) 1 (25)
Other 15 12 (80) 7 (47)

ALK fusion 19 19 (100) 14 (74)
RET fusion 3 3 (100) 1 (33)
ROS1 fusion 6 5 (83) 4 (67)
MET amplification 21 10 (48) 9 (43)
BRAFmutation 21 11 (52) 7 (33)

V600E 12 10 (83) 6 (50)
Other 8 1 (13) 1 (13)

ERBB2/Her2
amplification

13 7 (54) 3 (23)

Total
N

Smoking High
Cluster,n (%)

Active Smoking
History,n (%)

KRASmutation 50 45 (90) 43 (86)
G12C 19 19 (100) 18 (95)
G12A 6 5 (83) 5 (83)
G12V 13 11 (85) 10 (77)
G12D 5 4 (80) 4 (80%)
Other 7 6 (86) 6 (86)
Codon 12 3 3 (100) 3 (100)
Codon 61 3 2 (67) 2 (67)
K117N 1 1 (100) 1 (100)

METexon 14 skipping
alteration

6 3 (50) 4 (67)
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In Silico Analysis Targeted Panel
Last, to investigate the translatability of WGS muta-

tional signature analysis to targeted panels used in daily
clinical practice, we performed an in silico analysis for
the TruSight Oncology 500 (TSO500; Illumina, San Diego,
CA) panel to retain only those somatic variants which
were captured within the target regions of the TSO500.
The TSO500 is a widely used large pan-cancer panel that
Table 3. TMB and Relative Dominant Mutational Signature
Contribution in Discordant Samples

Characteristic

Smoking High
Without Smoking
History (n ¼ 4)

Smoking Low With
Active Smoking
History (n ¼ 56)

TMB (IQR) 11.7 (7.8–17.9) 5.1 (3.6–6.7)
SBS4, % (IQR) 23.2 (19.0–25.6) 5.1 (2.2–9.4)
SBS18, % (IQR) 23.9 (21.1–27.0) 3.7 (0.4–10.5)
SBS29, % (IQR) 12.1 (11.2–15.3) 4.7 (0.6–7.4)
SBS2, % (IQR) 1.7 (0.5–3.0) 5.8 (3.5–8.2)
SBS13, % (IQR) 2.1 (1.1–2.9) 8.5 (3.3–17.1)
ID3, % (IQR) 50.4 (42.6–63.9) 17.9 (12.4–23.5)

ID3, indel-based signature 3; IQR, interquartile range; SBS, single-base
signature; TMB, tumor mutational burden.
captures 523 (onco)genes within approximately 1.94
megabase spread throughout the genome and has also
been used for signature analysis previously.25 Of the
samples, 90% (n ¼ 285) harbored enough SBS mutations
to derive the SBS signatures for subsequent analysis. Of
those samples, 54% (n ¼ 155) also harbored enough
indel mutations to derive the ID signatures. Next, we
investigated the concordance between the TSO500 and
WGS clustering, and if this concordance was affected by
extension of the TSO500 regions. Using somatic variants
within only TSO500 target regions for signature-based
clustering yielded similar results as performing this on
the whole genome with an F1 score (SBS only on 285
samples) of 0.813 and an F1 score (SBS þ ID on 155
samples) of 0.753 (Supplementary Fig. 6A). The distri-
bution of smoking history within the clusters again
revealed a considerable degree of discordance between
smoking history and mutational signatures (Fig. 1B and
Supplementary Fig. 6C and D for the WGS clusters). A
few more patients with an active smoking history were
classified as smoking low with the TSO500 than with
WGS. This can be explained by the lower discriminatory
power of a targeted panel compared with WGS, as
several (noncoding) genomic regions which are affected
by (smoking-related) mutational processes are not
included in the target regions of the TSO500. This is
further illustrated by the fact that the number of infor-
mative samples improves when extending the TSO500
regions to allow for the capture of additional mutations
(Supplementary Fig. 6A [upper track] and B). Extensions
of the TSO500 regions also generally improved the
concordance (F1) of both approaches between WGS and
genomic subsets (Supplementary Fig. 6A).
Discussion
In this study, we aimed to investigate a more accurate

classification than clinical smoking history in NSCLC. We
revealed that clustering metastatic NSCLC tumors into
smoking-associated and nonsmoking-associated muta-
genesis on the basis of the SBS4 and ID3 mutational
signatures derived from WGS data is a feasible classifi-
cation method.

Our classification reveals that there is a large overlap
in clinical smoking history and classification on the basis
of SBS4 and ID3 contributions. This also revealed a de-
gree of discordance between these two grouping
methods. A few patients who had never smoked had
tumors in which smoking-associated mutational signa-
tures were considerably present within their somatic
genome despite a negative smoking history. Possible
explanations for this are recall bias of previous tobacco
smoke exposure, inaccurate history taking by health care
professionals, or passive smoke exposure. In the tumors
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of patients with an active smoking history, the amount of
SBS4 contribution varied greatly. This could possibly be
explained by the extent of tobacco smoke exposure,
because patients with an active smoking history in the
smoking low cluster had fewer pack years than those in
the smoking high cluster. Furthermore, 26% of the pa-
tients with an active smoking history had relatively little
SBS4 and ID3 contribution and were therefore included
in our smoking low cluster. The discordance between
smoking history and SBS4 contribution has previously
been reported. Lee et al.7 revealed that in their cohort of
lung adenocarcinoma approximately one-third of tumors
from patients with an active smoking history had no or
minor SBS4 contribution. Devarakonda et al.26 used a
statistical model, including TMB and SBS4, to infer
smoking status and excluded four of 88 tumor samples
of patients who reportedly had never smoked. This
confirms that the mutational processes that have
occurred in the tumor are not fully reflected by patient-
reported smoking history.

Our signature-based clustering resulted in two
distinct clusters with different TMB, mutational signa-
ture contributions, and distinct mutational landscapes.
We found that tumors with a high TMB, with high SBS4,
SBS18, and SBS29 contributions, and with KRAS muta-
tions were predominantly classified as smoking high.
These signatures and most KRAS mutations in NSCLC are
characterized by transversion mutations, which would
explain why they group together. Tumors with a low
TMB, high APOBEC signature contribution, and EGFR
mutations or ALK fusions were predominantly classified
as smoking low. Genome-based studies have found
similar findings when using clinical smoking history to
classify tumors.8,9,26 The tumors from patients who had
never smoked but were clustered as smoking high had a
similar genotype to the other tumors in the smoking high
cluster, which suggests smoke exposure despite a
negative smoking history. Tumors from patients with an
active smoking history in the smoking low cluster had
similar genotypes to the rest of this cluster, including a
high percentage of oncogenic driver alterations such as
EGFR mutations and ALK fusions. This suggests that our
classification based on SBS4 and ID3 is more accurate in
grouping NSCLCs on the basis of similar genomic context
rather than reported smoking history. Because TMB was
strongly correlated to SBS4 contribution, this might sug-
gest that classification on the basis of TMB would yield
similar results. Nevertheless, other causes of high TMB,
such as MSI, might lead to more misclassifications. Inter-
estingly, PD-L1 expression did not differ between the two
clusters. Several studies have suggested the up-regulation
of PD-L1 expression in patients with an active smoking
history,27,28 which leads to the expectation of higher PD-L1
in the smoking high cluster. The fact that we found no
difference between the smoking high and smoking low
cluster supports studies that have found no association
between PD-L1 expression and smoking status.29,30

A signature-based classification based on genomic
SBS4 and ID3 contribution instead of classifying on the
basis of clinical history could have several clinical im-
plications. First, as we have found that the frequency of
targetable driver oncogenes is higher in those with a low
smoking signature contribution than in those who have
never smoked, a low smoking signature contribution
suggests an increased likelihood of oncogene-driven
NSCLC regardless of smoking status. Therefore, if a
driver alteration has not been detected during routine
diagnostics, a low smoking signature contribution could
warrant further investigation to identify more rare
oncogenic driver alterations. Further investigation
should include comprehensive RNA analysis for the
detection of gene fusions, including those with unknown
fusion partners and kinase domain duplications (KDDs).
Although rare, these oncogenic drivers can provide an
important target for treatment, for example, several re-
ports have revealed sensitivity of tumors with an EGFR-
KDD to EGFR tyrosine kinase inhibitors.31,32 Second,
replacing the terms “smoker” and “never smoker” that
are coined by clinical smoking history could contribute
to reducing the stigma and self-blame around lung can-
cer. It has been suggested that the stigma of lung cancer
is still a significant barrier in reducing the lung cancer
burden in global society.33 Therefore, the potential
impact of the label “smoker” on patients’ well-being
should not be underestimated. Next, in randomized tri-
als investigating immunotherapy, smoking history can be
of special interest as a predictive biomarker owing to the
current assumption that smoking leads to an accumula-
tion of mutations that in turn could generate a higher
number of neoantigens. These neoantigens could
potentially predict response to immunotherapy. Never-
theless, as a considerable percentage of patients with an
active smoking history did not actually harbor high (or
any) smoking signature contribution, the reliability of
smoking history as stratification factor and predictive
biomarker in these trials can be questioned. Because
SBS4 has been found to have a potential predictive value
for response to immunotherapy, it could therefore
potentially provide a more accurate stratification factor
than smoking history.34,35 Furthermore, it is possible that
the subgroup of patients with low SBS4 contribution
would derive less benefit from immunotherapy than
would be expected on the basis of smoking history or PD-
L1 expression, because PD-L1 expression did not differ
between the smoking high and smoking low clusters. In
addition, a small group of EGFR-mutated samples were
classified as smoking high, which might suggest that these
patients are part of the limited subpopulation of EGFR-
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mutated NSCLC who do derive benefit from immuno-
therapy.36 Nevertheless, the predictive value of SBS4,
and ID3, in oncogene-driven NSCLC is yet to be
determined.

Implementing such a classification method in
genome-based research should constitute little addi-
tional effort as these data are already available. In
addition, the WIDE study investigators have recently
found that WGS for patients with metastatic cancer is
feasible in routine clinical practice.13 We do, however,
appreciate that the implementation in clinical trials
would still be a hurdle to overcome. Currently, many
clinical trials already require archival or fresh tumor
tissue to be sent in for genome testing during the
screening period. Our TSO500 in silico analysis
revealed that the TSO500 panel allows for SBS muta-
tional signature calling in most cases, whereas the ID
signatures are more challenging to retrieve. Neverthe-
less, because the ID3 signature is associated with the
SBS4 signature, the lack of the ID signatures should not
vastly differ conclusions. This provides an opportunity
for clinical trials to incorporate mutational signature
analysis in the genome testing procedure during
screening without the need to perform WGS. Similarly,
in daily practices where WGS is currently not a com-
mon practice, mutational signature analysis with tar-
geted panels could still help identify those with a
higher likelihood of harboring a (rare) oncogenic
driver. However, the optimal cutoff between a high or
low smoking signature contribution does still warrant
further investigation.

This study has certain limitations that should be
considered. Most importantly, an accepted standard in
distinguishing smoking-associated from nonsmoking-
associated carcinogenesis is lacking. In the absence
such a standard, accuracy analyses are unreliable and
were therefore not performed. In addition, mutational
signatures infer the dominant processes of mutagen-
esis within a tumor genome; however, they do not
necessarily reflect the driving cause of carcinogenesis.
For instance, cells of normal lung epithelium can also
have SBS4 contribution without this leading to carci-
nogenesis.37 Our samples of EGFR-driven NSCLC with
high SBS4 contribution further illustrate this. Next,
many of the patients in our cohort were included
because the treating physician deemed WGS to have
added clinical value in the patient’s treatment course,
which could have led to a selection bias. Most patients
in our cohort had also received previous systemic
therapy; however, these therapies do not induce the
same mutations as tobacco exposure and thus have no
influence on the smoking-related signatures. Last, we
did not collect outcome data. Consequently, the prog-
nostic or predictive value of our classification method
has not been determined. Despite these limitations, our
study also has several strengths. To the best of our
knowledge, it is the first to focus on the discordances
between clinical smoking history and smoking-
associated mutational processes in the NSCLC
genome. In addition, previously published genomic
cohorts are often small, only focus on patients without
smoking history, or primarily include early stage lung
cancer.8,9,38 Our comprehensive cohort allows for an
in-depth analysis of metastatic tumors from patients
with and without smoking history.

To conclude, our mutational signature-based
classification of smoking-associated and nonsmoking-
associated NSCLC is more accurate in grouping tumors
with similar genomic contexts together compared with
classification on the basis of clinical smoking history.
Implementing such a signature-based classification aids
in defining more accurate subgroups for future genome-
based research and should be considered as a stratifi-
cation factor in clinical trials. In addition, it could aid in
optimizing diagnostic strategies in daily practice which
are currently still influenced by clinical smoking history,
such as the pursuit of identification of more rare onco-
genic drivers. Importantly, with a signature-based clas-
sification, there is less focus on the act of smoking in lung
cancer development, and it can thus be an important
achievement in overcoming the self-blame and stigma
around lung cancer.
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