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RESEARCH PAPER

Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic 
gestational age at birth
Giulietta S. Monasso a,b, Trudy Voortman c, and Janine F. Felix a,b

aThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; bDepartment of Pediatrics, 
Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; cDepartment of Epidemiology, Erasmus MC, University 
Medical Center, Rotterdam, The Netherlands

ABSTRACT
Maternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age 
acceleration, referring to a discrepancy between chronological and epigenetic gestational age, 
may underlie these associations. Previous research suggests that analysing fatty acid patterns 
rather than individual fatty acids may overcome the caveat of missing synergistic or additive 
effects. Among 1226 mother-newborn pairs from the population-based Generation R Study, we 
examined the associations of three maternal plasma mid-pregnancy fatty acid patterns, identified 
by principal component analysis, with offspring epigenetic gestational age acceleration. This was 
estimated from cord blood DNA methylation data using the method developed by Bohlin. As 
a secondary analysis, we used the method developed by Knight to estimate epigenetic gestational 
age. The identified ‘high n-6 polyunsaturated fatty acid,’ ‘monounsaturated and saturated fatty 
acid’ and ‘high n-3 polyunsaturated fatty acid’ patterns were not associated with epigenetic 
gestational age acceleration in the main analyses. In sensitivity analyses restricted to 337 children 
born to mothers with more accurate pregnancy dating based on a regular menstrual cycle, a one 
standard-deviation-score higher maternal plasma ‘high n-3 polyunsaturated fatty acid’ pattern 
was associated with an epigenetic gestational age acceleration of 0.20 weeks (95% CI 0.06, 0.33), 
but only when using the Knight method. Thus, we found some evidence that a maternal plasma 
fatty acid pattern characterized by higher concentrations of n-3 polyunsaturated fatty acids may 
be associated with accelerated epigenetic gestational ageing. These findings depended on the 
method used and the accuracy of pregnancy dating and therefore need confirmation.
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Introduction

Fatty acids, especially essential fatty acids and their 
derivates, long-chain polyunsaturated fatty acids (LC- 
PUFAs), are transported from mother to foetus and 
are critical during foetal life [1,2]. They are involved in 
cell membrane synthesis and inflammatory processes 
and may modulate gene expression and protein func
tion [1,3]. A number of observational studies have 
reported associations of maternal pregnancy fatty 
acid status and intake with various health outcomes 
in their children, including gestational age and pre
term birth, asthma, body fat distribution and verbal 
intelligence [4–13].

A mechanism underlying the associations of fatty 
acid status during foetal life and health from birth 
onwards may be altered foetal DNA methylation 
[14–17]. Three previous pregnancy studies, using 

data from clinical trials, reported associations of LC- 
PUFA supplementation with offspring candidate- 
gene, global and regional methylation in neonatal 
blood [15,16,18]. Additionally, an epigenome-wide 
association study reported associations of maternal 
preconception, but not pregnancy, plasma fatty acid 
concentrations with offspring differential DNA 
methylation at 19 cytosine-phosphate-guanine sites 
(CpGs) in cord blood [14].

Fatty acid intake has also been associated with 
epigenetic ageing in four observational studies [19– 
22]. Epigenetic age can be established by ‘epigenetic 
clocks,’ biomarkers that predict age based on DNA 
methylation levels [23]. Positive age acceleration 
reflects an older epigenetic than chronological age. 
Negative age acceleration reflects a younger epigenetic 
than chronological age [23]. In adults, two large 
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studies reported that omega-3 (n-3) PUFA intake was 
negatively correlated with age acceleration [19,20]. 
One small study reported that maternal intake of 
monounsaturated fatty acids (MUFAs) and saturated 
fatty acids (SFAs) during pregnancy was associated 
with offspring positive age acceleration, estimated 
from saliva sampled at birth [21]. A follow-up study 
embedded in the same observational study reported 
interactive associations of fatty acid classes with new
born age acceleration [22]. This suggests that syner
gistic or additive effects might be missed when 
analysing individual fatty acids. We and others pre
viously showed that another approach to overcome 
this caveat may be the analysis of fatty acid patterns 
identified by principal component analysis [6,24]. 
This data-driven technique reduces the dimensional
ity of complex datasets [25]. It is not yet known 
whether maternal fatty acid patterns during preg
nancy, established from plasma concentrations, are 
associated with offspring gestational age acceleration 
in cord blood.

In the current study, we aimed to examine the 
associations of three maternal pregnancy plasma 
fatty acid patterns with offspring epigenetic age 
acceleration, estimated from cord blood DNA 
methylation, among 1226 mother-newborn pairs. 
Previous studies have related both prenatal expo
sures considered to be beneficial and those con
sidered to be detrimental to positive as well as 
negative age acceleration in cord blood. This indi
cates that the interpretation of a ‘beneficial’ effect 
may not be immediately apparent [26–31]. 
Therefore, we aimed to explore the direction of 
effect of associations as part of this study.

Materials and methods

Participants

This study was embedded in the Generation 
R Study, a population-based prospective cohort 
study from foetal life onwards in Rotterdam, the 
Netherlands [32]. The Medical Ethical Committee 
of Erasmus MC, University Medical Center 
Rotterdam, approved the study (MEC 198.782/ 
2001/31). Pregnant women with an expected deliv
ery date between April 2002 and January 2006 
living in Rotterdam were eligible to participate. 
Written informed consent was obtained for all 

participants. We measured DNA methylation in 
cord blood in a European-ancestry subgroup of 
1396 newborns. Child ethnicity was based on eth
nicity of both parents according to the Statistics 
Netherlands. In the current study, we included 
1226 of these newborns with information on 
maternal plasma mid-pregnancy fatty acid patterns 
available, after randomly excluding one sibling for 
each of the 12 (non-twin) sibling pairs in the data 
set. The analysis included only singleton children. 
Eleven newborns had missing data on CpGs 
required to calculate epigenetic age using our 
main method. These children were only included 
in analyses using a secondary method. 
Supplementary Figure 1 shows a flowchart of the 
study population.

Maternal mid-pregnancy plasma fatty acid 
patterns and child gestational age acceleration

As previously described, non-fasting venous blood 
samples were collected in mid-pregnancy (median 
gestational age 20.5 (95% range 16.5–24.9) weeks) 
and subsequently transported and stored at −80 
C in the regional laboratory, before being trans
ported to the Division of Metabolic Diseases and 
Nutritional Medicine, Dr. von Hauner Children’s 
Hospital, Ludwig-Maximilians-University of 
Munich, Germany [33]. Gas chromatography was 
used to analyse the fatty acid composition of 
plasma phosphoglycerides. The average coefficient 
of variation was 15.7% [6]. We measured concen
trations of 22 fatty acids, which were expressed in 
weight percentage (wt%) of total fatty acids in the 
chromatogram [6]. Previously, we applied princi
pal component analysis on the wt% of these fatty 
acids, rather than on their concentrations, in order 
to reduce the dimensionality of our data. By using 
this data-driven mathematical approach, three 
principal components, or fatty acid patterns, were 
identified in maternal plasma, explaining the lar
gest possible variation in the original variables 
(Supplementary Table 1) [6]. These were named 
after fatty acids with high (|≥0.20|) factor loadings 
for that particular plasma pattern, describing how 
strongly individual fatty acids contributed to 
a pattern [6]. The ‘high n-6 PUFA’ pattern was 
characterized by high factor loadings for n-6 
PUFAs, the ‘MUFA and SFA’ pattern was 
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characterized by high factor loadings for MUFAs 
and SFAs and the ‘high n-3 PUFA’ pattern was 
characterized by high factor loadings for n-3 
PUFAs [6]. All mothers received an individual 
score on each of the plasma fatty acid patterns.

DNA methylation data

We used the salting-out method to extract DNA 
from cord blood samples. Five-hundred nanograms 
of DNA were bisulphite converted using the EZ-96 
DNA Methylation kit (Shallow) (Zymo Research 
Corporation, Irvine, USA). Samples were plated 
onto 96-well plates in no specific order. Samples 
were processed with the Illumina Infinium 
HumanMethylation450 BeadChip (Illumina Inc., 
San Diego, USA). Quality control and normalization 
were performed using the CPACOR workflow [34]. 
Probes with detection p values ≥1E-16 were set to be 
missing. Intensity values were quantile normalized. 
We removed arrays with technical problems, a call 
rate ≤95%, or a mismatch between the expected sex 
of participant and sex determined by chromosome 
X and Y probe intensities. Probes on the sex chro
mosomes were removed before the analyses. We 
used untransformed beta-values as measures of 
DNA methylation. The final dataset contained data 
on 458,563 CpGs.

Gestational age estimation and gestational age 
acceleration

Pregnant mothers were seen for foetal ultrasound at 
our research centre in the first trimester of preg
nancy [35]. During this visit, we established gesta
tional age. If mothers had a known and reliable 
first day of the last menstrual period, and 
a regular menstrual cycle of 28 ± 4 d, the clinical 
estimate of gestational age was based on last men
strual period [35]. If mothers did not know the 
exact date of their last menstrual period, or had an 
irregular menstrual cycle, we established gestational 
age by ultrasound, which is the gold standard in 
clinical practice, but does not take into account 
variation in early foetal growth [35]. 
Consequently, measurement error may occur. 
Within the study population, we selected 
a subgroup of mothers with a known and reliable 
first day of the last menstrual period, and a regular 

menstrual cycle of 28 ± 4 d [35]. In this subgroup, 
a more accurate clinical estimate of gestational age 
could be made, based on last menstrual period 
(subgroup with ‘optimal’ pregnancy dating). These 
337 mothers and their children were used for sen
sitivity analyses. We decided a priori to calculate 
epigenetic gestational age at birth (‘gestational age 
acceleration,’ in weeks) primarily based on the epi
genetic clock of Bohlin using the GAprediction 
package 1.16.0 in R 3.6.1 [36,37]. This clock esti
mates gestational age from methylation levels at 96 
CpGs from HumanMethylation450 BeadChip 
selected through Lasso-regression [36]. It is devel
oped among newborns who are comparable to our 
full population, in terms of their characteristics 
[36,38]. We assessed both raw and residual gesta
tional age acceleration. The raw measure, obtained 
by subtracting clinical from epigenetic gestational 
age, does not take into account the potential con
founding effect of clinical age on epigenetic gesta
tional age, which share variance [27]. We obtained 
the residual estimate from the residuals from 
a linear regression of epigenetic gestational age on 
clinical gestational age. By definition, residual accel
eration is uncorrelated with clinical age [27]. As 
different clocks may capture different features of 
ageing, we used another commonly used cord- 
blood specific clock as secondary method (methyl
clock package 0.5.0 in R 3.6.1) [30,39,40]. This 
clock, developed by Knight, estimates gestational 
age from DNA methylation levels at 148 CpGs 
from HumanMethylation450 BeadChip, selected 
through elastic net regression [30]. As compared 
to the clock of Bohlin, this clock was developed 
among neonates who are less comparable to our 
study population [30,38]. More specifically, the 
Knight population had a mixed ethnic background 
and the average gestational age at birth was lower. 
Yet, as in our subgroup, pregnancy dating was 
based on last menstrual period.

Covariates

We selected potential confounders based on litera
ture. Maternal covariates included age (years), 
educational level (primary or secondary education 
versus university or higher), parity (nulliparous 
versus multiparous), pre-pregnancy body mass 
index (kg/m2), total daily energy intake during 
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pregnancy (kcal, obtained from food-frequency 
questionnaires), folic acid supplementation during 
pregnancy (no use, started <10 weeks gestation, 
started periconceptionally), smoking during preg
nancy (non-smoking or smoked until pregnancy 
was known, versus smoked throughout preg
nancy), and alcohol consumption during preg
nancy (no consumption or consumption until 
pregnancy was known, versus consumption 
throughout pregnancy). We adjusted for child sex 
and for gestational age at maternal blood sampling 
(weeks), as physiologically fatty acid concentra
tions decline during pregnancy [41]. We adjusted 
for batch effects by including plate number and 
used the ‘Salas’ reference set to estimate cell-type 
proportions in the ‘FlowSorted.CordBlood. 
Combined.450 K’ Bioconductor package. Briefly, 
this method estimates the relative proportions of 
six white blood cell subtypes (CD8+ T cells, CD4 
+ T cells, Natural Killer cells, B cells, Monocytes, 
Granulocytes) and nucleated Red Blood Cells, 
based on a standard reference of cord blood sam
ples [42]. We considered sex- and gestational age- 
specific standard deviation scores (SDS) of birth 
weight as a potential mediator [43]. We obtained 
information on covariates from questionnaires 
sent out in pregnancy and from midwife and hos
pital records.

Statistical analysis

First, we performed a non-response analysis, using 
Student’s t-tests, Mann–Whitney tests and Chi- 
square tests. Second, we compared characteristics 
of newborns included in the analyses, to those 
with DNA methylation data, but without data on 
maternal plasma fatty acid patterns or a sibling 
that was included. Third, we used linear regression 
to analyse the associations of continuous maternal 
plasma fatty acid pattern scores, which are statis
tically uncorrelated and standardized and can be 
interpreted as SDS, with raw and residual gesta
tional age acceleration. The basic model was 
adjusted for batch, cell types, gestational age at 
blood sampling and sex. The main model was 
additionally adjusted for maternal age, education, 
body mass index, parity, energy intake, folic acid 
supplement use, smoking and alcohol consump
tion. This model was also run without cell-type 

adjustment (reduced main model), to examine the 
influence of variation in cell-type proportions [26]. 
In case of significant associations in the main 
model, we examined in the ‘mediator model’ 
whether our results changed after additional 
adjustment for birth weight SDS. We did not per
form sex-stratified analyses, as the interaction 
terms of maternal plasma fatty acid pattern*sex 
were all not significant when added to the basic 
model. We examined potential non-linear associa
tions between the maternal plasma fatty acid pat
terns and gestational age acceleration by adding 
a quadratic term for each plasma pattern to the 
main model. As this term was significant 
(p = 0.02) for the ‘high n-6 PUFA’ pattern in the 
residual gestational age acceleration model, we also 
assessed this plasma pattern in quintiles with the 
third quintile as reference. Fourth, we examined 
the associations of the three fatty acid patterns 
with clinical gestational age and epigenetic gesta
tional age (main model). We used multiple impu
tation for missing covariates, using the Markov 
Chain Monte Carlo method. We created five data
sets and reported pooled regression coefficients 
[44]. Statistical analyses were performed using 
the Statistical Package for the Social Sciences ver
sion 25.0 (SPSS IBM, Chicago, Illinois, United 
States). We adjusted for multiple testing using 
a Bonferroni correction and considered p values 
< (0.05/3 exposures), so <0.017, statistically 
significant.

Results

Subject characteristics

The study included 1226 mother-newborn pairs 
with data on maternal mid-pregnancy plasma fatty 
acid patterns and cord blood DNA methylation. 
Table 1 and Supplementary Table 2 show subject 
characteristics before and after imputation of cov
ariates, respectively. Newborns had on average 
a slightly older clinical gestational age (median 
40.3 weeks (95% range 36.7, 42.4)) than epigenetic 
gestational age (median 39.4 weeks (95% range 36.9, 
40.8)). Consequently, the median raw gestational 
age acceleration was negative (Table 1). The correla
tion between clinical and epigenetic gestational age 
estimated by Bohlin’s clock was higher as compared 

EPIGENETICS 1565



to that estimated by Knight’s clock (Pearson’s cor
relation coefficients: 0.80 and 0.52, respectively) 
(Supplementary Figure 2). In the subgroup with 
optimal pregnancy dating, this correlation increased 
slightly for Knight’s clock (r = 0.59), but not for 
Bohlin’s clock (r = 0.81). The non-response analysis 

suggested that included newborns, on average, were 
not different from the 170 non-included newborns 
(Supplementary Table 3).

Maternal plasma fatty acid patterns during 
foetal development and gestational age 
acceleration

None of three maternal plasma fatty acid patterns, 
the ‘high n-6 PUFA’ pattern, the ‘MUFA and SFA’ 
pattern or the ‘high n-3 PUFA’ pattern, were asso
ciated with raw or residual gestational age accelera
tion in the main model, which was adjusted for 
batch, cell types, gestational age at blood sampling, 
sex, maternal age, education, body mass index, par
ity, energy intake, folic acid supplement use, smok
ing and alcohol consumption (all P-values ≥ 0.05; 
Table 2). This was not different in the subgroup with 
optimal pregnancy dating (Table 2). In secondary 
analyses based on Knight’s clock, none of the fatty 
acid plasma patterns were associated with gestational 
age acceleration either (Table 3). However, in the 
subgroup with optimal pregnancy dating, one SDS 
higher ‘high n-3 PUFA’ pattern score was associated 
with both raw (0.225 weeks, 95% confidence interval 
(CI): 0.07, 0.38) and residual (0.196 weeks, 95% CI: 
0.06, 0.33) gestational age acceleration. These asso
ciations were similar after adjustment for birth 
weight SDS in the mediator model (Supplementary 
Table 4). Exclusion of the 11 newborns with missing 
CpGs for the Bohlin clock also did not change the 
results (Supplementary Table 5). The results from 
the reduced main model and basic model were lar
gely similar to the main model (Supplementary 
Tables 6 and 7). No convincing non-linear associa
tion was observed when we analysed the ‘high n-6 
PUFA’ pattern in quintiles (Supplementary Table 8). 
Associations of the three fatty acid patterns with 
clinical and epigenetic age (main models) can be 
found in Supplementary Table 9.

Discussion

We found no evidence supporting associations of 
maternal plasma ‘high n-6 PUFA’ or ‘MUFA and 
SFA’ pattern scores with gestational age accelera
tion. Higher maternal plasma ‘high n-3 PUFA’ 
pattern scores may be associated with positive 
gestational age acceleration, indicating faster 

Table 1. Maternal and child characteristics based on non- 
imputed data (n = 1226)1.

Maternal characteristics
Age, years 31.7 (4.2)
Educational level
No or Primary 422 (35.0)
Higher 785 (65.0)
Parity
Nulliparous 744 (60.7)
Multiparous 481 (39.3)
Pre-pregnancy body mass index, kg/m2 22.2 (18.4, 34.0)
Total daily energy intake (kcal) 2145 (495)
Gestational age at blood sampling, weeks 20.5 (18.6, 22.9)
Folic acid supplementation
No 88 (8.8)
Started <10 weeks 312 (31.2)
Started periconceptionally 599 (60.0)
Smoking
Non-smoker or smoked until pregnancy was  

known
960 (85.5)

Smoked throughout pregnancy 163 (14.5)
Alcohol consumption
No consumption or consumption until  

pregnancy was known
500 (44.9)

Consumption throughout pregnancy 613 (55.1)
Pregnancy dating
Based on last menstrual period 889 (72.5)
Based on ultrasound 337 (27.5)
‘high n-6 PUFA’ pattern2 0.005 (1.0)
‘MUFA and SFA’ pattern2 −0.006 (1.0)
‘high n-3 PUFA’ pattern2 −0.001 (1.0)
Newborn characteristics
Gestational age at birth, weeks 40.3 (36.7, 42.4)
Epigenetic gestational age (Bohlin), weeks 39.4 (36.9, 40.8)
Raw gestational age acceleration (Bohlin), weeks −0.89 (−2.70, 

0.92)
Residual gestational age acceleration (Bohlin), 

weeks
0.03 (−1.24, 1.05)

Epigenetic gestational age (Knight), weeks 36.5 (32.4, 39.2)
Raw gestational age acceleration (Knight), weeks −3.72 (−7.46, 

−1.13)
Residual gestational age acceleration (Knight), 

weeks
0.14 (−3.33, 2.52)

Sex
Boy 623 (50.8)
Girl 603 (49.2)
Birth weight, grams 3580 (2523, 4505)

MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; 
SFA, saturated fatty acid. 

1For the analyses based on Bohlin’s epigenetic clock, we excluded 11 
newborns with missing values for some of the required CpGs, leaving 
1215 children for analysis in the full population and 337 children in 
the subgroup with optimal pregnancy dating. Values are based on 
observed, not imputed data and are mean (SD) or median (95% 
range) for continuous variables and numbers (%) for categorical 
variables. 

2Fatty acid pattern scores are standardized and can be interpreted as 
standard-deviation-scores. 
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epigenetic than clinical gestational ageing. 
However, this association was only identified 
among newborns born to mothers with optimal 
pregnancy dating and when using the epigenetic 
clock of Knight, which was a secondary analysis.

Fatty acids are important for foetal growth and 
development [1]. Altered epigenetic gestational 
ageing may underlie the associations of maternal 
fatty acid status with child health [4–8]. We 
hypothesized that maternal plasma fatty acids are 
associated with gestational age acceleration. To 

overcome the caveat of missing synergistic or 
additive effects of fatty acids, we assessed poten
tially more informative fatty acid patterns, which 
were previously identified in the Generation 
R Study by principal component analysis. We 
aimed to explore the direction of effect of the 
associations as part of this study.

We observed that higher maternal plasma ‘high 
n-3 PUFA’ pattern scores were associated with 
positive gestational age acceleration by Knight’s 
clock in the subgroup with optimal pregnancy 

Table 2. Associations of maternal plasma fatty acid patterns in mid-pregnancy with offspring gestational age acceleration at birth by 
the epigenetic clock of Bohlin (main model).

Raw acceleration2 Residual acceleration3

Difference (95% CI) in SDS P value Difference (95% CI) in SDS P value

Full population (n = 1215)
‘high n-6 PUFA’ pattern 0.000 (−0.06, 0.06) 1.00 −0.005 (−0.04, 0.03) 0.80
‘MUFA and SFA’ pattern 0.022 (−0.04, 0.08) 0.48 0.019 (−0.02, 0.06) 0.32
‘high n-3 PUFA’ pattern 0.038 (−0.02, 0.10) 0.23 0.009 (−0.03, 0.05) 0.63
Subgroup with optimal pregnancy dating (n = 336)
‘high n-6 PUFA’ pattern −0.019 (−0.13, 0.09) 0.74 −0.021 (−0.08, 0.04) 0.51
‘MUFA and SFA’ pattern 0.020 (−0.11, 0.15) 0.76 0.025 (−0.05, 0.10) 0.50
‘high n-3 PUFA’ pattern 0.083 (−0.04, 0.21) 0.19 0.046 (−0.03, 0.12) 0.21

CI, confidence interval; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SDS, standard deviation score; SFA, saturated fatty acid; 
SDS, standard deviation score. 

Values represent regression coefficients (95% confidence interval) and reflect the difference in raw and residual gestational age acceleration at birth 
in weeks per increase of 1 standard deviation score in fatty acid pattern. Results are based on the main models, which were adjusted for child sex, 
batch effects (by including plate number), cell types and maternal age, education, pre-pregnancy body mass index, parity, total daily energy intake, 
gestational age at blood sampling and folic acid supplementation, smoking and alcohol consumption during pregnancy. 

1For the analyses based on Bohlin’s epigenetic clock, we excluded 11 newborns with missing values for some of the required CpGs, leaving 1215 
children for analysis in the full population and 336 of 337 children in the subgroup with optimal pregnancy dating. 

2Raw gestational age acceleration was obtained by subtracting the clinical estimate of gestational age from epigenetic gestational age. 
3Residual gestational age acceleration was calculated from the residuals from a regression model of epigenetic gestational age on clinical gestational 

age. 

Table 3. Associations of maternal plasma fatty acid patterns in mid-pregnancy with offspring gestational age acceleration at birth by 
the epigenetic clock of Knight (main model).

Raw acceleration1 Residual acceleration2

Difference (95% CI) in SDS P value Difference (95% CI) in SDS P value

Full population (n = 1226)
‘high n-6 PUFA’ pattern −0.035 (−0.13, 0.06) 0.47 −0.040 (−0.12, 0.04) 0.34
‘MUFA and SFA’ pattern −0.046 (−0.14, 0.05) 0.33 −0.049 (−0.13, 0.03) 0.25
‘high n-3 PUFA’pattern 0.027 (−0.07, 0.12) 0.57 0.005 (−0.08, 0.09) 0.91
Subgroup with optimal pregnancy dating (n = 337)
‘high n-6 PUFA’ pattern 0.028 (−0.11, 0.17) 0.69 0.025 (−0.09, 0.14) 0.67
‘MUFA and SFA’ pattern 0.070 (−0.09, 0.23) 0.39 0.080 (−0.05, 0.22) 0.24
‘high n-3 PUFA’ pattern 0.225 (0.07, 0.38) 0.006* 0.196 (0.06, 0.33) 0.004*

CI, confidence interval; MUFA, monounsaturated fatty acid; PUFA, Polyunsaturated fatty acid; SDS, standard deviation score; SFA, saturated fatty acid; 
SDS, standard deviation score. 

Values represent regression coefficients (95% confidence interval) and reflect the difference in raw and residual gestational age acceleration at birth 
in weeks per increase of 1 standard deviation score in fatty acid pattern. The main model was adjusted for adjusted for child sex, batch effects (by 
including plate number), cell types and maternal age, education, pre-pregnancy body mass index, parity, total daily energy intake, gestational age 
at blood sampling and folic acid supplementation, smoking and alcohol consumption during pregnancy. * Also significant after Bonferroni 
correction (0.05/3 exposures, thus 0.017). 

1Raw gestational age acceleration was obtained by subtracting the clinical estimate of gestational age from epigenetic gestational age. 
2Residual gestational age acceleration was calculated from the residuals from a regression model of epigenetic gestational age on clinical 

gestational age. 
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dating. Although no previous studies reported on 
plasma fatty acid patterns or concentrations and 
gestational age acceleration, two small Australian 
studies embedded in the same observational study 
assessed maternal dietary fatty acid intake in rela
tion to offspring epigenetic gestational age accel
eration in saliva, estimated by Horvath’s clock 
[21,22]. One of these, among 169 newborns, 
reported that maternal pregnancy dietary saturated 
and monounsaturated fat intake were associated 
with positive gestational age acceleration [21]. In 
a secondary analysis, palmitoleic acid (MUFA) was 
associated with positive gestational age accelera
tion, whereas total n-3 PUFA and α-linolenic 
acid (n–3 PUFA) were associated with negative 
gestational age acceleration [21]. In a follow-up 
study among 124 overlapping newborns, interac
tive associations between maternal dietary fatty 
acid classes in relation to offspring gestational 
age acceleration [22]. In two studies among non- 
pregnant adults, a negative correlation between 
n-3 intake and age acceleration was reported 
[19,20]. Overall, the direction of effect of our find
ing for the ‘high n-3 PUFA’ plasma pattern is in 
contrast to these previous studies. However, these 
studies are not directly comparable to our study. 
Firstly, fatty acid intake rather than patterns 
derived from plasma concentrations was assessed. 
Previously, a pregnancy study reported that dietary 
intake of eicosapentaenoic acid, docosahexaenoic 
acid, linoleic acid and arachidonic acid, which all 
contributed to the ‘high n-3 PUFA’ pattern, 
showed no to weak correlation (r = 0.05 to 
r = 0.24) with their plasma biomarker concentra
tions [45]. Secondly, the studies used other epige
netic clocks, which may capture different age- 
related biological processes [40]. Thirdly, the stu
dies measured saliva rather than blood DNA 
methylation. Fourthly, two studies focused on 
adults, in whom the interpretation of the direction 
of effect of associations with epigenetic age accel
eration may be different from that in newborns. 
Thus, confirmation of our finding in pregnancy 
studies with data on maternal plasma fatty acid 
plasma patterns is needed.

Prenatal exposures considered to be beneficial 
and those considered to be detrimental have both 
been related to both positive and negative gesta
tional age acceleration, indicating that the 

interpretation of a ‘beneficial’ effect may not be 
immediately apparent [26–31]. Although some 
studies reported opposite or null associations, 
based on previous literature, higher maternal n-3 
PUFAs status or intake overall seem to be asso
ciated with better offspring health [4–13]. A large 
Cochrane review reported that maternal n − 3 LC- 
PUFA supplement use during pregnancy was asso
ciated with a reduced risk of preterm birth and low 
birth weight [7]. Also, we previously reported 
associations of higher maternal plasma ‘high n-3 
PUFA’ pattern scores with favourable body com
position and serum lipid profiles in childhood [6]. 
Thus, our finding that higher maternal plasma 
‘high n-3 PUFA’ pattern scores are associated 
with positive gestational age acceleration by 
Knight’s clock in the subgroup with optimal preg
nancy dating could reflect better foetal growth or 
advanced maturation. Birth weight has been asso
ciated with positive gestational age acceleration, 
although not consistently [26,27,29]. Yet, birth 
weight did not explain our finding. Thus, the 
interpretation of gestational age acceleration in 
relation to higher maternal plasma ‘high n-3 
PUFA’ pattern scores needs further study.

Overall, we observed no consistent associations 
of maternal plasma fatty acid patterns with gesta
tional age acceleration. Accelerated epigenetic 
gestational ageing may not be a strong underlying 
mechanism for associations of maternal fatty acid 
status with childhood health. This does not neces
sarily rule out DNA methylation in itself being on 
the biological pathway between maternal fatty 
acid status and child health outcomes [46]. 
A previous epigenome-wide association study 
reported associations of maternal preconception 
plasma fatty acid concentrations with newborn 
DNA methylation at 19 CpGs [14]. Thus, DNA 
methylation changes, even though not reflective of 
altered ageing, may still underlie associations of 
fatty acid status during foetal life and childhood 
health. Alternatively, foetal DNA methylation 
changes may be epiphenomena rather than con
sequences of maternal fatty acid status [46]. Both 
alternatives could explain why we observed no 
associations in our main analysis. For the 
‘MUFA and SFA’ pattern specifically, it may be 
that opposing effects of beneficial MUFAs and 
detrimental SFAs have balanced each other out, 
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as suggested previously [6]. In a sensitivity analy
sis using the Knight method, we did find an asso
ciation of the ‘high n-3 PUFA’ pattern with 
positive epigenetic gestational age acceleration. 
This finding needs replication in other studies. If 
confirmed, it would be interesting to examine if 
the epigenetic gestational age acceleration med
iates associations with child health, such as meta
bolic outcomes. Future studies could also explore 
whether DNA methylation at other CpGs than 
those included in the examined clocks may med
iate associations of maternal fatty acid levels and 
childhood health outcomes.

Our findings differed depending on which epi
genetic clock we used. A previous study also 
reported different associations of various preg
nancy exposures with gestational age acceleration 
by the clock of Bohlin versus that of Knight [28]. 
Similar to adult clocks, these neonatal clocks may 
capture different age-related biological processes 
[40]. Bohlin’s clock may capture aspects of age 
acceleration that are not a reflection of foetal adap
tations to maternal fatty acid status, whereas 
Knight’s clock may capture adaptations in relation 
to maternal plasma ‘high n-3 PUFA’ pattern status. 
Similarly, our findings may also be related to the 
accuracy of pregnancy dating. The use of ultra
sound may yield measurement errors and reduces 
biological variation in early foetal growth, poten
tially resulting from variation in maternal fatty acid 
status [47]. Therefore, clinical gestational age may 
have been predicted inaccurately for some children. 
Pregnancy dating based on last menstrual cycle may 
reduce measurement error and yield more precise 
clinical gestational age measurements. We indeed 
saw a slight increase in the correlation between 
clinical gestational age and epigenetic gestational 
age in the subgroup, especially when using epige
netic gestational age estimated by Knight’s clock. 
Consequently, we may have been able to better 
detect the positive finding for the ‘high n-3 PUFA’ 
pattern in this group.

A major strength of this study is its setting in an 
observational cohort. Further, we were the first 
study to report on fatty acid blood status, rather 
than intake, in relation to epigenetic age accelera
tion. Moreover, we examined fatty acid patterns, 
which take into account the intercorrelation of 
individual fatty acids. This study also has some 

limitations. First, as it was performed in an ethni
cally homogeneous European-ancestry subgroup, 
our findings may not be generalizable to other 
ancestries. Second, although the number of neo
nates with DNA methylation date was relatively 
large, we may have lacked power to find true 
associations of small magnitude. Third, our study 
population was relatively healthy, as indicated for 
example by the fact that almost all children were 
born at term. Limited variation in exposures or 
outcome may have prevented detection of true 
associations. Thus, replication in populations 
with more variation in maternal fatty acid status, 
and with different background characteristics, is 
needed. Fourth, the originally measured maternal 
plasma fatty acid concentrations do not necessarily 
reflect long-term exposure to fatty acids, which 
may be more relevant in relation to DNA methy
lation. We measured plasma fatty acids rather than 
measuring erythrocyte membrane fatty acid com
position, which may better reflect the dietary 
intake of fats as it reflects a time frame of about 
120 d rather than a few days [48]. Fifth, although 
we had data on many potentially confounding 
factors that may affect associations of maternal 
plasma fatty acid patterns with gestational age 
acceleration, residual confounding still could be 
an issue, as in any observational study. Sixth, 
although the associations of higher maternal preg
nancy plasma ‘high n-3 PUFA’ pattern scores with 
positive gestational age acceleration in the sub
group remained after adjusting for multiple test
ing, this was a secondary analysis, which needs 
confirmation in future studies.

Conclusions

Our findings suggest that maternal plasma ‘high n-6 
PUFA’ and ‘MUFA and SFA’ patterns are not asso
ciated with gestational age acceleration. We found 
some evidence that plasma fatty acid patterns char
acterized by higher concentrations of n-3 polyunsa
turated fatty acids may be associated with positive 
gestational age acceleration. These findings seem to 
depend on the method used to predict epigenetic 
gestational age and on the accuracy of pregnancy 
dating and therefore need confirmation in further 
studies.
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