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Image segmentation is one of the most important tasks in medical image analysis.
It aims to outline structures such as organs or lesions given images from one or multiple
imaging modalities [1], such as Computed Tomography (CT), MRI, Ultrasound, etc.
The segmentation results may provide valuable clinical biomarkers that can help
clinicians to make accurate diagnoses and treatment decisions [2, 3, 4]. For example,
segmentations of the aorta and pulmonary artery provide measurements such as the
diameter ratio of these two vessels, which is an important risk factor for exacerbations
of COPD [2]. Similarly, airway and vessel segmentation from chest CT scans provides
measurements such as lumen diameter, airway-artery ratio, and wall thickness, which
are relevant to quantitatively assessing lung diseases [3].

In recent years, deep learning-based methods gained tremendous attention in the
computer vision and medical imaging fields. In medical image segmentation tasks, U-
Net-like architectures provide state-of-the-art results in many applications [5, 6] due to
their good performance and ease of implementation. However, deep learning networks
such as U-Net still suffer from many problems. For example, the fully-convolutional
nature of U-Net makes it inefficient to model global information within images and
labels, such as image-level constraints based on the anatomy of organs or the topology
of objects in ground-truth segmentations. Also, training a good U-Net model usually
requires a relatively large amount of training data, but acquiring manual segmentations
is time-consuming and, as a result, labeled data is scarce.

This thesis proposes solutions to these problems, by developing global and data-
efficient deep learning methods. This introduction chapter provides background on
deep learning segmentation in medical imaging (Section 1.1), followed by a discussion of
the two main challenges addressed in this thesis: the ability to learn global information
(Section 1.2) and the scarcity of label data (Section 1.3). Then, we show a summary
of the contributions and the outline of this thesis (Section 1.4).

1.1 Deep learning in medical image segmentation

Deep learning is a branch of machine learning algorithms that usually employs a
convolutional neural network (CNN). The key to the popularity of deep learning is
that it learns useful features automatically from data through backpropagation, which
makes a deep learning network a very powerful feature extractor that can theoretically
fit any kind of function given enough model capacity.

However, training a deep neural network is challenging due to its high computational
burden and difficult optimization. Over the last decade, many techniques have been
proposed to overcome these difficulties [7, 8, 9, 10], making deep learning feasible in
practice. Moreover, the open-source codes greatly accelerate the technical transfer of
deep learning from computer vision to medical image analysis.

The publication of U-Net was an important milestone of deep learning in medical
image segmentation [11]. U-Net efficiently concatenates the low-level features in the
encoder with high-level semantic features in the decoder. Later, many variations based
on U-Net have been proposed to further enhance its modeling ability and robustness
in different applications [5]. Recently, it was shown that a simple, deeply supervised
2D or 3D U-Net (or an ensemble of them) without any additional variations is able to
achieve top performance in many segmentation tasks [6].
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However, although the CNN methods are accurate in many segmentation tasks,
there are still problems in challenging segmentation tasks. For example, segmenting
complex structures like airways [3] or brain vessels [4], or lesions like brain tumors
[12]. A typical segmentation network such as U-Net makes predictions on a local and
voxel-wise level without image-level constraints such as spatial consistency. This may
hinder the model performance when the segmentation requires global information such
as shape priors.

Another problem of the CNN methods in medical image segmentation is that the
available labeled data for model training can be very scarce. The annotations often
require knowledge from experienced radiologists. This is different from the situation in
natural images in the computer vision field where the labels can be collected through
crowdsourcing from the Internet. In medical imaging, often a large amount of data
without annotations (i.e, unlabeled data) is more easily available, which may contain
useful information to train a better segmentation network. Thus, methods that can
learn from these unlabeled data such as semi-supervised and self-supervised learning
may improve performance in many segmentation tasks.

1.2 Global learning methods

Enhancing the ability of deep learning models to learn global (as opposed to local) image
information can be beneficial in segmentation tasks. In previous works, several methods
were investigated to solve this problem. For example, graph-based methods such as
Conditional Random Fields (CRF) refine the segmentation results by encouraging label
smoothness on a global scale (or, to reduce computational costs, between neighboring
voxels) and can be used as a post-processing method [13], or trained as an additional
layer on top of the neural network in an end-to-end manner [14]. This makes it
possible to apply useful regularizations such as within-class intensity similarity or
spatial smoothness to predictions and improve segmentation performance.

Another popular graph-based method is graph neural networks (GNNs), which
enhance the global modeling ability of the network by replacing the conventional
convolution operation with graph-based convolution [15]. However, GNN has not been
widely used in medical image segmentation yet due to the high computation cost of
graph-based convolution, where usually only a few connections can be implemented
within each graph filter. This limits the potential of GNN in many segmentation tasks.

Recently, the self-attention mechanism (Transformer) was introduced in computer
vision, enabling neural networks to learn global information through several stacks of
transformer layers [16]. These networks show high efficiency in computing and trans-
ferring global information between layers. The main limitation is that Transformers
require a large amount of data to train [17], while labeled data is usually very scarce
in medical imaging applications.

Most of the CNN-based methods mentioned above aim to learn global information
from the input images. However, these networks may not sufficiently capture the
information within segmentation labels. In some of the experiments in this thesis, we
noticed that without explicitly learning global label information, our networks would
sometimes make segmentation errors that are obvious from looking at the output labels
alone. For example, in tree-structure segmentation tasks, e.g. airway segmentation and
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vessel segmentation, the resulting segmentations may contain discontinuous branches.
One solution is to force the continuity of tree-like branches in the predictions, or use
an adaptive loss function such as centerline-in-volume-dice-coeflicient loss to preserve
connectivity [18, 19]. However, these methods focus on tree-like structures and may
be difficult to apply to other applications.

In this thesis, we propose our solutions to these problems. Specifically, to better
learn global information from the input images and the intermediate feature maps, we
present an end-to-end training method called Posterior-CRF based on the combination
of CNN (such as U-Net) and a learning-based CRF layer. Previous CNN-CRF methods
mostly use intensity as the CRF feature [14] and encourage the model to assign voxels
with similar intensities to the same class. However, the intensity-based information
provides a limited feature space for the CRF inference and may not be very useful for
segmentation tasks that require higher-level semantic features. For example, in aorta
and pulmonary artery segmentation, the aorta and pulmonary artery are two different
vessels in anatomy but they share very similar intensity values in non-contrast CT
images. This may confuse the intensity-based CRF and lead to wrong predictions.
Differently, our Posterior-CRF allows the CRF to use the high-level semantic features
learned by a CNN;, instead of the fixed intensity features from the input images. This
may improve the segmentation performance of the CRF.

Although Posterior-CRF is able to perform global, image-level inference based on
the inputs and CNN features, the global information in labels is not encoded in the
model explicitly and thus the model may make structural errors in the predictions. To
fix these errors, a novel label refinement method is presented in this thesis. The main
idea of this method is to generate synthetic errors that are similar to the ones that are
present in the initial segmentation results and to subsequently train a label refinement
network to correct them. We evaluate this approach in tree-shaped structures: lung
airways and brain vessels. By learning to correct synthetic errors in segmentation
continuity, the network is expected to learn how to refine the segmentation that
contains real errors.

1.3 Data-efficient learning methods

The second problem in medical imaging is that manual annotations are very expen-
sive and time-consuming to make. In practice, the available labeled data in many
segmentation tasks may not be sufficient to train a deep learning model with high
accuracy. Therefore, the methods that can learn useful features from unlabeled data
have attracted much attention in recent years. One popular research direction is
semi-supervised learning, where unlabeled data is combined with labeled data to train
models. For example, some methods train autoencoders to extract features from re-
constructing the unlabeled input data, which extracts features that may contain useful
information for a segmentation task [20]; or to generate pseudo labels for unlabeled
data as additional training data, e.g., self-training [21] or mean-teacher [22].

In the deep learning era, a new research direction called self-supervised learning
has been proposed and is still under fast iteration nowadays [23]. The main idea
of self-supervised learning is using a deep learning model to learn useful features
from a manually designed task with unlabeled data. The task is usually designed by
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removing a specific kind of information from the original images, e.g., by masking or
shuffling imaging parts, and forcing the network to predict the missing information.
The learned features can be used as a better starting point to optimize the downstream
segmentation task, compared to random initialization. Most self-supervised learning
models can be trained without annotations, as the learned features are general and
can usually be reused across different segmentation tasks.

Considering the scarcity of labeled data in medical image segmentation tasks, this
thesis explores three ways to learn from unlabeled data. First, a new semi-supervised
method is presented based on multi-task and attention-based learning. This method
combines reconstruction and segmentation in an autoencoder network. Unlike the
traditional reconstruction task that aims to reconstruct the whole image, the proposed
task reconstructs the foreground and background texture separately. This encourages
the autoencoder to focus more on reconstructing the boundaries between foreground
and background, which are highly related to the main segmentation task. The learned
features are shared with a U-Net with the same encoder in a multi-task learning
manner and may improve the segmentation performance.

We also propose two novel self-supervised learning methods. The first one is a
region-of-interest-guided supervoxel inpainting method. In this method, the regions to
recover in images are masked using supervoxel-based irregular tiles in the area to be
segmented, instead of voxel-based square tiles in a random area. Compared to the
original inpainting task [24], the proposed task is able to extract more useful features
by recovering the masked foreground region, which may help improve the downstream
segmentation task. The second method is a new self-supervised task called Source
Identification (SI), inspired by the classic blind source separation (BSS) problem [25].
In the SI task, the network is trained to identify and separate the source image from
an image that mixes the source image with images from other sources. To successfully
distinguish the source image from the others, the network needs to learn not only the
local features but also global features such as semantics and anatomical information.
To the best of our knowledge, this is the first time that a BSS-like task is applied as a
self-supervised task in deep learning. The proposed task may increase the diversity of
features that can be learned by traditional self-supervised learning methods.

Other than self-supervised learning methods, the label refinement method presented
in Chapter 6 can also work in a semi-supervised setting using unlabeled data. The way
to use unlabeled data is to add the synthetic errors to the intermediate predictions.
Then, the new pseudo labels with synthetic errors and unlabeled data can be used as
additional training data to train a stronger label refinement network. With the help
of unlabeled data, the label refinement network would be able to see more synthetic
errors and learn to fix them. Compared to traditional semi-supervised methods that
use pseudo labels, this method is able to increase the diversity of the training sets
with the awareness of the label structural information.

1.4 Outline of this thesis

This thesis develops and validates advanced deep learning segmentation methods.
The contributions of this thesis can be divided into global learning methods and
data-efficient learning methods:
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Global learning

e Chapter 2 develops a new end-to-end trainable algorithm called Posterior-CRF
for medical image segmentation. It uses CNN-learned features in a CRF and
simultaneously optimizes the CNN and CRF parameters.

e Chapter 6 develops a new label refinement method that can correct label struc-
tural errors in initial segmentation results.

Data-efficient learning

e Chapter 3 develops a new semi-supervised learning method that combines recon-
struction and segmentation in an encoder-decoder network. The combination
of these two tasks forces the autoencoder to reconstruct the foreground and
background separately, which may help improve the segmentation performance.

e Chapter 4 develops a new self-supervised inpainting task with a region-of-
interested guided supervoxel technique. Instead of using random masking with
regular square tiles in images in the original inpainting task, this method masks
the segmentation foreground with supervoxel tiles to guide the inpainting task
for self-supervision. This may provide more segmentation-relevant features com-
pared to the original inpainting task and improve the downstream segmentation
performance.

e Chapter 5 develops a new self-supervised task inspired by the classic blind-source
separation (BSS) problem. The task is to identify and separate the source images
from sets of synthetic images that mix the source image with multiple images
from other sources. Useful information such as anatomy between patients can
be extracted and can be used as pretrained features to improve downstream
segmentation performance.

e Chapter 6 evaluates the label refinement method in a semi-supervised setting.
Synthetic errors can be added to the new pseudo labels to train a stronger label
refinement network.






Chapter 2

An End-to-end Approach to Segmentation in
Medical Images with CNN and Posterior-CRF
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Abstract

Conditional Random Fields (CRFs) are often used to improve
the output of an initial segmentation model, such as a convolu-
tional neural network (CNN). Conventional CRF approaches in
medical imaging use manually defined features, such as intensity
to improve appearance similarity or location to improve spatial co-
herence. These features work well for some tasks, but can fail for
others. For example, in medical image segmentation applications
where different anatomical structures can have similar intensity
values, an intensity-based CRF may produce incorrect results.
As an alternative, we propose Posterior-CRF, an end-to-end
segmentation method that uses CNN-learned features in a CRF
and optimizes the CRF and CNN parameters concurrently. We
validate our method on three medical image segmentation tasks:
aorta and pulmonary artery segmentation in non-contrast CT,
white matter hyperintensities segmentation in multi-modal MRI,
and ischemic stroke lesion segmentation in multi-modal MRI. We
compare this with the state-of-the-art CNN-CRF methods. In
all applications, our proposed method outperforms the existing
methods in terms of Dice coefficient, average volume difference,
and lesion-wise F'1 score.

Based on: S. Chen, Z. Sedghi Gamechi, F. Dubost, G. van Tulder, and M. de Bruijne, “An
end-to-end approach to segmentation in medical images with CNN and Posterior-CRF,” Medical
Image Analysis, vol. 76, p. 102311, 2022. por: 10.1016/j.media.2021.102311
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2.1 Introduction

After the breakthrough of deep learning in computer vision [26, 27, 28], deep con-
volutional neural networks (CNNs) and their variants [29, 30, 31] quickly started to
dominate medical image segmentation, outperforming traditional machine learning
methods in many applications [32, 33, 34, 35]. To refine the prediction from the
CNN, it is common to combine CNN with a conditional random field (CRF) [36]. By
modeling pairwise relationships and interactions between voxel-wise variables over the
whole image, the CRF can improve the coherence of the segmentation. In previous
work, CRFs based on predefined features such as intensity similarity and spatial
coherence have been used as an efficient post-processing technique or trained in an
end-to-end manner in a recurrent neural network to refine the CNN outputs [31, 37,
38, 39].

Most often, a CRF uses a combination of voxel intensity and voxel location as
pairwise potentials. Although this works well in several computer vision applications
[39, 40], there can be challenges in other applications. The approach assumes that
voxels that have similar intensity and are close to each other in the image are likely
to belong to the same class. There are many applications among others in medical
image analysis in which this assumption does not hold. For example, the intensity-
based features of the CRF are not sufficient for problems where the intensity is not
informative enough to identify object boundaries, such as the artery segmentation
problem in Figure 2.1a. The spatial component of the CRF, on the other hand, requires
extra careful tuning when the CRF is applied to data with isolated small objects, such
as the white matter hyperintensities in Figure 2.1b, which may be erroneously removed
by excessive smoothing. In stroke lesion segmentation, a large appearance difference
between lesion objects of the same class also goes against the CRF assumption that
the same class objects should have similar intensity (see Figure 2.1c).

In this chapter, we propose Posterior-CRF, a new learning-based CRF approach for
image segmentation that allows the CRF to use features learned by a CNN, optimizing
the CRF and CNN parameters concurrently. The learning-based CRF makes the CNN
features update to work best with CRF in an end-to-end manner. During training,
the CRF inference works in the CNN feature space, which is more likely to contain
useful high-level features for segmentation compared to the original intensity values.

We demonstrate our method in three medical image analysis applications. Our first
application is the segmentation of the aorta and pulmonary artery in non-contrast,
non-ECG-gated chest CT scans. In these images, the aorta and the pulmonary artery
share similar intensity values, which goes against the CRF assumption that similar
classes should share similar intensity [41, 42]. The boundaries between the objects
are not recognizable by intensity alone, making a standard CRF less effective (Figure
2.1a). Our second application is the segmentation of white-matter hyperintensities
in brain MRI. These small objects are sparsely distributed in the brain (see Figure
2.1b) and may be removed by the CRF, which optimizes for the spatial coherence of
segmentation. Our third application is the segmentation of ischemic stroke lesions in
brain MRI, which have very heterogeneous intensities and shapes within the same
lesion class (Figure 2.1c).
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Figure 2.1: Difficult cases for conventional CRF inference in medi-
cal image segmentation. (a) Segmentation of arteries in CT:
first row shows two azial slices of the C'T scan with red arrows
indicating indistinguishable boundaries; second row shows the
corresponding ground truth of the aorta (yellow) and pulmonary
artery (green); (b) White matter hyperintensities segmentation
in MRI: four examples are shown with the ground truth of the le-
sions (green), red arrows indicate small isolated lesions that can
be easily removed by CRF; (c¢) Ischemic stroke lesions segmen-
tation in MRI: first row shows the ground truth of the lesions
(green) where large appearance difference between lesions can be
observed (red arrows); second row shows a close-up view of the
lesions. Best viewed in color with zoom.

__________________

' 1 End-to-end training
s

(G
{ : P — S Unary network
ot |- ERECE R ) output
L - $-- ‘:' - CRF with predefined features

CRF reference map ﬁ CRF with learned features

Output U

|nput&>I ‘;\:W S '[>‘ CRF !:>
e i el
CRF reference map
Figure 2.2: Different CRF-based approaches For each graph: (a) Post-
processing CRF [31, 87]; (b) End-to-end training CRF with
predefined features [39]; (c¢) Proposed Posterior-CRF, which
uses CNN feature maps as CRF reference maps. Best viewed in
color with zoom.
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Contributions

1. We present a new end-to-end trainable algorithm for image segmentation called
Posterior-CRF using learnable features in CRF pairwise potentials. We explore
how the proposed method affects CNN learning during training.

2. We compare the performance of a fully-connected CRF in several settings: post-
processing, end-to-end training with predefined features, and end-to-end training
with learned features. Ablation experiments are conducted to investigate the
influence of CRF parameters and which level of the CNN feature maps are more
likely to benefit the CRF inference. We found that the features in the last CNN
feature maps provide a more consistent improvement than features in early CNN
layers and predefined intensity features.

3. We evaluate our methods in three applications: aorta and pulmonary artery
segmentation in non-contrast CT, which can be used to compute important
biomarkers such as the pulmonary artery to aorta diameter ratio [41]; white
matter hyperintensities segmentation in multi-sequence MRI, which is of key
importance in many neurological research studies [34]; and ischemic stroke lesion
segmentation in multi-sequence MRI, which can provide biomarkers for stroke
diagnosis [35]. In the experiments, the proposed Posterior-CRF outperforms
CNN without CRF, post-processing CRF, end-to-end intensity-based CRF, and
end-to-end spatial-based CRF.

2.2 Related Work

2.2.1 End-to-end Training of CRF and CNN

CRF is widely used as an efficient post-processing method to refine the output of
CNN segmentation models (for example, [31, 37, 38]). However, applying a CRF as
post-processing means that the CNN is not able to adapt its output to the CRF. Zheng
et al. [39] proposed to optimize CNN and CRF jointly by reformulating the CRF
inference as a recurrent neural network (RNN) operation, such that the CRF weights
can be learned together with the CNN. This approach makes the unary potentials
and the kernel weights in pairwise potentials trainable, which saves the computational
cost of grid search for other approaches to tune these weights, although the CRF still
works in the predefined fixed feature space. In this paper, we focus on a new CRF
approach where the CRF inference works in a learning-based CNN feature space.

2.2.2 Locally-connected CRFs with Learned Potentials

While conventional CRFs use predefined Gaussian edge potentials, the potentials
can also be learned through a neural network. Vemulapalli et al. [43] learn the
pairwise potentials of a Gaussian CRF in a bipartite graph structure. This approach
uses a simpler continuous CRF model which provides better convergence of mean-
field inference than the conventional discrete CRF models. In this paper, we focus
on the most widely used discrete CRF model which is a natural fit for the dense
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segmentation problem. Lin et al. [44], Li et al. [45] and Wang et al. [46] learn pairwise
CRF potentials to model patch-wise (or local) relationships using free form functions
learned by neural network rather than a combination of predefined Gaussians to
calculate the pairwise potentials. The patch-wise potentials provide a better ability
to model the semantic compatibility between image regions and have different effects
compared to our approach, where we do not consider patch-wise relationships. Our
method uses traditional Gaussian edge potentials [36] similar to Zheng et al. [39] which
are easier to compute in a fully-connected manner. Unlike Zheng et al., we derive the
potentials from the feature space learned by a CNN. This allows us to model global
interactions between voxel-wise variables using learning-based features.

2.2.3 Other Methods Related to CRF

Next to CRF, there are several other approaches that aim to model interactive
relationships or add global information to neural networks. Graph neural networks
(GNN) [47, 48] model interactions between variables by applying graph convolution
filters, which allow them to learn global relationships between voxels. We further
address GNN in the Discussion. The recently proposed non-local CNN [49] uses
layer-wise self-attention [16, 50, 51] to make each layer in the network focus on the
areas that encoded the most non-local information in the preceding layer. While this
allows non-local CNNs to model long-range dependencies, they are unable to model
the interactions that can be learned by a CRF or GNN. In this paper, we focus on the
fully-connected CRF model which is an efficient approach of modeling both interactive
relationships and global information.

2.3 Methodology

Our method consists of two parts that are optimized jointly: 3D CNN and 3D CRF.
In Section 2.3.1, we describe the CNN model, which provides unary potentials for the
CRF inference as well as features for the pairwise potentials for the proposed Posterior-
CRF. Then we introduce the CRF in Section 2.3.2. We show two previously proposed
ways to perform CRF inference using predefined features: post-processing (Section
2.3.3) and end-to-end training with predefined features (Section 2.3.3). Our proposed
end-to-end training with learned features is presented in Section 2.3.4, followed by
Section 2.3.4 about the back-propagation of the proposed learning-based CRF. The
mean-field inference algorithm used in the proposed method is explained in Appendix
Section 2.9.1.

2.3.1 CNN Model

Our CNN model is based on UNet [29], the most widely used network architecture for
medical image segmentation. It has a multi-scale design with skip-connections that
connect the encoding and decoding parts of the network, which allow the decoding
path to use the early, high resolution feature maps without losing information through
pooling. We use 3D UNet as the basic CNN architecture to provide the unary potentials
for CRF inference as well as features for the pairwise potentials for the proposed
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Posterior-CRF. Details of the network layout used in our experiments are given in
Figure 2.3.

2.3.2 Conditional Random Fields

In this section, we describe the CRF as proposed in [36]. In image segmentation,
a CRF models voxel-wise variable z; taking values in {1,...,C} as a set of random
variables X = {x1, ..., zn}, where C is the number of classes and N is the number of
voxels in the image. During training, x; is converted into a soft classification vector of
length C', indicating for each class the probability that the ith voxel belongs to that
class, with the L; norm |z| = 1. x; obey a Markov property conditioned on a global
observation, the image I consisting of variables Z = {Iy, ..., Iy }. In this paper, I is the
observed 3D CT/MRI scans, with its length given by the number of imaging modality
channels M times the number of voxels per channel N.
Cousider a fully-connected pairwise CRF model (X,I) characterized by a prior
Gibbs distribution:
P(X|T) = exp > 6e(Xe|D)) 2.1
ceC¢

where ( = (W, €) is an undirected graph describing the random field X. Each clique
c in a complete set of unary and pairwise cliques C¢ in ¢, and ¢ is the potential for
each clique. We seek a maximum a posteriori probability (MAP) estimation x that
minimizes the corresponding Gibbs energy F(X = x|I):

=x|I) = Zg@u (z;]I) —|—Z<pp (s, 2;]T) 2.2
1<j
MAP(P(X|I)) : x* = argminE(X = x|I) 2.3

where i and j range from 1 to N. The first term ¢, (z;) in Equation 2.2 is the unary
potential, which in our case is the current C length vector of voxel i representing the
class probabilities in the CNN posterior probability maps. The second term ¢, (z;, z;)
is the pairwise potential:

op(xi, x5) = p(s, ;) Winkm 2.4

M=

m=1

where p(z;,x;) is the label compatibility function that describes the interactive
influences between different pairs of classes, w,, is the linear combination weight of
different pre-defined kernels k,,, and K is the total number of kernels. Each k,, is a
modified Gaussian kernel with specific feature vector f:

k(f;,£;) H exp(—=(f7 f;)TAS(f; =) 2.5

The feature vector f is defined from S arbitrary feature spaces. A is a symmetric
positive-definite precision matrix that defines the shape of each kernel. In semantic



16 Chapter 2. Posterior-CRF

c
“

M-channel input | unary potential

32
c
Loss
200X200X16 J

lo 192 64

100X100X8 m
unary potential

[~ M-channel input | 128 384 128

reference maps

[ Fcrret C
[ posterior-crF ﬂ —

UNet

[Z]

32

c c

= convolution @ ——a 23—

(E59 == average pooling soxsoxa [ ] l' -[llll —

= up-sampli

3 oeatonate | 26 768 256 | . i . [Zoss ]
7 softmax 25x25%2 (@7 [— - -] reference maps

@ Cclass output after CRF s2 |

— gl 5X5X1 mmye———

Figure 2.3: Proposed feature-learning-based CRF using early/later
CNN feature maps. The backbone architecture is based on
3D UNet. The skip-connections concatenate the feature maps
from the encoder path with the upsampled ones from the decoder
path. The CRF module is placed on top of the CNN and infers
the most likely posterior class probability conditioned on the
CRF features. M is the number of input imaging modalities. C
is the number of output classes. Two proposed CRF variants
are shown in this figure: 1. Posterior-CRF' (red rectangle and
arrows), which uses the last CNN layer as CRF reference maps;
2. FL-CRF-e-1 (blue rectangles and arrows), which uses the
first level CNN layer as CRF reference maps. Best viewed in
color with zoom.

segmentation, typically a combination of intensity (I) and position features (p) has
been used [31, 36, 39]:

pi —pi L= LJ?
202 203

|pi _pj‘Q)]
262

)

ep(xi,zj) =p(zi, ;) [wiexp(—
2.6
+ woexp(—

where the first kernel controlled by w; is called appearance kernel and the second
kernel controlled by ws is called smoothness kernel. The parameters 0, 03 and 6,
control the influence of the corresponding feature spaces. The appearance kernel is
inspired by the observation that nearby voxels with similar intensity are likely to be
in the same class, while voxels that are either further away or have larger intensity
difference are less likely to be in the same class. The smoothness kernel can remove
isolated regions and produce smooth segmentation results [31, 36]. Note that the
position feature appears in both appearance kernel and smoothness kernel, where
spatial information has different contributions to each of the two kernels, depending
on the spatial standard deviations 6, and ..
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2.3.3 CRF with Predefined Features

Conventional CRFs use predefined features, such as the image intensity and spatial
position shown in Equation 2.6. These features are commonly used in CRFs to
encourage intensity and spatial coherence, based on the assumption that voxels that
have a similar intensity or are close together are likely to belong to the same class.

We evaluate two state-of-the-art approaches to combine CRFs with predefined
features with a CNN: 1. Apply the CRF as post-processing to refine the CNN outputs;
2. Implement the CRF as a neural network layer that can be trained together with
the CNN in an end-to-end manner.

CRF as Post-processing

After we train a CNN model and get its predictions, we can apply CRF as a post-
processing method to refine the results [37]. We refer to this method as Postproc-CRF
(Figure 2.2a).

End-to-end Training CRF

The CNN and CRF can be combined more elegantly by optimizing them together in
an end-to-end manner [39] (Figure 2.2b), which allows the CRF to influence the CNN
optimization. The end-to-end CRF uses the same pairwise potentials as that in the
post-processing CRF (Equation 2.6). We refer to this variant as Intensity-CRF.

To investigate the spatial term in the end-to-end CRF, we can also use only the
position features as the CRF feature space, which means that the CRF layer will only
encourage nearby voxels to have the same class. We implement this CRF by setting
the weight of the appearance kernel wy to zero and make it not trainable. We refer to
this method as Spatial-CRF.

2.3.4 Proposed CRF with Learning-based Features

Our proposed CRF uses a learning-based feature space. We replace the intensity
feature vector I in the CRF kernel (Equation 2.6) with the new feature vector F(I)
from the CNN feature maps. The information in these CNN feature maps differs per
level: in the first level of UNet the feature maps contain information close to the
intensity, while in the last level of the UNet they contain more context for each voxel
and potentially more class-discriminative information.

We refer to the CRF that uses features learned by CNN as feature-learning-based
CRF (see Figure 2.2¢) and refer to the specific form of CRF using the features in the
last CNN softmax layer as Posterior-CRF (see Figure 2.3).

Unlike the CRFs with predefined features, our CRF takes CNN feature maps as
the reference maps and updates the random field X based on F(I) instead of on I
directly. Compared to the original CRF pairwise potential in Equation 2.6, the feature
I is replaced with F(I) and the new pairwise potential becomes:
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Back-propagation of the Learning-based CRF

The back-propagation of the proposed end-to-end feature-learning-based CRF is shown
in Figure 2.4. There are five steps within one optimization iteration. Steps 1~3 are the
forward process that generates the output of the CNN. In the 4th step, CRF weights
will adapt to the outputs calculated by the reference maps and unary maps, both given
by CNN feature maps before back-propagation. In the 5th step, CNN weights are
updated to provide new unary maps and reference maps for CRF for the next iteration.
When the optimization converges, both CNN and CRF weights become stable close
to their optimal values. Note that the mean-field inference in CRF happens in the
forward process (after step 2 and before step 3) and thus contributes to the gradient
updates of both CNN and CRF weights. The derivation of the mean-field inference
gradient is omitted due to the length of the paper and can be found in Section 4.2 of
the paper by Zheng et al. [39].

i€D,

CNN features
as reference maps

CNN TTTTTTTTTIIIITTY s Forward without trainable weights
Forward with trainable weights
@ @ | - Backward with gradient
G ®~® Step of optimization in one iteration
CNN features
as unary maps @ I @

Output

Figure 2.4: One end-to-end optimization iteration of the proposed
CRF method. Best viewed in color with zoom.

2.4 Experiments

In this section, we present experiments to evaluate the proposed method and compare
it to the baseline methods: 3D UNet, Post-processing CRF, Intensity-CRF, and
Spatial-CRF. Implementation details are discussed in Section 2.4.1, followed by the
experimental settings (Section 2.4.2), the description of the datasets and pre-processing
(Section 2.4.3), data augmentation and training details (Section 2.4.4) and evaluation
metrics (Section 2.4.5).
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2.4.1 Implementation

CNN Implementation

We implement all the algorithms in the TensorFlow framework. The detailed CNN
architecture for the experiments is shown in Figure 2.3. All convolution layers use
ReLU as the activation function except for the last output layer, which uses softmax to
produce the final probability maps. For a fair comparison, the 3D UNet architecture
that is tuned for the CNN baseline method is applied to all the CRF methods in Table
2.3. The 5-layer depth of UNet (tuned from 3 to 6) and 32 base feature maps (tuned
from 8 to 64) are tuned based on all three datasets.
All segmentation models are optimized by minimizing the Dice loss [52]:

c,,C
2 Zie[ Ui V3

il 2.8
C]| ceC Dier i+ 2ier Vi

de:*

where vf is the predicted probability that voxel ¢ belongs to the cth class. uf is the
true label. The loss is minimized using the Adam optimizer [53].

CRF Implementation

In CRF, mean-field approximation can be used to calculate the maximum a posteriori
probability (MAP) of the inference. We use an efficient approximation algorithm
for mean-field inference [36, 54] built on a fast high-dimensional filtering using the
permutohedral lattice [55] that allows voxel-wise fully-connected CRF to be iteratively
computed in linear time. For a fair comparison, all the CRF methods in this paper
are implemented in 3D fully-connected manner. The codes are publicly available:
https://github.com/ShuaiChenBIGR /Posterior-CRF.

2.4.2 CRF Settings

Post-processing CRF

For Postproc-CRF, we fix the label compatibility p in Equation 2.6 to the identity
matrix, which means that the CRF does not model label-specific interaction. In the
case of multi-modal input, each imaging modality has a specific 83 to control the
strength of the intensity term.

End-to-end CRF with Predefined Features

We consider two forms of end-to-end CRFs with predefined features: Intensity-CRF
uses intensity of the input image I and position information as its feature space.
Spatial-CRF uses only the position information (the smoothness term in Equation 2.6).
The label compatibility is a C' x C' parameter matrix which is optimized during training
to allow the CRF to learn the label compatibility automatically. The weights wy of
the appearance kernel for Intensity-CRF and ws of the spatial kernel for Spatial-CRF
are C' x C matrices, which we restrict to diagonal matrices because the relationship
between classes is already covered by the label compatibility matrix. Inner product is
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calculated by multiplying the matrices. For simplicity, only one 6z is applied for all
modalities.

End-to-end CRF with Learned Features

The proposed Posterior-CRF uses the last softmax layer of the CNN as its reference
map. The hyperparameters are the same as end-to-end CRF with predefined features.
Note that Posterior-CRF is a special case of the feature-learning-based CRF. We
can also use early CNN feature maps as CRF reference maps. An ablation study
investigating other CRF variants can be seen in Section 2.5.4.

CRF Parameters

Parameters in the post-processing CRF for each dataset were obtained by grid search
on the validation set and are shown in Table 2.1. We computed results with 500
different configurations of Postproc-CRF on each dataset for grid-search. Parameters
in the end-to-end CRFs (Intensity-CRF, Spatial-CRF, Posterior-CRF') are initialized
with the same values as were used in post-processing CRF. Although the end-to-end
CRF approaches have the ability to learn CRF weights automatically during training,
we initialize all CRF approaches in the same way to facilitate visualization of the
evolution of CRF parameters during training (see Figure 2.5). We study the sensitivity
to different CRF parameter initializations in Section 2.5.3.

The initial label compatibility matrix is set to an identity matrix and can be
optimized during training. In the multi-modality case, the initial value of 03 is
averaged over all modalities. The initial values for each dataset are shown in Table
2.2.

Computation Costs of CRF

The training and testing time of the proposed CRF method is the same as Intensity-
CRF but a bit slower than Spatial-CRF, since there is no bilateral term in Spatial-CRF.
Although the proposed CRF uses CNN’s features to compute the pairwise potential,
the gradients only flow through the unary map path but not the reference map path
which is the same as that in traditional Intensity-CRF. Therefore, there is no additional
time and memory cost of the proposed method compared to traditional end-to-end
CRF approaches with fixed feature space. Post-processing CRF is after the CNN
training and takes more time for inference compared to the end-to-end CRFs, since
the inference is done by CPU but not GPU.

2.4.3 Datasets and Preprocessing

We evaluate the proposed method on three segmentation problems: CT arteries,
MRI white matter hyperintensities, and MRI ischemic stroke lesions. We chose these
problems to study the generalizability of the method as these applications differ a
lot in object shapes and appearances, imaging modalities, and suffer from different
problems (see Fig. 2.1).
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CT Arteries Dataset

We use 25 non-contrast lung CT scans from 25 different subjects enrolled in the Danish
Lung Cancer Screening Trial (DLCST) [56]. The selection of the 25 subjects was
completely random and it was done before the development of this algorithm for
an unrelated study. The aorta and pulmonary artery were manually segmented by
a trained observer (ZS). Images have an anisotropic voxel resolution of 0.78mm X
0.78mm x 1.00mm and are of size 512x512 with on average 336 slices (range 271-394).
The 25 scans are split into three parts of 10, 5, and 10 scans for training, validation,
and testing respectively. Due to the limitation of GPU memory, we first crop the
original CT images and only keep the axial central part of 256 x 256 voxels for all
slices. Then, 3D patches of the size 256 x 256 x 16 are extracted from the cropped
images. All training patches have 80% overlap in z-axis between neighboring patches
to mitigate border effects. In total, there are 840 3D patches for training. We use the
original CT intensities without normalization.

MRI White Matter Hyperintensities (WMH) Dataset

The White Matter Hyperintensities (WMH) Segmentation Challenge [34] provided
images from 60 subjects (T1 and FLAIR) acquired from three hospitals and manually
segmented for background and white matter hyperintensities. We randomly split these
in 36 subjects for training, 12 for validation, and 12 for testing. For each subject, we
cropped/padded MRI images into a constant size 200 x 200 x Z, where Z is the number
of slices in the image. We use Gaussian normalization to normalize the intensities
inside the brain mask in each image to zero mean and unit standard deviation. We
extract training patches of size 200 x 200 x 16 with 80% overlap in z-axis between
patches. In total, there are 528 3D patches for training.

MRI Ischemic Stroke Lesions (ISLES) Dataset

The ISLES 2015 Challenge [57] is a public dataset of diverse ischemic stroke cases.
There are 4 MRI sequences available for each patient (T1, T2, FLAIR, and DWI).

We use the sub-acute ischemic stroke lesion segmentation (SISS) dataset (28 subjects)
with the lesion labels for experiments and randomly split them as 14 for training,
7 for validation and 7 for testing. The images are cropped/padded to the size
200 x 200 x Z. Gaussian normalization is applied for normalizing the intensities in
each image. Training patches of the size 200 x 200 x 16 with 80% overlap in z-axis are
extracted. In total, there are 560 3D patches for training.

2.4.4 Data Augmentation and Training Details

The network is trained on all mini-batches (each mini-batch contains one 3D patch).

For each 3D patch in the current mini-batch we apply 3D random rotation sampled
from ([-5,5],]-5,5],[-10,10]) degrees, shifting ([-24,24],[-24,24],[-7,7]) voxels, as well as
random horizontal (left and right) flipping. We stopped training when the validation
loss is not decreasing anymore and chose the model that achieved the best validation
performance. The experiments are run on an Nvidia GeForce GTX1080 GPU. The



22 Chapter 2. Posterior-CRF

average training time is 5~10 hours for one CNN baseline model and 1~2 hours more
when the CRF layer is added.

2.4.5 Evaluation Metrics

We use four voxel-wise metrics of segmentation quality: Dice similarity coefficient
(DSC), indicating the relative overlap with the ground truth (larger is better); 95th
percentile Hausdorff distance (H95), showing the extremes in contour distance from
ground truth to the prediction (smaller is better); Average volume difference (AVD) as
a percentage of the difference between ground truth volume and segmentation volume
over ground truth volume (smaller is better), and Recall score (larger is better). For
the lesion segmentations (WMH and ISLES), we additionally assess accuracy of lesion
detection by computing the lesion-wise Recall and lesion-wise F1 score (larger is better).
The lesion-wise metrics use the 3D connected components, while the voxel-wise metrics
do not use 3D connected components. The correct detection of a lesion is determined
by the overlap (at least one voxel) of the 3D components. F1 score is equivalent
to lesion-wise Dice score and is calculated by 2*(precision*recall)/(precision+recall),
where precision is calculated by true positives/(true positives+false positives).

2.5 Results

= Intensity-CRF
Spatial-CRF
= Posterior-CRF

Figure 2.5: CRF parameters during training in WMH dataset. The
initial values of the CRF parameters can be found in Table 2.2.
Best viewed in color with zoom.

2.5.1 Segmentation Results

Table 2.3 shows the segmentation results for all three datasets. In most metrics,
Posterior-CRF had the best performance in all datasets. For all datasets, CNN
without CRF provides good baseline results, which indicates that 3D UNet is an
efficient architecture to extract useful features for segmentation in these applications.
Intensity-CRF performed worse on DSC than Posterior-CRF (statistically significant in
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Table 2.1: Post-processing CRF parameters for each dataset. Search
range indicates the range of parameter values explored during
grid search.

Datasets CT Arteries WMH ISLES Search range
w1 6.39 3.85 9.75 (0.1, 10)
O 4.09 4.46 8.74 (0.1, 10)
05 for CT 1.10 - - (0.1, 10)
05 for T1 N 701 9.26 (0.1, 10)
0 for T2 - - 9.73 (0.1, 10)
0 for FLAIR - 264 2.36 (0.1, 10)
05 for DWI - - 6.85 (0.1, 10)
w2 3.40 1.41 2.34 (0.1, 10)
0, 1.83 011  1.35 (0.1, 10)
Iterations 3 1 2 (1, 5)

Table 2.2: Initial end-to-end CRF parameters for each dataset.

Methods w1 (7 03 wo 0~ Iterations
CT Arteries

Spatial-CRF - - - 3.40 4.83 3

Others 6.39 4.09 1.10 3.40 4.83 3
WMH

Spatial-CRF - - - 141 0.11 1

Others 3.85 4.46 4.83 1.41 0.11 1
ISLES

Spatial-CRF - - - 2.34  1.35 2

Others 9.75 874 T7.05 234 1.35 2

aorta segmentation and WMH segmentation), which reveals the limitation of intensity
features. Among all end-to-end CRF methods, Spatial-CRF performs worst for all
datasets except ISLES. From these results, we conclude that spatial coherence alone
is not sufficient and often detrimental to segmentation accuracy, and that the CNN
features in the last layer are more informative for CRF than the intensity features in
the original images.

CRFs that depend strongly on intensity-based features have difficulties detecting
objects that are similar in intensity. Examples of this problem can be observed in the
segmentations for the CT arteries and ISLES datasets (Figure 2.6). In CT arteries
segmentation, the aorta and pulmonary artery have very similar intensities, which
causes most of the methods in our experiments to sometimes misclassify part of the
aorta as pulmonary artery. This is especially true for Post-processing CRF but also
for Intensity-CRF.

Posterior-CRF achieves a DSC segmentation overlap of 95.4% and an H95 lower
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and hyperparameters.
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than 2.87mm in aorta segmentation, which is significantly better than all other methods
on this dataset. We argue that this is because the features from the last CNN feature
maps are more informative than the intensity-based features, which allows the CRF
inference to focus on refining the object boundary without expanding into neighboring
class voxels with similar intensities. The Posterior-CRF also gives a performance
improvement in the segmentation of the pulmonary artery, but this is not always
statistically significant. One reason is that the blurred boundary between the aorta
and pulmonary artery often results in the oversegmentation of pulmonary artery,
the errors in pulmonary artery are emphasized because the overall pulmonary artery
volume is lower. Another reason could be the curved shape of the pulmonary artery,
which makes the results vary a lot between patients.

We see similar behavior on the ISLES dataset. The intensity boundaries of the
large ischemic stroke lesions are ambiguous and their appearance varies a lot between
lesions. Most of the methods fail to segment the boundaries accurately (see Figure
2.6 ISLES). Post-processing CRF hardly solves the problem and performs slightly
worse than CNN. Posterior-CRF achieves better (while less significant due to the
large prediction variance between samples) segmentation performance on DSC, AVD,
lesion-wise F'1.

A properly tuned spatial component of the post-processing CRF can benefits CT
arteries and ischemic stroke lesion segmentation (Appendix Section 2.9.2; Figure 2
(a) and (c)). However, it can cause problems to white matter hyperintensities no
matter how we try to tune it (Appendix Section 2.9.2, Figure 2 (b)), where we can
see a positive wy always leads to a decreased performance since the spatial smoothing
contributes to remove both isolated true positives and false positives if they are small
enough. The complete SHAP analysis will be discussed in Appendix Section 2.9.2.

The negative effect of the spatial smoothing results in the low average lesion-wise
recall score in WMH segmentation for Postproc-CRF (34.8%) and can be observed in
the WMH segmentation results (see Figure 2.6). In this case, Postproc-CRF is always
worse than vanilla CNN (within our grid-search range). This is because the scenario
where post-processing CRF has no influence (with both w; and wy set to zero) was
not included in the grid search range (0.1,10). Intensity-CRF has a higher lesion-wise
average recall than CNN baseline (68% to 64.8%) but a lower (not significantly)
voxel-wise recall (77.5% to 79.8%): although it detects more correct lesions than CNN
due to the intensity features, its use of spatial features causes it to undersegment
individual lesions (see Figure 2.6). Spatial-CRF also suffers from this problem, with a
high lesion-wise recall of 68.8% but low lesion-wise F1 of 65.7%.

For CT arteries, the proposed method performs better than the state-of-the-art
[41] in aorta segmentation (0.95 vs. 0.94) and worse in pulmonary segmentation (0.89
vs. 0.92). Note that five-fold cross-validation is applied in [41] and in this paper we
apply five random data splits, which may lead to different test data. Unlike in [41], we
do not cut the pulmonary artery prediction from the bottom level. In some cases, our
method produces segments that extend beyond the manual annotations, which leads
to a lower Dice performance. For WMH, the proposed method performs slightly worse
than the best performance in the leaderboard using 5 2D UNet ensembles (0.78 vs.
0.81) using the same test data. The top 3 methods in the leaderboard are all 2D UNet
ensembles (0.81 vs. 0.80 vs. 0.80), which shows a well-tuned UNet can provide strong
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baseline performance for WMH segmentation. The best non-ensemble approach is
brain atlas guided attention UNet which is more comparable to the proposed method
(0.79 vs. 0.78). For ISLES, note that the test sets used in this paper are different from
the ones that are used to calculate the leaderboard performance. The performance
of the proposed method using 14 training images is quite comparable to the best
performance in the leaderboard (0.61 vs. 0.59), which is the only CNN-based method
[31] among the top-3 methods in Dice metrics (0.59 vs. 0.55 vs. 0.47).

2.5.2 Optimization of the End-to-end CRF

We show the evolution of the trainable CRF parameters in one data split of WMH
dataset in Figure 2.5. For the four parameters in the 2 x 2 compatibility matrix g
and the two diagonal spatial kernel weights wo, Spatial-CRF falls into different local
optimal values compared to other CRF methods, probably because different parameter
scaling due to the lack of the appearance kernel. In contrast, Intensity-CRF and
Posterior-CRF converged to similar optimal values for p and wy. For the two diagonal
bilateral kernel weights in w; that control the appearance kernel, Intensity-CRF and
Posterior-CRF converged to two different optimal values. This suggests that different
CRF feature spaces contribute mostly through the appearance kernel and less through
the compatibility matrix or the spatial kernel. Interestingly, for the second diagonal
bilateral weight w?), there is a different trend of Posterior-CRF compared to Intensity-
CRF, which may indicate that at the early training stage Posterior-CRF uses similar
feature space like that in Intensity-CRF, but at the later stage it finds and learns
another set of features that may help categorize the lesion class better, which are more
reliable than the original intensity features.

2.5.3 Influence of CRF Hyperparameters

We conduct experiments to investigate the influence of CRF hyperparameters on both
end-to-end CRF with predefined features and the proposed CRF with learned features.
Trainable CRF parameters. The CRF weights y, wy, and ws in the end-to-end CRF
learning can be automatically updated together with CNN weights. We run Intensity-
CRF and Posterior-CRF using WMH datasets with five different initializations of
CRF weights randomly sampled from the search scale with all other parameters the
same as in Table 2.2. The CNN initializations are the same for all experiments. The
results in Table 2.4 show that Intensity-CRF and Posterior-CRF converge to similar
optimal points across different initializations. Spatial-CRF shows higher variances
across experiments and is less stable to the change of initializations. Posterior-CRF is
more robust to changes in initialization, achieving higher average performance and
smaller standard deviations compared to Intensity-CRF and Spatial-CRF.

Empirically tuned parameters.The CRF standard deviation parameters 6, and
0., controlling the spatial terms, and 63 controlling the appearance term, were tuned
empirically to give the best results for post-processing CRF. We here test, for WMH
segmentation, five different values of 0,, 63, and 6, for Intensity-CRF and Posterior-
CRF and five different values of 6, for Spatial-CRF within the search scale. All other
parameters are the same as in Table 2.2. The results are shown in Figure 2.7. We
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Figure 2.6: Example segmentation results. From left for each row: (1)
Original image (2) Manual annotation (3) CNN baseline (4)
Postproc-CRF (5) Intensity-CRF (6) Spatial-CRF (7) Posterior-
CRF. Aorta is colored with yellow and the pulmonary artery is
green, white matter hyperintensities and ischemic stroke lesions
in yellow. Red/blue rectangles indicate areas with over/under
segmented vozels and the orange rectangle indicates another
branch of pulmonary artery whose annotation starts in the next
few slices and merged with the main branch gradually. In the
WMH example (second row), only detections that do not overlap
with any ground truth vozel (false positive lesions) or ground
truth lesions for which no voxzel is detected (false negative lesions)
are highlighted, and in the zoomed patches red and blue voxels
indicate false positive and false negative lesions respectively.
Better viewed in color with zoom.

can see that Posterior-CRF is more robust to 6, and 63 and has consistently better
performance than Intensity-CRF within the search scale, suggesting that Posterior-
CRF parameters are more easy to tune. All CRF methods degenerate performance
when 60, becomes larger and show the best performance when using a similar value as
that in the grid search for post-processing CRF. Spatial-CRF is more robust to 0
compared to other CRF methods and has similar performance as CNN baseline with
larger 6. This indicates that large 6, reduces the CRF effect and the spatial term
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Table 2.4: Performance (Dice score) across 5 different initializa-
tions of CRF weights on WMH dataset.

Methods Intensity-CRF  Spatial-CRF  Posterior-CRF
Mean (std) 0.7570 (0.008) 0.7507 (0.02) 0.7833 (0.003)

== Intenstiy-CRF == Posterior-CRF == |ntenstiy-CRF == Posterior-CRF Spatial-CRF == Intensity-CRF
== Postproc-CRF == == CNN == Postproc-CRF == == CNN == Posterior-CRF == Postproc-CRF
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Figure 2.7: Dice performance of varying 6 for CRF methods on
WMH dataset. CNN result is shown as the black dash line.
Purple crosses indicate the values used in Table 2.4. Best viewed
in color with zoom.

may introduce more incorrect segmentation when there is also an appearance term in
the end-to-end CRF like Intenity-CRF and Posterior-CRF.

2.5.4 Influence of Hierarchical CNN Features as CRF Reference
Maps

We conduct experiments to investigate which level of features — earlier or deeper in
the network — are more useful for the feature-learning-based CRF. We implement nine
variants of feature-learning-based CRF with different levels of CNN feature maps as
reference maps in the same 3D UNet architecture. For example, the method FL-CRF-
e-1 indicates the feature-learning-based CRF using the level 1 feature maps in the
UNet encoder path as CRF reference maps. The implementation detail of FL-CRF-e-1
is shown in Figure 2.3. To reduce the computational cost and keep the same layer
capacity as Posterior-CRF, the 32-channel (or more in deeper layers) feature maps
are encoded into C-channel feature maps and go through a softmax layer as the CRF
reference maps. Since there is no gradient flowing back through the reference map
path, we optimize the softmax layer with the segmentation loss directly in order
to preserve as much semantic information as possible. Note that for CRF methods
that use deeper CNN layers as reference maps, such as FL-CRF-e-2 to FL-CRF-d-2,
we upsample the reference maps to the original image scale using nearest neighbor
interpolation and optimize them with the segmentation loss, similar to FL-CRF-e-1.

The results are shown in Figure 2.8. Note that if we use the CNN input as CRF
reference maps, it turns into Intensity-CRF; if we use the last CNN layer as CRF
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Figure 2.8: Dice performance of end-to-end CRFs using different
CNN feature maps in an independent run on WMH
dataset. Different blocks indicate different level of CNN feature
maps used as CRF reference maps. Best viewed in color with
zoom.

reference maps, it turns into Posterior-CRF. In the figure, we can see that all feature-
learning-based CRF approaches (including Posterior-CRF) outperform Intensity-CRF
and the overall Dice performance in the decoder path is better than that in the encoder
path, indicating that CNN learned features are more useful to the CRF inference
than intensity is and later CNN features are more useful than early features. The
performance degenerates towards the middle part of the UNet (from FL-CRF-e-1 to
FL-CRF-e-5 and FL-CRF-d-1 to FL-CRF-d-4) but fluctuates at the 2nd/3rd level.
We argue that this may be due to the pooling effect which enables CNN to extract
higher-level features but loses the spatial information at the same time. Posterior-CRF
achieves the best performance among all variants and we argue that this is because the
last CNN layer are more likely to contain more useful information for CRF inference
and it still keeps the same spatial scale as the original image.

2.5.5 Evolution of CNN and CRF Outputs

The concurrent optimization of CNN and CRF in our end-to-end models allows the
CNN and CRF to interact during training. We observed that this has a strong effect
on what the CNN learns in the early training epochs. Figure 2.9 shows the evolution
of CNN and CRF outputs for three typical examples. The baseline CNN without CRF
converges quickly and focuses on the large lesions, already producing a fairly sparse
output after the first epoch. The end-to-end models converge more slowly, and in this
case the output of the CNN is influenced by the choice of CRF mostly in the early
stage of training. For example, the CNN in the Intensity-CRF model initially tends
to highlight voxels with similar intensity as the foreground (1 to 20 epoch), while
the CNN in the Spatial-CRF model preserves the spatial coherence between voxels
and outputs many small groups of voxels (5 epoch). The CNN in the Posterior-CRF
model first focuses on the coarse area that might contain the target lesions (1 to 5
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WMH sample 1 WMH sample 2 WMH sample 3

Figure 2.9: Evolution of CNN and CRF outputs during training.
The CNN output maps and CRF results for WMH segmentation
in 8 different MRI images (columns) are shown at, from top row
to bottom row, epoch 1, 5, 20, and the best epoch. The best epoch
is chosen when the model shows the best validation performance
till the end of training (usually at 50~80 epoch). FLAIR: the
input FLAIR image of the current training sample. GT: ground
truth. CNN baseline: the last layer (softmaz output) of CNN.
Intensity-CRF, Spatial-CRF, Posterior-CRF: the probability
maps before/after the CRF layer at different epochs during
training. Best viewed with zoom.

epoch) and then refine the prediction gradually to the ground truth (5 to 20 epoch).
Eventually, all models converge to a result close to the ground truth.

2.6 Discussion

In this paper, we explored efficient methods to combine the global inference capabilities
of a CRF with the feature extraction from a CNN. Our end-to-end approach optimizes
the CRF and CNN at the same time, and allows the two components of the approach
to cooperate in learning effective feature representations. This gives our method
an advantage over traditional CRFs that only use the original image intensities and
position information. Intensity-based features can be suboptimal for problems where
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the intensity does not provide sufficient information to find the object boundaries, for
example because the contrast between objects is too small.

Unlike other CRF methods, our Posterior-CRF uses adaptive learning-based fea-
tures that are learned by the CNN and can combine spatial and appearance information
in a way that suits the CRF. The results show our method can achieve stable, good
performance across a range of segmentation applications and imaging modalities.
FL-CRF variants that use early CNN features in Section 2.5.4 achieve in-between
performance between Intensity-CRF and Posterior-CRF, using learning-based features
that range from more similar to intensity to more similar to posterior probability
maps. Finally, we found that integrating learned features into the CRF model reduces
the need to fine-tune CRF parameters, making the method easier to apply than CRF
methods with predefined features.

2.6.1 Interaction between CRF and CNN

Figure 2.9 leads to the counter-intuitive observation that, at least initially, the CNNs
in end-to-end models seem to imitate the CRF instead of complementing it. For
example, the CNN output in Intensity-CRF highlights the ground truth, but also
finds areas with similar intensities, producing something that looks very similar to the
original image (20 epoch). The CNN output in Spatial-CRF selects the ground truth
but also includes clusters of voxels in other areas (5 epoch).

This effect can be explained by the way the CNN and CRF interact during training.
In Intensity-CRF and Spatial-CRF, the only interaction between CRF and CNN takes
place through the unary map (Figure 2.4, step 5, green arrow). For example, consider
how this works in the Intensity-CRF. In WMH segmentation, the ground truth is
usually high-intensity area. However, for the voxels with high intensities but not
the target lesions, it is difficult to get both low pairwise CRF potentials and low
segmentation loss, since labeling them as non-lesion goes against the CRF assumption
that voxels with similar high-intensities are more likely to be the lesion class. For
convenience, we call these voxels as hard vozels, indicating the voxels that do not fit
the CRF assumption. In order to keep the correctly segmented lesions and reduce
the CRF effect on the hard voxels at the same time, the CNN tends to provide unary
maps that 1) highlight the ground truth area for lower segmentation loss, and 2)
look similar to the CRF reference maps on the hard voxels for lower pairwise CRF
potentials. In the later stage of training, CNN is encouraged to push the confidence
of its outputs even further to minimize unary potentials and thus prevent CRF from
undoing segmentation improvement on the hard voxels. From Figure 2.9, we can see
that there are many hard voxels in Intensity-CRF (1 to 20 epoch, areas that look like
the original image) and Spatial-CRF (5 epoch, clusters of voxels that do not belong
to the ground truth) which may harm the segmentation. This indicates that the
predefined features may not be the optimal feature space for the end-to-end CRF.

In the Posterior-CRF model, the CRF inference happens within the CNN feature
space, which can improve the interaction between CNN and CRF. First, the features
learned by CNN during training may contain information that is more useful for
segmentation than that in the predefined features, which makes CRF benefit most
from the CNN features. Second, using the learning-based features as CRF reference
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maps avoids the CRF assumption of the predefined features which may introduce
many hard voxels, e.g., Intensity-CRF and Spatial-CRF, as discussed in the previous
paragraph. With fewer hard voxels, the CNN in Posterior-CRF may provide better
unary maps for the CRF inference.

2.6.2 Posterior-CRF vs. Mean-field Network

The mean-field approximation (MFA) in Posterior-CRF is somewhat similar to that
in Mean-field networks (MFN) [58], since both methods use it to get the posterior
probabilities of the variables. Therefore, MFN could be a promising alternative to the
MFA process in our method. MFN has the advantage that it utilizes each layer of the
network as an iteration of MFA, which has the advantage of allowing more relaxation
on parameters and provides some efficiency improvements. This makes the idea of
formulating Posterior-CRF as a feed-forward network like MEN very attractive. There
are, however, a few limitations that would need to be solved.

The first limitation is in training. MFN is designed to provide a faster and more
flexible way to obtain the prediction of MFA, by fitting a powerful function that
predicts the real MFA result. To train an MFN, we first need to acquire the ground
truth calculated by conventional mean-field iterations, which takes time during training
but saves time during inference. On the other hand, Posterior-CRF provides a flexible
and adaptive feature space for the conventional MFA, speeding up the procedure by
applying Gaussian convolution in the message passing updates. As a result, the thing
Posterior-CRF does is difficult to replicate with a MEN because the feature space of
a Posterior-CRF changes during training, while MFN requires a predefined feature
space to get the ground truth.

The second limitation is the tradeoff between dense inference and computation
cost in the MFN. In its feed-forward network implementation, the computation cost
increases exponentially when more neighbor nodes and number of layers are included,
which limits its ability to model dense prediction problems such as segmentation tasks.

2.6.3 Posterior-CRF vs. Graph Neural Networks

The proposed Posterior-CRF shares some similarities with graph neural networks
(GNN) [47, 48]: both approaches aim to model interactions between variables within a
graph model. The difference is that Posterior-CRF pre-defines the global relationship
between variables through the mean-field assumptions and solves the maximum a
posteriori problem, whereas GNN learns the global variable relationship by applying
graph convolution filters and mapping the input graph to the output graph [48].

It could be interesting to combine the global view of the Posterior-CRF and the
more local view of the GNN. The Posterior-CRF might benefit from using a GNN
to replace its CNN component for feature extraction. The graph-based network may
extract better features for Posterior-CRF than a CNN, which is not designed to extract
unary and pairwise features for a graphical model. Similarly, the GNN may benefit
from the efficient message passing of the Posterior-CRF, which would allow it to use
the local graph-based features as CRF features for global interactive modeling in a
computationally efficient way.
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2.6.4 Limitations

In this paper, we show that the proposed Posterior-CRF method has benefits in the
three medical imaging applications. Considering the medical imaging datasets are
usually small largely because the manual annotations are very expensive to make,
difference between Posterior-CRF and UNet may be smaller in larger training sets. But
we know from literature that Intensity-CRF helps in some computer vision applications
with large training sets (e.g., 10k 2D images or even more), it would be promising to
test our method on these datasets. This is considered as our future work.

In Section 2.5.3, we show that Posterior-CRF is robust to different CRF initializa-
tions and hyperparameters. However, the standard deviation parameters still require
careful tuning, especially for 6, in the spatial term. 6, is sensitive to the image
scale of different datasets and the size of the target object in different applications.
Nevertheless, we recommend the researchers to use the default (or optimal if it is avail-
able) setting of post-processing CRF as a reference for tuning Posterior-CRF rather
than random initialization. Posterior-CRF is more robust to 6, and 63 compared to
Intensity-CRF, which facilitates exhaustive tuning of these parameters.

The computational expense of the CRF also restricts the choice of applications.
Compared to UNet (~5 mins for 1 epoch in WMH experiment), there is around
20% training time increased on average when applying a CRF layer on top of the
network (~6 mins for 1 epoch). All end-to-end CRFs share similar computational
costs. Given that Posterior-CRF uses posterior probability maps as its reference maps,
it can become computationally expensive in multi-class segmentation problems. For a
similar reason, Intensity-CRF and Postproc-CRF can become expensive when there
are too many imaging modalities in the input channels M.

In the experiments, we use a plain 3D UNet as the backbone network for all methods.
The training pipeline and hyperparameters are determined empirically and kept the
same for all datasets, which could be suboptimal compared to elaborate automatic
configuration strategies like nnU-Net [52]. On the WMH dataset we therefore checked
the performance of nnU-Net (3D version without ensembling). Average Dice score
of nnU-net (0.77) was slightly higher than our CNN baseline (0.76, difference not
statistically significant) but lower than the proposed posterior CRF using the CNN
baseline as a backbone (0.79), which performed significantly better than the CNN
baseline (see Table 2.3). Though our experiments have been limited to a standard
3D U-net architecture, We expect that posterior CRF can improve results of other
segmentation architectures and other hyperparameter settings (such as nnU-net) as
well.

2.7 Conclusions

In conclusion, we present a novel end-to-end segmentation method called Posterior-
CRF that uses learning-based, class-informative CNN features for CRF inference. The
proposed method is evaluated in three medical image segmentation tasks, including
different MRI/CT imaging modalities and covering a range of object sizes, appearances
and anatomical classes. In the quantitative evaluation, our method outperforms
end-to-end CRF with early CNN features, end-to-end CRF approaches with predefined
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features, post-processing CRF, as well as a baseline CNN with similar architecture.
In two of the three applications, our method significantly improves the segmentation
performance. The qualitative comparison demonstrates that our method has good
performance on segmenting blurred boundaries and very small objects.
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2.9 Appendix

2.9.1 Mean-field Inference

Mean-field inference is an efficient approximation to computing distribution Q(X)
instead of the real CRF distribution P(X), which could be done in an iterative
algorithm 1 (see also Figure 2.10). X is the random field w.r.t the current 3D image
patch 1.
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Figure 2.10: Mean-field approximation in the end-to-end CRF
layer. There are two inputs of the CRF layer, where U is
the CNN probability maps as the unary maps and the pairwise
distribution are calculated by the initialized distribution Q and
the reference map 1. The updated distribution Y is the output
of the layer at the end of the iteration. Best viewed in color
with zoom.

There are three main steps inside the inference iteration. First is message passing,
which is the most calculation-intense step that could be expressed as a convolution
operation on all the pairwise kernels k and the initialized Q(X). An efficient way to
perform high-dimensional convolution is using permutohedral lattice algorithm [55].
In compatibility transform as the second step, all the convolution results ng) (x;) are
weighted by w("™) in different sort of kernels and shared between labels to a varied
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Algorithm 1 Mean-field inference in fully-connected CRF

Qi(x)«Ui(x;),i=1,2,.... N > Initialize Q(X)
While not reach max iteration number do
ng) (i) ¢ 2z k) (£, £,)Q;(x;) for all m > Message

Passing

Q" (@) = e n™ (@i ) 3, wM QI (1) >
Compatibility Transform

Qi(x;) exp{ — u(;) — Qi(xi)} > Local Update

normalize Q;(x;)

end while

extent, depending on the compatibility p between these labels. At last, Q(X) will
be updated by the calculated pairwise potential and used as the input for the next
iteration.

2.9.2 SHAP Analysis of Post-processing CRF

We conduct SHAP (SHapley Additive exPlanations) [59] analysis on the post-processing
CRF grid search results to investigate the contribution of each individual CRF parame-
ter to the segmentation performance. With this analysis, we show that it is difficult to
tune traditional CRF parameters to achieve a consistent performance improvement on
different applications, and our proposed method does not require tuning parameters.
Moreover, the analysis shows the importance of each modality to each dataset, which
can be automatically adapted in the proposed method but not in traditional methods.
The model is trained using XGBoost [60] for 100 iterations using a learning rate of 0.5,
0.01, and 0.01 for CT Arteries, WMH, and ISLES respectively. Note that the SHAP
analysis results can only be explained under the assumption of the current parameter
search scales and XGBoost models.

The results are shown in Figure 2.11. The summary plot in the left sub-graph
shows an overview of all parameter sets with the most important parameters on top
of the list. For each dataset, the best and worst parameter settings are shown in the
right sub-graph. For all datasets, the post-processing quality is affected most by the
spatial parameters wy and 6, and less by the intensity parameters per modality 03.

The results on the CT arteries data (Figure 2.11a left) are more stable (with
smaller SHAP values) than the results for WMH and ISLES, indicating that the
post-processing CRF can hardly change the CNN output of the artery segmentation
(see Figure 6 in the paper as an example).

In the WMH dataset, looking at independent parameter contributions, low values
for spatial parameters wo, 6, (less smoothing), and a smaller number of iterations lead
to an improved performance. This is not unexpected, because white matter lesions are
sparsely distributed and spatial smoothing tends to remove small lesions. Too strong
spatial correlations (either large weight wy or small 6,) will remove true positives
as well (see Figure 6 in the paper). The summary plot (Figure 2.11b left) shows,
as expected, that the FLAIR image has a larger impact on the model than the T1
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Figure 2.11: SHAP analysis of the grid search results. See Section
2.9.2 for an explanation. Upper sub-graphs: summary plots
of all parameter sets evaluated during grid search. Positive
SHAP values indicates a positive contribution to the perfor-
mance and vice versa. The legend (feature value bar) shows the
search range for each parameter. This reveals for example that
lower values of wa lead to better segmentation performance for
all datasets. Lower sub-graphs: the best (1st row) and worst
(2nd row) parameter sets for each dataset. Red bar represents
positive contribution to the performance and blue bar is nega-
tive contribution. Base value is the average DSC of all grid
search results and output value is the DSC in the parameter
set depicted. Best viewed in color with zoom.
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image. Table 1 also shows a smaller 65 selected (corresponding to higher influence)
for FLAIR.

Similar trends can be found for the ISLES dataset (Figure 2.11c). Spatial pa-
rameters wy and 6, are important to tune and high values can strongly harm the
performance. The summary plot shows that the DWI image has a larger impact on the
model than T1, T2, and FLAIR. In Table 1, 83 for FLAIR and DWI are smaller than
03 for T1 and T2, which means that FLAIR and DWI images are more informative
for the segmentation of ischemic stroke lesions.
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Abstract

We propose a novel semi-supervised learning (SSL) image
segmentation method that simultaneously optimizes a segmen-
tation and an auxiliary reconstruction objective. The auziliary
reconstruction task is guided by an attention mechanism that
encourages the encoder to learn more discriminative features
from unlabeled data. The proposed approach is evaluated on
two applications: brain tumor segmentation and white matter
hyperintensities segmentation. Our method, trained on unlabeled
images and a small number of labeled images, outperforms a
supervised CNN trained with only labeled images and a CNN with
unsupervised pretraining on the unlabeled data. The proposed
method even outperforms a supervised CNN trained using labels
for all images. In ablation erperiments, the proposed attention
mechanism strongly improves segmentation performance over a
stmilar network without the attention mechanism. We explore
two multi-task training strategies: joint training and alternated
training. Alternated training requires fewer hyperparameters and
achieves a better, more stable performance than joint training.
Finally, we analyze the features learned by the different meth-
ods and find that the attention mechanism helps to learn more
discriminative features in deeper layers of the encoders.

Based on: S. Chen, G. Bortsova, A. Garcia-Uceda Juarez, G. van Tulder, and M. de Bruijne,
“Multi-task attention-based semi-supervised learning for medical image segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2019,
pp. 457-465. por: 10.1007/978-3-030-32248-9_ 51
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3.1 Introduction

Semi-supervised learning (SSL) uses unlabeled data to improve the generalization
performance of a supervised model. This can be useful in medical image segmentation,
where manual annotations can be expensive and tedious to produce and are often
limited to only a small subset of the available training data.

One approach to semi-supervised learning is multi-task learning, which trains a
network to solve an auxiliary task, learned from unlabeled data, in addition to the
supervised task learned from labeled data. This approach has been used for image
classification (e.g., [61, 62]) and image segmentation (e.g., [63]) with architectures that
combine supervised classification with unsupervised reconstruction, for example by
including an additional autoencoder objective.

Multi-task learning can be non-trivial to combine with popular image segmentation
architectures like UNet[29] and its variants[30, 64], which use skip-connections to
preserve high-resolution information in early layers of the network. However, these
skip-connections make it difficult to add an autoencoder as the auxiliary task in
the same segmentation network, because they would allow the network to skip the
dimensionality reduction required by the autoencoder.

We propose a novel semi-supervised method called Multi-task Attention-based Semi-
Supervised Learning (MASSL), in which we successfully combine an autoencoder with
a UNet-like network. Instead of training it to reconstruct the original input, we train
the autoencoder to reconstruct synthetic segmentation labels created by the introduced
attention mechanism. This allows our model to learn the discriminative features for
segmentation from unlabeled images. To our best knowledge, semi-supervised learning
and attention have not been combined before.

Attention-based methods are often used to focus a network on relevant areas
for supervised learning (e.g., [65]). Differently, our attention mechanism is designed
to tackle unsupervised learning problems. Our method has some similarities with
self-training and co-training, which also create new labels for the unlabeled training
data on-the-fly. However, whereas self-training[66] and co-training[67, 68] create labels
for the segmentation task, our method creates labels for the reconstruction task. This
guides the unsupervised, auxiliary task to learn a better latent representation from
unlabeled data that would be limited to the earlier layers in a traditional segmentation
network.

Our contributions can be summarised as follows: firstly, we propose a new multi-
task semi-supervised learning method and study its performance in combination with
two training strategies. Secondly, we evaluate our method on two segmentation
problems (brain tumors and white matter hyperintensities), on which it outperforms
a fully supervised CNN baseline, two pre-training approaches, as well as multi-task
learning without the proposed attention mechanism. Thirdly, we discuss how the
attention mechanism affects the features learned by the encoder and show that it helps
the deeper layers to learn more discriminative features.
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Figure 3.1: Proposed MASSL framework. Segmentation loss Li is
calculated by the soft segmentation prediction and the ground
truth. Reconstruction loss Lo is calculated by the reconstructed
foreground and background prediction and the new labels created
through the attention mechanism.

3.2 Methods

Our semi-supervised learning method (Fig. 3.1) is composed of a multi-task learning
(MTL) framework and an attention mechanism for connecting the two tasks. The
MTL framework has segmentation as its main task (Section 3.2.1) and reconstruction
as its auxiliary task (Section 3.2.2). The attention mechanism is introduced in Section
3.2.3.

3.2.1 Segmentation Network

The forward path of our CNN-based segmentation network can be formulated as
follows:
y = Dg[Encoder(x)], L1 = Dice(g,y) 3.1

where x is the input image, Encoder represents the encoder of the network. Dg
represents the segmentation decoder with skip-connections that makes the segmentation
prediction. The variables § and y are the predicted labels and segmentation ground
truth respectively. The Dice similarity coefficient is used as segmentation loss function.

3.2.2 Reconstruction Network

As the auxiliary task, we use a reconstruction network with an autoencoder objective
that is trained together with the segmentation network. The two networks share
the same encoder parameters in order to learn useful features for segmentation and
reconstruction simultaneously:

§ = Dg[Encoder(x)], Lo = MSE(g,x) 3.2
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where Dpg is the reconstruction decoder, without skip-connections, and ¢ is the
reconstructed image as predicted by the autoencoder. Mean squared error (MSE)
is used as the reconstruction loss. We can reconstruct both labeled samples and
unlabeled samples to make full use of all the available images. In the remainder of the
paper, we refer to this approach combining segmentation and reconstruction networks
as our Multi-task SSL (MSSL) method.

3.2.3 Attention Mechanism

We want to further connect the two tasks not only by the shared encoder in MSSL
method. We introduce an attention mechanism to fuse both the segmentation task and
the reconstruction task into the autoencoder. We use the soft segmentation predictions
as attention maps to create new labels for the reconstruction task, in which foreground
and background image regions are reconstructed separately. This encourages the
encoder to learn more discriminative features through the reconstruction path. The
new reconstruction loss is weighted by the size of the background and foreground to
avoid paying more attention to small structures:

g = Dg[Encoder(z)], 4p,§5 = Dr[Encoder(z)] 3.3

X1-3) X .

B S CV R V6V
Ly = wiMSE[gy, (1 — §)] + woMSE[§y, z7) 3.5

where ¢ is the prediction by the foreground segmentation network. 1 is the tensor
of ones that has the same size as §. ¢, and §; are the background and foreground
reconstruction predictions. We refer to this method that combines the segmentation
network, the reconstruction network and the attention mechanism as our Multi-task
Attention-based SSL (MASSL) method.

3.2.4 Training Strategy

The two tasks of the MSSL and MASSL networks can be optimized jointly or alter-
natingly:

Joint training: Given a minibatch containing an equal number of labeled samples x f,
and unlabeled samples z7, the unlabeled samples x are first segmented using the most
recent segmentation network parameters, to create the foreground and background
images for the reconstruction task. Then, the weights of the entire network are updated
by optimizing the objective function of both segmentation and reconstruction tasks.
The loss is a linear combination of segmentation and reconstruction losses controlled
by the hyperparameter v € [0, 1]:

L(IL,J}U) = ’yLl(IL) -+ (1 — ’y)LQ(I’U) 3.6
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Alternated training: For each epoch, labeled and unlabeled images are randomly
sampled by the same amount (the smaller amount of either labeled and unlabeled
images) from their corresponding training sets. A minibatch contains either labeled
samples xy, or the same amount of unlabeled samples x;. The two types of batch are
alternated during training. The weights of the segmentation path and reconstruction
path are updated individually according to the given batch type and the corresponding
loss. Then, no  is needed:

L(z) = La(@), ifo =2 3.7
Lo(z), fz=uay

3.3 Experiments

Data

We use the public data from the BraT§S 2018 Challenge[33, 69] and the White Matter
Hyperintensities 2017 Challenge!:

BraTS18: 220 MRI scans from patients with high grade glioma are randomly split
into 120, 50, 50 scans for training, validation and testing respectively, with 5-fold
cross-validation. To simplify comparison between the different segmentation tasks we
perform binary classification and segment only the whole tumor, including all four
tumor structures, and use only the FLAIR sequence.

WMH17: There are 60 FLAIR MRI scans provided with corresponding manual
segmentations of white matter hyperintensities (WMH). The scans are acquired at
three sites, 20 at each site. In our experiments, we use 30 scans for training, 10 for
validation and 20 for testing, ensuring approximately equal numbers for each site in
each of the three sets. We use 5-fold cross-validation.

Network and hyperparameters

The network layout is shown in Figure 3.1. Our network is inspired by the UNet[29]
architecture but has several differences. The input size of the network is 128 x 128 x 32.
There are 5 resolution levels in the encoder and in each of the decoders. Each level
consists of two 3x3x3 convolution layers using zero-padding, instance normalization[70)
and LeakyReL U activation functions, except for the last layer of both decoders which
use sigmoid to make the final prediction. There is an average pooling/upsampling
layer between each level. The number of feature channels is 16 in the first level, which
is doubled /halved after each pooling/upsampling to a maximum of 256 features at the
deepest level. The feature maps in the segmentation upsampling path are concatenated
with earlier ones through skip-connections. The reconstruction network has the same
architecture as the segmentation network but with no skip-connections. For joint
training, we use one Adam optimizer to optimise the loss in Eq. 3.6. For alternated
training, we use two individual Adam optimizers to optimise the two types of loss
in Eq. 3.7 separately. Based on the performance on the validation sets, we set the

'https://wmh.isi.uu.nl/
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initial learning rate to 0.01 and 0.001 for the segmentation and reconstruction tasks
respectively. Random rotation, scaling, and horizontal flipping are applied as data
augmentation.

Feature analysis

We use linear regression analysis to evaluate how well the features can discriminate
between foreground and background regions in the last layer of every encoder level.
We consider each voxel as an individual sample, using its values in each feature map
as the regression variables. The label for each voxel is obtained by the taking binary
segmentation ground truth and then down-sampling this with average pooling to the
required resolution.

3.4 Results

The segmentation results are shown in Table 3.1 and Table 3.2. For the semi-supervised
setting (first two colomns), there is no overlap between labeled and unlabeled data.
For the fully-supervised setting (last colomn), all the images are used as labeled
and unlabeled data. For Pretrain(Dec) we pretrain the reconstruction network with
unlabeled data first and then train the decoder path of segmentation network with
labeled data, while keeping the encoder part fixed to ensure that the segmentation
task can only use the features learned from unlabeled images. For Pretrain(CNN)
we pretrain the reconstruction network with unlabeled data first and then train the
whole segmentation network using labeled data, which allows the network to fine-tune
the encoder parameters if necessary. MASSL and MSSL are the proposed multi-
task SSL methods with and without the attention mechanism, where v and alter
indicate joint training and alternated training respectively. For joint training, we tried
v = 0.5,0.7,0.9 and the network did not converge when v = 0.5. The results show
that MASSL(alter) achieves the best segmentation performance of all methods. The
joint training strategy achieved a slightly lower performance than alternated training,
which also varied a lot between different labeled/unlabeled data splits, reflecting the
instability of the joint training strategy and the difficulty to tune .

The results of feature analysis are shown in Table 3.3. We can see that the features
of the MASSL method are more discriminative in the deeper levels than those of CNN
and MSSL. This supports our hypothesis that the attention mechanism could make
the deeper layers of the encoder learn more discriminative features and still keep the
property of the reconstruction autoencoder.

3.5 Discussion and Conclusion

In this paper, we propose a new semi-supervised learning method called MASSL
that combines a segmentation task and a reconstruction task through an attention
mechanism in a multi-task learning network. The proposed method is evaluated on
two applications. For both applications, MASSL using part of the labeled images
outperforms the fully supervised CNN baseline using the same number of labeled images,
pretraining+finetuning methods, and the proposed approach without attention (MSSL).
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Table 3.1: BraTS18 results. 5-fold cross-validation. Dice similarity coef-
ficient is reported. The last column uses all labeled images also
as unlabeled images, except for CNN baseline which could only
use labeled images. *: significantly better than CNN baseline
(p<0.05). °: significantly worse than MASSL(alter) (p<0.05).
P-values are calculated by two-sided t-test in each column.

#Labeled(unlabeled) 0 (100) 50 (70) 120 (120)
CNN baseline 0.6939(£0.03)  0.7054(£0.03)  0.7342(£0.02)
Pretrain(Dec) 0.6948(£0.03)°  0.6886(40.03)°  0.7162(+0.02)°
Pretrain(CNN) 0.7125(£0.03)°  0.7167(0.03)°  0.7530(%0.02)
MSSL(y=0.7) 0.6140(£0.04)°  0.7433(££0.02)*° 0.7310(££0.02)°
MSSL(7=0.9) 0.6207(£0.03)°  0.7466(££0.02)*°  0.7568(%0.02)
MSSL(alter) 0.7261(£0.03)%° 0.7462(£0.03)°  0.7461(%0.02)
MASSL(7=0.7) 0.6096(£0.03)°  0.7412(£0.02)*° 0.7589(£0.02)
MASSL(7=0.9) 0.6168(£0.04)°  0.7159(0.03)°  0.7660(%0.02)*

MASSL(alter)

0.7553(£0.03)*

0.7710(+£0.02)*

0.7702(+£0.02)*

Table 3.2: WMH17 results. 5-fold cross-validation. Dice similarity coef-
ficient is reported. The last column uses all labeled images also
as unlabeled images, except for CNN baseline which could only
use labeled images. *: significantly better than CNN baseline
(p<0.05). °: significantly worse than MASSL(alter) (p<0.05).
P-values are calculated by two-sided t-test in each column.

#Labeled (unlabeled) 10 (20) 20 (10) 30 (30)
CNN baseline 0.6030(£0.05)  0.6762(£0.02)  0.6915(%0.02)
Pretrain(Dec) 0.6088(£0.02)°  0.6252(£0.03)° 0.6439(=0.05)°
Pretrain(CNN) 0.6615(£0.03)*  0.6779(£0.02)  0.6890(%0.02)
MSSL(7=0.7) 0.5930(£0.04)°  0.6326(£0.03)° 0.6860(£0.02)
MSSL(7=0.9) 0.6189(£0.03)  0.6163(£0.03)° 0.6906(-0.02)
MSSL (alter) 0.6509(£0.03)  0.6646(£0.03)° 0.6880(%0.02)
MASSL(y=0.7) 0.6074(£0.03)°  0.6869(£0.03)  0.6900(=0.02)
MASSL(7=0.9) 0.6654(£0.03)*  0.6925(£0.02)  0.6806(-£0.03)

MASSL (alter) 0.6670(£0.03)* 0.7111(+0.02) 0.7204(+£0.02)

When using the segmentation and reconstruction loss for all images, MASSL also
improves over baseline CNN, although this difference was only statistically significant
for the BRATS data. This is mainly due to the sparse distribution of foreground in
WMH data, which makes our attention maps less effective.

The improvement of our method mainly comes from the new attention mechanism,
which introduces the segmentation task into the reconstruction task and links them
better than before. The mechanism can be easily integrated into any CNN architecture
and generalized to multi-class segmentation. Compared to joint training, alternated
training is a practical strategy that allows task-dependent variations in the learning



3.6. Acknowledgements 47

Table 3.3: Discriminative power of the encoded features. Using the
trained models of all 5 folds on BRATS data, with 50 labeled/70
unlabeled data splits. 5 training/testing data are randomly chosen
from the testing sets and used for all models because of the
size limitation of the earlier feature maps. The experiment is
repeated 5 times with different random data and the mean R?
score (variance) between 5 experiments averaged over all 5-fold
models is reported. Note, that results can only be compared within
columns because the ground truth and dimensionality change
between levels.

#Level 1 2 3 4 5

CNN baseline  0.301(.01) 0.527(.01) 0.496(.01) 0.422(.01)  0.486(.04)
MSSL(alter)  0.344(.02) 0.515(.01) 0.524(.01) 0.476(.02) 0.471(.03)
MASSL(alter) 0.340(.02) 0.508(.01) 0.501(.01) 0.478(.01) 0.535(.03)

rate and does not require fine-tuning -, although one still needs to choose proper initial
learning rates. Alternated training is not guaranteed be stable because the encoder
parameters change discontinuously between the two tasks. During experiments, we
found the training was sufficiently stable when choosing a smaller initial learning
rate for reconstruction than segmentation, and in most cases, the performance of the
alternated optimization was — without exhaustive tuning of v — much better than that
of joint optimization.

Since the aim of this paper was to compare several multi-task learning strategies,
we made some simplifications. For the pretraining method, unlike Sedai et al.[63],
we use a regular autoencoder rather than a variational autoencoder (VAE) in this
paper. We think our SSL method could also work well with VAE and perhaps fuse
the two tasks even better. In the regression analysis we use a simple regression
model that could only show the linear discriminative power of the features. It would
be interesting to use a more complicated non-linear model to show the non-linear
discriminative power, too. Since we use only one MRI sequence and a subset of scans,
our performance on BraTS18 and WMH17 are lower than the state of the art. The
best Dice performances of BraTS18 (whole tumor) and WMH17 on testing sets are
0.8839 [71] and 0.80 [72] respectively, and first work also uses variational autoencoder
to provide more regularization effect similar to the Ladder network [62] and our MSSL
method.

In conclusion, MASSL is a promising segmentation framework for simple and
efficient multi-task learning that can achieve strong improvements in semi-supervised
as well as in fully supervised settings.
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Abstract

Self-supervised learning has proven to be invaluable in making
best use of all of the available data in biomedical image segmenta-
tion. One particularly simple and effective mechanism to achieve
self-supervision is inpainting, the task of predicting arbitrary
missing areas based on the rest of an image. In this work, we
focus on image inpainting as the self-supervised proxy task, and
propose two novel structural changes to further enhance the per-
formance. Our method can be regarded as an efficient addition to
self-supervision, where we guide the process of generating images
to inpaint by using supervozel-based masking instead of random
masking, and also by focusing on the area to be segmented in the
primary task, which we term as the region-of-interest. We postu-
late that these additions force the network to learn semantics that
are more attuned to the primary task, and test our hypotheses on
two applications: brain tumour and white matter hyperintensities
segmentation. We empirically show that our proposed approach
consistently outperforms both supervised CNNs, without any self-
supervision, and conventional inpainting-based self-supervision
methods on both large and small training set sizes.

Based on: S. Kayal, S. Chen, and M. de Bruijne, “Region-of-interest guided supervoxel
inpainting for self-supervision,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2020, pp. 500-509. po1: 10.1007/978-3-030-59710-8 49
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4.1 Introduction and Motivation

Self-supervised learning points to methods in which neural networks are explicitly
trained on large volumes of data, whose labels can be determined automatically and
inexpensively, to reduce the need for manually labeled data. Many ways of performing
self-supervision exist, amongst which a popular way is the pre-train and fine-tune
paradigm where: (1) a convolutional neural network is pre-trained on a proxy task
for which labels can be generated easily, and (2) it is then fine-tuned on the main
task using labeled data. Utilizing a suitable and complex proxy task, self-supervision
teaches the network robust and transferable visual features, which alleviates overfitting
problems and aides its performance when fine-tuned on the main task [73].

In the medical imaging domain a variety of proxy tasks have been proposed, such
as sorting 2D slices derived from 3D volumetric scans [74], predicting 3D distance
between patches sampled from an organ [75], masking patches or volumes within the
image and learning to predict them [76], and shuffling 3D blocks within an image
and letting a network predict their original positions [77]. Recently, state-of-the-art
results were achieved on several biomedical benchmark datasets by networks which
were self-supervised using a sequence of individual proxy tasks [78].

Prior works in self-supervision literature have designed the proxy task largely
uninfluenced by the downstream task in focus. However, since the features that the
network learns are dependent on where it is focusing on during the self-supervision task,
it might be beneficial to bias or guide the proxy task towards areas that are of interest
to the main task. Specifically for image segmentation, these would be the foreground
areas to be segmented in the main task, which we term as the region-of-interests or
ROls.

We experiment with the proxy task of inpainting [79], where the network must
learn to fill-in artificially created gaps in images. In the context of biomedical imaging,
a network that learns to inpaint healthy tissue will learn a different set of semantics
than one which inpaints various kinds of tumours. Thus, if the main task is that of
segmenting tumours, it can be hypothesized that having a network inpaint tumourous
areas as a proxy task will likely teach it semantics attuned to segmenting tumours,
and thereby be more beneficial for the main task than learning general semantics.
In other words, by increasing the frequency of inpainting tumours, we can teach the
network features which are more related to the tumour segmentation task.

Furthermore, in prior work the selection of regions to mask has largely been
uninformed and random. We try to improve upon this situation by selecting regions
which are homogeneous. Masking such regions could force the network to learn
more about the anatomical meaning and relation to other structures of the masked
tissue. For example, masking small regions in a lung CT scan would only require the
model to correctly interpolate the structures (airways, vessels) around the masked
region. In contrast, when a full airway or vessel branch is masked, inpainting requires
understanding of the relation between branches in vessel or airway trees and/or the
relation between airways and arteries, a piece of information that has been found to
improve airway segmentation [80].

The contributions of this work are twofold. Firstly, this paper demonstrates that
guiding the inpainting process with the main class(es) of interest (,i.e., the segmentation
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Figure 4.1: Proposed ROI-guided inpainting. (a) Examples from BraTS
2018 dataset (left to right from top to bottom): original FLAIR
image-slice, ground-truth segmentation map, FLAIR image-slice
with superpizels overlaid, region-of-interest (ROI) influenced
superpizels, examples of synthesized images to be inpainted. (b)
Ezamples from White Matter Hyperintensities 2017 dataset.
Notice that the ground-truth segmentations are much smaller in
size. (c) first a U-net is pre-trained on the inpainting task with
MSE loss, next it is fine-tuned on the main segmentation task
with Dice loss.

foreground, interchangeably used with the term ROI in this paper) during the self-
supervised pre-training of a network improves its performance over using random
regions. Therefore, the proposed method can be thought of as an efficient addition to
self-supervision when manual annotations are available. Secondly, we show that instead
of inpainting regions of regular shapes in an uninformed way, further performance
gain is possible if the masked regions are chosen to be homogeneous. This is done
by constructing supervoxels and using these as candidate regions to be inpainted. In
order to show the efficiency of these proposed changes, we conduct empirical analyses
on two popularly used public datasets for biomedical image segmentation.

4.2 Methods

The proposed method (Figure 4.1) utilizes supervoxelization to create candidate regions,
followed by selecting only those supervoxels which have an overlap with (any of) the
foreground class(es). The selected supervoxels are utilized in the inpainting process,
where we use them as masks to suppress areas in an image to train a network to predict
(or inpaint) them based on their surroundings. Since we control the parameters of
this process, it can be used to create an arbitrarily large amount of synthetic training
images for pre-training.
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4.2.1 Region-of-interest guided inpainting

Inpainting is an effective proxy task for self-supervision, which proceeds by training
a network to reconstruct an image from a masked version of it. In this section, we
explain our proposed masking approach, followed by the description of the network in
Section 4.2.2.

Supervoxelization: While previous works primarily use random grids and cubes
as candidate regions to inpaint, the first step in our proposed approach is to select
regions based on some notion of homogeneity. One way of achieving this is to construct
supervoxels, which may be defined as homogeneous groups of voxels that share some
common characteristics. A particularly efficient algorithm to construct such supervoxels
is SLIC or simple linear iterative clustering [81].

For 3D medical images, SLIC can cluster voxels based on their intensity values,
corresponding to the various modalities, and spatial coordinates of the voxel within
the image. SLIC has two main hyperparameters: one, compactness, controls the
balance between emphasis on intensity values and spatial coordinates (larger values
make square/cubic grids), and the other defines the maximum number of supervoxels.
Examples in the second row of Figure 4.1, subfigure (a) and (b).

In this work, we use SLIC with intensity values corresponding to the two modalities

we used in our experiments, FLAIR and T1 (or contrast enhanced T1), in order
to construct supervoxels. The exact parameter settings for supervoxelization are
described later in Section 4.3.3.
ROI-guided masking for inpainting image synthesis: Once the supervoxel labels
have been created, the next step is to retain only those supervoxels which have an
overlap with the region-of-interest. To achieve this, we first convert the segmentation
map to a binary one by considering all foreground areas to be a class with a label
value as 1 and the background as 0, since there may be multiple regions-of-interest in
a multi-class segmentation setting. Then an elementwise and operation is performed
between the resulting binary segmentation map and the generated supervoxel. For all
the supervoxels that remain, training images for the inpainting task can be synthesized
by masking an area corresponding to such a ROI-guided supervozel, with the original
unmasked image being the target for the network. Some examples of this are in the
second row of Figure 4.1, subfigure (a) and (b).

By constructing a training set for the inpainting task in this fashion, we are
essentially increasing the frequency of inpainting regions which are important to
the main task more than random chance. This is what, we posit, will bring about
improvements in the performance of the network on the main task.

Formally, let Dyypain = {(1;, Si) }i=1..n be the training dataset containing n images
with I; being a 3D multi-modal training image and S; being the segmentation ground-
truth label, containing zero values representing background. If f is a supervoxelization
algorithm (in our case, SLIC), then a ROI-guided supervoxelized image is given by
R; = f(I;) ® S;, where ® signifies elementwise multiplication.

R; contains supervoxel regions having non-zero labels corresponding to foregound
supervoxels. Then, the synthetic dataset for inpainting, D;,,, is constructed as:

S , 0 T
Dinp = {{(IZ@TZJ’I’)}rijER¢7j=1-'mi}- H

i=1l..n




54 Chapter 4. ROI

where r;; is a single supervoxel region in the set R;, which contains a total of m;
supervoxels, and rioj is the corresponding inverted region-mask, containing 0 for voxels
belonging to the region and 1 everywhere else. I; ® r;; is then the masked image
input to the network and I; is the expected output to reconstruct, the target for the
inpainting task. Thus, the maximum cardinality of D;,, can be n x m;.

Examples Dy, are in the last row of Figure 4.1, subfigure (a) and (b).

4.2.2 Training Strategy

Network: For all the experiments, a shallow 3D U-net [82] containing 3 resolution
levels has been used, with a batch-normalization layer after every convolution layer. In
our experiments we find that 3 layers provide sufficient capacity for both the inpainting
and the segmentation task. Since we use two modalities for our experiments, the U-net
has two input channels.

If we were to use an image reconstruction proxy task, a U-net would learn to copy

over the original image because of its skip connections, and would not be useful in
learning features. In our task of inpainting the network never sees the masked regions
and, therefore, cannot memorize it, making the use of a U-net reasonable.
Pre-training: In order to pre-train the network, it is fitted to the D;,, dataset by
minimizing the mean squared error (MSE) between the masked and the original images
using the Adam [83] optimizer. We call this model inpainter U-net.
Fine-tuning: The inpainter U-net is then fine-tuned on the (main) segmentation task
using the original labeled training dataset, D¢yqin, by optimizing the Dice segmentation
overlap objective on the labeled images. If the data is multi-modal, the inpainter
U-net will be trained to produce multi-channel outputs, in which case we would
need to replace the last 3D convolutional layer to have a single-channel output for
segmentation.

More details about the network parameters are provided in section 4.3.3.

4.3 Experimental Settings

4.3.1 Data

For our experiments, we use two public datasets containing 3D MRI scans and
corresponding manual segmentations.

BraT$S 2018 [84]: 210 MRI scans from patients with high-grade glioma are randomly
split three times into 150, 30 and 30 scans for training, validation and testing, re-
spectively, using a 3-fold Monte-carlo cross-validation scheme. To be able to easily
compare our method against baselines, we focus on segmenting the whole tumour and
use two of the four modalities, FLAIR and T1-gd, which have been found to be the
most effective at this task [85].

White Matter Hyperintensities (WMH) 2017 [86]: The total size of the dataset
is 60 FLAIR and T1 scans, coming from 3 different sites, with corresponding manual
segmentations of white matter hyperintensities. We employ a 3-fold Monte-carlo
cross-validation scheme again, splitting the dataset into 40, 10 and 10 for training,
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validation and testing, respectively, and use both of the available modalities for our
experiments.

To study the effect of training set sizes on the proposed approach, experiments
were performed on the full training dataset as well as smaller fractions of it. For
BraTS, we perform experiments on 25%, 50% and 100% of the training data, while for
WMH, which is much smaller in size, we only perform an extra set of experiments with
50% of the data. To keep the comparisons fair, we use the same subset of the training
data in the pre-training procedure as well. Note that, even though self-supervision by
inpainting (with or without supervoxels) could be applied to unlabeled data as well,
in our experiments we only use fully labeled training samples to facilitate comparison.

4.3.2 Baseline Methods

We term the technique proposed in this paper as roi-supervozel to denote the use of
the segmentation map and supervoxelization to guide the inpainting process used for
pre-training. In order to validate its effectiveness, it is tested against the following
baselines: wvanilla-unet: a U-net without any pre-training; restart-unet: a U-net
pre-trained on the main (segmentation) task and fine-tuned on the same task for an
additional set of epochs; noroi-grid: the more traditional inpainting mechanism where
random regular sized cuboids are masked; roi-grid: a similar process as roi-supervoxel,
except for the use of regular cuboids overlapping with the segmentation map, instead
of supervoxel regions, for masking; noroi-supervozel: where random supervoxels are
masked.

4.3.3 Settings

Inpainting Parameters: The inpainting process starts by creating the supervoxel
regions using SLIC'. We fix these the compactness value at 0.15 and choose the
maximum number of supervoxels to be 400, by visual inspection of the nature of the
supervoxels that contain the tumour and the white matter hyperintensities for the
two datasets. For example, between a setting where one supervoxel is part tumour
and part background, versus another where one supervoxel fully represents tumour,
we choose the latter case.

We then use either the supervoxels or simple cuboids (for the baseline methods)
as areas to be masked, and the question arises of how many and how large areas to
choose as masks to construct synthetic images for D;;,;. Too small a volume, and it
might be trivial for a network to inpaint it; too large, and it might not be a feasible
task. For our experiments, we choose masks whose volume is at least 1500 voxels. For
constructing cuboids, we randomly generate cuboids which are at least 12 units in
each dimension (as 12 is more than 1500, but 113 is not). Finally, we ensure that
the size of D;yy, is roughly 10 times that of the Diy4n, by choosing masks which fit
the volume criteria as they are generated, and producing at most 10 synthetic images
on-the-fly for a single real input image.

1We use the implementation in https://scikit-image.org/docs/dev/api/skimage.segmentation.
html?highlight=slic#skimage.segmentation.slic
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Network Parameters: The input size to the 3D U-net is 160 x 216 x 32, such
that each input image is centre-cropped to 160 x 216 (X — Y axes) to tightly fit
the brain region in the scan, while we use the overlapping tile strategy in the Z-axis
as inspired by the original U-net. Each of the 3 resolution levels consists of two 3
X 3 x 3 convolution layers using zero-padding and ReL U activation, except for the
last layer which is linear in the inpainter U-net and sigmoid in the fine-tuned U-net.
The number of feature channels are 16, 32 and 64 at the varying resolution levels.
The feature maps in the upsampling path are concatenated with earlier ones through
skip-connections.

Optimization Parameters: The inpainter U-net is optimized on MSE while fine-
tuning is performed using a Dice objective, both using Adam. The learning rate is
0.0001 and 0.001 for BraTS and WMH datasets, respectively. We used a batch-size
of 4, as permitted by our GPU memory. For pre-training, we use 100 epochs while
for fine-tuning we employ another 150, both without the possibility of early stopping,
saving the best performing model based on the validation loss at every epoch.

To foster open-science, all of the code will be released?.

4.4 Results and Discussion

The segmentation results are shown in Table 4.1. It can be observed that the proposed
method (roi-supervozel) outperforms the basic U-net (vanilla-unet) by a large margin,
and traditional inpainting based pre-training (noroi-grid) by a small, but significant,
margin.

The deductions from the empirical results can be summarized as follows:

Restarts improve U-net performance: It can be observed that for both
datasets, the performance of the restart-unet is better than that of the vanilla-unet.
This is in line with observations in literature [87], where warm restarts have aided
networks to find a more stable local minimum. Based on this observation, we argue
that for any proposed method involving pre-training models, the results should always
be compared to such a restarted model.

Adding ROI information to the inpainting proxy task is helpful: For
both the datasets, the performance of the roi-supervozel method exceeds that of all
other baselines. Importantly, it exceeds the performance of the restart-unet and the
noroi-grid, which is the traditional inpainting procedure, by 3.2% and 5% (relative)
respectively for BraTS, and 4.9% and 2.9% for WMH, when all of the data is used. Also
important to note is that the performance of methods which use the region-of-interest
information to generate the masked areas is always better than those which do not.

Inpainting is more beneficial when the size of the training set is smaller:
The difference in performance between the inpainting-assisted methods and vanilla-
unet is larger when the size of the training dataset is smaller. For example, for BraTs,
the difference between vanilla-unet and roi-supervozel (our proposed approach) is as
large as 41.2% (relative) when the size of the training dataset is 25% of the total. This
trend is also observed between the methods with and without ROI information.

2https://github.com/DeepK /inpainting
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Table 4.1: Dice-scores on BraTS 2018 and WMH 2017. The results
represent the mean and standard deviation (in brackets) of the
Dice coefficient averaged over the three folds. The top results are
depicted in bold. *: indicates that a result is significantly worse
than roi-supervoxel (p < 0.05) in the same column, p-values
calculated by a two-sided t-test.

Fraction Training Data
BraT$S WMH
Method .25 .50 1.0 .50 1.0

vanilla-unet 0.257 (05)%  0.585 (.03)*  0.784 (.02) | 0.576 (.05)* _ 0.745 (0.02)*
restart-unet 0.302 (.05)* _ 0.607 (03 _ 0.793 (.02) | 0.610 (.05)% _ 0.776 (.03)*
noroi-grid 0.311 (.06)*  0.611 (.04)* 0730 (.03)* | 0.632 (04)* _ 0.791 (.03)
roi-grid 0.354 (06)  0.620 (.04) _ 0.795 (.03) | 0.653 (.04)  0.812 (.03)
noroi-supervoxel 0.340 (.06) 0.621 (.04) 0.791 (.02) 0.650 (.04) 0.797 (.03)
roi-supervoxel 0.363 (.06) 0.646 (.04) 0.814 (.03) | 0.671 (.04) 0.814 (.03)

Supervoxels help more when areas to be segmented are larger rather
than finer: ROI-guided inpainting can be postulated to have a better chance of
affecting the downstream performance when the ROI itself is larger. Taking into
account that tumours in BraTS are, on-average, larger than the hyperintensities to be
segmented in the WMH dataset, it can be observed that the performance difference
between the inpainting methods using supervoxels (roi-supervozel and noroi-supervozel)
versus the ones which do not (roi-grid and noroi-grid) is smaller in the case of WMH
than for BraTS. For example, when using all of the training data, the difference
in performance between roi-supervozel and roi-grid is 3% (relative) for BraTS but
only 0.25% for WMH. This could likely be alleviated by problem specific selection of
parameters for SLIC, which we did not explore. This would ensure that the supervoxels
are not too large as compared to the ROI, in which case the effect of ROI would not
be significant.

These results show that our approach is promising. An important point to note
is that a similar approach may be valuable in other forms of local self-supervision
techniques like jigsaw puzzle solving [77], where the shuffling could be guided by the
ROI and the tiles could be picked by ensuring homogeneity constraints.

Although efficient, this method does have some limitations: firstly, its efficiency
depends on the parameters of the supervoxelization process and a poor choice of pa-
rameters could lead to limited performance gain; secondly, although sizeable synthetic
datasets can be created in this process, the reliance on ROI means that we still need
segmentation annotations. Perhaps one way of solving the second problem would be
using co-training [88] to label all of the data and then employ our method using the
entire corpus.

4.5 Conclusion

In summary, this work explores the use of supervoxels and foreground segmentation
labels, termed the region-of-interest (ROI), to guide the proxy task of inpainting for self-
supervision. Together, these two simple changes have been found to add a significant
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boost in the performance of a convolutional neural network for segmentation (as much
as a relative gain of 5% on the BraTS 2018 dataset), in comparison to traditional
methods of inpainting-based self-supervision.
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Abstract

Self-supervised learning is a research direction that focuses on
representation learning from raw data without the need for labor-
consuming annotations, which is the main bottleneck of current
data-driven methods. Self-supervision tasks are often used to
pretrain a neural network with a large amount of unlabeled data
and extract generic features of the dataset. The learned model is
likely to contain useful information which can be transferred to
the downstream main task and improve performance compared to
random parameter initialization. In this paper, we propose a new
self-supervision task called source identification (SI), which is
inspired by the classic blind source separation problem. Synthetic
images are generated by fusing multiple source images and the
network’s task is to reconstruct the original images, given the
fused images. A proper understanding of the image content is
required to successfully solve the task. We validate our method on
two medical image segmentation tasks: brain tumor segmentation
and white matter hyperintensities segmentation. The results show
that the proposed SI task outperforms traditional self-supervision
tasks for dense predictions including inpainting, pizel shuffling,
intensity shift, and super-resolution. Among variations of the SI
task fusing images of different types, fusing images from different
patients performs best.

Based on: S. Chen”, S. Kayal*, and M. de Bruijne, “Source identification: A self-supervision
task for dense prediction,” Submitted
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5.1 Introduction

The success of deep learning, and in particular convolutional neural networks (CNNs),
may be partially attributed to the exponential increase in the amount of available
annotated data. However, in highly specialized domains such as medical image
segmentation, it is much harder to acquire precise and dense annotations. Self-
supervision is one research direction that enables the network to learn from images
themselves without requiring labor-consuming annotations, where the learned features
might be useful for the downstream tasks, such as classification and segmentation.

In general, self-supervised learning refers to a collection of approaches that deliber-
ately withhold information in the original data and task a neural network to predict
the missing information from the existing incomplete information. In doing so, the
network is encouraged to learn general-purpose features which have been found to
transfer well to downstream tasks [89]. The self-supervision pipeline often employs
a pre-train and fine-tune strategy. The first step is to pre-train a CNN on a large
volume of unannotated samples using a manually designed proxy task, in which the
CNN explores and learns generic features of the data itself. The learned features may
contain meaningful information of the image data, e.g., intensity distribution, spatial
coherence, and anatomical knowledge in medical imaging, etc., depending on how the
proxy task is designed. The second step is to fine-tune this pre-trained network on
the target (main) downstream task that we are more interested in, which usually has
a small set of annotated data in practice. We expect that by exploiting unannotated
data and restarting the training from a set of rich pre-trained features, a more robust
model on the main task can be trained.

In this paper, we propose a novel self-supervision task called Source Identification
(ST), which is inspired by the classic blind source separation (BSS) problem. The
proposed task is able to train a dense prediction network in a self-supervised manner
using unlabeled data.

Contributions:

1. We propose a novel self-supervision task, SI, wherein a neural network is
(pre-)trained to identify one image (source) from mixtures of images. This way, both
encoder and decoder are trained and the network is encouraged to learn not only local
features but also global semantic features to identify and separate the target source
signal. To the best of our knowledge, this is the first BSS-like self-supervised method
for deep neural networks.

2. We investigate the task ambiguity in the source identification problem and
show in which settings it can be solved by a neural network. The proposed SI method
provides a straightforward way to avoid ambiguity.

3. We conduct extensive experiments on public datasets for two medical image seg-
mentation applications: brain tumor segmentation and white matter hyperintensities
segmentation, both from brain MRI. We compare with various existing self-supervision
tasks. The results show that the proposed SI method outperforms self-supervision
baselines including inpainting, pixel shuffling, intensity shift, and super-resolution in
segmentation accuracy in both applications.
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5.2 Related Work

5.2.1 Self-Supervision Tasks

Self-supervision is an active research direction in machine learning, permeating from
computer vision to natural language processing [90, 91, 92]. In imaging, early self-
supervision tasks could be grouped into two main categories: reconstruction based and
context prediction based. For example, inpainting is a popular reconstruction based
self-supervision task [79] where areas in an image are hidden and then reconstructed
using a CNN. In a similar fashion, recolorization can be done by removing color of the
image and training a CNN to recover it [93], and super-resolution by recovering the
original resolution of an image from a downsampled image [94]. On the other hand,
context prediction based tasks make the network learn relationships between parts
of an image, such as choosing arbitary tiles in an image and predicting their relative
spatial locations [95]. An improved version of this method can be seen in [96], where
tiles were chosen, shuffled and the network was taught to identify the shuffle pattern,
thereby forcing it to learn how the tiles make up the original image. Self-supervision
has also been applied in medical imaging [97], including inpainting [98, 99] and puzzle
solving by treating a 3D image as a shuffled Rubik’s cube [77].

All the above self-supervision tasks are designed to learn useful features from a
single input image by recovering information withhold from the image itself. However,
the rich information that discriminates one image from another is not explicitly
considered. The proposed source identification task in this paper aims to learn not
only features that can identify each image but also features that can distinguish one
image from different images within the dataset.

The proposed source identification task shares some similarities with the contem-
porary contrastive learning method [100], which is also gaining popularity in medical
imaging [101, 102, 103, 104, 105]. In contrastive learning, the neural network is tasked
with recognizing the similarity or dissimilarity of a pair of images input to it, which
can be categorized as a context prediction-based rather than reconstruction-based
method. As an example, the state-of-art method known as SimCLR [106] works by
drawing random samples from the original dataset, applying two augmentations (both
sampled from the same family of augmentations) on the samples to create two sets
of views. Then these views are passed through a CNN and a fully connected neural
network layer to generate latent representations. Finally, these representations are
used to train the network, such that the augmented views from the same class are
pushed together and the augmented views from different classes are repelled using
a contrastive loss. This may encourage the latent features to be more compact and
separated, which may provide additional regularization for optimizing the network.
However, most contrastive learning approaches are aimed at the downstream task
of classification, pretraining only the encoder portion of the network. Thus, in this
paper, we focus on the comparison between reconstruction-based methods that are
more relevant to the proposed source identification task, as they pre-train the entire
network and focus on dense prediction downstream tasks.



5.2. Related Work 65

5.2.2 Blind Source Separation

Blind source separation (BSS), also known as signal separation, is the classic problem of
identifying a set of source signals from an observed mixed signal. One example of BSS
is the cocktail party problem, where a number of people are talking simultaneously in
a noisy environment (a cocktail party) and a listener is trying to identify and separate
a certain individual source of voice from the discussion. The human brain can handle
this sort of auditory source separation problem very well, but it is a non-trivial problem
in digital signal processing. Traditional methods such as independent component
analysis (ICA) variants are proposed to tackle the BSS problem [25, 107, 108, 109,
110]. In the deep learning era, convolutional neural networks have been used to solve
BSS problems in signal processing applications such as speech recognition [111, 112]
and target instrument separation [113]. These works typically employ an encoder
network to learn the embeddings of the observed signals and then use traditional
techniques like k-means or spectral clustering to cluster the embeddings according
to the number of sources. The clustering can also be done by a deep neural network
[114]. This paper introduces a BSS-like self-supervised task on image data, in which a
neural network is trained that aims to identify and restore the source image content
in mixtures with multiple images.

5.2.3 Relation to Denoising

A related task to the proposed source identification is denoising [115] which is used to
identify and remove undesired imaging artifacts. In denoising, the image and the noise
are regarded as two different sources and a model is trained to separate them. The
statistical properties of the signal and the noise are very different, unlike in our case,
where a mixed image is constructed from images belonging to the same dataset. A
denoising network is likely to learn more local features to distinguish noise from clean
images rather than high-level semantic features of the image content. Different from
the denoising task, the proposed source identification approach tries to separate one
image from a fused image with other images rather than with noise. This is a more
difficult task that is more likely to capture useful semantic features from the dataset.

5.2.4 Relation to Mixup

Mixup was first proposed as a data augmentation strategy while training CNNs
in a general setting [116], and has been validated to work well in medical image
segmentation as well [117]. Mixup, in a segmentation setting, works by randomly
selecting an image pair from the training data and generating a weighted combination
of the input images as well as the target segmentation maps. These generated images
are then fed to a CNN during training, in addition to any other data augmentation
strategies that may be suitable.

The similarity of our work with Mixup is in the way our mixed images are made,
which, in our case, the network learns to identify sources from. However, our approach
is a self-supervision strategy, with the aim of teaching the network useful features
during pre-training, whereas Mixup is a data augmentation method. Nevertheless,
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in order to compare the two, we also include a set of experiments with Mixup as an
additional data augmentation strategy.

5.3 Methods

In Section 5.3.1, we provide a general definition of source identification. In Section
5.3.2, we discuss whether and when the source identification task is solvable for a
neural network. In Section 5.3.3, we describe how source identification can be used as
a proxy task for a self-supervised network. Lastly, we describe four popular competing
baseline self-supervision tasks that we compare to in this paper in Section 5.3.4.

5.3.1 Definition of The Source Identification Problem

Consider domain D, in which each source signal can be distinguished from others, e.g.,
each signal is an image from a different patient in a medical imaging dataset. Multiple
source signals s(t) = (s1(t)...s,(t)) sampled from D are linearly ‘mixed’ to produce m
mixtures x(t) = (1(t)...xm,(t)) using an m x n matrix W:

x(t) = Ws(t) 5.1

The blind source separation (BSS) problem is to reconstruct individual signals
that constitute the mixtures without knowing the transformation W and the original
signals s. For simplicity, we refer to a collection of source signals corresponding to
an SI problem as s and mixtures as x, and denote individual source signals as s; and
individual mixtures as z; in the rest of the paper.

As an example, given two different randomly sampled signals s; and so, a signal
mixture x can be created by a linear combination and used as an input sample to the
model f(-):

z=ws; + (1 —w)sy, we(0,1) 5.2

where the weight w and the original source signals s; and s, are unknown to the
model f(-). We can train the model to solve SI problems by minimizing the loss £(6):
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where M is the total number of generated mixtures x(9) and the corresponding ground
truth set (s; @) ,i € 1..N). M can be infinite when W is sampled from a continuous
dlstrlbutlon N is the number of source signals we wish the network to reconstruct
within the original source set s); and f;(-) is the corresponding output channel of
model f(-) for reconstructing each source signal s;. The function £(-,-) is composed
of the L1 and L, norm of the difference between the original source signal s; and
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the corresponding model output f;(-). In practice, we may not be interested in
reconstructing all sources but some of them, which allows N to be smaller than n.

Note that the learning problem is ill-posed, since any possible permutation of s;
would be a correct solution of the problem. In the next section, we show how the
ambiguous order of s would influence the solvability of the task.

5.3.2 Is Source Identification Solvable?

The source identification problem as defined in the previous section is ill-posed due to
the order ambiguity of sources s;. That means, if sources are sampled from the same
distribution, we cannot separate them with the learning objective in Equation 5.3.

This is illustrated in the following small experiment. We are given a medical
imaging dataset D and two randomly sampled source signals (images) s; and sy for
every training iteration. Here we set s; as the target source signals and s; is expected
to be reconstructed in the output channel fi(-) of a neural network f(-). Note that
s1 and sy are exchangeable as ground truth for f;(-) which introduces ambiguity and
would make the reconstruction unsolvable. One way to make the reconstruction task
less ambiguous would be to sample signals s, from a different domain than sq, for
instance by adding noise to s as follows:

s =(1—N)sa+ Asy, A€0,1] 5.4

where syg ~ N (0,1) for the kth voxel in sy. When A = 0, s = s5, and the generated
mixture x becomes the same as that in Equation 5.2 in the previous section; when
A =1, s} is purely a Gaussian noise which belongs to an obviously different domain
compared to the imaging domain in dataset D;. Therefore, the new mixture & can be
created and the loss is shown as follows (with, m = 1 and n = 2 for generating each
mixture Z, and reconstructing the first source s; (N = 1) in Equation 5.3):

T=ws; + (1 —w)sy, we(0,1)

T aD DI(CUNACED) &
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where fi(-) is the output channel of f(-).

The results of a neural network (we use 2D U-net here) optimized to minimize the
reconstruction loss of s1, s5 with various value of A are visualized in Figure 5.1. It can
be observed that when A is small (0.1), the output is an average of the two images
s1 and s2 and the model failed to separate s; from their mix £. When A\ gradually
increases (to 0.9), s; becomes clearer and better separated.

As this experiment illustrates, the network can not separate sources when they are
sampled from the same distribution and mixtures are made arbitrarily, without any
hint on the order of sources. To make the order of s unambiguous, one simple way is
to sample sources s from different domains, for instance an MRI scan and Gaussian
noise. However, the case A = 1 is similar to a self-supervised denoising task where the

model may focus on learning the differences between image domain and noise domain.

These learned features may contain trivial local patterns and may be less likely to
provide useful semantic features for downstream tasks like segmentation. We compare
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Figure 5.1: Qualitative results of recovering s; with various A\. We
can see that the model is able to separate and reconstruct s1 from
T gradually when X\ increases from 0.1 to 0.9. The dataset in
this experiment contains 30 brain MRI scans from 30 different
patients. Best viewed with zoom.

this denoising ST variant (DSI) in the experiments and the results are shown in Section
5.5.

5.3.3 Proposed Source Identification Task

In this paper, we propose a simple variation of the source identification task that
solves the issue of ambiguity of the source order. In this task, we sample W so that
one of the sources s; is present in every input mixture and make s; the only target
output. This assumes the number of input mixtures m is set to two or larger. In the
case of m = 2, n = 3, and N = 1, the proposed task would be to identify and separate
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Figure 5.2: The proposed source identification task. Three source
images s1, So, and s3 are used for this illustration. Cross-
patients SI (CSI) and within-patient SI (WSI) are two different
strategies to extract source signals, which focus on learning
features between different patients and within one individual
patient respectively. 2 X 2 downsampling and upsampling are
applied between different resolutions in the UNet. Best viewed
in color with zoom.

the target signal, e.g., s1, from two mixtures x; and zs:

r1 = w181 + (]. — w1)82, wy € (0, 1)

To = Wo81 + (1 — w2)53, Wy € (0, 1)
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note that the two different orders [z, z5] and [z2,21] in x are equivalent since x; and
o are statistically exchangeable due to the random sampling and both orders share
the same ground truth s;. Each mixture z; and x5 in a training sample uses different
values of w; and wy that are sampled independently from a uniform distribution
between 0 and 1. It should be noted that even though all source signals s1, s2, and
s3 are sampled from the same domain Dy, this task is solvable for a neural network
f () since the target source signal s; is specific and invariant to the order of either
mixtures x or sources s in Equation 5.6. The workflow of the proposed task is shown
in Figure 6.2.

It is worth mentioning that although it is trivial to solve the linear equations in
Equation 5.6 and obtain s1, $o, and s3 in math, it is non-trivial for the network to solve
when formulated as a learning problem. This makes the proposed SI variant an efficient
way to learn useful features from a dataset, without labor-consuming annotations, and
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avoid the ambiguity problem at the same time. Compared to introducing a different
domain to solve the ambiguity problem and learning differences between different
domains in Section 5.3.2, the proposed method focuses on the same domain which is
more likely to learn useful features for the downstream tasks.

5.3.4 Baseline Self-supervision Tasks

We compare the proposed method to four widely used self-supervision tasks for dense
prediction [97, 118]. The first three tasks focus on the reconstruction and context-based
prediction in an image, while the last task focuses on the intensity correction.

Inpainting

Image inpainting is the process of reconstructing the missing or damaged contents of an
image, historically employed for restoring paintings and photographs [119]. Inpainting,
as a self-supervision task, proceeds by intentionally masking selected areas within an
image and a network must learn to recover the missing content.

In this paper, we implement inpainting self-supervision by overlaying an image I
with a regular grid G of a fixed size and randomly masking selected grid cells. Formally,
a selected grid cell of pixels, indicated as g(I), where g € G, is transformed as:

I) ifBHv)=1
() = g(I) i (W). ; 5
0 otherwise.

where B(v) follows a Bernoulli distribution with v probability of being 1. v is a
hyperparameter ranged from 0 to 1. That means in any minibatch, a network only
sees approximately v random contents of the input images and tries to predict the
rest of them. By masking grids in such a non-deterministic manner, we avoid cases
where the network may focus on easy reconstructions and learning trivial features.

The resultant synthetic image I’ is made up of all the selected grids, ¢’(I), thereby
retaining 1 — « fraction of the original image.

Local Pixel Shuffling

Local pixel shuffling has been known to aid a network in learning about the local
information within an image, without compromising the global structures [97]. This
task is similar to inpainting but with additional information on the distribution of
intensities to inpaint. In this task, synthetic images are generated by randomly
shuffling pixels within the selected grid cell, as shown in the following equation:

iy JPeDQ i B(y) =1,
g = {g(I) otherwise. o8

where 7 is a hyperparameter ranged from 0 to 1 similar to that in inpainting; P and
() are permutation matrices. A permutation matrix is a binary square matrix which
can permute the rows of an arbitrary matrix when being pre-multiplied to it, and
permute the columns when being post-multiplied. Thus, in the first case of Equation
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Figure 5.3: Visualization of the network solving the SI task while
being trained on the BraTS dataset. T1 modality is used
for visualization. The subfigure highlighted by thick boundary is
the network output at each epoch. Epochs increase from left to
right. Different training samples and the same validation sample
from five intermediate epochs are visualized, to remain faithful
to the fact that data augmentation is applied during training
but not during validation. Cross-patients SI setting with the
involved source number three is applied for visualization. The
details of the source setting can be seen in Section 5.4.2. We
can see that the network is able to identify and reconstruct the
target source signal A from the input miztures A+ B and A+C
gradually during training.

5.8, a new grid cell of pixels is generated by shuffling both the rows and columns of
the original grid.

Super-resolution

Super-resolution can be implemented as a self-supervision task [120], wherein a network
is trained to deblur the low-resolution image. To create the low-resolution images from
high-resolution ones for training, we blur the high-resolution images by transforming
every grid cell by replacing all its values with that in the center of the grid:

g'(I) = g(I)w/2,1n/2) 5.9
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where w and h are the width and height of the grid cell g(I). In the training process,
given a transformed image as input, the network learns to predict the high resolution
version which is the original image before transformation.

Non-linear Intensity Shift

The intensity shift mechanism is proposed by Zhou et al. [97], where each pixel value
in the image is translated monotonically using a Bezier curve (denoted as function B)
[121]. In medical imaging, since the intensity values in a image usually correspond to
the underlying anatomical details, this task can be used to encourage a network to
learn useful anatomical features.

Given a voxel value v which is normalized between [0, 1], end-points pg, p3, and
two control-points p1, p2, the transformed value of the pixel is given by:

v = B(v) = (1 = v*)po + 3z(1 — v*)py
+3v2(1 —v)p2 + v3ps

where points from pg to p3 are sampled independently at every epoch from a continuous
uniform distribution between 0 to 1.

5.10

5.4 Experiments

5.4.1 Datasets

We apply our method on two medical imaging segmentation problems: brain tumor
segmentation and white matter hyperintensities segmentation. Both datasets are brain
MR images. All the trained self-supervised models in Section 5.3.3 and 5.3.4 are used
as pre-trained models for the main segmentation task.

BraTS Dataset

Multimodal Brain Tumor Segmentation Challenge 2018 [12, 122, 123] focuses on
evaluating methods for the segmentation of brain tumors in multimodal magnetic
resonance imaging (MRI) scans. There are in total 210 MR images acquired from
different patients. Each MR image contains four modalities: pre-contrast T1-weighted,
post-contrast T1-weighted, T2-weighted, and FLAIR. Three brain tumor classes are
provided as manual annotations: 1) the necrotic and the non-enhancing tumor core
(NCR&NET); 2) the peritumoral edema (ED); and 3) the enhancing tumor (ET).
Since the evaluation classes of the challenge are the combined classes: whole tumor
(NCR&NETHEDHET), tumor core (NCR&NETHET), and enhancing tumor (ET),
we use these combined classes for the actual training. We randomly split the dataset
in 1) 100 subjects for training the self-supervision tasks and the main segmentation
task; 2) 10 subjects for validation; and 3) 100 subjects for testing. For each subject,
we cropped/padded MR images into a constant size of 200 x 200 x Z (Z is the number
of axial slices of the image) where the main brain tissues are preserved. Following
the preprocessing of nnUNet [124], Gaussian normalization (subtracting mean and
dividing by standard deviation) is applied on the brain foreground for each modality
for each image individually.
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Figure 5.4: Visual examples of baseline self-supervised tasks. The
results with best validation performance are used for visualiza-
tion. Best viewed with zoom.

WMH Dataset

The White Matter Hyperintensities (WMH) Segmentation Challenge [34] evaluates
methods for the automatic segmentation of WMH in brain MR images. The provided
MR images contain T1-weighted and FLAIR MR sequences and are acquired from
60 patients, where each group of 20 patients are from a different hospital. The
manual segmentation of WMH lesions are also provided for each image. We randomly
split the dataset in 1) 30 subjects for training the self-supervision tasks and the main
segmentation task; 2) 10 subjects for validation; and 3) 20 subjects for testing. For each
subject, we centre-cropped/padded MR images into a constant size of 200 x 200 x Z,
where Z is the number of axial slices in the 3D image. The cropping/padding of was
necessary as images from the different hospitals have slightly different sizes and it
was convenient to have images of a constant size to have all of them processed in the
same way by the network. Additionally, the size of 200 x 200 covers the main brain
tissue, which is what the network needs to consume for learning. We use Gaussian
normalization to normalize the intensities inside the brain foreground similar to the
BraTS dataset.

5.4.2 Settings for The Proposed SI Task

There are two hyperparameters to tune in the proposed task. First is the transformation
matrix W in every mixture. In Section 5.3.3, we considered the example where W
defines linear combinations of three signals s1, s2, and s3. More complicated W can
be constructed under the condition when the number of mixtures m > 2, for example,
when m =2,n=25:

T1 = w181 + weSg + w3s3, wi +ws+wz=1 511
Ty = wys1 + W5S4 + W5, Wq + w5 +we = 1

where all weights are randomly sampled between 0 and 1 under the conditions.
The second hyperparameter is the source assignment strategy. In this paper, we
consider three types of source assignment strategies:
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Cross-patients SI

To make the network learn to identify the target source image and discriminate it
from the other source images, n random patients are used to extract signals (2D
patch per patient) respectively in every training sample. We refer to this ST variant as
Cross-patients SI (CSI).

Within-patient SI

To make the network focus on each particular source in the dataset, we use the same
patient image to extract all n signals (all 2D patches from the same patient). Since
information from only 1 patient is used in each mixture, the network is unlikely to
learn the cross-sources information among different patients. We refer to this SI variant
as Within-patient SI (WSI).

Denoising SI

To investigate the difference between the proposed SI task and the traditional denoising
task, we replace sources sy and s3 in CSI with random Gaussian noise with zero mean
and unit variance. This task is similar to a traditional denoising task and would
encourage the network to learn representative features that distinguish differently
distributed sources like image and noise explicitly. We refer to this SI variant as
Denoising SI (DSI).

All experiments in Section 5.4 apply the linear combination of constituting three
signals in two mixtures as showed in Equation 5.11, where in total n = 5 signals are
used to generate a training sample. This setting is tuned on the validation set for
both datasets. To avoid the network from learning trivial features, all combinations
without any overlapping between the brain regions are excluded as training samples.

5.4.3 Settings for The Baseline Tasks

For inpainting, the grid size is tuned from ranging [2, 2] to [64,64] and the masking
percentage ranging from 0% to 100%; for local pixel shuffling and super-resolution, the
grid size has the same tuning range as that in inpainting. There is no hyperparameter
to tune for non-linear intensity shift. All hyperparameters are tuned on the validation
set on the main task performance.

5.4.4 Network Architecture

We use the same network backbone for both the self-supervision proxy tasks and
the segmentation main task. It is based on 2D UNet [11] and details of the network
are shown in Figure 6.2. The network has two input-output layer settings: 1) for
training the proposed SI task, the input layer has T x 2 channels where T is the
number of imaging modalities for the two input mixtures. The output layer has T
channels for reconstructing all modalities of s1; 2) for segmentation, the input layer is
replaced with a new layer with 7" channels for the input image = and the output layer
is replaced with a layer with C channels for the segmentation predictions where C' is
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Table 5.1: Results of fully-supervised setting. FEach erperiment is re-
peated 3 times with different random data split. For BraTS, the
same 100 images are used for training the main segmentation
task (with labels) and the self-supervision proxy tasks (without
labels); for WMH, the same 30 images used for both labeled and
unlabeled data. Mean Dice score (standard deviation) over all
experiment testing data is reported for each class individually,
where WT=whole tumor, TC=tumor core, ET=enhancing tu-
mor, All=WT+TC+ET (only for BraTS), WMH=white matter
hyperintensities. CSI: cross-patients source identification with
different image sources. WSI: within-patient source identification
with the same image source. DSI: denoising source identification.
*: significantly better than the CNN baseline (p < 0.05). o: sig-
nificantly worse than the CNN baseline (p < 0.05). P-values are
calculated by two-sided paired t-test in each class. Boldface: best
and not significantly different from the best results.

BraT$S
Methods/Class WT TC ET All WMH
CNN 0.866(0.11 0.835(0.17) 0.785(0.16) 0.846(0.11) 0.775(0.11
CNN-restart 0.868(0.11 0.825(0.19)¢  0.786(0.16) 0.848(0.11) 0.781(0.11
Inpainting 0.867(0.11 0.838(0.17)  0.788(0.16) 0.850(0.11) 0.782(0.13
)

Super-resolve  0.852(0.13)c  0.838(0.18)  0.786(0.17)  0.842(0.13)  0.776(0.12
DSI 0.868(0.09 0.821(0.17)0  0.783(0.16)  0.850(0.10)  0.771(0.12
WSI 0.869(0.09 0.817(0.19)0  0.781(0.16)  0.851(0.10)  0.769(0.12
CSI(ours) 0.878(0.09)* 0.837(0.17) 0.796(0.15)* 0.861(0.09)* 0.793(0.11)*

(0.11) ( ( (0.11)

(0.11) ( ( (0.11)

(0.11) ( ( (0.13)

Pixel Shuffle ~ 0.859(0.13)  0.829(0.20)0  0.777(0.18)o  0.844(0.13 0.777(0.12)
Intensity 0.865(0.12)  0.838(0.18) 0.787(0.16)  0.846(0.12)  0.775(0.13)
(0.13) ( ( (0.12)

(0.09) ( ( (0.12)

) )

the number of classes. All the intermediate layers are shared between the pretrained
proxy task and the main task. When no pretrained network is used, the weights of all
convolutional layers are initialized by Kaiming initialization [125].

The choice of the network parameters are influenced by the state-of-the-art nnUNet
[124] model, described in a forthcoming Section 5.4.5.

5.4.5 Training Strategy and Data Augmentation

We conduct main experiments in fully-supervised setting and semi-supervised setting
for both datasets.

Fully-supervised Setting

There are two steps to train the network in a self-supervised manner. First, we need
to pre-train the network with the corresponding proxy task, as described in Sections
5.3.3 and 5.3.4. The proxy task uses the same dataset as the main task; e.g., for the
BraTS dataset, we pre-train and fine-tune the network on same 100 (labeled) images
from the training set. A batchsize of 1 is used for the proxy task for all experiments
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in this paper, realized via tuning from 1 to 4, based on the validation set. As for the
main task, we use a batchsize of 8 and 4 for training the main task in BraT§S and
WMH, respectively, obtained by tuning between 1 to 16 based on the validation set.

Semi-supervised Setting

In the fully supervised setting, we utilize the entire training dataset to pre-train and
fine-tune the network. Since the strength of self-supervision comes from a network
needing a much smaller volume of data to be fine-tuned, we also conduct experiments
to test this hypothesis, which we call the semi-supervised setting. In this setting, the
network is pre-trained on the entire training dataset but fine-tuned on only a fraction
of the training data. 25 of 100 labeled images were used from the training set to
fine-tune the pre-trained model for BraT§S; for WMH we used only 5 images. The same
batchsize is used for both proxy task and main task as was used in fully-supervised
setting.

Data Augmentation and Optimization Parameters

Random rotation, scaling, flipping, and elastic deformation are applied to the original
2D images as data augmentation for all experiments. Following the nnUNet paper, we
use SGD optimizer and "poly’ learning rate policy (1 — (epoch/epoch,,,,)%?), where
epoch,, ., = 1000 and for the BraTS dataset and 10000 for WMH, with the initial
learning rate 1 x 1072, momentum 0.99, and weight decay 3 x 10~° for both the proxy
task and the main task. Early stopping is applied when there is no improvement
for 50 epochs to avoid overfitting to the validation set. We also tried restarting the
optimization for the main task with initial parameters, which we call CNN-restart for
both datasets for fair comparison.

5.5 Results

5.5.1 Segmentation Results

Table 5.1 shows the segmentation results for the two datasets in the fully-supervised
setting. The proposed Cross-patients SI method achieves the best average perfor-
mance (except TC: the tumor core in BraTS) in both datasets and shows significant
improvement over the other baselines and SI variants in four out of five classes (WT:
whole tumor, ET: enhancing tumor, All: WT+TC+ET, and WMH). The All class
calculates the Dice coefficient of WT+TCH+ET together (by concatenating the three
classes but not summing up them into one class) and is the most important one in
BraTs.

Among the three different settings of source identification task (CSI, WSI, and
DSI), CSI achieves the best results with a Dice score of 0.861 (All) and 0.793 in BraT$S
and WMH datasets separately, which is significantly better than WSI and DSI. WSI
and DSI have similar performance in both datasets and are not significantly different
from each other. This suggests the importance of the cross-source setting. One reason
could be that compared to WSI and DSI, CSI is using the data more efficiently where
the network sees more source images per epoch. It should also be noted that the
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pixel shuffle task shows worse performance than the CNN baseline in four out of five
classes (significant in TC and ET classes). In the tumor core (TC) segmentation,
four methods (inpainting, intensity shift, super-resolve, and CSI) show comparable
improvements to the CNN baseline (not significant to each other), which indicates the
efficiency of different self-supervised methods may vary through different classes and
the tumor core segmentation is more difficult to improve compared to other classes.
Nevertheless, overall, the proposed CSI can provide a better starting point for the
segmentation task than most of the self-supervision baseline tasks.

5.5.2 Semi-supervised Results

We conduct experiments on both datasets in semi-supervised settings in order to
investigate how much the proposed self-supervision task would help when only a
smaller amount of labeled data is available to train the proxy task. The results are
shown in Table 5.2. Similar trends can be observed from these semi-supervised results
compared to those in fully-supervised results. Similar to Table 5.1, the proposed CSI
method gets the largest improvements in BraTS (except the tumor core) and WMH.
The improvements are significant compared to all other methods in whole tumor and
All in BraTS. In WMH, both the proposed CSI method and inpainting are significantly
better than the other methods. It should also be noted that when only few labeled
images are available, more self-supervision methods show significant improvements
compared to CNN baseline (12x results in Table 5.2 compared to 4x results in Table
5.1). This shows the general advantages of feature learning in self-supervision methods
compared to CNN baseline.

The SI variants WSI and DSI still show close performance to each other in most
classes and perform significantly worse than CSI. Similar to the fully-supervised setting,
the pixel shuffle task does not show improvements compared to the CNN baseline in
most classes. It should be noted that the CSI performance in semi-supervised setting
(0.837 in BraTS and 0.783 in WMH) is very comparable to the fully-supervised CNN
baseline result (0.846 in BraTS and 0.775 in WMH), which required 4 times more
training images. Inpainting and super-resolve show better performance than CNN
baseline, but still worse than CSI (significant in BraTS). The proposed method shows
larger performance improvements in WMH dataset where far fewer labeled data are
used compared to BraTS dataset (5 labeled vs. 25 labeled and with 4.4% vs. 3.1% Dice
improvements to the CNN baseline). This shows in a practical situation in medical
imaging where segmentation labels are scarce, a well-designed self-supervision task
can still preserve considerable performance given enough unlabeled data.

5.5.3 Influence of The Number of Sources

We conduct experiments to investigate the influence of the number of images used
in the proposed SI task. n = 3,5,7 sources (e.g. in Equation 5.11, n = 5) are
tested to generate m = 2 fused images as input to the network. The experiments are
independent runs on BraTS and WMH dataset in fully-supervised setting. Note that
the hyperparameter n is tuned on the validation set for all experiments. The results
are shown in Figure 5.5. We can see that the n = 5 sources setting achieves the best
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Table 5.2: Results of semi-supervised setting. The best results are
marked in bold. Fach experiment is repeated 3 times with dif-
ferent random data split. For BraTS, all 100 training images
are used to train the unlabeled self-supervised task; fine-tuning
is performed on 25 of the training images using the segmenta-
tion labels and the 25 labeled images are contained in the 100
unlabeled images. For WMH, 5 images are used for labeled data
and 30 images are used for unlabeled data and the 5 labeled im-
ages are contained in the 30 unlabeled images. Mean Dice score
(standard deviation) over all experiment testing data is reported
for each class individually, where WT=whole tumor, TC=tumor
core, ET=enhancing tumor, All=WT+TC+ET (only for BraTS),
WMH=uwhite matter hyperintensities. *: significantly better than
the CNN baseline (p < 0.05). o: significantly worse than the
CNN baseline (p < 0.05). P-values are calculated by two-sided
paired t-test in each class. Boldface: best and not significantly
different from the best results.

BraT$S
Methods/Class WT TC ET All WMH
CNN 0.823(0.11)  0.780(0.21)  0.743(0.19)  0.816(0.12)  0.739(0.16)
CNN-restart  0.821(0.13)  0.775(0.22)  0.739(0.19)  0.812(0.13)  0.731(0.16)o
Inpainting 0.842(0.15)  0.817(0.20)* 0.754(0.18)*  0.827(0.15)  0.761(0.12)*
Pixel Shuffle  0.823(0.17)  0.782(0.23)  0.723(0.21)0  0.806(0.17)  0.744(0.15)
Intensity 0.832(0.16)  0.804(0.21)*  0.746(0.19)  0.817(0.16)  0.740(0.15)
Super-resolve 0.848(0.15) 0.819(0.20)* 0.760(0.19)* 0.829(0.14) 0.756(0.13)*
DSI 0.823(0.16)0  0.776(0.22)  0.747(0.20)  0.804(0.16)0  0.755(0.13)
W1 0.836(0.13)  0.779(0.20)  0.749(0.18)  0.814(0.13)  0.754(0.12)

CSI(ours) 0.855(0.12)* 0.811(0.18)* 0.764(0.17)* 0.837(0.12)* 0.783(0.11)*

performance in the main segmentation task for CSI and WSI while for DSI the effect
is much smaller. Too few sources may make it too easy to reconstruct the target signal
which may result in trivial features, while too many sources may make it too difficult
to recognize the target, resulting in arbitrary features.

5.5.4 Comparison to Mixup

Table 5.3 shows the results to compare our proposed approach to Mixup. Here,
the Cross-patients Source Identification (CSI) based self-supervised pre-training is
compared to the baseline CNN without any pre-training, with and without Mixup as
an additional data augmentation strategy. Results show that Mixup improves both the
baseline and our proposed approach, with a higher relative improvement for detecting
tumours in the BraTS dataset.
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Table 5.3: Comparison of CSI to Mixup. The best results are marked
in bold. Fach experiment is repeated 3 times with random data
splits, and the mean dice scores are reported.

Methods/Class BraTS WT ~WMH
CNN 0.866 0.774
CNN-+mixup 0.875 0.794
CSI 0.878 0.801
CSI4+mixup 0.886 0.803
Allfor BraTS WMH
@®cCcsl @ wsl DSl @®@csi @ wsi DSI
0.865 0.82
o | 0.860 /\
g 0.81
§ 0.855 K
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Figure 5.5: Influence of the number of fused sources. The results are
obtained by an independent run on BraTS and WMH dataset
using the same data in a random data split with fully-supervised
setting, similar to Table 5.1. The number of sources 5 is used
for experiments in Table 5.1 and 5.2. Best viewed in color.

5.6 Discussion

In this paper, we propose a new self-supervision task named source identification
(SI) which is inspired by the blind source separation problem, and we investigate
the task ambiguity in the SI problem for neural networks. Unlike most previous
reconstruction-based self-supervision tasks that focus on restoring image contents from
only one source image, the proposed task enables the network to see multiple images
from mixtures and learn to separate the source image from the others and reconstruct
it. The experiments show that the proposed method outperforms baseline methods in
both datasets including the CNN baseline, restart-CNN with the initial learning rate,
and commonly used self-supervised methods inpainting, pixel shuffle, intensity shift,
super-resolution, and denoising. The proposed method shows the largest improvements
in the semi-supervised setting when very few labeled data and many unlabeled data
are available, which is a common scenario in medical imaging applications.

5.6.1 Comparison to Other Self-supervision Methods

One main difference between the proposed SI task and existing reconstruction-based
self-supervision tasks is that SI learns features from not only the remaining part
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of the same distorted image but also from other images of the same domain. By
distinguishing each image from others, potentially useful discriminative features can
be learned while reconstructing the target image. These features may better capture
general domain knowledge, e.g. anatomy and pathology knowledge, by seeing and
comparing different patients’ images at the same time. A proper understanding of
anatomy and pathology across different individuals is required to successfully solve a
single image identification and reconstruction. Features learned by SI may therefore
provide a better starting point for optimization of the downstream task than the
features learned by previous self-supervision tasks such as inpainting, pixel shuffling,
intensity shift, super-resolution, and denoising.

In this paper, we focus on the comparison between reconstruction-based self-
supervised methods, which all use the synthetic distorted image as input and the
original target image as ground truth. We consider the context prediction-based
methods such as tiles location prediction [95], puzzle solving [77], contrastive learning
[100] as another category of self-supervised tasks. These methods optimize a predefined
classification/regression task based on the information within a single image [77, 95]
or across different images [100], and thus they usually do not train a relevant (dense)
decoder. On the contrary, the reconstruction-based methods inherently require a
dense decoder for learning concrete and high-resolution features and outputting dense
pixelwise predictions, which may result in a model that fits better to dense prediction
tasks like segmentation.

5.6.2 Apply SI using Unlabeled Data with Less Overfitting

Self-supervised learning allows using unlabeled data without additional annotations
from experts and pretraining with both labeled and unlabeled data before fully-
supervised learning. The quality of the learned features from self-supervised tasks is
usually evaluated on downstream tasks like segmentation. In our experiments, larger
improvements are observed in the semi-supervised setting compared to fully-supervised
setting, especially for the WMH dataset. Our results show that given the same amount
of unlabeled data, the proposed SI can learn more useful features from unlabeled data
compared to other self-supervised tasks. One reason could be that the proposed SI
task may suffer less from the overfitting problem compared to traditional methods like
inpainting and super-resolution. For example, given the unlabeled data, the model
may try to solve the inpainting or super-resolution task by memorizing the input
images and restoring the missing content when there is enough model capacity, which
may result in learning trivial features. In contrast, the SI task takes inputs from many
more different combinations of images given the same amount of unlabeled data (when
m = 2 and n = 5 in 100 images, the number of possible image combinations would
be the binomial coefficient C'(100,5) x 5 ~ 3.8 x 108), which makes the model more
difficult to memorize and overfit to a particular image but has to find a more general
way to solve the SI task, e.g. learning anatomy knowledge, which can be non-trivial
and useful for downstream tasks like segmentation.
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5.6.3 Application to Other Dense Prediction Tasks

In this paper, we apply the proposed SI method to segmentation, a dense prediction
task. The pretrained SI features can also be transferred to other medical imaging
dense prediction tasks such as for instance depth estimation [126], image registration
[127], and detection based on distance maps [128]. Moreover, these tasks may also
benefit from the cross-sources features learned in the SI method. For example, a
good image registration model may require not only the alignments between local
patterns across different modalities (within one patient) but also the general anatomy
knowledge across different patients to constrain possible transformations. With a
proper design of the proxy dataset and the SI setting, the potential scenarios to apply
the proposed method can be greatly extended.

5.6.4 Limitations

It has been studied in literature that the performance of self-supervised approaches
differ significantly based on the difficulty of the pretraining task and it’s relatedness
to the main task [99, 129, 130]. For example, the performance of inpainting as a
self-supervision task would suffer when the size of the masked area is too large or too
small. Too large the masked area, and the pretraining task would be too difficult to
solve; too small and it would be very easy. This would affect the quality of the learned
features, and hence the efficiency of the network on the main task. Similarly, for our
approach, the performance of the network is determined by how separable the mixed
images are and how much information the network needs to learn to separate them.
We indirectly test the former hypothesis in Section 5.3.2, where it is shown that
very similar images would be extremely hard to separate. To explore whether this
is a practical problem in our case, we devise a simple statistical experiment. First,
pairs of 2D slices are randomly sampled from different images in one dataset (BraTS

Image overlap
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WMH 750

csi 500
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Figure 5.6: Distribution of the degree of mixing randomly sampled
images. We observe that the degree of mizing randomly sampled
2D slices from distinct images is almost uniform in the two
datasets used.
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or WMH), and data augmentation is applied to them as described in Section 5.4.5.
Next, the brain mask is extracted from the resulting images, via simple intensity based
thresholding, and the overlap of the corresponding brain masks are measured using
Jaccard Similarity. Finally, the distribution of the similarities measured is plotted and
shown in Figure 5.6. As we can observe, the similarities almost uniformly range from
very low (nearly 0) to moderately high (0.75), indicating that for our datasets, the
network would receive a wide range of mixed images for training. As mentioned in
Section 5.4.2, we exclude all mixed images with 0 similarities (no overlap at all) to
avoid the network from learning trivial features. Thus, for our experiments, we do not
need extra control of the degree of mixing images.

The second hypothesis revolves around how much information the network needs
to learn to identify the source from the mixed images. In Section 5.5.3 we empirically
demonstrate the effect of the number of fused sources on the final performance. It is
noticed that too few or too many fused sources are detrimental to the efficiency of the
network.

Our proposed approach is sensitive to these two degrees of freedom and, although
we have enough empirical evidence for the datasets in question, further testing is
required to make a general comment about the sensitivity of our method to these two
factors.

5.7 Conclusion

In conclusion, we propose a novel self-supervision task called source identification
which is inspired by the classic blind source separation problem. The proposed task
is to identify and separate a target source image from mixtures with other images
in the dataset, which requires features that are also relevant for the downstream
task of segmentation. On two brain MRI segmentation tasks, the proposed method
provides a significantly better pretrained model for segmentation compared to other
self-supervision baselines including inpainting, local pixel shuffling, non-linear intensity
shift, and super-resolution in both fully-supervised and semi-supervised settings. The
proposed method can be generalized to other dense prediction applications.
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Abstract

Deep convolutional neural networks for image segmentation
do not learn the label structure explicitly and may produce seg-
mentations with an incorrect structure, e.g., with disconnected
cylindrical structures in the segmentation of tree-like structures
such as airways or blood vessels. In this paper, we propose a novel
label refinement method to correct such errors from an initial
segmentation, implicitly incorporating information about label
structure. This method features two novel parts: 1) a model that
generates synthetic structural errors, and 2) a label appearance
stmulation network that produces synthetic segmentations (with
errors) that are similar in appearance to the real initial segmen-
tations. Using these synthetic segmentations and the original
images, the label refinement network is trained to correct errors
and improve the initial segmentations. The proposed method is
validated on two segmentation tasks: airway segmentation from
chest computed tomography (CT) scans and brain vessel seg-
mentation from 3D CT angiography (CTA) images of the brain.
In both applications, our method significantly outperformed a
standard 8D U-Net and other previous refinement approaches.
Improvements are even larger when additional unlabeled data is
used for model training. In an ablation study, we demonstrate
the value of the different components of the proposed method.

Based on: S. Chen”, A. Garcia-Uceda”, J. Su”™, G. van Tulder, L. Wolff, T. van Walsum, and
M. de Bruijne, “Label refinement network from synthetic error augmentation for medical image
segmentation,” Submitted
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6.1 Introduction

Convolutional neural networks (CNNs) are the state-of-the-art for many biomedical
imaging segmentation tasks. Many CNN segmentation architectures have been pro-
posed, such as fully connected networks [131], Dense-Net [132] and the U-Net [11]. The
U-Net has become the most popular network for biomedical image segmentation, due
to its efficient structural design featuring skip-connections, showing superior accuracy
and robustness in various segmentation tasks [6, 133]. Most CNN-based segmentation
methods including the U-Net do not fully exploit and encode the structural information
of the objects to be segmented. Consequently, these methods may produce segmenta-
tions with errors that become obvious when looking at the full segmented structure.
Examples of such errors are discontinuities in the segmentations of elongated tubular
structures, such as airways in the lungs, as shown in Figure 6.1. Using label structural
knowledge such as continuity in the branches of the airway tree can help prevent these
errors. However, it is not trivial to explicitly encode this global information in CNNs.

In this paper, we propose a framework to implicitly encode the label structural
information into CNNs by formulating this as a label refinement step. Specifically, we
generate structural errors in labels (such as the ground truth or initial segmentations)
and train a label refinement network to correct these errors. The trained network is
expected to generalize to the real errors in the initial segmentations produced by a
baseline segmentation network and correct them. To enhance the generalizability of the
label refinement network on the initial segmentations, a label appearance simulation
network is applied to reduce the appearance difference between the synthetic labels and
the initial segmentations. With these synthetic labels (and the initial segmentations)
together with the original image as inputs and the ground truth segmentations as
reference, the label refinement network can learn to correct those errors and incorporate
this in its segmentation decisions.

We validated the proposed label refinement method on two segmentation tasks:
airway segmentation from chest computed tomography (CT) scans [3] and brain
vessel segmentation from 3D CT angiography (CTA) images of the brain [4]. We
compared our method with a U-Net baseline and other refinement networks, including
DoubleU-Net [134] and SCAN [135], an adversarial refinement network. Moreover, we
conducted an ablation study to show the contribution of each individual component of
the label refinement method. Finally, we performed experiments in a semi-supervised
setting to train our method using additional unlabeled data.

6.2 Related Work

6.2.1 Label Refinement

In this work, we apply a refinement network on the initial segmentation from a
baseline segmentation network together with the original image, with the aim of
correcting errors in the initial segmentation. A similar approach has been used in
other previous papers. Jha et al. [134] attached a second U-Net network to a baseline
U-Net, using as inputs the original image multiplied with the output of the first
U-Net. Yang et al. [136] refined low-quality manual annotations made by non-experts
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Figure 6.1: Common structural errors in the segmentations ob-
tained by a U-Net, trained to segment airways in the
lungs [8]. True positives are displayed in yellow, false negatives
in blue and false positives in red. Detailed views a-b show errors
as missing terminal branches, and view ¢ shows a discontinuity
error in the branch. Better to view in zoom in color.

by training their method with added noise in order to reduce the inter-observer
inconsistency of the annotations. Unlike our method, Yang et al. do not focus
on refining an initial automatic segmentation and therefore the label appearance
simulation network is not needed. Dai et al. [135] refined the segmentations from a
fully convolutional network by using adversarial training to reduce the domain gap
between the target predictions and the ground truth segmentations on training data.
Aratjo et al. [137] attached a variational auto-encoder after a U-Net network to encode
the label topology of the ground truth segmentations for a better label reconstruction.
Different from Dai et al. and Aradjo et al., our work does not focus on encoding [137]
or discriminating [135] the overall label topology, but instead on learning to correct
the most common errors in the segmentations.

6.2.2 Airway Segmentation

The airway tree in the lungs forms a complex 3D tree-like branching network, with
many branches of different sizes and orientations. The peripheral branches of smaller
size are challenging to segment from chest CT scans, as they have obscured borders
due to partial volume effects. Many classical methods for airway tree extraction
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Figure 6.2: Schematics of the proposed label refinement method.
First, a base segmentation network fy is trained to obtain the
initial predictions x1. Second, we synthesize a new dataset Teyn
that contains similar errors to x1. Third, a label appearance
improvement network f, (together with a discriminator D) is
trained to obtain a more realistic dataset x,. Finally, the label
refinement network fo is trained with x1 and x, together with
the image I as inputs.

are based on a region growing algorithm [138, 139, 140]. However, their accuracy is
limited, and they typically miss a large number of the smaller peripheral airways [141].
Many state-of-the-art airway segmentation methods are based on CNNs, and especially
the U-Net [3, 142, 143, 144]. CNN-based methods can obtain more accurate and
complete segmentations than previous intensity-based methods. However, even the
latest U-Net-based methods usually miss several terminal branches, and make errors
in continuity around the smaller segmented branches.

6.2.3 Brain Vessel Segmentation

The brain vessels form a complex 3D branching network that consists of veins and
ar