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Abstract: Aberrant B cell signaling plays a critical in role in various systemic and organ-specific

autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells

from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In

this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR)

that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We

provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire

selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to

autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways

have been implicated in autoimmune disease. These include reduced activity of several phosphates

that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL,

which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and

Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids,

has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for

autoimmune disease based on interfering with signal transduction in B cells.

Keywords: autoimmunity; B cell; B cell receptor; kinase; receptor; Toll-like receptor; signal transduction;

tolerance

1. Introduction

B lymphocytes have the unique capacity to recognize pathogen-derived antigens
through expression of the B cell receptor (BCR) on their cell surface. However, the random
nature of the VDJ-recombination process that generates antibody diversity poses the poten-
tial danger of producing self-reactive B cells that ultimately contribute to an autoimmune
response. Autoreactive B cells play a crucial role in the pathogenesis of various common
systemic and organ-specific autoimmune diseases, including systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SjS), type 1 diabetes (T1D), cutaneous
autoimmune diseases (CAD), and multiple sclerosis (MS). The autoantibodies produced
are typically involved in immune complex formation and deposit in target organs. Autoan-
tibodies often appear in the serum many years before clinical disease onset, suggesting that
an early breach of B cell tolerance contributes to autoimmune pathogenesis [1,2]. However,
the stages of B cell differentiation that account for the breach of self-tolerance or the under-
lying mechanisms remain largely unknown, as do the numerous genetic and environmental
factors at play.

Genome-wide association studies (GWAS) have uncovered many polymorphisms
that are associated with autoimmune disorders, although it has been quite challenging to
obtain mechanistic insight from these genetic studies [3–5]. For example, more than 30 loci
have been identified that show robust association with SLE [6]. These SLE susceptibility
genes tend to cluster in Toll-like receptor (TLR), BCR, or Fc-receptor signaling pathways,
immune-complex processing, or antigen presentation. Interestingly, SLE susceptibility loci,
such as BLK, STAT4, TNFAIP3, BANK1, [7], and PTPN22 [8], have also been implicated in
other (systemic) autoimmune diseases.
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A critical role for aberrant B cell signaling pathways in autoimmunity is not only
supported by GWAS, but also by numerous functional studies using B cells from patients,
animal models, or by studies using small-molecule inhibitors. In this review, we evaluate
how BCR signaling ensures that autoreactive B cells are removed or silenced during B
cell development. Next, we provide an overview of inadvertent B cell activation and
the aberrant signaling downstream of the BCR and various other receptors observed in
autoimmune disease. Therapeutic strategies for autoimmune disease based on interfering
with signal transduction in B cells have been the topic of many recent reviews [9–12] and
will be briefly discussed.

2. Shaping of the Naïve B Cell Repertoire during B Cell Development by B Cell
Receptor Signals

A diverse antigen receptor repertoire is generated by the unique stochastic process
of DNA recombination, mediated by the recombinase-activating gene (RAG) proteins.
Hereby, gene segments encoding variable (V), diversity (D), and joining (J) regions of
the immunoglobulin (Ig) heavy (H) and light (L) chain loci are assembled in a stepwise
fashion [13,14]. Upon expression of a functionally rearranged IgH chain in early B cell
precursors, a complex interplay between pre-BCR, interleukin (IL)-7 receptor (IL-7R) and
chemokine receptor CXCR4 signaling induces pre-B cell proliferation and subsequent IgL
chain recombination (Figure 1A, 1) [15,16]. Hereby, phosphoinositide 3-kinase (PI3K) signal-
ing is required for pre-B cell survival [17], but negative selection of pre-B cells expressing a
strongly autoreactive pre-BCR may be facilitated through hyperactivation of the PI3K-AKT
pathway, as this leads to metabolic stress and AKT-dependent cell death [18,19]. Following
successful IgL chain recombination in small pre-B cells, the high levels of CXCR4 surface
expression are sharply reduced, facilitating the export of surface IgM-expressing immature
B cells into bone marrow (BM) sinusoids and egress into the circulation [20].

It has been estimated that up to ~75% of B cells that develop in the BM display some
degree of autoreactivity and must, therefore, be removed from the repertoire [21]. This
frequency was assessed by determining the reactivity of cloned and in vitro amplified
recombinant antibodies derived from human single B cells from BM. The regulatory mech-
anism that reduces the frequency of self-reactivity at the immature B cell stage in the
BM is referred to as central tolerance and is driven by BCR signals. BCR engagement
by self-antigens prevents CXCR4 downregulation, increases the motility and retention of
immature B cells within the BM parenchyma, and blocks their egress [20]. Recognition
of self-antigens will induce secondary gene rearrangement at the IgL chain loci. This
process is termed receptor editing and modifies the specificity of potentially harmful BCRs
(Figure 1A, 2). Whereas receptor editing is particularly frequent in IgMlo early immature B
cells, the subsequent stage of IgMhi immature B cells is highly sensitive to antigen-induced
apoptosis [22]. Infection or immunization may suppress lymphopoiesis in the BM and can
subsequently result in antigen-independent accumulation of RAG-expressing immature B
cells in the spleen [23]. Such transient alterations in lymphopoiesis are thought to protect
against tolerance and to indirectly enhance B cell memory. Moreover, newly formed B cells
that emerge from the BM will have a different repertoire and may, therefore, respond to
pathogens in a distinct manner [24]. Interestingly, B cells that develop in the intestinal
lamina propria are also subject to receptor editing, resulting in a BCR repertoire that is
shaped by extracellular signals from commensal microbes [25].

A substantial proportion of self-reactive B cells (~40%) leaves the BM and further
mechanisms ensure that these B cells are kept in check. In contrast to the BM that provides
a protective micro-environment for immature B cells that allows for receptor editing, recent
new immigrant B cells, called transitional B cells, in the spleen are largely eliminated when
recognizing self-antigen (Figure 1B, 3) [26]. Nevertheless, using transgenic mice harboring
a green fluorescent reporter, it was shown that a small fraction of transitional B cells in the
spleen had an IgMlo phenotype and did not terminate RAG expression [27]. Although these
cells express substantially lower levels of RAG than immature B cells in the BM [27,28],
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they had detectable levels of DNA double-strand breaks. Therefore, receptor editing events
in recent BM emigrants may continue to some extent [27].
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Figure 1. B cell selection is controlled by B cell receptor signals at several points during B cell
development and activation. At several checkpoints during B cell development in the bone marrow
(central tolerance) and B cell maturation and activation in the periphery (peripheral tolerance),
autoreactive B cells can escape negative selection that is dependent on B cell receptor (BCR) signals.
(A) (1) A functional pre-BCR will result in a positive selection and proliferation, whereas strong
binding of self-antigens by the pre-BCR may induce apoptosis. At this stage, defective selection can
result in the survival of B cells bearing a self-reactive BCR. (2) At the immature B cell stage, expression
of a fully functional BCR, amongst other factors, results in the survival and positive selection of the B
cell. However, expression of an autoreactive BCR should lead to either receptor editing or apoptosis.
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Defective selection at this stage can result in the escape of autoreactive B cells. (B) (3, 4) Transitional B
cells emerging from the bone marrow are subject to the induction of apoptosis or anergy, when they
recognize self-antigen. If defective, autoreactive B cells escape apoptosis or will not be constrained
by anergy. (5) Germinal center B cells can undergo several rounds of selection and proliferation.
During this process, somatic hypermutation generally increases affinity towards the antigen but can
also generate B cells with self-reactive BCRs. Normally, such B cells undergo apoptosis, because
essential survival signals, particularly those derived from activated T cells, are lacking. By contrast,
in autoimmune disease, signals from the BCR may drive survival and differentiation of autoreactive
B cells. (6) Various autoimmune diseases show an expansion of age-associated B cells that can be
activated by TLR signaling and are prone to autoreactivity. See text for details. ABC: age-associated B
cell; GC: germinal center; ASC: antibody secreting cell; MZ: marginal zone; Tfh: follicular T helper
cell; Tfr: follicular regulatory T cell.

The high sensitivity of transitional B cells to BCR signaling-induced apoptosis reduces
self-reactivity of B cells to ~20% [21,29]. Thus, a significant change in BCR repertoire occurs
as transitional B cells enter the stage of long-lived mature B cells [30]. Alternatively, self-
reactive B cells may persist in the periphery but are functionally silenced by anergy, which is
induced by chronic BCR signaling and the ensuing feedback loops (Figure 1B, 4) [31,32]. B
cells recognizing autoantigens are poorly competitive with non-autoreactive naïve B cells to
capture B-cell-activating factor (BAFF) [33,34], a tumor necrosis factor (TNF) family member
that critically enhances B cell survival [35]. Accordingly, pharmacological inhibition of
BAFF by belimumab, the first biological approved for SLE, was shown to be clinically
effective in patients [36]. Even if B cells have been selected into the long-lived pool of
peripheral B cells, expression of an autoreactive BCR leads to their rapid elimination.
This was shown in elegant mouse experiments using inducible Cre-loxP-mediated gene
inversion that changed BCR specificity [37].

3. Activation of Self-Reactive B Cells under Physiological Conditions

Antigen-activated B cells may undergo clonal expansion, IgH chain class switch
recombination (CSR), affinity maturation by somatic hypermutation (SHM), and final
differentiation into either memory B cells or antibody-secreting cells. Although it was
generally assumed that CSR mainly takes place in germinal centers (GCs), isotype switching
has been detected early after B cell activation and in extrafollicular responses [38]. Indeed,
convincing evidence was provided that CSR induction precedes GC B cell differentiation
and that the majority of CSR events occur outside the GCs prior to the onset of SHM [39].
SHM can increase BCR affinity towards antigens but, at the same time, poses the risk for de
novo generation of autoreactive B cells. Only B cells with high antigen affinity that interact
with T-helper cells specific for the same antigen will be selected during the GC reaction.
GC B cells with affinity for a self-antigen lack proper T cell help and are subject to negative
selection (Figure 1B, 5). This is based on the upregulation of the death receptor FAS (CD95;
TNF family receptor 6) when B cells are activated by BCR engagement and CD40–CD40L
interactions [40]. FAS signaling induces programed cell death upon interaction with its
ligand on activated T cells. The main T cell subset that controls GC B cell selection is the
follicular T helper (Tfh) cells, which are characterized by surface expression of chemokine
receptor CXCR5 and programed cell death-1 (PD-1), and by production of IL-21 [41–43].
Recently, a CXCR5+PD-1+ subpopulation of CD8 T cells was identified, which also regulates
the GC B cell response and B cell tolerance [44]. Repression of unwanted Tfh and GC B cell
activity and promotion of stringent high-affinity B cell selection is further reinforced by
FoxP3+ follicular regulatory T (Tfr) cells (Figure 1B) [45–47].

Apart from the critical role of the BCR signaling cascade in B cell activation following
antigen encounter, sustained low-level BCR signaling, also referred to as tonic BCR sig-
naling, is required for survival of both developing and mature B cells [17,48]. For specific
B cells, it has been demonstrated that the presence of self-antigen provides a survival
signal. In a transgenic mouse model in which B cells carry an autoreactive BCR recognizing
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the Thy-1 (CD90) glycoprotein, the presence of self-antigen promoted the accumulation
of Thy-1-specific B-1 cells in the peritoneal cavity [49] and directed maturation of naïve
immature B cells into the marginal zone B cell subset (Figure 1B) [50]. Given that B-1 cells
can be selected and maintained on the basis of their autoreactivity, it is expected that (part
of) the natural antibodies in serum will be the product of a self-antigen-driven process.
Accordingly, in addition to the role of natural antibodies in early antimicrobial host defense,
they facilitate nonimmunogenic clearance of apoptotic cells, removal of self-antigens, and
inhibit responses induced by IgG autoantibodies [51–53]. In this context, it is of note that
autoreactive IgM antibodies that recognize insulin were very recently shown to act as key
regulators of blood glucose and metabolism [54]. These antibodies control the concentration
of insulin in blood: whereas low-affinity anti-insulin IgM neutralizes insulin and leads to
increased blood glucose, high-affinity anti-insulin IgM protects insulin neutralization by
anti-insulin IgG. Consistent with these findings, antibody-deficient mice or immunodefi-
ciency patients have sub-physiological blood glucose concentrations. The phenomenon
that IgM autoantibodies have the capacity to prevent autoimmune pathology by competing
with self-destructive autoantibodies was coined adaptive tolerance [55]. Intriguingly, these
findings imply that self-reactive or poly-reactive B cells, present in the circulation of healthy
individuals, have functional relevance beyond a role in host defense.

4. Defective Selection of Self-Reactive B Cells in Autoimmune Disease

Autoantibodies may appear in the circulation of patients many years before the onset
of the clinical disease symptoms, suggesting that a break in B cell tolerance is an early
event in the pathogenesis of autoimmune disease [1,56–59]. However, controversy exists
regarding the stages of B cell development or activation that are defective in autoimmune
disease. Patients may suffer from intrinsic B cell defects that hamper counterselection of
autoreactive cells in early tolerance checkpoints or later checkpoints upon antigen-driven
activation and differentiation in the GC response. Moreover, cell-intrinsic defects can
affect specific B cell populations, such as anergic B cells or age-associated B cells (ABCs;
described below). Finally, autoimmune pathology may result from dysregulated T cell help
or regulatory T cells. It is thought that the controversy in the literature can be explained
by major differences between individual autoimmune diseases and a large heterogeneity
across patients with the same disease. This heterogeneity is also reflected by differences
across the many spontaneous, induced, genetically modified, or humanized mouse models
available for human autoimmune diseases, such as SLE, RA, and SjS [60–62]. In the coming
section, we will provide a brief overview of the main defects reported in autoimmune
patients and mouse models.

It is conceivable that defects in early tolerance checkpoints in the BM or spleen result
in the accumulation of autoreactive naïve mature B cells in the circulation of patients with
autoimmune disease [63]. These B cells may induce or promote autoimmunity because
of their capacity to present self-antigens to T cells. Frequency analysis of antinuclear
antibody (ANA)-expressing B cells in two classic lupus-prone mouse strains revealed
heterogeneity regarding the B cell stage in which tolerance is first breached [64]. In the
MRL/lpr mouse, one of the best characterized models for SLE, survival of autoreactive
B and T cells is enhanced due to the recessive autosomal lpr mutation that results in
defective FAS expression [60]. In BM and spleen of MRL/lpr mice, proportions of ANA+

B cells were similar across all B cell subsets and were in the range of nonautoimmune
strains, indicating that the early tolerance checkpoints were intact. In contrast, NZB/W
mice displayed an increase in ANA+ naïve mature B cells, suggesting a defect in early
pre-immune tolerance [64]. Interestingly, both mouse strains did not display an increase
in the proportions of ANA+ IgG-switched memory B cells and plasmablasts. Rather, a
general expansion of switched memory cells resulted in increased numbers of ANA+

antigen-experienced cells.
Likewise, the frequencies of ANA+ cells within the circulating populations of IgG1-

switched memory B cells or plasmablasts in SLE patients were reported to be similar to
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healthy controls [64]. Nevertheless, an increase in the total number of ANA+ IgG1
+ plasma

cells may be due to an overall expansion of the IgG1
+ plasma cell compartment. These

findings indicated that SLE does not reflect a defect in antigen-specific B cell tolerance but
results from a generalized aberrant late B cell differentiation. They contradict earlier studies
that described BCR repertoire abnormalities in SLE, including differences in IgV gene
usage and IgH chain complementarity-determining region-3 characteristics [65]. Analysis
of >200 cloned and in vitro expressed antibodies from single human B cells from three
SLE patients revealed a ~twofold increase in autoreactivity in the mature naïve B cell
population of SLE patients, compared with healthy controls [66]. No significant increase in
autoreactive antibodies was found in new immigrant B cells. The level of poly-reactivity
was increased in both new immigrant B cells and mature naïve B cells, but counterselection
differed substantially between patients. SLE patients in clinical remission also showed
elevated numbers of self-reactive or poly-reactive mature naïve B cells, indicating that early
checkpoint abnormalities are an integral feature of SLE, regardless of disease status [67].
Taken together, these findings illustrate that, in different SLE patients, different checkpoints
are affected.

Similar BCR repertoire analyses revealed defective central B cell tolerance in patients
with RA, T1D, SjS, myasthenia gravis, and neuromyelitis optica spectrum disease [68].
Frequencies of self-reactive or poly-reactive transitional B cells in the circulation of these
patient groups were increased, compared with healthy donors. These findings suggest
that peripheral B cell tolerance checkpoints are disturbed [68]. In contrast, whereas five
out of seven patients with MS displayed unaltered central tolerance, in all seven patients,
analyzed peripheral tolerance was hampered. These findings point to a distinct B cell defect
in MS.

Evidence for a major role of BCR signaling in shaping the repertoire of naïve B cells
is provided by the finding of defective central tolerance in patients with mutations in es-
sential signaling components, such as Bruton’s tyrosine kinase (BTK) and Wiskott–Aldrich
syndrome protein (WASP) genes [69,70]. Moreover, TLR signaling critically contributes to
central B cell tolerance, given the defective removal of developing autoreactive B cells in
patients with mutations in genes encoding myeloid differentiation primary response 88
(MyD88), IL-1R-associated kinase-4 (IRAK-4), and the UNC-98 chaperone [69–71]. Never-
theless, these patients display an immunodeficiency rather than an autoimmune disease
because their B cells are either almost completely lacking (in case of BTK deficiency) or
are not activated due to the underlying mutation. Transitional and mature naïve B cells
from patients or mice deficient for activation-induced cytidine deaminase (AID), which
mediates CSR and SHM in B cells, also express an abnormal Ig repertoire that is associated
with impaired B cell tolerance [72,73]. The mechanisms involved are not well defined but
are thought to be B-cell-intrinsic and to depend on AID expression at the immature B cell
stage in the BM [74]. In particular, it has been shown in mice that BCR and endosomal TLR
signals synergize to induce high AID expression in immature B cells to levels that approach
those of GC B cells. Such AID-expressing immature B cells lack antiapoptotic Mcl-1 and are
normally deleted by apoptosis [75,76].

5. Defective Activation of Self-Reactive B Cells in Autoimmune Disease

5.1. Enhanced Sensitivity of Naïve B Cells for Activating Signals

Although autoimmunity is generally associated with BCR repertoire changes and
enhanced persistence of autoreactive B cells in the circulation [77], it is becoming increas-
ingly clear that, in autoimmune patients, naïve B cells probably need fewer strong signals
to be activated. Analyses of transcriptomes, methylomes, and chromatin accessibility by
Scharer et al. unraveled an SLE-specific epigenomic signature in resting naïve B cells [78,79].
This signature was characterized by increased enrichment of accessible chromatin at loci
surrounding genes involved in B cell activation. Sites of open chromatin were enriched for
motifs for AP-1 and EGR transcription factors, which have been linked to autoimmunity
and are induced by BCR engagement [78,79]. In addition, naïve B cells displayed increased
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accessibility at the nuclear receptor subfamily 4 members NRA4A1 (NUR77) and NRA4A3,
which are known to be induced in response to BCR and TLR stimulation, respectively. It is
thought that the epigenetic profile of naïve B cells is a reflection of both genetic and specific
environmental factors. The latter may include unique signals provided by an autoimmune
micro-environment, (proinflammatory) serum factors, or interactions with other cells of
the immune system, for example, direct dendritic cell–B cell interplay [80]. However, the
nature of these signals needs to be further explored.

5.2. Activation of Anergic B Cells

Anergy contributes to tolerance but, when anergic self-reactive B cells are reactivated,
they may induce autoimmune pathology. Anergic B cells are impaired in their activation,
proliferation, and differentiation into plasma cells and have a short life span, particularly
when they are competing with non-anergic B cells. Their anergic state is (i) dependent
on continuous (self)-antigen binding; (ii) associated with downregulation of surface IgM
expression, but not IgD, and enhanced BCR endocytosis; and (iii) involves inhibitory co-
receptors that recruit protein phosphatases [32]. In addition, chronic BCR stimulation
induces changes in transcription factor expression and epigenetic modifications, which
contribute to the anergic state. A defect in anergic B cells has been shown to be an important
pathogenic mechanism that contributes to autoimmunity (as reviewed by Franks and
Camier [81]). Though it remains largely unclear whether this originates from hampered
anergy induction, inappropriate activation of anergic B cell, or both, studies indicate T-
helper signals may be responsible for restoring BCR signaling in autoreactive anergic B
cells [82,83].

Interestingly, anergic B cells should not be regarded as only potentially dangerous cells
that need to be fully silenced. For example, they are advantageous, as their reactivation
allows for the generation of broadly neutralizing antibodies (bnAbs) for HIV and influenza
virus that have poly-reactive or autoreactive specificities [84,85]. Sequence analysis of
isotype-switched memory B cells or somatically mutated bnAbs indicated that the naïve B
cells expressing unmutated equivalents of these BCRs were likely anergic. It is assumed
that their self-reactivity is removed or their affinity for foreign antigens is enhanced by
SHM and selection in GCs in a process called clonal redemption (Figure 1B) [32,86]. Due to
a ‘redeeming’ somatic mutation, the chronic anergy-inducing BCR stimulation can change
into a tonic-like or antigen-stimulated BCR signal [87].

5.3. GC Selection Defects and Spontaneous GC Formation

Given that ANAs in SLE and anticitrullinated protein antibodies (ACPAs) in RA are
class-switched and highly somatically hypermutated, it is generally thought that they are
GC-derived. This is supported by several findings. It was reported that GC exclusion of
autoreactive B cells is defective in human SLE [88]. Moreover, the chemokine receptor
CXCR4, which is critical for segregating GC dark and light zone and B cell selection, was
significantly upregulated in B cells from SLE patients and positively correlated with disease
activity [89]. In systemic autoimmune disease, including SLE, SjS, and RA, an increase in
circulating Tfh cells was identified, which correlated with disease activity or autoantibody
titers [90–92], and normalized upon B cell depletion therapy [93]. Typically, ectopic GC
formation is observed in inflamed tissues, including synovial tissue in RA, lacrimal and
salivary glands in SjS, and the meninges of patients with progressive MS, where they act as
local centers of the autoimmune response and autoantibody production [94]. Moreover,
lymphatic aggregates in the skin, named skin-associated lymphatic tissue, may act as a
niche for localized autoantibody production in CAD, such as pemphigus [11].

Activation of autoreactive B cells and the generation of class-switched pathogenic
antibodies is thought to occur in spontaneous GCs, in the absence of immunization or any
detectable infection, and essentially independent of commensal microbiota [95]. However,
it cannot be excluded that endogenous viruses or retroviral elements play a role (reviewed
by Domeier er al. [96]). Spontaneous GCs are observed in a wide range of autoimmune
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mouse strains, particularly in mice with altered signaling or survival of B cells, for example,
due to BAFF overexpression [97], B-cell specific overexpression of BTK [98], or a deficiency
in a range of signaling molecules, including the WASP, the SRC-family kinase member
Lck/yes-related novel tyrosine kinase (LYN), or Fc-receptor γ2b [96,99]. On the other
hand, spontaneous GCs can also originate from defects in T cells, such as the pathogenic
accumulation of Tfh cells induced by IFNγ excess in the sanroque lupus model [100]
or aberrant production of IL-17 [101]. Moreover, aberrant signaling in T cells has been
implicated in autoimmunity, for example, a deficiency for the mTOR inhibitor Tsc1 [102] or
a mutation in the phospholipase Cγ1 (PLCγ1)-binding site of linker for activation of T cells
(LAT), downstream of the T cell receptor [103].

In spontaneous GCs, autoreactive B cells engage cognate T cell help and initiate loss of
T cell tolerance via B-cell-intrinsic, MHC class-II-dependent antigen presentation and proin-
flammatory cytokine production. From analyses in WASP-deficient or BTK-overexpressing
mice, a picture emerges in which B-cell-specific IL-6 production is critical to achieve cy-
tokine and costimulatory signals that induce spontaneous GC formation [98,99,104,105].
The capacity of antigen-activated autoreactive B cells to engage cognate CD4+ T cells is
facilitated by BCR, TLR, CD40, and IFNγ receptor (IFNγR) signals and involves various
positive feedback loops. For example, BTK-overexpressing B cells promoted IFNγ produc-
tion by T cells and showed high expression of IL-6 and surface CD86 expression, which was
dependent on interactions with T cells [98,105]. Serum IFNγ levels are increased in SLE
patients, already prior to clinical symptoms, coinciding with the appearance of autoanti-
bodies [106]. A critical role for IFNγ is further supported by the finding that it can promote
the development of antibody-secreting cells (ASC). Hereby, IFNγ synergizes with IL-2 and
TLR7 ligands to induce epigenetic remodeling at the loci encoding interferon factor 4 (IRF4),
B lymphocyte-induced maturation protein-1 (BLIMP1), and IL-21R [107]. B-cell-derived cos-
timulatory signals were shown to be critical for complete Tfh cell differentiation, and even
heterozygous deletion of CD80/CD86 was sufficient to prevent spontaneous autoimmune
GC formation [108], further demonstrating the important role for the strength of B–T-cell
interactions for proper regulation of the GC response. Whereas B-cell-intrinsic IFNγR,
STAT1, and TLR7 signaling are essential for spontaneous GC formation in autoimmune
B6.Sle1b mice, TLR9 has a negative regulatory function (see below) [109,110].

Interestingly, epigenetic modulation of GC B cells and ASCs can be influenced by
metabolites derived from dietary fibers, such as the short-chain fatty acids butyrate and
propionate. These metabolites were shown to decrease expression of AID and BLIMP1
in human and mouse B cells by upregulation of mRNAs [111] and to directly affect the
epigenetic landscape at the BTK and SYK loci [112]. Although the role of the microbiome in
pathogenic GC responses in autoimmune disease needs further investigation, these findings
illustrate that environmental factors, such as the microbiota, may impact B cell activation.

5.4. Enhanced Plasmablast Differentiation

Not only GCs, but also extrafollicular responses are associated with SHM and CSR and
can be involved in the formation of ASC-producing pathogenic autoantibodies. However,
the contribution of each of these two pathways differs across patients and autoimmune dis-
orders (reviewed by Malkiel et al. [113]). As described above, the expansion of autoreactive
ASCs in SLE patients and mouse models does not appear to reflect defective antigen-specific
tolerance but, rather, an overall plasma cell expansion. Because long-lived plasma cells do
not respond to B cell depletion therapies, targeting these cells has been challenging. The
high level of antibody production in plasma cells induces considerable endoplasmic retic-
ulum (ER) stress. Consequently, plasma cells are very sensitive to proteasome inhibition,
which leads to accumulation of misfolded proteins. Proteasome inhibition, which is widely
used for the treatment of patients with plasma cell malignancies, was shown to reduce
disease symptoms, plasma cell numbers, and autoantibody levels in various mouse models
of SLE [114–116]. Favorable therapeutic effects of the proteasome inhibitor bortezomib
were also observed in patients with severe/refractory SLE [117,118]. Enlargement of the ER
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is induced by the two key transcription regulators of plasma cell differentiation, BLIMP1
and X-box-binding protein 1 (XBP1), which also enhance mitochondrial mass and function,
and thus promote oxidative metabolism [119]. Evidence was provided that mitochondrial
dysfunction in B cells was associated with plasmablast differentiation and disease activity
in SLE. In addition to ER stress, plasma cells also require a large amount of glucose, both
as an energy source and for antibody glycosylation. Taken together, these findings imply
that, next to the proteasome, XBP1, BLIMP1, and oxidative phosphorylation may also be
potential therapeutic targets for autoimmune diseases.

5.5. Expansion of the Age-Associated B Cell Population

In many autoimmune diseases, including SLE, RA, SjS, and MS, an aberrant expansion
of a specific B cell subset, commonly referred to as age-associated B cells (ABCs), has been
described. These cells have a unique T-bet+CD11c+ phenotype in mice and humans and
appear to be present in a preactivated state. ABCs efficiently produce proinflammatory
cytokines, such as IFNγ and IL-6, have a high capacity to form ASCs, and develop rapidly
into antigen-presenting cells. In SLE patients, these cells are major producers of autoanti-
bodies and ABC accumulation correlates with disease activity [120]. ABCs can be detected
both in peripheral blood and targeted organs. The unique expression profile of chemokine
receptors, integrins, and myeloid markers enables ABCs to migrate to specific locations
and to interact with cells in the micro-environment. The generation of ABCs is fueled
by hyper-responsiveness to innate signals from endosomal TLR7 and TLR9, as well as
adaptive signals, such as BCR engagement and T cell help via CD40/CD40L interaction,
and IFNγ and IL-6 (Figure 1B, 6). The pathogenic characteristics of ABCs and their role in
autoimmunity have recently been extensively reviewed [121,122].

6. B Cell Receptor Signaling in Autoimmunity

BCR signaling is directly linked to B cell survival, proliferation, differentiation, and
effector functions. Dysregulation of BCR signaling as an important driver of autoimmunity
is not only supported by genetic susceptibility associations with BCR signaling proteins and
regulators, but also by efficacy of treatments that target signaling molecules in autoimmune
animal models. An overview of the signaling pathways downstream of the BCR is shown
in Figure 2.

6.1. Dual Role of LYN in BCR Signaling

The SRC family member LYN functions directly downstream of the BCR and can both
promote and inhibit downstream signaling [123]. Phosphorylation of immunoreceptor
tyrosine-based activation motifs (ITAMs) on the intracellular tails of CD79A/B (Igα/Igβ)
initiates further downstream signaling through spleen tyrosine kinase (SYK), SLP65 (also
known as the B cell linker protein BLNK), and Cbl-interacting protein of 85 kD (CIN85),
which functions to oligomerize SLP65 and, thereby, poises cells for efficient initiation of
downstream BCR signaling [124,125]. Phosphorylated SLP65 provides docking sites for
BTK as well as PLCγ2, leading to Ca2+ mobilization and translocation of the nuclear factor
κ-light-chain enhancer of activated B cells (NF-κB) and nuclear factor of activated T cells
(NFAT) to the cell nucleus [126,127]. LYN and SYK also promote membrane recruitment and
activation of phosphoinositide 3-kinase (PI3K), which results in activation of the protein
kinase B (AKT) pathway, inducing B cell survival and proliferation [128,129].

Inhibition of BCR signaling is mediated by LYN through phosphorylation of inhibitory
receptors, such as CD22, CD5, and FcγRIIB, which activate SRC-homology-region 2 (SH2)-
domain-containing phosphatase (SHP-1) [130–132]. SHP-1 dephosphorylates LYN, SYK,
and BTK, creating a negative feedback loop [133]. Furthermore, LYN promotes a direct
feedback loop through activation of C-terminal SRC kinase (CSK), which inhibits activation
of SRC family kinases [134]. FcγRIIB also inhibits PLCγ2, PI3K, BTK, and AKT signaling
via SH2-domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP-1) [135,136].
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Figure 2. Signaling molecules downstream of the B cell receptor that are associated with autoimmu-
nity. The signaling pathway downstream of the B cell receptor (BCR) contains signaling molecules
that are partially shared with other pathways. In particular, the BAFF receptor provides essential
survival signals and the CD19 co-receptor, which is intimately connected to the BCR. Inhibitory
signals are provided by the kinase CSK and various phosphatases, including SHIP-1 and SHP-1, the
activity of which is induced by Siglec-10, FcγRIIb, and CD22 surface receptors, as well as PTEN and
PTPN22. Highlighted signaling molecules have been linked to an increased risk in the development
of autoimmune disease (yellow), have crucial inhibitory function in BCR signaling by preventing
autoimmunity (orange), or show increased expression and/or activity in B cells from autoimmune
disease patients (red). Signaling molecule abbreviations are explained in the text.

Due to redundancy within the SRC family, the initiation of downstream signaling
is not dependent on LYN. In contrast, LYN does play an essential role in the negative
regulation of BCR signaling [130,137,138]. Both complete and B-cell-specific LYN knock-
out mice display a spontaneous SLE-like phenotype, featuring B and T cell activation,
high serum ANA levels, and glomerulonephritis [139,140]. In addition to BCR signaling,
LYN may also regulate signaling through TLRs, as deletion of MyD88 attenuates the
autoimmune phenotype in Lyn−/− mice, reducing type I interferon production and GC
formation [141–143].

A critical role for LYN, SHIP, and CSK as negative regulators of BCR signaling in SLE
would be supported by the finding of reduced expression or impaired activation of LYN
and SHIP in B cells of SLE patients [144–147] and the identification of CSK as a genetic
susceptibility locus [148].
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6.2. Aberrant Levels and Activation of SYK, BTK, and PLCγ2 in Autoimmune Disease

In addition to LYN, altered levels or activation of other BCR signaling molecules
have been found in various systemic autoimmune diseases. In SLE patients, a popula-
tion of CD27− B cells was identified that had increased expression of SYK protein and
phosphorylation, both at baseline and upon BCR stimulation, and showed enhanced dif-
ferentiation into IgG-producing cells [149]. In another study, enhanced SYK protein and
phosphorylation were found in B cells from SLE patients, compared to healthy controls,
and correlated with disease activity score [150]. Likewise, phosphorylated BTK (pBTK) and
pPLCγ2 were increased in active SLE patients [150]. Moreover, in RA patients, the phos-
phorylation of SYK was enhanced in B cells, particularly in patients with high ACPA levels
in serum, and could be reduced by targeting T cell costimulation with abatacept (a cyto-
toxic T-lymphocyte-associated protein 4 immunoglobulin fusion protein, CTLA4-Ig) [151].
Inhibition of SYK with fostamatinib in RA patients induced an improvement of symptoms
compared to placebo [152,153], although these effects might, in part, arise from expression
of SYK beyond B cells [154].

The role of BTK in the pathogenesis of autoimmunity has been studied extensively in
animal models. Btk deficiency or therapeutic inhibition of Btk was protective in many rodent
models of SLE and RA [155–159]. Conversely, increased expression of BTK specifically in B
cells induced a spontaneous SLE/SjS-like phenotype in mice [98]. In human autoimmune
disease, increased BTK protein levels and phosphorylation were found in B cells from
ACPA+ RA, SjS, and glomerulonephritis with polyangiitis (GPA) patients with active
disease [160,161]. Moreover, we found increased anti-Ig-induced phosphorylation of BTK
and PLCγ2 in naïve B cells of patients with idiopathic pulmonary fibrosis, a chronic lung
disease in which a pathogenic role is less evident [162]. Although autoimmunity may
contribute to the disease phenotype, fibrosis is thought to be caused by an impaired healing
response to recurrent micro-injuries. High BTK levels correlated with pathogenic T cell
activation, and, similar to pSYK in RA, increased BTK protein levels were reduced upon
abatacept treatment in SjS, suggesting that T cell interaction may be a driver of aberrant
BCR signaling [160]. Inhibition of BTK by small-molecule inhibitors showed high efficacy in
several preclinical autoimmune models and clinical efficacy was observed for fenebrutinib
in RA and evobrutinib in MS [163,164]. Nevertheless, BTK inhibition also yielded diverging
results in clinical trials [165]. We refer to Neys et al. [12] for a recent overview of various
BTK inhibitors that are currently evaluated in clinical trials of various autoimmune diseases,
including RA and SLE. Because BTK has kinase-independent functions [166,167], it might be
more beneficial to target BTK protein levels. As BTK expression is known to be regulated by
various micro-RNAs [168,169], it is attractive to target BTK through miRNA mimics [170].

Upon BCR stimulation, Ca2+ signaling in B cells is promoted through an interaction
between B cell scaffold protein with ankyrin repeats (BANK1) and PLCγ2, which is en-
hanced by the SRC-family B lymphocyte kinase (BLK) [7,171]. Both BANK1 and BLK were
identified as genetic risk loci for SLE and are functionally linked to type I interferon repres-
sion (Figure 2) [172]. Gain-of-function mutations in the PLCγ2 gene in both human and
mouse lead to a complex, severe immunodeficient and autoimmune phenotype [173–175].
In addition, pPLCγ2 levels are increased in B cells of active SLE and GPA patients [150,161].
However, because of the availability of a large range of well-tolerated BTK inhibitors
with clinical efficacy in B cell malignancies, inhibition of BCR signaling as a therapeutic
target for autoimmunity is mainly focused on targeting BTK [12], while PLCγ2 is currently
not pursued.

6.3. PI3K–Akt–mTORC-Regulated Metabolism Is Essential for Normal B Cell Differentiation and
Silencing of Autoreactive B Cells

Activation of PI3K induces the AKT–mTOR signaling pathway, which is negatively
regulated by phosphatase and tensin homolog (PTEN), and controls cell survival and
metabolism throughout B cell development and activation [176]. Balanced regulation of
PI3K activity is critical, since patients with activated PI3Kδ syndrome (APDS) due to a
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PI3K gain-of-function mutation present with immunodeficiency and lymphoproliferation.
Conversely, a subgroup of patients with common variable immunodeficiency (CVID)
display disturbed BCR-activated PI3K signaling, particularly in ABCs [177].

Upon BCR-driven activation, naïve B cells switch from a metabolic dependency on
fatty acids to glutamine-fueled mitochondrial respiration [178,179]. Additional switches
occur during B cell differentiation, for example, as GCs progress. Hereby, the glycogen
synthase kinase 3 (GSK3) acts as metabolic sensor that supports both the survival of naïve
B cells and the generation and maintenance of GC B cells, which require high glycolytic
activity [180]. Memory B cells are formed earlier in the GC response than long-lived plasma
cells, and mammalian target of rapamycin complex 1 (mTORc1) expression and metabolism
are lower in cells destined to become memory B cells, suggesting that temporal switches in
the metabolic state may contribute to the differentiation fate [181,182].

Tightly regulated metabolism is crucial in the counterselection and silencing of au-
toreactive B cells throughout B cell development and activation. Metabolic reprograming
through Glut-1 contributes to anergy of peripheral transitional B cells [178]. Anergic B cells
remain metabolically quiescent upon stimulation, whereas chronically BAFF-stimulated B
cells show rapid increased glycolysis, which is crucial for antibody production [178]. In-
creased BAFF levels, which are often present in autoimmune patients, may rescue autoreac-
tive B cells from immune checkpoints and support the survival of anergic B cells [33,34,183].
Furthermore, it was shown in mice that GC B cells retain a hypoxic state that inhibits
mTORc1 activity, promotes cell death, and limits proliferation and class switching to the
proinflammatory IgG2c isotype [184].

mTORc activity is increased in B cells from SLE patients and correlates with disease
activity, plasmablast differentiation, and with B cell accumulation in salivary glands of
SjS patients [185,186]. In SLE patients, mTOR-dependent autophagy is also increased in B
cells, particularly in transitional and naïve B cells, and correlates with disease activity [187].
As described above, these B cell stages are subject to selection checkpoints, suggesting
that increased autophagy may promote the escape of autoreactive B cells from central or
peripheral tolerance [188]. Although, in autoimmune disorders, therapeutic approaches
that alter B cell metabolism may be attractive, it will be challenging to develop cell-lineage-
specific targeting strategies.

A critical role for the PI3K–AKT–mTORc would be supported by findings implicating
micro-RNAs that regulate PTEN expression in autoimmune pathogenesis. PTEN expression
is controlled by miR-148a, which is upregulated in SLE patients and lupus-prone mice and
accelerates development of autoimmune disease in mouse models [189,190]. Although
miR-148a regulates >100 genes, only a few target genes, including PTEN, drive its function
in B cell tolerance [191]. In parallel, various micro-RNAs that limit PTEN expression were
shown to control central B cell tolerance and to be dysregulated in B cells from patients
with various autoimmune diseases [192–197]. Interestingly, antagonizing miR-7, which
regulates PTEN expression, improved disease symptoms in MRL/lpr mice, signifying miR-
7 antagonism as a potential treatment strategy in autoimmune disease [198]. Novel miRNA
dysregulated in autoimmunity are continuously being discovered [199–201], many of which
control key pathways in B cell activation, including CD40–CD40L interaction [202,203],
TLR and type I interferon signaling [204], the GC response, and AID expression [205–208].

PTEN is also involved in the balance between IgM and IgD expression through
upregulation of IgD [209]. It was recently shown that IgD levels on B cells determine the
nature and duration of primary immune responses, with decreased levels of IgD leading to
an accelerated but prolonged primary immune response and a delayed secondary response
with lower levels of protective high-affinity IgM antibodies [210]. IgD has also been shown
to attenuate anergy of transitional and mature self-reactive B cells [211]. Several lines of
evidence point to a protective role of IgD expression in autoimmunity, including studies of
IgD knockout in MRL/lpr mice, IgD transgenic mice, and treatment with activating anti-IgD
antibodies in various autoimmune mouse models (reviewed by Nguyen et al. [212]).
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7. Other Signaling Pathways Implicated in Autoimmunity

7.1. BAFF and APRIL as Drivers of B-Cell-Mediated Autoimmunity

BAFF signals through three different receptors, exerting differential effects during B
cell differentiation: (i) naïve mature B cells require pro-survival signals through the BAFF
receptor (BAFFR) [213–215]; (ii) negative regulation and class switch recombination are
mediated through transmembrane activator and CAML interactor (TACI) [216–219]; and
(iii) B cell differentiation and plasmablast or plasma cell survival are promoted through
signals from a third receptor, B cell maturation antigen (BCMA) [220,221]. Many systemic
autoimmune patients present with dysregulated BAFF levels in the circulation [222], and
BAFF-overexpressing mice develop autoimmune pathology, resembling human SLE [34,97].
In SLE patients, soluble TACI and BCMA levels, but not BAFFR levels, are increased [223].

Binding of BAFF to BAFFR activates PI3K/AKT signaling in mature B cells, hereby
regulating protein synthesis, metabolic fitness, and survival. The BAFFR activates the
noncanonical NF-κB pathway but can also induce the canonical NF-κB signaling through
crosstalk with the BCR, involving CD79A/B, SYK, and BTK (Figure 2) [224,225]. Interest-
ingly, BAFF activates PI3K/AKT only in naive B cells [226]. BAFF-induced PI3K/AKT
signaling requires direct interactions between BAFFR and BCR components CD79A/B
and is enhanced by the AKT coactivator TCL1A. BCR expression levels are higher on the
surface of naïve B cells than memory B cells, and IgM BCRs interact better with BAFFR
than IgG or IgA, allowing stronger pro-survival responses from BAFF by naïve B cells.
Furthermore, BCR signaling regulates BAFFR levels, and BAFF supports CD40 expression
and T cell costimulation through BAFFR, suggesting the presence of a self-amplifying loop
that supports the survival of self-reactive B cells in autoimmunity [227–230].

Signaling through TACI and BCMA is less well studied. TACI induces NF-kB, MAPK,
and JNK activation through TRAF 2, 5, and 6, whereas BCMA activates NF-KB, AP-1,
and NF-AT through TRAF 1, 2, and 3 [231,232]. TACI expression increases upon TLR9
stimulation [233], and, on marginal zone B cells, TACI interacts with TLR and mTOR
signaling through binding of MyD88, together driving IgG class switching and antibody
production [234]. TACI can be cleaved from B cells by ADAM10 and acts as a decoy receptor
binding BAFF and APRIL, thereby blocking NF-kB activation and B cell survival [235].
Interestingly, increased soluble TACI levels in serum of SLE patients correlate with increased
disease severity. Conversely, decreased expression of BCMA on B cells correlates with
higher disease severity in SLE [236].

In addition to BAFF, APRIL also signals through TACI (with higher affinity) and BCMA
(with lower affinity), thereby promoting IgA class switching and plasma cell survival,
respectively [221,237]. APRIL levels in serum of SLE patients are increased [238] and
associations with genetic polymorphisms in APRIL have been found [239,240]. Inhibition
of BAFF or APRIL are being explored in autoimmune diseases (clinicaltrials.gov). Until
now, only belimumab, which specifically targets BAFF, has been approved for treatment
of SLE patients [36]. Although promising results were reported in SLE in early trials with
atacicept, an IgG1 Fc–TACI fusion protein that binds BAFF and APRIL to inhibit TACI
signaling, larger trials reported no clinical effect and increased risk of infection [241–243].

7.2. CD40–CD40L Costimulatory Signals and PTPN22 Downregulation in Autoimmunity

The interaction between CD40 and its ligand CD40L, which is highly expressed
on activated T cells and Tfh cells, is critical for GC responses and for the formation of
extrafollicular foci and antibody-secreting cells. Thus, it is evident that the CD40–CD40L
axis is central to the pathogenesis of many autoimmune diseases, which is also supported by
the identification of CD40 as a susceptibility locus in SLE [244]. Blockade of CD40–CD40L
interaction may, therefore, provide an opportunity for therapeutic application [245]. It has
been reported that CD40 costimulation also downregulates the expression of the protein
tyrosine phosphatase nonreceptor type 2 (PTPN2) and PTPN22 [246]. PTPN22 is a major
autoimmune risk locus: the R620W gain-of-function allele is found at high frequencies
in patients with autoimmune disease, including T1D, RA, and SLE. Known functions of

clinicaltrials.gov
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PTPN22 and their link to autoimmunity have recently been extensively reviewed [8,81,247].
It is established that PTPN22 is a negative regulator of SRC-family kinases and co-operates
with CSK to inhibit BCR and TCR signaling (Figure 2), whereby the R620W variant interacts
with CSK to a lesser extent. PTPN22 impacts BCR signaling in central and peripheral B cell
tolerance, as well as activation of GC B cells and ABCs. However, the complete molecular
mechanisms explaining the role of PTPN22 in autoimmunity remain unclear, particularly
because it is not only expressed in lymphocytes, but in many other immune cells, such as
macrophages, monocytes, and dendritic cells.

7.3. Inhibitory Co-Receptors of BCR Signaling Acting through SHP-1

As described above, upon BCR ligation, Lyn phosphorylates ITIM motifs on several
inhibitory co-receptors that regulate BCR signaling through SHP-1. Depending on the
ligand recognized by these inhibitory receptors and their unique expression profiles, they
regulate activation of different B cell subsets with specific BCRs [248,249].

CD72 regulates BCR signaling upon binding of Sm/RNP small nuclear ribonucleo-
protein particles and co-ligation with the BCR, thereby specifically regulating Sm/RNP-
reactive B cells [250]. In addition, CD72 may also regulate TLR7-mediated activation upon
Sm/RNP endocytosis, playing an important role in self-tolerance against nucleic-acid-
containing antigens [250]. CD72-deficient mice develop a severe SLE-like autoimmune
phenotype [251,252], and CD72 has been identified as an MRL gene involved in the autoim-
mune phenotype of MRL/lpr mice [252]. In SLE patients, CD72 expression levels on B cells
are decreased [253] and, in children, this decrease is evident during disease flare but not in
remission [254]. Furthermore, CD72 polymorphisms have been associated with SLE [255].

CD22 (or Siglec-2) is expressed exclusively on B cells and binds to α2,6-linked sialic
acids, which are either present on the same cell (cis) or expressed by other cells (trans) [256–259].
Upon BCR activation, CD22 inhibits Ca2+ signaling in B-2 cells through activation of
SHP-1 or GRB-2 (Figure 2) [256,260]. Inhibition of tonic BCR signaling by CD22 is re-
stricted through interaction with the extracellular domain of CD45, which prevents CD22
function [261]. In contrast to the ligand-specific regulation of B cell activation by CD72,
CD22-deficient mice show augmented regulation of Ca2+ signaling upon polyclonal BCR
stimulation with anti-IgM [256,257,262]. However, depending on the genetic background
strain, Cd22-deficient mice develop no or only a mild autoimmune phenotype [263]. Never-
theless, in SLE patients, CD22 has been identified as a genetic susceptibility locus [264].

Another Siglec family member that may be involved in autoimmunity is Siglec-10
(Siglec-G in mice). In mice, Siglec-G regulates B-1 cells through SHP-1 [265,266]. This speci-
ficity for the B-1 subset may be due to recognition of α2,3-linked sialic acids in addition
to α2,6-linked sialic acids [267]. In mice, Siglec-G has a protective role on an autoim-
mune background or collagen-induced arthritis [268,269]. In Guillain–Barré syndrome
patients, polymorphisms in SIGLEC10 have been identified that interfere with ganglioside
recognition, which may hamper ganglioside self-tolerance in patients presenting with
antiganglioside antibodies [270].

7.4. Inhibitory Co-Receptors of BCR Signaling Acting through SHIP-1

Another key phosphatase in the inhibition of BCR signaling is SHIP-1, which can be
activated by several receptors. Peripheral tolerance of IgG BCRs is regulated by FcγRIIB,
which crosslinks with the BCR upon binding of antigen-IgG immune complexes. This
induces activation of LYN, which phosphorylates the ITIM on FcγRIIB, allowing sub-
sequent recruitment of SHP-1 and SHIP-1 (Figure 2) [135,138,271,272]. Deficiency of
FcγRIIB in mice leads to enhanced IgG humoral immunity and an SLE-like autoimmune
phenotype [273–275]. In SLE patients, polymorphisms in the FcγRIIB gene have been associ-
ated with disease, and memory B cells fail to upregulate the expression of FcγRIIB [276–278].
This is more prevalent in African American patients, suggesting that dysregulation of
FcγRIIB expression may, in part, explain the difference in ethnic susceptibility to SLE [278].
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SHIP-1 can also be activated in an FcγRIIB-independent manner, which involves
CD79A and LYN. The exact mechanism has not been fully elucidated, but SHIP-1 may
directly interact with the ITAM on the intracellular tail of CD79A or interact with CD79A
through adaptor proteins DOK3 and/or GRB-2 [279–283]. CD79A deficiency causes a
developmental block at the immature B cell stage, although these cells do show enhanced
signaling, suggesting a dual role for CD79A in BCR signaling [284,285]. In peripheral B
cells, CD79A may play a role in the induction of B cell anergy through SHIP-1 activation,
indicating a role in peripheral tolerance of self-reactive B cells [286–288].

7.5. A Pathogenic Crosstalk between B Cell Receptor and Toll-like Receptor Signaling in
Autoimmune Disease

TLRs are expressed either on the cell surface or within endosomes and are crucial in-
nate receptors recognizing pathogen-associated molecular patterns. TLRs can, however—in
the context of autoimmunity—also be activated by endogenous ligands, such as self-nucleic
acids. For example, due to impaired clearance of debris, such as necrotic cells and neu-
trophil extracellular traps (NETs), autoreactive B cells can be costimulated via TLRs. In this
way, TLR activation is a potential pathogenic factor that can promote autoimmunity by
stimulating antibody production, antigen presentation, and production of proinflammatory
cytokines by autoreactive B cells. Mice lacking DNase1, the enzyme important for nucleic
acid breakdown and important for NET clearance, develop an SLE-like phenotype [289].
Likewise, a decreased DNase1 activity has been described in SLE patients [290,291]. Re-
duced DNase1 activity can result in the accumulation of debris containing self-antigens,
including histones and nucleic acids, to which autoantibodies are directed in systemic
autoimmunity (Figure 3A).

An important role for TLR signaling in both initiation and progression of systemic
autoimmune disease is supported by GWAS that identified risk genes involved in TLR
signaling [292–298]. Pathogenic TLR stimulation can induce an autoimmune phenotype in
various mouse models, including arthritis [299], experimental autoimmune encephalitis
(EAE), a model for MS [300], and lupus [301]. Particularly TLR7, which recognizes single-
stranded RNA in endosomes that is a typical feature of viral genomes, and TLR9, which
recognizes unmethylated CpG sequences that are common in viral and bacterial DNA,
are considered key players. A pathogenic role for TLR7 signaling has been shown in
several mouse models [301–307] and, very recently, in SLE patients harboring TLR7 gene
mutations [308]. The TLR7Y264H gain-of-function mutant was found to drive aberrant
survival of BCR-activated B cells and accumulation of ABCs and GC B cells, resulting
in a lupus-like phenotype, associated with aberrant survival of pathogenic autoreactive
B cells in a GC-independent manner, suggesting an extrafollicular origin. This was in
line with previous evidence that, in SLE, autoreactive B cells derive from extrafollicular
responses through enhanced TLR7 responsiveness in combination with IL-21 and IFNγ

and are poised to differentiate into ASCs [295,309]. The TLR7 gene is located on the X
chromosome and escapes X-chromosome inactivation [310]. As a result, TLR7 expression
in pDCs, monocytes, and B cells from females is increased compared with men [311], which
may, in part, explain the female bias in systemic autoimmune diseases.

In contrast, TLR8 and -9 signaling in B cells seem to function in a protective man-
ner. Targeted deletion of TLR8 and/or TLR9 in several mouse models leads to a more
severe autoimmune phenotype. Whereas this protective role for TLR9 was shown to be
B-cell-intrinsic, there is only indirect evidence for TLR8 [307,312–318]. SLE patients display
decreased TLR9 responsiveness, indicating an imbalance in TLR7 and 9 signaling in human
systemic autoimmunity [319,320]. Both TLR7 and 9 compete for binding of Unc-93 homolog
B1 (UNC93B1), a protein that regulates TLR trafficking from the ER to the endosomal com-
partment [321]. In addition, cessation of TLR7/9 signaling is mediated by the interaction
between UNC93B1 and Syntenin-1. Mutations altering the function or interaction of these
proteins can lead to systemic autoimmunity [322,323].
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Figure 3. The vicious cycle of autoreactive B cell activation and the interplay between BCR and TLR
signaling. (A) 1, A viral infection induces inflammation and cellular apoptosis and necrosis. This
can lead to the accumulation of debris, containing autoantigens and nucleic acids. 2, Plasmacytoid
dendritic cells (pDCs) are activated during viral infections via Toll-like receptors (TLR) and produce
vast amounts of interferon-α (IFN-α). 3, IFN-α stimulates autoreactive B cells via the IRFα receptor,
causing upregulation of TLR7 expression. Meanwhile, the B cell is activated via the B cell receptor
(BCR) by self-antigen and internalizes the antigen. 4, The autophagosome, containing self-antigen
bound to the BCR, and the endosome, containing TLRs, fuse. Self-antigens, containing TLR ligands,
stimulate both BCR and TLR in a synergistic manner. 5, Autoreactive B cells proliferate and differ-
entiate into antibody-secreting cells (ASC). These produce high numbers of autoreactive antibodies.
6, Autoreactive antibodies recognizing self-antigen form immune complexes (IC). In turn, these can
promote inflammation at the site of deposition and stimulate pDCs via fragment crystallizable region
γ receptor (FcγR) to increase IFN-α production, completing the cycle. (B) Synergy of BCR and TLR
signaling pathways leading to the activation of autoreactive B cells. Signaling molecule abbreviations
are explained in the text.
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Engagement of TLR7 or TLR9 leads to receptor dimerization and subsequent recruit-
ment of MyD88 to the intracellular Toll–interleukin receptor (TIR) domain (Figure 3B).
This is followed by activation of IRAK4, IRAK1, and TNF-receptor-associated factor-6
(TRAF6) [324]. Further downstream, this leads to activation of TGFβ-activated kinase-1
(TAK1), the TAK1-binding proteins (TAB), and the p38/JNK/ERK and the NF-κB pathways.
This enables translocation of transcription factors CREB, AP-1, IRF7, and NF-κB, stimulat-
ing survival and differentiation of B cells, as well as the production of proinflammatory
cytokines, such as IL-6 and type I interferons (IFN-I). The interplay between BCR and
TLR signaling, often in the context of autoimmunity, has been a topic of intense research
(Figure 3B). First of all, BCR engagement enhances TLR expression [325–327]. Secondly,
studies using transgenic mouse models show TLR4, 7, and 9 stimulation-induced B cell
proliferation, survival, and cytokine production are significantly reduced or even absent
when the BCR or SYK is lacking [328,329]. This TLR-mediated SYK activation was MyD88-
independent and resulted in activation of the ERK and PI3K–AKT pathways. SYK was also
shown to be indispensable for TLR9-induced B cell activation and differentiation in human
B cells [246,330,331]. BTK interacts with the TIR domains of several TLRs [332] and with
downstream signaling proteins, such as MyD88 adapter-like (MAL) [333]. The synergistic
role of BTK in BCR and TLR9 signaling has been well described in murine and human
B cells [334,335]. In addition to SYK and BTK, BANK1 enhances TLR signaling [336,337],
whereas BCAP seems to modulate TLR signaling [338,339]. TAK1 was proven central to
BCR–TLR synergy, as inhibition led to impaired B cell proliferation, differentiation, and
cytokine production in response to combined BCR and TLR stimulation [340]. Dedicator of
cytokinesis-8 (DOCK8) also links TLR stimulation to the BCR signaling cascade by inducing
activation of SYK and STAT3 [341].

The type I IFN signature, a hallmark of several systemic autoimmune diseases, includ-
ing SjS and SLE, involves a positive feedback loop including TLR signaling (Figure 3A).
Plasmacytoid DCs (pDC) produce vast amounts of IFN-α in response to TLR stimula-
tion, for example, following viral infection or in the excessive presence of apoptotic
debris [342]. IFN-α stimulates TLR7 and MyD88 expression in B cells, leaving TLR9
expression unaltered [343]. Autoreactive B cells can take up self-antigens containing nu-
cleic acids via endocytosis, where enhanced TLR7 expression can subsequently facilitate
their pathogenic survival and differentiation. In turn, the production of autoantibodies
is promoted. These can form immune complexes containing autoantibodies bound to
self-antigens and nucleic acids, which can activate pDCs via FcγRIIA. Overall, this results
in a vicious circle where increased TLR–BCR signaling leads to autoreactive B cell acti-
vation, which is thought to be important both during disease initiation and progression
(Figure 3A,B).

Taken together, synergy of BCR and TLR7 stimulation promotes autoimmunity [344,345],
whereas synergy with TLR9 stimulation enhances tolerance [76]. These findings stress the
delicate balance in TLR signaling, indicate the importance of crosstalk with the BCR, and
pave the way for potential therapeutic targets involved in both BCR and TLR signaling.

8. Concluding Remarks and Future Perspective

In this review, we focused on the key role of BCR signals in central and peripheral B cell
tolerance checkpoints, as well as the interplay between the BCR and various other signaling
pathways in antigen-activated B cells. It is clear that the full impact of aberrant signaling in
the etiology of specific autoimmune diseases remains to be established. Research in this area
is complicated by the fact that autoimmune disorders generally arise from additive effects
of many common genetic risk variants and various environmental factors. Accordingly, the
contribution of (i) an altered BCR repertoire, (ii) an increased sensitivity of naïve B cells
for signals from the microenvironment, as well as inappropriate (iii) activation, selection,
survival, or cytokine profile of B cells upon autoantigen encounter to disease pathology is
different across diseases and individual patients. On the basis of the available knowledge
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on aberrant signaling pathways in autoimmunity, therapies have been developed, however,
with variable efficacy.

Over the past few decades, mouse models for autoimmune diseases have provided a
wealth of information and mechanistic insight into B cell signaling and have been of great
value to unravel pathogenic pathways. This is particularly the case for SLE, as global defects
in central or peripheral tolerance are often associated with ANA formation. This might be
explained by the abundance of DNA and RNA molecules that are released upon cell death,
which can activate B cells in a T-cell-independent manner. In contrast, it remains challenging
to design models for tissue-specific autoimmunity, which are currently largely dependent
on the exposure to specific protein autoantigens, such as collagen for RA and myelin
oligodendrocyte glycoprotein in the experimental autoimmune encephalomyelitis model
for MS. In this context, it is also of note that the nonobese diabetic (NOD) mouse, which is
extensively studied as a model for T1D, also develops symptoms of SjS. As autoimmune
diseases show multifactorial inheritance patterns, the generation of genetically engineered
mouse models will benefit from gene editing tools that have the potential of simultaneous
editing of multiple loci [346].

Although animal models will remain of great value, it is becoming increasingly clear
that we are reaching limits as we gain more and more in-depth knowledge revealing
critical differences in immune pathology between mouse and man [347]. Novel technology
will be of great help to uncover factors that are critical for autoimmunity in humans in
unprecedented detail. This is already clear from the impact of flow-cytometry-based
techniques to study signal transduction pathways: phospho-flow cytometry is now used to
measure and quantify phosphorylation of an ever-expanding list of critical B cell signaling
proteins in conjunction with cell surface markers [348,349]. These methods allow a rapid
and detailed analysis of small, distinct subpopulations of B cells at the single-cell level and
provide a more quantitative read-out than classic Western blotting.

Another exciting development is that whole-genome sequencing of patients diagnosed
with autoimmune disease has recently identified novel rare mutations. These mutations
have provided evidence for a critical pathogenic role of various genes, including partial
RAG deficiency [350] and gain-of-function mutations in the IKFZ1 gene, encoding the
Ikaros transcription factor [351] and the TLR7 gene [308]. Single-cell technology will be
instrumental to uncover drivers of interindividual variation in immune cells, which will
help to interpret and prioritize risk variants identified by GWAS and to identify critical cell
types in autoimmune diseases [352]. Epigenetic processes that determine the accessibility
of genes and, thereby, their expression profile are more and more recognized as important
factors. It is, therefore, encouraging that autoimmune risk variants, for example, for
T1D, could be translated into mechanistic insights by the identification of (cell-specific)
regulatory elements by single-cell epigenomics [353].

GWAS in autoimmune disease uncovered a number of critical susceptibility genes
and loci, which have been consistently replicated or validated on the protein level in
the past couple of years. However, the vast majority of risk-associated single-nucleotide
polymorphisms (SNPs) identified in autoimmune disease are located in noncoding regions.
Hereby, it often cannot be excluded that nearby SNPs, in high linkage disequilibrium with
the identified SNPs, are in fact causal for the disease [354,355]. Risk-associated SNPs in
noncoding regions are assumed to be located in regulatory elements, which might be quite
distant from the genes they control. It is mostly elusive how SNPs affect gene expression,
as they mostly act in a cell-type or activation-status-specific manner. Technology to study
epigenetics, as well as various innovative computational tools that are now emerging will
help to interpret and prioritize disease-associated SNPs [353,356,357].

At the same time, the obtained knowledge on altered epigenetic regulation in B cells
or other cells of the immune system may open new avenues to predict disease outcome or
design novel therapeutic strategies for autoimmune disease. Finally, given the promising
results of BTK inhibition in RA and MS, it is expected that the field may also benefit from the
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ongoing discovery of a wide range of small-molecule inhibitors targeting critical signaling
pathways in B cell malignancies.
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