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Abstract
The receptive field (RF) of a visual neuron is the region of the space that
elicits neuronal responses. It can be mapped using different techniques that
allow inferring its spatial and temporal properties. Raw RF maps (RFmaps) are
usually noisy, making it difficult to obtain and study important features of the
RF. A possible solution is to smooth them using P-splines. Yet, raw RFmaps
are characterized by sharp transitions in both space and time. Their analysis
thus asks for spatiotemporal adaptive P-spline models, where smoothness can
be locally adapted to the data. However, the literature lacks proposals for adap-
tive P-splines in more than two dimensions. Furthermore, the extra flexibility
afforded by adaptive P-spline models is obtained at the cost of a high com-
putational burden, especially in a multidimensional setting. To fill these gaps,
this work presents a novel anisotropic locally adaptive P-spline model in two
(e.g., space) and three (space and time) dimensions. Estimation is based on the
recently proposed SOP (Separation of Overlapping Precision matrices) method,
which provides the speed we look for. Besides the spatiotemporal analysis of the
neuronal activity data that motivated this work, the practical performance of
the proposal is evaluated through simulations, and comparisons with alternative
methods are reported.
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1 INTRODUCTION

A fundamental characteristic of neurons of the mam-
malian visual system, as well as all neurons involved in
other sensory systems, is that they have what is known as a
receptive field (RF). In the case of a visual neuron, theRF is
the small area of the visual field that the neuron “sees” (i.e.,
it is the area that elicits neuronal responses). It is known
that this RF has both spatial and temporal properties, and
their study is fundamental to understanding how visual
information is processed in the brain.
RF can be mapped using different techniques, such as

reverse cross-correlation. These techniques allow studying
how visual neurons process sensory stimuli from different
positions in their visual field. In brief, since as a result of a
sensory stimulus, a neuron can produce sudden changes
in its membrane potential known as “spikes,” from the
neuron responses (spikes), it is possible to infer proper-
ties of the RF (e.g., its spatiotemporal properties: where
and when a sensory stimulus produces a response). Yet,
neuronal responses usually produce noisy signals as they
encode the information bymeans of spike trains of variable
length and frequency, and therefore, the spatial and tem-
poral properties of their RF might not be clearly defined.
Postprocessing the noisy neural signals through smooth-
ing techniques allows obtaining RF maps (RFmaps) with
desirable properties and paves the way for the study of
important characteristics of RFs, such as their size, cen-
ter, or boundaries, as well as comparisons among neurons
and/or experimental conditions.
Penalized splines (O’Sullivan, 1986; Eilers &Marx, 1996)

has become one of the most popular smoothing meth-
ods in semiparametric regression for the estimation of
curves and surfaces. Penalized splines combine a low-
rank basis with a penalty term. This term controls the
smoothness of the estimated function, and its influence
is determined by a smoothing parameter. In the classic
penalized spline approach, this parameter is global in the
sense that it provides a constant amount of smoothing
(i.e., classic penalized splines rely on assuming a smooth
transition of the covariate effect across its whole domain).
This might be a serious drawback in situations where
the curves/surfaces are nonhomogeneous, showing rapid
changes in some regions while being rather smooth in oth-
ers (Ruppert &Carroll, 2000). Indeed, this is the case of the
neuronal activity study that motivated the work described
in this paper.Details regarding the experiment and the data
are given in Section 2, but we advance that, in this setting,
classic penalized spline models are not able to properly
recover the sharp spatiotemporal transitions present in the
data, which ask for spatially adaptive smoothness.
In the case of univariate smoothing, awide range of solu-

tions to adapt smoothness locally to the data have been

proposed. Ruppert andCarroll (2000) based their approach
on locally varying smoothing parameters and a multivari-
ate cross-validation (CV) approach for their selection. In
Krivobokova et al. (2008), the varying smoothing (vari-
ance) parameters are modeled as a log-penalized spline,
yielding a hierarchical mixed model; they use a Laplace
approximation of the marginal likelihood for parameter
estimation. More recently, Yue et al. (2014) introduced a
class of adaptive smoothing spline models that is derived
by solving certain stochastic differential equations with
finite element methods. The task becomes more compli-
catedwhen trying to achieve adaptivity in two dimensions.
As far as we are aware, all attempts to two-dimensional
adaptive smoothing have been proposed in the context
of isotropic smoothing, i.e., the same amount of smooth-
ing is used in both dimensions. For example, Lang and
Brezger (2004) use locally adaptive smoothing parameters
that are incorporated using a smoothness prior with spa-
tially adaptive variances and Yue and Speckman (2010)
improve this work by proposing a prior with a spatially
adaptive variance component and taking a further Gaus-
sian Markov random field prior for this variance function.
A different approach is taken by Jang and Oh (2011) who
replace the global smoothing parameter by a smooth step
function that can be extended to higher dimensions. In
Krivobokova et al. (2008), adaptivity in two dimensions
is achieved by modeling the spatially variable smooth-
ing parameters using (penalized) low-rank radial basis
functions, and Reiss et al. (2017) use adaptive smooth-
ing and a nonisotropic penalty, but the adaptivity is only
in one direction, allowing only one smoothing parame-
ter to vary along the other dimension. However, all these
approaches are either computationally very demanding or
unstable, or do not include general smoothing structures
such as anisotropy.
In this work, we present a general framework for

anisotropic multidimensional adaptive smoothing in the
context of P-spline models (Eilers & Marx, 1996), where
B-spline basis are combinedwith discrete difference penal-
ties on the coefficients. Our proposal relies on the con-
struction of locally adaptive penalties through assuming
a different smoothing parameter for each coefficient dif-
ference in the penalty. Its use is not restricted to Gaussian
responses (as it is in the case of most of the exist-
ing approaches) because it can be easily extended to
responses within the exponential family of distributions.
One of the possible drawbacks of adaptive smoothing is
the computational cost of having to estimate, or select by
CV methods or information criteria, multiple smoothing
parameters. We solve this issue by using the connection
between P-splines and generalized linear mixed models
(Currie & Durban, 2002) and the recently developed SOP
(Separation of Overlapping Precision Matrices) method
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RODRÍGUEZ-ÁLVAREZ et al. 3

(Rodríguez-Álvarez et al., 2019). SOP allows estimating P-
spline models with overlapping penalty matrices (or over-
lapping precision matrices) and uses restricted maximum
likelihood (REML) to select the smoothing parameters
(variance parameters). For a discussion on the benefits and
disadvantages of RE/ML-based and CV-based smoothing
parameter selection, we refer the reader to Krivobokova
and Kauermann (2007) and Krivobokova (2013).
The rest of the paper is organized as follows. In Section 2,

we describe the study that motivated this work. Section 3
presents our approach for the construction of locally adap-
tivemultidimensional anisotropic penalties. The empirical
performance of the approach is evaluated in a simulation
study in Section 4. In Section 5, results for the neurons’
activity study are shown, and we conclude with a dis-
cussion. Details on estimation and computation, extended
simulations, and extra results for the neuronal activity data
are available as Supporting Information.

2 MOTIVATING EXAMPLE: NEURONS’
ACTIVITY STUDY

The work described in this paper was motivated by
the research and electrophysiology studies conducted by
Francisco Gonzalez, professor of Ophthalmology at the
University of Santiago de Compostela (Galicia, Spain). The
data we deal with here derive from experiments conducted
to study neurons’ activity in the visual cortex, in particu-
lar, the spatial and temporal properties of RFs. A detailed
explanation of the electrophysiological experiment and
the reverse cross-correlation technique discussed here can
be found in Rodríguez-Álvarez et al. (2012) (and refer-
ences therein). That paper was also the starting point
of this work. Schematically, the experiment is as follows
(Figure 1). The subject (a monkey) is viewing two moni-
tors, one for each eye. In each monitor, there is a square
area of dimension 16 × 16 (i.e., 256 spatial/grid locations).
In a pseudorandomway, stimuli are delivered at these spa-
tial locations (Figure 1A). The experiment is conducted
under two different experimental conditions. Namely, the
stimulus can correspond to the flash of a bright (“ON”) or
dark (“OFF”) spot. While the stimuli are being delivered,
the activity of the neuron is being recorded (Figure 1B).
When a spike occurs, say at 𝑡0, the location of the stim-
ulus at different prespike times (−20,−40, … ,−320 ms;
for this experiment, it is not expected that a stimulus
would produce a response (spike) after 320 ms) is recov-
ered (Figure 1C). Unfortunately, the way the experiment is
performed does not allow to know which of these stimuli
(and thus locations) is responsible for the spike (neuron’s
response), and all stimuli are considered as potentially
responsible. As such, the number of spike occurrences

attributed to the location of the stimulus at the differ-
ent prespike times is increased by one (Figure 1D, red
bold numbers). However, since, during the experiment,
stimuli are randomly delivered/presentedmany times, this
allows determining where and when a stimulus produces
a neuron’s response. Summarizing, for each neuron (the
complete experiment contains data for 17 different neu-
rons), eye (left or right), and experimental condition (“ON”
or “OFF”), the reverse cross-correlation technique pro-
vides a dataset consisting of a series of 16 matrices (one for
each prespike time) of dimension 16 × 16 (256 grid posi-
tions that represent the square area). Each cell of each of
the 16 matrices contains the number of spike occurrences
attributed to this location at the corresponding prespike
time. Besides, there is an extra matrix of dimension 16 ×
16 with the number of stimulus presentations on each
particular location of the square area. The graphical rep-
resentation of each of the 16 matrices (normalized, i.e.,
each cell is divided by the number of stimulus presenta-
tions in this location) is called RFmap (RFmap) and can be
regarded as a representation of the firing rate of the neuron.
Figure 2 depicts the evolution over time of the raw RFmap
for a particular neuron (denoted by FAU3), eye (right), and
experimental condition (“ON”). Despite the noisy data, it
can be observed that for most prespike times, the firing
rate is uniform (shows no structure), but there is a clear
increase in the firing rate around−60ms for a central area
of the visual field. In other words, the results suggest that
only stimuli in this central area produce a response of the
neuron and that the response occurs around 60 ms after
the stimulus is presented. This area corresponds to the RF
of the neuron. In this paper, we aim to use P-spline mod-
els to provide smoothed (denoised) versions of RFmaps
such as those shown in Figure 2. Yet, note that the raw
RFmaps show that the transition from outside the RF into
the RF is very sharp and that they are structured for a short
period (between −40 and −80ms). This suggests the need
for multidimensional adaptive smoothing, which was also
pointed out in the discussion of Rodríguez-Álvarez et al.
(2012)’s paper.

3 MULTIDIMENSIONAL ADAPTIVE
PENALTY

Our proposal for the construction of locally adaptive
penalties in more than one dimension builds upon the
same principles as the adaptive penalty in one dimension
(see, e.g., Rodríguez-Álvarez et al., 2019, and references
therein). In consequence, to make the presentation of the
new results more readable, we first briefly focus on the
one-dimensional case, and then, we move onto the mul-
tidimensional setting. For clarity and brevity, we describe
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4 RODRÍGUEZ-ÁLVAREZ et al.

(A)

(B)

(C)

(D)

F IGURE 1 Reverse cross-correlation technique. The animal is viewing two monitors (A) with a fixation target. Within a square area
over the neuron visual field a bright (“ON”) or dark (“OFF”) spot is flashed in different positions in a pseudorandom manner. Neuron spikes
are recorded, whereas the stimulus is delivered (B). When a spike is produced (𝑡0), the stimulus position at several prespike times
(−20,−40, … ,−320ms) is read (C) and the corresponding position is increased by one (D, red bold numbers). This figure appears in color in
the electronic version of this article, and any mention of color refers to that version.

in full detail the rationale for the adaptive penalty in
two dimensions and relegate the generalization to the
three-dimensional case to Web Appendix C.

3.1 Adaptive penalty in one dimension

Let 𝒚 = (𝑦1, … , 𝑦𝑛)
⊤ be a vector of 𝑛 observations, and

consider the (simple) generalized model 𝑔(𝜇𝑖) = 𝑓(𝑥𝑖)

(𝑖 = 1, …𝑛), where 𝜇𝑖 = 𝔼(𝑦𝑖 ∣ 𝑥𝑖), 𝕍ar(𝑦𝑖 ∣ 𝑥𝑖) = 𝜙𝜈(𝜇𝑖),
𝑔(⋅) is the link function, and 𝑓(⋅) is a smooth and unknown
function. Here, 𝜈(⋅) is a specified variance function, and
𝜙 is the dispersion parameter that may be known or
unknown. In P-splines (Eilers & Marx, 1996), the func-
tion 𝑓(𝑥) is modeled as a linear combination of B-splines
basis functions, i.e., 𝑓(𝑥) =

∑𝑑

𝑗=1 𝜃𝑗𝐵𝑗(𝑥), and smoothness
is ensured by penalizing the differences of order 𝑞 of coef-
ficients associated with adjacent B-spline basis functions,
i.e., the penalty takes the following form:

𝜆

𝑑∑
𝑘=𝑞+1

(Δ𝑞𝜃𝑘)
2
= 𝜆𝜽⊤𝑫⊤

𝑞 𝑫𝑞𝜽, (1)

whereΔ𝑞 forms differences of order 𝑞, 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑑)
⊤,

and 𝑫𝑞 is the matrix representation of Δ𝑞. Finally, 𝜆 is the
smoothing parameter that controls the trade-off between
fidelity to the data (when 𝜆 is small) and smoothness of

the function estimate (when 𝜆 is large). Note that Equa-
tion (1) penalizes all coefficient differences, Δ𝑞𝜃𝑘 (𝑘 = 𝑞 +

1,… , 𝑑), by the same smoothing parameter 𝜆 (see Web
Figure 1a). Implicit in Equation (1) is thus the assump-
tion that the same amount of smoothing is needed across
the whole domain of the covariate. The locally adaptive
penalty relaxes this assumption by assuming a different
smoothing parameter for each coefficient difference

𝑑∑
𝑘=𝑞+1

𝜆𝑘−𝑞(Δ
𝑞𝜃𝑘)

2
= 𝜽⊤𝑫⊤

𝑞 diag(𝝀)𝑫𝑞𝜽, (2)

where 𝝀 = (𝜆1, … , 𝜆𝑑−𝑞)
⊤ is a vector of smoothing parame-

ters. That is, the adaptive penalty defined in (2) allows the
amount of smoothing (driven by the smoothing parame-
ters 𝝀) to vary locally depending on the covariate values.
This is graphically illustrated inWeb Figure 1(b). To reduce
the complexity of the adaptive penalty in (2) (there are as
many smoothing parameters as coefficient differences, i.e.,
𝑑 − 𝑞), the vector of smoothing parameters 𝝀 is further
replaced by a smooth version of it 𝝃 = (𝜉1, … , 𝜉𝑝)

⊤ (with
𝑝 < (𝑑 − 𝑞) so as to ensure that the number of smoothing
parameters is reduced) using a B-spline basis expansion,
i.e.,

𝜆𝑘 =

𝑝∑
𝑙=1

𝜉𝑙𝜓𝑙(𝑘). (3)

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13755 by E
rasm

us U
niversity R

otterdam
 U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [09/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RODRÍGUEZ-ÁLVAREZ et al. 5
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F IGURE 2 For the visual receptive field study: Level plot of the observed ON-RFmaps (firing rates) for the right eye of neuron FAU3

Plugging-in the right-hand side of previous equation into
(2), the locally adaptive penalty is expressed as

𝜽⊤

(
𝑝∑
𝑙=1

𝜉𝑙𝑫
⊤
𝑞 diag(𝝍𝑙)𝑫𝑞

)
𝜽, (4)

where 𝝍𝑙 = (𝜓𝑙(1), 𝜓𝑙(2), … , 𝜓𝑙(𝑑 − 𝑞))⊤. Note that, in
matrix form, Equation (3) is written as 𝝀 = 𝚿𝝃 , where

𝚿 =

⎛⎜⎜⎜⎝
𝜓1(1) … 𝜓𝑝(1)

⋮ ⋱ ⋮

𝜓1(𝑑 − 𝑞) … 𝜓𝑝(𝑑 − 𝑞)

⎞⎟⎟⎟⎠, (5)

is the B-spline design matrix of dimension (𝑑 − 𝑞) × 𝑝; 𝝍𝑙
in (4) is thus the column 𝑙 of𝚿.

3.2 Adaptive penalty in two dimensions

In the two-dimensional case, interest lies in the general-
ized model

𝑔(𝜇𝑖) = 𝑓(𝑥𝑖1, 𝑥𝑖2), 𝑖 = 1, … , 𝑛, (6)

where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2)
⊤ is a two-dimensional covariate

vector, and 𝑓(⋅, ⋅) is a smooth and unknown bivari-
ate surface, defined over covariates 𝑥1 and 𝑥2. When it
comes to extend the P-spline principles to two dimen-
sions, we first model the bidimensional surface in terms
of B-splines. This is accomplished by the tensor prod-
uct of two marginal B-splines bases, i.e., 𝑓(𝑥1, 𝑥2) =∑𝑑1

𝑗=1

∑𝑑2
𝑘=1 𝜃𝑗𝑘𝐵1𝑗(𝑥1)𝐵2𝑘(𝑥2), where 𝐵1𝑗(⋅) and 𝐵2𝑘(⋅) are

the marginal B-spline basis functions for, respectively, 𝑥1
and 𝑥2. In matrix form, model (6) becomes

𝑔(𝝁) = 𝑓(𝒙1, 𝒙2) = (𝑩2□𝑩1)𝜽 = 𝑩𝜽, (7)

where 𝑩 = 𝑩2□𝑩1 = (𝑩2 ⊗ 𝟏⊤
𝑑1
) ⊙ (𝟏⊤

𝑑2
⊗ 𝑩1), and 𝑩1 =

[𝑏1;𝑖𝑗] with 𝑏1;𝑖𝑗 = 𝐵1𝑗(𝑥𝑖1), 𝑩2 = [𝑏2;𝑖𝑘] with 𝑏2;𝑖𝑘 =

𝐵2𝑘(𝑥𝑖2), 𝟏𝑁 is a column vector of ones of length 𝑁, ⊗
denotes the Kronecker product, ⊙ the element-wise
(Hadamard) product, and □ the “box” product (the face-
splitting product or row-wise Kronecker product, Eilers
et al., 2006; Slyusar, 1999). Finally, 𝝁 = (𝜇1, … , 𝜇𝑛)

⊤ and
𝜽 = (𝜃11, … , 𝜃𝑑11, … , 𝜃𝑑1𝑑2)

⊤. As for the one-dimensional
case, in the two-dimensional setting, smoothness is
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6 RODRÍGUEZ-ÁLVAREZ et al.

F IGURE 3 Illustration of the tensor product of marginal B-splines basis functions (𝐵1𝑗(𝑥1)𝐵2𝑘(𝑥2)) and the anisotropic penalty (based on
coefficient differences along covariates 𝑥1 and 𝑥2) defined in (8). The top row shows the landscape of nine cubic B-spline tensor products—a
portion of a full basis—and highlights why forming coefficient differences along 𝑥1 and 𝑥2 (i.e., on, respectively, the columns and rows of the
matrix of coefficients) ensures smoothness along the corresponding covariate. The bottom row schematically illustrates the coefficient
differences (arrows) and the smoothing parameters acting on them. In both cases, red is used for covariate 𝑥1 and blue for covariate 𝑥2.

achieved by penalizing coefficient differences. In partic-
ular, the anisotropic penalty in two dimensions is defined
as

𝜽⊤
(
𝜆
(
𝑰𝑑2 ⊗ 𝑫⊤

𝑞1
𝑫𝑞1

)
+ 𝜆

(
𝑫𝑞2𝑫

⊤
𝑞2
⊗ 𝑰𝑑1

))
𝜽, (8)

where 𝑫𝑞𝑚 (𝑚 = 1, 2) are difference matrices of possi-
bly different order 𝑞𝑚, and 𝜆 and 𝜆 are the smoothing
parameters (Eilers & Marx, 2003). Before proceeding, it is
worth seeing the vector 𝜽 as a (𝑑1 × 𝑑2) matrix of coeffi-
cients, 𝚯 = [𝜃𝑗𝑘]; the rows and columns of 𝚯 correspond
to the regression coefficients in the 𝑥1 and 𝑥2 directions,
respectively. Thus, 𝜽⊤(𝑰𝑑2 ⊗ 𝑫⊤

𝑞1
𝑫𝑞1)𝜽 forms (the sum of

squares of) differences of order 𝑞1 on each column of the
matrix of coefficients𝚯; it is thus responsible, in combina-
tion with the smoothing parameter 𝜆, for the smoothness
along covariate 𝑥1. Similarly, 𝜽⊤(𝑫𝑞2𝑫

⊤
𝑞2
⊗ 𝑰𝑑1)𝜽 forms

(the sum of squares of) differences of order 𝑞2 on each
row of the matrix of coefficients, controlling, jointly with

𝜆, the smoothness along covariate 𝑥2. Figure 3 gives
more insights about (the reasoning behind) the anisotropic
penalty just presented, and helps presenting the adaptive
penalty in two dimensions that will follow.
By considering two different smoothing parameters 𝜆

and 𝜆 (i.e., anisotropy), the penalty in (8) permits a dif-
ferent amount of smoothing for 𝑥1 and 𝑥2. However, in
some circumstances, this flexibility may not be enough
for the model to capture “local” behaviors in the data; all
coefficient differences (along 𝑥1 or along 𝑥2) are penal-
ized by the same smoothing parameter (𝜆 or 𝜆), and
thus, the same amount of smoothing is assumed along
each covariate. Following the same reasoning as in the
one-dimensional case, we propose to overcome the (pos-
sible) lack of flexibility of penalty (8) by considering a
different smoothing parameter for each coefficient dif-
ference, and we do that separately for the coefficient
differences along 𝑥1 and along 𝑥2. The idea is graphically
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RODRÍGUEZ-ÁLVAREZ et al. 7

exemplified in Figure 4, which shows clearly that our
approach gives rise to two matrices of smoothing parame-
ters, 𝚲 = [𝜆𝑢𝑣] of dimension (𝑑1 − 𝑞1) × 𝑑2, and 𝚲̃ = [𝜆𝑠𝑝]

of dimension 𝑑1 × (𝑑2 − 𝑞2). Recall that 𝑑𝑚 is the dimen-
sion of the marginal B-splines bases and 𝑞𝑚 is the penalty
order (𝑚 = 1, 2). In particular, the smoothing parame-
ters in 𝚲 act on the coefficient differences along 𝑥1, and
then, control the amount of smoothing along that covari-
ate, but permitting it to vary locally. The same applies
to 𝚲̃, which (adaptively) controls the amount of smooth-
ing along 𝑥2. With this in mind, our two-dimensional
anisotropic adaptive penalty takes the following form:

𝜽⊤
((
𝑰𝑑2 ⊗ 𝑫𝑞1

)⊤
diag(𝝀)

(
𝑰𝑑2 ⊗ 𝑫𝑞1

)
+
(
𝑫𝑞2 ⊗ 𝑰𝑑1

)⊤
diag(𝝀)

(
𝑫𝑞2 ⊗ 𝑰𝑑1

))
𝜽, (9)

where 𝝀 = vec(𝚲) and 𝝀 = vec(𝚲̃), and vec(𝑴) denotes
the vectorization of matrix𝑴. A possible drawback of the
adaptive penalty defined in (9) is the number of smooth-
ing parameters involved, which equals to (𝑑1 − 𝑞1) × 𝑑2 +

𝑑1 × (𝑑2 − 𝑞2); i.e., the total number of coefficient differ-
ences along 𝑥1 and 𝑥2. This may give rise, in addition
to undersmoothing and unstable computations, to pro-
hibitively long computing times. We propose to reduce
the complexity of the multidimensional adaptive penalty
in (9) through a reduction on the number of smoothing
parameters. In a similar manner to the one-dimensional
case presented in Section 3.1, this is done by considering
a smoothed (and smaller) version of them. The under-
lying assumption is that smoothing parameters that are
spatially proximate aremore likely to be similar than those
farther apart. Before proceeding, note that we now have
two matrices of smoothing parameters 𝚲 and 𝚲̃ (see also
Figure 4). It seems then reasonable to smooth them using
the tensor product of marginal B-spline bases, and we
do it separately for 𝚲 and 𝚲̃. Taking advantage of the
“data” (smoothing parameters) being in an array structure,
we write

𝝀 = (𝚿2 ⊗𝚿1)𝝃 , (10)

𝝀 =
(
𝚿̃2 ⊗ 𝚿̃1

)
𝝃 , (11)

where 𝝃 = (𝜉1, … , 𝜉𝑝11𝑝12)
⊤ and 𝝃 = (𝜉1, … , 𝜉𝑝21𝑝22)

⊤

are the new vectors of smoothing parameters, and
𝚿
(𝑑1−𝑞1)×𝑝11
1 , 𝚿

𝑑2×𝑝12
2 , 𝚿̃

𝑑1×𝑝21
1 , and 𝚿̃

(𝑑2−𝑞2)×𝑝22
2 are

B-spline design matrices (the superindices indicate their
dimension). In particular, these matrices are constructed

as follows:

𝚿1 =

⎛⎜⎜⎜⎝
𝜓11(1) … 𝜓1𝑝11(1)

⋮ ⋱ ⋮

𝜓11(𝑑1 − 𝑞1) … 𝜓1𝑝11(𝑑1 − 𝑞1)

⎞⎟⎟⎟⎠,

𝚿̃1 =

⎛⎜⎜⎜⎝
𝜓11(1) … 𝜓1𝑝21(1)

⋮ ⋱ ⋮

𝜓11(𝑑1) … 𝜓1𝑝21(𝑑1)

⎞⎟⎟⎟⎠,

𝚿2 =

⎛⎜⎜⎜⎝
𝜓21(1) … 𝜓2𝑝12(1)

⋮ ⋱ ⋮

𝜓21(𝑑2) … 𝜓2𝑝12(𝑑2)

⎞⎟⎟⎟⎠,

𝚿̃2 =

⎛⎜⎜⎜⎝
𝜓21(1) … 𝜓2𝑝22(1)

⋮ ⋱ ⋮

𝜓21(𝑑2 − 𝑞2) … 𝜓2𝑝22(𝑑2 − 𝑞2)

⎞⎟⎟⎟⎠.

(12)

Plugging-in the right-hand side of Equations (10) and (11)
into (9), and after some algebraic operations, we obtain our
proposal for the adaptive penalty in two dimensions

𝜽⊤

(
𝑝11𝑝12∑
𝑢=1

𝜉𝑢
(
𝐈𝑑2 ⊗ 𝑫𝑞1

)⊤
diag(𝝍𝑢)

(
𝐈𝑑2 ⊗ 𝑫𝑞1

)
+

𝑝21𝑝22∑
𝑠=1

𝜉𝑠
(
𝑫𝑞2 ⊗ 𝐈𝑑1

)⊤
diag

(
𝝍𝑠

)(
𝑫𝑞2 ⊗ 𝐈𝑑1

))
𝜽, (13)

where 𝝍𝑢 and 𝝍𝑠 denote, respectively, the columns 𝑢 and 𝑠
of𝚿 = 𝚿2 ⊗𝚿1 (see (10)) and 𝚿̃ = 𝚿̃2 ⊗ 𝚿̃1 (see (11)).

3.3 Simplifications and generalizations

The two-dimensional adaptive penalty presented in the
previous section (expression (13)) is the most general one:
A different smoothing parameter is assumed for each coef-
ficient difference along both 𝑥1 and 𝑥2. However, several
simplificationsmay bemade according to the data at hand.
These are discussed and presented in detail in the Support-
ing Information (Web Appendix B), where we also cover
the extension of the adaptive penalty to three dimensions
(Web Appendix C).

3.4 Estimation and inference

To estimate model (6) subject to the adaptive penalty
defined in (13) (as well as the simplifications and the exten-
sion to the three-dimensional case discussed in the Sup-
porting Information),we adopt the equivalence betweenP-
splines and generalized linearmixedmodels for estimation

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13755 by E
rasm

us U
niversity R

otterdam
 U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [09/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 RODRÍGUEZ-ÁLVAREZ et al.

F IGURE 4 Illustration of the adaptive penalty in two dimensions. Separately for 𝑥1 (left-hand side plot) and 𝑥2 (right-hand side plot),
each coefficient difference is penalized by a different smoothing parameter. The arrows (and colors) schematically represent different
coefficient differences jointly with the smoothing parameters acting on them (𝜆𝑢𝑣 for the coefficient differences along 𝑥1 and 𝜆𝑠𝑝 for the
coefficient differences along 𝑥2).

and inference (e.g., Currie & Durban, 2002; Wand, 2003).
For brevity, the technical details and a discussion on com-
putational aspects are given in Web Appendix D, but we
note here that the model reparameterization we use gives
rise to precision matrices for the random effects that are
linear in the inverse of the variance parameters (i.e., the
precision parameters). This feature allows using the SOP
method (Rodríguez-Álvarez et al., 2019) for estimation.
One of the main advantages of SOP is that it is computa-
tionally very efficient when it comes to estimating variance
parameters; this is essential in our setting where the num-
ber of variance parameters (or equivalently smoothing
parameters) to be estimated may be very large.

4 SIMULATION STUDY

This section reports the results of a simulation study
conducted to study the empirical performance of the mul-
tidimensional adaptive penalties described in Section 3
above. For conciseness, the study concentrates on the
two-dimensional case, and only the full adaptive penalty
specification is evaluated (expression (13)). We compare
the performance of our proposal with that described
in Krivobokova et al. (2008) and implemented in the
R-package AdaptFit (Krivobokova, 2012). Also, a non-
adaptive two-dimensional P-spline model (i.e., a model
with a standard anisotropic penalty; see (8)) is explored.
As for the adaptive case, estimation is based on the SOP
method. Comparisons among the approaches are per-
formed in terms of the mean square error (MSE), coverage
probabilities andwidths of the 95%nominal pointwise con-
fidence intervals for the two-dimensional surfaces, and

computing time. All computations are performed in (64-
bit) R 4.0.2 (R Core Team, 2022), and a 2.40GHz × 4 Intel R©
Core™ i7 processor computer with 15.6GiB of RAM and
Ubuntu 16.04 LTS operating system. Plots are generated
using the R-package ggplot2 (Wickham, 2009).

4.1 Scenarios and setup

Three different scenarios are considered in this study. The
first scenario is classical in the context of adaptive P-splines
in two dimensions, and it has been considered, among oth-
ers, by Lang and Brezger (2004), Crainiceanu et al. (2007),
and Krivobokova et al. (2008). The second and third sce-
narios correspond to highly varying functions with sharp
peaks, where adaptive smoothing seems a sensible choice.
The third scenario has also been discussed in Yue and
Speckman (2010). The scenarios considered follow.
Scenario I

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2) = 𝑥𝑖1 sin (4𝜋𝑥𝑖2), (14)

with 𝑥𝑖1, 𝑥𝑖2
iid
∼ U[0, 1]. The response data 𝑦𝑖 are then

generated as

𝑦𝑖 = 𝜂𝑖 + 𝜀𝑖 where 𝜀𝑖
iid
∼ 𝑁

(
0, 𝑠2

)
with 𝑠 =

1

4
(min(𝑓)

−max(𝑓)). (15)

Scenario II

𝜂𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2) = exp

[
−15

{(𝑥𝑖1
1.2

− 0.5
)2

+

(
𝑥𝑖2 − 30

50

)2
}]

.

(16)
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RODRÍGUEZ-ÁLVAREZ et al. 9

with 𝑥𝑖1
iid
∼ U[−5, 1.5] and 𝑥𝑖2

iid
∼ U[−50, 150]. Here, 𝑦𝑖 is

generated under three different distributions

∙ 𝑦𝑖 = 𝜂𝑖 + 𝜀𝑖 , where 𝜀𝑖
iid
∼ 𝑁(0, 𝑠2) with 𝑠 ∈ {0.1; 0.5}.

∙ 𝑦𝑖
ind
∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖 exp(𝜂𝑖)), with 𝐸𝑖

iid
∼ DU[5, 50] (DU

denotes a discrete uniform distribution).
∙ 𝑦𝑖

ind
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖), with 𝑝𝑖 = exp(𝜂𝑖)∕ exp(1 + 𝜂𝑖),

where 𝜂𝑖 = 7𝜂𝑖 − 3.

Scenario III

𝜂𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2) = 2 exp

[
−

1

0.4

{
(𝑥𝑖1 − 2)

2
+ (𝑥𝑖2 − 2)

2
}]

+ exp

[
−
1

3

(
𝑥2
𝑖1
+ 𝑥2

𝑖2

)]
, (17)

with 𝑥𝑖1, 𝑥𝑖2
iid
∼ U[−5, 5]. As for scenario II, 𝑦𝑖 is generated

according to

∙ 𝑦𝑖 = 𝜂𝑖 + 𝜀𝑖 , where 𝜀𝑖
iid
∼ 𝑁(0, 𝑠2) with 𝑠 ∈ {0.1; 0.5}.

∙ 𝑦𝑖
ind
∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖 exp(𝜂𝑖)), with 𝐸𝑖

iid
∼ DU[5, 50].

∙ 𝑦𝑖
ind
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖), with 𝑝𝑖 = exp(𝜂𝑖)∕ exp(1 + 𝜂𝑖),

where 𝜂𝑖 = 3.5𝜂𝑖 − 3.

The true two-dimensional functions used in each sce-
nario are shown in Web Figure 3. For all scenarios, a
total of 𝑅 = 250 replicates are performed and we consider
𝑛 ∈ {300, 500, 1000, 2000}. For the P-spline models with
and without adaptive smoothing, we use second-order dif-
ferences (𝑞𝑚 = 2) and marginal cubic B-splines bases of
dimension 𝑑𝑚 = 12 (Scenario I) and 𝑑𝑚 = 20 (Scenarios
II and III) to represent the two-dimensional functions
(𝑚 = 1, 2); larger bases dimensions are considered for Sce-
narios II and III due to the complexity of the simulated
functions. For the adaptive approach, we consider the full
adaptive penalty and choose 𝑝𝑚𝑤 = 5 (𝑚,𝑤 = 1, 2; see (10)
and (11)). This gives rise to a total of 50 (2 × 52) smoothing
parameters (or variance components). For the proposal by
Krivobokova et al. (2008) (hereafter denoted as AdaptFit),
we use 144 (12 × 12) knots for the two-dimensional func-
tion in Scenario I and 200 (20 × 20) knots for Scenarios II
and III. Also, and for the three scenarios, we consider 25
(5 × 5) knots for the variance parameters. Here, low-rank
radial basis functions are used, and the knots are selected
based on the clara algorithm by Kaufman and Rousseeuw
(1990).

4.2 Results

For brevity, themajority of graphical and numerical results
are provided in Web Appendix E, and we focus here on

the main findings. We note that, for Scenarios II and
III, AdaptFit presents severe convergence problems (e.g.,
for Scenario II—all response distributions—and Scenario
III—Poisson and Bernoulli—it does not converge for any
run). To avoid misleading conclusions on the performance
of AdaptFit, results for these two scenarios are not shown.
Figure 5 shows boxplots of log(MSE) for all the scenar-
ios, response distributions, sample sizes, and noise levels
considered in the study. MSE is computed at the observed
covariate values, where, for Gaussian data, the true linear
predictor (𝜂𝑖) is chosen as the target, and in the case of
Poisson and binary data, it is computed on the response
scale. We start with the results for Scenario I. To our sur-
prise, in our study, the best approach is the P-spline model
with the standard anisotropic penalty, followed closely by
the adaptive approach proposed in this paper. AdaptFit is
the one performing the worst. This result somehow con-
tradicts that reported in Lang and Brezger (2004), where
the adaptive approach (different to the one proposed here)
performs better than the nonadaptive counterpart. We
highlight that the results we obtain for AdaptFit are in con-
cordance to those presented in Krivobokova et al. (2008)
(median of log(MSE) of −3.53 and −3.79, respectively, for
𝑛 = 300), which, in turn, outperform results in both Lang
and Brezger (2004) and Crainiceanu et al. (2007). If we
focus on the results for Scenarios II and III, we see that
the full two-dimensional adaptive approach proposed in
this paper is the one that performs the best, for (almost)
all response distributions, sample sizes, and noise levels.
Differences are particularly remarkable (in favor of the
adaptive approach) formoderate to large sample sizes, and,
in the Gaussian case, for low noise levels. Results regard-
ing coverage probabilities (averaged over all the surface)
are shown in Web Table 1. In general, average coverage
probabilities are close to the nominal level except for small
sample sizes and large noise levels in the Gaussian case
(Scenarios II and III), and for the Bernoulli distribution in
Scenario III. In these cases, average coverage probabilities
are around 90%. Results for the adaptive and nonadaptive
P-spline models are very similar, but at the cost of wider
confidence intervals of the nonadaptive approach (seeWeb
Figure 4). Despite results on coverage probabilities being
similar on average, when looking at the pointwise cov-
erage probability maps/surfaces (see Web Figures 5–11),
we observe that, for Scenarios II and III, the nonadap-
tive approach presents very low coverage probabilities (in
some cases lower than 10%) around the areas where the
sharp peaks occur, which is likely where the interest lies
(the nonadaptive approach has trouble capturing the sharp
peaks, see Web Figures 13–21, and this translates into poor
coverage probabilities). Finally, results regarding comput-
ing times (in seconds and logarithm scale) are presented
in Web Figure 12. As could have been expected, in all
cases, fitting the nonadaptive P-spline model is faster than
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10 RODRÍGUEZ-ÁLVAREZ et al.

F IGURE 5 For the simulation study: Violin plots of log(MSE) across 𝑅 = 250 replicates for Scenarios I–III, different response
distributions (Gaussian, Poisson, and Bernoulli), levels of noise (𝑠), and sample sizes (𝑛). “2D P-spline” stands for the two-dimensional
P-spline model with the standard anisotropic penalty, “2D Adapt. P-spline” for the model considering the full adaptive penalty in two
dimensions proposed in this paper, and “2D AdaptFit” for the proposal by Krivobokova et al. (2008).

using the adaptive alternatives, but our approach outper-
forms AdaptFit. To give some numbers, for one of the
worst-case situations (Scenario III, 𝑛 = 2000 and Binomial
distribution), the standard anisotropic two-dimensional
P-spline model requires, in median, around 6.7 s, whereas
the proposed adaptive approach requires around 32.6 s.
In any case, computing times are more than reasonable.
However, we are aware that these values cannot be consid-
ered as benchmarks: It is expected that computing times

will increase significantly for other (and more “gener-
ous”) bases specifications (see also Web Appendix D for a
discussion on computational aspects).

5 NEURONS’ ACTIVITY STUDY:
RESULTS

We now present the results for the study discussed in Sec-
tion 2. Recall that the objective is to produce smoothed
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RODRÍGUEZ-ÁLVAREZ et al. 11

(de-noised) versions of RFmaps (see Figure 2). To that
aim, we adopt a Poisson model that expresses the neu-
ronal response as a smooth function of both space (row and
column position) and time

log (𝔼[𝑦𝑟𝑐𝑡 ∣ 𝑟, 𝑐, 𝑡]) = log (𝑛𝑟𝑐𝜆𝑟𝑐𝑡) = log (𝑛𝑟𝑐) + 𝑓(𝑟, 𝑐, 𝑡), (18)

where 𝑦𝑟𝑐𝑡 denotes the number of spike occurrences
attributed to stimulus presentations at row 𝑟 and column 𝑐
of the square area (𝑟, 𝑐 = 1,… , 16) for the 𝑡th prespike time
(𝑡 = −20,… ,−320), 𝑛𝑟𝑐 is the total number of stimulus pre-
sentations during the experiment at row 𝑟 and column 𝑐,
and 𝜆𝑟𝑐𝑡 is the intensity parameter (or firing rate). For fit-
ting model (18), we consider the full three-dimensional
adaptive penalty (see Web Appendix C). Also, we fit a
model with the standard anisotropic penalty (i.e., non-
adaptive smoothing). In both cases, we take advantage of
the array structure of the data and generalized linear array
methods (GLAMs, Currie et al., 2006) are used. Besides,
we use second-order differences (𝑞𝑚 = 2) and marginal
cubic B-splines bases of dimension 𝑑𝑚 = 11 to represent
the spatiotemporal surface. For the adaptive approach, we
choose 𝑝𝑚𝑤 = 6 (𝑚,𝑤 = 1, 2, 3), yielding a total of 648
(3 × 63) smoothing parameters (or variance components).
These values are chosen to provide enough flexibility to the
models. Figure 6 depicts (for the same neuron, eye, and
experimental condition shown in Figure 2) the raw as well
as the estimated (denoised) time-series of RFmaps (firing
rates) using both approaches. For conciseness, results are
not shown for the whole sequence of prespike times, but
for five frames, from 20 to 100 ms prespike times (the com-
plete results can be found in Web Appendix F). As noted
before, neuronal responses usually produce noisy signals,
making it difficult to study the spatial and temporal prop-
erties of their RF (see top row of Figure 6). Smoothing
with the proposed adaptive approach yields clearly defined
structures and time development of the RF (see middle
row of Figure 6), whereas smoothing without the adap-
tive penalty yields a poorly structured RF (see bottom row
of Figure 6). More precisely, the results provided by the
adaptive approach show that theRFmap begins to be struc-
tured about 80 ms prespike and peaks approximately at
60 ms when a clear central area of high values (firing
rates) appears that lasts until 40 ms. Outside the time
range from −80 to −40ms, the RFmaps show no structure
and a uniform firing rate pattern (see Web Figure 34). In
other words, and in concordance with the raw RFmaps,
the adaptive approach clearly shows that the spike emis-
sion (neuronal response) is coupledwith the stimulus from
−80 to −40 ms (i.e., the time between sensory stimulus
and neuronal response spans from 40 to 80 ms) and that
the response is restricted to a small area (this area being
the visual RF of the neuron) centered and stabilized over

time in the space covered by the stimulus presentation. By
contrast, the smoothed RFmaps provided by the nonadap-
tive approach show almost no visible structure, neither
spatial nor temporal (the approach is not able to recover
neither the peak nor the temporal pattern; see also Web
Figure 35 andWeb Figure 37where some cross-sections are
shown jointly with 95% pointwise confidence intervals).
As such, these results do not allow to detect the neuron’s
RF. Extra results can be found in the Web Appendix F,
where we also include (approximate) standard errors for
the smoothed RFmaps.
Regarding computing times, in the absence of adaptive

smoothing, the SOP method takes about 3 min, which
increases to 39 min with the adaptive penalty. In terms
of degrees of freedom or effective dimensions (EDs),
and despite the too smooth results of the nonadaptive
approach, they are lower for the adaptive than for the
nonadaptive counterpart (36.4 and 58.4, out of 1331, respec-
tively). Using SOP, the total ED is obtained by adding the
EDs associated with each smoothing/variance parameter
in the model (plus the dimension of the fixed part). Details
can be found in Rodríguez-Álvarez et al. (2019). For (mul-
tidimensional) adaptive P-spline models, most of the EDs
(or equivalently the variance parameters) are almost zero,
meaning a local linear fit (i.e., they “allow” the model to
better adapt to the data regardless adaptivity is needed or
not). According to the (conditional) Akaike information
criterion (cAIC) proposed byDonohue et al. (2011), the best
model is the one using the adaptive penalty (15,523.8 vs.
15,650.2 for the standard anisotropic penalty).

6 DISCUSSION

This paper presents a novel approach for anisotropic
multidimensional adaptive penalties in the context of
P-splinemodels. The construction and rationale of the new
adaptive penalties are described in full detail for the two-
dimensional case, but the extension to three dimensions
is also covered. Besides, we discuss several simplifica-
tions that can easily be implemented if desired. Model
estimation is based on the connection between P-spline
models and generalized linearmixedmodels, and the prac-
tical implementation is based on the recently proposed
SOP method. However, nothing, in principle, precludes
the use of other estimating methods/algorithms, provided
that they can deal with precision/penalty matrices that are
linear in the precision/smoothing parameters.
Both the simulation study and applications shown in

the paper and Supporting Information highlight the gain
value of using, when needed, the proposed multidimen-
sional adaptive P-splinemodels. Also, the simulation study
suggests that when adaptive smoothing is not necessary,
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12 RODRÍGUEZ-ÁLVAREZ et al.

F IGURE 6 For the visual receptive field study: Level plot of the observed and smoothed ON-RFmaps (firing rates) for the right eye of
neuron FAU3. First row: observed. Second row: estimates with locally adaptive smoothing. Third row: estimates without locally adaptive
smoothing.

the extra flexibility afforded by the adaptive penalties does
not translate into an important loss in efficiency. The gain
is remarkable for the study that motivated this work. In
the absence of adaptivity, results are too smooth and do
not appropriately recover the RF of the neuron; this may
lead to erroneous conclusions. Although it has not been
covered here (accurate), smoothed RFmaps will facilitate
the study of important characteristics of RFs. For instance,
smoothed RFmaps may help compare the results of bright
(“ON”) with the results of dark (“OFF”) spot responses
in such a way that overlapping in space and time can be
determined. This, in turn, would allow inferring the func-
tional properties of the cell. Also, comparisons between
the results obtained from the monocular stimulation of
each eye (right and left) could provide information about
ocular dominance.
Of course, the flexibility of multidimensional adaptive

P-spline models is at the cost of increasing the comput-
ing time. For applications of the adaptive approach in
two dimensions, computing times are kept to a reasonable

level, even for rather large B-spline bases and number of
smoothing parameters. However, the increase is substan-
tial in the three-dimensional case. Even in the nonadaptive
case, multidimensional P-splines can be very computa-
tionally demanding, especially if large basis dimensions
are used. The SOP method allows alleviating the com-
putational cost, which can otherwise be very large using
alternative estimating methods. We note that we used the
high-level R language to implement the SOP method for
the adaptive approaches described in the paper. We expect
that low-level languages (e.g., C or Fortran) could further
improve computing times. This would also make compu-
tationally more feasible the estimation of more complex
models, such as those described in Rodríguez-Álvarez
et al. (2012), where, for the visual RF study, the authors
jointly estimate and compare RFmaps under different
experimental conditions.
A limitation of the proposal presented here is that,

although relaxed, smoothness is still assumed, for
both the functions to be estimated and the smoothing
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RODRÍGUEZ-ÁLVAREZ et al. 13

parameters. Therefore, it is not suitable for functions with
abrupt changes or discontinuities (see, e.g., Liu & Guo,
2010, for a one-dimensional adaptive approach in these
settings). The study of appropriate multidimensional
penalties (and efficient estimation strategies) for these
situations represents an interesting topic for research.
Finally, it would also be worth exploring the implemen-
tation of the approach presented in the paper within a
Bayesian hierarchical framework.
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