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Viruses are nanometer-size organic particles and propagate by invading living cells. The 
genetic material of viruses is encoded in either DNA or RNA molecules, packed by viral protein 
to form an intact biological particle. Some viruses are surrounded by an additional envelope 
that greatly increases the biodiversity of viruses. The life cycle of viruses majorly includes six 
steps, namely, attachment, penetration, uncoating, gene expression and replication, particle 
assembly, and release. The hosts of viruses are nearly all forms of life on earth, including 
bacteria, plants, insects, reptiles, fishes, avian, and mammals. As far as the most concerned, 
viral infections in humans can cause severe diseases. Viruses can be transmitted by a regular 
human-to-human rote, or more subtly, transmitted by infecting livestock and poultries in 
priority then follow various routines to reach human hosts indirectly.  

The human body is gifted with powerful defense mechanisms against pathogen invasion. 
However, dysregulation of these mechanisms may cause failure in clearing the infection and 
trigger pathogenesis to the body. Further, a small group of highly pathogenic viruses can cause 
super-severe infections regardless of the status of the host. These include the few most deadly 
viruses, such as rabies, Marburg and Ebola viruses, which have fatality rates over 50% and 
some can even reach 100% in specific populations. Besides, the human population has been 
constantly threatened by emerging and re-emerging pathogenic viruses. From the 1918 
influenza pandemic to the ongoing coronavirus pandemic, viruses never stop. Many elements 
are likely to contribute to the emergence of new viral diseases, including virus evolution, 
environmental changes, population mitigations, and factors relevant to the diversity of human 
demography, cultures and behaviors[1].  

For most of the pathogenic viruses, the disease burden and clinical outcome are highly 
context- and host-dependent. The risk and burden of a new viral disease often displays spatial 
and temporal differences. Thus, in this thesis, I focus on the study of viral infections that are 
affecting specific vulnerable populations. These viruses include human papillomaviruses 
(HPVs), hepatitis E virus (HEV) and SARS-CoV-2. 

Human papillomaviruses 

HPVs are a group of small non-enveloped double-stranded DNA viruses. More than 150 HPV 
genotypes have been identified so far, of which 12 genotypes (16, 18, 31, 33, 35, 39, 45, 51, 
52, 56, 58, and 59) are classified as carcinogenic to humans by the International Agency for 
Research on Cancer. HPV transmission generally occurs via sexual exposure, especially the 
newly sexually active adolescent or young adult women who are at the highest risk of virus 
contact[2]. The majority (about 90%) of newly occurred HPV infections are undetectable within 
1-2 years, which is attributed to immune clearance, or viral latent[3,4]. Besides, serum antibody 
response can be HPV-genotype specific, and will not confer full immunological protection 
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against re-infection[5,6]. Therefore, individuals will remain at risk for HPV-related complications 
even following apparently successful clearing of an early infection. A minority of HPV 
infections can be persistent beyond 12 months, which increase the risk of carcinogenic 
development of cervical pre-malignancy (namely, high grade squamous intraepithelial lesions 
(HSIL) or CIN grade 2 or 3 (CIN2/3)) and cancer, if the lesions remain undetected and 
untreated[7]. 

Burdens and prevention of cervical cancer  

Cervical cancer is the fourth most common cancer among women globally, with an estimated 
604,127 new cases and 341,831 deaths in 2020[8]. In developed countries, programs of HPV 
screening and vaccination started relatively earlier. In the Netherlands, the screening for 
cervical cancer has been common since the 1970’s. In 2007, Australia launched a HPV 
vaccination program, which made it the first western country to introduce HPV vaccine to the 
female citizens. A mathematical modeling estimated that, by 2020, Australia would reduce 
the incidence of cervical cancer to fewer than six new cases, and, by 2028, to fewer than four 
new cases per 100,000 women[9]. The numbers actually observed (913 new cases for a 
population of 27 million persons in 2021) are in line with the model. Subsequently, a routine 
HPV vaccination program in Scotland was launched in 2008[10], and a similar program in the 
Netherlands followed in 2009. As the improving of biotechnology, multi-valent vaccines have 
been designed and applied. In England, in comparison with the continuing two-valent 
vaccination program (against HPV 16 and 18), the introduction of a nine-valent vaccine in 2019 
is estimated to further reduce 36% of cervical cancers, and decrease incidence further from 
9.5 to 6.1 per 100,000 women by 2036-40[11]. 

However, in developing countries, cervical cancer accounts for the second mostly diagnosed 
cancer second to breast cancer, and is the third leading cause of cancer-related death after 
breast and lung cancers[8]. Moreover, more than 90% of global cervical cancer deaths occur in 
these regions, especially in the areas of India, which represents one quarter. Regions, with a 
higher incidence of HIV, like sub-Saharan Africa, bear more disease burdens[12]. Pap testing 
and HPV screening have been proven to be effective, but their use in low-income countries is 
limited due to economical and logistical obstacles in health systems and infrastructure[13,14]. It 
is estimated that there are still two to three generations of elder women who are beyond the 
age range of vaccination, and some of whom have already acquired the infection that shall 
not be vaccinated[15, 16]. Although cervical cancer is considered preventable due to the slow 
disease progression and the availability of preventing methods[17], the elimination of cervical 
cancer requires tremendous efforts from multiple stakeholders, and is still a challenging task 
in these areas. Apart from cervical cancer, HPV is thought to be the leading cause of anal 



General introduction and outline of the thesis 
 

5 
 

cancer (estimates range up to 90 %), of vaginal cancers (65 %), vulvar cancers (50 %), and 
oropharyngeal cancers (estimates range from 45 % to 90 %)[18].  

HPV transmission  

Although sexual transmission is best documented in HPV infection, numerous studies suggest 
non-sexual routes as well. The horizontal transmission mechanisms of HPV include vomiting 
as well as tactile, oral and dermal contact (other than sexual). HPVs are very sturdy viruses, 
resistant to heat and lyophilization, showing still 30% infectivity after seven days of 
dehydration[19]. Hence, they have the capacity to remain contagious on surfaces, clothing and 
gynecological equipment and fomites. A main concern is that most individuals are not aware 
of being infected because they are asymptomatic. Two different studies, one conducted in a 
university and one in a hospital, have revealed an abundance of HPV DNA on the fingers of 
infected persons[18, 20]. These evidences collectively show that the route of HPV transmission 
is primarily through skin-to-skin or skin-to-mucosa pattern, with or without sexual contact.  

Hepatitis E Virus 

HEV is a nonenveloped virus as well with an icosahedral capsid and a positive-sense, single-
stranded RNA genome. It includes four main infectious genotypes, namely, HEV 1, 2, 3, and 4. 
HEV1 and HEV2 transmit majorly via contaminated water or fecal shedding from infected 
persons, while HEV3 and HEV4 are zoonotic. Animal reservoirs are mainly domestic pigs, wild 
boar, deer, and rabbits[21]. HEV3 is thought of widely circulating in Europe. Between 2005 and 
2015, 21,018 hepatitis E cases had been reported from 22 European countries. By screening 
blood donors, the incidence of HEV in Europe was observed ranging from 1/4771 to 1/762[22]. 
In general, although HEV infection is self-limiting in healthy individuals, HEV acquisition in 
immunocompromised patients, in particular organ transplant recipients who require 
immunosuppressive medication, bear higher risk of developing chronic infection, which may 
rapidly progress into fibrosis and cirrhosis[23]. Blood transfusion may contribute as well to 
chronic HEV cases in organ transplant patients[24]. However, viral transmission via contacting 
animal reservoirs or consuming contaminated livestock products, thought as an important 
part of HEV 3 undercurrent in Europe, is still quantitatively undetermined. 

HEV zoonotic transmission 

Extensive evidence has proved the HEV cross-species transmission between human and 
animal reservoirs[25]. HEV strains isolated from animals in pig farms, slaughter houses or 
nearby environment are genetically close to viruses identified in HEV-infected patients. Case 
reports documented the HEV strains isolated from patient blood, and comparatively found 
genetic similarity to those sampled from animal food the patient recently ingested[26]. Pig 
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farms are thought of one of the viral sources as HEV transmission within the herds has been 
observed. In Europe, the virologic prevalence of HEV ranges from 10% to 100% at the farm-
scale[27,28], while the individual virologic incidence within the farm ranges from 1% to 89%. 
Importantly, the HEV incidence in a given farm or area seldom changes over a period, implying 
HEV is constantly circulating[27]. In pork food industry, the fraction of contaminated food 
fluctuates from 1% to 50%[29,30]. Zoonotic HEV strains are frequently encountered in raw pig 
livers or pork-derived food such as meat and sausage. Thus, it is necessary to investigate HEV 
contamination at each section of modern pork food industry, including animal breeding, 
slaughtering, product processing and so on[31]. Due to the lack of rigorous surveillance of HEV 
and the huge and complex network of food industry, it is still a difficult job to do so. 

HEV infection in pregnancy 

Another heavy clinical burden of HEV infection is observed in pregnant women, which is 
associated with HEV 1 and HEV 2. Globally, in 2015, the number of symptomatic cases of 
hepatitis E and HEV-relevant deaths were estimated to be 3.4 million and 70, 000, respectively, 
of which a significant fraction occurred in pregnant women[32]. Severe HEV cases in pregnancy 
are mostly observed in developing countries, although the nongeographic disparities existed. 
For example, studies from Egypt reported that the progression and severity of HEV infection 
are close between pregnant and non-pregnant women[33]. To the contrary, evidence from 
India on severe HEV infection and substantial maternal mortality rates has consistently 
accumulated[34,35]. Acute hepatitis is an important cause of death among pregnant women, 
and mostly occurs in the third trimester. Of note, vertical transmission has been observed in 
HEV infected mothers as well, and can reach up to 46%[36,37]. The common clinical 
presentations of neonatal HEV infection include jaundice, hepatosplenomegaly, respiratory 
distress syndrome and sepsis[36, 38]. Some cases may result in stillbirth or even neonatal 
death[36,38]. Unfortunately, supportive care is the only available approach for pregnant and 
neonatal HEV infection, and a huge lack of public concern on this vulnerable population needs 
to be changed. 

SARS-CoV-2  

SARS-CoV-2 is a new member of coronaviruses. It invades bronchial epithelial cells, 
pneumocytes and upper respiratory tract cells, causing mild to severe, even life-threatening 
respiratory diseases. At the end of 2019, SARS-CoV-2 firstly emerged in Wuhan, China, leading 
to an outbreak of viral pneumonia, which is now designated as coronavirus disease 2019 
(COVID-19). This pandemic has infiltrated every corner of world, resulting in, around 
December 2022, over 648 million confirmed infections and over 6 million deaths 
(https://www.worldometers.info/coronavirus/). The death fatality of SARS-CoV-2 could reach 
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up to 2% in some vulnerable populations, constituting of elderly people and patients with pre-
exiting conditions such as diabetes, obesity, respiratory illness and cardiovascular diseases. 

To control the spread of COVID-19, control measures have been implemented such as social 
distancing, travel restriction, city block-down and so on. The resultant effectiveness of the 
controls may vary dramatically among different areas, settings and time periods[39]. 
Fortunately, targeting vaccines have been expeditiously developed and applied to aid public 
health globally. The accessibility and affordability of these vaccines remain major issues for 
many resource-limited regions. Furthermore, the emergence of new variants of concern, 
notably the lineages alpha, beta, gamma and delta, is associated with potential immune 
escape, compromised vaccine effect and forces a re-adjustment of vaccine contents[40]. Thus, 
the eventual outcome of the COVID-19 pandemic remains uncertain, and joint efforts are 
essential for coping with this public crisis.  

Mathematical modeling 

Model simulation offers an important tool for understanding the dynamics of virus 
transmission and the virus-associated clinical burdens. It is used to estimate the effect of 
interventions as well by providing a quantitative framework for integrating and interpreting 
disease relevant data into policy-relevant outcomes[41,42]. In simulation, the entire process of 
viral epidemic will be rewritten in mathematical languages, and important concepts like 
transmission rate, sizes of susceptible populations and the eventual epidemic outcome will be 
estimated. The modeling-based estimate is able to help policy makers have an effective and 
rapid response to viral outbreak and pandemic. 

In an entirely susceptible population, the expected number of offspring of an infectious case 
is called the effective reproduction number (Rt). It is named the basic reproduction number 
(R0) as well when the viral transmission just starts. The size of R0 or Rt often decides how fast 
an infectious disease can transmit among the susceptible population, and a value of Rt smaller 
than one indicates that the disease is being eliminated or can hardly lead to an epidemic. Thus, 
the estimate of R0 or Rt is essential for understanding the dynamics of an infectious disease 
and preparing appropriate measures to reduce its influences.  

Model simulation includes numerous steps including mode framework building, parameter 
estimation (or data fitting), model calibration and model sensitivity analysis. The Susceptible-
(Exposed)-Infectious-Recovered framework (SIR/SEIR) is a classic ordinary-differential-based 
model for simulating infectious disease. SIR models can be deterministic, in which a set of 
parameters will produce a set of data outcome, or stochastic, dealing with randomness and 
generate results with minor or obvious differences. To capture the transmission dynamics of 
a disease in real world, models should be subjected to uncertainty. A common strategy of 
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managing uncertainty is to run the model numerous times with a range of different 
parameters to generate sets of simulations. Parameters will be given in the form of a range of 
numbers or a type of distribution. Data fitting is essential for finding the most appropriate 
parameters to have model be consistent with the observed epidemic. This can be performed 
by least square, a simple method to reduce the differences between observed data and model 
outcomes, or by maximum likelihood estimation, an approach of parameter estimation by 
computing the likelihood of observed data on the basis of existing model and priori 
parameters[43]. Another important concept, sensitivity analysis, focuses on to what a degree 
the changing of certain parameters will influence the outcomes of model simulations. It 
assesses the stability of a model, and estimates which parameter may influence the model 
simulating greatly.  

Scope of this thesis 

The aim of this thesis is to understand the viral infection and transmission from numerous 
perspectives. Briefly, elements with epidemiological features, natural history, risk factors and 
clinical burdens were analyzed in the investigation of HPV, HEV and SARS-CoV-2 in a specific 
population or area. I prioritized these three pathogenic viruses that have distinct model-of-
transmission for comprehensive understanding of epidemic spread and control. Agents 
involved in co-infection were studied as well to deepen the understanding of pathogenesis 
interaction. Furthermore, mathematical modeling was used to estimate several key features 
of an epidemic, such as the dynamic of viral transmission, potential burdens and the 
effectiveness of controls. 

Outline of this thesis 

Emerging and re-emerging viral infections are continuously threatening the society, and 
multidimensional research is needed to understand and cope with these threats. In Chapter 
2, I investigated the prevalence of HPV and its association with cervical carcinogenesis in 
women in the Inner Mongolia of China. The studied region is located in Northwest of China 
and contains a multi-ethnic population. Mongolians, as the major ethnic population in this 
region, have distinct cultural traditions such as sheltering, hunting, and costume use. 
Urbanization has reshaped the traditions of Mongolians, although a small fraction remains live 
in pastoral areas with a mixed half-modern, and half-grazing lifestyle. Thus, this region is ideal 
for studying how life style, genetics, and culture impact on HPV transmission and prevalence. 
In Chapter 3, I studied the part of Chlamydia Trachomatis (C. Trachomatis) in HPV persistent 
infection and the potential mechanism involved. Generally, C. Trachomatis infection is 
asymptomatic and not prevalent, however, its role in persistent progression of HPV infection 
is undetermined. I found C. Trachomatis co-infection appears to accelerate the progression of 
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HPV-related cervical carcinogenesis, and therefore it raises another question that whether C. 
Trachomatis screening is necessary in the prevention and control of cervical cancer mainly 
caused by HPV. In Chapter 4, I employed a modified SIR model to predict the trend of cervical 
cancer in a rural population of China by the year of 2030 with various scenarios, including 
strategies on the basis of HPV screening, cytological screening and vaccination, respectively. 
The influence of scenario with no intervention was estimated as well.  

Next, I studied HEV and its transmission in different subjects. In Chapter 5, I studied the global 
prevalence of HEV in swine and related food products by meta-analysis. It shows that nearly 
60% of domestic pigs and 27% of wild boars have ever encountered with HEV infection. Nearly 
13% of domestic and 9.5% of wild swine are actively infected by finding detectable HEV RNA. 
Of note, about 10% of commercial pork products are HEV RNA positive. In Chapter 6, I 
simulated the dynamic of foodborne transmission of HEV in four European areas. The research 
target is to estimate the effect of hypothetically implementation of HEV vaccine for prevention 
of such transmission from swine to human. The model shows vaccination in animals is highly 
effective as it modified the dynamics of HEV transmission in pig herds. To maximize the effect 
of HEV vaccine, I modeled a limited vaccination scenario targeting at a sub-population that 
consumes pork food most frequently. The simulation shows this scenario could be effective 
as well and is capable of substituting the strategy tendentious to the general population. In 
Chapter 7, I investigated the epidemiological and clinical features of HEV infection in pregnant 
women in Inner Mongolia of China. I observed 6.0% of participants were anti-HEV IgG 
antibody positive and 0.6% were anti-HEV IgM antibody positive. However, HEV viral RNA was 
not detected. Pregnant women with recent/ongoing HEV infection, as indicated by anti-HEV 
IgM positivity, have slightly higher ALT levels, and HEV-infected expecting mothers were at 
higher risk for developing hyperlipidemia, preterm delivery and neonatal jaundice. 

Next, I studied SARS-CoV-2. In Chapter 8, I investigated the fatality rate of COVID-19 at the 
early stage by comparing the epidemical data collected in Wuhan and other parts of China. I 
found a significantly higher mortality rate of COVID-19 in Wuhan, which is partially attributed 
to the local crisis of less accessible to the healthcare resources. Unfortunately, before 
implementing city-lockdown, the virus has already spread out of Wuhan. In Chapter 9, I build 
a multi-regional, hierarchical-tier model, SLIHR, for better understanding the complexity and 
heterogeneity of COVID-19 spreading to multiple areas in China. By fitting the epidemiological 
and population flow data, the model revealed important insight into how COVID-19 spread to 
different regions by various transportations. It showed that the viral transmission is highly 
dependent on two elements, the size of mitigating populations, and how fast the populations 
mitigate. Another note is that lessons can be learned from the control of early COVID-19 in 
different parts of China. In Chapter 10, after COVID-19 reached and encountered resistance 
in most major cities in China, I comparatively simulated the spreading and control of COVID-
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19 in Wuhan and another virus raging city, Wenzhou. I found the joint of rapid hospital 
admission and stringent quarantine within-population is effective to prevent COVID-19 
spreading in regions where epidemic is majorly caused by viral importation. Therefore, the 
study offers important insights for improving preparedness and early response to future 
emerging epidemic/pandemic. 
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Abstract 

Human papillomavirus (HPV) is one of the most common sexually transmitted infectious 
pathogens. Persistent infection has been linked to cancer development, in particular to 
cervical cancer. This study aims to investigate the epidemiology of HPV infection in women in 
Inner Mongolia of China and to dissect the disparities between the Han and Mongolian ethnic 
populations. Cervical cell samples from 5655 women (17-68 years old) were collected during 
routine gynecologic examination. HPV infection was established using the HPV GenoArray kit 
detecting 21 HPV genotypes. The overall HPV prevalence was 14.5%. HPV16 (5.0%), HPV58 
(2.2%), and HPV52 (1.5%) are the most common genotypes. Of the 21 genotypes investigated, 
high-risk HPV genotypes dominate in all age groups. HPV16 and HPV58 are the most common 
genotypes in patients with cervical lesions. HPV prevalence among Han women is 11.5% and 
the most common genotypes are HPV16 (4%) and HPV58 (2.1%). HPV prevalence is 
significantly higher in Mongolian women (32.6%), with the most common genotypes being 
HPV16 (10.7%), HPV31 (7.1%), and HPV52 (4.3%). The multiple infection rate in Mongolian 
participants (14.9%) is also higher than that of Han participants (4.3%). Urbanization, the 
number of sex partners, and PAP history appear as risk factors for HPV infection in Han, but 
not in Mongolian participants. HPV infection is highly prevalent in women in Inner Mongolia, 
China. HPV16 remains the most common genotype in this area. However, there are clear 
ethnical disparities in respect to the HPV epidemiology between the Han and Mongolian 
population. 

Keywords: Han, human papillomavirus (HPV), Inner Mongolia, Mongolian, prevalence 
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Introduction 

Persistent infection with human papillomaviruses (HPVs) is a major cause of the development 
of cervical intraepithelial neoplasia and invasive cervical cancer, which is the fourth most 
common cancer in women around the world.1–3 Globally, for 2008, it is estimated that there 
were at least 529 000 new cervical cancer patients and 274 000 attributed deaths.4 Over 100 
HPV genotypes have been identified and 40 are known to infect the genital tract.5 Genotypes 
are classified as either low-risk HPV (LR) genotype or high-risk (HR) according to their 
oncogenic potential. Geographical differences exist in the prevalence of cervical cancer, but 
more than 85% of the cases are seen in developing countries. Parts of Africa, South Central 
Asia, and South America are considered as high-risk areas. China has been considered as an 
area with a relatively low risk for cervical cancer, but the HPV prevalence and genotype vary 
across the country.6Disease burden also varies according to the age, ethnicity, and residence 
area of women in China.7  

The Inner Mongolia Minority Autonomous Region (Inner Mongolia), in northern China, 
founded in 1947, which was part of the ancient Silk Road region, is multi-ethnic of nature with 
a relatively large population. Since the launch of the Reform and Opening-up policy in China, 
now three decades ago, this area has experienced rapid industrialization and urbanization. By 
the year 2014, its population was in excess of 24 million people. Its top two ethnic constituents 
are the Han (82%) and Mongolian (17%), the latter being the main Mongolian population living 
in China. Other ethnic groups including Manchu, Hui, Daur, and Ewenki are also present in this 
region, although they only contribute relatively minor to the total population. One can easily 
envision that factors associated to ethnic identity, like migratory history and sexual etiquette, 
may contribute to the prevalence and genotype distribution of HPV infection, but this has not 
been conclusively established yet. Hence, in the present study we aimed to investigate the 
epidemiology of HPV infection in women in Inner Mongolia, China, with a focus on the Han 
and Mongolian ethnics. 

 

Materials and methods		

Study population	 

A survey was conducted by the Medical Molecular Genetics Laboratory of Inner Mongolia 
Maternal and Child Care Hospital from April 2014 to December 2015. A total of 5687 women 
(age range from 17 to 68 years) who visited the hospital for physical examination were invited 
to participate in this program and submitted written consent. Participants were excluded from 
the study according to following criteria: (1) under treatment for gynecological diseases or a 
history of vaccination against HPV or (2) unwilling to undergo HPV testing. The study was 
supervised by the local ethics committee of this hospital. Every participant was interrogated 
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using a standardized questionnaire to collect information about geographical location, 
education status, profession, martial status, the presence of multiple sex partners, and PAP 
history. The Hospital Ethics Review Board approved the study. 

Specimen collection  

During the period of sample collection, which lasted from April 2014 to December 2015, about 
250-320 participants were recruited in this screening program every month, while 
approximately 60-80 samples were tested every week. For most of the Mongolian participants 
(about 690 cases), samples and information were obtained from July 2014 to September 2015, 
with 40-54 cases every month. Samples from different ethnical backgrounds were evenly 
distributed each week. The interval time between sample collection and HPV testing was 
about 1-3 days.  

Collection of HPV DNA specimens was carried out using plastic cervical swabs soaked with 
specimen transport medium (physiological saline) (Chaozhou Hybribio Biotechnology Corp., 
Chaozhou, China), as previously described.8 After cervical material was collected, swabs were 
transferred to transport medium and stored at 4°C, if HPV testing was not available 
immediately. The cervical sample can be kept in physiological saline for 2 weeks at 4°C and 6 
months at −20°C, according to the manufacturer's manual. 

HPV DNA extraction	 

After removal of the swabs and supernatant, cervical cells were isolated through 
centrifugation for 5 min employing a relative centrifugal force of 9660g. The DNA of the 
samples was then extracted using an alkali lysis and routine DNA extraction kits (Chaozhou 
Hybribio Biotechnology Corp).		

HPV genotyping	 

Following DNA isolation, HPV presence and genotype was determined using the HPV 
GenoArray test kit (PCR+film chip blot) (Chaozhou Hybribio Biotechnology Corp.). The assay 
detects 15 HR-HPV genotypes (HPV genotype 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 
66, and 68) and six LR-HPV genotypes (HPV genotype 6, 11, 42, 43, 44, and 81), using a 
MY09/11 primer detection system.9 Briefly, HPV DNA template was extracted using a 
commercial Alkali lysis kit. PCR reactions involved 25 μL of fluid, including 24 μL of PCR Mix 
and 1 μL of DNA template. Thermo cycler conditions included an initial denaturation at 95°C 
for 5 min followed by 40 cycles of 95°C for 20 s, 55°C for 30 s, and 72°C for 30 s. The reaction 
was ended by an elongation of 72°C for 5 min. The size of the resulting PCR products is about 
441 bp.9		

The resulting 25 μL of PCR products was further examined by flow-through hybridization and 
gene chip blotting. The final results were directly visualized on a nylon membrane on which 
genotype-specific oligonucleotides were immobilized.		
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Pathological diagnosis	 

Participants were referred to colposcopy if HPV testing indicated the presence of HR-risk HPV. 
Patients with HR-HPV infection would be advised to consent to histological evaluation of the 
biopsy samples obtained at colposcopy. The time interval between HPV testing and 
colposcopy was less than 3 months. Participants with normal or inflamed cervices were 
classified as negative; while those with cervical intraepithelial neoplasia (CIN) were classified 
as CIN1, CIN2, CIN3, and cervical carcinoma as appropriate. 

Derivation of age quintiles	 

Age quintiles were computed from the whole population data. Specifically the age for each 
quintile for the whole population was as follows: quintile 1 = 17-28 years of age, quintile 2 = 
28-33 years of age, quintile 3 = 33-39 years of age, quintile 4 = 39-45 years of age, and quintile 
5 = 45-68 years of age.	 

Statistical analysis	 

The presence of statistically significant differences in prevalence of HPV infections with HPV 
genotypes among general, Han and Mongolian groups was calculated using a Chi-squared test. 
The 95% confidence interval (CI) was established using a binomial distribution analysis. Odds 
ratios (ORs) for possible risk factors in different ethnic groups and corresponding 95%CIs were 
calculated by means of univariate and multivariate logistic regression. A P-value <0.05 was 
considered as statistically significant.		

Results 

Overall prevalence of HPV infection and genotype distribution	 

Of the 5687 women who provided cervical cell samples, five had mismatched questionnaire 
information and 27 were not analyzable because of the presence of blood cells or cervical 
secretes, leaving 5655 women with valid HPV results. The percentage of unanalyzable women 
is thus 0.56% (32/5687). No contamination during the HPV testing of cervical samples 
occurred.		

Among the 5655 women evaluated, 820 participants (14.5%) were found to be HPV DNA 
positive, of which 244 showed multiple-genotype (4.3%) infections (Table 1). Of these, 785 
women were designated as suffering from HR-HPV infection. Fifteen HR-HPV genotypes and 
six LR-HPV genotypes were all found during the course of this study, HPV16 being the most 
prevalent genotype (5.0%), followed by HPV58 (2.2%), HPV52 (1.5%), HPV18 (1.3%), and 
HPV31 (1.2%). HPV81 (CP8304) was the most common LR-HPV genotype (0.8%). Of note, LR-
HPV42 and LR-HPV43 were not present as single-genotype infection.		

HPV genotype distribution associated with cervical lesions	 
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The distribution of prevalent HPV genotypes according to histological diagnosis is presented 
in Table 2. From a total of 224 patients presenting with cervical lesions, HPV16 (38.8%) was 
the most common genotype in these patients, followed by HPV58 (14.3%), HPV18 (10.3%), 
HPV31 (10.3%), and HPV52 (8.5%). HPV16 was also the most prevalent genotype in patients 
with CIN1 (34.7%), followed by HPV58 (13.2%) and HPV31 (9.7%). For patients with CIN 2/3, 
HPV16 (44.6%) was the most common genotype, followed by HPV58 (17.6%) and HPV18 
(16.2%). For patients with carcinoma, HPV16 (66.7%) was the most common genotype. LR-
HPV42, LR-HPV43, and LR-HPV44 were not detected in patients with cervical lesions.		

Prevalence of HPV infection and genotype distribution by age quintile	 

The 5655 subjects of this study were divided into five groups by age quintile. The 820 HPV 
DNA-positive women were also classified based on age quintile. Figure 1 displays HPV 
prevalence by age quintiles. The HPV prevalence in age quintile 4 between 39 and 45 years 
(16.3%) was higher than that observed in other groups. Each age group was further divided 
into HPV16 or 18, other HR-HPV genotypes, and LR-HPV genotypes only. The prevalence of 
HPV16/18 was low (3.4%) among women in age quintile 1 between 17 and 28 years and 
progressively increased with age to 6.8% and 6.7% in age quintile 2 and quintile 5, respectively; 
while other HR-HPV genotypes were more equally distributed between the age groups, 
although still higher in age quintile 4 (9.8%). In LR-HPV infections, most LR-HPV genotypes (11 
cases) were detected in age quintile 1.		

Ethnic differences in prevalence of HPV infection and genotype distribution	 

Most of the subjects were recruited from two major ethnic groups, including 4838 Han (85.6%) 
with an average age of 39.8 ± 2.0 and 751 Mongolians (13.3%) with an average age of 38.2 ± 
3.9. HPV prevalence in Mongolian women (32.6%) was significantly higher than that in Han 
women (11.5%) (P < 0.001) (Table 1). The multiple-genotype HPV infection rate among 
Mongolian women (14.9%) was also significantly higher than that observed among Han 
women (2.7%) (P < 0.001).   
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Fig. 1 Age-specific prevalence of HPV genotypes and corresponding 95% Cis. 5655 participants were 
divided into six groups according to their age, namely younger than 20 years (60), 21-30 (1562), 31-40 
(2054), 41-50 (1438), 51-60 (428) and 61-70 (113). 820 HPV DNA positive women were also classified 
based on their age. Each age group was further divided into HPV 16 or 18, other HR-HPV genotypes 
and LR-HPV genotypes.		
 

A total of 21 genotypes were detected in Han women, listed in descending order, as HPV16, 
58, 53, 51, 18, 52, 39, 33, 66, 68, 56, 11, 81, 59, 31, 6, 42, 35, 43, 35, 43, 44, and 45 (Table 1). 
Nineteen genotypes were identified among Mongolian women, listed in descending order, as 
HPV16, 31, 52, 81, 39, 58, 18, 66, 6, 56, 33, 45, 59, 68, 53, 35, 51, 11, and 42. The prevalence 
of HPV16 among Mongolian women was significantly (10.7%) higher than that observed 
among Han women (4.0%) (P < 0.001). Moreover, HPV31 was also significantly more prevalent 
among Mongolian women (7.1%) than among Han women (0.3%) (P < 0.001).  

This study also recruited 38 Manchu women, 14 Hui women, 7 Daur women, and 7 Ewenki 
women, with an apparent HPV prevalence of 31.6% (12/38), 21.4% (3/14), 14.3% (1/7), and 
28.6% (2/7), respectively.	 

Prevalence of HPV according to ethnic groups by age quintile		 

HPV prevalence among ethnic groups across age quintiles is displayed in Table 3 and Fig. 2. 
Among Han/Mongolian populations, there were 975/140, 952/161, 984/145, 971/147, and 
956/158 participants for age quintile 1, 2, 3, 4, and 5, respectively. HPV prevalence in the 
Mongolian was significantly higher than that seen in the Han for all age quintiles (all P < 0.001). 
In addition, prevalence of specific HPV genotypes was analyzed for ethnical origin as well. 
Statistically significant relationships were found between ethnical identity and	prevalence for 
HPV16/18 (all P < 0.05) and HR-HPV genotypes (all P < 0.001) in each age quintile.   
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Fig. 2 Ethnics differences in HPV prevalence by quintiles of ages and corresponding 95% Cis. 5655 
participants were divided according to quintiles of age, and within each quintile the ethnics differences 
in HPV prevalence were analyzed. Age quintiles 1-5 are 17-28, 28- 33, 33-39, 39-45 and 45-68 years 
old, respectively. Each age quintile was further divided into HPV 16 or 18, other HR-HPV genotypes 
and LR-HPV genotypes. The numbers of Han participants according to quintile (1-5) were: 975, 952, 
984, 971 and 956. The numbers of Mongolian participants according to quintile were: 140, 161, 145, 
147 and 158.  
 

Potential risk factors  

Table 4 shows the association between HPV positivity and urbanization status, educational 
background, profession, marital status, the presence of multiple sex partners, and PAP history, 
after adjustment for age. HPV prevalence was significantly higher among women who had 
multiple sex partners (16.2%, 145/896) than those who had a single one (10.5%, 413/ 3942) 
(Table 4). Reporting of multiple lifetime sexual partners for Han women (16.2%, 145/896; OR 
= 1.5) was significantly associated with HPV positivity (P < 0.001). This trend was also observed 
in Mongolian women, but did not reach statistical significance. HPV prevalence among Han 
women (17.7%, 197/1112) who had PAP history showed significantly higher prevalence than 
those who did not have such test (9.7%, 360/3726). Among Han women, those who had lived 
in rural areas (15.8%, 85/539) had a higher risk of being infected with HPV than those who 
had a lifetime history of living in urbanized areas (11.0%, 472/4299). Education, profession, 
and marital status were not significantly associated with HPV infection. 
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Discussion 

In this study, 5655 women from Inner Mongolia were recruited in a HPV screening program, 
and 820 (14.5%) participants were established to be HPV positive. The observed prevalence is 
higher than that reported for Beijing (6.7%) but lower than that reported in Gansu (19.9%) 
and Xinjiang (19.7%),10–12 conforming a tendency for HPV infection to increase from the 
Northeast to the Northwest of China. The frequency of multiple-HPV-strain infection displays 
an opposite trend. Multiple infection accounted for 29.8% (244/820) of all infections in the 
present study, which is higher than that in Gansu (18.18%) but lower than that in Beijing 
(38.3%) and Shenyang (31.3%)10-13. We have observed in our population three major HPV 
genotypes, HPV16 (5.0%), HPV58 (2.2%), and HPV52 (1.5%). Other prevalent genotypes were 
HPV18 (1.3%), HPV53 (1.2%), and HPV31 (1.2%). As previous studies reported,13–15 HPV16, 
HPV58, and HPV52 are the three most common HPV genotypes in China but their relative 
order is HPV52, HPV16, and HPV58. In Hong Kong,16 the same order as in our study is observed, 
but the reported frequencies differ. HPV18 is prevalent in our study. It is also the most 
common genotype in Korea and the second most common genotype in Western countries.14,17		

Relating these results to histological diagnosis, HPV16 (38.8%) emerges as the most common 
genotype in CIN1, CIN2, CIN3, and carcinoma. In general, its prevalence increases with the 
severity of the cervical lesions (Table 1). The second most prevalent in patients with CIN1 is 
HPV58 (13.19%) and CIN2/3 (17.56%), and HPV31 (33.33%) in carcinoma. It thus seems that 
HPV52 and HPV58 are highly associated to high degree CIN in North China, which is in 
apparent disagreement with an earlier report showing that HPV58 and HPV52 are only 
prevalent in the South and Southwest China.18 Although HPV58 was not detected in patients 
with carcinoma, we speculate that this may be due to the limited number of cervical cancer 
samples encountered. A previous worldwide study reported that, in Asia, the prevalence of	
HPV58 is 18.1% in CIN2, 18.0% in CIN3, and 7.9% in invasive cervical cancer, values which were 
all significantly higher than those reported in other continents.19 It has been reported that 
specific variants on E7 of HPV58 were more common in Asia and more tightly associated with 
high-grade cervical intraepithelial neoplasia.20 These reports strengthened the potential role 
of HPV58 as a causative agent in cervical cancer. Therefore, we recommend that the 
prophylactic HR-HPV vaccines that are currently based on neutralizing only HPV16/18 
genotypes should be modified to further include HPV58 when used in Asian populations.		

The lowest HPV prevalence occurred among participants in age quintile 1 in this study (Fig. 1). 
No decrease was seen with increasing age, and the highest HPV prevalence is among women 
in age quintile 4. This tendency was similar to that reported in recent studies in areas of China 
and in rural India.21,22 It is suggested that middle-aged women infected with HR-HPV infection 
are more susceptible to high-degree CIN or worse, as young women are more capable of 
clearing HPV as a consequence of much stronger immunity. This notion is supported by the 
observation of a peak in apparent HPV16 infection rates in age quintile 4, which is also the age 
at which the incidence of high-grade cervical lesions and carcinoma starts to rise.		
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Han and Mongolian are the two major ethnical groups in Inner Mongolia, which borders the 
south of Mongolia proper. The HPV	prevalence in Han women (11.5%) is slightly higher than 
that reported for Beijing and is similar to the global infection rate (11-12%).23 Surprisingly, HPV 
prevalence is particularly high among Mongolian women (32.6%) in this region, but 
comparable to the prevalence in Mongolian women (35.0%) in Ulaanbaatar,24 the capital of 
Mongolia. Furthermore, HPV58 and 52 are the most common genotypes in Northern China, 
but among Mongolian women, HPV31 is the second most common genotype and its 
prevalence in this ethnical group is significantly higher than that among Han women. 
Consistently, this genotype is also highly prevalent among women in Ulaanbaatar. Another 
similarity that we observe is the multiple-genotype infection is higher among Mongolian 
women and amounts to 14.9%, which is comparable to the rate reported for Ulaanbaatar 
(14.8%). These results show a clear association between ethnicity with HPV prevalence.		

Age is a variable of great importance when assessing ethnical differences in HPV prevalence 
in this area. Interestingly, the age-specific prevalence in Mongolian presents a similar trend as 
that of the whole population (Figs. 1 and 2), although the prevalence rates differ greatly. In 
addition to age, other risk factors that significantly increase the odds of HPV infection among 
Han women include the area of living, the presence of sexual partners, and PAP history. A 
pooled analysis of 17 population-based studies in China also demonstrated a significantly 
different prevalence of HR-HPV in women from rural (18.0%) and urban (15.2%) areas25. 
Similar to previous studies,26,27 we have demonstrated that the presence of multiple sexual 
partners of the participants is an important factor for HPV transmission. The association 
between HPV infection and a history of a previous PAP smear suggests that women requesting 
such a test consider themselves more at risk for the presence of a sexually transmitted 
diseases suffer more HPV infection. Because most of the participants did not provide sufficient 
information regarding the sexual behavior of their husbands, the role of male sexual behavior 
was possibly underestimated in our study. In contrast, these potential	risk factors do not show 
a significant impact on the Mongolian women (may be due to a smaller sample size), although 
similar patterns were observed as seen in Han women. This may further strengthen the 
importance of ethnical identity for the presence of HPV infection. 

Inner Mongolia, geologically located at the central part of Asia, bordering with Mongolia and 
Russia, is one of the five Autonomous Regions of China. It serves as the bridge for cultural 
communication between the eastern and western world. As a second-largest ethnical group, 
Mongolians experienced their heydays during the Yuan Dynasty, but today the separate 
cultural identity of this group is in danger, in particular through miscegenation of the people 
with different ethnicities (including Han, Manchu, Hui, Daur, Ewenki, and Korean) in this 
region. This may lead to frequent cultural and genetic recombination or exchange. HPV 
genotype distribution varies largely across the globe, which can at least partially be attributed 
to differences in genetics and lifestyles. Interestingly, the DRB*1501 allele of the HLR class II 
gene has been reported to be associated with high susceptibility to HPV infection in the Han 
population of Inner Mongolia, but strikingly has also been related to protection from cervical 
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cancer in the Han of Xinjiang28,29. As Xinjiang is like Inner Mongolia an important autonomous 
region but mainly composed Uygur, Kazak, and Hui ethical groups, we postulate that both 
living environment and genetics are important factors with respect to the prevalence and 
genotype distribution of HPV infection.		

In summary, this study has characterized the prevalence and genotype distribution of HPV 
infection in women from Inner Mongolia, China. HPV16, HPV58, and HPV52 are the most 
prevalent genotypes in this area. Importantly, we have observed ethnical disparity of HPV 
infection. Compared to Han population, HPV31 and multiple-genotype infection are more 
common among Mongolian women. These epidemiological data will help to establish 
effective strategies for prevention and management of HPV infection in this area.		
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Abstract 
 
Background. Chlamydia trachomatis may coinfect with human papillomavirus (HPV) and 
complicate the cervical pathogenesis. This study aimed to evaluate the prevalence, risk factors, 
and clinical outcomes of HPV/C. trachomatis coinfection in women from Inner Mongolia, 
China.  Methods. We performed a polymerase chain reaction (PCR)-based HPV/C. trachomatis 
screening and cervical samples were analyzed by thinprep cytologic test. Statistical analysis 
was used to assess the association between demographic factors and coinfection. Results. 
Among the 2345 women recruited, the prevalences of HPV, C. trachomatis, and HPV/C. 
trachomatis coinfection were 36.0%, 14.3%, and 4.8%, respectively. The rate of multiple HPV 
genotypes was higher in coinfected women. HPV66 was the most frequently identified 
genotype in coinfected participants. The HPV DNA load was significantly higher in HPV mono 
infected cases. In contrast, the DNA load of C. trachomatis was significantly higher in the 
coinfection group. Risk factors, including single women (odds ratio [OR] = 6.0, 95% confidence 
interval [CI], 4.044–8.782) and women with multiple sex partners (OR = 1.9, 95% CI, 1.324–
2.824), were associated with coinfection. Importantly, coinfection was associated with 
increased risk for high-grade squamous intraepithelial lesions. Conclusions. HPV and C. 
trachomatis coinfection is an important risk factor for the progression of cervical lesions. 

Keywords: human papillomavirus, Chlamydia trachomatis, coinfection, risk factors, 
cytological findings, DNA load 
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Introduction 

Cervical cancer is the fourth most common cancer in women around the world[1]. It is 
estimated that there were at least 528 000 new cervical cancer patients and 266 000 
attributed deaths in 2012[2]. Geographical differences exist in the prevalence of cervical cancer 
and more than 85% of the cases occur in developing countries. Certain parts of Africa, South 
Central Asia, and South America are considered to be high-risk areas. In China, screening for 
cervical cancer is an important public health program launched by the government to meet 
the gap in health condition between its west and east, where large differences in cervical 
cancer burdens are present[3].  

Infection with human papillomaviruses (HPV) is a major cause of the development of cervical 
cancer. The medical burden of HPV infection varies according to several demographic factors, 
such as age, ethnicity, education background, and lifestyle[4]. Mechanistically, particular 
genotypes of HPV express oncoproteins E6 and E7, which may cause cell immortalization and 
transformation. Furthermore, other factors are involved in HPV-related carcinogenesis, 
including distribution of HPV genotypes, duration of the infection, viral load, and the presence 
of other coagents[5]. 

Several sexually transmitted infectious agents, including Chlamydia trachomatis, Gardnerella 
vaginalis, Trichomonas vaginalis, and Mollicutes, are known to cause local inflammation and 
contribute to HPV-related cervical lesion progression[6]. C.  trachomatis is a widespread 
sexually transmitted bacterium and can cause diseases including cervicitis, salpingitis, 
urethritis, endometritis, pelvic inflammatory disease, tubal factor infertility, and ectopic 
pregnancy. Although the infection is mainly asymptomatic in most patients[7,8], active 
pathogen-host interactions, including cell entry and disruption of host immune and metabolic 
elements, may affect cellular processes involved in carcinogenesis[8].  

The Inner Mongolian Autonomous Region is 1 of the 5 multiethnic population areas in China. 
It is a less-developed area with the main ethnic groups including Han, Mongolian, Manchu, 
Hui, Daur, and Ewenki. Migration and intermarriage of ethnic groups has increased the 
abundance of the local genetic pool and reduced lifestyle differences. Therefore, this region 
is ideal for studying diseases influenced by multiple socioeconomic and genetic factors. The 
aim of this study was to investigate the prevalence, risk factors, and clinical outcomes of 
HPV/C. trachomatis coinfection in a hospital-based large cohort in this area.  
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Methods 

Study Design  

A study of coinfection between HPV and C.  trachomatis was conducted in Inner Mongolia 
Maternal and Child Care Hospital from January 2015 to September 2017. A population of 2359 
women (age range from 19 to 83 years) who visited the department of gynecology of the 
hospital was invited to participate in this program and submit written consent. A detailed 
questionnaire was administered to all participants to document their lifestyle pattern and 
demographic information, including education background, number of lifetime sex partners, 
residence areas, age, marital status, ethnicity, and profession. Besides detection of pathogens, 
cervical samples of all participants were also analyzed by thinprep cytologic test (TCT). 
Participants under medical treatment or with a history of vaccination against HPV were 
excluded from the study. 

Sample Collection	 

Cervical samples were taken by swab and cytobrush for detection of pathogen DNA and 
cytological tests, respectively. Swabs were transferred to a tube containing a transport 
medium (physiological saline; Chaozhou Hybribio Biotechnoloy Corp, China). The interval 
between sampling and testing was within 3 days (cervical samples can be kept in physiological 
saline for 2 weeks at 4°C according to the manufacturer’s manual).	 

DNA Extraction	 

After remove of the swab, cervical cells were collected by centrifugation for 5 minutes with 
relative centrifugal force 9660g. DNA samples were extracted with alkali lysis using a DNA 
extraction kit (Chaozhou Hybribio Limited Corp, Chaozhou, China). DNA extracted was 
quantified by Thermo Scientific NanoDrop 2000 for use in analysis of HPV genotypes and 
quantification of genomic DNA of the 2 pathogens.		

HPV Genotyping		

The method of HPV genotyping was described in our previous study[9]. Briefly, a HPV 
GenoArray test kit (polymerase chain reaction [PCR] plus film chip blot) (Chaozhou Hybribio 
Limited Corp, Chaozhou, China) was used to detect the 15 high-risk (HR)-HPV genotypes 
(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, and 68) and 6 low-risk (LR)-HPV 
genotypes (HPV6, 11, 42, 43, 44, and 81) with the MY09/11 primer detection system [10]. The 
PCR reaction system was 25 µL, comprising 24 µL PCR mix and 1 µL DNA template (50 ng/µL). 
Thermocycler conditions included an initial denaturation at 95°C for 5 minutes followed by 40 



Chapter 3 

40 
 

cycles of 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for 30 seconds. The reaction was 
ended with an elongation of 72°C for 5 minutes. The size of the PCR products was about 
441bp[10].		

The 25-µL PCR products were examined with flow-through hybridization and gene chip 
blotting. The final results were directly visualized on a nylon membrane on which genotype-
specific oligonucleotides were immobilized.		

qRT-PCR Analysis of Pathogen Genomic DNA		

We detected and quantified genomic DNA of the 2 pathogens by a quantitative real-time PCR-
based (qRT-PCR) method. A commercial multiplex real-time 12+2 HPV test kit (Chaozhou 
Hybribio Limited Corp, Chaozhou, China) was used for the quantitative detection of HPV DNA, 
which specifically targets 14 HR-HPV genotypes (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 
59, 66, and 68). Ten-fold serial dilutions (10−7 copies/mL) of the DNA standard curve were 
prepared and analyzed. The qRT-PCR test was performed in an Applied Biosystems 7500 real-
time PCR system (Applied Biosystems, Foster City, CA), according to the manufacturer’s 
instruction. Briefly, 14 sets of primers and fluorescent probes provided by the manufacturer 
in a PCR mix regent were used to target the E region of each HR-HPV genotype and detect the 
amplification products (size: 70–200 bp)[11]. Probes and primers were classified into 4 groups, 
namely, group 1 for general detection of the 12 non-HPV16/HPV18 HR-HPV genotypes (HPV31, 
33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68), group 2 for HPV 16, group 3 for HPV 18, and 
group 4 for a β-globin internal control. Probes were labeled with fluorophores: 
hexachlorofluorescein for HPV16, carboxy-X-rhodamine for HPV18, 6-carboxy-fluorescein 
(FAM) for 12 non-HPV16/HPV18 HR-HPV genotypes, and Cy5 for β-globin. The PCR reaction 
system was 20 µL, comprising 18 µL PCR mix and 2 µL DNA template (50 ng/µL). The reaction 
conditions for PCR were 95°C for 10 minutes, followed by 45 cycles of 95°C for 10 seconds and 
60°C for 60 seconds. The fluorescence signal was detected at 60°C.		

A C. trachomatis real-time PCR kit (Shanghai Liferiver Limited Corp, Shanghai, China) was used 
for detection of C. trachomatis genomic DNA. The PCR reaction system was 40 µL, comprising 
36 µL PCR mix and 4 µL DNA templates (50 ng/ µL). Primers and probe, designed according to 
the sequences of the cryptic plasmid of 5 different C. trachomatis strains (serotypes A, B, D, 
L1, and L2) and stored in the PCR mix, were provided by the manufacturer[12]. This included a 
forward primer (5ʹ-CATGAAAACTCGTTCCGAAAT-AGAA-3ʹ), a reverse primer (5ʹ-
TCAGAGCTTTACCTAACAACGCATA-3ʹ) (which amplifies a 71-bp DNA segment of C. 
trachomatis), and a minor-groove binder probe labeled with 5ʹ FAM (5ʹ-
TCGCATGCAAGATATCGA-3ʹ). The PCR test was also performed in the Applied Biosystems 7500 
real-time PCR system and the cycling conditions were 2 minutes at 37°C, 2 minutes at 94°C, 
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followed by 40 cycles of 15 seconds at 93°C	and 1 minute at 60°C. Signal detection was at 60°C. 
In order to perform quantification of C.  trachomatis genomic DNA, a standard curve was 
generated with serial 10-fold dilutions of known quantities (10−7 copy/mL) of a commercial 
positive control (Bio-Rad Amplichek CT/GC Controls).		

Cytology  

Slides for liquid-based cytology were prepared and stained according to manufacturer’s 
instructions at the pathology laboratory of the hospital. The results were reported according 
to the Bethesda System 2001[13]. The following cytological findings were reported: negative 
for intraepithelial lesion or malignancy (NILM); atypical glandular cells (AGC); squamous 
intraepithelial lesions (SIL) of low (LSIL) or high (HSIL) grade; atypical squamous cells (ASC) of 
undetermined significance (ASC-US) or not possible exclude HSIL (ASC-H); and SCC (squamous 
cell carcinoma).		

Statistics Analysis  

Statistical analyses were performed with SPSS version 13.0 (Chicago, IL); t test and Mann-
Whitney U test was used to compare pathogen DNA copy numbers between single and 
coinfection groups. The difference in odds ratios (ORs) for possible risk factors associated with 
pathogenic infection and corresponding 95% confidence intervals (CIs) were calculated by 
means of univariate and multivariate logistic regression. Significance was set at P < .05. Age 
quintiles were computed from the whole population data.		

Ethical Consideration  

The study was approved and supervised by the local ethics committee of Inner Mongolia 
Maternal and Child Care Hospital.		

Results 

Overall Prevalence and Genotype Distribution of HPV Infection  

Of the 2359 women who provided cervical cell samples, 2 had mismatched questionnaire 
information and 12 samples had too many blood cells or excessive cervical secretion that 
affected DNA extraction, leaving 2345 women with valid testing for pathogen DNA. The 
percentage of invalid participants for testing was 0.59% (14/2359). No contamination 
occurred during testing of the samples. 
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	Analysis by HPV genotyping and HPV real-time PCR gave 839 and 851 positive results, 
respectively. Thirty-two samples showed discordant results with the 2 different approaches 
and were further evaluated by sequencing. The sequencing results confirmed that 22 samples 
were positive (including 8 cases of HPV51/53, 6 cases of HPV16/52, 2 cases of HPV16/33/31, 
2 case of HPV16, 2 case of HPV31, 1 case of HPV52, and 1 case of HPV68); the other 10 samples 
were negative. Thus the number of HPV-positive results was 844 after sequencing 
confirmation.		

Therefore, among the 2345 women, 844 participants (36.0%) were found to be HPV DNA 
positive, of which 301 showed multiple-genotype (12.8%) infections (Table 1). Fifteen HR-HPV	
genotypes and 6 LR-HPV genotypes were detected. HR-HPV infection was confirmed in 824 
women. Specifically, HPV16 was the most prevalent genotype (10.4%), followed by HPV58 
(6.4%), HPV52 (6.2%), HPV51 (4.2%), and HPV39 (3.3%), while HPV81 (CP8304) was the most 
common LR-HPV genotype (2.7%).  
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HPV Genotype Distribution by Cytology Status  

Among the 2345 participants, samples from 590 (26.7%) women exhibited the following 
abnormal cytology: 6 AGC (0.3%), 256 ASC-US (10.9%), 19 ASC-H (0.8%), 170 LSIL (7.2%), 136 
HSIL (5.8%), and 3 SCC (0.1%) (Table 1).		

Of the 844 HPV-DNA–positive women, samples from 431 had ASC-US or higher grade cytology 
(18.4%, 431/2345), of which 2 were AGC (0.09%, 2/2345), 140 ASC-US (6.0%), 15 ASC-H (0.6%), 
143 LSIL (6.1%), 128 HISL (5.5%), and 3 SCC (0.1%) (Table 1). The HR-HPV genotypes (except 
for HPV51, HPV59, and HPV68) were more prevalent in participants with HSIL cytological 
findings than those with NILM. Among the LR-HPV genotypes, HPV42, 44, and 81 were more 
frequently found among participants with HSIL than those with NILM. HPV16, 53, and 81 were 
detected in the 3 SCC cases.		

The Prevalence of C. trachomatis and HPV Coinfection  

Among the overall participants, 335 were C. trachomatis DNA positive (14.3%). Among these, 
113 were coinfected with HPV. The DNA load of HPV was significantly higher in the 
monoinfection group (median = 1.2 × 107 copy/mL) compared to the coinfection cases 
(median = 4.1 × 106 copy/mL). In contrast, the DNA load of C. trachomatis was significantly 
higher in the coinfection group (median = 1.1 × 106 copy/mL) than in the monoinfection group 
(median = 9.2 × 105 copy/mL; Figure 1). 

 

Figure 1. Genomic DNA load of HPV and C. trachomatis within mono-infection or co-infection. A. 
Genomic DNA load of HPV (copy/ml) among women within mono-infection (median=1.2×107 copy/ml) 
and co-infection (median=4.1×106 copy/ml) (**P<0.01) (with Mann Whitney test). B. Genomic DNA 
load of C. trachomatis (copy/ml) among women within mono-infection (median=1.1×106 copy/ml) and 
co-infection (median=9.2×105 copy/ml) (*P<0.05) (with T test). Median and interquartile range 
indicated by solid lines in the graph.	 
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Age Quintile and HPV Genotype Distribution in Coinfected Patients  

In HPV-positive patients, the prevalence of HPV dropped from age quintile 1 (36.2%) to age 
quintile 3 (30.7%) and then increased progressively to age quintile 5 (42.4%) (Table 2 and 
Figure 2A). In the coinfection group, most participants were in age quintile 1 (10.4%) (Table 2 
and Figure 2B).		

Among the coinfected participants, 14 HR-HPV genotypes (except for HPV35) and 4 LR-HPV 
genotypes (except for HPV42 and 43) were present. HR-HPV genotypes, including HPV66 
(1.5%), HPV52 (1.2%), HPV16 (1.1%), HPV56 (1.0%), and HPV58 (0.9%) were identified in the 
113 coinfected cases (Table 3). HPV11 was the most common LR-HPV genotype (0.5%).		

Potential Risk Factors  

Table 4 shows the association between HPV mono- or coinfection with residence areas, 
ethnicity, education background, profession, marital status, and lifetime number of sex 
partners. Most indicators, except ethnicity, were significantly associated with HPV-positive 
results. For coinfection with HPV	and C.  trachomatis, marital status and lifetime sex partners 
were potential risk factors. Single women (OR = 6.0; 95% CI, 4.044–8.782) or women with >2 
sex partners (OR = 1.9; 95% CI, 1.324–2.824) were more likely to be infected with both HPV 
and C. trachomatis.		

Coinfection of C. trachomatis and HPV Increases the Risk of Abnormal Cytology  

Among the 335 participants with C.  trachomatis infection, 77 had ASC-US (3.3%, 77/2345), 1 
ASC-H (0.04%), 52 LSIL (2.2%), 36 HSIL (1.5%), and 3 SCC (0.1%) (Table 1). Among the 113 
coinfected participants, 90 had abnormal cytological findings and 36 HSIL (Table 3). Thus, 
coinfection has dramatically increased the risk for abnormal cytology (OR = 11.6; 95% CI, 7.29–
18.6).		

Specifically, coinfection with different HR-HPV genotypes, including HPV16, 18, 31, 33, 39, 52, 
53, 56, 58, and 66, showed a higher risk for ASC-US or higher grade cytology. Coinfection with 
HR-HPV genotypes, including HPV16, 18, 31, 39, 52, 58, 66, and 68, showed increased risk for 
HSIL. Of note, all the 3 SCC cases detected in this study were in the coinfected population. 
Among the confections with LR-HPV genotypes, HPV11 and HPV81 showed a higher risk for 
ASC-US or higher grade cytology and no LR-HPV genotypes exhibited increased risk for HSIL.		

Furthermore, the rate of LSIL or HSIL in each age quintile with coinfection was clearly higher 
than those with HPV mono-infection. Of the 3 SCC cases, 2 were identified in age quintile 3 
and 1 in age quintile 5 of the coinfection group.		 	
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Figure 2. Prevalence of HPV infection and cytological findings with or without C. trachomatis 
infection by age quintile and corresponding 95% Cis. A. 2345 participants were divided into five 
groups according to their age quintile. 844 HPV DNA positive women were classified based on the age 
quintile. The prevalence of HPV drops from age quintile 1 (36.2%) to age quintile 3 (30.7%) and then 
increases progressively to age quintile 5 (42.4%). B. 113 women with HPV/C. trachomatis co-infection 
were classified based on their age quintile. In this group, most participants are located at age quintile 
1 (10.4%). Furthermore, the rate of LSIL or HSIL in each age quintile with co-infection is clearly higher 
than those with HPV mono-infection. Of the three SCC cases, two were identified in age quintile 3 and 
one in age quintile 5 within the co-infection group.  
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Discussion 

In this study, 2345 women who visited the Department of Gynecology, Inner Mongolian 
Maternal and Child Care Hospital were recruited for an HPV and C. trachomatis screening 
program. The prevalence of HPV-DNA was 36.0% in this population, whereas HPV prevalence 
from other parts of China ranges from 9.03% to 16.8%[14, 15]. Furthermore, we identified 335 
participants to be C. trachomatis DNA positive (14.3%) by real-time PCR. The sensitivity and 
specificity of this method is 95.7% and 100%, respectively[12].	

Among the C. trachomatis infected participants, 113 were coinfected with HPV, and HPV16, 
HPV58, and HPV52 were the most common genotypes in this population. This finding is similar 
to that in most regions of China and other areas of East Asian, although there are variations 
in different region[15–19]. HPV16 and HPV52 were more common in HSIL cytology. HPV16 was 
the most prevalent genotype in normal and abnormal cytological findings. Interestingly, 
HPV66 represented the genotype most frequently detected in coinfected participants and 
nearly half of the cases with this genotype developed abnormal cytology. HPV66 was also 
common in coinfection with LSIL or HSIL. The overall prevalence of HPV66 is usually low in 
HPV screening of Chinese women[9]. However, it appears more prone to coinfect with C. 
trachomatis than other genotypes. We found the rate of multiple HPV genotypes in coinfected 
women was higher than that in those with HPV monoinfection. It has been previously reported 
that HPV multiple infection dose not increase the risk of acquiring further infection but may 
impair the local immune system[20]. Interestingly, patients with coinfection had significantly 
higher load of C.  trachomatis DNA compared with monoinfection of C. trachomatis. We 
speculate that this may be associated with host immune response to the	 infection of 2 
pathogens, but further research is required to validate our hypothesis.		

Risk factors that significantly increased the odds of HPV-C. trachomatis coinfection in Inner 
Mongolia included marital status and number of lifetime sex partners. We found that married 
women were less likely to be coinfected as compared to single women. Whereas, women with 
2 or more sexual lifetime partners had a higher risk of coinfection as compared to women with 
1 sexual partner. We found that sexual contact with many partners increases the odds ratio 
for HPV monoinfection, which is consistent with previous studies[21–23]. As C. trachomatis is 
mainly sexually transmitted, we expect that coinfection is also likely associated with risky sex 
behaviors. Coinfection is possibly acquired by interactions with multiple hosts who may each 
be infected with a particular pathogen species. These interactions may change the 
transmission, clinical progression, and control of infectious diseases[24, 25]. We found that 
younger age was associated with a higher C.  trachomatis infection prevalence, which may be 
related to more risky sexual behavior. Risk factors, including residence areas, education, and 
profession, were significantly associated with HPV infection, but were not significantly related 
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to coinfection. Also, unexpectedly, no significant association was observed between ethnicity 
and risk of coinfection. This is probably due to extensive ethnic miscegenation in the region, 
or the size of studied population was not large enough.		

The association of cervical abnormalities and HPV-C. trachomatis coinfection was in line with 
previous studies with small cohorts[26, 27]. Coinfection is known to trigger a much stronger 
inflammatory reaction and C. trachomatis infection is often associated with HPV 
persistence[28-30]. Persistent HPV infection in basal keratinocytes of mucosal epithelium 
requires an altered epithelial environment. C. trachomatis infection may lead to epithelial 
disruption and therefore may facilitate entry of the virus[31]. Chlamydial infection might also 
disturb the immune response that is necessary to clear the virus[31]. Furthermore, we found 
that coinfection of HR-HPV and C. trachomatis exhibited more severe pathogenesis, in 
particular higher risk of HSIL. Based on the numbers of abnormal cytological findings, C. 
trachomatis monoinfection was associated with low-grade cervical abnormalities (ASC-US or 
LSIL), but was less likely to be associated with high-grade cervical lesions (HSIL or SCC). The 
number of cases with HSIL in the coinfection group was significantly higher than that in the 
HPV monoinfection group. Among 844 HPV-positive cases 128 (15.2%) had HSIL. Among the 
113 participants with coinfection, 36 (31.9%) had HSIL. Importantly, all 3 SCC cases were found 
in patients with coinfection. Interestingly, the genomic DNA loads of both pathogens were 
significantly different in mono- versus coinfection, indicating the active interactions of these 
2 pathogens. But the exact biological implications of these findings remain to be further 
explored.		

Of note, our study has some limitations. Information on the history of women with HPV or C. 
trachomatis infection prior to enrollment or in the follow-up is lacking. These data could help 
to better interpret the risk factors for persistent HPV infection. Other STD pathogens, 
including Neisseria gonorrhoeae and HSV-1 and -2, which may also contribute to the 
progression of cervical cancer, were not tested in the study.  

In summary, we report the rates of HPV and C. trachomatis mono-infection and coinfection 
were 36.0%, 14.3%, and 4.8%, respectively, in women from Inner Mongolia, China. Factors 
including marital status and number of lifetime sex partners were significantly associated with 
coinfection. Importantly, coinfection resulted in more severe cervical pathogenesis and 
progression to carcinogenesis. These findings bear important implications for future screening 
and management of patients with HPV and C. trachomatis coinfection. 
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Abstract 

Zoonotic transmission of hepatitis E virus (HEV), in particular the genotype (GT) 3 and GT4 
strains, constitutes a major one health issue. Swine serves as an important reservoir and the 
processed pork products essentially contribute to foodborne transmission. This study 
comprehensively estimated HEV prevalence in domestic pigs, wild boars, and pork products 
at global scale. At global level, we found nearly 60% domestic pigs and 27% wild boars have 
ever encountered HEV infection based seroprevalence rate. Nearly 13% domestic and 9.5% 
wild swine are actively infected based HEV RNA positivity. Importantly, about 10% of 
commercial pork products are HEV RNA positive, although available data are limited in this 
respect. Our results indicate the high prevalence rate of HEV infection in pigs and widespread 
contamination in pork products, although there are substantial variations at regional and 
country levels. These findings are important for better understanding the global epidemiology 
and clinical burden of HEV infection in human population related to zoonotic transmission. 

Keywords: Hepatitis E virus; Swine; Prevalence; Epidemiology; Zoonotic transmission
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Introduction 

Hepatitis E virus (HEV) is a non-enveloped, single-stranded positive-sense RNA virus. It is 
recognized as the leading cause of acute viral hepatitis. Globally, it is estimated approximately 
939 million corresponding to 1 in 8 individuals have ever been infected with HEV (Li, Liu, et al., 
2020). Among the different HEV genotypes (GT) that affect human health, GT3 and GT4 are 
zoonotic, which have been found in various animal species (Zhou et al., 2019). Although HEV 
infection is usually self-limiting or asymptomatic in healthy individuals, GT3 and GT4 HEV 
infection in organ transplant patients is prone to develop chronic hepatitis(Kamar et al., 2008; 
Wang, Liu, Pan, & Zhao, 2020).  

Pigs serve as the major reservoir for the zoonotic HEV strains. Anti-HEV antibodies have been 
widely detected in both domestic pigs and wild boars (Baechlein et al., 2010; Fredriksson-
Ahomaa et al., 2020; Geng et al., 2010). There are different routes of HEV transmission from 
pigs to human, such as direct contact with the animal, indirectly through contaminated 
environment and the consumption of pork products. However, the contribution of these 
different transmission routes can vary tremendously among different settings attributing to 
multi-factors, such as socioeconomic status, farming systems, food chains and life styles. 
Nevertheless, the widespread consuming of pork products is inevitably posing a major risk of 
HEV foodborne transmission in public health. Hepatitis E cases linking to consuming 
undercooked pork or wild boar meat have been widely reported (Matsuda, Okada, Takahashi, 
& Mishiro, 2003; Yazaki et al., 2003).  

Globally, the epidemiological feature and clinical burden of zoonotic HEV infection in human 
population are distinct among different countries/regions (Li, Liu, et al., 2020). It is intriguing 
to postulate whether this is associated with the specific prevalence rate of HEV in local swine 
population and available pork products. In this study, we aim to estimate the global 
prevalence of HEV in both domestic pigs and wild boars, as well as pork products in retailers.  

Methods 

Data sources, search strategies and study selection  

A systematic search was conducted in Medline, Embase, Web of science, Cochrane CENTRAL 
and Google scholar. Databases were searched for articles in the English language from 
inception until 31 May 2021. Studies were included if they contained epidemiological data 
about HEV in domestic pig or wild boar. The full search strategies and study selection criteria 
are provided in the Supplementary file S1-S2.  

Data extraction, quality assessment and statistical analysis 
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Eligible studies were further divided into three study populations: domestic swine, wild boars 
and market/retailer pork products. Studies were scored according to Joanna Briggs Institute 
checklist for prevalence studies. A 95% confidence interval (95% CI) was estimated using 
Wilson score method, and pooled prevalence rate was calculated by the DerSimonian-Laird 
random-effects model with Freeman-Tukey double arcsine transformation. Funnel plots and 
Egger regression test were used to assess potential publication biases. ‘Meta’ package in the 
R-3.5.3 statistical software was used for meta-analysis as previously described (Li, Ikram, 
Peppelenbosch, Ma, & Pan, 2020; Liu et al., 2021). Sensitivity analysis was performed by using 
‘metainf’ to investigate the effects of group source and potentially unrepresentative samples. 
The details of quality assessment and statistical analysis are provided in supplementary S3.  

Results and Discussion 

By comprehensively searching 5 databases (supplementary S1-S3), we identified a total of 215 
studies met the inclusion criteria, which were processed for analysis of HEV prevalence in 
domestic swine, wild boars and pork products (sFig. 1). First, we estimated anti-HEV 
seroprevalence (indication of ever exposure) and HEV RNA positivity (indication of active 
infection) in domestic pigs. A total of 84 studies were included to estimate the global anti-HEV 
seroprevalence, resulting in a pooled rate of 59.33% (37 countries, 95% CI 53.64-64.90, I2= 
99%; sFig. 2). The highest seroprevalence was found in Oceania (75%, 95% CI 64.28-84.40), 
but this is only based on one study which likely causes bias in estimation. The second highest 
seroprevalence rate was found in Asia (67.45%, 95% CI 53.50-79.99, I2= 100%), followed by 
Europe (57.46%, 95% CI 49.82-64.93, I2= 99%), Africa (53.46%, 95% CI 43.26-63.52, I2= 92%), 
and South America (53.03%, 95% CI 33.79-71.81, I2 = 99%) (sFig. 3). Based on 118 studies from 
45 countries/territories, the global estimation of HEV RNA positive rate was 12.71% (95% CI 
10.81-14.73, I2 = 97%). The highest rate was found in North America (18.10%, 95% CI 8.71-
29.84, I2 = 97%), followed by Europe (17.19%, 95% CI 13.16-21.61, I2 = 98%), South America 
(15.67%, 95% CI 6.75-27.33, I2 = 98%), Africa (12.29%, 95% CI 0.01-38.70, I2 = 99%), Asia (8.23%, 
95% CI 6.21-10.49, I2 = 97%), and Oceania (6.52%, 95% CI 2.23-12.63) (sFig. 4 and 5).  

At country level, HEV prevalence in domestic pigs varies substantially, from 9.90% (Thailand, 
95% CI 8.01-11.96) to 84.02% (India, 95% CI 44.05-100.00, I2 = 99%) of anti-HEV 
seroprevalence, and from 0% (Croatia, 95% CI 0.00-0.37) to 76.67% (Nigeria, 95% CI 67.32-
84.89) of HEV RNA positivity (Table 1 and 2, Figure 1). Importantly, we have collected 
genotyping information of swine HEV. GT3 is universally prevalent across the globe, whereas 
GT4 is mainly present in Western Pacific region. Interestingly, GT3 and GT4 are co-circulating 
in countries/territories, such as mainland China, Taiwan, Korea and Japan (Table 1 and 2, 
Figure 1). This is consistent with clinical observations that both GT3 and GT4 HEV patients 
have been reported from these regions (Kitaura et al., 2020; Owada et al., 2020; L. Wang et 
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al., 2020; Wang et al., 2018). Although Europe is dominated by GT3, GT4 HEV has been 
identified in some peculiar cases including chronically infected patients(Micas et al., 2021). 
Here, we found that GT3 and GT4 are also co-circulating in domestic pig populations in 
Belgium (Figure 1). Thus, the emergence of GT4, which is thought to be more pathogenic, 
requires more attention from both public health and patient care perspectives.  
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Table 1. HEV seroprevalence in domestic swine. 

Continent Country 
Anti-HEV antibodies  

No. of 
studies Events Tested 

(n) 
Prevalence 

(%) 95% CI Genotype 

Asia 

Bangladesh 1 82 100 82.00 73.80-88.98 - 

China 13 7036 15461 65.73 46.01-82.99 Major GT4; Minor 
GT3 

India 2 297 360 84.02 44.05-100.00 GT4 
Indonesia 2 224 307 72.99 67.85-77.84 GT4 

Korea - - - - - Major GT3; Minor 
GT4 

Japan 3 327 442 74.33 39.02-97.42 GT3+GT4 
Laos 2 769 899 81.36 26.33-100.00 GT4 
Philippines 1 155 299 51.84 46.16-57.49 GT3 
Vietnam 1 300 586 51.19 47.14-55.24 GT3 
Thailand 1 87 879 9.90 8.01-11.96 GT4 
Taiwan - - - - - GT3+GT4 
Total 26 9277 19333 67.45 53.50-79.99 - 

Europe 

Belgium 1 307 420 73.10 68.74-77.23 GT3+GT4 
Bulgaria 4 652 1049 61.69 48.15-74.38 - 
Croatia 2 524 1484 64.94 8.05-100.00 - 
Czech - - - - - GT3 
Denmark - - - - - - 
Estonia 1 234 380 61.58 56.63-66.41 GT3 
Finland - - - - - GT3 
France 3 1785 7814 38.19 9.19-72.96 GT3 
Germany 3 1949 3861 54.79 54.92-77.30 GT3 
Greece 1 76 96 79.17 70.41-86.76 - 
Hungary - - - - - GT3 
Ireland 1 89 330 26.97 22.31-31.90 - 
Italy 6 2961 5737 66.58 54.92-77.30 GT3 
Lithuania 1 168 384 43.75 38.82-48.74 - 
Netherlands 2 775 976 75.23 60.91-87.18 GT3 
Norway 1 484 663 73.00 69.55-76.32 - 
Poland 1 63 143 44.06 35.99-52.28 - 
Portugal 1 4 29 13.79 3.21-29.13 GT3 
Romania - - - - - GT3 
Serbia 2 271 654 41.14 28.63-54.25 GT3 
Slovenia - - - - - GT3 
Spain 5 651 1925 49.66 27.37-72.02 - 
Sweden - - - - - GT3 
Switzerland 2 1281 2199 58.27 56.20-60.33 - 
UK 2 692 805 79.56 42.36-99.54 GT3 
Total 39 12966 28949 57.46 49.82-64.93 - 

Oceania 
New Zealand 1 54 72 75.00 64.28-84.40 - 
New Caledonia      GT3 
Total 1 54 72 75.00 64.28-84.40 - 

North 
America 

Canada 1 594 998 59.52 56.45-62.55 GT3 
Costa Rica - - - - - GT3 
Mexico 3 964 2055 44.98 27.55-63.07 - 
USA 2 2036 5117 39.73 38.39-41.08 GT3 
Cuba - - - - - GT3 
Total 6 3594 8170 45.06 35.45-54.86 - 

South 
America 

Argentina 1 22 97 22.68 14.84-31.59 GT3 
Brazil 5 1021 1542 60.38 37.62-81.01 GT3 
Uruguay 1 103 220 46.82 40.25-53.44 GT3 
Colombia - - - - - GT3 
Total 7 1146 1859 53.03 33.79-71.81 - 

Africa 

Cameroon 2 286 615 46.50 42.56-50.46 GT3 
Madagascar 1 178 250 71.20 65.42-76.66 GT3 
Nigeria 2 204 406 51.76 41.76-61.70 GT3 
Congo - - - - - GT3 
South Africa - - - - - - 
Total 5 668 1271 53.46 43.26-63.52 - 

Overall Global 84 27705 59654 59.33 53.64-64.90 GT3+GT4 
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Table 2. HEV virology prevalence in domestic swine. 

Continent Country 
HEV RNA  

No. of 
studies Events Tested 

(n) 
Prevalence 

(%) 95% CI Genotype 

Asia 

Bangladesh - - - - - - 

China 26 1233 19493 10.40 7.48-13.74 Major GT4; Minor 
GT3 

India 4 30 746 3.35 0.71-7.57 GT4 
Indonesia 2 3 307 0.93 0.06-2.48 GT4 

Korea 5 162 1294 11.13 4.63-19.85 Major GT3; Minor 
GT4 

Japan 4 82 869 3.01 0.00-13.24 GT3+GT4 
Laos 2 26 455 5.69 0.01-18.78 GT4 
Philippines 1 22 299 7.36 4.65-10.62 GT3 
Vietnam 1 148 774 19.12 16.42-21.97 GT3 
Thailand 1 25 875 2.86 1.85-4.07 GT4 
Taiwan 2 82 816 10.17 0.00-43.06 GT3+GT4 
Total 48 1813 25928 8.23 6.21-10.49 - 

Europe 

Belgium 1 8 115 6.96 2.91-12.43 GT3+GT4 
Bulgaria - - - - - - 
Croatia 1 0 469 0.00 0.00-0.37 - 
Czech - - - - - GT3 
Denmark 1 48 97 49.48 39.53-59.45 - 
Estonia 1 103 449 22.94 19.16-26.95 GT3 
Finland 1 15 67 22.39 13.11-33.23 GT3 
France 6 343 5949 15.60 7.61-25.66 GT3 
Germany 1 3 120 2.50 0.31-6.24 GT3 
Greece - - - - - - 
Hungary 1 52 248 20.97 16.11-26.27 GT3 
Ireland - - - - - - 
Italy 8 311 2031 19.20 9.68-30.95 GT3 
Lithuania 1 106 470 22.55 18.88-26.45 - 
Netherlands 2 55 161 38.90 1.20-88.42 GT3 
Norway - - - - - - 
Poland 1 5 146 3.42 0.97-7.11 - 
Portugal 2 44 229 7.94 0.00-40.29 GT3 
Romania 1 6 19 31.58 12.27-54.50 GT3 
Serbia 1 51 330 15.45 11.74-19.57 GT3 
Slovenia 2 142 896 15.70 13.36-18.18 GT3 
Spain 5 64 427 11.77 4.72-21.23 - 
Sweden 2 150 603 25.40 18.14-33.42 GT3 
Switzerland - - - - - - 
UK 5 232 1483 19.31 6.05-37.45 GT3 
Total 44 1768 14422 17.19 13.16-21.61 - 

Oceania 
New Zealand - - - - - - 
New Caledonia 1 6 92 6.52 2.23-12.63 GT3 
Total 1 6 92 6.52 2.23-12.63 - 

North 
America 

Canada 2 32 200 22.70 0.00-80.63 GT3 
Costa Rica 1 19 52 36.54 23.90-50.16 GT3 
Mexico 2 28 130 10.40 0.00-56.02 - 
USA 3 366 5256 15.52 3.57-33.50 GT3 
Cuba 1 10 53 18.87 9.32-30.65 GT3 
Total 9 455 5691 18.10 8.71-29.84 - 

South 
America 

Argentina 2 59 189 47.03 0.00-100.0 GT3 
Brazil 7 123 1601 7.19 1.86-15.41 GT3 
Uruguay 1 25 150 16.67 11.09-23.09 GT3 
Colombia 1 87 250 34.80 29.01-40.83 GT3 
Total 11 294 2341 15.67 6.75-27.33 - 

Africa 

Cameroon 1 8 136 5.88 2.45-10.56 GT3 
Madagascar 1 3 345 0.87 0.11-2.19 GT3 
Nigeria 1 69 90 76.67 67.32-84.89 GT3 
Congo 1 1 40 2.50 0.00-10.42 GT3 
South Africa 1 7 160 4.38 1.66-8.18 - 
Total 5 88 771 12.29 0.01-38.70 - 

Overall Global 118 4424 49245 12.71 10.81-14.73 GT3+GT4 
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Figure 1. Global prevalence of anti-HEV seroprevalence and HEV RNA positivity among domestic 
swine. 

Next, we performed subgroup analysis of pigs at different developmental stages of their life. 
As expected, the anti-HEV seroprevalence rate increases over time, from 42.19% (95% CI 
26.79-58.40, I2 = 97%) in 0-4 month old pigs, 49.27% (95% CI 30.37-68.29%, I2 = 98%) in 5-8 
month pigs, 66.20% (95% CI 55.78-75.89, I2 = 97%) in over 9 month age pigs. In contrast, the 
positive rate of HEV RNA showed a reverse pattern, with positive rate of 17.62% (95% CI 12.83-
22.96, I2 = 91%) in pigs of 0-4 month age, 10.75% (95% CI 4.26-19.51, I2 = 89%) of 5-8 month 
age, and 6.59% (95% CI 0.86-16.27, I2 = 95%) over 9 month age (Figure 2, sFig 6 and 7).  

Considering the clear differences in husbandry and natural habitat between wild and 
domesticated pigs, we separately estimated HEV prevalence in wild boars. Based on data 
extracted from 33 studies from 19 countries/territories, we estimated that the overall anit-
HEV seroprevalence was 26.82% (95% CI 21.69-32.28, I2 = 98%) (Table 3 and 4, sFig. 8). Based 



Chapter 5 
 

68 
 

on 37 studies from 18 countries/territories, the pooled rate of HEV RNA positivity was 9.45% 
(95% CI 6.42-12.96, I2 = 96%) (Table 3 and 4, sFig. 9).  

 

 

Figure 2. Subgroup analysis of anti-HEV seroprevalence or HEV RNA positivity. 

 

Table 3. HEV seroprevalence in wild boars. 

Country 
Anti-HEV antibodies  

No. of 
studies Events Tested 

(n) 
Prevalence 

(%) 95% CI Genotype 

China 1 186 758 24.52 21.51-27.67 - 

Korea 1 1041 2736 38.05 36.24-39.88 Major GT4, minor 
GT3 

Japan 6 262 1139 19.26 10.13-30.37 Major GT3, minor 
GT4 

Thailand - - - - - GT3 
Bulgaria 1 98 240 40.83 34.68-47.13 - 
Croatia 1 311 1000 31.10 28.27-34.01 - 
Czech 1 31 366 8.47 5.82-11.56 - 
Estonia 1 81 471 17.20 13.92-20.75 GT3 
France 2 160 767 21.07 8.35-37.62 GT3 
Germany 1 81 180 45.00 37.78-52.33 GT3 
Hungary - - - - - - 
Italy 6 560 3416 33.59 15.76-54.21 GT3 
Lithuania 1 178 312 57.05 51.51-62.50 - 
Netherlands 1 293 1029 28.47 25.76-31.27 - 
Poland 1 90 290 31.03 25.83-36.49 - 
Portugal - - - - - GT3 
Romania - - - - - GT3 
Slovenia 1 87 288 30.21 25.03-35.65 - 
Spain 4 409 1299 41.51 25.30-58.72 - 
Sweden - - - - - GT3 
Switzerland 1 38 303 12.54 9.03-16.52 - 
Turkey 1 0 93 0 0.00-1.84 - 
EU/multiples 1 12 104 11.54 6.02-18.47 - 
Uruguay 1 31 140 22.14 15.62-29.43 - 
Total 33 3949 14931 26.82 21.69-32.28 - 
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Table 4. HEV virology prevalence in wild boars. 

Country 
HEV RNA  

No. of 
studies Events Tested 

(n) 
Prevalence 

(%) 95% CI Genotype 

China - - - - - - 

Korea 1 24 1859 1.29 0.82-1.86 Major GT4, minor 
GT3 

Japan 5 93 2609 3.20 2.51-3.95 Major GT3, minor 
GT4 

Thailand 1 1 31 3.23 0.00-13.33 GT3 
Bulgaria - - - - - - 
Croatia 1 17 150 11.33 6.70-16.95 - 
Czech - - - - - - 
Estonia 1 13 81 16.05 8.77-24.93 GT3 
France 2 15 637 2.35 1.28-3.71 GT3 
Germany 4 157 701 22.33 3.34-51.18 GT3 
Hungary 1 8 75 10.67 4.53-18.80 - 
Italy 10 232 1697 13.56 6.57-22.46 GT3 
Lithuania 1 86 505 17.03 13.87-20.44 - 
Netherlands 2 8 158 2.67 0.00-14.30 - 
Poland - - - - - - 
Portugal 1 24 120 20.00 13.28-27.67 GT3 
Romania 1 9 50 18.00 8.41-30.02 GT3 
Slovenia 1 1 288 0.35 0.00-1.49 - 
Spain 2 43 296 14.47 6.48-24.86 - 
Sweden 1 13 159 8.18 4.36-13.00 GT3 
Switzerland - - - - - - 
Turkey - - - - - - 
EU/multiples 1 4 104 3.85 0.83-8.58 - 
Uruguay 1 13 140 9.29 4.97-14.72 - 
Total 37 761 9660 9.45 6.42-12.96 - 

 

Given the important role of foodborne transmission, we collected data on HEV RNA detection 
rates of pork meat, liver and sausage in retailers. This generated positive rate of 9.5% (95% CI 
5.14-14.90, I2=94%), with 13.27% (95% CI 0.99-35.12, I2 =98%) in meat, 6.59% (95% CI 1.83-
13.49, I2 =92%) in liver and 11.70% (95% CI 7.62-16.47, I2 =71%) in sausage (sFig. 10). Sausage 
production represents a very large industry across the globe, particularly in Europe. Sausages 
are popular in groceries and sold in a variety of species. We thus furtherly compared the HEV 
positivity between liver sausage and pork sausage. Notably, we estimated a nearly 3-fold HEV 
positivity rate of 15.23% (95% CI 11.62-19.21, I2 =0%) in liver sausage, compared with 5.54% 
(95% CI 0.19-15.20, I2 =82%) in pork sausage (Figure 2, sFig.11-12). 

Finally, we performed sensitivity analysis for the prevalence analysis in domestic pigs and wild 
boars. In this meta-analysis, no significant change was observed by arbitrarily excluding any 
study from these groups. This low sensitivity supports the reliability of our estimation. 
However, funnel plot and Egger's test indicate the presence of publication bias (p>0.05) in 
three analyses, including seroprevalence and HEV RNA prevalence among domestic swine, 
and RNA prevalence among wild boars, which may potentially compromise the accuracy of 
prevalence estimation (sFig. 13-26). Another limitation of our study is that we were unable to 
estimate HEV prevalence in pork products at regional/country levels and clarify the original 
place of the products, due to limited data available. Because the current food production and 
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supply chains are diverse and complicated; it has become increasingly important to trace the 
origin of the contaminated products. 

In summary, we found nearly 60% domestic pigs and 27% wild boars have ever encountered 
HEV infection at global level. Nearly 13% domestic and 9.5% wild swine are experiencing active 
infection. The risk of potential foodborne transmission is highlighted by our estimation that 
around 10% commercial pork products are HEV RNA positive. However, there remains gaps of 
translating these knowledge for better understanding the global epidemiology and clinical 
burden of HEV infection in human population related to zoonotic transmission. Because HEV 
zoonosis also involves many other factors, including socioeconomic status, farming style, food 
production and supply, as well as life styles. Nevertheless, our findings have set a stage for 
future research to further study the role of swine related HEV zoonosis and to facilitate the 
development of prevention and mitigation strategies.  

(the supplementary information of this chapter can be found with this link: 
https://www.sciencedirect.com/science/article/pii/S235277142100152X?via%3Dihub) 
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Abstract 
Hepatitis E virus (HEV) is an emerging zoonotic pathogen posing global health burden, and the 
concerns in Europe are tremendously growing. Pigs serve as a main reservoir, contributing to 
pork-related foodborne transmission. In this study, we aim to simulate this transmission route 
and to assess potential interventions. We firstly established a dose-response relationship 
between the risk of transmission to human and the amount of ingested viruses. We further 
estimated the incidence of HEV infection specifically attributed to pork-related foodborne 
transmission in four representative European countries. Finally, we demonstrated a proof-of-
concept of mitigating HEV transmission by implementing vaccination in human and pig 
populations. Our modeling approach bears essential implications for better understanding the 
transmission of pork-related foodborne HEV and for developing mitigation strategies.  

Keywords: Hepatitis E virus, cross-species transmission, pork product consumption, European 
countries, Mathematical modeling 
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Hepatitis E virus (HEV), a positive-sense single-stranded RNA virus, is a leading cause of acute 
liver inflammation. It has been estimated that approximately 939 million corresponding to 1 
in 8 individuals have ever experienced HEV infection worldwide[1]. Among the eight defined 
genotypes, HEV genotypes 3 and 4 are zoonotic and primarily circulating in developed 
countries[2]. Genotype 3 HEV has been isolated from various mammals including human, swine, 
wild boar, cattle, goat, deer and rabbit, but pigs are recognized as the main reservoir 
contributing to transmission to humans[3]. HEV has been detected in the liver, gastrointestinal 
tract, blood, meat and different other organs of pigs. Association of HEV infection with 
consumption of pork-derived food products has been well-established[4,5], and consuming HEV 
contaminated food acts as an important rout of transmission.  

The concerns of health burdens caused HEV infection in Europe are tremendously growing[6]. 
In particular, chronic hepatitis E is frequently reported in Europe, especially in 
immunocompromised organ transplantation patients, which can be caused by both genotype 
3 and 4 HEV[7, 8]. Pork-related foodborne transmission is expected to largely contribute to the 
HEV burden, since consumption of pork-derived food products is common in Europe[9]. Given 
the lack of sufficient real-world data to define the exact risk and contribution of HEV 
foodborne transmission, this study aimed to estimate the burden of pork-related HEV 
foodborne transmission in four representative European countries and the effect of potential 
mitigation strategies by mathematical modeling. 

We first attempted to establish the relationship between the risk of HEV infection in human 
and the amount of acquired HEV through food consumption. By searching published studies, 
we collected human cases likely to have acquired HEV infection from a food source. HEV 
genomic RNA copy numbers of the tested food samples in shops or markets where patients 
habitually visit were also collected. In total, four studies describing 28 HEV RNA-positive 
human cases[10-13], reported from 2003 to 2014, matched the inclusion criteria. Food products 
are derived from the meat or organs of animal reservoirs including pigs[10-12] and dear[13]. By 
building a logistic dose-response regression model (see details in Supplementary Methods), 
we estimated the dose-response relation between the risk of transmission to human and the 
total accrued HEV levels from food (Fig. 1). The probability of infection by oral ingestion of one 
HEV particle is 2.5×10-9 (95% CI 6.8×10-10-1.5×10-8). The estimated orally ingested amount of 
HEV at which the probability of infection equals 50% is 8.1×106 (95% CI 2.4×106-2.0×107) viral 
genomes.  
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Figure 1. Logistic dose-dependent relationship between risk of transmission to human and the 
amount ingested HEV. HEV genomic RNA copy number is indicated by blue diamond. Model fitting is 
indicated by the curve, and confidence interval by the shade. 
 

Next, to estimate the contribution of pork-derived foodborne infection, we collected data on 
HEV incidence from four European countries, Germany, UK, France and the Netherlands. 
Information on the proportion of pork-derived food contamination with HEV in the food 
chains were also collected. Technically, we combined the logistic dose-response relationship 
described above (Fig. 1) and a model of foodborne transmission (Supplementary Methods) for 
the simulation. The foodborne transmission model describes the process from intake of 
contaminated pork food to final infection without human-to-human spread. Based on the 
simulation, the estimated incidence of pork-derived foodborne HEV transmission in the four 
countries ranges from 1/120784 to 1/2724 (Fig. 2 A-D), from 2001 to 2020. The mean 
incidence of pork-derived foodborne infection nationwide, based on the non-continuous 
estimations, is 1/4792 (95%CI 1/559749-1/1679) in Germany, 1/2117 (95% CI 1/366851-1103) 
in France, 1/29644 (95% CI 1/2693012-1/8028) in UK, and 1/8627 (95% CI 1/1478521-1/4407) 
in the Netherlands. Correspondingly, the mean number of these HEV cases per year is 17362 
in Germany, 31648 in France, 2226 in UK, and 1982 in the Netherlands, respectively.   
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Figure 2. Estimated HEV incidence of pork-related foodborne infection in four European countries. 
Estimated incidence (black triangle) in Germany (A), France (B), UK (C), and the Netherlands (D) based 
on the yearly available data of food contamination with HEV. The reported overall incidence of in each 
country is indicated by blue diamond. Trends of incidence in UK and the Netherlands were predicted 
(green curve) by linear regression incorporating monthly HEV incidence data of specific years. (E). 
Estimated incidence assuming fixed rates (10%, 30% and 50%) of pork-derived food contamination 
with HEV.   
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Because HEV incidence has been reported monthly for UK and the Netherlands[14,15], and we 
thus extracted these data to visualize the incidence trend in these two countries by a 
polynomial linear regression method. The modeled HEV incidence in UK and the Netherlands 
showed a similar shape, reaching the summit around 2015 and then gradually decreasing (Fig. 
2C and 2D). We further comparatively simulated the incidence in the four countries with the 
same levels of pork-derived food contamination with HEV (Fig. 2E). The estimated incidence 
in France is 1/8069 (95% CI 1/2188-1/732551) (10% contamination), 1/2687 (95% CI 
1/243355-1/734) (30%), and 1/1553 (95% CI 1/140265-1/428) (50%), similar to that in 
Germany but higher than that in the Netherlands and UK. 

Our simulation results collectively suggest a substantial burden of pork-related foodborne HEV 
transmission in Europe. A subsequent question is whether such risk can be prevented through 
interventions. Effective prevention of HEV transmission likely requires joint efforts from multi-
stakeholders. Here, we investigated the potential impact of applying vaccination. A 
recombinant vaccine, HEV 239, has been licensed in China, which is well-tolerated and 
effective in the prevention of hepatitis E in the general population[16]. Taking Germany as an 
example (Supplementary Methods), assuming different vaccination coverage rates (from 10% 
to 90%) implemented in the general human population, the burden of pork-derived HEV 
foodborne transmission would be reduced coverage-dependently (Fig. 3A). If targeting at a 
subpopulation with high frequency of pork-related food consumption, the burden would be 
reduced by 5.3% (with 10% coverage), 10.0% (20%), 14.9% (30%), 24.3% (50%), 33.6% (70%), 
and 43.1% (90%), respectively (Fig. 3B).  

Surveillance and interventions throughout the pork production chain are essential for 
preventing HEV foodborne transmission. A previous study of Switzerland shows that active 
interventions in food chains is likely to prevent most human cases[17]. However, the current 
food production and supply chains are diverse, and it has become increasingly difficult to trace 
the origin of the contaminated products[18]. We believe vaccinating pigs is an attractive option 
to mitigate the HEV burden in human population, although no approved vaccine is available 
for preventing HEV infection in pigs. The most important effects of vaccinating pigs are 
expected to reduce the susceptibility of uninfected animals and the contagiousness of animals 
once get infected[19]. Here, we estimated the impact of applying vaccine in pigs on the risk of 
HEV transmission to humans with the model of Germany (Supplementary Methods). We 
assumed that the vaccination targets piglets of 10 weeks and is completed in two weeks. We 
chose this delayed approach of vaccination considering that early vaccination (e.g. for pig of 
4 weeks) is likely to be interfered by maternal antibody that produces a strong immunity in 
newborn piglets.   
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Figure 3. The impact of vaccinating human population on pork-related foodborne HEV transmission. 
The licensed HEV vaccine 293 was assumed to be applied in Germany. A three-dose vaccination would 
be completed in six months, and the corresponding efficacy after one dose (0 month), two doses (one 
month) and three doses (six months) is 95·5% (95% CI 66·3-99·4%), 100% (95% CI 9.1-100.0%), and 
100% (95% CI 72·1-100·0%), respectively. The coverage rate of vaccination assumingly ranges from 10% 
to 90%. The effects estimated in general population (A) and a subpopulation with high frequency of 
pork food consumption (B).  
 

Because HEV vaccine for pigs is not available, we thus theoretically simulated the effects 
assuming reduction of the susceptibility of uninfected animals (Fig. 4A) and the 
contagiousness of infected animals (Fig. 4B), respectively. Based on relationship between 
human risk and levels of virus ingested (Fig.1), we were able to estimate the infections in both 
pig and human populations. For example, in the first scenario (Fig. 4A), a 78% decrease of 
susceptibility of uninfected animals would result in a 13.7% (95%CI 3.7%-45.9%) reduction of 
HEV incidence in pigs at slaughterer age, and a 80% (95%CI 40.9%-99.9%) reduction of human 
cases. In the second scenario (Fig. 4B), a 14% reduction of the contagiousness of infected 
animals would lead to a 36% (95%CI 14.5%-68.6%) reduction of HEV incidence in animals at 
slaughter age, and a 80% (95%CI 72.2%-89.8%) decrease of human cases.  

Mapping transmission across the human-animal interface is one of the most important 
challenges in the control of cross-species infectious diseases in one health. By retrieving 
published data and examining the drivers of HEV foodborne transmission, we have 
successfully built a relationship between human risk and the amount of ingested viruses. We 
observed a dose-dependent effect, meaning that the probability of acquiring infection 
associates with the quantity of active viral particles ingested orally in a meal. However, in this 
study, we did not consider the differential susceptibility of different human populations, due 
to the lack of sufficient data in this respect. The collected data on human cases suggest that 
susceptibility to HEV infection by consuming pork-derived food appears to be independent of 
age, but is higher in immunocompromised patients even when the viral titer in contaminated 
pork product is very lower[12].  
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Figure 4. The impact of vaccinating pigs on pork-related foodborne HEV transmission. (A). The effects 
of reducing the susceptibility of uninfected animals by vaccination on HEV infections in both pig and 
human populations were simulated. (B). The effects of reducing the contagiousness of infected animals 
by vaccination on HEV infections in both pig and human populations.  
 

Although HEV foodborne transmission dose not develop a human-to-human spread, 
consistent dietary exposure of a population still enables constant transmission. The 
transmission rate is conditional corresponding to the levels of contaminated food and 
consumption style. In this study, we only selectively estimated the burden of pork-derived 
foodborne HEV transmission in four European countries, because of the scarcity of available 
real-world data required by our mathematical models. But our approach would be applicable 
for any other countries, if the relevant data become available. Importantly, the estimations by 
our model appear robust. For example, our estimated mean number of cases of pork-derived 
foodborne infection in Germany based on estimated incidences in the year of 2011, 2015, and 
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2020 is 17945. This is close to the previous estimation (1500 cases) in Switzerland[20], 
considering the size of its population is around one tenth of Germany.  

Given the substantial burden of pork-derived foodborne HEV transmission as estimated, it is 
essential to develop effective prevention strategies. We hypothetically simulated the 
applications of vaccine in both human and pig populations, and showed the effectiveness of 
both approaches. Nevertheless, a major challenge of applying HEV vaccine in general 
population is the acceptance, although one vaccine has already been licensed in China. 
Interestingly, we have demonstrated a proof-of-concept of applying vaccine in high risk 
population with high frequency of consuming pork products (Fig. 3B). This concept is in line 
with a large Phase IV clinical trial evaluating the effectiveness in protection of pregnant 
women by HEV vaccine in Bangladesh (ClinicalTrials.gov Identifier: NCT02759991).  

Our results simulating vaccination in pigs quantitatively illustrated the reduction of HEV 
prevalence in both pig ad human populations. However, HEV infection does not affect pig 
health or the economic performance of swine herds. Intuitively, it would be a challenge to 
motivate the development of such a vaccine and the subsequent applications by farmers. 
Therefore, future studies are required to in-depth evaluate the cost-benefit of vaccinating pigs 
by incorporating the public health consequences on human population. 

In summary, this study has established the relation between the risk of transmission to human 
and the amount of ingested HEV. We estimated the burden of foodborne HEV infection in four 
European countries, and demonstrated proof-of-concept of mitigating transmission by 
implementing vaccination in human and pig populations. Our mathematical modeling 
approach bears essential implications for better understanding the public health burden and 
developing mitigation strategies for foodborne HEV as well as many other pathogens. 
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Supplementary information 
 
Supplementary Methods  
 
1. Relationship between human risk and HEV levels in food exposure.  

We collected human cases likely to have acquired infection from a food source of HEV by 
searching related literatures or case reports. Data on levels of genomic RNA copy were 
extracted and prepared. Indirective data attained by testing samples stored in shops or 
markets where patients habitually visit were also collected in consideration of shortage of 
information. Over the study period, four studies describing 28 RNA-positive human cases[1-4], 
reported from 2003 to 2014, matched the inclusion criteria. Food source is products made 
from the meat or organs of animal reservoirs including pigs (three literatures) and dear (one 
literature). It is assumed that data of viral genomic levels follow a uniform distribution if 
merely a range was given.  

A logistic dose-response regression model was used to describe the relationship between 
human risk and HEV genomic levels. The expected number of human cases caused by counts 
of HEV is 𝐹(log	(𝑐𝑜𝑢𝑛𝑡)), where 𝐹(𝑥) is given by  

𝐹(𝑥) = 0
01234	(5(657)/9)

, 

where 𝑚 and 𝑠 are the midpoint and scale parameters of the logistic function, respectively. 
Parameter estimation was performed using maximum likelihood method. To estimate model 
fitness, we introduced a log-linear model and compared their performances with likelihood 
ratio test or Akaike information criterion. The robustness of the better model was assessed by 
bootstrapping. As a result, the logistic regression model offers a better fit than the log-linear 
model over 97% of the time.  

2.Simulating the incidence of pork-derived foodborne infection  

We also collected data on HEV incidence of four European countries, namely, Germany, UK, 
France and the Netherlands. Data of non HEV genotype 3 strain were excluded. Information 
on proportion of pork-derived food contamination in the food chains were also collected for 
modeling contribution of foodborne infection to HEV cases (Supplementary table 1).  

Specifically, we simulated the burden of foodborne infection by combining the logistic 
regression model described above and a model of foodborne transmission. The foodborne 
transmission model describes a process from intake of contaminated pork food to final 
infection without a human-to-human spread. We introduced a SEIR framework for this 
foodborne transmission part,  
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<=
<>
= 𝛽@𝑓B𝑆 − (𝜇 + 𝜎)𝐸, 

<I
<>
= 𝜎𝐸 − (𝜇 + 𝛾)𝐼, 

where 𝐸 , 𝐼 , and 𝑆  denote the numbers of exposed, infected and susceptible persons, 
respectively, while it is assumed that all people in a population is susceptible; 𝜇 is the per 
capita death rate, 𝛾  is called the removal or recovery rate, and 𝜎  is the rate at which 
individuals move from the exposed to the infectious classes. 𝑓B  represents frequency of meat 
consumption of class 𝑖, and 𝛽@  is the foodborne transmission rate. 𝛽@  is calculated from a 
simplified dose-response equation simulating an oral-to-fecal infection[5],  

𝑃BN@ = 1 − 𝑒5QR = 1 − 𝑒5
S
TUV, 

of which 𝑃BN@ is the probability of infection, 𝑟 is the probability of infection per HEV particle 
ingested and estimated in the logistic regression model above, and 𝐷 is amount of HEV dose 
ingested. 𝛽 can be further expanded as, 

𝛽@ = 2𝑟𝐷 = 2𝑟𝑑𝑚𝑝𝑓Q, 

where 𝑑 denotes mean dose of HEV per gram contaminated food contains, 𝑚 is mean account 
of pork product ingested in a meal,  𝑝 is proportion of food contamination, and 𝑓Q	is frequency 
of raw pork-derived food consumption. Required parameters and data are summarized in 
Supplementary table 1-4.  
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Supplementary table 1. Parameters involved in the pork-derived foodborne transmission 
model 

 

Supplementary table 2. Frequency of pork food consumption in four European countries from 
high to low. 

Area Frequency of meal with pork food Number or proportion of the consumers  Reference  
Germany  everyday  20.60% [9] 

≥ once a week 53.30% 
≥ once a month 11.30% 
Never  14.60% 

France everyday  11 [10] 
≥ once a week 385 
≥ once a month 142 
≤ once a month 31 

UK ≥ 4.5 times a week 35768 [7] 
2.25-4 times a week 102360 
1.25-2 times a week 95911 
0.25-1 times a week 170708 
never 29613 

the Netherlands everyday 5.40%  [11] 
≥ once a week 35.2% 
≥ once a month 31.9% 
≤ once a month 27.5% 

 

Supplementary table 3. Data on food contamination of specific years in four European 
countries.  

Area Year Food sources Pork-derived food type Incidence (%) Reference 
Germany 
  
  
  
  
  
  

2011 grocery store Liver 8/200 (4) [12] 
2015 
  
  

retail 
  

sausages 
  
  

13/50 (26) [13] 
  
  

11/50 (22) 
1/10 (10) 

2020 
  
  

grocery & butcher 
  

liver sausage 5/40 (13) [14] 
  
  

liver pate 6/40 (15) 
pork sausage 0/10 (0) 

Netherlands 
  
  
  
  
  
  
  
  
  
  

2007 butcher  Liver 4/62 (6.5) [15] 
2016 
  
  
  
  
  
  

market 
  
  
  
  
  

Liver 10/79 (12.7) [8] 
  
  
  
  
  
  

Liverwurst 70/99 (70.7) 
liver pate 62/90 (68.9) 
fresh sausage 0/103 (0) 
pork chop 0/98 (0) 
wild boar 0/52 (0) 
Total 142/521 (27.3) 

2017 retail 
  
  

sausage 
 

14/90 (15.6) [16]  
  2018 23/113 (20.4) 

2019 7/52 (13.5) 
France 
  
  
  
  
  

2010 market raw liver sausage 7/12 (58.3) [17] 
2014 
  
  
  

market 
  
  

figatelli & fitone 42/140 (30) [18] 
  
  

liver sausage 49/169 (29) 
Quenelles 13/55 (25) 
dried salted livers 7/230 (3) 

2013 market liver sausage 1/4 (25) [19] 
UK 
  

2010 retail Liver 1/76 (1.3) [20] 
2012 butcher Sausages 6/63 (9.3) [21] 

Index Meaning Value Source  
𝛾 recovery rate 1/40 [6] 

𝜎 rate at which individuals move from the exposed to 
the infectious classes 1/20 [6] 

𝑟 probability of infection per HEV particle ingested 2.5×10-9 estimated 
𝑚 account of pork product ingested in a meal (gram) 50-150 [7] 

𝑑 
mean dose of HEV per gram contaminated food 
contains (genomic copy) 1×104 (110-7×104) [8] 
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Supplementary table 4. Demographic parameters in four European countries 

Parameters Germany France UK the Netherlands 
Size of population 83.19×106 65.40×106 68.18×106 17.13×106 
Birth rate (per 1000 people yearly) 9.397 11.042 11.488 10.101 
Mortality rate (per 1000 people yearly) 11.3 9 9.1 9.2 

 

 

3. Simulating the impact of human vaccination  

We used the model above to estimate the impact of human vaccination on the risk of pork-
derived food exposure. We referred the features and efficacy of the recombinant vaccine HEV 
239, a HEV vaccine licensed in China [22]. The three-dose vaccination completes in 6 months, 
and corresponding efficacy after one dose (0 month), two doses (one month) and three doses 
(six months) is 95·5% (95% CI 66·3–99·4%), 100% (95% CI 9.1-100.0%), and 100% (95% CI 72·1–
100·0%), respectively. Effect of vaccine was estimated by offering different coverage rates for 
the whole population or a specific group with high frequency of pig meat consumption.  

4.Simulating the human benefits of pig vaccination 

We performed this estimation based on a delayed vaccination, a program applied to piglets 
of 10 weeks and completing in two weeks. We select delayed vaccination as that early 
vaccination is likely to be intervened by maternal antibody that produces a strong immunity 
in newborn piglets but gradually decays. It is assumed that the pig vaccine mainly reduces HEV 
infectiousness and susceptibility in pigs, respectively.  

We quantified the impacts of vaccinations by introducing a HEV transmission in a pig herd. 
The simulation adopts a SEIR framework and describes how HEV transmits in animals in the 
pig farm. Specifically, in a wean-to-finish farm, pigs enter the herd at a weaning age of 4 weeks, 
after which they pass through three different stages: weaners (4-9 weeks of age), growers (10-
12 weeks of age) and fatteners (13-26 weeks of age), until slaughter at 26 weeks of age. The 
pig herd is further subdivided to susceptible, exposed, infectious and recovered animals 
(Supplementary figure 1). It is assumed that the farm adopts a 5-week batch management 
system, in which the herd divides into four pig groups, and each move in with a five-week 
interval. The total cycle is completed after 20 weeks. the size of the herd is assumed to be 
around 3000.  
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Supplementary figure 1. In a wean-to-finish farm, a pig herd is divided to weaners (0-4 weeks), 
growers (5-9 weeks) and fatteners (10-24 weeks), and further subdivided to susceptible, exposed, 
infectious and recovered animals for modeling. 
 

Reduction of infectiousness is described by factor 𝜌, varying between 0 (no effect) and 1 (full 
effect). The values of transmission factor 𝛽] in pig herd changes according to age periods[23],  

𝛽] = ^
𝛽7,																			0~9	𝑤𝑒𝑒𝑘𝑠
𝛽e(1 −

f>
0g
),				10~12	𝑤𝑒𝑒𝑘𝑠

𝛽e(1 − 𝜌),					13~26	𝑤𝑒𝑒𝑘𝑠
, 

where the subscripts 0 denote the parameter values without vaccination,  𝑡 is time elapsed 
since pigs enter the period, and 𝛽7 is transmission rate for pigs with maternal immunity from 
immune mothers. Specifically, 

𝛽7 = 𝛽e(1 − 𝑒5e.ek>) [5] 

The SEIR framework of HEV transmission in pigs can be expanded as,  

<=l
<>
= 𝛽<𝐼<l𝑆B + 𝛽BN<𝐼BN<l𝑆B − m𝜇] + 𝜎]n𝐸B, 

<Il
<>
= 𝜎]𝐸B − (𝜇] + 𝛾])𝐼B, 

where 𝑆B, 𝐸B  and 𝐼B	denote the number of susceptible, exposed and infectious pigs in patch 
class 𝑖. 𝛽<  is direct transmission rate for piglets in a pen, and 𝛽BN<  is indirect transmission rate, 
or oral-to-fecal transmission rate, between different pens. 𝜇], 𝜎], and 𝛾]  are the mortality 
rate, the rate moving from the exposed to the infectious classes, and the removal or recovery 
rate of pigs, respectively. The pig herd was initially susceptible and an infectious piglet was 
populated before model running. 𝛽BN<	can be further expanded as, 

𝛽BN< = 2𝑓]𝑟]𝐷(1 − 𝑐), 

of which	𝑓]	is the fraction of pens with infectious pigs, 𝑟] is the probability of pig infection per 
HEV particle ingested, 𝐷 is amount of HEV dose shed by pigs in the nearby pens, and 𝑐 is the 
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clean rate of the room where pigs are kept.  

Thus, the adjusted transmission rate of foodborne transmission in human is,  

𝛽@ = 2𝑟𝑑𝑚o𝑝p𝑓Q, 

where 𝑝p is the new proportion of food contamination, estimated based on the decreased 
prevalence in vaccinated pigs at slaughter age, and 𝑚o  is the new mean account of pork 
product sourced from vaccinated pigs and equals to 𝑚(1 − 𝑝). Generally, vaccine reduces 
HEV infectiousness in animals by decreasing the viral dose in the animal body[24]. 

For vaccination mainly reducing viral susceptibility, the SEIR framework of HEV transmission 
in pigs can be adjusted as,  

<=l
<>
= 𝛽<𝐼<l𝑆B + 𝛽BN<𝐼BN<l𝑆B − m𝜇] + 𝜎]n𝐸B, 0~9	𝑤𝑒𝑒𝑘𝑠 

<=l
<>
= 𝛽<𝐼<l𝑆B(1 −

f>
0g
) + 𝛽BN<𝐼BN<l𝑆B(1 −

f>
0g
) − m𝜇] + 𝜎]n𝐸B, 10~12	𝑤𝑒𝑒𝑘𝑠 

<=l
<>
= 𝛽<𝐼<l𝑆B(1 − 𝜌) + 𝛽BN<𝐼BN<l𝑆B(1 − 𝜌) − m𝜇] + 𝜎]n𝐸B, 13~26	𝑤𝑒𝑒𝑘𝑠 

where the transmission factor is independent of factor 𝜌. The vaccination would expectedly 
reduce the prevalence of HEV in animals at slaughter age, and finally influence the fraction of 
food commination. Required parameters and data are summarized in Supplementary table 5.  

 

Supplementary table 5. Parameters involved in the pig transmission model 

 

 

 
 

 

 

 

  

Index Meaning Mean value Source 
𝛽< direct transmission rate for piglets in a pen 0.16 (0.082-0.29) [25] 
𝜇] natural death rate of pigs 0.00028 day-1 [26] 

𝜎] rate at which pigs move from the exposed to the infectious 
classes, its reciprocal determines the average latent period 1/6 [27] 

𝛾] the HEV removal or recovery rate of pigs, its reciprocal 
determines the average infectious period 1/24 (1/39-1/13) [25,27] 

𝑟] probability of pig infection per HEV particle ingested 1.3×10−9 [5] 
𝐷 amount of HEV contained in daily ingested feces  1×10−7 [5] 
𝑐 the clean rate of the room where pigs are kept 0.5 assumed 
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Abstract 

Background and aim. Hepatitis E virus (HEV) infection causes severe maternal and fetal 
outcomes in pregnant women. These patients are exclusively from resource-limited regions 
with genotype 1 HEV infection, but not from western countries with genotype 3 prevalence. 
Since the circulating strains in China have evolved from the waterborne genotype 1 to the 
zoonotic genotype 4 HEV in the past decades, this study aims to evaluate the prevalence and 
clinical features of HEV infection in a large cohort of pregnant women in Inner Mongolia, China. 
Methods. A total of 3278 pregnant women who visited the Inner Mongolia Maternal and Child 
Care hospital during 2018 were enrolled. Serum samples were examined for anti-HEV IgG and 
anti-HEV IgM antibodies using ELISA. Demographic information, results of clinical biochemical 
tests, maternal and neonatal outcomes were collected.	Results. Among the recruited 3278 
pregnant women, 6.0% were anti-HEV IgG antibody positive, 0.3% were anti-HEV IgM 
antibody positive and 0.3% were positive for both anti-HEV IgG and anti-HEV IgM antibodies. 
HEV viral RNA was not detected. Pregnant women with recent/ongoing HEV infection 
indicated by anti-HEV IgM positivity have slightly higher ALT level, and potential risk of 
developing hyperlipidemia, preterm delivery and neonatal jaundice. Conclusions. These 
findings indicated that HEV infection is associated with a possible increase in adverse maternal, 
fetal and neonatal outcomes in our cohort. Thus, the burden of HEV infection in pregnant 
women in China appears distinct from resource-limited regions and western countries. 
Nevertheless, future studies are required to confirm and extend our findings. 

Keywords: Hepatitis E virus, Pregnant women, Sero-Prevalence, Outcomes, Risk factors, China 
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Introduction 

Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that represents as a 
leading cause of acute viral hepatitis globally. There is only one single serotype of HEV, but 
classified into eight genotypes. Anti-HEV IgM antibodies can be detected shortly after the 
infection followed by the appearance of anti-HEV IgG antibodies. The presence of anti-HEV 
IgM antibodies indicates recent/ongoing infection, whereas the presence of IgG antibodies 
alone indicates previous infection[1]. Genotypes 1 and 2 HEV exclusively infecting humans are 
found mainly in developing countries, and responsible for many water-borne outbreaks. In 
contrast, HEV genotypes 3 and 4 are zoonotic and responsible for sporadic infections mainly 
in developed countries[2-5].  

Although HEV infection is usually acute and self-limiting in the general population, infection 
in pregnant women can cause severe outcomes including fulminant hepatic failure (FHF) with 
fatality rate up to 30%[6]. FHF resulted from fulminant hepatitis is the main cause of high death 
rate among pregnant women, especially in the third trimester[7-9]. These patients are almost 
exclusively from recourse-limited regions with genotype 1 HEV infection, but not from 
western countries with prevalence of genotype 3 HEV. Recently, studies from Namibia and 
China have indicated that genotype 2 and 4 HEV can also negatively affect the clinical 
outcomes of pregnant women[4,10].  

China is an endemic area for HEV. In 1991, there was a large outbreak occurred in Xinjiang 
provide, caused by genotype 1 HEV. The attack rate in pregnant women was significantly 
higher than that of the non-pregnant population. This resulted in severe clinical outcomes in 
pregnant patients, with fatality rate of 5.88% and abortion rate of 17.64%[6,11]. Of note, the 
epidemiology of HEV is dramatically changing in China. Currently, genotype 4 instead of 1 is 
circulating in the population. It is zoonotic and supposed to be more pathogenic[12]. This study 
aims to investigate the prevalence and clinical features of HEV in a large hospital-based 
population cohort of pregnant women in Inner Mongolian. Inner Mongolian is one of the five 
autonomous regions for ethnic minorities in China, including Han, Mongolian, Hui, Ewenki 
Manchu and Daur. It is a less developed area with animal husbandry as the mainstay of 
economy. Therefore, this region is ideal for studying diseases associated with genetics, 
environmental factors and life styles.   
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Materials and methods 

Study design 

Pregnant women who visited the Inner Mongolia Maternal and Child Care hospital from 
January to December, 2018 were enrolled. Demographic information, results of clinical 
biochemical tests, maternal and neonatal outcomes were collected from the hospital’s 
computerized pregnancy information database. A control non-pregnant cohort of 290 
participants who attended physical examination in Inner Mongolia was included. The records 
of all participants were anonymously analyzed. All participates provided informed consent 
that allow future testing of archived bio-samples including leftover serum. This study was 
approved by ethical committee of Inner Mongolia Maternal and Child Care Hospital, and 
Northwest Minzu University, China. 

Laboratory tests of HEV infection  

Serum samples of pregnant women were screened for the presence of anti-HEV IgG and IgM 
antibodies using commercially-available enzyme immunoassay kits (Wantai Biological 
Pharmacy Enterprise, Beijing, China). Every 30 samples were pooled for detecting HEV viral 
RNA by conventional qRT-PCR. All anti-HEV IgM positive samples were again tested for HEV 
RNA using commercially available Fluorescence Quantitative PCR kit (Beijing Kinghawk 
Pharmaceutical CO., LTD, Beijing, China) according to the manufacturer’s instructions. 

The anti-HEV IgM antibody positive and HEV RNA negative samples were further tested using 
nested RT-PCR. Total RNA was extracted from the serum using the QIAamp Viral RNA mini-kit 
(Qiagen, Germany) according to the manufacturer’s instructions. cDNA was synthesized from 
8 μl purified RNA using 2 μl reverse transcriptase (promega, USA). A nest-PCR was carried out 
to produce a 348-nucleotide amplicon from HEV open reading frame 2 (ORF2). Briefly, the first 
round PCR was in a 20 μl reaction, including 5 μl cDNA, 10 μl Green Taq Mix (Takara, Japan), 1 
μl primers (Forward, 5-AATTATGCYCAGTAYCGRGTTG-3. Reverse, 5−CCCTTA(G) TCC(T)TGCTGA 
(C)GCATTCTC-3) and 4 μl ddH2O. The PCR parameters including a denaturation step at 94 ◦C 
for 5 min, followed by 35 cycles of denaturation for 30 s at 94 ◦C, annealing for 30 s at 42 ◦C, 
extension for 50 s at 72 ◦C, and a final incubation at 72 ◦C for 5 min. The second-round PCR 
was performed using 5 μl of first-round PCR product and internal primers (forward, 5-
GTT(A)ATGCTT(C)TGCATA(T)CATGGCT-3. reverse, 5-AGCCGACGAAATCAATTCTGTC-3), and 
parameters were the same with that in the first-round, except shortening the extension time 
to 30 s.  

Statistical analysis  
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SPSS version 13.0 (Chicago, IL, USA) was used to perform all the statistical analysis. Statistical 
analysis was performed by univariate analysis. Significance was set at P<0.05. 

Results 

HEV sero-prevalence 

In total, 3278 pregnant women were enrolled for HEV screening. The overall sero-prevalence 
of anti-HEV IgG and IgM antibodies was 6.62% (217/3278). 6.0% (196) were anti-HEV IgG 
antibody positive IgM antibody negative, indicating past HEV infection. 0.62% (21) were anti-
HEV IgM antibody positive, including 10 anti-HEV IgM and IgG positive and 11 anti-HEV IgM 
positive IgG negative, indicating recent/ongoing infection (Fig. 1). In the non-pregnant cohort, 
13 out of 290 samples (4.5%) were positive for anti-HEV IgG, but none was positive for anti-
IgM antibody. Detection of HEV RNA in patient blood and stool is essential to conform the 
active infection[1]. However, we were not able to detect viral RNA by pool of every 30 serum 
samples and in any of the individual anti-HEV IgM antibody positive serum samples, whereas 
stool samples were not available for these participants.  

Fig 1. Study population .3278 women were recruited and screened. Among these samples, 6.0% were 
anti-HEV IgG positive, 0.3% were anti-HEV IgM positive and 0.3% were positive for both anti-HEV IgG 
and anti-HEV IgM respectively  
 

Demographic characteristics and potential association with recent/ongoing 
HEV infection  

We next performed analysis on the characteristics of HEV sero-positive pregnant women 
(Table 1). We focused on the nested-cohort of the 217 sero-positive participates, and this 
enabled us to compare the differences between recent/ongoing with past infection as the 
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control. All 217patients were classified into four groups according to the status of anti-HEV 
IgG or/and IgM antibody positivity. There is no significant difference regarding pregnant 
trimester, mean age, childbearing history, residence area and profession. Interestingly, 
ethnicity in particular Tujia people appears to have higher rate of recent/ongoing infection 
(IgM antibody positivity). But this sub-population is too small to draw firm conclusion.  
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Blood biochemical profiling  

Regarding blood biochemical parameters, there is no significant difference for mean 
hemoglobin, mean platelet count, mean serum albumin level, median aspartate 
aminotransferase (AST) level and median alkaline phosphatase level. Interestingly, median 
alanine aminotransferase (ALT) level among anti-HEV IgM positive group is significantly higher 
compared with that in the IgG antibody positive IgM antibody negative population (Table 2). 
Because the level of ALT increase is very mild, it is difficult to conclude whether this is related 
to possible induction of liver injury by HEV infection.  

Pregnancy complications  

To assess the potential impact of HEV infection on maternal outcome, we analyzed eight 
variables including postpartum hemorrhage, premature rupture of membranes, maternal mild 
anemia, intrauterine asphyxia, pregnant hypertension, pregnant hyperlipidemia, gestational 
diabetes mellitus and severe preeclampsia. No significant differences were observed between 
anti-HEV IgM antibody positive and the control group, except for pregnant hyperlipidemia at 
the second trimester (P = 0.03) (Table 3). None of the sero-positive pregnant women died in 
our study.   
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Fetal and neonatal outcomes  

To finally assess the impact on fetal and neonatal outcomes, eight variables were analyzed, 
including preterm delivery, mean Apgar values, precipitate labour, caesarean section, 
neonatal weight, neonatal death, neonatal retinal hemorrhage and neonatal jaundice. The 
rates of preterm delivery and neonatal jaundice appear to be higher in anti-HEV IgM antibody 
positive compared to the anti-HEV IgG antibody positive IgM antibody negative control group 
(Table 4).   
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Discussion  

The overall sero-prevalence of HEV was 6.62% in our large cohort of over 3,000 pregnant 
women in Inner Mongolia China. 6.0% of the samples were anti-HEV IgG antibody positive, 
0.3% were anti-HEV IgM antibody positive, and 0.3% were positive for both anti-HEV IgG and 
anti-HEV IgM antibodies. In our non-pregnant control cohort, we found a prevalence rate of 
anti-HEV IgG antibody as 4.5%. This is comparable but slightly lower than that in pregnant 
women. Of note, the average age (18.84 ± 0.78 years old) of the control group is slightly 
younger than the average pregnant age (about 26) in China (Supplementary Table 1). It is well-
recognized that age is associated with anti-HEV IgG prevalence[1], but we were not able to find 
a perfectly age-matched control cohort.  

The sero-prevalence in our pregnant cohort is relatively lower than the average level (11.66-
41.71% for IgG and 0.43—2.8 % for IgM) in the general population in China[13], suggesting that 
pregnancy itself is likely not a risk factor of HEV infection. It is also lower than the average 
level of Chinese pregnant women reported in other studies, which is 10.24-16.2% for IgG and 
2.56-3.2% for IgM[14,15]. Our overall sero-prevalence rate is much lower than the results of 
similar studies done in Egypt (84.3%), Sudan (41%), India (33.6%) and other developing 
countries[16-18]. In these endemic regions, HEV is predominantly transmitted via the faecal-oral 
route due to water contamination. This is especially common in rural areas having poor 
sanitation[19]. In China, local sanitation standards have been greatly improved during the past 
decades. With changes of the circulating genotype, HEV is mainly transmitted through 
contaminated food and causes sporadic infection by genotype 4 HEV[20,21]. We failed to detect 
HEV RNA, and therefore were not able to confirm the genotype. However, genotype 4 HEV 
has been widely detected in neighboring regions of Inner Mongolia[22-24].  

The low prevalence of HEV in Inner Mongolia may be associated with their dietary habit and 
life style. This region has large sheep and cow, but not swine farming. The local people mainly 
feed on mutton and milk products, whereas pigs are the main reservoir for food-borne 
transmission of HEV, although the host for HEV is not only restricted to swine[2]. We evaluated 
several factors including trimester, mean age, childbearing history, residence area and 
profession, but these were not associated with HEV infection. There may be potential relation 
with ethnicity that Tujia group appears to have higher rate of recent/ongoing infection. 
However, Tujia is not the main ethnicity in Inner Mongolia China and there is very limited 
patient number in our study to draw firm conclusion.  

Severe clinical outcomes in pregnant women infected with HEV have been exclusively 
recorded from Asian and African countries, in particular resource-limited regions. In outbreak 
settings, HEV infection results in worse maternal and fetal outcomes, including jaundice, 
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malaise, anorexia, hepatalgia, nausea, vomiting and lethargy[6,25-27]. In hospital-based settings, 
pregnant women showing jaundice due to acute viral hepatitis have higher rates of FHF and 
mortality compared to women without HEV infection[10,28]. HEV infected pregnant women also 
have a significantly higher risk of developing obstetric complications, and poor fetal and 
neonatal outcomes[29-31].  

The largest HEV outbreak lasting from September 1986 to April 1988 was reported from 
Xinjiang, China. 120,000 suspected and 707 death cases were recorded with an overall attack 
rate of 3.0%. The attack rate in pregnant women was significantly higher resulting in severe 
clinical outcomes with fatality rate of 5.88 % and abortion rate of 17.64%[6,11]. In recent decade, 
to our knowledge, such severe clinical complications have not been reported in China. 
However, elevation of the liver injury marker ALT has been reported in pregnant women with 
anti-HEV IgM positivity in Yunnan[15], but not in Jiangsu province[14]. Genotype 4 HEV infection 
associated adverse maternal outcomes among pregnant women were reported in 
Qinhuangdao, but no death occurred[10]. In our study, we observed a slight elevation of ALT, 
and potential relation to pregnant hyperlipidemia in the participants with recent/ongoing HEV 
infection. However, the patient number of anti-HEV IgM positive was too small to draw firm 
conclusions.  

Vertical transmission from HEV infected mothers can cause poor fetal and neonatal 
outcomes[32,33]. The risk of vertical transmission was 100% in an antecedent study among the 
pregnant women. The mothers with active diseases gave birth to babies who were either 
preterm or had anicteric hepatitis[34]. Similarly, in another study, among the 186 deliveries, 84% 
were preterm. But a significantly increased risk of preterm deliveries occurred in HEV-infected 
women[28]. In our study, the babies born to mothers with anti-HEV IgM antibody positive were 
inclined to preterm (14.3%) or jaundice (23.5%) compared to those only with anti-HEV IgG 
antibody positive. Again, because of limited number of anti-HEV IgM positive patents, the 
effects on fetal and neonatal outcomes require to be further validated.  

There are some limitations in this study. We did not collect information regarding the history 
of women with HEV prior to enrollment or in the follow-up. These data may be helpful for 
better understanding the risk factors for HEV infection. Pregnant women may be co-infected 
with other hepatotropic pathogens, which may also contribute to the clinical outcomes, but 
these were not tested in this study. We could not detect HEV RNA, therefore fail to confirm 
the exact genotype. Finally, the patient number with anti-HEV IgM positivity was too small to 
draw firm conclusions.  

In summary, we report the rate of HEV sero-prevalence of 6.62% among pregnant women in 
Inner Mongolia, China, with IgG antibody positivity of 6% and IgM antibody positivity of 0.6%. 
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Importantly, recent/ongoing HEV infection might be associated with a slight increase in 
adverse pregnancy outcomes, obstetric complications, and poor fetal/neonatal outcomes. 
However, the patient number recent/ongoing HEV infection was too small and caution should 
be taken in interpreting the clinical outcome associations. Thus, future research is warranted 
to further confirm our findings in large populations in China, in order to better understand 
and control this health issue. 
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The ongoing epidemic of coronavirus disease 2019 (COVID-19) is devastating, despite 
extensive implementation of control measures. The outbreak was sparked in Wuhan, the 
capital city of Hubei province in China, and quickly spread to different regions of Hubei and 
across all other Chinese provinces.  

As recorded by the Chinese Center for Disease Control and Prevention (China CDC), by Feb 16, 
2020, there had been 70641 confirmed cases and 1772 deaths due to COVID-19, with an 
average mortality of about 2·5%.1 However, in-depth analysis of these data show clear 
disparities in mortality rates between Wuhan (>3%), different regions of Hubei (about 2·9% 
on average), and across the other provinces of China (about 0·7% on average). We postulate 
that this is likely to be related to the rapid escalation in the number of infections around the 
epicentre of the outbreak, which has resulted in an insufficiency of health-care resources, 
thereby negatively affecting patient outcomes in Hubei, while this has not yet been the 
situation for the other parts of China (figure A, B). If we assume that average levels of health 
care are similar throughout China, higher numbers of infections in a given population can be 
considered an indirect indicator of a heavier health-care burden. Plotting mortality against the 
incidence of COVID-19 (cumulative number of confirmed cases since the start of the outbreak, 
per 10 000 population) showed a significant positive correlation (figure C), suggesting that 
mortality is correlated with health-care burden.  
 

In reality, there are substantial regional disparities in health-care resource availability and 
accessibility in China.2 Such disparities might partly explain the low mortality rates-despite 
high numbers of cases-in the most developed southeastern coastal provinces, such as Zhejiang  
(0 deaths among 1171 confirmed cases) and Guangdong (four deaths among 1322 cases 
[0·3%]). The Chinese government has realized the logistical hurdles associated with medical 
supplies in the epicentre of the outbreak, and has strived to accelerate deliveries, mobilize the  
country’s large and strong medical forces, and rapidly build new local medical facilities. These 
measures are essential for controlling the epidemic, protecting health workers on the front 
line, and mitigating the severity of patient outcomes. Acknowledging the potential association 
of mortality with health-care resource availability might help other regions of China, which 
are now beginning to struggle with this outbreak, to be better prepared. More importantly, 
as COVID-19 is already affecting at least 29 countries and territories worldwide, including one  
north African country, the situation in China could help to inform other resource-limited 
regions on how to prepare for possible local outbreaks.3		 	
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Figure 1.  Mortality and incidence of COVID-19 in Hubei and other provinces of China Mortality (A) 
and cumulative number of confirmed cases of COVID-19 since the start of the outbreak per 10000 
population (B) in Hubei and other provinces of China. Horizontal lines represent median and IQR. p 
values were from Mann-Whitney U test. (C) Correlation between mortality and number of cases per 
10000 population (Spearman method). Data were obtained from the Chinese Center for Disease 
Control and Prevention to Feb 16, 2020. COVID-19=coronavirus disease 2019. 
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Abstract 

Epicenters are the focus of COVID-19 research, whereas emerging regions with mainly 
imported cases due to population movement are often neglected. Classical compartmental 
models are useful, however, likely oversimplify the complexity when studying epidemics. This 
study aimed to develop a multi-regional, hierarchical-tier mathematical model for better 
understanding the complexity and heterogeneity of COVID-19 spread and control. By 
incorporating the epidemiological and population flow data, we have successfully constructed 
a multi-regional, hierarchical-tier SLIHR model. With this model, we revealed insight into how 
COVID-19 was spread from the epicenter Wuhan to other regions in Mainland China based on 
the large population flow network data. By comprehensive analysis of the effects of different 
control measures, we identified that Level 1 emergency response, community prevention and 
application of big data tools significantly correlate with the effectiveness of local epidemic 
containment across different provinces of China outside the epicenter. In conclusion, our 
multi-regional, hierarchical-tier SLIHR model revealed insight into how COVID-19 spread from 
the epicenter Wuhan to other regions of China, and the subsequent control of local epidemics. 
These findings bear important implications for many other countries and regions to better 
understand and respond to their local epidemics associated with the ongoing COVID-19 
pandemic. 

Keywords: COVID-19, Mathematical modeling, Epicenter, Local epidemic control, Population 
movement  
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Introduction 

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) was first sparked in Wuhan, the capital of Hubei 
province in China. From the epicenter, it subsequently spread to the entire country and now 
the globe. Since the declaration as a pandemic by WHO on March 11, 2020 (Green, 2020), it 
is infiltrating into every corner of the world, but local epidemics associated with this pandemic 
are highly dynamic. Some regions have developed as epicenters, whereas others may struggle 
with imported cases. There is currently intense debate and great confusion among political 
leaders, healthcare authorities and the general public on how to respond to the COVID-19 
pandemic (The, 2020).  

Since the outbreak in December, 2019, in Wuhan, the city rapidly grew into an epicenter. 
Because Wuhan is a major transportation hub located in the center of China and the outbreak 
coincided with a massive population movement due to the Chinese lunar new year holiday, it 
quickly spread to the entire country (Chen, Yang, Yang, Wang, & Barnighausen, 2020). Since 
January 23, 2020, the central government ordered heavy control measures, including city 
lockdown, travel restriction, and within-population quarantine. The pandemic was eventually 
under control by early March nationwide. 

Extensive clinical, epidemiological and modeling studies have well-characterized the epidemic 
features of the epicenter Wuhan (Guan et al., 2020; Tian et al., 2020; Wu, Leung, & Leung, 
2020). In contrast, little attention has been paid to the initial case importation and subsequent 
epidemic control of the different parts of Mainland China outside Wuhan. In this study, we 
aim to gain insight into this respect by mathematical modeling. Classical epidemic 
compartmental models, such as the susceptible-infected-recovered (SIR) or susceptible-
exposed-infected-recovered (SEIR) model, have been widely and proven to be useful for 
modeling COVID-19 epidemics (Tolles & Luong, 2020). These basic models are easy to 
compute, but also oversimplify the complexity of disease processes, the heterogeneity of 
target population/society and the diversity of control measures. 

In this study, we aim to develop a mathematical model to recapitulate the SARS-CoV-2 
transmission patterns from epicenter to other regions during the early stages of the outbreak. 
To better recapitulate the real-world complexity and heterogeneity, we constructed a 
modified multi-regional, hierarchical-tier susceptible-latent-infected/hospitalized-recovered 
(SLIHR) model by incorporating the population flow network data. With this model, we 
estimated the overall and individual epidemics in different provinces of Mainland China 
outside Wuhan. We further performed comprehensive data/information mining to 
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understand the effectiveness of specific control measures in contributing to local epidemic 
control at provincial level.		

Methods 

Model assumption 

A two-stage, hierarchical-tier, multi-regional SEIR model for COVID-19 epidemic was 
developed based on the population flow network. The first tier of our model was an open 
epidemic transmission system that described the risk of case importation. Before January 24, 
COVID-19 spread freely in Wuhan, and the isolation for infected individuals was incomplete 
under insufficient medical resources. The actively infected and latently infected individuals 
who were neither hospitalized nor isolated had been imported to other provinces in Mainland 
China as the population flow and then spread locally. In addition, our model specified infected 
individuals who could not be hospitalized for isolation due to medical resource constraints in 
Wuhan at the early stage. This population largely contributed to case importation from Wuhan 
to other provinces of Mainland China. Simultaneously, the model considered the 
heterogeneity of infection risk between close contacts and general contacts. The second tier 
of our model was multiple independent closed epidemiological transmission systems 
describing the local spread of COVID-19. From January 23 to January 25, the Level 1 emergency 
response was activated in all provinces of Mainland China except Xizang Province. The COVID-
19 epidemic was confined to multiple separate closed systems and localized transmission 
occurred within each province under strict interprovincial traffic restrictions. 

We simulated the possible epidemic scenarios assuming that there were no control measures 
with localized transmission in provinces under the same basic reproduction number. The gaps 
between the number of probable infections without control measures and real-world 
confirmed cases in each province represent the effectiveness of provincial responses on 
controlling the COVID-19 epidemic. 

Data sources 

The Chinese government implemented strict control measures. Large-scale screening was 
conducted to identify infected cases and contacts with confirmed cases were closely tracked, 
resulting in rapid containment of the epidemic in China (Xing, Wong, Ni, Hu, & Xing, 2020). 
Thus, data of confirmed cases reported by China National Health Commission highly 
represents the real-world epidemic (Supplementary Table S1). Population flow network was 
based on "Baidu Migration" Big Data Platform, the largest database that reflects the size of 
the regional population inflow or outflow according to the geographic change of the users' 
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mobile devices in China (Baidu Online Network Technology (Beijing) Co. L. Baidu Map Smart). 
Data/Information on control measures of different provinces in Mainland China were 
comprehensively collected from local government documents, announcements and press 
conferences (Supplementary Table S2). 

Mathematical model 

A modified hierarchical-tier, multi-regional SLIHR (susceptible - latently infected - un-isolated 
actively infected - hospitalized and isolated - dead) model with interregional and interpersonal 
network was built (Figure 1). For interregional transmission network, we considered that 
China has developed advanced transportation networks, and the early outbreak was 
coincided with a massive population migration, because of the Chinese lunar new year holiday. 
In the free spreading stage, Wuhan and its neighbors form a star network structure with traffic 
connections, and the latently (without symptom) or actively (with symptoms) infected 
individuals were exported from Wuhan in one direction. The initial COVID-19 cases of other 
regions in China were mainly imported from the epicenter. Thus, at the controlling stage, the 
initial values of multi-regional model were based on Wuhan population outflow network. 

Considering the real-world situation of COVID-19 epidemics in China, we first developed an 
open SLIHR model (Figure 1A) for the epicenter Wuhan considering incomplete isolation and 
heterogeneous interactions. Transmission of SARS-CoV-2 occurs in the open system, and the 
total population of Wuhan varies with the cross-regional inflow and outflow of the population. 
The susceptible, the latently infected and infected but un-isolated individuals had been 
imported to other provinces of Mainland China. The probability of each subpopulation flowing 
out or staying in Wuhan was assumed equal. The infected individuals who were isolated, 
admitted to hospital or recovered could not flow out of Wuhan. In the controlling stage, SARS-
CoV-2 was confined to several independent and closed systems under traffic restrictions after 
Level 1 emergency response was implemented. First generation cases in other regions outside 
Wuhan depended on population outflow from Wuhan and the number of latent or active 
patients without isolation in Wuhan before travel ban. 

For better understanding the epidemic spread, interpersonal transmission network was also 
established (Figure 1B). The real-world interpersonal contact network is not homogeneous 
but close to community structure where individuals are grouped by different interaction 
frequency, which directly result in heterogeneous transmission in our model. The nodes 
(individuals) in the interaction network are grouped. The nodes (individuals) in the group 
(members of the same family) have high frequency of contact, while the nodes (individuals) 
between the groups (daily contact acquaintances) have low frequency of contact.   
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Fig. 1 A multi-regional, hierarchical-tier SLIHR model for studying COVID-19 epidemics in 
China. (A). An open SLIHR model considering incomplete isolation and heterogeneous interactions. 
(B). The structure of COVID-19 epidemic model with hierarchical transmission tiers. 
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In order to precisely capture the epidemic spread from epicenter to adjacent regions in 
Mainland China, we adopted parameters from widely cited studies on early epidemics in 
Wuhan and other regions in Mainland China (Chinazzi et al., 2020; Li et al., 2020). The details 
of our model were described in Supplementary methods, and the parameters in our model 
were referred to widely-cited literatures (Supplementary Table S3). We first estimated the 
epidemics in Wuhan and the exportation to other adjacent regions before travel ban. We then 
simulated the possible epidemic scenarios in other provinces except Wuhan under the 
assumption of no control measures. The heterogeneous effects of control measures in each 
province could be analyzed by comparing the number of probably infected individuals and the 
real-world confirmed cases. 

Classification of control measures 

Based on collected data/Information on control measures of different provinces 
(Supplementary Table S2), we characterized their epidemic management systems in six 
dimensions and classified control measures into three levels based on the timeliness of 
implementation. The dimension of Level 1 emergency response reflects the speed in 
responding to the outbreak. Traffic restrictions represent the government’s ability to control 
interprovincial traffic and urban public transport in a timely manner. The dimension of mask 
wearing claim portrays the intensity and timeliness of personal protection in public places 
requested by local governments. Community prevention means that governments conduct 
population screening in the communities. Big data tools are used by governments for contact 
tracing, accurate forecasting and control. The dimension of work resumption is expressed as 
the rate of return-to-work. The timeline for each control measure was determined by the 
median time of all provinces, and each province is assigned a rating based on the chronological 
order in which that measure was implemented. 

Scope and timeframe  

The effectiveness and heterogeneity of epidemic containment across different parts of China 
mainly depend on the levels of case importation from epicenter and the subsequent control 
measures. Our network based mathematical model is capable of recapitulating and 
integrating these multiple factors. Because control measures were ordered by the central 
government on January 23 and a temporary diagnostic method that is different from the 
regular RT-PCR case diagnosis was adopted on February 12 in Hubei province, therefore we 
used the epidemiological data from January 24 to February 11 to assess the epidemic control. 

Data visualization and Statistic analysis 
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The mathematical models were solved by simulation methodology with the help of MATLAB 
2016b (The MathWorks, Inc., Massachusetts). Epidemic maps were drawn using ArcGIS 10.1 
(Environmental Systems Research Institute, Inc., California). Kendall's tau-b correlation 
coefficient was chosen to test the non-parametric correlation between ordered categorical 
variables and a continuous variable, where multiple mutual linear problems of independent 
variables were excluded by collinearity diagnosis. We used the Kendall's tau-b correlation 
coefficient method to test the non-parametric correlation between the varied control 
measures and the number of reduced probable infections. Statistical analysis was performed 
using IBM SPSS Statistics version 24 (International Business Machines Corporation, New York). 
P < 0.05 was considered as statistically significant, and all tests were two-tailed.		

Results 

Simulating the epidemics in Wuhan and other regions of Mainland China 

We collected and categorized the number of daily confirmed new cases in Wuhan and other 
regions of Mainland China, respectively (Figure 2A). As expected, the first case in Wuhan 
appeared much earlier, but the epidemic curve was delayed as compared to that of Mainland 
China outside Wuhan. This indicates delayed case diagnosis during the early epidemic in 
Wuhan. The overall epidemic period was much shorter in other regions of Mainland China 
compared to that in Wuhan. Of note, the unusual escalation of case number on February 12 
reported by China National Healthcare Commission was attributed to the temporary inclusion 
of the “clinically diagnosed” cases without RT-PCR confirmation (Sun et al., 2020). This was 
intended to swiftly isolate and treat the large number of suspected cases in the epicenter, 
while the capacity of RT-PCR testing was limited at that time.  

We first simulated the epidemic in Wuhan by an open SEIHR model considering incomplete 
isolation and heterogeneous interaction. The infected but un-isolated individuals were then 
estimated based on population flow network (Figure 1). The probable infections in each 
province except Wuhan were simulated assuming no control measures implemented. Our 
simulation revealed that the number of latently infected individuals without symptom was 
1,600, and the total number of infected individuals with symptom was 1,581 in Wuhan as of 
January 24. We estimated that 369 latent or active patients already left Wuhan before 
implementation of the travel ban, thus spreading to other regions outside Wuhan. 

Our model simulation fits with the reported cases during the early stages of the epidemics, 
for example by February 13 in Wuhan (Figure 2B) and by February 1 outside of Wuhan (Figure 
2C). More specifically, the simulated number of isolated (hospitalized) active cases in Wuhan 
was in agreement with the reported confirmed cases by January 24. However, by that early 
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stage, screening capability and hospital beds were insufficient, there were infected but 
unidentified cases difficult to be estimated. From January 25 to February 14, the total number 
of simulated actively infected individuals was consistent with the reported data (Figure 2B). 
Similarly, in other regions outside Wuhan, the simulated infections assuming no control 
measures were in line with the reported data in January. But since February, there was an 
increasing gap between estimated and reported numbers, which exactly indicates the effects 
of implemented control measures in limiting epidemic spread (Figure 2C). 

Simulating the overall effects on epidemic control in Mainland China outside 
of Wuhan  

From January 23, the Chinese central government began to implement heavy control 
measures, including city lockdown, travel ban, and within-population quarantine. Here, the 
effects of control measures were based on the reduced number of probable infections which 
was calculated by subtracting confirmed cases from the simulated probable infections 
assuming no control measures in each province.  

We estimated that the probable number of actively infected individuals would exceed 17.4 
(90% CI 8.1-39.1) million and the number of latent individuals would be 29.8 (90% CI 11.7-78.9) 
million in Mainland China outside Wuhan one month after January 24, if no control measures 
were implemented. In real-world, control measures were universally implemented albert at 
various levels across different provinces of China. Thus, the number of reported daily new 
cases peaked around 10 days after implementing control measures but declined steadily 
thereafter. The rebound on February 12 was attributed to the temporary adoption of the new 
clinical diagnose method (Figure 2D). 

In general, the simulated results before the epidemic peak were highly in agreement with the 
reported confirmed cases, both for Wuhan and outside Wuhan in Mainland China. In contrast, 
the reported confirmed cases after the peak were far less than the simulated numbers, which 
reflected the effects of control measures in mitigating SARS-CoV-2 spread. Two weeks of 
implementing control measures was estimated to reduce the probable number of infections 
by 56,535 (90% CI 31681-96743) in Mainland China outside Wuhan. This constitutes a 73% 
(90% CI 60.2-82.2%) reduction. One month after implementation, the number of infections 
was reduced by 99.8% (90 CI% 99.6-99.9%), thus preventing 17.4 (90% CI 8.1-39.1) million 
people from infection. 
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Fig. 2 Model simulation to fit the epidemics in China and estimating effectiveness of 
epidemic control. (A). Daily confirmed new cases of the epicenter Wuhan and Mainland China 
excluding Wuhan. (B). Simulated probable numbers of currently infected individuals and currently 
isolated infected individuals in Wuhan. (C). Simulated probable infections assuming no control 
measures of Mainland China outside Wuhan. (D). Effectiveness of epidemic control in Mainland China 
outside Wuhan. 
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Heterogeneity in epidemic control across different provinces in Mainland 
China  

After January 24, the movement of people across provinces was restricted due to travel ban. 
Thus, the local transmission of COVID-19 in each province is considered as an individual unit, 
as described by the second tier of our model framework (Figure 1). COVID-19 spread in each 
province was independent of each other, and the control measures presented heterogeneity. 
In this case, different effectiveness of provincial responses could be estimated by comparing 
the real-world confirmed cases data and the number of probable infections assuming no 
control measure. 

We generated a country map with cross-sectional comparison that visualizes the distinct 
effectiveness in containing COVID-19 epidemics across different provinces in Mainland China 
(Figure 3). The different gaps between reported cases and simulated numbers assuming 
without control measures were also shown for each province. The larger the gap indicates the 
more effective in epidemic control in that province (Figure 4). To further compare the 
differences at different stages, we mapped the real-world COVID-19 spread among different 
provinces during one month after implementing control measures (Supplementary Figure S1).  

The effectiveness of specific control measures on local epidemic containment 
at provincial level  

To understand the effectiveness underlying the heterogeneity in epidemic control, we 
characterized their epidemic management systems in six dimensions and classified control 
measures into three levels based on the timeliness of implementation (Figure 5).  

By correlation analysis, we found that Level 1 emergency response, community prevention 
and application of big data tools significantly correlated with the effectiveness of local 
epidemic containment (Table 1). Traffic restriction and mask wearing were universally and 
strictly implemented across the country, and therefore did not show statistically significant 
correction with the effectiveness of local epidemic containment (Table 1). We did not include 
the item work resumption in this analysis, as this occurred mainly at the end or post-epidemic, 
which could be relevant for possible second wave but not the primary epidemic.		 	
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Fig. 3 Visualizing simulations without control measures and the real-world confirmed 
situation from a provincial perspective. (A). The number of simulated cases in different provinces 
of Mainland China excluding Wuhan without control measures was graded as of February 11, 2020. 
Considering that the first-generation cases were imported from the epicenter, we provided a 
secondary view of the population flow size from Wuhan to the different provinces of Mainland China 
from the start of the Spring Festival on January 10 to the Wuhan travel ban on January 24. (B). We 
provided a provincial view of the confirmed cases of different provinces reported by China National 
Health Commission as of February 11. 
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Fig. 4 The effect of province-level responses in Mainland China excluding Wuhan. Simulated 
and confirmed case numbers were plotted for each province, and the effectiveness of local epidemic 
control was calculated as percentage. Because the epicenter Wuhan is the capital for Hubei province. 
Thus, the case number of Wuhan was excluded for calculating Hubei province. Data on confirmed cases 
were reported by China National Health Commission. 
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Fig. 5 The responses of different provinces in Mainland China to COVID-19 epidemic. The 
local epidemic management systems of different provinces were characterized into six dimensions, 
and the dates on the horizontal axis was determined by the median time of each control measure in 
all provinces. Each province was assigned a rating based on the chronological order in which that 
measure was implemented, and then classified equally into three levels based on the timeliness of 
implementation. For the first five control measures, the earlier they were implemented, the better. 
But for the last dimension, the level scale was reversed: the later people return to work, the better. 
The work resumption dimension is expressed in terms of the return-to-work rate. At the same time 
point, the lower the return-to-work rate, the stronger intensity of work resumption dimension. 
Data/information main source: local government documents, announcements and press conferences.  

 

Table 1: Correlation analysis between epidemic responses and reduced COVID-19 cases in 
different provinces of Mainland China. * P<0.05; ** P<0.01; tested by the Kendall's tau-b 
correlation coefficient method. 

Control measures Correlation coefficient P-value 

Level 1 emergency response 0.566** P<0.01 
Traffic restriction 0.072  0.62  
Mask wearing claim 0.126  0.38 
Community prevention 0.384** P<0.01 
Big data tool 0.285* P<0.05 
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Discussion 

Effective mitigation of COVID-19 pandemic requires deep understanding of transmission 
dynamics and control measures for both epicenters and emerging regions primarily with 
imported cases. However, research tends to focus on epicenters but disregard other regions. 
In fact, emerging regions with imported cases are relatively easy to be contained, but 
neglectance bears high risk of growing into new epicenters.  

Classical compartmental mathematical models are excellent for studying epidemics in 
relatively homogeneous settings (Chinazzi et al., 2020; Giordano et al., 2020; Salje et al., 2020). 
The COVID-19 epidemics in other regions of China outside Wuhan, however, involve initial 
case importation and subsequent local transmission and control measure implementation (Ji, 
Ma, Peppelenbosch, & Pan, 2020). An innovative aspect of this study is that we constructed a 
two-tier SLIHR model to accommodate this complexity and heterogeneity. The first tier 
considered an open SLIHR model of latent time lag, incomplete isolation, heterogeneous 
contacts, and exported cases from Wuhan to other regions in Mainland China. The second tier 
captured the spread of COVID-19 in multiple closed and unassociated regions based on the 
pre-imported cases. In our model, we adopted epidemiological data of case numbers reported 
by China National Health Commission. There was debate on the accuracy of reporting case 
number at early stage of the outbreak in Wuhan (Wu et al., 2020), but we mainly focus on the 
epidemics outside the epicenter. Their reported data are highly accurate, because 
identification of imported cases and contact tracing were rigorously implemented in all 
provinces of Mainland China. Furthermore, we did not consider the death cases, because data 
reporting on death was scarce and inconsistent at early stage of the epidemic. More 
importantly, we focus on regions outside Wuhan where death rates were extremely low in 
general but with huge variations across different provinces (Ji et al., 2020).  

Exporting cases from Wuhan to other regions of China is a heterogamous process mainly 
determined by population migration. We have incorporated the large population flow 
network data in our model. These data were retrieved from the "Baidu Migration" big data 
platform which is based on the user's mobile device geographic location changes and reflects 
the size of population regional inflow or outflow. There are many factors affecting the level 
and pattern of population flow, including geographic locations, transportation connections, 
socioeconomic status, population characteristics, social values and cultural norms. In 
Mainland China, there are 22 provinces, five autonomous regions and four municipalities, 
which are all at provincial level but have their own distinct features. For example, the Tibet 
Autonomous Region (Xizang) only had one imported case and it was immediately contained. 
This is clearly attributed to the geographic, population and cultural distinctions of the region 
that has minimal population movement between the epicenter. In contrast, Zhejiang province 
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which is several hundred kilometers away from Wuhan had one of the highest numbers of 
imported cases. This was mainly related to advanced economic development that many 
people from this province are running businesses in Wuhan, and returned back for Chinese 
New Year festival. The high level of case importation has compromised their effectiveness of 
epidemic control, although Zhejiang province has implemented heavy measures with ample 
resources available (Qian et al., 2020). 

Although the general policy of control measures was ordered by the central government, it is 
operated and coordinated at provincial level locally. This is the second level attributing to the 
heterogeneity of effectiveness in epidemic control among different provinces. For example, 
Heilongjiang, the northernmost province of the Northeast region, had limited number of 
imported cases, but their epidemic grew substantially. As we estimated, Heilongjiang has the 
lowest effectiveness in controlling COVID-19 epidemic. 

In this study, we in-depth analyzed the association of six dimensions of control measures with 
the effectiveness of epidemic control in different provinces. We did not observe significant 
correlation between traffic restrictions or mask wearing claim with effectiveness of local 
epidemic control. Travel restriction is essential for limiting COVID-19 spread. But the central 
government has already imposed strict lockdown across the country, which may explain that 
this policy dimension from local government may not have additional effect. Whether wearing 
face masks for the general population can protect against SARS-CoV-2 has long been debated, 
especially in the western world (Lazzarino, Steptoe, Hamer, & Michie, 2020). It now becomes 
clear that people wear masks not only protect themselves, but also protect others by limiting 
spread of respiratory droplets. Many countries, including from western world, have required 
or advised their citizens to wear masks in public places (Cheng, Lam, & Leung, 2020). In 
contrast, the Chinese population is highly aware of the protective values of wearing face 
masks (Wang et al., 2020), and they spontaneously and universally adopted this measure even 
before the request from government. This may explain why the dimension of mask wearing 
claim from local government did not have additional impact in our study. 

It is not surprising that Level 1 emergency response is significantly associated with epidemic 
control effectiveness. We also found community prevention and application of big data tools 
are significant factors. Both require resources, expertise and advanced economic status. The 
economic status and growth in China have geographic imbalances, and our results indicate 
that this appears to have an effect on local epidemic response. We call the authorizes to pay 
attention to this regional inequality and to ensure equal access to resources, advanced tools 
and technologies for enhancing outbreak preparedness across the country.  
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In summary, we developed a multi-regional, hierarchical-tier SLIHR model that is capable of 
recapitulating the complexity and heterogeneity of COVID-19 epidemics in China. We revealed 
insight into how COVID-19 was spread from the epicenter to other regions of Mainland China, 
and characterized the key control measures that contributed to the effectiveness of local 
epidemic containment. These findings bear important implications for many countries or 
regions to understand and better respond to their local epidemics associated with this COVID-
19 pandemic.  
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Supplementary Materials  

Material and Methods 

The structure of multi-regional, hierarchical-tier model  

The multi-regional, hierarchical-tier model has been characterized by comparing with the 
classical SEIR epidemiological models as follows:  

a) Open system: Wuhan, where COVID-19 was initially known in Mainland China, is one of the 
largest transportation hubs in China. It cannot be ignored the large-scale population outflow 
from Wuhan before the Wuhan travel ban, which changed the susceptible base and the 
number of actively and latently infected individuals in the early epidemic. At this time, the 
model could not be assumed as a closed endogenous model with the constant population.  

b) Population flow network: There are advanced transportation networks in Mainland China, 
so the scale of population movements is enormous. In addition, the traffic peak during Chinese 
New Year has also become the accelerator of virus transmission. In the free spreading stage 
before control, Wuhan and its neighbors form a star network structure with traffic 
connections, where the actively infected individuals are imported, and the active or latent 
patients outflowed from Wuhan in one direction(1). The initial values of the epidemiological 
transmission models applied to each region outside Wuhan vary according to the closeness to 
Wuhan, which cannot be treated equally.  

c) Incomplete isolation: Epidemic control and patient treatment require substantial medical 
resources. As the outbreak was unexpected, the supply of medical resources in early outbreak 
of Wuhan could not meet the demand, in which caused the active patients could not be 
hospitalized in time for isolation and became the virus disseminators. Li et al. found that at 
the beginning of the epidemic, 27% of infected patients were seen within 2 days of the illness 
onset, but 89% of infected patients were not admitted until at least 5 days of the illness onset. 
However, the classic SEIR model does not differentiate between individuals who are 
hospitalized and those who are not.  

d) Heterogeneous interaction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
was transmitted through human contact. The disease transmission rate depends on the 
number of contact links and the probability of infection(2). However, the real-world 
interpersonal contact network is not homogeneous, rather than close to community structure. 
The nodes (individuals) in the network are grouped, the nodes in the group are closely 
connected (high-frequency contact), and the nodes between the groups are sparsely 
connected (low-frequency contact)(3). Studies have shown that in the disease transmission 
network, the probability of infection of close neighbors (members of the same family) is much 
higher than that of general neighbors (daily contact acquaintances)(2). Therefore, it is 
necessary to distinguish the risks of individuals exposure to the disease in the susceptible 
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compartment of the model, while the classical SEIR model does not specifically treat 
heterogeneous contacts.  

e) Time-varying cure rate: The cure rate of infected individuals is increasing with improving 
pathological understanding and clinical experience. The cure rate is an important underlying 
parameter in the stability analysis of the differential equation of epidemiological transmission 
dynamics, which affects the epidemic trend. But the classical SEIR model is an autonomous 
system, which means the system does not contain any time-varying parameters.  

Here, the dead compartment was not set in our model. SARS-CoV-2 is more communicable 
but less pathogenic compared with severe acute respiratory syndrome coronavirus (SARS-
CoV). There were significant regional differences and time differences in mortality rates. 
Moreover, it was not possible to know the mortality of unrecognized infections in the early 
outbreak, and the mortality rate would continue to change until all the infected individuals 
recover or dead. Virus with lower health threats at the individual level could cause high risk of 
interpersonal transmission(4). This study focused on the description of COVID-19 transmission 
chain and how to cut off the transmission. Therefore, the death compartment was not 
considered in the model. 

Overall, this improved model is expected to portray the true pathways of transmission of 
COVID-19 pandemic. The COVID-19 transmission structure in Mainland China could be 
decomposed into two subsections. The open SLIHR model estimated Wuhan epidemic 
situation and outflow of active or latent patients before the Wuhan travel ban, considering 
the incomplete isolation and heterogeneous contacts. The multi-regional description of viral 
spread dynamics was based on population flow network, which was used to estimate the 
COVID-19 spread in each province in Mainland China. 

An open SLIHR model considering incomplete isolation and heterogeneous interaction 

In order to provide a more accurate dynamic description of COVID-19 epicenter Wuhan in the 
early free spread stage before the travel ban, the open SLIHR model with heterogeneous 
interaction were set as follows: 

SARS-CoV-2 transmitted in an open system, and the total population of Wuhan varies with the 
cross-regional inflow and outflow of the population. The distribution probability of the 
susceptible, the latently infected and un-isolated infected individuals with symptoms were 
assumed equal probability distribution in the outflow population and the resident population. 
And isolated infected admitted to hospital individuals and the recovered ones could not flow 
out of Wuhan. 

The disease transmission rate 𝛽 of un-isolated infected individuals depends on the infection 
rate 𝜆 and contact links 𝛫, and it is generally considered that 𝛽 = 𝜆𝛫 (2). Heterogeneous mix 
of susceptible individuals exposed to the infected, with different transmission rates. In other 
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words, those who are more frequently contact with the actively infected are more likely to be 
infected(5). Our model assumed that susceptible individuals in contact with infected 
individuals were divided into two subpopulations according to the frequency of interaction. 
One was the susceptible subpopulation of high-frequency interaction, that was from the same 
household. And the other was the susceptible subpopulation of low-frequency interaction, 
that was general acquaintances (colleague relationships, classmate relationships, gathering 
events). 

Latently infected individuals have the ability to infect susceptible individuals(4,5), but there is 
no clear medical evidence yet to validate the gap between the ability of latently and actively 
infected individuals to infect. We hypothesized that the latently infected individuals had a 
slightly weaker infectious capacity than the actively infected ones. The latently infected 
individuals share the same subpopulation of high-frequency links as the actively infected ones. 
However, because the onset of illness limited mobility of the actively infected individuals, 
there were differences in the subpopulation of low-frequency links between the actively 
infected and latently infected individuals. 

Constrained by medical resources at the early stage of the COVID-19 outbreak in Wuhan, there 
was a time lag between the illness onset and admission to isolation or treatment(6). The 
actively infected individuals were admitted to isolation in hospital with a certain probability(7), 
assuming that the actively infected individuals who were admitted to isolation in hospital 
without infectious conditions, while the actively infected individuals who were non-
hospitalized with infectious capacity and conditions. The number of reported confirmed cases 
that could be traced was assumed to be equal to the part of actively infected individuals who 
had been confirmed and admitted to hospital, Admittedly, this situation had been 
considerably alleviated with the replenishment of medical resources in the control stage of 
the COVID-19 epidemic in Wuhan. 

By optimizing the openness of the system, heterogeneous interaction, and isolation 
constrained. The improved model could be described by the following equations: 
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The total individuals, the susceptible, the latently infected, the actively infected, the 
hospitalized isolated, and the recovered during the free transmission phase were respectively 
𝑁(𝑡), 𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡), 𝐷(𝑡) in period 𝑡. And 𝑁(𝑡) is exogenous. The outflows of 
the susceptible, the exposed and infected individuals without insolation were respectively 
𝑠(𝑡), 𝑙(𝑡), 𝑖(𝑡).The COVID-19 transmission rates of the infected and the exposed individuals 
are 𝛽0  and 𝛽x , respectively. The number of high-frequency interaction (same household 
members) links between infected individuals and the susceptible ones was 𝐾0 , and the 
infected probability is 𝜆0, which was the same for the latently infected subpopulation. The 
number of low-frequency interaction (general acquaintances) links between infected 
individuals and the susceptible ones was 𝐾xI , while that was 𝐾0z  for the latently infected 
subpopulation, and the infection probability was𝜆x. So, it could be summarized as 𝛽0 = 𝜆0 ⋅
𝐾0 + 𝜆x ⋅ 𝐾xI, and 𝛽x = 𝑐𝜆0 ⋅ 𝐾0 + 𝑐𝜆x ⋅ 𝐾xz  . C was the magnitude coefficient of the infected 
probability of the latently infected individuals relative to that of the actively infected ones. 
The latently infected would be converted to the infected with a probability 𝛼. A proportion 𝜂 
of actively infected individuals was admitted to hospital and isolated. The probability of 
recovery among actively infected individuals admitted to hospital was 𝛾(𝑡). 

For the basic reproductive number 𝑅e, it means that an infected person will spread the disease 
to 𝑅e individuals on average without any external intervention. Generally,  𝑅e = 𝛽𝐷 (8), which 
means, transmission from one infected individual to 𝑅e susceptible individuals within 𝐷 days 
of the infection period. The following equations are satisfied: 

 𝑅e = 𝛽0𝐷I + 𝛽x𝐷z （2） 

 𝐷 = 𝐷z + 𝐷I （3） 

The model was applied to the free spread stage before the implementation of control 
measures, with a 𝑅e  value of 2.2, the mean latent period 𝐷z  of 5.2. And the mean of 
transmission period 𝐷 was set to 9.1 with reference to early studies on Wuhan epidemic (6, 
8). Then, the mean infection period 𝐷I was calculated as 3.9. Here, the infection period was 
set as a time window between the illness onset with the ability to transmit and loss of the 
ability to transmit by isolation. 

For the disease transmission rate 𝛽, 𝛽 = 𝜆𝛫 (2). An actively or latently infected individual was 
exposed to mean 𝛫  susceptible individuals per day, and the susceptible individual was 
exposed to 𝜆 probability of being infected, and an infected or latent individual transmits the 
disease to 𝛽 susceptible individuals per day. If the heterogeneity of the exposure frequency 
was considered, there are: 

 𝑅e = (𝜆0𝛫0 + 𝜆x𝛫xI)𝐷I + (𝑐𝜆0 ⋅ 𝛫0 + 𝑐𝜆x ⋅ 𝛫xz)𝐷z （4） 

The number of high frequency interaction links 𝛫0  between infected individuals and the 
susceptible ones was set to the number of other members from the same household. Based 
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on the number of households and the permanent residents in the 2018 Statistical Yearbook 
of Wuhan City(9), the average household size in Wuhan was 2.7. So, 𝛫0 was calculated as 1.7, 
which was same for the latent subpopulation. The susceptible individuals with high-frequency 
interaction were approached every day throughout the transmission period. 

Based on the reported daily data from the China National Health Commission(10), we obtained 
the total links 𝛫>~> was 10.2 during the infection period using the ratio of new daily traced 
close contacts to new daily confirmed cases. The average total number of the susceptible 
individuals with low-frequency interaction approached by per infected person was calculated 
to be 8.5 by 𝛫>~> − 𝛫0. During the latent period, the normal daily activities were normally 
carried out for the latently infected without symptoms, and the number of low-frequency links 
𝛫xz between the latently infected and susceptible individuals was calculated to be 1.6 by 𝛫xz =
����5�S

R�
. However, those who were actively infected during the infection period are confined 

by their physical conditions and stay at home. In our model, the average number of low-
frequency contact links 𝛫xI between the latently infected and susceptible individuals was set 
at 0, and the magnitude of the latent infection rate relative to the active infection rate 𝑐 was 
set at 0.8.  

Susceptible individuals with high-frequency interaction are more likely to be infected than 
those who are exposed to low-frequency interaction. We set the infection rate of high-
frequency interaction was 1.46 times higher than that of low-frequency interaction individuals 
with reference to a study of SARS-CoV (5), 𝜆0 = 1.46𝜆x. 

A portion 𝛼 of latently infected individuals would convert to the actively infected, which was 

calculated as 0.19 by 𝛼 = 0
R�

 (2). The proportion 𝜂  of actively infected individuals were 

admitted to hospital for isolation treatment, which was determined by the study of China 
Centers for Disease Control (CDC) on the difference between the epidemic curve of the illness 
onset and diagnosis of 70,000 confirmed cases(8), and the result of Li et.al about the statistics 
of patients who visit medical clinic before January 22, so 𝜂 valued 0.128. The probability 𝛾(𝑡) 
of recovery among actively infected individuals admitted to hospital was calculated as the 
ratio of the number of new daily cures to the cumulative number of confirmed cases two days 
earlier. It hovered around 0.9% before February 7, and then the cure rate increased 
significantly according to the reported data from National Health Commission (Supplementary 
Table S1). 

The total dynamic population of Wuhan 𝑁(𝑡) was exogenous, which was determined by real-
world population movement data from “Baidu Migration” Big Data Platform(11). For initial 
values in model, we set the initial value of the latently infected 𝐿(1) to 0, the actively infected 
𝐼(1) to 1, the hospitalized infected 𝐻(1) to 0, and the recovered 𝑅(1) to 0. 
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A multi-regional SLIHR model based on Wuhan population outflow network 

As of January 25, all provinces except Xizang Province had launched Level 1 emergency 
response, which means that the COVID-19 was intervened in the control stage. At this control 
stage, the COVID-19 had spread to multiple regions all over Mainland China, and the SARS-
CoV-2 was confined to several separate closed systems under traffic restrictions. At the same 
time, the treatment level of COVID-19 had been improving with the increase in viral awareness 
and clinical cases, and the cure rate parameter reflected the time-varying characteristics. 
These characteristics of COVID-19 transmission during the control stage made the model of 
the free spread stage not applicable to the control stage. Therefore, there is a demand for a 
multi-stage, multi-layered, multi-regional model, so as to simulate the COVID-19 dynamic 
epidemic in all regions of Mainland China.  

The COVID-19 epidemic governance reflected the characteristics of local control, and they 
various from each other. Interregional movement was difficult under traffic restrictions, and 
each region could be considered as a separate closed system, which means the COVID-19 
spreading within the region and incapable of acting on other regions. And we assumed that 
the transmission mechanism of COVID-19 was consistent across regions, in other words, the 
epidemiological parameters were the same. 

Different from the classical SEIR model, the cure rate of the actively infected to the recovered 
was a function of time𝑓 ʹ(𝑡), so the model was no longer an autonomous system. Medical 
resources would meet the need for timely access to isolation for diseased infected patients 
except Hubei Province, so the control stage model did not distinguish un-isolated infected 
compartment and hospitalized infected compartment.  

The multi-regional epidemic model applied to the control stage was as follows: 

 (5) 

Here, 𝑗 represented region, and 𝑡  represented time. The transmission parameters referred to 
studies on Mainland China outside Wuhan(12, 13), with a 𝑅e value of 2.57 (90% CI 2.37-2.78). 
The cure rate as a function of time was fitted from the reported data reported by the National 
Health Commission in China. 

Initial values of the susceptible𝑆 ʹ(𝑗, 𝑡) , the latently infected 𝐿�(𝑗, 𝑡) , the actively infected 
𝐼ʹ(𝑗, 𝑡)  and the recovered 𝑅ʹ(𝑗, 𝑡)  in each region was based on the estimated number of 
latently and actively infected individuals outflowing from Wuhan during the free spread stage. 
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 (6) 

Based on the daily outflow of the latently infected 𝑒(𝑡)  and the actively infected 𝑖(𝑡)  in 
Wuhan from the free spread stage model (Eq.1), the total number of the latently infected 
𝐴(𝛵) and the actively infected 𝐵(𝛵) in all regions of Mainland China except Wuhan on Jan 24 
could be calculated. The regional share parameters 𝜌�  were obtained from the proportion of 
the population flowing out from Wuhan to each region. Ultimately, the number of latently 
infected individuals 𝐴(𝛵) in all regions of Mainland China except Wuhan was 1,323 and that 
of the actively infected 𝐵(𝛵) was 795 by Jan 24. 

Population flow 

The population flow network was estimated based on the "Baidu Migration" Big Data Platform, 
a database that reflects the size of the regional inflow or outflow of population based on the 
geographic change of the users' mobile devices. According to transportation of Wuhan in 2019 
Chinese New Year, 14.69 million passengers were sent by railway, highway and air, the share 
parameter of the "Baidu Migration" scale index is estimated as 34.8 thousand. According to 
the first confirmed case notified by Wuhan Health Committee, and therefore we set 
December 08, 2019 as the starting point of the simulation. Combined with the "Baidu 
Migration" data, we estimated the total population in Wuhan as of January 24, 2020 𝑁(48) 
to be 8.93 million, which was basically in line with the household population of 9.06 million 
published in 2019 Wuhan Statistics Bulletin(14). From the start of 2020 Chinese New Year 
transportation on Jan 10 until the complete Wuhan travel ban on Jan 24, the population 
outflow from Wuhan was estimated as 3.362 million. If we considered the period from 
December 08, 2019 when the first confirmed case onset to January 24 when Wuhan travel 
ban by all vehicles, it was estimated that the outflow of population from Wuhan would be 
5.07million. 

Provincial control effect 

After January 24, due to movement restriction across provinces, the local spread of COVID-19 
was the main channel, as described by the second stage of our model. COVID-19 spread in 
each province was independent of each other, and the control measures present 
heterogeneity. By means of simulating probable actively infected individuals without 
intervention and then comparing them with real-world reported confirmed cases, the 
heterogeneity in the effectiveness of different responses across provinces could be 
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quantitatively evaluated. The data of real-world confirmed cases in each of these provinces 
were reported by the China National Health Commission. We analyzed the reduced number 
and proportion of probable actively infected individuals compared to the real-world reported 
accumulative confirmed cases due to province responses in Mainland China outside Wuhan. 
Here, we focused on the transmission of infectious diseases, so simulated actively infected 
individuals were chosen as comparison objects in view of low cure rate in the simulation 
period. In order to avoid inconsistent data caliber of the confirmed cases data after February 
12 due to the temporary inclusion of the “clinically diagnosed” cases without RT-PCR 
confirmation, our analysis period was from January 24 to February 11. 

Provincial responses 

The effect of local responses to epidemic depends on the timeless and enforcement, especially 
for this emergency infectious disease, timely measures are more significant. Here we 
measured provincial responses according to the time of each measure implementation, and 
put enforcement on hold since difficult quantification. To some extent, government policy 
making embodied tendentiousness to different provincial responses, which influenced 
sufficient enforcement. We described epidemic responses in each province in six dimensions 
and classified control measures into three levels based on the timeliness of policy 
implementation. All data/information were comprehensively collected from public provincial 
government documents, announcements and press conferences, except for a few data about 
“big data tool” was from news reports and work resumption rate referred to special reports 
on epidemic impact tracking in Information Website of Development Research Center of the 
State Council(15). 
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Supplementary Tables 
 
(The supplementary Table 1 and 2 can be found with the link : https://www.ncbi.nlm.nih.gov/ 
pmc/articles/PMC8014041/) 
 
Supplementary Table S3: Parameters of early epidemic model in Wuhan. Parameters applied to 
the open SLIHR model considering incomplete isolation and heterogeneous interaction in the free 
spread stage. The probability of recovery after February 7 was calculated by exponential fitting 
function  0.0045 × 𝑒(>50�)×e.e��k	based on the reported recovered individuals by China National 
Health Commission. 
 

Parameter Definition Mean Sources 
𝑅e basic reproductive number 2.2 (14,6) 
𝛽0  transmission rate of the actively infected 0.204 

(6,8,15) 
𝐷I mean infection period 3.9 
𝛽x transmission rate of latently infected 0.271 
𝐷=  mean latent period 5.2 
𝐾0 high-frequency interaction links 1.7 

(5, 8, 9, 
16) 

𝛫xI 
low-frequency interaction links between the 
actively infected and susceptible individuals 

0 

𝛫x=  
low-frequency interaction links between the 
latently infected and susceptible individuals 

1.6 

𝜆0 
infected probability of high-frequency interaction 
links 

0.08 

𝜆x 
infected probability of low-frequency interaction 
links 

0.12 

𝑐 
coefficient of the latent infection rate relative to 
the active infection rate 

0.8 

𝛼 latent-to-active conversion portion 0.19 (6) 

𝜂 
proportion of actively infected individuals 
admitted to hospital for isolation 

0.128 (8) 

𝛾 probability of recovery before February 7 0.009 (16) 
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Abstract 

For better preparing future epidemic/pandemic, important lessons can be learned from how 
different parts of China responded to the early COVID-19 epidemic. In this study, we 
comparatively analyzed the effectiveness and investigated the mechanistic insight of two 
highly representative cities of China in containing this epidemic by mathematical modeling. 
Epidemiological data of Wuhan and Wenzhou was collected from local health commission, 
media reports and scientific literature. We used a deterministic, compartmental SEIR model 
to simulate the epidemic. Specific control measures were integrated into the model, and the 
model was calibrated to the recorded number of hospitalized cases. In the epicenter Wuhan, 
the estimated number of unisolated or unidentified cases approached 5000 before the date 
of city closure. By implementing quarantine, a 40% reduction of within-population contact 
was achieved initially, and continuously increased up to 70%. The expansion of emergency 
units has greatly reduced the mean duration from disease onset to hospital admission from 
10 to 3.2 days. In contrast, Wenzhou is characterized as an emerging region with large number 
of primarily imported cases. Quick response effectively reduced the duration from onset to 
hospital admission from 20 to 6 days. This resulted in reduction of R values from initial 2.3 to 
1.6, then to 1.1. A 40% reduction of contact through within-population quarantine further 
decreased R values until below 1 (0.5; 95% CI: 0.4-0.65). Quarantine contributes to 37% and 
reduction of duration from onset to hospital admission accounts for 63% to the effectiveness 
in Wenzhou. In Wuhan, these two strategies contribute to 54% and 46%, respectively. Thus, 
control measures combining reduction of duration from disease onset to hospital admission 
and within-population quarantine are effective for both epicenters and settings primarily with 
imported cases. 
 
Keywords: COVID-19 epidemic, Wuhan, Wenzhou, Comparative analysis, Mathematical 
modeling 
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Introduction 

The global population is constantly facing the threats of emerging infectious diseases. 
Different countries and regions often react differently in response to outbreaks, whereas the 
right early response is essential for containing the outbreak, thereby avoiding large epidemic 
or pandemic. Because of their disparities in culture, socioeconomic status, and types of 
government, the implementation of control measures can vary dramatically among different 
countries.  

For better preparing future epidemic/pandemic, important experiences and lessons could be 
learned from how the COVID-19 epidemic was responded from different regions of China, in 
particular at their different stages. COVID-19 was sparked in December, 2019 from Wuhan, 
the capital of Hubei province, with a population of 11 million[1]. Due to initial delay of 
necessary actions, the local government missed the first chance of containing the epidemic. 
Until January 23, the central government imposed heavy control measures, including city 
lockdown, travel ban, and within-population quarantine. The total confirmed cases have 
finally climbed up to nearly 50,000 cases in Wuhan, but was controlled subsequently.  

COVID-19 outbreak was coincided with a massive population migration, because of the 
Chinese lunar new year holiday[2]. This has led to the rapid spread across China. Of particular 
relevance is Wenzhou, a prefecture-level city of Zhejiang province with a total population of 
9 million. It is 900 km away from Wuhan, and about 170,000 Wenzhou businesspeople are 
working there[3]. The first case in Wenzhou was identified on January 21, who returned from 
Wuhan. It quickly became the highest figure of COVID-19 cases for any city outside of Hubei 
province, and most of these cases were imported from the epicenter[3]. However, it took only 
about 46 days for this city to fully contain the epidemic, otherwise bearing high risk of growing 
into a new epicenter. 

The distinct experiences of these two cities are mirroring what has happened in many parts 
of the world, either as epicenters or regions primarily with imported case. In this study, we 
aim to comprehensively compare the effectiveness of containing COVID-19 between Wuhan 
and Wenzhou by mathematical modeling, and to provide mechanistic understanding of how 
to effectively contain the epidemic at early stage.  

Methods 

Data collection  

We systematically collected the epidemical data on SARS-CoV-2 transmission in Wuhan and 
Wenzhou. For Wuhan (Supplementary Table S1), data regarding onset distribution of early 
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identified cases before January 15, and number of cumulative and hospitalized cases were 
collected from the Health Commission of Hubei Province and previous studies [4-6]. For 
Wenzhou (Table 1), we collected data of all identified cases recorded by the Health 
Commissions of both Zhejiang Province and Wenzhou city[3].  

Model structure and control measures  

We focused on two major control measures, isolation of symptomatic cases and reduction of 
within-population contact rates. To estimate the impact of the measures, we constructed a 
deterministic, compartmental model for SARS-CoV-2 transmission, in which a standard 
susceptible-exposed-infectious-recovered (SEIR) structure was modified to accommodate 
quarantine and isolation (Figure 1A). The model was fitted to data on hospitalized cases (H(t))) 
in Wuhan and Wenzhou from early January to February 2020. The model incorporates data 
on city population size, the current knowledge of natural history of SARS-CoV-2, and other 
relevant parameters.  

Briefly, we assumed that all the citizens are initially susceptible (S), and a fraction q of all 
persons infected by an infectious case is successfully quarantined (EQ), and a fraction q of all 
persons contacted but not infected by an infectious case is also quarantined (SQ). The 
infectious compartment is composed of cases who are unidentified or unisolated (IU), those 
who develop from EQ (IQ), and those who have been hospitalized (H). We assumed that cases 
in IQ and H are successfully quarantined and would not infect other susceptible people.  

We assumed that an infectious individual has a mean of c potentially infectious contacts per 
day, that susceptible contacts are infected with probability β, and that the number of contacts 
was independent of population density. We further assumed that individuals are hospitalized 
and correspondingly isolated at a fixed rate per day after becoming infectious, and that 
isolated individuals are no longer at risk of transmitting the virus. Infected individuals become 
noninfectious by dying, recovering, or being hospitalized, and the mean duration of 
infectiousness is D days.  

We used least-square fitting to look for the model trajectory that best matches the epidemic 
time series and to estimate the parameters. Specifically, we fit the hospitalized number of 
cases given by equation H(t) to the hospitalize number of case notifications. Sets of 
realizations of the best-fit curve H(t) were generated using parametric bootstrap [7], in which 
200 realizations were made. Each realization of the cumulative number of case notifications 
𝐻B(𝑡)(𝑖 = 1, 2, … ,𝑚)  is generated as follows: for each observation 𝐶(𝑡)  for 𝑡 = 2, 3, … , 𝑛 
days generates a new observation 𝐻B∗(𝑡)	𝑓𝑜𝑟	𝑡	 ≥ 2	((𝐻B∗(1) = 𝐶(1)) that is sampled from a 
Poisson distribution with mean 𝐻(𝑡) − (𝑡 − 1)	(the daily increment in H(t) from day t -1 to 
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day t). The corresponding realization of the cumulative number of influenza notifications is 
given by 𝐻B(𝑡) = ∑ 𝐻B∗(𝑡)>

��0 , where t=1, 2, 3,., n. Detailed methods for estimating R0 and Rt 

were described in Supplementary file.  
 

 
 
Figure 1. (A) Mathematical model for COVID-19 transmission. Susceptible individuals are infected by 
unidentified individuals, and become infectious themselves after an interval of incubation. Infectious 
individuals lose infectiousness by death, recovery, or successful isolation. No new births or deaths of 
other causes are considered. When quarantine started, a proportion, q, of new infections is 
quarantined before they become infectious. The same proportion (q) of susceptible individuals who 
have contacts with infectious persons but were not infected are also quarantined. Susceptible 
individuals are released from quarantine after 14 days. For simplicity, we assume that quarantined 
individuals are isolated and not infectious. (B) Timeline of important events occurred during COVID-19 
outbreaks in Wuhan and Wenzhou. 

Estimating control measures in Wuhan and Wenzhou 

Control measures were introduced with different time points (Figure 1B). In the model of 
Wuhan epidemic, we started on January 15, on which China CDC claimed to execute level 1 
emergence. We set two time points. One is around January 27 when within-population 
quarantine was implemented, which would reduce the within-population contact rate. 
Another is around February 10, since then the newly built emergency medical units were 
operational. It mainly accelerates isolation of the unidentified cases. To evaluate the measures, 
we arbitrarily delayed the time point by 7 days and analyzed the effect. Seeds of the model 
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were from the early 370 identified cases in Wuhan, because those were firstly proved to be 
associated with human-to-human transmission[4]. 

For Wenzhou, the sources of SARS-CoV-2 transmission were all imported cases with travel 
history to Wuhan or other areas of China. We started the model on the date of onset of the 
first imported case (January 3), and took all imported cases as model seeds. The first time 
point was set on January 21 as identification and hospitalization of cases were started. The 
second and third time points were set based on the reduction of mean observed duration 
from onset to hospital admission (January 27) and the implementation of travel restriction 
within the city (early February). Because of the lack of information, we assumed that early 
mean duration from onset to hospital admission (before January 27) is close to that in Wuhan. 
Finally, we also performed sensitivity analysis based on the mean interval incubations 
(Supplementary Figure S1). 

Results 

Epidemiological feature of COVID-19 in Wenzhou   

We systematically collected the epidemiologic information of in total 504 cases which were 
identified in Wenzhou by March 5 (Table 1, Figure 1B). We first analyzed the data based on 
the distribution of onset date. Because this information was missing for the early 31 cases 
identified from January 21 to 26, we assumed that the onset of these cases follows a Gaussian 
distribution and re-ranged the distribution of the 31 cases between January 7 and 17 (Figure 
2A). The duration from onset to hospital admission was continuously decreased over the 
periods from January 3 to 20 (reported 20 days; Table 1), January 21 to 27 (assumed 12 days; 
Table 1), and then became stable as observed 6 days in average (Figure 2B), until there was 
no new case identified. Based on the available information of imported cases, the average 
incubation interval was estimated as 5.5 (95% CI, 4.8-6.2) days (Figure 2C).  

Modeling control measures in Wenzhou 

How rapid an epidemic can spread largely depends on the reproductive number. The basic 
reproductive number, R0, is defined as the number of secondary infections generated by one 
primary case in a totally susceptible population. The effective reproductive number, R, 
measures the number of secondary cases generated by an index case and the declines 
because of the reduction of susceptibility in the population and the use of effective control 
measures. R must be below 1 to stop an outbreak. The epidemic of Wenzhou was mainly 
caused by imported cases with travel history of Wuhan or other areas of China, which 
accounts for 43.7% (Figure 2A). The value of R0 is estimated to be 2.3 (95% CI, 2.2-2.5).  
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Table 1. Parameters used in the quarantine simulation of Wenzhou epidemic. 

Parameter Symbol Time Baseline value Estimated 
value Reference 

Contact rate c 

3-20 Jan 10 - Assumption 
21-26 Jan 10 - Assumption 
27-31 Jan 10 - Assumption 
1-17 Feb - 6 Estimated 

Mean duration 
from onset to 
hospital admission 

i 

3-20 Jan 20 days (18-21)  the Health Commission of 
Wenzhou 

21-26 Jan 12 days (10-14) - *Li, et al. 2020, NEJM 

27-31 Jan 6.1 days (5-8) - the Health Commission of 
Wenzhou 

1-17 Feb 6.2 days (5-8) - the Health Commission of 
Wenzhou 

Mean Recovery 
rate v - 0.045 

(0.04-0.066) - the Health Commission of 
Wenzhou 

Mean interval of 
incubation p - 5.5 days (3-7) - the Health Commission of 

Wenzhou 

Case fatality rate m - 0 - the Health Commission of 
Wenzhou 

Duration of 
quarantine  r - 14 days - WHO recommendation 

*Note: Li, Q., et al. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-
Infected Pneumonia. N Engl J Med. Mar 26;382(13):1199-1207. 
 

Our mathematical model has well-reproduced the COVID-19 epidemic with several key 
epidemic patterns identified (Figure 3). The unidentified cases were initially composed of only 
imported cases, but as the transmission proceeding more secondary cases from the local were 
gradually included. Importantly, the model shows that the epidemic has been fully contained 
and the number of unidentified cases is close to zero by February 17. This perfectly matches 
the real-world situation that no new cases were further identified. Since the first case 
identified on January 21, mean duration from disease onset to hospital admission were 
continuously decreased. This is important for preventing further spread by infected cases. 
Correspondingly, the modeled R values were reduced to 1.6 and 1.1 (Figure 4A). Finally, it 
reached 0.5 after implementation of within-city quarantine, which has dramatically reduced 
average daily contacts from initial 10 to 6.  

Modeling epidemiology and control measures in Wuhan 

In the model of Wuhan epidemic, we have systematically collected the epidemiological data 
(Supplementary Table S1; Figure 1B). We found that both within-population quarantine and 
the use of emergency unit are effective (Figure 3B). After the first time point (January 26), 
modeled within-population contact rate was decreased from initial 10 to 6, and then 3.5 after 
the second time point (February 10). A seven-day delay of implementing these two measures 
would exacerbate the epidemic, and indirectly increase the burden of quarantine (Figure 3C). 
Our model estimated 983 unidentified or unisolated cases by March 5, 2020. According to the 
current effectiveness, it requires additional 40 days to contain all these unidentified cases.  
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Figure 2. Epidemical features of COVID-19 in Wenzhou. (A) Distribution of disease onset of all 
the identified cases. Because specific information of the early 31 imported cases is not available; we 
assumed that date of onset of all imported cases follows a Gaussian distribution, and arbitrarily ranged 
them in the period from January 7 to 17. (B) Information on duration from onset to hospital admission 
of 467 cases from January 27 to February 17. (C) Distribution of interval of incubation of 157 imported 
cases.  
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Figure 3. Simulation of COVID-19 epidemics in Wenzhou and Wuhan. (A) Modeled hospitalized 
and unidentified cases in Wenzhou from January 3 to February 21. The first dash line is on January 21 
when the first case was identified. The second dash line is on January 27 when mean duration from 
disease onset to hospital admission reduced from 12 days to observed 6.1 days. The last dash line is 
on February 2 when a within-city quarantine started. (B) Modeled hospitalized and unidentified cases 
in Wuhan from January 15 to March 5. The first dash line is on January 26 when a within-city quarantine 
started. The second dash line is on February 10 when temporary emergency units were operational. 
(C) Modeled hospitalized and unidentified cases in Wuhan with a seven-day delay of the two control 
measures of (B).  
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Figure 4. Estimating effective reproductive number R. Estimated reproduction number for the 
period of the epidemic in Wenzhou (A) and Wuhan (B). Confidence intervals are also shown. (C) 
Proportion of impact of reducing contact rate and duration from onset to hospital admission to R 
values. 
 

According to our modeling, prior to applying of effective control measures, the estimated 
number of unidentified or unisolated cases was always higher that that of hospitalized cases. 
Within-population quarantine started on January 26 was proven to be effective, reducing R 
from the estimated initial value of 2.6 to 2.2 (Figure 4B). After February 10, many of these 
hidden cases were isolated at the new emergency units temporarily built for this epidemic. 
Correspondingly, the modeled mean duration from onset to hospital was reduced from 10 to 
3.2 days after February 10. Modeled R value within this period is about 0.6 (95% CI, 0.5-0.8) 
(Figure 4B), indicating the feasibility of containing the epidemic.  
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Comparative analyses between Wuhan and Wenzhou 

The initiation, development and outcomes of the epidemics in these two cities are evidently 
distinct. Before adopting within-population quarantine and travel restriction, the epidemic 
has already developed for more than one month (about 49 days) in Wuhan (Figure 2B). In 
addition to 630 hospitalized cases, the number of the unidentified cases was estimated to be 
around 5,000 by January 26 (Figure 3B).  

By striking contrast, the response period in Wenzhou is much shorter. Before adopting 
quarantine, the estimated number of unidentified cases is 180 by February 2. This relatively 
low number allowed subsequent control by rapid allocation of medical resources per capita 
from the local authorities. Effectiveness of quarantine and reduction of the period for disease 
onset to hospital admission was compared in the construct of R (Figure 4C). Quarantine 
contributes to 37% and reduction of duration from onset to hospital admission accounts for 
63% to the effectiveness in Wenzhou. In Wuhan, Quarantine contributes to 54% and the other 
accounts for 46%, respectively (Figure 4C).  

Discussion  

The transmission dynamics of a virus is primarily determined by the effective reproductive 
number. These R values often consistently evolve attributing to viral adaption, susceptibility 
of the targeting population, environmental changes, potential SSE and implementation of 
control measures. Although the basic reproductive number R0 of SARS-CoV-2 (2.6) appears 
even lower than that of SARS-CoV (2.9) [8], the speed and scale of COVID-19 spreading greatly 
surpass SARS and MERS [9]. The drastic escalation of the epidemic in Wuhan mainly attributed 
to the non-responsiveness of the local authorities at the early stage. Incredibly, a massive 
annual potluck banquet for 40,000 families was continued to be held in Wuhan on January 18, 
which very likely exacerbated the outbreak. Mass gatherings could impose high risks of super-
spreading event (SSE) [10]. We suspected that SSE likely occurred in Wuhan at the early stage. 
However, we do not have actual data to confirm the occurrence of SSE, and therefore it is not 
specifically emphasized in our model.  

The turning point for coping with the epidemic in Wuhan was the implementation of vigorous 
public health measures directly ordered by the central government. From January 23, the 
central government began to implement heavy control measures, including city lockdown, 
travel ban, and within-population quarantine. The implantation of travel ban of Wuhan was 
already too late to have major impact on the spread in Mainland China, although it was 
estimated to have substantial impact at the international scale[11]. In our analysis, we 
emphasized two important factors that determine the outcomes in containing the epidemic 
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including effectiveness of quarantine, and the duration from disease onset to hospital 
admission. A major challenge for Wuhan was that the numbers of confirmed and suspected 
COVID-19 cases were already too high at the time of implementing measures. This has plunged 
the local healthcare system into crisis, and all the resources have to exclusively dedicate to 
contain this outbreak. Since late January and early February, the central government has 
mobilized strong medical forces and emergency medical supplies, and new emergency units 
were built in very short-term. These efforts have leveraged the levels of quarantine, and 
shortened the duration from disease onset to hospital admission that prevented spreading by 
infected cases.  

One important reason for the wide and quick spread of COVID-19 to other parts of China is 
that the Wuhan outbreak coincided with the Chinese lunar new year holiday. It is a massive 
population migration with estimated 3 billion individual trips to take place[2]. Wuhan is a large 
hub connecting different parts of China through railways and an international airport, and five 
million people have left Wuhan before the travel ban[12]. A heavily affected city in other part 
of China is Wenzhou, because there are an estimated 170,000 Wenzhou businesspeople 
working in Wuhan[3]. Because of the returnees from Wuhan, Wenzhou had the highest figure 
of imported COVID-19 cases for any city outside Hubei province[3]. However, it only took 46 
days to fully contain the epidemic, otherwise bearing high risk of growing into a new epicenter. 
Based on our analysis, the key to achieve this outcome is attributed to the quick response 
from the local authorities and the general public. The government has rapidly implemented 
restrictive measures including city closure, travel ban, effective isolation and quarantine, and 
rapid case identification and hospital admission. The public is highly aware of the 
contagiousness of SARS-CoV-2, and spontaneously adopt social distancing measures such as 
cancellation of public gatherings and holiday visits, and minimizing outdoor activities. This 
resulted in continuous decrease of R values to 1.6, 1.1 and 0.5, and no new case was further 
reported in Wenzhou.  

Given the nature of retrospectively analyzing the outcomes of the COVID-19 epidemics, our 
findings are not of completely unexpected. However, we provided quantitative analysis of the 
impact of reducing duration from disease onset to hospital admission and within-population 
quarantine. Importantly, we have comparatively taken two real-world examples with unique 
characteristics as a COVID-19 epicenter and a setting with mainly imported cases. These 
findings would add new insight in understanding control measures at early stages of the 
COVID-19 epidemics, and shall serve as an importance reference for quick response to future 
new outbreaks/epidemics with full consideration of the real-world situations.   

Because of the disparities in culture, socioeconomic status and types of government, the 
awareness, preparedness and responsiveness towards emerging threats vary dramatically 
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among different countries[9,13-17]. Our results highlight the essential of early, quick and 
adequate response with implementation of the right control measures. Delayed response will 
soon plunge the healthcare system into crisis, as seen in Wuhan and other countries like Italy, 
Spain, UK and USA, even with well-developed healthcare systems. Availability of healthcare is 
critical for controlling the epidemic but also for minimizing severe patient outcomes[18]. As 
seen in Wenzhou, rapid response has avoided to emerge as a new epicenter, and soon 
contained the epidemic. On the other hand, understanding and cooperation from the general 
public are also extremely important for the effectiveness of these control measures[19].  

In summary, we comparatively analyzed the epidemiology, estimated the transmission 
dynamics, and assessed the effectiveness of control measures between Wuhan and Wenzhou 
by monitoring the dynamics of the effective reproductive number R. Our findings suggest that 
combination of reducing the interval from disease onset to hospital admission and stringent 
within-population quarantine are effective for both epicenters and regions mainly caused by 
imported infections. These two cities in China represent real-world examples that can serve 
as important lessons for improving preparedness and early response to future emerging 
epidemic/pandemic.  
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Supplementary information 

1. Transmission model for the effect of quarantine 

The model depicted in Figure 2 consists of the following ordinary differential equations 
(Lipsitch, Cohen et al. 2003). 

𝑑𝑆 𝑑𝑡⁄ = −𝑐𝑏𝐼� 𝑋 𝑁⁄ + 𝑟𝑆�      (1) 

𝑑 𝑆� 𝑑𝑡⁄ = 𝑞𝑐(1 − 𝑏)𝐼� 𝑆 𝑁⁄ − 𝑟𝑆�     (2) 

𝑑 𝐸 𝑑𝑡⁄ = −𝑝𝐸 + 𝑐𝑏(1 − 𝑞)𝐼� 𝑆 𝑁⁄      (3) 

𝑑 𝐸𝑞 𝑑𝑡⁄ = 𝑞𝑐𝑏𝐼� 𝑆 𝑁⁄ − 𝑝𝐸�     (4) 

𝑑 𝐼� 𝑑𝑡⁄ = 𝑝𝐸 − (𝑣 +𝑚 + 𝑖)𝐼�     (5) 

𝑑 𝐻 𝑑𝑡⁄ = 𝑖𝑠𝑜m𝐼� + 𝐼�n − (𝑣 + 𝑚)𝐻     (6) 

𝑑 𝐼� 𝑑𝑡⁄ = 𝑝𝐸� − (𝑣 + 𝑚 + 𝑖)𝐼�     (7) 

𝑑 𝑅 𝑑𝑡⁄ = 𝑣(𝐼� + 𝐻 + 𝐼�)      (8) 

𝑑 𝐷 𝑑𝑡⁄ = 𝑚(𝐼� + 𝐻 + 𝐼�)      (9) 

The model (including equations (1) to (9)) is a modification of the classical SEIR model, 
involving susceptible, infected but not yet infectious, infectious, and recovered/immune 
individuals in compartments S, E, I and R respectively. At time t=0, there are N people in the 
population, of whom certain number of individuals are exposed but not yet infectious (E), and 
all the rest are susceptible (S). In our model, the I compartment is composed of cases who are 
not isolated (Iu) and those who have been isolated (H). c is the number of daily contacts per 
person, and b is the probability of transmission per contact between a susceptible and an 
infectious person. We separated the parameters c and b, rather than using transmission 
parameter, β. We thus assume that each infectious person makes c contacts per day, of whom 
a proportion b is infected if the infectious person is undetected. We attained b based on the 
function 𝑅 = 𝛽 ×𝑚𝑒𝑎𝑛	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 . 1/r is the mean duration of 
quarantine for susceptible persons who are suspected to be infected but actually not (Sq), they 
would flow back to susceptible (S). 1/p is the mean time for progression from latent to 
infectious. v is the per capita recovery rate, m is the per capita death rate, and i is the mean 
daily rate at which infectious cases are detected and isolated. In our model, we calculated i as 
the mean rate of cases from onset to hospital admission. 

We made a simplified assumption that isolated cases (Id) do not infect anyone, and the rate of 
isolation i should be thought of as a rate of “effective” isolation. Under these assumptions, 
the mean duration of infectiousness is 1/(𝑣 + 𝑚 + 𝑖). We estimated parameters by using 
least-square fitting to look for the model trajectory that best matches the epidemic time series. 
Specifically, we fit the hospitalized number of cases given by equation H(t) to the hospitalize 
number of case notifications (Figure 4A and B). 
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For epidemic in Wenzhou, we modified equation (5) as: 

𝑑 𝐼� 𝑑𝑡⁄ = 𝑝𝐸 − (𝑣 +𝑚 + 𝑖)𝐼� + 𝑖𝑚𝑝𝑜𝑟𝑡     (5’),  

where import is mean number of onset of imported cases with travel history of Hubei province 
or other areas (Figure 3A). At time t=0, we assumed that all the individuals in the model are 
susceptible, and imported infectious cases enter the model as rate of import. 

2. Estimating R0 

We used a time-dependent method to compute R0 (Obadia, Thomas et al. 2012; Wallinga, 
Jacco et al. 2004). Briefly, the probability pij that case i was infected by case j is presented as  

𝑝B� =
�l� (>l5>�)

∑ �l (>l5>¡)l¢¡
, 

Where ti is the onset time of case i, and k denotes the index of other case that are primary 
case of case i. w(t) is the generation interval, or the serial interval, which is the time from 
symptom onset of a primary case to that of its secondary case. As generation interval was not 
directly observed in this study, we assumed that the timing of transmission events is not 
skewed during the early term of the infectious period, and approximately calculated the 
interval as sum of the average incubation period and half of the average infectious period 
(Fine, Paul et al 2003). Nij is the number of case i infected by case j, and Ni is the overall number 
of case i. The reproduction number for case j is the sum over all case i, weighted by the 
probability that case i is infected by case j: 

𝑅� = ∑ 𝑝B�B , 

and reproduction number over all cases with the same date of onset is 

𝑅> =
0
��
∑ 𝑅�£>��>¤ . 

Combined with equation derivation above, we calculated the basic reproduction number R0 
by determining the initial exponential disease growth phase with the goodness-of-fit test 
statistic (Lipsitch, Marc et al. 2003), and obtained the confidence interval by model simulation.  

3. Estimating time-dependent R  

We used a simple method to calculate the effective reproduction number Rt with real-time 
data (Contreras, Sebastián et al. 2020). Briefly, in a standard SEIR model, four compartments 
were established, namely, susceptible individuals S, exposed individuals E, infected individuals 
I, and removed individuals R. The dynamics of the SEIR model are thus represented by: 

𝑆¥ = 	−
𝛽(𝑡)𝑆𝐼
𝑁

(1) 
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𝐸¥ =
𝛽(𝑡)𝑆𝐼
𝑁 − 𝜎(𝑡)𝐸	 (2) 

𝐼¥ = 	𝜎(𝑡)𝐸 − 	𝛾(𝑡)𝐼 − 𝜇(𝑡)𝐼 (3) 

𝑅¥ = 	𝛾(𝑡)𝐼 (4). 

We combined equations (1), (2) and (3), and attained: 

<I
<¦
+ <=

<¦
= −1 + m§(>)1¨(>)n

U(>)
�
¦

(5). 

We thus calculate Rt as the ratio between the time-dependent infection, and combination of 
recovery rates and case fatality rate, 𝛽(𝑡), 𝛾(𝑡) + 𝜇(𝑡) (Chen, Yi-Cheng et al. 2020), multiplied 

by the proportion of susceptible individuals in the whole population (¦
�

): 

𝑅>(𝑡) = 	
𝛽(𝑡)

m𝛾(𝑡) + 𝜇(𝑡)n
𝑁
𝑆

(6), 

and equation (5) can be re-written as:  

<I
<¦
+ <=

<¦
= −1 + 0

©�(>)
(7). 

Equation (7) can be discretized in an interval [𝑡B50, 𝑡B] where we can assume that 𝑅>(𝑡) =
𝑅>(𝑡B) is constant: 

𝑅>(𝑡B) =
0

∆l®
∆l¯

1
∆l°
∆l¯

10
(8). 

Extending the classic SEIR model to consider also exposed individuals and deaths, a disease 
states balance dictates the discrete differences to follow ∆B𝑆 + ∆B𝐸 + ∆B𝐼 + ∆B𝑅 + ∆B𝐷 = 0. 
Then, Equation (8) takes the final form applying the chain rule: 

𝑅>(𝑡B) =
0

05 ∆l°±∆l®
∆l°±∆l®±∆l²±∆l³

⟺ 𝑅>(𝑡B) =
∆l=1∆lI
∆l©1∆lR

+ 1 (9). 

Based on equation (9), we estimated Rt with real-time data by model simulations.   
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Table S1. Parameters used in the quarantine simulation of Wuhan epidemic 

Parameter Symbol Time Baseline value Estimated value Reference 
Contact rate c 15-26 Jan 10 - Assumption 

27 Jan-9 Feb - 6 Estimated 
10 Feb-6 Mar - 3 Estimated 

Mean duration 
from onset to 
hospital 
admission 

i 15-26 Jan 10 days 
(9-12) 

- (Li, Guan et al. 
2020) 

27 Jan-9 Feb - 10 days (9-12) Estimated 
10 Feb-5 Mar - 3.2 days (3-3.8) 

 
Estimated 

Mean Recovery 
rate 

v - 0.0237 
(0.02-0.041) 

- the Health 
Commission of 
Wuhan 

Mean interval of 
incubation 

p - 4 days 
(3.8-7) 

- (Special Expert 
Group for Control 
of the Epidemic of 
Novel Coronavirus 
Pneumonia of the 
Chinese 
Preventive 
Medicine 2020) 

Mean case 
fatality rate 

m - 0.0324 
(0.031-0.044) 

- (Special Expert 
Group for Control 
of the Epidemic of 
Novel Coronavirus 
Pneumonia of the 
Chinese 
Preventive 
Medicine 2020) 

 

4. Sensitivity of mean interval incubation 

Based on most recent studies on COVID-19, mean interval of incubation is around 3 to 4 days, 
but its range is large, and there is clinical case that the largest interval could reach 24 days. 
Therefore we analyzed the sensitivity of interval of incubation to the simulation (Figure S1). It 
shows that even mean interval of incubation is reduced to 2 days, the epidemic would be 
stopped although a higher medical burden will be imposed.  

 

 

 



Chapter 10 
 

168 
 

 

Figure S1. Sensitivity analysis of mean interval of incubation to the simulation of Wuhan 
epidemic. (A) Mean interval of incubation is assumed to 2 days. (B) Mean interval of incubation is 
assumed to be 6 days. 
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Epidemiological research serves as a key pillar in understanding how pathogens transmit and 
their transmission consequences in the human society. The susceptibility and vulnerability of 
certain populations to particular viral infections are determined by many elements, which can 
mutually interact as well. It is clear that different types of pathogens are widely co-circulating 
among human population. Some of them may co-infect a same individual that exacerbates 
the clinical outcome. In this thesis, I attempted to understand the epidemiological and clinical 
features of viral infections, with focus on HPV, HEV and SARS-CoV-2, from several perspectives.  

HPV prevalence in Chinese women and strategies to mitigate the burden   

For HPV, it is believed that most women in China acquire the infection once or twice during 
the lifetime[1]. Although HPV infection is usually self-limiting, failure of viral clearance with 
resultant persistent infection can lead to progression of precancerous lesions in the deep cell 
layers. According to its oncogenic potential, HPV is classified as either being low-risk HPV (LR) 
genotype or high-risk (HR) HPV genotype[2]. Considering that a significant proportion of 
persistent infections are difficult to diagnose, and thus eventually accelerate the progression 
of existing lesions to full blown cancer, in Chapter 2, I investigated the prevalence and 
genotype distribution of HPV in women from Inner Mongolia, China. I analyzed cytopathology 
status of the collected cell samples, and mapped its association between age and the HPV 
genotype distribution. I found that genotypes 16, 58, and 52 are most prevalent in that 
geographical region, and importantly, I observed a potential ethnic disparity of HPV infection 
between Han and Mongolian populations. In Mongolian women, the prevalence of HPV is 
significantly higher, and HPV31 and multiple-genotype infection are more common in 
comparison to Han women. These findings are partially consistent with a previous study 
reporting that HPV31 is the second most prevalent genotype in Mongolian women living in 
Ulaanbaatar, the capital of outer-Mongolia. Interestingly, the DRB*1501 allele of the HLR class 
II gene has been reported to be associated with high susceptibility to HPV infection in the Han 
population of Inner Mongolia[3,4], but strikingly has also been related to protection from 
cervical cancer in the Han of Xinjiang. As Xinjiang, similar to Inner Mongolia, is an important 
autonomous region but mainly composes Uygur, Kazak, and Hui ethical groups, it is tempting 
to postulate that frequent cultural and genetic recombination or exchange may essentially 
affect the susceptibility of a population to viral infection. I thus continued HPV research in 
Chapter 3, but now focusing on the co-infection with C. trachomatis, another sexually 
transmitted pathogen in Chinese women. I found that the rate of HPV and C. trachomatis 
mono-infection and co-infection were 36.0%, 14.3% and 4.8%, respectively. Co-infection 
dramatically increases the risk for abnormal cytology (OR = 11.6; 95% CI, 7.29–18.6), and may 
further result in severe cervical pathogenesis and even carcinogenesis. The genotype HPV66 
is surprisingly more prevalent than other high-risk genotypes in co-infection cases. I 
speculated a synergistic pathogenic effect by the co-infection, as C. trachomatis mono-
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infection is usually asymptomatic. Co-infection may disrupt the immune system of hosts and 
lead to local inflammation[5,6], which subsequently triggers the production of reactive oxygen 
species (ROS) and oxidative DNA damage[7], and accelerates the progression of HPV invasion 
and related carcinogenesis[8]. A recent study has suggested that C. trachomatis may interact 
with several cancer-associated proteins that play a role in carcinogenesis[9]. For instance, in 
cultured cells C. trachomatis infection can lead to multinucleation that associates with 
chromosome instability and further promotes carcinogenesis[10]. A similar study shows that C. 
trachomatis plays a role in modifying PP2A signaling to suppress Ataxia-telangiectasia 
mutated activation which is responsible for high-fidelity repair of DNA double-strand breaks[11]. 
C. trachomatis may also compete with other DNA bind proteins, such as CpG binding proteins, 
chromodomain helicase DNA protein 5, and DDB2 protein, which involve regulations of cancer 
initiation and growth, and thereby alter normal intracellular environment consequently 
increasing the risk of cervical cancer. These evidences suggest that C. trachomatis may play a 
direct role in cervical carcinogenesis and this effect should be further explored in the setting 
of co-infection with HPV.  

Mathematical modeling is a powerful tool to understand virus transmission and to estimate 
the burden of caused diseases in large populations. In Chapter 4, I used a SEIR compartmental 
model to estimate the incidence of HPV-related cervical cancer in China on the basis of the 
current Chinese cancer screening policy, and predicted its future trends toward 2030. In the 
modeling, I considered the role of aging in the occurrence of highly progressed lesions, and 
divided the modeled population by gender as to allow a heterosexual HPV transmission 
between females and males. I found that the rates of cervical cancer would gradually decrease 
from 2018 (14.1 cases per 100,000 women) to 2025 (13.4 cases per 100,000 women) by the 
current screening project. Increasing the coverage of cytological testing and introducing 
primary HPV screening would further prevent 223 new cases and 276 new cases (by screening 
10 million women) on average per year, respectively, between 2017 and 2021, and 346 new 
cases and 425 new cases per year between 2022 and 2025. The 5-year-interval repeated 
screenings from 2017 till 2030 would substantially reduce the rate of new cases by 27.9%. I 
observed that the benefit of vaccination, when targeted on both girls and boys aged 12 years 
from 2017 to 2030, is more apparent in age groups younger than 34 years, and it assumes that 
maximized effect of vaccination would take time to cover the whole populations with a wider 
age range. This analysis represents a substantial expansion of the efforts of previous chapters 
to quantify the HPV-caused cervical cancer disease burden, and a better response to the vision 
of the "Healthy China 2030" issued by Chinese central government and the outlook of WHO 
to globally eliminate cervical cancer by achieving an incidence of lower than 4 per 100,000 
women by 2100[12,13]. In my modeling, HPV vaccination has been shown to be effective for 
cervical cancer control and prevention. Although HPV vaccines are currently available in China, 
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the implementation remains at its infancy. Thus, a key issue emerges for the regional policy 
makers of public health as how to increase the accessibility and affordability of HPV vaccine 
in China and other resource-limited regions. It is also notable that the acceptance of HPV 
vaccine, relevant to education background and cervical cancer awareness, further influences 
the wide application of HPV vaccination. For instance, a recent meta-analysis shows that the 
estimated awareness rate of HPV vaccine among Chinese college students was 40.27%, which 
is relatively lower compared with European countries[14]. Another questionnaire in western 
China suggests that most female citizens (about 71.1%) lack basic knowledge about HPV, 
although at least half are willing to take the HPV vaccine[15].  

HEV zoonotic transmission and HEV infection in Chinese pregnant women 

Unlike HPV, HEV seldom transmits via a human-to-human route. There are various 
transmission routes, such as via contaminated water, contaminated food, contact with 
infected animals or blood transfusion, but this is associated with specific genotypes of HEV. 
Swine is recognized as the main reservoir of zoonotic HEV genotype 3 and 4. Consumption of 
pork-related food products contaminated with genotype 3 HEV is thought to be the main 
source of HEV infection in many European countries. In this thesis, I focused on the 
transmission and epidemiological features of zoonotic HEV strains. In Chapter 5, I estimated 
HEV prevalence in domestic pigs and wild boars at a global scale by conducting a systematic 
review and meta-analysis. I found that nearly 60% of domestic pigs and 27% of wild boars are 
HEV seropositive. Importantly, about 13% of domestic pigs and 9.5% of wild pigs are HEV RNA 
positive, indicating active infection. Of note, 10% of commercial pork products are HEV RNA 
positive. It has been reported that blood of HEV-visemic pigs from slaughterhouses may 
contaminate a whole pork supply chain[16]. Genotype 3 is predominately circulating in pigs, 
and the prevalence of HEV RNA in pigs and retail pork livers is similar among Canada, the USA 
and Europe[17]. HEV incidence and prevalence in human population varies geographically. 
From 1990 to 2017, the number of HEV cases was increased in low and low-middle socio-
demographic index regions, but also in some developed areas such as Oceania and western 
Europe[18]. Importantly, in Western Europe the growth of HEV cases mainly concentrates on 
populations above 40 years of age, which implies the possible involvement of specific HEV 
genotypes and elements such as environmental, life-style, socioeconomic factors.  

In Chapter 6, I focused on the transmission of zoonotic HEV in representative European 
countries. I modeled how individuals acquire HEV infection by consuming contaminated pork-
derived food. I found that foodborne infection is associated with the levels of active HEV in 
contaminated food and the habit of pork food consumption. It is estimated that orally 
ingested amount of HEV at which the probability of infection equals 50% is 8.1×106 (95% CI 
2.4×106-2.0×107) viral genomes. This level is lower than those tested in swine samples 
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collected in or near farming areas, and this implies that workers of pig farms or individuals 
living nearby may have a higher risk of acquiring HEV infection. The first HEV vaccine named 
Hecolin was approved in China in 2012[19]. A large clinical trial that included over 100,000 
healthy participants demonstrated a 95.5% efficacy over 19 months[20]. Long-term follow up 
of a 4.5-year period showed a vaccine efficacy of 86.8%, and 87% of those who received three 
doses of the vaccine maintained anti-HEV antibodies[21]. In the real-world, it is not feasible to 
widely implement this vaccine in the general population. Therefore, I made an assumption 
that specifically in high-risk population of foodborne HEV infection in Germany can be 
targeted for vaccination, and found under these conditions a clear beneficial effect of reducing 
the infection by my modeling. Since there is no HEV vaccine available for pigs, I theoretically 
assumed two vaccination strategies targeting at reduction of the susceptibility of uninfected 
animals, and reduction of the contagiousness of infectious animals, respectively. I illustrated 
the effectiveness of applying vaccine in pigs on the risk of HEV transmission to humans in 
Germany with the mathematical models. Considering that modern pig industry may largely 
shape the landscape of HEV epidemiology in human population in Western countries, it 
deserves more attention to evaluate active interventions including vaccination and to 
examine the safety in the food chain. A study from Switzerland has provided proof-of-concept 
that implementing public health measures to control pork-related food products can reduce 
the risk of HEV transmission to humans[22].  

In China, genotype 1 and 2 HEV is dominating[23,24], which is thought to be more pathogenic 
than genotype 3. In Chapter 7, I screened both viral RNA and antibodies of HEV in a Chinese 
pregnant women population. The seroprevalence of HEV (6.62%) in pregnant population is 
slightly higher than that of the non-pregnant control cohort (4.5%), but whether pregnant 
women are more susceptible to HEV infection remains to be further clarified. Importantly, 
pregnant women with recent/ongoing HEV infection have slightly higher ALT level and appear 
to be associated with adverse maternal and neonatal outcomes. However, the number of 
positive cases is too small to draw firm conclusions. Severe maternal and neonatal outcomes 
usually occur in pregnant women infected with genotype 1 or 2 HEV from developing 
countries, but not from industries countries with genotype 3 prevalence. Thus, the burden of 
HEV infection in Chinese pregnant women may be distinct from resource-limited regions and 
western countries. Relatively mild symptoms in HEV-infected pregnant women have been 
observed in similar studies. A study in Shanghai, China showed that most of the hospitalized 
HEV-infected pregnant women (85.2%, 127/149) present with no obvious clinical symptoms 
and the disease outcomes were generally benign with no liver failure or maternal mortality[25]. 
Slightly elevated ALT levels were also detected in most of the anti-HEV sero-positive women 
in Ghana[26]. However, the neonatal outcomes of maternal infection might be adverse. 
Preterm birth, followed by premature rupture of membranes, fetal distress, low birth weight, 
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threatened preterm labor, neonatal asphyxia, stillbirth and threatened abortion have been 
observed in around 43% infants with maternal infection[25]. Therefore, future studies are 
required to delineate the horizonal epidemic of pregnant HEV infection in Inner Mongolia of 
China.  

Modeling the spread and control of COVID-19  

During my PhD, the COVID-19 pandemic caused by SARS-CoV-2 infection emerged from 
Wuhan, China and subsequently spread over the globe. Different countries and regions often 
react differently in response to outbreaks, whereas the right early response is essential for 
containing the outbreak, thereby avoiding large epidemic or pandemic. Because of their 
disparities in culture, socioeconomic status, and types of government, the implementation of 
control measures can vary tremendously among different countries. Further, the disease 
burden caused by SARS-CoV-2 varies tremendous among different populations. Thus, in 
Chapter 9, I first analyzed the fatality rate when comparing the epicenter Wuhan to other 
regions of mainland China at the early stage of the pandemic. As recorded by the Chinese 
Center for Disease Control and Prevention, by Feb 16, 2020, there had been 70641 confirmed 
cases and 1772 deaths due to COVID-19, with an average mortality of about 2.5%[27]. However, 
in-depth analysis of these data shows clear disparities in mortality rates between Wuhan 
(>3%), different regions of Hubei province (about 2.9% on average), and across the other 
provinces of China (about 0.7% on average). I postulated this is likely to be related to the rapid 
escalation in the number of infections in the epicenter, which resulted in insufficiency of 
health-care resources, thereby negatively affecting patient outcomes, while this was not the 
situation for the other parts of China. In assuming that average levels of health care are similar 
throughout China, higher numbers of infections in a given population can be considered an 
indirect indicator of a heavier health-care burden. Plotting mortality against the incidence of 
COVID-19 (cumulative number of confirmed cases since the start of the outbreak, per 10000 
population) showed a significant positive correlation, suggesting that mortality is correlated 
with health-care burden. Hospital capacity has been being one of main concerns in tackling 
with the spread of COVID-19, and events that disease outbreak in the peak period will 
overwhelm hospital capacity has been repeatedly reported. A modeling study further 
estimated the impact of inadequacy of critical care when regional disease breaks up and hold 
that the number of ICU beds needs to double if no effective social distancing policies such as 
self-isolation, school closure or limiting public transportation were taken[28].  

However, Wenzhou, a city of China, seemed to set an example of demonstrating adequate 
management of health care resources leading to rapid disease control. In early 2020, the 
COVID-19 outbreak coincided with a massive population migration, and led to the rapid 
disease spread across China. Wenzhou quickly reached the highest number of COVID-19 cases 
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for any city outside of Hubei province, and most of these cases were imported from the 
epicenter (with a total of 504 imported cases). However, it took only about 46 days for this 
city to fully contain the epidemic, preventing the city to grow into a new epicenter. In Chapter 
11, I thus modeled how epidemics was rapidly contained in Wenzhou. I found that specific 
measures, including immediate hospital admission, disease quarantine and isolation, and lock 
down of most districts, greatly decreased the exposure of the susceptible to the disease. These 
results highlight the essential of early, quick and adequate response with implementation of 
the right control measures. Delayed response will soon plunge the healthcare system into 
crisis, as seen in Wuhan and other countries like Italy, Spain, UK and USA, even in the context 
of well-developed healthcare systems. Availability of healthcare is critical for controlling the 
epidemic but also for minimizing severe patient outcomes[29]. The distinct experiences of 
Wenzhou and Wuhan are mirroring what has happened in many parts of the world, either as 
epicenters or regions primarily with imported case. 

In Chapter 10, I modeled the transmission of SARS-CoV-2 from the epicenter to other Chinese 
provinces in early 2020. This process I mathematically interpreted using the metapopulation 
transmission theory, namely, an initial infectious population (here I referred to Wuhan) can 
transmit virus to more susceptible populations (here I refereed to other provinces of China). 
A recent modeling study also uses the metapopulation model to estimate the course of the 
epidemic in America, in which the simulation was performed at a county-scale and estimate 
critical, time-varying epidemiological properties underpinning the dynamics of SARS-CoV-2[30]. 
In the modeling, I found that two events were essential to block viral transmission within 
population migration. One is the immediate lock-down of the city of Wuhan, and another is 
intense quarantine of suspected case importers. I also noticed that disease transmission was 
closely associated with the size and speed of the population migrations among cities, and 
transportation hubs and trade ports considered in this study are still key objectives in disease 
controls today. Populated neighboring provinces having convenient transportation links with 
the epidemic regions should be given adequate concerns[31], and potential infection threats in 
destination and directions of population migrations from inside and outside of nation should 
be pre-elucidated. China is among the few countries that still has locked down its boundaries, 
by pressure that the disease will rear its ugly head always exists as the country maintains the 
largest susceptible pool globally, although nearly the entire population has received at least 
two-doses of vaccine. While small scale epidemics caused by imported cases occasionally 
occur, the Chinese government is fully conscious of the dynamics of the virus spread and has 
learnt to rapidly isolate the epidemic area to enable other areas to perform normal economic 
activities and continue the routine daily life.  

In summary, this thesis has provided new insight in better understanding viral infectious 
disease with focus on specific populations and vulnerable settings. I achieved this by 



Summary and discussion 
 

179 
 

prioritizing research on three representative pathogenic viruses, namely, HPV, HEV and SARS-
CoV-2. These viruses have distinct transmission routes and affect different human populations. 
By taking multidimensional approaches, including epidemiological methodologies and 
mathematical modelling, this thesis has provided comprehensive perspectives in 
understanding virus transmission, disease burden, and preventive measures. I hope these 
knowledges would help to combating the current threats by viral diseases and better 
preparing future epidemic/pandemic.  
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Een virus is een minuscuul stukje organische substantie dat zich uitsluitend kan 

vermenigvuldigen in de cellen van levende wezens. Wanneer een virus een levende cel 

binnendringt, zal deze gastheercel grote hoeveelheden kopieën van het oorspronkelijke virus 

gaan produceren. Virussen infecteren alle vormen van leven, van dieren, schimmels en 

planten tot micro-organismen en komen voor in alle ecosystemen. De vermenigvuldiging van 

virussen gaat gepaard met functieverlies en vaak zelfs het uiteen knappen van de 

geïnfecteerde cel en organismen beschermen zich dan ook tegen virussen met een grote 

variëteit  van strategieën en mechanismen. Zowel de virusinfectie zelf als het antwoord van 

het lichaam op de infectie gaan gepaard met ziekte en zelfs sterfte. In dit proefschrift probeer 

ik te begrijpen welke processen de verspreiding van virussen in specifieke groepen van de 

bevolking bepalen. De keuzes die ik hierbij gemaakt heb, leg ik uit in Hoofdstuk 1. 

 

In het eerste gedeelte van het proefschrift concentreer ik mij op Het humaan papillomavirus, 

ook wel HPV genoemd. Papillomavirussen kunnen abnormale celgroei van huid en slijmvliezen 

teweegbrengen en zijn de veroorzakers van wratten, terwijl seksueel overgedragen varianten 

als een belangrijke oorzaak van baarmoederhalskanker worden gezien (n 75% van de gevallen 

van baarmoederhalskanker wordt deze door bepaalde HPV-soorten veroorzaakt). Bij 

bestudering van de epidemiologie van de baarmoederhalskanker-geassocieerde vorm van 

HPV infectie wordt vooral geografie betrokken, maar in hoofdstuk 2 van dit proefschrift laat 

ik zien dat in het zelfde gebied (Binnen-Mongolië) er zeer grote verschillen zijn in de 

prevalentie van het HPV virus tussen vrouwen uit verschillende etnisch-culturele groepen. Het 

lijkt er dan ook op dat de puur geografische benadering van de epidemiologie van HPV infectie 

bij vrouwen te simpel is. Ik heb deze resultaten wereldkundig gemaakt middels een publicatie 

in het zeer vooraanstaande wetenschappelijke vaktijdschrift Journal of Medical Virology. De 

Amerikaanse Centers for Disease Control and Prevention stellen dat het gebruik van condooms 

niet voldoende is om bescherming te bieden tegen HPV-gerelateerde baarmoederhalskanker, 

waar dit voor het beschermen tegen chlamydia besmetting wel voldoende zou zijn. In 

hoofdstuk 3 echter laat ik zien dat er een sterke correlatie is tussen chlamydia besmetting en 

HPV besmetting, wat twijfel over deze stelling oproept. Ook deze resultaten wist ik te 

publiceren in het zeer vooraanstaande wetenschappelijke vaktijdschrift Journal of Infectious 

Disease.  Een laatste HPV-gerelateerde studie presenteer ik in hoofdstuk 4. Hier onderzoek ik 

de effectiviteit van het bevolkingsonderzoek baarmoederhalskanker in China. In het verleden 
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waren er twijfels over de effectiviteit van dit programma, met name wat betreft afgelegen, 

minder ontwikkelde, gebieden in dit land. Ik presenteer echter bewijs dat dit programma 

effectief is. Deze studie heb ik onlangs aangeboden voor wetenschappelijke publicatie en 

hoop ik dus op die wijze binnenkort wereldkundig te maken. 

 

In het tweede gedeelte van mijn dissertatie focus ik mij op het Hepatitis E virus (HEV), de 

belangrijkste oorzaak van acute virale leverontsteking ter wereld. In ontwikkelingslanden 

wordt dit virus vooral verspreid via de oraal-fecale route, met name via het water. In Westerse 

landen lijkt besmetting uit dierlijke reservoirs het belangrijkste te zijn. Van oudsher wordt 

gesuggereerd dat besmetting van mensen door het consumeren van varkensproducten hierbij 

een belangrijke rol speelt. In hoofdstuk 5 probeer ik een inschatting te maken over hoe vaak 

varkensvlees nu eigenlijk een bron kan zijn voor Hepatitis E infectie op een wereldwijde schaal. 

De resultaten van deze analyse publiceerde ik in het vooraanstaande wetenschappelijke 

vaktijdschrift One Health. De conclusie was dat slecht gebakken varkensvlees zeker kan 

bijdragen aan de HEV infectiedruk, maar an sich niet voldoende is om verspreidingspatronen 

van deze ziekte volledig te verklaren en dat andere factoren belangrijk hierin ook 

geïdentificeerd moeten worden. In hoofdstuk 6, ook gepubliceerd in het vooraanstaande 

wetenschappelijke vaktijdschrift One Health werk ik dan uit hoe middels vaccinatie dit 

probleem het hoofd kan worden geboden In hoofdstuk 7 laat ik zien dat HEV infectie 

inderdaad tot (iets) slechtere zwangerschapsresultaten leidt, een resultaat wat ik publiceerde 

in het wetenschappelijk vaktijdschrift Clinics and Research in Hepatology and 

Gastroenterology. Alles bijelkaar leveren deze studies inzicht op hoe om te gaan met HEV 

infecties, met name in de ontwikkelde wereld. 

 

Gedurende dit promotieonderzoek werd de wereld getroffen door COVID-19. Ik besloot de 

resterende tijd van mijn studies in Rotterdam te gebruiken aan begrijpen van de 

epidemiologie van COVID-19).  Ik was een van de eersten die de gevolgen van een door COVID-

19 overbelast medisch zorgsysteem benoemde en kwantificeerde, een analyse die in 

beknopte vorm verscheen in het wetenschappelijk toptijdschrift Lancet Global Health 

(hoofdstuk 8) en in meer uitgewerkte versie in wetenschappelijke vaktijdschrift 

Transboundary and Emerging Diseases (hoofdstuk 9), terwijl ik ook in ga op de relatieve 

effectiviteit van strategieën gericht op het beheersen van de epidemie (hoofdstuk 10), een 
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studie die verscheen in het wetenschappelijke toptijdschrift PloS Global Health.  Een 

samenvattende discussie, waarin ik mijn bevindingen plaats in het corpus van de 

contemporaine biomedische literatuur is te vinden in hoofdstuk 11. 

 

Alles beschouwend hoop ik met deze dissertatie te hebben bijgedragen aan het begrip van 

hoe virusziekten zich in de menselijke populatie verspreiden, wat de gevolgen daarvan zijn in 

relatie tot de capaciteit van gezondheidszorgsystemen, en wat de effectiviteit is van de 

verschillende mogelijke maatregelen (vaccinatie van de populatie of mogelijke zoönotische 

reservoirs, verminderen sociale contacten etcetera). Dit moet helpen toekomstige virale 

bedreigingen in toom te houden. 
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