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Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuro-
inflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory 
response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology 
resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenu-
ation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature 
regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation 
system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over 
the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the comple-
ment cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in 
TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies 
targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation 
in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
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Background

Traumatic brain injury (TBI) presents a great challenge to 
public health worldwide. TBI is responsible for over a third 
of all traumatic deaths, and each year, 80–90.000 new cases 
of long-term disability due to TBI occur in the USA [1]. 
The dynamic pathophysiology that evolves over time after 
trauma to the central nervous system (CNS), consisting of 
primary injury by the direct traumatic impact, followed by 
secondary brain tissue injury driven substantially by host 
responses, makes it a highly complex problem to tackle 

compared to trauma in other organs [1]. Primary damage 
develops due to direct and contrecoup mechanical forces 
on the brain, including damage to neurons, axons, and glial 
cells and shearing of blood vessels causing hemorrhage [2]. 
The damage causes a breakdown of the blood–brain barrier 
(BBB), and changes in blood supply result in mitochondrial 
and subsequent energy production impairment, release of 
neurotransmitters and free radicals, immune cell activation 
and infiltration, apoptosis, and cytokine release [2, 3]. This 
is the initiation of the secondary brain-injury period, which 
occurs after a latency interval of minutes to several hours, 
and is probably the most important to focus on. Neuroin-
flammation develops over hours to days after the trauma 
and results in edema formation and subsequent increased 
intracranial pressure (ICP). Increased ICP causes additional 
impairment of cerebral blood flow and oxygen delivery and 
may contribute to brain herniation, requiring additional 
neuro-interventions that complicate the hospital course and 
final recovery [4].

TBI-induced neuroinflammation has been hypothesized to 
contribute very substantially to the pathological progression 
of brain injury, in addition to the primary injury itself [5, 6]. 
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It is a complex interaction between the cellular components 
of the CNS (neurons, astrocytes, microglia), cytokines, and 
chemokines, in concert with influx of peripheral immune 
cells. Neuroinflammation is beneficial to promote clearance 
of debris and regeneration, but it can also cause collateral 
damage when dysregulated and excessive, leading to sec-
ondary brain injury. The fact that the intracranial space is 
inherently non-compliant, being enclosed by the rigid skull, 
with the evident advantage to primarily protect the brain, 
is a clear and unique disadvantage compared with trauma 
to other vital organs, when swelling occurs. Every organ 
develops edema in response to significant trauma, but when 
brain tissue develops edema facilitated by neuroinflamma-
tion, the rigid and protective skull bone is a barrier to allow 
for this swelling. Progressive brain edema and subsequent 
tissue swelling, that is refractory to ICP-lowering medical 
ICU treatments, will ultimately elicit brain ischemia due 
to impeded cerebral blood flow caused by high ICP, unless 
decompressive craniectomy (DC) is performed in the sec-
ondary injury phase after TBI, as has only recently been 
studied in a well-performed clinical trial [7].

After the (sub)acute phase of injury, a prolonged state 
of chronic inflammation may linger for years after TBI and 
predispose patients to develop other neurodegenerative dis-
orders, such as dementia [8, 9]. Probably chronic traumatic 
encephalopathy is caused by a similar pathophysiology 
which has been shown to occur after recurrent mild trauma, 
like sport-related injuries [10].

Early attenuation of neuroinflammation is therefore con-
sidered an important target for TBI treatment, especially 
in the early in-hospital phase. Despite the vast amount of 
research performed to improve our understanding of the 
pathophysiology in TBI, the field has repeatedly experi-
enced collective failures to translate research from animals 
to successful therapeutic application in humans [11, 12]. 
This review will summarize the most important drivers of 
neuroinflammation in TBI and previous trials aiming to 
attenuate these drivers. The main focus of the review will 
be the role of the complement system in post-traumatic neu-
roinflammation and future directions in research on comple-
ment inhibition.

Neuroinflammation in the Clinical Setting

The primary effects of moderate and severe TBI include dif-
fuse injuries such as diffuse axonal injury (DAI) and focal 
brain damage, such as epidural and subdural hematomas 
(ASDH) and intracerebral hematomas/contusions (tICH). 
In the first hours after head trauma, expansion of hemato-
mas is the main threat, whereas during the following days, 
the pathophysiological consequences of neuroinflammation 
may subsequently increase ICP [13]. International guidelines 

recommend monitoring of ICP in all patients with severe 
TBI at high risk of secondary injuries and abnormalities 
on computed tomography (CT) [14]. Currently, invasive 
monitoring with an intraparenchymally placed sensor is the 
most reliable and most applied method to monitor ICP. If 
ICP can be maintained below a threshold of between 20 
and 25 mm Hg with general supportive intensive care treat-
ments, including appropriate pain control, ventilator support, 
careful fluid, and temperature management, this portends 
a better prognosis [15]. Management of ICP has evolved 
towards a “staircase” approach with an escalating treat-
ment intensity, including cerebrospinal fluid (CSF) drain-
age, deeper sedation, hyperosmolar therapy to dehydrate the 
brain and prevent a rise in ICP, evacuation of hematomas by 
craniotomy and, in case of raised ICP refractory to medical 
managements, including barbiturates, and in the end: DC 
[13, 14]. High mortality has been related to the occurrence 
of increased ICP, and although a lower mortality has been 
reported when treating ICP with a DC, these patients will 
have higher rates of vegetative state and severe neurologi-
cal disability [7]. Importantly, this current clinical practice 
has concentrated on trying to mitigate ICP to minimize the 
extent of secondary injury once this process has already 
started, rather than focused on managing neuroinflamma-
tory pathways leading to a rise in ICP and thus to prevent 
secondary injury.

Molecular Mechanism of Neuroinflammation 
After TBI

Cerebral ischemia and direct traumatic apoptosis after TBI 
lead to disruption of cerebral energy metabolism due to 
depletion of cellular adenosine triphosphate (ATP) stores. 
In this state, cells produce energy via the less efficient path-
way of anaerobic glycolysis. Cell metabolic impairment is 
followed by membrane depolarization and release of excita-
tory glutamate [16]. Excess accumulation of extracellular 
glutamate causes neuronal excitotoxicity, which is a major 
contributor to post-traumatic neurodegeneration. It results 
in excessive calcium influx within the neuronal cytoplasm 
due to increased activation of the N-methyl-D-aspartate 
(NMDA) receptors and voltage-dependent ion channels 
[17]. The increased intracellular  Ca2+ levels lead to mito-
chondrial damage, lipid peroxidation, production of free 
radicals, and activation of caspases and other proteases 
involved in membrane and nucleosomal DNA changes. 
This results in synapse elimination and neuronal apoptosis 
[17, 18].

Cell injury in the brain results in the release of intra-
cellular components such as ATP, other damage-associated 
molecular patterns (DAMPs), and complement components 
which activate pattern recognition receptors (PRRs) on glial 
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cells. As such, injury of brain cells initiates and perpetuates 
a post-traumatic neuroinflammatory response [19, 20].

Microglia are brain cells acting as support cells for neu-
rons and other metabolic and immunological processes and 
play a critical role in neuroinflammation as the first line of 
defense. Microglial cell activation is prominent at the perile-
sional area and in ipsilateral and contralateral regions of the 
contusion area [21]. In the post-traumatic phase, microglial 
cells undergo morphological transformations and changes in 
their gene expression repertoire to produce a wide spectrum 
of pro- or anti-inflammatory cytokines (Fig. 1). A proinflam-
matory M1 phenotype characterized by the production of 
IL-1β and TNF-α, nitric oxide and reactive oxygen species 
(ROS), and an anti-inflammatory M2 phenotype character-
ized by the production of IL-10, IL-13 and transforming 
growth factor (TGF)-β have been previously described for 
the activated microglia [22]. However, nowadays is it well 
recognized that the M1 and M2 states are the extremes of 
a continuum of activation states and intermediate pheno-
types are present [23]. In TBI, microglial polarization is 
being skewed towards a proinflammatory state varying with 
increasing time after the trauma [24]. Similar to microglia, 
a proinflammatory and an anti-inflammatory state have been 
described for activated astrocytes [25]. These proinflamma-
tory astrocytes secrete many cytokines and other factors that 
may greatly enhance the inflammatory response [25]. Astro-
cytes may respond to trauma with proliferation followed by 
assembly of a dense barrier, known as the glial scar, aiming 
to protect healthy tissue from nearby areas of neuroinflam-
mation [26].

Important factors in the promotion of neuroinflamma-
tion are proinflammatory cytokines. Well known is IL-1β, 
involved in oligodendrocyte damage and early microglia 
activation. Levels of IL-1β correlate with Glasgow Coma 
Scale (GCS) scores, ICP, and outcome [27, 28]. Produc-
tion of IL-1β by glia requires an activated NLRP3 inflam-
masome, which catalyzes the cleavage of pro-interleukins 
into their active forms [29]. Deactivation of inflammasomes 
results in the alleviation of brain edema, reduction of lesion 
volume, and improvement of long-term motor and cognitive 
function in experimental TBI in animals [30, 31]. TNFα 
is another key cytokine in post-traumatic cerebral neuroin-
flammation. Human carriers of two TNF alleles, resulting 
in higher TNFα production in response to TBI, had a higher 
probability of poor outcome after TBI [32, 33].

Besides their role in neuroinflammation, proinflamma-
tory cytokines may also challenge the integrity of the BBB 
vasculature. This could lead to vasogenic brain edema and 
penetration of serum proteins into brain interstitium, such 
as complement components and fibrin which can further 
activate glial cells [34]. The BBB consists of endothelial 
cells, astrocytic endfeet, and pericytes, and its integrity 

results from the selectivity of the tight junctions between 
the endothelial cells to restrict the passage of solutes [35]. 
Disruption of the BBB integrity is primarily caused by dam-
age of these tight junction proteins, especially occludin and 
claudin-5, and it is further challenged by post-traumatic sys-
temic inflammation which promotes leukocyte chemotaxis 
and transendothelial migration [36, 37].

Leukocyte recruitment into the CNS is mediated by 
upregulation of endothelial and leukocyte adhesion mol-
ecules and activated complement fragments, as discussed 
later on [38]. Neutrophils are the first-line transmigrated 
immune cells and can be found as early as 2 h after injury 
and peak within 24–48 h, before rapidly declining over 
the following days [39]. Cerebral accumulation of neutro-
phils has been associated with increased secondary brain 
damage and adverse outcome [40]. The early neutrophil 
recruitment is followed by infiltration of lymphocytes and 
monocyte-derived macrophages. Of note, the neutrophil-
to-lymphocyte ratio has been reported as an objective, 
low-cost, and early predictor of inflammation and clinical 
outcome in TBI patients [41].

The Complement System in TBI—
Pathophysiology and Animal Models

The complement system functions to eliminate foreign 
pathogens and substances and remove debris and apoptotic 
cells [42]. Complement activation can be mediated in three 
distinct pathways: the classical, lectin, and alternative path-
ways (Fig. 2), all resulting in the formation of the mem-
brane attack complex (MAC). The host is protected against 
overactivation of the complement cascade by the comple-
ment regulatory proteins. These include the C1-inhibitor 
(C1-INH), which inactivates the C1r, C1s, and MASPs, the 
decay-accelerating factor (DAF or CD55) which accelerates 
the breakdown of C3 and C5 convertases, factor H (fH) lead-
ing to breakdown of the C3 convertase, membrane cofactor 
protein (MCP or CD46) aimed to cleave C3b, and CD59 
protein which prevents MAC formation.

Complement has a key contribution to pathophysiologi-
cal events that sequester the initial impact of injury and may 
radiate damage from the contusion core to the penumbra 
after TBI. For instance, glial synthesis of complement C3 
and clusterin, a regulator of complement, was found in the 
vicinity of experimental brain contusion [43]. Further, C3d 
and C9 were localized on neurons in the vicinity of experi-
mental brain contusion, suggesting that these neurons are 
targets of complement proteins [43].

High-quality preclinical evidence suggests that inhibi-
tion of various complement factors can improve neurologi-
cal performance and reduce inflammation (Table 1). For 
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Fig. 1  Pathophysiology of neuroinflammation after TBI
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example, our data on the closed head injury model of TBI 
showed that pharmacological inhibition of MAC formation 
improved neurological performance in mice by reducing 
inflammasome activation and preventing microglial activa-
tion and axonal damage [44]. In line with these data, mice 
with a genetic deletion in the CD59a gene, being deficient 
for a major regulator of MAC formation and therefore result-
ing in excessive MAC formation, showed increased neuronal 
cell death and brain tissue destruction following head trauma 
[45, 46].

Facilitation of phagocytosis is another important contri-
bution of complement activation to secondary damage in 
TBI. Cerebral biosynthesis of most complement proteins 
is induced in response to trauma and adds to the pool of 
complement proteins which penetrate the compromised 
BBB [47]. Intracerebral complement activation leads to 
the generation of complement opsonins which facilitate 
the clearance of debris at the site of injury by microglia 
and macrophages bearing the CR3 receptor [48]. In addi-
tion, elevated levels of C1q within the cerebral parenchyma 

Fig. 2  Pathways of the comple-
ment system Classical pathway Lectin pathway Alternative pathway

C1r C1s

C4

C4bC4a

C1q

C2

C2a C2b

C3 convertase C3a

C3b

MBL/ficolins

C5 convertase C5a

C5b

MAC
(C5b6789)

C6, C7, C8, C9

C3

C3(H2O)Bb
Factor B, Factor D

Inflammation

Opsonization

MASP-1/MASP-2

C3

C3aC3b

Inflammation

Factor B, Factor D

Inflammasome
activation and lysis

C3(H2O)

The classical pathway, often referred to as “antibody-dependent,” is activated by C1q binding to IgG or IgM 
antibodies bound to antigens. It triggers autoactivation of the proteolytic activity of C1r, which then cleaves C1s. 
The C1s component cleaves C4 to C4a and C4b and C2 to C2a and C2b. C4bC2a, known as C3 convertase, 
cleaves C3 to anaphylatoxin C3a and opsonin C3b. Anaphylatoxins recruit and activate immune cells, whereas 
opsonins tag target cells or cell compartments such as stressed and salvageable neuronal synapses for phagocyto-
sis by microglia bearing the CR3 receptor

The lectin pathway is initiated by binding of Mannan-binding lectin (MBL), ɴ-acetylglucosamine, or ficolins to 
carbohydrates on the surface of target cells. MBL and ficolins form a complex with Mannan-binding lectin-asso-
ciated serine proteases (MASPs). These cleave C4 and C2, generating the C4bC2a C3 convertase. Both the 
classical and lectin pathway are powerful sensors of danger signals and dying cells

The alternative pathway is initiated by hydrolyzing inert C3 to C3(H  O), which exposes new binding sites for 
factor B. Factor B is then cleaved by factor D to generate complex C3bBb, the C3 convertase of the alternative 
pathway. C3 convertases recruit further C3b molecules to form the C5 convertase. The C5 convertase cleaves C5 
into the anaphylatoxin C5a and the membrane bound fragment C5b. C5b binds to C6, C7, C8, and C9 to form the 
membrane attack complex (MAC) which is the end product of the complement cascade. MAC forms pores in the 
target membrane, inducing lysis or proinflammatory responses

2
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promote the transformation of microglia to the proinflamma-
tory phenotype [49]. Lastly, C1q and C3 play a key role in 
microglia-mediated synapse elimination which is a promi-
nent neurodegenerative mechanism after head trauma [50].

Activated microglial cells induce a proinflammatory phe-
notype to astrocytes via secretion of C1q, IL-1α, and TNFα, 
contributing to the rapid death or functional disability of neu-
rons and oligodendrocytes [25]. Proinflammatory astrocytes, 
in turn, secrete many complement components, such as C3, 
that enhance the neuroinflammatory response [25, 51].

In addition to the complement components which are 
synthesized by neurons and glial cells within the CNS [52, 
53], there is an influx of complement factors from the blood 
due to breakdown of the BBB after TBI [54, 55]. The ana-
phylatoxins C3a and C5a act as chemoattractants for immune 
cells expressing the relevant receptors such as the granulo-
cytes which are present within TBI lesions [56]. In addition, 
in vitro studies showed that C5a activates the expression of 
beta2-integrin on neutrophils promoting their adhesion to 
the inflamed endothelium of the BBB and stimulates the 
secretion of the proinflammatory mediators TNFα and IL1 
by human mononuclear cells [57–59]. Notably, animal stud-
ies showed that genetic deletion of the genes encoding for 
the C3 or the C5 component or pharmacological inhibition 
of C3 or C5 resulted in a reduction of neutrophil infiltration, 
injury size, microglial activation. and brain edema leading 
to significantly improved neurological outcomes [60–64].

The Interaction of the Complement System 
with the Coagulation System

In TBI, hemostasis is often derailed, either leading to a 
hypo-coagulopathic state on one end of the spectrum, 
causing cerebral bleeding disorders leading to progres-
sion of contusions into growing t-ICHs and ASDHs, and 
to a hyper-coagulopathic state that contributes to ischemic 
lesions due to (micro)vascular thrombosis in lesioned 
areas [65]. The intimate interaction and co-evolution of 
the coagulation system together with the complement sys-
tem is widely appreciated within the basic science research 
field. The complement system has been found to increase 
tissue factor activity, thereby activating the extrinsic coag-
ulation pathway, and form activated thrombin from pro-
thrombin. Moreover, complement factors increase plate-
let activity and aggregation and prothrombinase activity, 
including von Willebrand factor and P-selectin. Classical 
and lectin pathway activation has been reported to be asso-
ciated with increased odds of venous thromboembolism in 
the clinical setting [66, 67]. Moreover, in sepsis patients, 
disseminated intravascular coagulation (DIC) was corre-
lated to the degree of complement activation [68]. It is also 
known that MAC attenuates endothelium-dependent relax-
ation leading to a hypertensive state [69]. This evidence, Ta
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e 
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reviewed in [70], suggests that complement overactiva-
tion shortly after TBI could potentially lead to increased 
coagulation activity, i.e., a prothrombotic state often seen 
days to weeks following TBI. Nevertheless, the correlation 
between trajectories of complement activity and markers 
of hemostasis and platelet function, specifically in TBI, 
warrants more research.

Complement Activation in TBI—Human 
Studies

In TBI patients, high levels of C4, C3, and MAC have been 
found in serum [54, 71–76], and upregulation of factor 
B, C3, and MAC was detected in the CSF of severe TBI 
patients [55, 77]. Moreover, increased immunoreactivity 
was found in resected contused tissue for C1q, C3b, C3d, 
and MAC within/on neurons located in the penumbra area 
[78, 79]. Intracerebral deposition of MBL, ficolin-2 and 3, 
and MASP-2 and 3 was found after TBI within the vascu-
lature and in the injured perivascular tissue [79, 80]. High 
levels of complement proteins were strongly associated 
with lower GCS scores and independently predict mor-
tality or unfavorable clinical outcomes in TBI [73, 75]. 
A proteomics study using human frontotemporal cortex 
samples showed a consistent overexpression of C4a, C4b, 
C3, C7, and C9 [81]. More recently, microvesicles and 
exosomes were analyzed in the CSF of TBI patients and 
mass spectrometry-based proteomic identification of pro-
teins indicated presence of complement C1q [82]. Further-
more, plasma astrocyte-derived exosomes (ADEs) protein 
levels of C4b, factor D, Bb, MBL, C3b, and MAC were 
significantly higher and those of the regulatory proteins 
CR1 and CD59 lower in the first week of TBI compared 
to controls [83].

The complement system is further triggered by secondary 
insults [84]. Expression of complement proteins C3, C8a, 
and C9 is still increased in the plasma of TBI patients at 1, 
3, and 6 months after injury compared to controls, suggest-
ing persistent complement activation during the subacute 
and chronic phase [85]. Prolonged complement activation 
has been linked to early-onset cognitive decline, behavior 
disorders, and predisposition to dementia syndromes like 
Alzheimer’s disease [86].

Clinical Trials to Control Neuroinflammation: 
What Has Been Tried So Far?

Studies on the dysregulated inflammatory response are 
important to serve as a roadmap for future clinical trials 
aiming at “targeted” pharmacological neuroprotection and 
improved neurological recovery after TBI. Although all of 

the described interventions within trials up to now (Table 2) 
have shown to be effective in preclinical and small single 
center phase II trials, successful translation to phase III 
clinical trials showing efficacy of these treatments has not 
yet been accomplished. Multiple explanations have been 
proposed to explain these failures. First, the heterogeneity 
of the TBI population and the large treatment variation in 
the management of TBI indicate that large sample sizes are 
warranted to achieve any statistical significant difference 
between groups [87, 88]. Second, there is a growing recog-
nition of the problem of age and sex bias on the outcomes 
in neurotrauma research, as for example, fewer women than 
men are recruited in clinical trials (Table 2) [89, 90]. Third, 
most trials focused on “delayed” outcome metrics, such as 
the Glasgow Outcome Scale Extended (GOSE) at 6 months, 
as primary endpoint, whereas animal models focus on the 
direct impact of a therapy on microglial activation, edema 
formation, or neuronal death.

Last and most importantly, most trials did not focus on 
a targeted dysregulated part of neuroinflammation after the 
first TBI impact. The steroid trials, as described in Table 2, 
show that broad inhibition of the immune response can 
be deleterious after TBI, and therefore a more targeted 
approach focused on a specific neuroinflammatory pathway 
and during a limited period of time may be more successful 
in improving outcomes [91, 92]. Current and future clinical 
trials aiming to reduce secondary brain injury should focus 
on targeting well-defined specific pathways with a closely 
related endpoint to the therapeutic mechanism of action to 
test efficacy. This should be based on both thorough and suf-
ficient preclinical testing in multiple injury models (includ-
ing different age ranges and sex), together with a detailed 
insight into the most important drivers of TBI pathophysiol-
ogy for each individual patient.

Complement Inhibition in the Clinical 
Setting—Future Directions

Currently, no clinical trials are present in literature aiming to 
inhibition complement activation in brain injury. Only a few 
drugs, C1-esterase inhibitors (C1-INH), Cinryze, Berinert 
and Ruconest, and C5-inhibitors, eculizumab and ravuli-
zumab, are approved complement inhibitory drugs, but many 
others are in clinical development. The indications for the 
current approved drugs are hereditary angioedema (C1-INH) 
and paroxysmal nocturnal hemoglobinuria, atypical hemo-
lytic uremic syndrome, and neuromyelitis optica (C5). A trial 
with C5-antibodies in patients with aneurysmal subarachnoid 
hemorrhage (SAH) is now recruiting participants [93]. As it 
has been reported that inhibition more upstream in the com-
plement cascade is necessary to prevent the amplification of 
a feedforward mechanism of neuroinflammation that persists 
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throughout the chronic phase [94], C1-INH might be more 
effective to attenuate complement overactivation. C1-INH is 
a potent multi-target serpin, which effectively inhibits activa-
tion of the classical, lectin, and alternative pathways [95–97]. 
Administration of C1-INH in animal models showed reduced 
contusion volume and brain water content and improvement 
of cognitive and motor function [98, 99]. In addition to its 
role in complement inhibition, C1-INH is a known inhibitor 
of FXIIa, FXIa, FXII, thrombin, kallikrein, HMWK prekal-
likrein complexes, and plasmin which inhibit fibrinolysis, 
contact activation, and coagulation [100, 101]. Efficacy and 
an excellent safety profile of high doses of C1-INH have 
been reported in off-label trials in sepsis and ischemia– 
reperfusion injury patients [102, 103]. Therefore, we are cur-
rently recruiting TBI patients in the Complement Inhibition: 
Attacking Overshooting inflammation @fter Traumatic Brain 
Injury (CIAO@TBI) trial to assess the safety and efficacy of 
C1-INH in this patient population [104]. In this trial, patients 
will be randomized to either receive one dose of 1600 IU 
C1-INH or a placebo injection. The primary outcome is the 
therapy intensity level scale that measures all ICP-directed 
interventions. This study will provide insight in the prom-
ising role of complement inhibition in brain injury. In the 
meantime, more research is warranted towards defining the 
inflammatory phenotypes of our patients based on injury 
characteristics (e.g., age, sex, and injury severity), imaging, 
and biomarkers to eventually being able to target inflamma-
tion with personalized immunomodulatory treatments,

Conclusion

Neuroinflammation is one of the “nonsurgical” key drivers 
causing secondary brain injury after TBI. Attenuation of 
the inflammatory response is a potential therapeutic target. 
This review covers the most important neuroinflammatory 
drivers resulting from TBI and summarizes the clinical 
work performed to date directed to attenuate neuroinflam-
mation. The complement system play an important role 
in the pathophysiology of TBI, and therefore therapies 
targeting this pathway might contribute to future targeted 
therapy, currently evaluated in a clinical trial.

Abbreviations C1-INH: C1-inhibitor; CNS: Central nervous system; 
CSF: Cerebrospinal fluid; GCS: Glasgow Coma Scale; GOSE: Glas-
gow Outcome Scale Extended; ICP: Intracranial pressure; TBI: Trau-
matic brain injury; TXA: Tranexamic acid
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