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Preface

“Do you mean ter tell me,” he growled at the Dursleys, “that
this boy—this boy!-—knows nothin’ abou’—about ANYTHING?”
Harry thought this was going a bit far. He had been to school,
after all, and his marks weren’t bad. “I know some things,” he
said. “I can, you know, do math and stuff.”

— J.K. Rowling, Harry Potter and the Sorcerer’s Stone, 1997

I was about seven years old when I bought my first transistor radio.
It took what seemed like ages of pocket money saving to collect the
necessary amount, but once I had it, I was extremely pleased with its
nifty looks and the wonderful way it performed. I recall how I switched
it off and on only to realize that songs wouldn’t wait for me. Even when
I told the little black box to turn off, the song would simply continue
in silence. Within a week’s time, I completely took it apart and —
perhaps needless to say— never got it to function again. That was
most unfortunate, but I don’t recall having any regrets. I guess that,
even if someone would have foretold me the consequences of my bold
actions, I would still not have been able to resist the urge to open it
up.

Many hobby projects, a Bachelors degree in Electrical Engineering
from the University of Ghent and fifteen years later, I had learned that
my desire for understanding was much larger than my appreciation of
technology. I decided to do my MSc in Mathematical Physics at the
University of Antwerp, taking extra courses in nonlinear wave phenom-
ena, general relativity and various branches of quantum theory. On the
rare occasion some of the topics got boring, I had my antidote ready:
The Feynman Lectures on Physics. Reading Feynman would never fail
to help me regain my enthusiasm because of his ability to make you
understand the subject and at the same time show you why physics was
interesting and fun. Nonlinear waves —in spite of their many math-
ematical intricacies— were relatively easy to grasp. Relativity was a
subject to which I devoted more effort, because of the far-reaching and
interesting consequences for the universe in which we live. But what
really got my mind working overtime, was quantum theory.

Quantum theory is elegant but opaque, it enjoys incredible predic-
tive power, but only in a probabilistic sense. And then there were
these fascinating paradoxes. But there was something peculiar about
the general attitude many physicists had about the subject. In most
subject matters, my teachers rightfully stressed the importance of un-
derstanding what is going on in a given physical situation. Physics
is not merely equation solving. For instance, one has to set up the



equations before one can even start to do mathematics and this meta-
theoretical activity can only be achieved successfully if one has a firm
grasp of the subject matter. But when it came to quantum theory, my
teachers were claiming one should not attempt to understand what is
going on. It was a time when merely mentioning the words interpreta-
tion or foundations in connection to quantum physics was sufficient to
raise both eyebrows and serious doubts about one’s scientific integrity.
Even Feynman writes in The Character of Physical Law (1967) about
the wave-particle duality:

The difficulty really is psychological and exists in the per-
petual torment that results from your saying to yourself, “But
how can it be like that?” which is a reflection of [an] uncon-
trolled but utterly vain desire to see it in terms of something
familiar. ... Do not keep saying to yourself, if you can possi-
ble avoid it, “But how can it be like that?” because you will
get ‘down the drain’, into a blind alley from which nobody has
escaped. Nobody knows how it can be like that.

At least Feynman admits how difficult it is to stop yourself from
asking these questions! The two most common reasons I was given as
a student to counter questions about foundational issues are echoed
in the quote. The first reason is that the attempt to understand was
commonly regarded as a “desire to see it in terms of something famil-
iar” and the second “because you will get ‘down the drain’, into a blind
alley from which nobody has escaped”. The second reason sounds like
the kind of warning parents give to their offspring about drugs. Even
if the warning is given out of genuine concern one cannot help but
think that if human kind follow this kind of advice, we would not have
built airplanes, we would not have a theory of transfinite numbers,
and we surely would not have asked ourselves questions about black
holes. The first reason, the “desire to see it in terms of something famil-
iar”, relates to the idea that understanding is nothing but recognizing
parallels with the familiar. It is true that the first models of quanta
were semi-classical and that, with the birth of quantum theory in the
nineteen-twenties, this search for (semi) classical formulations did not
stop, even though they proved unfruitful. I confess that my first naive
reformulations of quantum interference phenomena in terms of nonlin-
ear waves were, in fact, little more than an attempt to reconquer some
of the lost old intuitions. And for my last disclaimer, I agree with
Feynman one should not remain hypnotized over the two-slit experi-
ment because, in the end, nature “just behaves like that”. But I beg
to differ with the claim that the only way to understand something, is
by seeing it in terms of something familiar. One can easily understand
the basic laws of probability and this is not because we are familiar



with them. Experimental physicists have been familiar with quantum
behavior for almost a century, and yet the quest for understanding
quantum theory has only gained momentum. As a result of the search
for a better understanding of quantum theory, we are now in possession
of some of the philosophically most meaningful theorems in mathemat-
ical physics and I believe it is fair to say that, although many mysteries
remain, we understand the theory of quanta and its many fascinating
consequences better than ever before. We should never heed ourselves
from the urge to understand, but rather from the urge to define what
understanding is, because our lack of understanding may denote we
are on new grounds, looking for entirely new ways to see the world in
which we live and the theories that we require to describe that world.
It is my hope that this manuscript is a humble step on the path in that
direction.

Sven Aerts,

Amsterdam, September 2021



Chapter 1

Introduction

All the perceptions both of the senses and the mind bear ref-
erence to man and not to the universe, and the human mind
resembles those uneven mirrors which impart their own proper-
ties to different objects.

—Francis Bacon, The Great Instauration, 1620

Galileo Galilei discovered that the swing period of a pendulum is
independent of its amplitude (i.e. isochronous), by watching a sus-
pended incense lamp swing back and forth in the cathedral of Pisal.
This discovery paved the way for the Dutch scientist Christiaan Huy-
gens to formulate his pendulum law and build the first pendulum clock
in 1656. Not long thereafter, pendulum driven clocks started to ap-
pear all over Europe, to be replaced as the most accurate time keepers
by quartz clocks only after 1927. The pendulum is in fact not really
isochronous, only approximately so for small amplitudes, but one can
hardly blame Galileo for not noticing that the period of a swing in-
creases somewhat with increasing amplitude, because he was timing
the phenomenon using his own heart pulse rate as a stopwatch. The
deviation from isochronism of the pendulum is well within the varia-
tions of a heart pulse rate. This remarkable story shows how Galileo
managed to observe the (almost) isochronous character of the pendu-
lum, using a less isochronous ‘measurement apparatus’.

! According to his pupil and first biographer, Vincenzo Viviani, Galileo’s interest
in pendulums seems to date back as early as 1582-1583, but the first written record
is a letter from Galileo to Guido Ubaldo dal Monte from 1602 [130].

13



14 Introduction

There was of course no need for Galileo to use his pulse. One can
easily think of more precise ways to establish the isochronism, such as
using a waterclock or simultaneously swinging two pendulums of equal
weight and length, but with different starting amplitude and observing
whether they are running synchronously after any given number of
swings. But right there and then, in the cathedral of Pisa in the middle
of Piazza del Duomo, such an experiment —if possible at all— would
have provoked reactions from the cathedral visitors. Counting heart
beats provided for a discreet and immediately executable alternative. It
seems highly improbable Galileo was interested in how many heartbeats
a swing takes; in all likelihood he only wanted to verify the perceived
periodic regularity of the swing of the incense lamp. This idea seems
corroborated by folklore [130]:

Legend has it that in 1583, a nineteen-year-old student at
the University of Pisa attended prayers at the cathedral and,
while daydreaming in the pews, noticed one of the altar lamps
swaying back and forth. While his companions dutifully recited
the Nicene Creed around him, the student became almost hyp-
notized by the lamp’s regular motion. No matter how large
the arc, the lamp appeared to take the same amount of time
to swing back and forth. As the arc decreased in length, the
speed of the lamp decreased as well. To confirm his observa-
tions, the student measured the lamp’s swing against the only
reliable clock he could find: his own pulse.

Galileo’s observation can be regarded as a two step process. First he
wonders whether the period of the swing is stable. Then he decides to
observe whether that is indeed the case. Galileo is testing a hypothesis
by means of an experiment; he wants nature to be his judge. This is
what makes his act scientific.

This two stage process can be regarded as the basic model we will
use to describe observations in the rest of this dissertation: an obser-
vation is an answer to a question posed to a system. We regard the
observer as the system that forms the mediator between system under
observation and the answer to the question. Imagine that two weeks
after Galileo finds out about the isochronous character of the lamp,
he wants to check his pulse. He can then observe whether his heart
is beating faster or slower than two weeks ago using exactly the same
experiment as before, only interpreting the data differently. We see ob-
servation is quite an involved concept in that it has to have a bearing
on the question one is looking into. In this sense, an observation is an
interpretation of a phenomenon?.

2In psychology, an ‘observation’ is supposed to represent an objective acount of
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Within the context of quantum mechanics the relation between ob-
servation and interpretation was repeatedly stressed by Albert Einstein.
In “Der Teil und das Ganze”, Heisenberg talks about an encounter
with Einstein after a lecture Heisenberg presented in Berlin in 1926.
He explained to Einstein that he managed to solve the problems of
the harmonic oscillator by looking only at the observable quantities,
inspired by a similar argument Einstein himself had used for the defin-
ition of simultaneity in special relativity. Much to his surprise, Einstein
replied?:

You must appreciate that observation is a very complicated
process. The phenomenon under observation produces certain
events in our measuring apparatus. As a result, further processes
take place in the apparatus, which eventually and by compli-
cated paths produce sense impressions and help us fix the effects
in our consciousness— we must be able to tell how nature func-
tions, we must know the natural laws at least in practical terms,
before we can claim to have observed anything at all.

Although Einstein was talking about physics, a similar argument
can be made with respect to other branches of science. Within the
context of the logic of discovery, Hanson [114] coined the term theory-
laden observation. Though often seen as a term that expresses a limit
to the objectivity of observation, Hanson was in fact referring to a
more subtle issue, that of the intertwined relation between knowledge
and observation, or, how a sound epistemology necessitates an explicit
application of concepts to the perceived data. In other words, observa-
tion is “concept applied to data”, where it remains understood that the
“data” themselves are the result of an experiment, constructed in ac-
cordance with our understanding of the concepts. It seems we have no
alternative but to accept this apparent circular dependence that, on the
surface, seems to threaten the objectivity in scientific experimentation.

Indeed, science is known to have been off-track from time to time, in
spite of observations that initially seem to support a thesis, such as the
claim made by Lawrence Berkeley National Laboratory in California
to have discovered element 118 ununoctium? in 1999. As Berkeley Lab
Director Charles Shank commented on the retraction of the originally

reality and a subjective interpretation of an observation is called a ‘perception’, so
to the psychologist, the difference between observing and perceiving is somewhat
akin to the difference between ‘looking’ and ‘seeing’ in the English language. We
will not make such a distinction as we consider observation without any form of
interpretation void of meaning.

3This citation is preceded by the often quoted “It is the theory that decides
what can be observed”.

Literally “1-1-8”. Ununoctium (if it exists at all) has atomic number 118.
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stated results “Science is self-correcting, if you get the facts wrong,
your experiment is not reproducible.” It would be a misconception to
think these researchers found puzzling results that upon analysis were
attributed to the presence of the long sought super heavy element un-
unoctium. While Galileo started from the hunch that the swing pe-
riod looked pretty stable, they were acting on calculations done by the
Polish theoretician Robert Smolanczuk, who suggested that by bom-
barding targets of lead with an intense beam of high-energy krypton
ions, one should produce a sequence of decay events that is consistent
with theories that have long predicted an “island of stability” for nu-
clei with approximately 114 protons and 184 neutrons. They hinted
at these considerations on the basis of Mendeljev’s periodic table and
some quantum-mechanical calculations. In itself, there is no reason
to claim some sort of scientific deontological breach occurred. In fact,
the opposite is true, as a great deal of experiments are performed in
clear anticipation of where to look for results. The initially claimed
discovery of ununoctium was eventually withdrawn, not because they
‘knew what they were looking for’, but simply because the experimen-
tal results could not be independently verified by other teams. Many
elementary particles were claimed to be discovered, both theoretically
and experimentally, and many of them didn’t stand the test of time. Of
those that did survive, a proud fraction, such as the kaon, the positron
and the neutrino were predicted on the basis of largely theoretical as-
sumptions. In this respect, theory-laden observation is a powerful tool,
especially in assessing layers of reality that escape more direct forms
of observation. Much like a detective uses clues to formulate a theory,
which in turn helps him to establish the truth of the first obtained
clues by matching them with the overall picture that slowly emerges
as a consequence of this process, the scientist investigates the validity
of hypotheses in order to formulate new hypotheses that encompass a
hopefully larger (or more detailed) picture of reality.

This implies one has to be able to anticipate the set of relevant re-
sults or hypotheses. Anticipating the set of possible results may seem to
increase the danger of ‘seeing what is not there’, but I believe this is how
much of observation actually works. Since the work of Claude Shannon
[180] this can be given a precise meaning within the context of informa-
tion theory, as we now know that a message transmitted over a channel
of limited bandwidth but with optimal efficiency, is indistinguishable
from random noise if the receiver is unfamiliar with the language of
the message’. If we want to include situations such as described by

°The important word here is “optimal efficiency”. If a book in a strange language
can be decoded, it is because of much of its information is redundant. For a
more physical formulation within the context of electromagnetic radiation we refer
to [142], where it is shown that the most information-efficient format for a given
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Shannon, we simply have to know what we are looking for. We bring
to the attention of the reader that we will deal only with observations
for which we have established a set of relevant and experimentally dis-
tinguishable outcomes. These outcomes may denote numerical values
(such as the counting of heart beats), or, more generally, they can be
labels of hypotheses (such as “Do pendulums swing isochronously?”,
or “Did the heart beat three times before the swing was completed?”)
Hypotheses can be built up from subhypotheses, such as Galileo assum-
ing his pulse is a time measurement device (subhypothesis) to observe
whether the pendulum is isochronous (main hypothesis). We will treat
both levels of observations mathematically by the same formalization.
Hence we will freely talk about the establishment of the isochronicity
of pendulums as an example of an observation, but also the outcome
an automated measurement apparatus gives, will be considered an ob-
servation.

We will not go into how Galileo got the idea the pendulum was
swinging with constant periodicity. Getting this idea is a bit like an
unconscious observation: such questions dawn upon us and we don’t
know how we get them. As interesting as this question may be in
relation to observation, it is not what we will study here. The main
question we address in this dissertation is, given a question about a sys-
tem, how a specific outcome is produced by an observer®. This doesn’t
cover every aspect of observation, albeit we believe it to be an impor-
tant one, and it is this aspect we have chosen to study. It is also the
aspect of observation that, remarkably, quantum mechanics remains
silent about, which makes it interesting to study precisely this issue in
a more general framework.

To formalize which outcome is obtained in an observation, we will
assume determinism’. This assumption is not made because of some
belief that the universe evolves deterministically; I am fundamentally
agnostic with respect to determinism and will even argue it may be im-
possible to establish experimentally whether we live in a deterministic
universe or not. Determinism is assumed because (contrary to inher-
ently probabilistic formulations) deterministic theories are obliged to
tell you what happens under what conditions; deterministic theories de-
liver a narrative of how reality actually proceeds and under what con-
ditions; indeterministic theories are far less committed to telling the

message is indistinguishable from blackbody radiation.

6Whether or not an exterior measurement device is used will not be made explicit
in our formalization. All that is not system and cooperates to produce an outcome,
is compounded under the system that we call “observer”.

"Altough our observers will not be free to choose their internal state, we will
not assume so-called superdeterminism; our observers are at any time free to pose
any question they like.
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details of such a story. We also consider our approach realist, but not
in the naive sense that all observable quantities that possibly pertain to
a system have pre-determined values. What I do mean to denote with
realism then, is twofold: (i) that systems are in a state and that (ii)
this state determines the outcomes of observable quantities which have
a predetermined outcome and that this state will determine which ob-
servables will not have a predetermined outcome when observed. We
also assume physicalism as we treat the observer as a physical sys-
tem, in principle completely described by its state and that all possible
mental states supervene on physical states. How do we then reconcile
determinism with the assumption that, for a system in a given state,
some observables will have predetermined values while others will not?
We do so by assuming that two observers, observing the same state
can still come to a different conclusion because the observers them-
selves are not in the exact same state. The same is true for a single
observer that makes two subsequent observations: it will, in general,
not be in the exact same state.® For some observable quantities this
will make a difference, for others not.

As an example, recall Galileo pondering the isochronicity of the pen-
dulum. Suppose one swing movement of the incense lamp takes three
seconds. When the question is: “Does the swing of the pendulum take
longer than one heartbeat?”, the answer will be ‘yes’ to a very large
extent independent of how fast Galileo’s heart was beating. But the
answer to the question “Does the swing of the pendulum take longer
than four heartbeats?”, will depend on the state of Galileo’s heart. If
he had to run to reach the cathedral in time to attend mass, the answer
could well be ‘yes’; if he has been seated on the church bench for some
time, the answer is probably ‘no’. In both instances the outcome of
the observation is in itself correct; the problem is how to interpret the
result. If Galileo is already aware of the isochronicity, he will come to
the conclusion his heart is beating fast. Galileo would effectively be
studying his own state and, given how smart he was, he would proba-
bly determine within reasonable bounds how much faster his heart is
ticking than it was at the time he discovered the isochronicity”. So far
we have discussed only the two cases that are most easily interpreted:
(a) a stable heartbeat allows to determine the (near) isochronous char-
acter of a pendulum, and (b) a stable pendulum allows to determine
heart rate variability. Both cases imply repeated measurements and

8This is how we can recover the machinery of quantum probability and still
maintain determinism and is the essence of the Brussels’ approach to quantum
probability.

In fact, Galileo’s discovery led Sanctorius of Padua, a friend of Galileo and
physician by profession, to construct a device, the pulsilogium which measured a
patient’s pulse by varying the length of a pendulum until the periods are equal.
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inductive reasoning and can be performed with reasonable scientific
validity.

But what about one single observation? Say Galileo is allowed to
make only one single comparison between two situations: one in which
the lamp was just lit, resulting in a wide swing, and a bit later when
the swing is more modest. He counts the heartbeats in the two situa-
tions. Now either the number of heartbeats is the same, or the number
is not the same. The problem is how to interpret that result. If the
two swings are found to count equal heart beats, Galileo can conclude
either (i) the pendulum’s swing is isochronous, or (ii) his heart rate
varied in precisely the same way as the pendulum did. If, however, the
timing is not equal, he can conclude that (iii) the pendulum’s swing is
not isochronous, or maybe that (iv) his heart was beating at a different
pace. Perhaps option (ii) seems the least probable option, in fact, there
is no option he can logically rule out from his observation. Maybe he
missed a heartbeat, maybe his heart missed a beat. But the problem
of interpreting the data remains even when all heartbeats are counted
properly!'®. The only way to interpret the result correctly is by having
knowledge of either the pendulum or of his own heart rate variability at
that moment, in which case we're back to cases (a) and (b) described
above. But how can Galileo obtain such knowledge? His confidence in
correctly judging between options (i), (ii), (iii) and (iv), can only be as
big as his confidence in his capability to determine his own heart rate
variability. We could simply propose that his state be observed by a
secondary observer and communicate the results to the him. But to be
certain about the observations the second observer makes, we need to
know his state too, leading to an infinite regression of observers. This
begs the question what an observer can observe about its own state.
To interpret correctly which hypothesis is supported by the observa-
tion (hence in our definition of observation, to correctly observe), an
observer depends on the ability to verify hypotheses about itself'*. This
in turn implies a fundamental constraint on deterministic!? formaliza-

10We reject the idea that the problem stems from using an inaccurate stopwatch,
such as the human heart. When Galileo would have had a more precise quartz
stopwatch, the problem of deciding between options i, ii, iii and iv, is indeed far less
problematic, but as a matter of principle, the problem has merely been mitigated
to the last few digits of the outcome. One can still come up with more sensitive
hypotheses that Galileo would not be able to affirm or refute without more detailed
knowledge of how and when he starts and stops the stopwatch. We will treat this
case extensively in Chapter 3.

A very nice demonstration of this principle can be found in analog meter dials.
Such dials come equipped with a mirror behind the scale. The function of the mirror
is to eliminate parallax errors by providing a means to the observer to position him
directly perpendicular above the scale. In essence, the mirror allows the observer
to minimize the effect of his own state on the outcome of the osbervation.

12 Although an inherently probabilistic formalization of observation can mitigate
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tions of observation, because the observation that is required to verify a
hypothesis about the observer, is also to be performed by an observer.
This apparent epistemic circularity can perhaps be mitigated, but never
eliminated and may well be the reason why, in spite of an enormous
variety of observational models in statistics (such as estimation the-
ory) and engineering (signal analysis) that deal with observation under
specific circumstances, we have not found a general abstract theory of
observation in the literature. Rather than circumventing the issue by
tackling the problem only in specific instances, we want to take the bull
by the horns and expose the problem. To that end we present a di-
agonal argument that, under plausible conditions, shows even classical
observers have properties they cannot observe and hence states that
they cannot distinguish between. In absence of epistemic certainty, we
resort to probability. We will propose a quite general but conceptually
simple probabilistic model of observation that can be illustrated by an
urn model. For each question that we can ask about a system, we have
an urn filled with observers (possibly in different states) and an urn
with copies of that system (possibly in different states). We ‘draw’
an observer from the first urn and we ‘draw’ a system from the other
urn and let them interact. Their interaction leads deterministically to
an outcome. Every possible repeated experiment of a single observ-
able quantity can then be modelled by two probability densities (or
measures); one that describes the probability of drawing an observer
in a given state, and one that describes the probability of drawing the
system in a given state. The probability of a specific outcome is hence
the relative fraction of (observer, system) pairs that interact to yield
that specific outcome, to the total numbers of (observer, system) pairs.
Although conceptually simple we maintain that, under the assumption
of determinism, every possible instance of repeated observations can
in principle be modelled by this scheme. It is however, in general not
possible to operationally obtain the probability distributions for each
urn separately. With additional assumptions about these distributions,
we show how this formalization of observation can be used to model
classical statistical, quantum probabilistic as well as more general sit-
uations. We will see even modern Bayesian approaches to model the
ambiguities of interpretation in the human visual apparatus fit within
this scheme.

Overview

Much of the content of this thesis boils down to two main topics: the
construction of a general and formal theory of observation and the
investigation of the extent in which the role of observation determines

the problem, it cannot solve it, for there is no room for certainty in probability.
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the mathematical structure of quantum theory. In particular, Chapters
1 to 3 deal with the observer from a logical /structural perspective. We
begin with a formal theory of properties and states to develop the
notion of classical observer. Several fundamental problems related to
classical observation are identified and motivate the search for a viable
definition of potential properties and the formal introduction of the
probabilistic observer. This then is the content of Chapters 4 to 6 which
deal with probabilistic observation. We combine notions of potential
properties and the probabilistic observer to show that this framework
is sufficiently rich to reproduce the probabilistic structure of quantum
theory. We work out a model that is more general than classical and
quantum mechanical. We end with philosophical ponderings on the
nature of observation as essentially a form of inference. To help the
reader with the thread of the story, we give an overview of what is
treated in each chapter.

Chapter 1 is this introduction and we will not attempt to summa-
rize this summary, lest we fall into infinite regression.

In Chapter 2, we introduce the important notions of system, exper-
imental proposition, property and finally state following the so-called
Geneva approach. This approach, due to Jauch and Piron who built on
the seminal work on quantum logic by Birkhoff and von Neumann, had
as its main goal the reconstruction of Hilbert space quantum mechanics
starting from operational definitions. We introduce barely more from
this approach than necessary for our purposes. In particular, we will
only introduce the operational part of the approach. We discuss at
some length different types of classical properties as we will need these
in Chapter 3. We end the chapter with comments and a sketch of the
Geneva approach.

Chapter 3 introduces the classical observer. By definition a classi-
cal property is either actual or its negation is actual; a classical system
is a system that has only classical properties. The classical observer
then, is a classical system that can identify whether a given classical
property holds for a given system. We will re-introduce the concepts
of Chapter 1, but in a form much closer to the Brussels-Geneva ap-
proach due to Diederik Aerts and collaborators, which is somewhat
more axiomatic than the Geneva approach, although the basic ideas
behind the two approaches are similar. This more axiomatic approach
is necessary because the observer cannot a priori be assumed to opera-
tionally establish its own properties without already having properties.
However, the operational procedures of Chapter 1, allow us to formu-
late precisely what is required of an observer. Hence we introduce a
mathematical framework that represents a simple protocol for physi-
cal observation and motivate three particular requirements (consistent,
free and introspective) for the classical observer. An observer that sat-
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isfies all three requirements will be called an adequate observer. We
prove by a diagonal argument that the adequate observer faces funda-
mental constraints on the ability to observe itself. For more complex
questions, even a consistent and free observer cannot observe all its
own actual properties. These results are followed by a brief overview
of published results that (although often starting from different angles)
lead to similar or related conclusions and some of the implications that
are most important from our perspective. In particular, we argue un-
decidability may offer a possible explanation why quantum mechanics
will not give a mechanism for the production of an outcome; it can in
some sense be regarded as a formal escape from a far worse problem:
inconsistency. We end the chapter pondering the consequences of the
result with respect to human observation.

In Chapter 4,we explore the notion of a potential property and
its relation to the mathematical representation of the state of a sys-
tem. As per Chapter 3, no adequate self-observer exists, i.e. it is
impossible for an adequate observer to observe all its classical proper-
ties. Whereas an actual property is defined in Chapter 2 as a property
that is true, regardless of whether it is observed or not, the notion of
a potential property is one that may be true (or not) and repeated
observation may yield different results. This then invites us to look
into the notion of a potential property and its relation to the concept
of probability. The two most important questions we address in this
chapter, is how we can operationally define such a property and how
we can mathematically represent it. In a series of steps we come to a
definition that, building on a result obtained by Summhammer, leads
us to regard potential properties as closed one dimensional subspaces
in a finite dimensional Hilbert space. This fascinating result, building
solely on classical notions of probability, is strengthened by an argu-
ment of Wootters. Whereas we have sought to represent a potential
property, Wootters was looking for a sensible measure of the statisti-
cal distance between two probability distributions with respect to an
experiment with a fixed but finite number of outcomes starting from
the definition of statistical distance given by R.A. Fisher in the context
of genetic drift studies. Wootters concludes that the Hilbert space an-
gle between the normalized probability distributions uniquely (modulo
mere proportionality) fits the desiderata. An extension of this work
to cover the case of distinguishing between two quantum states is non
trivial, but delivers exactly the same result. The arguments form an
intriguing argument that it may well be the impossibility of exact ob-
servation which compels us to represent states in a manner conform
with orthodox quantum theory. In the beginning of Chapter 5 we will
initially regard a state as nothing more than an element of a measur-
able set, but in subsequent sections and indeed in the rest of the thesis,



Introduction 23

we restrict our notion of state to an element of a vector space.

In Chapter 5, we introduce the probabilistic observer. As ex-
plained at the end of the former section, the inner machinery of our
probabilistic observer is still inherently deterministic as outcomes ob-
tained in experiments are without exception regarded as a co-creation
between the system under study and the system used to observe. Prob-
ability is derived as a consequence of a lack of knowledge about the
state of the system, the state of the observer, or both. We introduce
a formal mathematical description that allows for the description of
an extremely broad class of probabilistic experiments, including many
types of biased observation. We propose a criterion that distinguishes
a special kind of observing system: the optimal observer. The optimal
observer aims to convey in the particular outcome for any given trial of
an experiment, as much information about the system observed and as
little information about itself as possible. We will only consider optimal
observers in the remainder of the work. Whereas classical probability
theory is a formalization of repeated measurements on an ensemble of
similar but not identically prepared systems, we will treat as most im-
portant situation one in which we have lack of knowledge about the
precise state of the observer, that is, repeated measurements on identi-
cal system states with an ensemble of similar but not identical observer
states. We will do so for both epistemic states, which are technically
represented as points in the standard simplex, as for ontological states,
represented as unit vector states. We show how the Born rule is re-
covered if the density of observer states is uniformly distributed over
the unit sphere. We discuss how this can be regarded as an alternative
to orthodox quantum theory by providing a set of axioms that lead
to the same experimental consequences as standard quantum theory.
The proposal can be falsified, but only if we deviate from the uniform
density of observer states.

An example where such a deviation is present forms the content
of the entirely technical Chapter 6. We first explicitly work out the
optimal observer for an experiment with two outcomes and show that,
although the decision mechanism is different, the model is very similar
to the so-called epsilon model of the Brussels school. Besides reproduc-
ing the probabilities of a spin 1/2 measurement, the model allows for a
natural parametrization of the density of observer states. We examine
our formalization of the probabilistic observer for a non-uniform den-
sity of observer states and work this out in the simple case of only two
possible outcomes as this already entails considerable mathematical
complexity. We calculate parameterized conditional probabilities and
show that the two limiting cases of the density of observer states repre-
sent a quantum and a Kolmogorovian model for experiments with two
outcomes. In between these two extremes there are regions for which no
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Hilbert space model, nor a Kolmogorovian model exists, highlighting
the scope of probabilistic scenarios this generalized probability model
can yield.

In Chapter 7 we ponder on some more philosophically oriented
ramifications. We analyze how both scientific and sensory observa-
tion can be regarded as forms of inference, an idea that was strongly
advocated by Helmholtz, but that goes back as far as Ptolemy. We
propose how the optimal observer may be regarded as a paradigm for
observation. Indeed, a proposal to mathematically model human vision
from a Bayesian perspective was able to explain a variety of illusions
that occur in human visual perception. There too, an observer is an
inferential system that seeks to choose an optimal percept from a given
set of possible percepts. We discuss the relation to our work and find
the proposals to have more in common than they differ. The fact that
the same principle governs human perception and quantum mechanical
measurement, strengthens the paradigm that observation is a form of
inference, one that seeks to maximize information about the system
under observation. We end with a discussion on the implications of
our proposal for of the interpretation of the quantum state. We argue
the state is both an epistemic and an ontological description at the
same time: it represents a lack of knowledge situation, but one that is
fundamentally irreducible and hence ontic in its very nature.

Chronology

The manuscript that lies before you is by no means a complete story.
It is rather an attempt at ordering some of the various lines of research
that I have published over close to three decades that can be collected
under the leitmotiv “observation”. The ordering of the chapters pro-
vides a conceptual thread, starting from a very general abstract frame-
work adding more and more mathematical structure as we proceed!?.
As it happens, the chronological order of this research is almost oppo-
site to the ordering presented here to you. To set the record straight I
will give you the true story: a brief chronological overview.

It all started back then with the attempt to understand to origin
of probabilities in quantum theory. When I came to Brussels in my
early twenties, much of the work there was devoted to the study of
models, many of them due to Dirk Aerts, in which probability arises
as a consequence of a lack of knowledge about the measurement inter-
action. Although the arisal of probability in these toy models was easy
enough to understand, the probabilistic structure was surprisingly not

13A good example is the concept of state, which is introduced as an element of
a set. This set is first identified as a lattice, later as a measure space and finally as
the set of unit rays in complex Hilbert space.



Introduction 25

a Kolmogorovian one and these models could reproduce the probability
of simple quantum systems quite easily. Besides this surprising math-
ematical fact, it seemed to me to represent the actual state of affairs
in experimental practice. Indeed, experimentalists take great care to
produce ensembles of identically prepared states of the quantum sys-
tem under study; rather obviously no such procedure is possible for
the apparata used to measure these carefully prepared systems. The
idea that this is indeed the origin of probability in quantum theory has
ever since been my working hypothesis and a fruitful one I dare say.
My first research was calculating families of conditional probabilities,
showing that the limiting cases of these models could be represented in
Kolmogorovian and Quantum probabilistic frameworks. Perhaps even
more surprising was that the overall probabilistic structure was more
general and hence not describable in either one of those frameworks.
The essence of that calculation can be found in Chapter 6.

I was very enthused about these results, but what bothered me
about the hidden measurement approach, as we would call it in Brus-
sels, is that the hidden measurements were interpreted as representing
the state of the measurement apparatus, but these “states” were el-
ements of simplices rather than unit spheres and hence did not have
the same mathematical structure as quantum states. I set out to see
if this could be remedied. It turned out this was entirely possible and
a simple and natural hidden measurement model in an n-dimensional
complex vector space emerged. This model is presented in the later
sections of Chapter 5. The criterion used to determine which states of
the measurement apparatus yield a particular result (for a given sys-
tem state) turned out to have a beautiful and almost trivial statistical
interpretation: the outcome that should be selected is the one that is
most likely to tell something about the system state and not about the
apparatus state. The technical details of this proposal can be found in
the opening sections of Chapter 5. It seemed therefore that the fluctua-
tions in the outcomes of quantum mechanical experiments are far more
than a mere inconvenience: from our perspective they are necessary for
optimal state estimation.

The idea that the inherent fluctuations in measurement outcomes
are at least partially responsible for the mathematical structure of
quantum theory was fortified from an entirely different perspective.
Wootters showed the Hilbert space angle provides a sensible distance
between two probability distributions on the basis of distinguishabil-
ity in a fixed number of experiments, an idea that goes back to the
famous statistician R.A. Fisher. I saw how a reversal of that idea,
using an adaptation of an argument by Summhammer, could be used
to construct an operational definition of potential properties as a unit
vector. As an actual property is a special case of a potential property
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and the state of a system is introduced in Chapter 1 as nothing but the
‘maximal’ actual property of that system, it follows that states are to
be described as unit vectors. This can be found in Chapter 4. From
where I was standing at that time, the fluctuations in the measurement
could provide a clue as to why we represent states as unit vectors and
how outcomes are selected in the measurement process such that the
resulting probability is in accordance with Born’s rule.

The last line of research to be completed was the one that sought
to understand the origin of this lack of knowledge about the precise
state of the observer. It turned out that classical self-observers face a
primitive form of measurement problem. A profound consequence is
that a classical observer, living in a classical universe, can never estab-
lish with certainty that it is itself a classical system. There will always
be a fundamental lack of knowledge about oneself. The most beauti-
ful aspect of this to me, is that it is fundamentally impossible to tell
whether this lack of self-knowledge is epistemic or ontological as every
bit of knowledge (represented by the epistemic state of affairs) must be
encoded in the natural or ontological state of the observer. I have the
feeling that, even after all these years of thinking about this, I still do
not see all ramifications of this proposal. As I have not entered formal
territory here, I dare to go out on a speculative limb to describe two
situations which hint that the result may have important consequences.
The first situation is one in which we consider a single individual ob-
server, say a famous physicist such as Feynman. Everything he has
learned in his life, from the very first words he uttered to the advanced
physical theories that won him the Nobel Prize, has come through his
senses to become part of his inner state. Every conclusion he draws
and every test of every theory that he has constructed are ultimately
forms of self-inference. Even if we extrapolate our findings as behav-
ior of the outside world in the end we are self-observers. Many of our
extrapolations about the outside world may very well be exactly that:
valid inferences about the outside world. But inherent limits to self-
observation will spill over into limits regarding the possible descriptions
of reality that we can meaningfully discern and I wonder to what ex-
tent this is the case in quantum theory. The other speculative picture
I like to paint is one in which the observer observes another system,
which is perhaps also an observer. As the two learn and communicate
about what they have learned, this seems a richer scenario than the
first. I believe it indeed is, as errors in inference by one observer can be
remarked (and possibly rectified) by communication with another ob-
server. However, according to our definition in Chapter 3, the ‘observer’
is the complete system used to draw inferences about some system. If
two work together to obtain a single outcome, they can be regarded
as a single observing system. Every measurement apparatus and every
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tool they use becomes by extension a part of that observing system. In
our mind we are free to shift the boundary between the observer and
the observed ever further until it encompasses the entire observable
universe, at which point the universe has become a self-observer. We,
as part of that universe, are a manifestation of a universe that tries to
understand itself through observation and formalization. There will be
questions it can never answer.

By sheer coincidence I recently stumbled upon a paragraph in my
high school dissertation [13] on artificial intelligence written 35 years
ago that I cannot help but quote: “It may be the case our brains man-
age to describe themselves without contradiction. They have, however,
no means to verify the correctness of their description. This is because
the ‘observer’ that would follow the brain in its description would in
turn have to be verified and this verification would in turn have to be
verified; etc...”'*. Tt seems I have come full circle.

14“Het zou kunnen zijn dat onze hersenen zichzelf beschrijven zonder op een
contradictie vast te lopen. Zij hebben echter geen mogelijkheid de juistheid van
hun beschrijving te toetsen. Dit komt omdat de ‘observator’ die de hersenen zou
volgen in hun beschrijving op zijn beurt weer getoetst moet worden en die toetsing
op zijn beurt weer; enz...”
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Chapter 2

The description of physical
systems

It’s not denial. I'm just very selective about the reality I
accept.

—Bill Watterson, Calvin and Hobbes, 1958

To begin with, the most difficult part is to decide where to begin, for
this determines the concepts one takes as primitive and the concepts
that can be defined in terms of these primitive concepts. Our aim is
an abstract formalization of the process of observation, so first of all,
we take for granted that there exists a universe and that within this
universe there exist observers and phenomena to observe. More often
than not, we are not interested in the universe as a whole. We call
the part of the universe that is of interest to the observer, the physical
system under study or simply the system!.

Examples of systems that are currently under scientific study in-
clude about anything from electrons to galaxies, and from bacteria to
ecosystems. We assume that it makes sense to study the system in
relative isolation of the rest of the universe. It may be the case that
our system’s behavior depends crucially on some other system; as long
as this other system is not the whole universe, we can enlarge our sys-
tem of interest by including it. It may also be the case that the rest
of the universe has some overall influence on the system; as long as we

'No word is perfect, but alternatives like ‘entity’ (too alien) or ‘phenomenon’
(too transient) seem less appropiate.

29
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can capture that overall influence in a small set of global parameters
(such as temperature or pressure) we can include these in our descrip-
tion as well. Although it is not at all obvious that every conceivable
part of the universe can be studied without the necessity of having
a detailed description of the universe as a whole, the effectiveness of
science strongly suggests that for a wide variety of phenomena, this
can indeed be assumed. Perfect isolation is admittedly an idealization
and one that can even be hard to approximate in the laboratory, but
it is difficult to imagine how science could proceed if this were not pos-
sible. We therefore restrict our attention without further apology to
the observation of phenomena that can be isolated in the above sense.
Even a single, isolated system may change over the course of time,
hence we assume every system is at any given time instant in a certain
ontic state. By saying the system is in an ontic state, we mean that
the system exists in reality, as it is in itself, and that ‘what it is” may
change without altering the fact that it remains the same system. We
assume that this ontic state can be represented mathematically and
will call such a representation the ontological state of the system, or
simply the state of the system? if this representation is formal and su-
pervenes on the ontic state. Ideally, ontic states and ontological states
stand in a one-to-one relationship with each other. However, because
the representation of a phenomenon is distinct from the represented
phenomenon and to accommodate the possibility that even our best
knowledge of a system may be incomplete, it is unreasonable to require
that every aspect of the ontic state has a corresponding aspect in the
ontological state. Hence we insist on the more modest demand that
for a state to be called ‘ontological’, it is required that different onto-
logical states always pertain to different ontic states®. A mathematical
representation of the ontic state of a system is called the ontological
state of the system if different representations within the same mathe-
matical representation theory, necessarily correspond to different ontic
states. The comparison between these two cannot be made direct, as
they belong to different categories: ontological states are mathematical
entities and ontic states are natural ones. When we want to consider
a theory about a physical system we need to specify which part of
the theory corresponds to reality and how this can be tested by an
experiment. We shall use the operational link between states and (ex-
perimental) propositions that is the operational basis of the so-called

2In many cases of practical interest, we have incomplete knowledge of the precise
ontological state of the system and we are forced to ascribe an epistemic state to
the system. We will take the ontological state as the primitive notion and treat
epistemic states as mixtures of those.

31t is precisely in this respect that epistemic and ontological states differ: two
systems described by different epistemic states, can be in the same ontic state.
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Geneva-Brussels approach to quantum logic ([5], [14], [24]). We shall
not nearly go as far as to impose a quantum logic for systems. In par-
ticular, we will not impose axioms that are not operationally motivated
(e.g. the covering law or weak modularity), but restrict ourselves to
the main operational ingredients of this approach, which we proceed to
describe in this chapter.

Experimental propositions and prop-
erties

Reality is that which, when you stop believing in it, doesn’t
go away.

—Philip K. Dick, How to build a universe*, 1978

Scientific theory is supposed to tell us something about reality; it must
be able to predict something in order to test it. The prediction doesn’t
need to be revolutionary or original; it may “predict” the voltage drop
over a resistor in an electronic circuit. However, an essential require-
ment is that we can compare the outcome of an experiment with the
prediction the theory offers. Only if the two coincide within reasonable
limits, one can consider to claim to have described something “real”.
To give an operational means to this end, we introduce the concept of
a test. Throughout this chapter we treat the notion of an observer as
an unproblematic given: we assume there exist systems that succeed in
performing experiments and obtaining the results of the experiment.
Only after we have given a precise meaning to the notion of state®,
we direct our attention in the following chapters to the observer as a
physical system.

Tests and Properties

For a part of the universe to be identified as a system, we need to be
able to recognize it as such. How do we recognize one isolated part of
the universe as a system that we call an electron, and another isolated
part as say, a proton? To recognize implies to be able to distinguish
successfully among others. To distinguish an electron from a proton,
we can expose both to an electromagnetic field and detect which way

4 ...that doesn’t fall apart two days later.

®Unless specified differently, the word “state” is in the remainder of this work
used as a shorthand for “ontological state”. Epistemic states will be studied in
Chapter 5.
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they go as they will move in opposite directions. So we have an ex-
perimental test at our disposal that will tell us unequivocally whether
the system is an electron or a proton. The notion of an experimental
test is central to the operational formalism for physical systems of the
so-called Geneva School®, which has its origins in the nineteen seventies
under Jauch [126] and Piron [162]. They called a test a question or a
definite experimental project. Related names that one can find in the
vast literature on the subject are experimental propositions and yes-no
test or simply test. For example, Bogdan Mielnik [150] writes: “By
a question (also: proposition, yes-no experiment) one usually under-
stands any physical arrangement which, when interacting with a micro
object, may or may not produce a certain macroscopic effect interpreted
as the answer ‘yes’” Piron’s own definition is shorter: “An experiment
1s a test iff the result of the experiment can be expressed as an alter-
native of which the terms are yes and no” [163]. Notwithstanding the
apparent simplicity of this last definition, for Piron this is a complex
notion. It involves an apparatus devised to answer that question, an
experimentalist to execute the experiment and an instruction manual
that shows us how to operate the apparatus and gives a rule that al-
lows the experimentalist to conclude whether the answer was yes or
no. That it is possible at all to distinguish an electron from, say a
proton, rests on the fact that it is a property of an electron to have an
elementary charge and that it is a property of the proton that it has
the same elementary charge but with opposite sign. So the result of
yes-no test allows us to establish whether a given property holds or not
for system. To make this idea more precise, we first introduce some
vocabulary.

True tests and actual properties

For some systems under certain circumstances, we know in advance
with certainty that the test will result in a yes. In this case we will
say the test is “true”. We will capture this in the following operational
definition’:

6The Geneva school, later called the Brussels-Geneva approach by Piron, had as
its main goal to recover the axioms of quantum logic in an operational way. More
on the history of this approach can be found in the last section “Comments and
notes” of this chapter.

"In compliance with the historic development of the Geneva approach, the ma-
jority of the definitions in this chapter will be operational. An operational definition
specifies the procedures that define the concept in a sufficiently specific way as to
allow for reproduction in an actual experimental setting. After this chapter, most
definitions will be regular mathematical definitions. A noteable exception can be
found in chapter 4 in which we will formulate a statistical operational definition of
a potential property.
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Definition 1 (true test) A test is true iff the system is prepared in
such a way that if we were to perform the test, the answer would be yes
with certainty.

Since truth and falsehood are traditionally considered as pertaining
to a proposition, it may feel awkward to regard a test as being true or
false. The reason why tests are called true is because in the Geneva
School a test is regarded as an “experimental proposition”. More pre-
cisely, one could say the proposition that corresponds to the question
that the test answers is true. We will, however, stick to the usual
phrasing of simply calling the test true (or not). A test that is true for
S corresponds to a property that holds for S. We will say that such a
property is actual.

Definition 2 (actual property) A property is actual iff the test that
corresponds to it, is true.

The subtlety of the definition of an actual property lies in the fact
that, from the definition of true test, we do not necessarily need to per-
form the experiment, but that, counter-factually, if we were to perform
the experiment, the answer would be yes. According to our definition,
an actual property is one for which we can predict with certainty the
outcome of the test that corresponds to it. This resembles the no-
tion of element of reality given in a seminal paper of 1935 by Einstein,
Podolsky and Rosen. In [93], they proposed a sufficient® condition for
establishing whether a prediction of a value for a physical quantity
corresponds to an element of reality:

“If, without in any way disturbing a system, we can pre-
dict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of
reality corresponding to that quantity.”

This is what Piron seems to have had in mind, for he writes in the
introduction of [163] “The stating (sic) point was to take seriously Fin-
stein’s criticism of the usual interpretation of quantum mechanics, and
thus to describe a physical system in terms of "elements of reality”.”
However, he acknowledges that his proposal for an actual property and
the above described elements of reality differ markedly in at least one
respect: “without in any way disturbing a system”. We cannot always

8In the same paper we find: “It seems to us that this criterion, while far from
exhausting all possible ways of recognizing a physical reality, at least provides us
with one such way, whenever the conditions set down in it occur. Regarded not
as a necessary, but merely as a sufficient, condition for reality, this criterion is in
agreement with classical as well as quantum-mechanical ideas of reality.”
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know whether we test “without in any way disturbing a system”. To
this end, Piron introduces the following distinction: “A question 3 is
said to be ideal if every proposition, compatible with the proposition b
defined by B, which is true beforehand is again true afterwards when
the response of the system is "yes" 7. So if b is true before the measure-
ment and the test is of the ideal kind, then the test reveals the element
of reality. Piron defends this definition of an ideal test by saying: “It is
a very strong condition which in practice can only approach realization.
We have to impose it, however, if we want to describe the measurement
process without having to state exactly the mechanism proper to each
particular apparatus.”

Apart from these important caveats, we warn that it would be un-
necessarily stringent to demand a scientific theory should deal only with
elements of reality because many meaningful experiments in virtually
every scientific discipline result in a probability, not in certainty. Nev-
ertheless, a theory that can predict the probability of the occurrence
of an outcome for a given experiment also needs to be able to describe
the case in which that probability is one, hence when the outcome cor-
responds to an element of reality, modulo the fact that it should be an
ideal measurement. This allows us to make contact with the experi-
ment in such a way that we can say our state deals with reality, as we
required for a proper account of the ontological state of the system.
Our notion of state — that, as we later will see, depends only on ac-
tual properties— will be realistic, but without demanding that every
physical observable needs to be an element of reality.

Note also that this definition agrees well with our everyday notion
of “having a property”. We can meaningfully talk about “an excellent
champagne” without uncorking the bottle and tasting it, or about “a
strong, safe car” without first crashing it into a wall and checking the
state of the driver and car. That this is still meaningful is because
we have sufficient knowledge of the system to expect to find that these
properties manifest themselves whenever we decide to test them. That
we believe these properties to hold, may be because we have witnessed
people survive a crash in the same type of car, or because our memory
recollects a delightful occasion in which one uncorked a bottle of cham-
pagne with the same label. Such experiences may form one’s personal
judgement, but it is fair to ask more to meet the criteria of a true test,
i.e. to be able to predict with certainty. Still, absolute certainty does
not exist and the degree to which our believe is justified, depends cru-
cially on our ability to produce systems in the same state. Ultimately
this depends on how far our theoretical knowledge and technological
abilities allow us to produce systems in highly similar states, at least
with respect to the properties of interest.
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Preorder relations

There are questions whose answers imply the answers of other ques-
tions. For example, the question “Is it a dog?”, if true, implies the
question “Is it an animal?” is also true. Using the initial letters of the
Greek alphabet «, 3,7, ... to denote a question, we can capture this in
the following definition:

Definition 3 (question preorder) If it is the case that whenever
question « 1s true, then question [ s also true, we will say o implies
5 and write:

a=xp. (2.1)

Clearly we have o 5 a ( X is reflexive) and if & < § and § < v
then a < v (X is transitive), so that < is a preorder relation on the
set of tests. A preorder can be used to define an equivalence relation
denoted =~ in the usual way.

Definition 4 (question equivalence) Two questions that imply one
another will be called equivalent:

a=xpand f < a, iffax . (2.2)

Apparently if o ~ [ then o and [ test the same property, hence if
we call the set of (experimentally meaningful) questions ), we define
the equivalence class of the question a as: [a| ={y € Q: v~ a}. A
property is hence more appropriately associated with the equivalence
class of tests, than with any particular test within this equivalence class.
This is why a property a (properties are denoted by bold face roman
letters a,b,c...) in the early literature on the Geneva approach was
often identified’ with the equivalence class of tests: a = [a]. A test 3 is
then valid for the verification of property a if and only if § € [a] = a.
Consequently, the set of properties of a system S can be identified
with the quotient class )/ ~ . The preorder < (2.1) on the set of tests
induces a preorder < between two properties in a straightforward way.

Definition 5 (property preorder)
a<b iff foreveryaca,feb:axp (2.3)

If a < b, we will say the actuality of a implies the actuality of b.
As is the case for the question preorder, we have that < is reflexive
(a < a) and transitive (a < b and b < ¢ then a < ¢), which allows us
to define an equivalence class of properties.

Definition 6 (property equivalence)

a<bandb <aiffaxb. (2.4)

9This will do for an operational definition of a property for now; later on we
will postulate both the existence of properties and the fact that they correspond to
questions.
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A neglected problem for the partial order on prop-

erties
Historically, it was also imposed that two properties that imply each
other are, in fact, one and the same property:

ifa<band b < a, then a = b. (2.5)
For example, in Jauch ([126], sec. 5-3, p. 74) we find :

If we set a = b we have essentially replaced the proposition
by classes of equivalent propositions. In the physical interpre-
tation this means that we have defined a proposition as a class
of physical yes-no experiments, all of which measure the same
proposition.

Note that Jauch does not seem to make a distinction between
“proposition” and “property” here. Piron is clearly more careful when
he writes about the implication for questions in [163], p. 20:

This is an ordering relation if one agrees to identify equiva-
lent questions. By definition, two questions [ and v are equiv-
alent if one has f < vy and 7 < 3.

Nowhere does Piron explicitly write something like (2.5), however,
once we identify equivalent questions and define a property as an equiv-
alence class of questions, it follows two properties are one and the same
property when they pertain to equivalent questions. Similarly, in [5] we
find on p. 16: “If a = 3 then clearly o and [ test the same property.”
It is only through equating equivalent properties that < becomes a par-
tial order and the set of properties of a system forms a partially ordered
set, also known as a poset'’. However, the identification of properties
in case the corresponding questions imply each other, is in general not
tenable. An example suffices to illustrate this fact. Take as system a
flashlight. The properties that correspond to the questions « : “Does
it give light?” and 3 : “Does it radiate heat?”, are equivalent: when the
switch is ‘on’ both questions are true and when the switch is ‘off’ they
are both not true; hence these property imply each other for every pos-
sible state of the torch. But “giving light” and “giving heat” are from
a common sense perspective clearly different properties. Many similar
examples can be constructed; one only needs pairs of strongly corre-
lated properties. As a last and perhaps more telling example, consider
the the questions a and S that correspond to measuring the spins of

10The difference between a preorder and a (weak) partial order lies in the fact
that the latter is anti-symmetric, which coincides with the definition of question
equivalence.
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a compound system consisting of two coupled spin 1/2 particles in the
direction z for one subsystem and —z for the other subsystem. If the
coupled system is in a singlet state, the outcome of these two measure-
ments will always be the same, hence the two questions are equivalent
and correspond to the “same” property!!. In later papers (see, for ex-
ample [25]) the approach proceeds more cautiously by first calling two
properties equivalent if they imply one another. This weaker structure
already allows one to talk about the supremum and infimum of a set
of properties. Still, the very first aziom of state property spaces (cfr.
Axiom 1 in Chapter 3, or section 3.1 in [25]), imposes that two proper-
ties are the same, if the set of states for which these two properties are
actual, are the same. This problem of identifying equivalent, but possi-
bly different, properties seems insufficiently addressed in the literature
on quantum logic and the Geneva approach; in fact we have found no
explicit reference to it at all. It may be the case that we can distinguish
between two properties, even if they are equivalent. The reason that we
know the properties of “giving light” and “radiating heat” are not the
same, is because we have examples of systems where these properties
are not equivalent. For example, boiling water radiates heat but no
light. Similarly an LED gives light without substantial heat radiation.
Hence we could tentatively propose:

Definition 7 Properties a and b are equivalent for a system S iff
a<b and b < a, in which case we write a =~ b.

Definition 8 Properties a and b are identical iff they are equivalent
for every system, in which case we write a = b.

It is not easy to see the ramifications of such a proposal, in partic-
ular in relation to the description of compound systems [198], which
has proved to be problematic for quantum logic type approaches to
quantum theory. We nevertheless accept (2.5) for now, and will briefly
come back to this problem and the consequences it has for our purposes
in Chapter 3 on p. 61, when we have developed the necessary concept
of state.

Potential properties
The number of all possible questions is staggeringly large. Hence we
will agree that the set of experimental propositions about a system

1A related problem plagues the concept of “observable”. As an example, take
inertial and gravitational mass. No known system or experiment can distinguish the
two, although the way we measure them is different. It is a matter of both research
and debate whether inertial and gravitational mass are identical, or merely have the
(exact) same numerical value for our current established spectrum of experiments
[134].
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are those that are known to be relevant for that system. By “relevant”
we mean those propositions for which experimental practice has estab-
lished the applicability and usefulness of the corresponding property
with respect to distinguishing different modes of being (states) of a
system, or to distinguish between different systems altogether'?. The
partially ordered set of (relevant) properties of a system S will be de-
noted Lg, for reasons that will become clear soon. If a property can
be relevant for a system S, but a test pertaining to the property is not
actual, we will say the property is potential.

Definition 9 (potential property) A property a € Lg is potential
for S aff it is not actual.

We see now why we include only relevant properties in Lg; if not
“having strawberry flavor” would be a potential property of the sun.
As an example, imagine you receive a batch of papers that is just wet
enough to make you wonder whether it burns well. You could test the
property by taking a piece of paper from the batch and try to set it
on fire with a flame. You might find you succeed, perhaps with some
difficulty. In doubt, you draw another piece of paper and repeat your
experiment. Some papers might be wetter than others, or perhaps the
outcome of the test depends on the temperature and time of exposure
to the flame that we use to test the property with. Whatever the
precise cause may be, if not all of them burn, we will say the property
of “burning well when exposed to a burning lighter” is potential rather
than actual'® for this batch of papers. When dried, that property may
be actual for the same batch of papers.

12To illustrate this, one can think of the classic game 20 questions (or any of its
many variations). In the game, one player -the answerer- thinks of a subject of her
own choosing and the other players try to guess what it is. To help them in their
guess work, they can ask whatever question they want to, provided that the answer
can be given as either “yes” or “no”. E.g., they are not allowed to ask “What is its
color?”, but it is legitimate to ask “Is it green?” It is remarkable that, even with
this most simple (binary) set of answers possible, no restriction needs to be set on
the things she may think of. It can be an object, a person, a feeling, a concept,
whatever. There is an online version of this game in which you are the answerer
and the computer attempts to guess what you have in mind. It is remarkable how
often the algorithm gets it right in just 20 questions.

3Note that a property that is never actual for a given system S (such as the
property of burning well for an inflammable piece of paper), is —at this point in
the development of the formalism— a potential property according to the definition.
We will later introduce more appropriate names for properties that never (or always)
hold.



The description of physical systems 39

The product test and the meet property

Suppose we have a system S and two properties a and b. The test that
corresponds to property a is denoted by «, the test that corresponds
to b is denoted 3. Because a and (3 correspond in general to entirely
different experimental setups, it is often not feasible to perform the
two tests simultaneously. Evidently, a system can have more than one
actual property at the same time, even if we can neither test these
properties simultaneously, nor sequentially. In [5] we find the following
example. Assume we want to investigate the properties of a given kind
of piece of wood, say pine. Consider the two properties'?:

a: Pine burns well; and b : Pine floats on water. (2.6)

The test a € a could consist of putting the piece of pine into a specified
fire for a specified duration of time, taking it out and see whether
it burns. The test 8 € b could consist of throwing the pine into a
pool of water and observe whether it floats. Evidently pine has the
property that it burns well, and also the property that it floats on
water. Yet it is also evident that one cannot simply perform the two
tests that correspond to these properties, neither simultaneously nor
sequentially, because wet wood doesn’t burn and burned wood is no
longer wood!'®. The problem is then, how do we operationally define a
test that represents having two properties? The answer can be found
by analyzing what we mean when we say that pine has both property a
and property b. We do not mean that it necessarily burns and floats at
the same time, but that it would float when we would drop it in water,
and it would burn when we would expose it to fire, whichever of the two
tests we decide to perform. So the solution is as simple as it is subtle.
Pick either « or § at random (for example, by throwing a coin), and
perform that test. We will say the product test, denoted as «- 3, is true
iff the result of the test is yes with certainty. Because we picked one
of the tests randomly from the product test, yes with certainty implies
the answer to both tests needs to be yes with certainty'®. So o - 3 is

"“The properties burning and floating are explicitly dispositional properties.
When we say pine burns well, we generally don’t intend to say it is burning, but
rather that, if we were to set pine on fire, it would burn. Many physical properties,
like mass and charge, are not formulated in this way, although they too, imply
specific behavior under (often counterfactual) procedures.

15Because properties were defined as equivalence classes of questions, there may
be tests that are equivalent to burning well and floating on water and that never-
theless can be performed simultaneously. Alternatively, we could break the piece of
wood in two pieces and perform one of the tests on each half. Such examples don’t
render the definition meaningless, for it may be impossible to cut the system in two
pieces, or there may be circumstances such that no equivalent but compatible tests
exist.

160One can rightfully debate whether one can have certainty about the actuality
of an untested property. It is nevertheless undisputable we very often attribute a
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true iff « is true and [ is true. This procedure is readily generalized
to an arbitrary number of tests «;, each one of the a; corresponding
to property a;. The product test, denoted II;«;, is then operationally
defined as follows:

Definition 10 (product test) We denote by I1;c; the product of the
tests a;. The test that corresponds to 1l;c; 1s to choose at random one
of the tests a; and attribute to 11,y the result of this test.

We see that II;«; is true only if we are certain that the result of
each «; is true. Product tests induce product properties.

Definition 11 (meet) The property that corresponds to 1l;cy; is de-
noted as N;a;. We call N\;a; the meet of the properties a;.

The meet is always well-defined if the properties a; are because we
have an operational procedure that can tell us how to observe it. The
property A;a; is actual if we are certain that the result of the product
test would be yes, whichever test a; we decided to perform. Hence
every a; must be actual and A;a; implies every a;. Using the partial
order relation for properties, we have N;cja; < a; for all ¢ € J, with J
an arbitrary index set. We can generalize this directly to the following
proposition:

Proposition 12 Let I and J be two index sets with I C J such that
for every 1 € J we have a; € Lg. Then

Niega; < Niera;. (2.7)

Proof. If A,cja; is actual, then every a; with ¢ € J is actual.
Because I C J, the a; with ¢« € I are actual, which shows that A;cra;
is actual. W

The set of properties as a complete lattice

We have already mentioned that the set of properties Lg of a system
S together with the (partial) order relation <, form a partially ordered
set or poset (Lg,<). If there exists an infimum and a supremum for
any subset of this poset and a maximal element exists, the poset is
called a complete lattice. It is not difficult to show that the meet of
an arbitrary set of properties is an infimum with respect to the partial
order <. (Recall that the infimum of a subset V' of a preordered set W is
the largest element of W that is smaller than all the members of V.) The

property to a system that may not be testable under the experimental circumstances
necessary to test another property.
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proof is simple. As an immediate corollary to the previous proposition,
we already have that A;a; implies (is “smaller” than) every a;. Suppose
we have found x € Lg such that Vj : x < a;. As the actuality of x
implies the actuality of each a;, we have x < A;a;. Hence A\;a; is the
largest element that is smaller than the elements of a;.

The last requirement to give Lg the structure of a complete lattice,
is to postulate the existence of a (trivial) question 7 in () which is
always true!” and which corresponds to a maximal property denoted
by 1 = [T] that is always actual for S. (Technically speaking we should
also assume there exists a property 0 which is never true. Alternatively,
this can be derived after we have introduced the complement in the
lattice.) The structure we have then obtained, is a complete meet-
semilattice (Lg, <,N\). To obtain a complete lattice we also need the
supremum of arbitrary subsets Lg. This role is played by the join
denoted as V. The mathematical-canonical way to define the join of a
set of properties {a; : i € I} from the meet is:

\/a; = \{b eLsla; < b,Vi € I} (2.8)

el

It is unfortunately not always obvious what the join of two proper-
ties denotes physically, but at least we know precisely how to con-
struct it if we have the complete meet-semilattice. The structure
(Ls,<,A,V,1,0) is then a complete lattice, which explains why the
set of properties is traditionally given the symbol £. The smallest
members of a lattice that are not zero are called atoms, as is captured
in the following definition.

Definition 13 (atom) An element a € Lg is called an atom iff, for
every x € Lg, we have:

if0<x<a, thenx=0 orx=a. (2.9)

An atom represents the strongest property of a system S in the
sense that it is not implied by any other property. In other words:
there are no properties that allow for a finer description of S. If we
were to add another property x that implies the atom a, then either x
is not a new property (x = a), or it represents something that is never
true (x = 0). Remark that two systems that have different atoms as
actual property cannot be in the same ontological state, as there must
exist a weaker property that is actual for one of the systems and not for
the other. Remark also that there is no property left that we can pull
out of our set of properties to distinguish two systems for which the
same atom is actual. Hence it is natural to identify the atoms of the

1"This question T can for example be paraphrased as “The system exists”.
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lattice of properties of a system S as the set of (ontological) states of
the system and the actual atomic property as the state of the system.

Definition 14 (state) The set of states of a system S with property
lattice Lg s the set of atoms of Ls. If an atom is actual for S, we
identify the state of S with that atom.

Of course, at any given instant, only one atom (the state the sys-
tem is in) can be actual and we see the state can be regarded as a
‘maximal’” property of a system. Whether each property of the system
can be realized by the system S being in a certain state, depends on
the completeness of the lattice. Therefore we introduce the following
vocabulary.

Definition 15 (atomic and atomistic lattice) A lattice L is said
to be atomic iff there exists at least one atom under each mon-zero
element, and atomistic in case every element of L is the join of a set
of atoms.

There also exist properties that are primitive properties of the sys-
tem in the sense that there is no property, except for 1 that is implied
by it. We call such properties coatoms.

Definition 16 (coatom) An element a € Lg is called a coatom iff,
for every x € Lg, we have:

ifa<x<1, thenx=1orx=a. (2.10)
This leads to the following definition:

Definition 17 (coatomic and coatomistic lattice) A lattice L is
said to be coatomic iff every property of L implies at least one coatom,
and coatomistic in case every element of L is the meet of a set of
coatoms.

The inverse question

If « is a test, we define ~ « as the test that corresponds to the same
experiment as «, but with the roles of yes and no interchanged. The
test ~ « is hence operationally well-defined iff the test « is: if we were
to perform the test a and we would find with certainty no, then ~ « is
true. Therefore we always assume () is closed under the ™~ operation:

acQiff ~ae@ (2.11)

For obvious reasons, ~ «a will be called the inverse question or
1nverse test.
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Inverse properties and inverse tests

Even a seemingly innocent operation such as the inversion of the out-
come of a test has non-trivial implications for the kind of properties
that may be derived from it. Although the set of questions equivalent
to a given question defines a property in the way described above, the
inverse question does not, in general, define an inverse property. To
see this let us take a system S with just three possible states ¢, r and
s and let property a correspond to question «. Suppose that if S is in
the state ¢, then the outcome of testing question « is always yes; if it
is in the state r the outcome of testing question « is always no, and for
S in the state s the outcome of testing question « yields sometimes yes
and sometimes no. Clearly the property a is actual for S in the state
g because testing question « yields yes with certainty and hence « is
true. Clearly a is not actual for .S in the state » and s. Suppose now
we have a second question 3 that yields always yes if S is in the state ¢
and always no if S is in the state r. Clearly, if testing question « yields
yes with certainty, then so does [ and vice versa, so that o ~ [ and
both a € a and € a. See the left half of Fig (2-1).

state q r S state q r S
question la lﬁ lﬂ la lfx la question lﬁ lﬁ lB lﬁ lB lﬁ
answer yes no ho yes y/n n/y answer yes no no yes no Yyes

Figure 2-1 We see here for the states ¢ and r that, if « is true, then so is 3
(and vice versa). So a =~ 3 by construction. However, for the state s we see
that & is true does not imply (3 true. This means & and (3 are not equivalent.

However, suppose the outcome of testing question S on S in the
state s always gives no. Then question ~ [ yields yes with certainty
for either S in the state r or in the state s, whereas ~ « only yields
yes with certainty for .S in r. See Fig 2-1. We see that, although o ~ (3
(by construction), this does not necessarily imply ~ a ~~ (. For this
reason the inverse of a question cannot in general induce a unique in-
verse property. This problem with the inverse of a question has led to a
generalization of the negation that is called the orthocomplementation.

Definition 18 A function’: Lg — Lg, a+— a'— is called the ortho-
complementation ff for a,b € Lg we have

(') = a, (2.12)
if a <b, then b’ < a’,
aNa’'=0andaVva =1
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Of much greater importance to us than the orthocomplementation
is the special negation that exists for classical properties.

Classical properties

Knowledge is two-fold, and consists not only in an affirma-
tion of what is true, but in the negation of that which s

false.

—~Charles Caleb Colton, Lacon, 1828

From the example above we see that the inverse of a question does not
necessarily define an inverse property because of the existence of states
for which the test does not give a predetermined answer. Indeed, if for
all states and all tests the answer would be either yes with certainty or
no with certainty, then no such example could have been constructed.
It is therefore appropriate to give questions with predetermined answers
a special name. We will call them classical questions.

Definition 19 (classical questions) A question a € Qg is classical
for a system S iff either a is true or ~ « is true.

As is evident from the definition, the alternatives are exclusive: if
~ « is true, then « is not (and vice versa). This has an important
consequence. Suppose ~ « is true. Then for a general question, the
result of a could be yes or could be no; if however « is classical, the
result of test a has to be no with certainty as it is the inverse of ~ «
which is true with certainty. Therefore, classical questions naturally
induce classical properties.

Definition 20 (classical properties) A property a is classical for a
system S iff there is a test a in a that is classical. The set of classical
properties of a system will be denoted L¢.

We obviously have £§ C Lg. For a classical property, the ortho-
complementation yields a unique complement, which is the Boolean
negation. One can directly verify from the definition that if a is a clas-
sical property, then a’ is also classical. In this case we write —a for a’ as
a notational reminder that this complement is unique. If every property
in £ has such a negation, we say the lattice is uniquely complemented.
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Definition 21 (negation) A lattice £ is uniquely complemented iff
there exists a function = : L — L, a+— a’, called a negation such that
for every a € L there exists a unique element in L denoted by —a with

a Vv —a=1 (2.13)

a N —a=0

Definition 22 (classical system) A system is called classical iff all
of its properties are classical: Lg = L.

We will deal exclusively with classical properties in the next chap-
ter, so it is useful to introduce three quantitatively different kinds of
classical properties.

Essential properties

Aristotle saw a clear distinction between the properties of a system that
are accidental (a chair can be made of wood, but this is not essential to
the object being a chair) versus the properties that the system needs
to have and without which it would seize to be that system. The lat-
ter kind of properties he referred to as essential properties. Essential
properties can be defined in our approach as classical properties which
are always true. For example, an electron always has the same elec-
tric charge associated with it. Essential properties are trivial, not in
the physical sense an sich, but for the system under consideration: to
predict the outcome of the test that pertains to an essential property,
it is sufficient to know only what kind of system we are dealing with.
If we call the system that we study S (say a boson), we already claim
implicitly that its essential properties as being S (having integer spin)
are always actual. Essential properties are used to define the nature
of the system S, but not its state. Attempts at grand unified theories
of physics such as string theory or the standard model, seek to explain
how different types of physical entities arise in nature. They must
deal with reproducing essential properties. But here we are concerned
with the far more modest problem of the observation of experimental
propositions which we already know to be relevant for that system.
As a consequence, we shall not explicitly consider essential properties
when we treat the problem of observation in the next chapter.

Classical (accidental) properties

Although essential properties are by definition classical properties, ac-
cidental properties may or may not be classical. We define a classical
accidental property as a classical property that is not essential. Be-
cause this is the type of classical property that we need the most, we
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will often refer to it as classical property. More precisely, the property
a; with j € I is classical accidental iff Aperay is an atom (i.e. a possible
state) of S, then there exists an atom (a possible state) of S for which
—a; is actual. A simple example is the state of a computer regarded
as the ordered list of zeroes and ones that represent the content of the
computer’s memory. Every bit can then be regarded as a property with
actuality of that property corresponding to the bit being 1. If such a
list describes the state of the computer, then inverting the value of any
bit corresponds to another state of the computer. Another example of
a classical accidental property, is the property of “giving light” for a
light bulb. If we are given the full state of the light bulb and the light
is on, then there is a state of the light bulb in which the light is off.
Note that it may very well be the case that many other properties of
the light bulb have changed too. For example, if the presence of the
net magnetization of the light bulb is considered as a property, then
the actuality of this property will be correlated with the property of
giving light, as the current-carrying wire will produce a magnetic field.
One last important class of classical properties, are sets of classical
properties that —taken together— describe observable quantities with
more than two possible outcomes.

Classical observables

An important part of natural science is the prediction of the numerical
value of a physical quantity, such as the coordinate of a particle at a
given time. In the literature, such quantities are called observables'®.
The measurement of an observable can be translated in the language
of properties. Let us first give a simple example of a classical test. The
state space of a particle in classical physics is the phase space which
consists of the particle’s position and momentum coordinates. Suppose
we have a point particle that is allowed to move on the one dimensional
coordinate space in the interval [x,y]. We neglect the momentum co-
ordinate and restrict the state space to the interval: ¥g = [x,y]. We

18In the philosophical literature, the term observable usually means something
that pertains to a system and that can be directly perceived by our senses. A
color is observable, the spin of an electron is not. To physicists, an observable
means something that one is able in principle to quantify in an experiment. To a
physicist, the orbit of an electron is not observable, but its charge is. In a work that
deals with both philosophy and physics, we need to settle on the meaning of the
word. We will stick to the physicists’ convention for two reasons. Firstly because
the term observable is the preferred term in the majority of publications in the
foundations of physics. Secondly because one of the claims of this dissertation is
that good observations -whether they be made by the senses or by apparata- face
similar problems and are subject to the same laws. To us, color and charge are
both observable.
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partition this restricted state space g in two sets:
g = [z, 2] and X% = [z, 9], (2.14)
with z €]z, y[. Next we consider the set of questions
a. : Is the particle somewhere in Xg ? (2.15)

The test consists of observing the position of the particle and determine
whether the outcome lies in [z, z[. If this is the case, we give the answer
yes; if not, we give the answer no. If the observation of the position
of the particle is infinitely precise and does not change the particle’s
position —or more precisely, when an eventual perturbation of the po-
sition happens after the recording of the position— then the result was
predetermined by the position of the particle before the observation, so
the question is a classical one. The corresponding property of “being
somewhere in the interval [z, z[” is hence also classical. We see that
under these conditions (infinite precision and non-disturbance of the
observation) a classical property is one that either holds, or doesn’t
hold, even before we applied our test; the test only serves the purpose
to ascertain the status of the property as being actual or not. Let us
formalize the notion of this type of property somewhat more. Suppose
we have an observable quantity O with set of possible outcomes Xp.
From an operational point of view —and contrary to the idealized ex-
ample given above— any such set will in practice be a finite, discrete
set, as the number we obtain from an experiment will always be finite
both in magnitude and in precision'”. There is always a maximum and
a minimum to what can be measured, and there is always at least a
practical limit to the maximum resolution beyond which the observer
cannot be certain anymore that result is true with certainty. Future
generations may be able to improve that resolution; they too will face
a lower limit beyond which only statistical considerations can extend
the resolution at the cost of introducing uncertainty. We will use the
greater part of this dissertation to explore this possibility, but we are
here concerned with classical properties that are actual (or their nega-
tion is) with certainty, not with some probability. So let us assume
the cardinality of the set X is N. The power set P(Xp) then con-
tains 2V elements. Consider two different sets X;, X; € P(Xp) with
1 < i,7 < 2V and associate with each of these sets the questions 6;
and 0, that ask whether the value x of the observable quantity O lies

YGiinther Ludwig [145]: “The infinity of the sets used in all important phys-
ical theories does not come from the reality which is described by theories,
it comes from nonrealistic idealizations introduced to simplify the theories.”
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in the set X;, resp. Xj.

The questions ; and 6, correspond to the (classical accidental) prop-
erties o; and o, respectively. If we have X; C X, then clearly if 0; is
true, 0; must be true also. Hence the actuality of property o; implies
the actuality of property o,;. We therefore have by definition (2.3):

Obviously, o; and o; can only be both actual if x is in both X; and
X -

g+

o; Noj is actual iff x € X;NX;. (2.18)

We lastly turn to the complement. If o; is not actual, then the value x
of the observable quantity O is not in X;, and because O is classical,
we have v € X& = X\ X;.

—0; is actual iff 2 € X7 (2.19)

We have explained that the join of two properties does not, in general,
permit an operational interpretation. However, for classical properties,
it is easy to see that, since the join o; V o, is defined (2.8) as the meet
of all properties that are implied by o, and o;, we have:

o; Vo;isactual iff ze X,UX;. (2.20)

With this correspondence, we see that the algebra of the subsets of Xp
generates a Boolean sublattice of Lg consisting of the set of properties
o; that x is in the subset X;. In practice we do not need the entire power
set P(Xp). For example, suppose we want to increase the precision of a
numerical quantity, such as a fundamental constant, or the energy of a
particle. We could simply consider a set of nested intervals, each inter-
val smaller than the previous one, “zooming in” on the numerical value.
Another, more common situation occurs when we read a digital meter
to measure, for example, a voltage drop. To obtain an operational list
of classical properties that allow the determination of the voltage drop
in this case, we proceed as follows. We forget about the least significant
digits that may fluctuate if we repeat the measurement several times
under as similar conditions as we can possibly produce. The smallest
quantity that can be measured with near certainty with the remaining
digits will be our unit value. All outcomes will be multiples of this unit
value. Consider the property o; as x representing the i-th multiple of
the unit value. The set D = {0; € L5 : 0 < i < N} is the element of
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P(Xp) with the smallest cardinality (and hence the minimal number
of classical properties) that allows as good a determination of O as any
other possible choice of properties from Lg. It may be the best possible
choice we can make at that present stage in our scientific development.
The set D may not be ontologically speaking be true atoms as we have
defined them (2.9), as future experimental propositions will, in all like-
lihood, reveal finer structure; if, however, we take the idea seriously
that a property lattice is to be obtained operationally, then these o;
will serve as our atoms nonetheless. An important difference with (ac-
cidental) classical properties, however, lies in the negation. Suppose for
simplicity that S has only one observable O and no other properties.
Its set of states has cardinality IV, as only one of each of these atomic
properties o; can be actual. Suppose the only knowledge we have about
S is that o; is not actual. Then any of the other properties o, with
j # 1 could be actual. E.g. if you know the position of a particle is not
in the origin of your frame of reference, it can be in any other position.
In fact, the only property we know with certainty to be actual, —o;, is
the join of many atomic properties V,.0; (the property of being any-
where, except at the origin) and hence not itself an atom. If, on the
other hand, a system has only one accidental property, the negation of
either one of the two atoms is again an atom. We see however from
these examples that it is not difficult to give examples of non-classical
properties, to which we turn in the next section.
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Non-classical properties

On every occasion I thought that, if only I had more infor-
mation, I could make sense of the whole business; but every
time that extra intelligence came into my hands, it again
proved insufficient.

—TIain Pears, An Instance of the Fingerpost, 1997

Propositions tested with finite precision

A first example of a class of mildly non-classical properties, can be
found when we take into account that measurements are necessarily
imprecise. Recall the example above in the section on p.46, but suppose
that out of a large number of observations, the vast majority will find
the particle to be in some interval

AW = [w — A, w + Al (2.21)

If AW C XL or AW C X%, we could still claim we have predetermined
answers. However, if AW N34 and AW N X% are both non-empty,
the measurement will not have an answer that is predetermined by the
state. Hence this type of position measurement is, strictly speaking, not
what we have called classical. This would still be generally considered
as a classical situation because one can make the measurement error so
small, that AW fits in either ¥} or ¥%. In effect this means that for the
majority of states in Xg, the question «, is predetermined by the state
of S, and the property is classical for almost every state. We could
call a, arbitrarily close to a classical observable. Although Newtonian
mechanics is an example of a theory that deals with classical properties
and classical observables, a mild form of non-classicality (in the sense
that we have defined it here) arises when one is verifying the theory
experimentally and measurement errors are introduced.

Measurement induced state transitions

Let us consider a second example. Imagine a person with closed eyes,
lying on a couch. The question 3 we consider is “Is the subject asleep?”
In absence of technical equipment, a possible test that corresponds to
this question is to simply ask the person if he/she is indeed sleeping.
If the subject answers the question, we will give the answer no, if the
subject remains silent, we give the answer yes. If the person is indeed
truly in a state of deep sleep, he will not answer the question and the
test will reveal that the person is asleep. If the person (assumed here
to be honest for the sake of simplicity) is awake, he will answer the
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question, which is that he is awake. If however the subject is in a state
of mind that is neither deep asleep nor wide awake, then performing
the act of asking the question of whether he/she is sleeping may alter
his/her state. Clearly, the subject answering “I am awake” does not
necessarily reveal that the state before the question was asked was one
of being awake (and remaining silent may simply mean the subject is
trying very hard to ignore you). So for some states the result is not
solely predetermined by the state of the subject, as in the example
of Fig. 2-1. As a consequence, the question [ is not a classical one
and neither is the property b that corresponds to the question 5. One
can counter that a more precise measurement is possible using MRI
equipment, so that we need not disturb the state of the subject and
still know the answer to 3. In this case there is some similarity be-
tween this example and the first example: if we have access to more
precise measurements, we can make the non-classical aspect (almost)
disappear. However, there is a big difference between the two if we
don’t have access to more precise measurements, for only in the first
case the point particle would still be in some exact location and its
actual state left untouched by our observation. In practice, every pos-
sible measurement requires a physical interaction and affects in some
way the system under investigation®. In some experimental situations
this disturbance is minimal, in others it may not be negligible; in some
cases it may be fundamental. A quantitative description of this type
of situation, as well as the first type, requires a probabilistic treatment
of the observer, which is one of the main goals of this manuscript.

Potential properties

An important class of non-classical questions and properties can be
found in quantum physics. We will have much more to say about them
in Chapter 4. For now, we merely want to point out that the examples
show “non-classical”, as we have defined it here, does not necessarily
imply “quantum”.

Comments and Notes

The modern formulation of both quantum theory and (Kolmogorov-
ian) probability theory was developed mainly in the nineteen twenties
and thirties. It was recognized already in an early stage that, although

20 A notable exception is formed by a clock that measures time even if it doesn’t
interact with anything (but itself). This is of little consequence to us: in physics,
time is generally considered a parameter, not a property of a system.
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quantum theory deals exclusively with the probability of an event, this
probability was not of the same kind as the one that was formalized
by Kolmogorov. The Kolmogorovian approach to probability regards
probability as a normalized measure on a Boolean lattice of events
which represents the classical logical structure of the events. Garret
Birkhoff and John von Neumann were the first to investigate the analog
structure of the Boolean lattice for quantum theory. In their seminal
paper “The Logic of Quantum Mechanics” [52] they point out that in
the formal theory of quantum mechanics, an operational proposition of
a quantum system is represented by an orthogonal projection operator
or, equivalently, the corresponding closed subspace on the Hilbert space
H. If we denote the set of all closed subspaces by P(H), then P(H)
corresponds to the set of yes/no questions that one can ask about a
quantum system. They noticed that the structure of the space P(H)
is that of a lattice, but not one that satisfies the requirements of a
Boolean algebra, and hence one that does not entail a classical logic.
In particular, the distributive law between conjunction and disjunction
is not valid for propositions about quantum systems. The replacement
of this law by a proper generalization, the orthomodular law, led to
the conception of quantum logic and a new line of research was born.
Whether quantum logic is a genuine kind of logic remains a topic of
debate. However, the main paradigm shift in their work was to concen-
trate on the structure of P(H), rather than that of H itself. Because
P(H) corresponds to the set of yes/no questions, a direct connection
was made between the operational yes/no questions and the mathe-
matical structure of quantum mechanics.

In 1963, George Mackey also pursued this line of thought in [146],
but started the other way around, namely with the set of all operational
propositions £. To obtain a Hilbert space Mackey imposed directly as
an axiom that the structure £ is isomorphic with that of P(H). A year
later, Constantin Piron took this line of research one step further [162].
Instead of imposing a single axiom stating equivalence between £ and
P(H), he introduced 5 separate axioms (completeness, atomisticity, or-
thocomplementation, covering law and weak modularity) and proved
his celebrated representation theorem that shows the set of operational
propositions L, together with these five axioms, is isomorphic to 73(7:[),
the set of closed subspaces of a generalized Hilbert space H. In later
work, Piron [163] aims (and partially succeeds) to introduce the axioms
in an operationally motivated way. A sixth axiom called plane transi-
tivity [22] was derived from the mathematical work of M.P. Solér [184]
to get directly the structure of one of the three standard Hilbert spaces
(over the field of real, complex or quaternion numbers). The quantum
logic approach to quantum theory has attracted considerable attraction
over the last few decades and is now a rather mature mathematical sub-
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ject with many beautiful results. However, it has also been criticized on
several accounts. First, there seems to be no canonical way of obtain-
ing the lattice of properties for a compound system from the lattices
of the constituting systems and the notion of separable systems seems
only possible when either one of the two lattices is a classical lattice
[5], [125], [198]. Second, the approach delivered few, if any, practical
results for physics. Another critique is that the approach emphasizes
the importance of introducing the concepts operationally, but in later
stages imposes axioms (i.e. the covering law, orthomodularity) that are
directly inspired mainly by the Hilbert space formulation of quantum
theory. Additional points of critique raised by various authors, as well
as neatly presented counter arguments to these points, can be found
in [181]. As stated before, we have not found earlier reports on the
problem of equating properties that imply one another that we identi-
fied on p.36, although this is closely related to what philosophers call
the intensional character of properties. More recent formulations of the
Geneva-Brussels approach [20], [24], [25] introduce the set of states sep-
arately and the relation between actuality of operational propositions
(what we now call properties) and states is imposed through axioms by
means of the Cartan map. We follow this scheme in the next chapter.
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Chapter 3

The classical observer

We want to talk about observers, not only about sensors or detectors.
We believe it is possible to explain the qualitative difference between
the two without taking recourse to concepts like free will, intelligence
or consciousness. A detector is sensitive to a particular kind of natural
phenomenon and takes input of that kind from the natural world and
produces an output that can be used by the observer. An observer,
on the other hand, is a system that uses detectors or sensors/senses to
construct a model of its environment which allows it to direct its ac-
tions. A Geiger-Miiller counter produces a very primitive image of the
world: it replicates the radioactivity in the surroundings and matches
the intensity by a proportional electrical current in a part of its out-
put circuitry. A camera even produces a pretty detailed image of the
world. But both systems cannot act on that data because they have
no internal representation of what the images mean. For the images to
have meaning, the action that follows from the internal representation
needs to have a purpose, a motivation. Purpose and motivation are
too complex notions for us here, but it seems evident that a necessary
requirement to be able to direct any action, is the possibility to relate
different input states of the senses to each other by means of an inter-
nal image of the world. If the lion jumps to catch its prey, it has an
estimate where the prey will be a split second later. That the lion is
such a successful killer, indicates it “knows” quite well at what precise
moment in time its ability to act swiftly overcomes the possible error

29
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in the model' of the movement the animal has. The successes of its
model were rewarded with the stilling of its hunger and this sensory ex-
perience provides the positive feedback necessary to improve its skills.
An observer forms relationships between pieces of sensory input that
in some way correspond to the relationships in the world. The image
of the world that the observer constructs is not the same thing as the
real world, but we insist on a structural resonance between the image
and the world it is supposed to represent, if only partly. This, then, is
to us an observer.

As we have seen in Chapter 2, the minimal structure between two
properties is that of an implication. There are plenty of those in our
image of the world. If we insist on causality, we as observers, are
demanding that for every sensory input, or rather for every complex
aggregate of inputs, there was —somewhere out there in the world— a
phenomenon that would have produced another complex aggregate of
inputs that necessarily predates the first set. There is an implication
between the second set of inputs and the first set. An ant that directs
its mobile antennae to follow the smell of a pheromone trail is doing
just that. It will —depending on the desired action— be led to food
or to the colony and classifies as an observer. Again, we don’t want to
get involved in the question: did the ant deliberately choose to gather
food or to go to the colony? It is easy to test this is not haphazard
movement: we can pick the ant up and put it down; it will generally
try to follow the same course as it did before we picked it up. We may
see two ants and as far as we can tell they look the same, but there
is clearly some internal working at play as one goes for the food, the
other goes for the colony. As a whole, ants seem to survive very well
which is evidence that they successfully correlate model with world.
We don’t see rocks or Geiger-Miiller counters do that kind of thing.
It is however not a prerequisite for an observer that it is a biological
entity: a robot that at the end of the day is using his sensors to locate
a socket to reload its battery, qualifies as an observer. Of course there
may exist important differences in the way a cat and a robot observe;
what I am pointing out is that the formalization we will propose here
will not treat the cat and the robot differently. We want to leave this
particular problem in this form.

We now have a hierarchy of three levels. At the most basic level
we have systems which are just that: systems with all their properties
and the possible interactions they may have with other systems. One
level higher, we find special systems that are extra sensitive to certain
interactions in the sense that these interactions will produce correla-

'The word ‘model’ is used here in a rather loose sense, i.e. any internal function
that correlates with the outside world and that allows the animal to steer its actions.
A homing pigeon that finds its way home loft is using this type of model.
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tions with aggregates of properties of that special system. These we
have called detectors or sensors, or senses?. On the next level we find
systems that use the input of sensors to form an image of its surround-
ings whose internal working structurally resonates with the events in
the outside world. It are these systems that we have called observers.
Humans and all animals surely belong to this class. The next layer in
our hierarchy is a systems that has produced an image of the world
that is so complex, that it includes an internal representation of itself.
The logical constraints on the formal description of these systems is the
subject of our investigation in this chapter. Such systems by definition
need to observe their own properties and that is, as we shall see, not
always feasible. However special it may be, some animals have shown
to posses this quality. In the 1970s, Gordon Gallup [103] developed
a test known as the mirror self-recognition test also known as MSR
or simply the “mark test”. He was inspired by Darwin who observed
that Gorillas make faces to their own mirror image. But Darwin could
not conclude whether the response was one of reacting at what they
believed was another animal, or simply playing with their own image.
The experiment has been repeated often; although most apes are at first
surprised, hostile or afraid, they eventually act as if they are playing
with their image. Gallup had the smart idea to repeat the experiment
with a simple modification. He put some dye on a spot on their body
in a part (such as on their head or back) that is accessible to the ani-
mal (for example with their limbs), but not directly visible. The spot
would however be clearly visible in the mirror. Some animals clearly
show that they understand the image is their own, as they will reach for
the place on their body where the mirror shows the spot to be®. There
is at least one more layer. That is, the class of systems that has an
internal representation of the internal image that other observers have
about them. It was long thought that this was a distinguishing feature
of humans with respect to animals, but again, Gallup [104] claims this

2Detectors, contrary to sensors, are usually yes/no outcome apparata and the
senses are biological, whereas sensors are usually assumed to be synthetic. However
we need a word and perhaps ‘sensor’ is a word that -if its meaning in the English
language is stretched a bit- can cover both detectors and senses.

3Both the orangutan and the chimpanzee [103] are known to consistently pass
the test. But also bottlenose dolphins [149], orcas and elephants [164] pass it.
Suprisingly, the European magpie passes the test [167]. Almost all human childeren
pass the test somewhere between their second and third year of life, which virtually
coincides with the age that is required to develop long lasting memories. Pigs do
not really pass the test, but this does not prove they have no self-awareness: maybe
pigs are very unimpressed by spots on their body. Pigs do show the ability to use
the information displayed in a mirror. In [62] eight pigs were separately confronted
with a situation in which some food was hidden behind a wall such that it could
only be seen in a well-placed mirror. Seven of the pigs tested were able to find the
food using the mirror. Number eighth looked behind the mirror for the food.
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is not the case. This is the social observer, about whom we will have
nothing to say in this dissertation.

Metaphysical preliminaries

We and our measurement instruments are part of nature
and so are, in principle, described by an amplitude function
satisfying a deterministic equation.

—Richard Feynman, Probability in Quantum Mechanics, 1951

If we are to describe the process of observation in physical terms, we
have to be able to attribute a physical state to the observer. Physi-
cally speaking this is trivial as an observing system is still a system
with properties that can we can study. But philosophically speaking
we take no small leap. Somehow, the content of the memory and mind
of the experimenter must have a counterpart in the representation of
the state of the observing system, as it is necessary for him to have an
understanding of the experiment and its purpose in order to be able to
decide on many practical issues during the execution of the experiment
and in particular in the last stage when the decision has to be taken
as to whether the outcome of the test was yes or no. We do not claim
we need a physical theory of the mind, for physical theory need not
be the best candidate to describe something as complex as the mind.
Neither will we argue with the idea that there may exist a quality in
mind that is existentially independent of the physical. But we will
maintain that the mind needs the physical in order to have content.
More specifically, it is not possible for the observer to have experienced
two different states of mind, if it happens to be twice in the exact same
physical state. This metaphysical stance is a consequence of what
is broadly understood under the term physicalism. According to the
Stanford Encyclopedia of Philosophy, physicalism is “the thesis that
everything is physical, or as contemporary philosophers sometimes put
it, that everything supervenes on, or is necessitated by, the physical.”
Phrased in this language, we assume that the state of mind supervenes
on the physical state of the observer. Alternatively, one could argue
that the whole experimental setup and execution can be made to oper-
ate completely autonomous, so that the outcome is produced without
any further help from the experimentalist. The state of the observer
can then be regarded as the state of this autonomous apparatus. But
if one insists on describing the process of observation in its totality,



The classical observer 59

one must also appreciate the fact that an outcome only means some-
thing to someone who understands the question. And one can only
claim it makes sense to ascribe a state to the observer with inclusion
of its mental state that contains the representation of the world in
which the question makes sense, if one admits physicalism to be true
in a quite literal sense*. In the previous chapter we have explained
that a test (which is a particularly simple instance of an observation in
that it allows only yes or no answers) includes the measuring appara-
tus, an experimenter, an instruction manual and a criterion to decide
which outcome was obtained. The assumption of physicalism allows
us to group them all together into one rather complex physical system
M that is in a state m that —by definition— represents all the ac-
tual properties of the observer. A direct mathematical consequence of
physicalism is that the state space of an observing system belongs to the
same category as the state space of the observed system. We can have
classical systems observing classical systems and quantum mechanical
systems observing quantum mechanical systems, but no mixing is al-
lowed. Another very important metaphysical assumption we make is
determinism. In particular, we will assume the interaction between the
observer and the system is deterministic. By no means we mean this
to imply so-called super-determinism in which the observer is not even
free in choosing a particular measurement. On the contrary, we leave
the question as to what kind of experimental proposition the observer
observes and who makes this choice, completely open. So in this re-
spect, there is room for the physicalist, the dualist that insists on free
will and people that adhere to psycho-physical parallelism. What we
essentially mean by determinism is that, for any particular question
that is chosen for a particular system in a certain state and that is
observed by a particular observer in a certain state, the result will be
determined. Exact repetition would yield the exact same outcome. We
will show this notion of ontological determinism is nevertheless com-
patible with intrinsic indeterminism from the observer’s point of view.

4In spite of this decisive sounding statement, many subtle issues arise when
considering physicalism and observation, see for example Butterfield in [65]. In a
minimalist spirit, the motivation for adopting physicalism can be regarded as the
philosophical requirement that grants us the power of formalizing observers.
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State property spaces

In mathematics our freedom lies in the questions we ask —
and how we pursue them — but not in the answers awaiting
us.

—Steven Strogatz, 2012

The advantage of introducing the concepts state and property in an
operational way as we did in Chapter 2, is that we are not merely deal-
ing with some abstract concept of state, but that we have stipulated
the rules an experimenter must follow to determine that state. How-
ever, if we want to describe the state of the observer, we need to be
able to asses all its actual properties. If these are also to be obtained
operationally, we are in need of another observation and a complete de-
scription of the entire observation process requires the inclusion of this
observer too. This would lead to an infinite regression of observations.
We will therefore postulate them as is done in more modern versions
of the Geneva-Brussels approach, albeit for different reasons. As we
have already motivated most of the concepts in the former chapter,
this approach can be introduced briefly. So for every physical system
we postulate the existence states and properties and of the so-called
state-property space® that describes the relation of the state to its ac-
tual properties. Before we are in a position to do so, we first define
what we mean by a state property space.

Definition 23 (state property space) The triple (X, L, k), called a
state property space, consists of the (non-empty) set of states ¥ =
{q,7,s,...}, the (non-empty) set of properties L = {a,b,c,...}, and a
function k : L — P(X2), arrk(a) called the Cartan map, such that a
€ L is said to be an actual property for the state q iff ¢ € k(a).

Rather than saying “the property a is actual for the system S in
the state s”, as we did throughout Chapter 2, the state property space
formulation allows us to briefly state s € kg(a). The Cartan map also
allows one to define the map £ ¢ that tells us which properties are actual
for a given state of a system S

§s ¢+ Ys— P(Ls),s—E5(s), (3.1)
E5(q) = {a€Ls:q€rs(a)}. (3.2)

°In the literature we find various closely related formulations, with different
names such state property system, state property entity and state property space.
We have chosen state property space because we reserved the word system for that
part of the universe that we investigate and the use of of the term “state property
system” is somewhat unfortunate as it seems to imply some systems would have
state properties, and others not.
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This map £ is called the Aristotle map [23]. The partial order rela-
tions that we introduced in Chapter 2, can now be rephrased in set-
theoretical terms.

Definition 24 (partial order) Let S be a system with state property
space (Xg,Ls, kg). Fora,b € Lg we define

a<b iff ig(a) C ks(b) (3.3)
We will say that ‘a implies b’ if a < b.

As before, a < b means that whenever a is actual (for a given
state), then b has to be actual (for that state). As before, we define
a=>biffa<band b < a. We left open the question whether every
system S has such a state property system. We will impose this in the
form of an axiom.

Axiom 1 (completeness) To every system S there corresponds a state
property space (Xg, Lg, kg) such that for q,v € ¥g and a,b € Lg, we
have:

if ks(a) = kg(b), then a=Db, and (3.4)
if £5(q) = &s(r), then g =r.

This axiom tells us that every system ‘has’ a state property space
and that this state property space exhausts all there is to know about
the system. The name completeness refers to two different kinds of
completeness: (a) every system has it, (b) it provides a complete de-
scription of the system. The first form of completeness is related to
the idea of physicalism, the second to the possibility of providing an
exhaustive representation of natural systems. The first implication in
this axiom tells us that two properties (a and b) are the same if the set
of states for which these properties are actual (kg(a) and kg(b)) are
identical. The second implication tells us that two states of a system
are identical iff the set of properties that are actual if the system is in
each of these states, are identical. Whereas we agree with the second
implication, we have already indicated in Chapter 2, p. 36 the first
implication is, in general, not fulfilled. That is, we can easily construct
examples of pairs of strongly correlated properties that will be actual
for precisely the same set of states, but which do not correspond to
the same property, as one can recall from the example of the torch on
p. 35. Equating equivalent properties causes a form of degeneracy, in
which different properties can have the same label. We have indicated
in that same section how one may proceed to lift this degeneracy, but
this is not necessary for our purpose here. Indeed, the point of this
chapter is to examine how an observer can come to learn about a given
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system through observation of the tests that correspond to relevant
properties. The ultimate task of an observer is state determination.
From the axiom of completeness given above, we have that two prop-
erties that are equivalent in the sense of their corresponding questions
implying one another, have the same set of states which make them ac-
tual. Hence they have exactly the same “resolving power” with respect
to any particular state determination problem. Let us reiterate this in
a slightly more formal way. Suppose we have observed that property
a is actual for a system S. The state can then no longer be an ar-
bitrary element from g, but needs to be an element of rkg(a) C Xg.
If property b is equivalent to property a, then —by equivalence— we
have that b is actual too. Hence the state needs to be in kg(b), but
—again by equivalence— we have kg(a) = kg(b), indicating we have
not improved our knowledge of the state of the system. So instead of
changing the content of the axiom, we choose to think of the proper-
ties defined here, as equivalence classes of properties that are equally
resolvent with respect to the problem of state determination.

Perhaps the reader wonders why we went through the effort of defin-
ing properties operationally in Chapter 2, only to postulate them now.
First, as we already mentioned, this escapes the infinite regression of
observations that would be necessary to establish the existence of a
property. We simply proclaim they exist by the completeness axiom.
Secondly, the operational procedures explained in Chapter 2 will serve
as a rather precise description of what an observer has to do in order to
establish the actuality of properties of a system, and we will use them
as a lead to define and motivate the requirements for a system to be
an observer. In spite of obvious idealizations we illustrate that state
property spaces are a very general framework. We will illustrate this by
briefly describing the explicit state property system of two particularly
relevant instances.

The state property space of a classical system

The state space of a system described by classical mechanics is phase
space. For an n-particle system a point in phase space is determined
uniquely by the 3n position and 3n momentum coordinates, denoted
¢ and p respectively. Hence we have Yg = R%". The observables are
represented by real-valued (differentiable) Borel functions from phase
space to the (real) value the observable takes when the system is in the

state (7, p) :

f : R"™ =R
(@.p) — f(d.D)
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Experimental propositions correspond to Borel (sub)sets I' of the real
line that represent a set of numbers on the reading scale of some ab-
stract apparatus in the following way. Consider now the set B(R") of
all Borel sets of R%". With every experimental proposition, we identify
the unique Borel set f~}(T') € B(R"):

) ={(dp) eR™: f(d,p) €T}

Clearly f~!(T") is the set of states for which the reading scale of the
apparatus takes a value in I'. Vice versa, with every B € B(R%") we
associate a property that is actual iff (¢, p) € B. For properties we take
f as 1p, the indicator function of the set B. If 15 is explicitly given
we can formally (but trivially) rewrite this last equation as

B={(@ R : 15(.7) = 1}.

Clearly we have Ls = B(Xs) and the Cartan map kg is simply the
identity mapping /d. Hence the state property system of an n particle
system described by classical mechanics is (R®", B(R"), Id). States
correspond to point sets in R and are atoms of the lattice. Remark
that the algebra of the Borel sets naturally induces the implication and
the meet as respectively the set-theoretic inclusion and the intersection
of the Borel sets that correspond to the properties.

The state property space of a quantum system

For a system described by orthodox quantum mechanics, we take as
set of states the unit norm rays in Hilbert space H¢ over the field of
complex numbers. A ray [¢)| with representative 1 is the equivalence
class of vectors that differ at most an overall phase factor from 1:

¢ €[] < Ja € ]0,27]: ¢ = P

Hence the state space of a quantum system is the set X(Hc) = {[¢] €
He : || = 1}. The set of properties Lg is given by the set of closed
linear subspaces®, or —equivalently— the set of projectors (onto those
subspaces), which we denote by L(H). For any projector P € L(H),
the Cartan map is then given by:

r(P) = {[Y] € B(He) [V € [¢] : Py = ¢}

6Linear subspaces are by definition closed under addition of vectors and mul-
tiplication by a scalar, so this is not the type of closed we refer to here. Closed
is used here in the topological sense, i.e. a subset L of Hilbert space H is called
closed iff for every (Cauchy) sequence of vectors (¢,,), in L, such that ¢,, — ¢ in
H, we have that ¢ € L. A linear subspace of a vectors space is itself a vector space;
a closed linear subspace of a Hilbert space, is itself a Hilbert space.
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The state property space of a system that is described by quantum
mechanics is then (3(Hc), L(H), ). Note that Py implies Py iff Py is
a linear subspace of Py; the meet of two properties is represented by the
intersection of the corresponding closed linear subspaces. The states,
the unit norm rays in Hilbert space, correspond to the atoms of the

lattice L(H).

The lattice Egl

We have shown in Chapter 2 that Lg is a complete semi-meetlattice.
As explained there, we can use the implication to define the join of a
set of properties a; with ¢ € I as

\/Z-E]az- = /\{b € ES ’ a; S b,VZ € I} (37)

and Lg becomes a complete lattice. We will restrict our attention in
the rest of this chapter to the observation of systems that have only
classical properties and will call such systems classical systems.

Definition 25 (classical system) We will say a system is classical
iof the lattice of properties in its state property system is classical.

The symbol we will use to indicate this lattice of classical properties
is £9. A classical property a is either actual, or its negation —a is, so
if a € LY, we also have —a € L. One wonders whether such a com-
plete, uniquely complemented lattice is not simply a Boolean lattice, as
the only lacking property is distributivity”. In 1904, E.V. Huntington
[123] stated the following problem: Is every uniquely complemented lat-
tice distributive? Many mathematicians in the field (including Garrett
Birkhoff) conjectured the answer was affirmative. But the question
turned out to be both subtle and difficult, and even today we simply

TA Huntington property is any extra assumption that makes a completely
negated lattice distributive. The first known Huntington property was discovered
by John von Neumann and Garrett Birkhoff who proved that a modular lattice with
a unique complement is distributive. Birkhoff and Ward proved that if it is atomic
and complete, then it is also distributive, making it Boolean. However, history has
shown this to be a difficult question. In fact, in a review article "Two problems
that shaped a century of Lattice Theory" for Notices of the AMS from 2007, George
Gritzer calls Huntington’s question one of these two problems. Important progress
was made in 1945 when R.P. Dilworth gave a highly non-trivial construction to em-
bed every lattice into a lattice with unique complement. Now take any non-modular
lattice A/ and embed it into a lattice £ with unique complements using Dilworth’s
technique. Then £ cannot be modular since it contains a non-modular sublattice.
The present day situation is such that many Huntington properties are known. A
Huntington variety is a lattice variety in which every uniquely complemented is
distributive and it is known there is a continuum of such varieties [156].
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do not know whether there exists a complete lattice with unique com-
plement that is not distributive. However, we want our states to be
atoms of the lattice (which, as shown in the examples, is the case for
both classical and quantum-mechanical systems), and impose that our
lattice is atomistic, in which case it is also atomic® and by a theorem of
Birkhoff and Ward [53] the set of properties will then form a Boolean
lattice. Without repeating the proof in [53], we then have:

Theorem 26 The structure (L£E,<,—,A,V,1,0) is a Boolean, atom-
1stic lattice.

Questions and state property systems

In Chapter 2, the primitive notion was the set of experimental proposi-
tions (); properties were regarded as equivalence classes of such experi-
mental propositions. We employ the wording experimental proposition
here rather than its synonyms test or question to emphasize that the
properties in the lattice are those that we know how to observe exper-
imentally. This means that for each question in )g, we are in need
of an experiment that can test it. In some cases this may be a single
experimental setup, in other cases the experimental proposition can be
a complex product of other propositions. Questions are not explicitly
represented in the state property space but to define observation we
need a way to tell what property the observer is testing. To this end
we postulate a correspondence between Qg and LS.

Axiom 2 (correspondence) For every system S with a property lat-
tice L& there exists a countable’ set Qg such that to every property in
L there corresponds an experimental proposition in Qg.

Since () is assumed to be countable, its elements can be numbered
by an index that takes values in the natural numbers and we shall
indeed often write «; for an arbitrary question. Still Qg can be a very
big set. Ideally we want to be able to find out what the state s of the
system S is and we need a set of questions that is sufficiently rich to
manage that.

Definition 27 (distinguishing list) A set of questions D C Qg dis-
tinguishes the state s € X iff no other state in X will produce the same
yes/no answers to the questions in D as s does.

8Recall from Chapter 1 that a lattice is atomic iff there exists at least one atom
under each non-zero element, and atomistic in case every element of L is the join
of a set of atoms.

9 A countable set has the same cardinality as some (not necessarily proper) subset
of the set of natural numbers.
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Definition 28 (complete list) A set Qg is a complete list (of ques-
tions) for S (with state space Xg) iff Qg distinguishes every s € Xg.

When the set is complete for 5, it can discriminate between any two
states of S. By the axiom of completeness of L£¢ (see p. 61) and the
correspondence axiom, we have that Qg is complete, which means such
a complete list always exists by postulate. The questions in a complete
list for s at least include those that correspond to the properties in the
Aristotle map £(s), Eq.(3.1).

The classical observer

We have already explained that strict adherence to physicalism implies
the observer is simply a specific type of physical system. As a con-
sequence, within any given physical universe, both the state property
space of the system and that of the observer have to belong to the
same mathematical category. If this were not the case how would we
even start to describe their interaction? We will assume throughout
this chapter the system under observation and the observer are both
classical systems'’ in the sense of definition 25; this is what we mean
when we talk about the “classical observer”.

The ultimate goal of observation is the determination of the state
of the system under observation. But the state of a system is not
carved in stone: it is reconstructed from the registration of the actual
properties as evidenced by the observation of the corresponding exper-
imental propositions'!. Suppose we have a system S in the state s with
set of actual properties £(s) ={ai, as, a3, ...}. For every property a; in
this list we have, by the axiom of completeness that s € rg(a;). So
each correctly observed «; shows us whether a property a; is actual or
not, and brings the observer closer to the determination of the state
of S. If this is done for every property in the list, the state is deter-
mined. One of the problems the observer faces, is that the mere act
of observation of the system requires an interaction and may disturb
the actuality of other properties. This represents a first fundamental
problem in the state determination of a single system: when we suc-
ceed in establishing whether a given property is actual, this may (and

10Tn Chapter 5 we will treat a quantum observer observing a quantum system.

!1Please note that to us observation refers to the whole chain of events that
constitute the embodiment of an experimental proposition and that leads to an
outcome which is considered the answer to that proposition. We will however
often simply refer to “the observation of a property”, of even “the observation of a
question” in spite of the obvious oversimplification it seems to imply.
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often will) affect the actuality of other properties of interest; it may
even change the actuality of the property that was tested! This means
we need to stipulate what constitutes an observation: do we want to
establish the truth value of a property prior or posterior the act of
observation? The same problem exists in quantum mechanics where
the mere measurement of a property can even destroy the system in
which case there seems only one viable option. As we are particularly
interested in quantum theory, we will follow this lead and highlight our
choice in the following remark!2.

Remark 1 The aim of observation is to assess the truth value of a
property as it was immediately prior to the observation.

We will come back to this first fundamental problem in the section
on compound questions on p. 79, but for now we want to formulate
what the best next option in line is. Recall that the state of the system s
is given by the meet of all the actual properties of S and is tested by the
product question. According to the operational definition of product
question, the observer only needs to be able to verify the actuality of
any arbitrarily chosen «;. We will call an observer M free for S in the
state s iff for any property a; for which s € kg(a;), it can observe the
actuality of a;. (A more precise definition will follow soon.) The free
observer may not be able to asses the full state of S, but it can correctly
observe any particular property at will. This is already a very strong
type of observer because, under several benevolent circumstances, such
an observer can acquire a lot of information about the system, possibly
even its state. If, for example, the free observer is in proud possession
of n identical copies of the system and it needs to assess the actuality
of any given n properties, it can. If n is greater than the number of
questions in a complete list, it can also determine the state. If the
free observer is able to “reset” the state of the system to the pre-
measurement state, it may observe other properties until it has full
knowledge of the state. If the observer is only interested in a subset of
the properties and it manages to observe those properties in a way that
affects only non-relevant properties, it can assess the actuality of the
properties of interest. But if we want to include the possibility that it
is not in any of these lucky circumstances, the free observer is the best
we can hope for. The definition of the free observer begs the questions
what it means to observe correctly the result of the experimental test
pertaining to a single property. Hence we turn to the most basic of

120ther choices can be entirely rational. The introduction of a novel product on
the market can be regarded as a question whether there is public interest in this
product. In such a case, one would clearly be interested in the truth value of the
property after measurement.
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observations: that of a single observation of the test that pertains to
a single property. To formalize the process of observation, it is helpful
to fix a minimal protocol. This is what we have in mind: an observer
receives an experimental proposition and a system. The goal is to
interact with the system under observation according to the rules of
the test and indicate correctly its outcome. Let’s put it on paper.

Observation as a physical interaction

An observer M with state property space (i, LS, ki) in a state
m € Xy gets a system S with state property space (Xg, LS, kg) in an
unknown state s € g and a question a € (Qg. It has to give as outcome
“1” if property a that corresponds to question « is actual for .S. If not
it has to give the outcome “0”. We represent this by a mapping o :

0:Xg XXy X Qs —{1,0},(s,m,a) — o(s,m, ). (3.8)

This mapping o is our main building brick of observation: a truth-
valued function on g X X7 X Q5. We will show how this mapping can
be implemented in a physical account in a three stage process whose
stages we call preparation, interaction and indication. The following
exposition is not sufficiently general to encompass every type of ob-
servation: it is however sufficiently general to act as a mathematical
model of the physical stages involved in setting up the mapping o.

1. The observer first receives a question (or it may itself come up
with a question) which is an element of QQg. It prepares itself
(and any necessary equipment that when used becomes part of
the observing system) in a state that it deems fit to observe the
property that corresponds to the question in the following way.
If the question is «, it evolves according to:

prep Yy X Qs — X, (3.9)
(m,a) — prep(m,a) =m,

The suffix in the notation of m, serves as a label that the state
of M is fit to interact with .S in order to observe the experimen-
tal proposition related to «. This stage gives the observer the
possibility to prepare for the particular measurement that corre-
sponds to a. This preparation cannot depend on the (unknown)
state of the observed system, but it may depend on what kind
of system S is under consideration'®. This can be accomplished

13E.g., to measure the velocity of an electron, we can measure the curvature of
its track when exposed to a magnetic field; a method that is useless for chargeless
particles.
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by assuming the wording of o always includes reference to the
kind of system we test. If it is the case that for some questions
« the observer is already in a state m fit to measure o, we can
assume without loss of generality that prep is the identity; hence
if the state is already m,, then prep is the identity in the first
argument: prep(mg, @) = m,. From this we see that

prep(prep(m,a), o) = prep(mg, «) (3.10)
= mg = prep(m, a), (3.11)

which shows that prep(-, «) is idempotent in its first argument:

prep(prep(m, ), ) = prep(m, ). (3.12)

So preparing the observer once more in the same state, does not
change anything. The observer is now ready to interact with the
system.

2. In a second stage, the observer M interacts with the system and
ends up in a different state.

/
«

(s,ma) — int(s,my) =m

We have already acknowledged that the state of S may change as
a result of the observation, so we are interested here only in the
question whether S had the property a prior to the measurement,
as is customary in most quantum experiments.

3. Finally, the post-measurement state indicates whether the out-
come is yes or no, depending on the actuality of a preferred clas-
sical property of the observer that we call the indicator: i € LS,

ind : Yy —{0,1},m — ind(m), (3.14)
ind(m,) = 1iff m!, € rp(i)
ind(m) = 0iff m), € ry(i)

The outcome mapping (3.15) is the composition of the three map-
pings (3.9), (3.13) and (3.14):

o Essz XQ5—>{1,0} (315)

(s,m,a) +— o(s,m,a)=ind(int(s, prep(m,a))).

We assume the mapping o is onto for every a so that every outcome
is the result of at least one s and m. As we assume the interaction is
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deterministic, all mappings are (single-valued) functions. From (3.15)
and (3.12) we derive a useful identity:

o(s,m,a) = ind(int(s,prep(m,a))) (3.16)
= ind(int(s, prep(prep(m, a), v))) (3.17)
= nd(int(s, prep(me, @))) (3.18)
= o(s, Mgy, ) (3.19)

The adequate observer

We are now in possession of a mathematical procedure that models the
physical protocol, but we still have to formulate the most important
ingredient before an interaction deserves to be called an observation,
which is that the outcome should correlate with the actuality of the
property of the system. This is captured in the next definition.

Definition 29 (Sensitive observer) Let S be a system, M the ob-
server and o« an experimental proposition that corresponds to prop-
erty a € LY. M will be called a-sensitive iff there exists a mapping
0:NgxX Iy xQs — {1,0}, given by (3.15) such that for every m € Xy,
and for every s € Xg

o(s,m, ) = 0o(s, Mg, ) = 1 4(a)(5). (3.20)

The right-hand side 1,.4()(s) in the definition is the indicator func-
tion, i.e. o(s,m,a) = 1iff s € kg(a) and zero otherwise. The strong
requirement in the definition of a-sensitiveness lies in the fact that M
needs to satisfy the correlation expressed by (3.20) for every s € Xg.
We insist this is necessary for the concept of sensitivity to have any
meaning at all if we are to infer information about a system in an un-
known state. Sensitivity also requires M should be able to observe «
for every m, but this is less stringent than may seem to be the case, as
the first step in the observation protocol is the function prep which is
an evolution of m to the state m,. So in essence we impose that M can
always evolve from m to m,. The concept of sensitivity is the stepping
stone that allows us to define what we have previously described as a
free observer.

Definition 30 (Free observer) An observer M is free with respect
to a set of properties A C £§l of a system S iff it is a-sensitive for every
ac A. An observer M will be called free (with respect to S) iff M is
free for L¢.

It is however not sufficient to assert only correlation (3.20). We
need to exclude the possibility that a piece of paper with the word
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“Yes!” written on it constitutes a good observer of any property that
happens to be actual for S at that moment. If, for some reason, the
property a happens to be no longer actual, then (3.20) already excludes
our paper-with- Yes! as an observer. But we also want to exclude the
possibility that the paper qualifies as a good observer of an essential
property (see page 45), i.e. in case a is always actual. The rationale for
such a disqualification is that logically speaking it makes no sense to
assert that we have genuinely observed a classical property to be actual,
when we know that we would have received the same outcome if the
inverse question had been asked. So we need to impose o(s, m,~ «) #
o(s,m, ). We call such an observer consistent.

Definition 31 (Consistent observer) An observer M is consistent
for S iff for every pair of questions a,~ «a € Qg we have o(s,m,~
a)=1—o(s,m, ).

The inverse question ~ « was operationally defined in Chapter 2
by the observer following exactly the same procedure as for testing «
but switching the outcomes of the test. All operational procedures are
now to be performed by the observer, who is the physical realization
of the mapping o, so this switching of outcomes needs to have some
counterpart in terms of observer states.

It is easy to see this role is played by the state m.,. So we could
rephrase the condition of consistency as the requirement that for each
state m, there needs to exist a state m.,. It is important to notice
that, because o is single-valued, m, and m., can never be the same
state. Nonetheless m, and m., are extremely similar states because
from an operational perspective, the two states have to perform the
same complex series of steps; only in the last step, when they attribute
opposite outcomes, they differ. (It is hard to imagine a good observer of
classical properties that fails to switch the outcomes when the inverse
question is posed.)

The idea is that the consistent observer can give the correct answer
to ~ « (provided it gives the correct answer to a)) by evolving to the
state m., (this could be as simple as knowing or remembering it has
to switch the outcomes at the end of the test) and perform the same
procedure as it would for test «. Consistent observers also solve the
problem we mentioned earlier: our piece of paper with the word “Yes!”
written on it, doesn’t classify as a consistent observer, not even if the
property it was supposed to be saying “Yes!” about, is actual. Hence
if M is a-sensitive and consistent implies, besides Eq. (3.20), that:

s € kg(—a) < o(s,m,~a)=1 (3.21)
s ¢ kg(—a) < o(s,m,~a)=0
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We can formulate this conveniently using the indicator function:
o(s,m,~ a) =1, 4-a)(5). (3.22)

There is one last item we have on our wishlist for the observer.
After the first stage in the measurement interaction, the state m is
“prepared” in a state m, fit to observe the experimental proposition
a, which we have expressed as prep(m,a) = m,. This means that at
this stage, the state of the observer “encodes” the fact that it is fit to
observe the experimental proposition . We require that our observer
can extract that information back from its own state by means of a
special question ¢ and call an observer that can do so, introspective.

Definition 32 (Introspective observer) An observer M is intro-
spective if there exists a question o € Qy; such that for every a € Q)g,
we have: o(s, my, @) = o(s,m, a).

We see that ¢, in some sense, inverts the mapping prep given by Eq.
(3.9).The observer can physically realize this either by memorizing the
question « or by introspectively deducing it from its state. Either way,
the existence of ¢ represents the ability of M to follow through with
the procedures directed by the experimental proposition «. In essence,
it means the observer either ‘knows’ what it is doing, or that it can
deduce introspectively to what particular question it is sensitive.

The different requirements that we impose on observing system
form a ladder of ever higher requirements. The first step on this lad-
der is formed by the requirement of being consistent. It is a conditio
sine qua non for any type of test, irrespective of the system tested or
the system used to test. The second step, requirement of sensitiveness
with respect to a particular property, is what guarantees that perform-
ing the test would yield information about the corresponding property.
It is hence also a conditio sine qua non for any type of test. Freeness
requires sensitiveness with respect to more than one property and is a
quantitative step up from sensitiveness rather than a qualitative. A lab-
oratory is an example of a system that would satisfy this requirement.
An electronic multimeter would be a more modest example. Freeness
with respect to S (i.e., to every property of a system) is indeed a strong
requirement, but if we want to be able to perform a state determination
task for .S, we will have to impose it. The highest step on the ladder is
the condition of being introspective. It really is this requirement that
sets apart the laboratories and measuring devices from the observers.
Not only needs the system to be able to test any question, the systems
needs to be able to answer for itself which question it is testing. It is
a rather high level, but very reasonable requirement. As we explained
in the introduction of this chapter, the difference between a measuring
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device and an observer is that an observer “is able to relate different
input states of the senses to each other by means of an internal image
of the world”. To accomplish such feat, it is a necessary precondi-
tion that the observing system can tell for which question its state is
prepared. Note that, although being introspective is defined with re-
spect to an observer observing an arbitrary system, it is in essence a
requirement that needs some form of self-reference. As it is the state
of the observer which “encodes” the question for which it is prepared,
the observer needs to somehow infer that question from its own state.
Ideally, we want an observer to be introspective, free (with respect to
S) and consistent. We call such an observer an adequate observer for

S.

Definition 33 (Adequate observer) An observer M will be called
adequate for S iff it is consistent, free (with respect to S) and intro-
spective.

The adequate observer is able to observe in a consistent way any
particular property of S; given the fact that the observer may alter the
state of S by the act of observation, this seems to be the best one can
hope for without taking recourse to repeated observations.

The classical self-observer

I am not yet able, as the Delphic inscription has it, to know
myself; so it seems to me ridiculous, when I do not yet know
that, to tnvestigate irrelevant things.

—Socrates as quoted by Plato in Phaedrus, 370 BC

Suppose we have a universe with only classical systems and that, in
this universe, there is an observer that is adequate with respect to
quite complex systems. If such an observer decides to look at itself'4,
we will call it a classical self-observer. We wonder whether such an
observer can be adequate with respect to itself and will grant it every
physically possible advantage to help it do so. To begin with, the self-
observer may study its own state as if it were just another system.
Formally this means the equations of the former section remain valid
when we replace S with M, s with m and o becomes a mapping o :
Yu X Xy x Qu — {1,0}. As the state that M is observing is the

4 For a more elaborate motivation to observe oneself, we refer to the introduction
of this dissertation.
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same state as the one it is in, we can unambiguously (but with abuse
of notation'®) abbreviate

o(m,m,a) by o(m, a). (3.23)

Let’s collect all we have from the former section and what falls under
the definition adequate self-observer.

Definition 34 (Adequate self-observer) A classical self-observer M
with state property space (Xar, L5, k) s adequate iff there exists a
mapping o : Xy X Qun — {1,0} defined by (3.15) such that for every
state m € Yy and for every question o € QQy; and corresponding prop-
erty a € LS, M s free'

o(m,a) = o(mq, ) = 1,,,a)(m), (3.24)

and consistent:
o(m,~ a)=1—o(m,q). (3.25)

Moreover M 1s introspective, i.e. dp € Qs such that for every a € Q
we have
o(Mma, ) = o(m, a). (3.26)

Unfortunately, there are no adequate classical self-observers as we
show in the next theorem.

Theorem 35 There does not exist a classical self-observer M that is
adequate.

Proof: Assuming M is adequate, it is introspective: (Jp € Qpr)(V
a € Qur) : o(mgy, ) = o(m,a). @ is closed under negation, hence
© € Qp implies ~ © € Q). Define y as ~ ¢. M is introspective for
every a € )y, hence also for x and we obtain: o(m,,¢) = o(m, x).
Since M is free, it is sensitive with respect to the property that corre-
sponds to x and we obtain o(m, x) = o(m,, x). Combining the last two
equations, we have o(m,, p) = o(m,, x). As x is defined as ~ ¢, we
have that ¢ is equivalent to ~ y and we obtain o(m,, ~ x) = o(m,, x)
showing M is inconsistent.ll

As a direct corollary we obtain that no consistent and introspective
classical self-observer can be free with respect to all its properties.
Every property of an observer trivially partitions its state space into

15Unambiguously, as the two distinct mappings can be distinguished by the num-
ber of arguments they take. Translation from o(-,,-) to o(, -) can be made through
equation (3.23).

16Note that we before we talked about an observer being “free for S”, because it
may have been free with respect to a given system, but not with respect to another.
We drop this reference now, as we are interested only in one particular system: M.
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two sets: those for which it is actual as opposed to those states for
which the property is not. Given that there are properties for which the
consistent and introspective classical self-observer is not free, implies
there are states of the observer that it cannot distinguish between.

A diagonal argument

The proof above is very simple, but due to its formal character perhaps
not very transparent. As we put in considerable effort to motivate the
ingredients of the argument, it is worthwhile to spell out the proof in
detail. This will add to our understanding of the problem and show
along the way that the proof is in fact nothing but a diagonal argument.
To do so we will make use of a simple coding scheme for states that is
conceptually easier, but not unlike the famous Godel numbering. There
is no need for an observer to have access to this coding, we merely use it
for our argument. We’ll explain the coding of a system S before we do
the same for an observer. Let Lg C ()5 be a complete and countable set
of questions for .S, which exists by our correspondence axiom, Axiom
2 on p.65. We order the members of this set in an arbitrary but fixed
way as Lg = {a1, as, ag,...}. Giving natural numbers as index to the
questions is always possible because the cardinality of Lg is at most
countable. By definition, the answers to the experimental propositions
in Lg determine the state of S. Hence we can write out the states of the
system as a list of zeroes and ones depending on whether the question
«; is true or false. Writing 1 for true and 0 for false, we can picture

this as:
1 Qg Q3 Oy

L o0 1 1 (3.27)

Because the «; are ordered by means of the indices, the string 1011...
(which is simply the concatenation of the entries in the row in (3.27))
can be interpreted as a binary number that encodes the state of s. We
will call this number the code of s and write [s] = 1011.... The entries
we have given here are made up, but if the code is to describe s, the
i'" entry has to correspond to the actuality of property a;. Writing [s];
as a symbol for the value of the i entry of [s],

[S]i = lfﬁs(ai)(s) (328)
we can write this table as:

03] %) a3

(5] Lestan(5) lustan)(8) Luscan(s) (3.29)

To recover the state of the system from its code [s], we note that for the
index set [ = {i € N : [s]; = 1} we can use the meet and the function
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r (def. 23 on p.60):

= rs( [\ a) (3.30)

iel

as these a; are all actual'”. Note that an actual property in the list
may be redundant in the sense that it is a Boolean function of other
actual properties, but this is of no consequence. What is important, is
that the list Lg always contains by definition all actual properties and
hence Eq.(3.30) defines an atom of the lattice £&: the state s of S. The
translation of the above in case the system is an observer is initially
straightforward. Let Ly, = {aq, s, as,...} denote a complete list of
questions that can define any particular state m € X,,. We encode the
state of the observer as a list of zeroes and ones depending on whether
question «; is true or not:

aq Qo (0%}
[m] 1RM(81)(m) 1K'M(a2)(m) 1HM(a3)(m)

We define the special index set I = {i € N : [m]; = 1} to generate the
state of the observer by:

(3.31)

= s\ ) (3.32)
iel

As before, we call this the code of m and write [m]. So far everything
looks identical to what we did with a regular system, but in what

follows we can see that there is more going on for an observer.
Suppose an observer M is given test «y. Then, according to our
physical account of observation, the first step is to prepare, that is to
evolve to a state fit to test oy, according to Eq.(3.9), on p.68. This
state is obtained as prep(m, a;) and we have denoted this state my,.
This state m,, can itself be encoded by writing out the value of every
question in Ly; to obtain [m,,]. If we do the same for every question

in @y, we get:

1 0%) Q3
1/‘9M(al)(m061) HM(aQ)(mOzl) ]- m C e

[Maz] Ley(an)(Maz)  Liy(an)(Maz)  Liy(ag) (Mas) - - (3.33)
1"€M(al)(ma3) HM(aQ)(mag) 1 m ce
The truth values in the table given by the indicator function com-

pletely determine the state m,,, as the collection of all its actual prop-
erties. For example, if the third entry for m,, in the table is 1, then

"The Cartan mapping is defined as k : £ — P(X) whereas the image of the
mapping in Eq. (3.30) now is a state, i.e. a member of X. There is no inconsistency
here, as ¥ € P(X) and the collection of actual properties defines an atom, i.e. a
state.
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Ly (as)(May) = 1, hence my, € ka(az). This then indicates property
as is actual for the state m,,. But if the observer is a;-sensitive, then
we have [m]; = o(mg,, ;). If M is free, it is by definition a;-sensitive
for every property in L5, and we get!®:

aq &%) a3
[mm] O(mam al) 0 1
[mO@] 1 O(ma27 O‘Q) 0
[Mas] 0 1 0(Mas, 03)

Note that [m,,] encodes for each ¢ the state m,,, and not the ini-
tial state of M, which was m. However, remember m,, was a state
specifically prepared to observe «; for the state m. So if the observer
is in the state m,, and it observes the question «;, then that outcome
must coincide with the actuality of that property!?, because the state
m,, was by assumption a;-sensitive for m. So for each ¢, the outcome

0(ma,, ;) must indicate whether property a; is actual or not, for both
m and m,,. This reasoning can formally be expressed as

0(Maq,, ;) = o(m, o) (3.34)

but we do not need to impose as a separate condition as it is already
guaranteed by the construction of the function o as can be seen in Egs.
(3.16) on p. 70 where we have used (3.23). We obtain:

a1 (%) (0%}
[Ma,] o(lm,aq) 0 1
(M| 1 o(m, az) 0
(M5 0 1 o(m, az)

Since o(my,, ;) = o(m, ;) has to hold for every i, the outcomes on the
diagonal of the scheme form the code [m] and hence completely deter-
mine the state m. Likewise, the codes [m,]| on the rows determine that
state m,, because —by definition (28)— the answers to the complete
list of questions Ly, = {a, as, s, ...} are sufficient to determine any
state of M.

18 As the values that are not on the diagonal only tell us something about the
state m,, and not necessarily about m, we have replacede the non-diagonal entries
by random number, which we will continue to do clarity.

YTn other words: the preparation of the state m,, can alter the actuality of
some properties of m, but not of property a;. The post-measurement state of the
observer, what we have called m/, in (3.13), may well have altered the actuality of
a;. This is entirely possible but of no further consequence here.
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We are now in a position to rephrase the proof in somewhat more
detail. To do so we set up the table of codes for M in the state m
for a complete list of questions Ly, = {ay, s, ag,...} (28), with the
diagonal elements replaced using (3.24):

(03] Qo (0%}
[mal] O(mom 041) 1f<cM(a2)(ma1) 1iy(as) (mm)
[mcm] 1y, (May)  0(May, 042) 1s5/(as) (maz)
1), (mas) 1iy(an) (moz3) O(masa 043)

(a1)
(a1)
Consider now the question x defined as ~ ¢, with ¢ the question
defined by o(mq, p) = o(m,a), V a € Q. We have ¢ € Q) because
M is introspective by (3.26). Because the set of questions Q) is closed
under negation, we also have y € Q). By definition of x we have
0(Mgy,, X) = 0(Mq,, ~ @) for every a; and by (3.25) we have o(mg,, x) =
1 — o(ma,, ;). Let us make the question x explicit as a column in the
table with the codes of m,, for every ¢ given by its definition:

aq (65 X
[Ma,] o(ma,,ar) . oo L—=o(mg,,ar)

(M| . 0(May, 2) ... 1 —o0(Mmy,,as)

We use Eq. (3.34) to substitute the diagonal elements with elements
that relate directly to m :

a1 Q9 X

Since L), is a complete list, there has to be a value j such that x = ;.
This question «; corresponds to a property a;. Because M is assumed
free, it is a;-sensitive (definition (29) on p. 70) and can evolve to the
state mg;. We get the following table:

o . a; . X

(mea,] o(m,aq) ... 1—o(m,ay) ... 1—o(m,a)
(3.35)

m,, ] oo olmyay) .. 1—o(m,x)

J

By a;-sensitivity the j™code of [m,,]; has to be equal to the outcome:
o(m, a;), but by definition of x the outcome is 1 — o(m, x) = o(m, ~
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X) = o(m,~ «;) and M is not consistent (definition (31) on p. T71).
This finalizes the proof. What is this property a; that corresponds
to the question x? It is formally the negation of the question whose
existence was required for an observer to be introspective. We can
however give it a more direct, semantical interpretation. The question
X is defined as o(m,,, x) = 1—o0(m,,, @;) and hence in natural language
denotes the property that distinguishes the state for which it is actual
by a “reversal of the outcome to each question”. The set of states that
makes this property actual is not empty, as this is in fact the defining
property of m,. When M is in the very state that changes outcomes
with respect to the question asked, it cannot possibly be sensitive with
respect to the property that defines it, as this particular property is just
one more example of a question that can be asked. One may regard
the state m, as the equivalent of a “liar-state”, but the existence of
m, is an inescapable consequence of the requirements we imposed on
the observer. I believe this argument is essentially a “proof-of concept”
proof and that more detailed formal descriptions of self-observers will
include many more specific and more interesting unobservable proper-
ties of self-observers. The proof hints at where we should be on the
lookout. In particular, m, was a state necessary in the observation pro-
tocol and it is plausible that, by the same token, the intermediary states
necessary to observe a primitive question are prone to unobservability.
We will see that under different premises somewhat different, but in
essence similar issues of non-observable properties arise. In experimen-
tal science one speaks of “consilience of inductions” when unrelated
pieces of evidence support the same hypothesis. In our case different
premises and different argumentations can be regarded as a form of
“consilience of deductions” that lend greater credibility to the claim
no self-observer can observe all its actual properties.

Compound questions for the self-observer

We now turn to compound questions, by which we mean questions that
cannot be tested in a single setup. A good example of a complex ques-
tion, is a question that is a Boolean function of primitive?’ questions.
Suppose M is in the state m that is free with respect to a set of proper-
ties A = {ay, as, ..., a,} that correspond to a set of primitive questions
Qa = {ay,as,...,a,}*'. We want to observe the compound question
« that is an n-ary Boolean function g of the n primitive questions in

20Recall that a question is called primitive if it is testable in a single experimental
setup.

2IMore precisely, we should write Q4 = {a,, @i,, ..., ;, }, but we choose to use
the first n natural numbers as indices for notational simplicity; the actual questions
involved of course need not be the first n questions in @Q;.
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Qa:

g = {0,1}" —{0,1}

- 9(0417&27 .. ‘7Qn)

We can enlarge the set of questions to include such questions in a
recursive way.

Definition 36 Let Q%™ be a countable® set of primitive questions
regarding the system S. Then Qg is recursively defined by:

1. a € Q7 then o € Qg

2. a,p € Qg then a- P € Qg

3. a€ Qg then ~ a € Qg

4. o € Qg then () € Qg

In this way Boolean expressions of primitive questions such as ~
(- 3) are in Q)5 by application of rules 2, 4 and 3 respectively. It is well-
known the Boolean operators NOT and AND (corresponding in Qg to
~ and - respectively) are sufficient to generate all Boolean functions,
so every possible g will correspond to a specific question o € Qg. Is
it possible and if so under what conditions, can M establish the truth
value of a? We will assume here there is no problem in observing the
separate tests (as M is assumed free for A), nor in calculating the
function ¢ (as we are comfortable to grant the observer the power
to perform Boolean functions on data it has already observed). The
fundamental problem that cannot be evaded is what the final outcome
still has to say about the (pre-measurement) state m.

To illustrate the problem, take the most simple example of a com-
pound question: the product of two questions. (We will assume in
this section that there does not exist a question that can be observed
in a single setup that is equivalent to the product of the constituent
questions.) First of all, as explained in the definition of the meet 11,
we require the result of observing « - 3 for the observer in state m to
correspond to the actuality of the meet of the corresponding properties
a and b for the state m :

o(m,a - fB) =1, arp)(m)

22 A countable set has the same cardinality as some (not necessarily proper) subset
of the set of natural numbers.
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As kp(a A b) is the set of states for which both a and b are actual,
the outcome is 1 iff m is in both kys(a) and xy(b). Hence we have

o(m, a - 5) = 15M(a)ﬂ/€M(b) (m>

1iys(a) (m) Ly (m) (m)

For an observer that is a-sensitive, we have o(m, o) = 1,,,a)(m). If
the same goes for b, we can formally write:

o(m,a- ) =o(m,a) - o(m,f) (3.36)

Algebraically speaking, we couldn’t have wished for a more transpar-
ent formula, but operationally it is anything but straightforward. The
problem is not that the formula doesn’t hold (it does), but that the
observer has to choose which question to observe first and this will
change its state. Indeed, observing the answer to any question in A
must change the state m, otherwise the observer cannot possibly make
any kind of inference after the observation that it could not already
have made prior to the observation, making the act of observation su-
perfluous. The epistemic gain of knowledge due to observation must,
by physicalism, have a counterpart in the ontological state of the ob-
server. The most economic situation an observer can hope for is one in
which only one single property of M has changed as a result of observ-
ing another property. But if the property that has changed happens
to correspond to the next question in line to be observed, the final
result will no longer have anything to say about the pre-measurement
state m. As a result, no observer can determine its state at any specific
instance by following a strategy of observing property after property.
Indeed, after the first observation at least one property has changed
and the question that corresponds to this property has to be included
in the list of questions that determine its state.

Self-observation and the knowledge balance princi-
ple

In this section we restrict ourselves to finite observers, that is, observers
for which the set of available states to an arbitrary but fixed finite
number. For simplicity, we assume the specific function g is simply the
product of the arguments. Can we then assume M is in principle able
to observe the outcome of properties that are the meet of arbitrary
properties in the set A by performing the corresponding test of each
property and forming the product? We explained in Chapter 2 that the
meet of properties is operationally well-defined if each of the properties
in the meet is well-defined. Let us illustrate why, in general, product
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properties belonging to the observing system cannot be observed using
the operational procedure of Chapter 2 by picking a simple example.

Assume M is a system completely determined by just 4 classical
properties, a;, as, ag and a4, and as such has 2* possible states. If
the product of interest is «y - @y and the observation of a; changes
the actuality of a3, and the observation of ay changes the actuality of
a,23, it has obtained all that is necessary to form the product. But we
cannot measure a third property without altering at least one of the
previously obtained values, effectively erasing that observation. It is
easy to see this generalizes to the following proposition (using #(A) to
denote cardinality of A).

Proposition 37 (Maximal Self Knowledge) A free, classical self-
observer M with #(LS,) = 2n can observe at most n properties in
LS without changing either the actuality of observed properties, or the
result of the observations of those properties.

The proposition provides an upper bound which can be reached
only if the following three conditions are met: (i) the ability of M to
change only a single property for each observation it performs, (ii) to
leave this altered property unaltered by the subsequent observations,
and (iii) to be able to perform Boolean functions on the values of ear-
lier observations that are stored. In essence maximal self knowledge is
a trade-off between what is considered unknown and hence candidate
for observation on the one hand and the ability to ‘store’ the result of
the observation, i.e. properties now considered as ‘known’ post obser-
vation. Note that the reason why the claim holds is essentially because
the observer is self observing. If M were to be observing a system ex-
terior to itself, storing the outcomes of previous observations in its own
state would not have direct consequences for its ability to gain more
information about the system it is observing. Maximal self knowl-
edge does not a priori rule out that an observer is able to perform the
test corresponding to a product question directly in a single measure-
ment setup as long as this does not require obtaining more values for
the constituent questions in the product, than bound by maximal self
knowledge. The maximum number of properties M can hope to ob-
serve is still n and among those n there may or may not be product or
other, even more complex, properties.

Maximal self knowledge reminds us of Spekkens’ toy model for
quantum mechanics where a very similar idea is called the knowledge

23 M cannot change the actuality of a3 a second time, because then the postmea-
surement state would be identical to the state we would have had when as would
have been observed directly on m. Using the actuality of az a second time has
destroyed any possible gain from the observation of the first property.



The classical observer 83

balance principle. Spekkens himself formulates the principle in [186] as
follows:

Knowledge Balance Principle: “If one has maximal knowl-
edge, then for every system, at every time, the amount of
knowledge one possesses about the ontic state of the sys-

tem at that time must equal the amount of knowledge one
lacks.”

Effectively the knowledge balance principle says that, if 2n ques-
tions characterize a system completely, maximally n can be known.
One can therefore regard classical self-observers as an example of a sys-
tem that automatically obeys the knowledge balance principle. Spekkens’
model shows many impressive qualitative similarities with quantum
theory and it would be interesting to investigate how his toy theory

can be reinterpreted in terms of self-observers®*.

On related results

Although to the best of my knowledge, no formal arguments of the
kind given above exists in the literature, they are related to a few other
results and we will discuss the ones that we feel are most closely related.
We will treat Breuer’s result because the wording of his result is closest
to our result. Next we will discuss similarities and differences between
our proof and the results of Godel, Tarski and other closely related
theorems. A group of researchers, among whom we find Karl Popper,
Maria Luisa Dalla Chiara, Martin Zwick, Asher Perez, Karl Svozil and
others have drawn attention to the similarity between undecidability
and the quantum measurement problem and we will argue that from
the perspective of our theorem, this is not coincidental.

24 As discussed by Spekkens, one of the implications of the knowledge balance
principle, is that the state of a system that obeys the principle needs to be fixed by
an even number of questions of which only half can be known. This in turn means
the number of ontic states of an elementary system, defined by two questions, is
at least 4. If there are 2n questions, the number of states is 22”; a rather artifical
constraint on the state space. If one allows for the possibility that the observation
of a property changes that very same property, this (hard to physically justify)
constraint on the allowable size of the state space is no longer necessary when we
deal with self-observers. The reason is that if the act of self observation has changed
the actuality of the property under observation, the outcome may pertain to the
past but not to the present, or vice versa. We cannot know which is the case and
we are always left with exactly as many knowns as unknowns.
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Breuer’s argument
In a series of very interesting papers [61], [60], Thomas Breuer examines
the limits of an observer that is contained in the system that it is
seeking to observe. Breuer’s main result is very similar to ours, so it is
worthwhile to describe it in some detail®.

Let the states of S (object) and M (measurement apparatus) refer
to the same time instant after the measurement. Let 6 be an inference
map and with o, € P(X) and o5 € P(X5) we have:

0:P(Xy)— P(Xs), our—0(oy)=o0s. (3.37)

That is, the map 0 allows us to infer that if the apparatus is in one
of the states m € o), then the system has to be in a state s € og.
We should not be able to infer states that are not possible, so we have
6(X) C Xg. Obviously, we have

0(on) = Umeoy, 0({m}). (3.38)

A state sq is called exactly measurable in an experiment with infer-
ence map 0 if, after the measurement, there exists a set oy € P(Xyy)
of apparatus states referring uniquely to the state s or, symbolically:
O(or) = {so}. An experiment with inference map € is said to be able
to distinguish the states s; and s, iff there is one set of final apparatus
states referring to s; but not to ss, and another set of final appara-
tus states referring to s, but not to s;. Note that, if a state is exactly
measurable, it can be distinguished from any other possible final state.
However, for two states to be distinguishable, it is not necessary that
they are exactly measurable. If, however, all possible final states are
distinguishable, then they are all exactly measurable.

The central argument of Breuer then goes as follows. We consider
the situation where the apparatus M is contained in the system S' it is
seeking to observe. In other words: the observed system includes the
apparatus. This is formulated by the assumption of proper inclusion:

Js,s' € ¥g: s # s and s|y = §'|u. (3.39)

The notation s|y; denotes the set of states of the apparatus that one
obtains if one restricts the state of the observed system to the appa-
ratus subsystem. For finite state systems, this assumption means that
there are strictly more states for S than there are for M, and this al-
ready makes the exact determination of all the possible states of S+ M

2>We stay very close here to Breuer’s original presentation. Because it seems
harmless and allows for a more continuous reading, we have only changed the
symbols for both the states and the set of states of both the system and the observer
to match the ones you have become accustomed to over the last few sections.
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impossible for the subsystem M. For infinite state spaces, Breuer sug-
gests to tackle the problem on the basis of a consistency condition that
he calls the meshing condition and that we can formulate as:

Vm € Xpr sy s € 0({m})} = {m}. (3.40)

This condition makes sense: for every apparatus state m € X, the
restriction of system states #({m}) to which the inference map refers
should be that same apparatus state, lest the reference is contradictory.
These few tools suffice to prove an interesting proposition.

Proposition 38 Not all states of a system can be measured exactly
by an internal observer. Symbolically: sy € Yg, Vo € P(Xnm) :

0(onr) # {so}-

Proof. (Reductio ad absurdum) Assume Vs € Yg, 3oy € P(Xy) :
O(o ) = {s}. From the assumption of proper inclusion, we have 3s, s’ €
Y5 : s # s and s|y = §'|y. By assumption that the states can be
measured exactly, we have: Jo,, o', such that 0(oy) = {s} and
0(c’y;) = {s'}. Since Upey,,0({m}) = 0(on) = {s}, there exist a m
in oy such that 6({m}) = {s}. Likewise,there is m’ € ¢/}, such that
O({m'}) = {s'}. But then we have: {s} = 0({m}) = 0({6({m})|u}) =
0({slm}) = 0{s'[n}) = 0{0({m'})|n}) = 0({m'}) = {s'}. But by
assumption, we had s # <s'.l
Breuer’s reasoning aims to show the existence of distinct states that are
indistinguishable for an observer that is contained in the system that it
seeks to observe, a result that is extremely close in content to ours. The
argument’s strong point is its simplicity and the fact that it does not
rely on any specific kind of dynamics for the interaction between the
system and the apparatus. In particular it does not depend on whether
the evolution of the system is deterministic or statistical, although it is
not easy to conceive how statistical evolution would help an observer to
obtain exact knowledge. A less attractive feature of the proof is that
the assumption of proper inclusion (3.39) is very strong. Although
physically certainly reasonable, it already foretells us that there will be
distinct states that appear the same when one only considers the state
of the apparatus as a proper subsystem. The assumption of proper
inclusion can only be made plausible when the observer is studying a
system of which it is a part. But what if the observer is looking at it
self? The set of states that it has at its disposal is then exactly the
same as the set of states that it can be in, and so one of the basic the
premises of the proof, the assumption of proper inclusion, is no longer
warranted.
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Godel and Tarski.

Breuer writes in [61] that it is safe to say the only thing his result and
Godel’s have in common is the aspect of self-reference. Our result uses
an explicit diagonal argument and is hence closer to Godel?® [109]. Tt is
perhaps still closer to the work of Raymond Smullyan [182], [183] that
seeks to simplify and at same time generalize Godel’s results. There is
however an important difference. As Godel’s argument is a mathemat-
ical precise statement about mathematics itself, it is logically speaking
very hard to dispute it: one would have to deny parts that are essen-
tial to mathematics itself. We are here dealing with observations, with
the inevitable consequence that these observations are about things in
the world . We are comparing reality and our formal description of it
in one theory, and we do so when we impose that every system has a
state property system. One can always escape the theorem by deny-
ing observers can be described by a state property system or that one
of the premises (consistent, free or introspective) of the theorem is not
granted in reality. Our description of the observer is not a physical the-
ory of how systems evolve per sé; it should rather be viewed upon as a
logically more primitive theory, containing the necessary basic notions
for a realistic description of an observing system. So while the theorem
of this kind can never justify itself as firmly as Godel’s can, we do claim
it imposes a restriction on the representation of knowledge gained from
observation that an observer can have about itself. Although our re-
sult relies on the basics of the Geneva-Brussels approach, 1 believe it
is essentially reproducible in any realistic account of self-observation
as a physical process. The underlying reason that is essential to the
derivation of the result is that the observer is not only the system under
study but also the one that —through its observations— makes claims
about this system?’. This particular form of self-reference is related to
Tarski’s famous result on the undefinability of truth of a sufficiently
rich system from within that system [195]. To see this, we only have
to realize the requirement of being introspective can be semantically
reformulated to resemble a truth predicate. The question ¢ € Qs such
that for every oo € @y we have o(mg, p) = o(m, a) can be rephrased
as: “Proof you are able to observe for which question your state is
primed by giving the correct answer to that very question.” The struc-
ture resembles that of a truth predicate 7" and in much the same way
the truth of a proposition p has the same truth value as the proposition

26Neither Godel nor Tarski explicitly used the word diagonal argument in their
work. It was Carnap [67] who recognized the diagonal argument in both proofs.

2TThis is in essence the same reason why computers cannot (universally) tell
when a program they are running will halt, why a system of axioms cannot prove
its own completeness and consistency, and why it does not make sense for a book
to declare —as part of its contents— its never erroneous origin.
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itself (T'(p) is true iff p is true), o(m,, ¢) will be true if « is.

Self-reference and the quantum mea-
surement problem

The observer, when he seems to himself to be observing a
stone, 1s really, if physics is to be believed, observing the
effects of the stone upon himself.

—Bertrand Russell, An Inquiry Into Meaning and Truth, 1950

Of the many philosophical issues surrounding the interpretation of
quantum theory, none is by many considered quite as important and
controversial as the so-called quantum measurement problem. To give
an overview of the problem would require a dissertation in itself, and it
would be hard to do a better job than one of the classics on the topic
by Busch, Lahti and Mittelstaedt [64]. As we believe our result has
some bearing on the measurement problem, we will very briefly state
the nature of the problem. It has been known since the early days of
quantum theory and at least since von Neumann'’s classic [204] that by
the linearity of the dynamic laws, the superposition of two (or more)
states of an observed quantum system is transferred to a superposition
of the pointer observable of the measurement apparatus. If quantum
theory is the whole and complete story, then how do definite pointer
positions arise? This is roughly what is called the objectification prob-
lem in [64], and much of the book is devoted to describe the work that
has been done by various authors to weaken one of the assumptions
of standard quantum mechanics in an attempt to solve the problem.
Many different approaches pass the revue such the Many-Worlds inter-
pretation [94], the Modal interpretation [86], [199], decoherence based
approaches [214], [212], unsharp objectification [63], [179], modified dy-
namical laws [108], [58], hidden variables [56], [57], and so on. None
of these proposals has solved the measurement problem to everybody’s
satisfaction. Many these attempts share the feature that to a greater
or lesser extent, they alter standard (non relativistic) quantum the-
ory, especially with respect to the projection postulate or at least the
interpretation or status of this postulate. However, as the authors ac-
knowledge ([64], p. 137), there is a completely different way of looking
at the problem:

...from a methodological point of view the measuring process
does not belong to the domain of quantum mechanics but rather



88 The classical observer

serves to constitute the semantics of this theory. It is the re-
quirement of the semantical completeness of quantum mechan-
ics which stipulates that the very (measuring) processes provid-
ing operational definitions of the concepts of the theory must be
describable in terms of the theory. This semantical complete-
ness ... induces a logical situation similar to that encountered
with Godel’s theorem. To avoid inconsistencies within a univer-
sally valid quantum mechanics, it is argued, the theory cannot
be applied to yield a complete description of a measurement
situation. Rather one has to accept that part of the process
of measurement remains unanalyzed; in other words, according
to this point of view one has to distinguish between two lev-
els of description: the endophysical (ontic) and the exophysical
(epistemic) level, analogously to the distinction between object
language and metalanguage in logic.

The authors refer to the works of Dalla Chiara [79], Breuer [61] and
Perez [158]. The idea of endophysical and exophysical perspectives

and their relationship to the quantum measurement problem can also
be found in Asher Perez [158]:

Even if quantum theory is universal, it is not closed. A
distinction must be made between endophysical systems—those
which are described by the theory—and exophysical ones, which
lie outside the domain of the theory (for example, the telescopes
and photographic plates used by astronomers for verifying the
laws of celestial mechanics). While quantum theory can in prin-
ciple describe anything, a quantum description cannot include
everything. In every physical situation something must remain
unanalyzed. This is not a flaw of quantum theory, but a logical
necessity in a theory which is self-referential and describes its
own means of verification. This situation reminds of Godel’s
undecidability theorem: the consistency of a system of axioms
cannot be verified because there are mathematical statements
that can neither be proved nor disproved by the formal rules of
the theory; but they may nonetheless be verified by metamath-
ematical reasoning.

Although it goes nowhere as far as this, we already glimpse a ten-
dency to look in this direction in John von Neumann’s classic book of
1932. We quote from the last chapter of [204], p. 352:

Let us now compare these circumstances with those which
actually exist in nature or its observation. First, it is inherently
entirely correct that the measurement or the related process of
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the subjective perception is a new entity relative to the physical
environment and is not reducible to the latter. Indeed, subjec-
tive perception leads us into the intellectual inner life of the in-
dividual, which is extra-observational by its very nature (since
it must be taken for granted by any conceivable observation or
experiment).

Von Neumann then explains at length that the boundary between
the system and the observer is to a large extent arbitrary, to conclude
that this:

...does not change the fact that in each method of description
the boundary must be put somewhere, if the method is not to
proceed vacuously, i.e., if a comparison with experiment is to
be possible. Indeed experience only makes statements of this
type: an observer has made a certain (subjective) observation;
and never any like this: a physical quantity has a certain value.

Comparing Bohr’s position that ultimately all measurements are
to be described by classical physics to von Neumann’s position, shows
von Neumann is heading for an even more radical solution to the mea-
surement problem. According to von Neumann “perception...is extra-
observational by its very nature since it must be taken for granted by
any conceivable observation or experiment”. We leave it to the reader
to judge whether von Neumann’s remarks have any bearing on the rela-
tion between semantical completeness and the measurement problem.

In 1951 Karl Popper [165] attempts to show that Godel’s theorem
implies a fundamental form of indeterminism in classical physics. More
specifically, Popper gives several informal arguments (using a predictor,
which is a physical instantiation of Laplace’s demon as a supercomputer
furnished with initial data) to show no observer can know its own state
before this state has already passed. The first two papers that —to the
best of my knowledge— are entirely devoted to the point of view that
the measurement problem may have more to do with self-reference than
with quantum theory an sich, are: “Logical self-reference, set theoret-
ical paradoxes and the measurement problem in quantum mechanics”
from 1977 by Maria Dalla Chiara [79] and “Quantum measurement and
Godel’s proof” of 1978 by Martin Zwick [215]. Dalla Chiara does not
dispute the universal applicability of quantum theory per sé, but argues
that “...any apparatus which realizes the reduction of the wave function
is necessarily only a meta-theoretical object ” [79] (p. 340) Together
these papers form a strong argument: whereas Dalla Chiara’s paper is
very general, formal and written in the language of logic (although she
does point out some of the more philosophical consequences), Zwick’s
paper is more physical and philosophical in nature (although there are
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some initial attempts at formalization). Zwick is particularly careful to
point out it is not after the argument that physics rests on mathemat-
ics and since mathematics is incomplete, so is our physical description
of reality, which he considers true but trivial. He is more careful with
the argument that an incompleteness result could be given within some
proper axiomatization of quantum theory, although this is not Zwick’s
goal. Such a result however seems to be what Busch, Lahti and Mit-
telstaedt had in mind when they end their book with the concluding
remark:

On the other hand, no Gédel-type propositions were formu-
lated in quantum mechanics up to now. In our opinion these
ideas deserve to be taken seriously; but they also require fur-
ther elaboration towards rigorous formalization before their far-
reaching implications can be properly estimated.

Although it may be worthwhile to investigate the possibility of
Godel-type propositions within a given axiomatization of quantum the-
ory, we want to stress this is not our point here. As has been pointed
out frequently, for all its paradoxes, quantum mechanics is never at
odds with experiment and never internally inconsistent. The para-
doxes always use some form of counter-factual reasoning or counter
factual outcome assignments. An explicit example of this kind was
given by Kochen and Specker in [139], in which they identify a set
of observables that lead to an inconsistency if value assignments of
all observables in this set are assumed to exist?®. A similar example
of counter-factual attribution of values that lead to paradoxes can be
found in the Mermin-Peres square [157]. Quantum theory escapes the
possibility of an inconsistency because it will not predict what outcome
will be obtained. Quantum theory tells us: If you happen to have
measured a definite outcome, the projection postulate was somehow
activated; I will only tell how often on average you will have projected
onto a particular subspace. To us, the more interesting question is
whether the mathematical structure of quantum theory is (partly) the
result of the attempt to produce a physical theory that is universally
valid and that avoids inconsistencies. The projection postulate seen
from this perspective is a solution to a problem, rather than a problem
in itself?, as it is to much to ask of any theory to be complete with
respect to deterministic predictions for every possible interaction and

28Ernst Specker may have entertained a relation between quantum theory and
undecidability, judging from his paper “The logic of non-simultaneously decidable
propositions” [185], which makes one suspect it deals with the mathematics of
undecidability rather than quantum physics.

29 Although popular wisdom has it that in every small problem there is a bigger
one struggling to get out.
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be consistent at the same time. This speculative idea seems to find
additional support in several papers that indicate how quantum theory
allows to “circumvent” some of the classic undecidable problems. The
first paper by Karl Svozil assigns a halting amplitude to determine the
halting probability of an algorithm [191]. A second result by Diederik
Aerts et al. [21], describes the evolution of the truth values in the liar
paradox by means of a unitary evolution in four dimensional Hilbert
space. Lastly, we point to a paper by Paterek, Koer, Prevedel, Klimek,
Aspelmeyer, Zeilinger and Brukner where they write [155][154]:

..states of elementary quantum systems are capable of en-
coding mathematical axioms and show that quantum measure-
ments are capable of revealing whether a given proposition is
decidable or not within the axiomatic system. Whenever a
mathematical proposition is undecidable within the axioms en-
coded in the state, the measurement associated with the propo-
sition gives random outcomes. Our results support the view
that quantum randomness is irreducible and a manifestation of
mathematical undecidability.

The paper raised some questions because the title of the paper —
Mathematical undecidability and quantum randomness— led some peo-
ple to believe the authors claim that truly undecidable statements can
be solved or decided by quantum theory. Two years later a second and
revised version of the paper by Paterek et al. is somewhat more careful
and states

We demonstrate that quantum systems in the eigenstates
of Pauli group operators are capable of encoding mathemati-
cal axioms and show that Pauli group quantum measurements
are capable of revealing whether or not a given proposition is
logically dependent on the axiomatic system.

The notion of undecidability as a stronger form of logical indepen-
dence is —as the authors point out— related to Chaitin’s conception of
undecidability in [70], where he writes “Undecidability arises whenever
a proposition and a given set of axioms together contain more infor-
mation than the axioms themselves.” This information based notion of
undecidability leads Chaitin to suggest that “the incompleteness phe-
nomenon discovered by Godel is natural and widespread rather than
pathological and unusual” [70]. With the caveat pointed out above we
subscribe to that point of view. Note however, that the problem we
identified with the classical self-observer cannot be rephrased as a prob-
lem of mere logical (in)dependence; we cannot add a state or property
to the state-property system of the observer such that the self-observer
becomes adequate.
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Self-reference and human observa-
tion

It is the unfortunate fate of many undecidability arguments that their
relevance is either exaggerated or marginalized. I hold the relevance of
the existing undecidability results in many branches of mathematics to
be self-evident. I hope to have explained why I think our result holds
philosophical significance with respect to the interpretation of quan-
tum theory. The question we want to address now is how important
our argument is with respect to actual observation. Let us first ponder
this question in relation to automated or robotic observers. Turing’s
famous result [80] on the impossibility of determining whether a given
program will halt or not on a given input, was the first undecidabil-
ity result for computers. Anyone who has waited long enough for a
computer to finish a job only to pull the plug eventually, knows the
problem is more than academic. In 1987, Fred Cohen showed in [73]
that no virus detecting software can detect with certainty every virus
and not sometimes mistake parts of the operating systems to be a
virus. Cohen proves his result by showing it is equivalent to Turing’s
halting problem; if the latter is undecidable, the former has to be too.
A mere three years later Lane Davis and Steven Drake created the
first so-called rootkit, a type of virus that merges so deeply with fun-
damental parts of the operating system, that the current expert advice
for removal is to reformat the computer’s hard drive and completely
reinstall all software including the operating system?®’. This is one of
the many examples that show undecidable questions are quite often
not without practical interest®!. I believe that simultaneous with the
advent of autonomous robots, we will come to appreciate the multi-
tude of interesting questions that involve self-reference in one way or
another. These results are in the framework of theoretical informatics;
if the conditions are met, the result will hold. We are dealing with a
formalization of a function of biological systems, which are vastly more

300ne wonders whether at some point in the future it would make sense to have
a biological equivalent to this theorem, saying that no living organism can have
an auto-immune system that eliminates every possible threat and yet is free of
autoimmune disorders that mistakingly ‘protect’ against the organism self.

31 Another famous example, is the result of Fischer, Lynch and Paterson (com-
monly known as FLP, [96]) that, surprisingly, a set of processes in an asynchronous
distributed system cannot with certainty agree on a binary value if a single processes
is unreliable. The proof directly implied the impossibility of a number of related
problems, including consensus, which is defined as agreement among a number of
processes about the numerical value of data. Consensus is necessary to achieve
a reliable output in a distributed computer setup and as such the result had an
enormous impact in distributed computing, both theoretical and practical.
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complex. If however the model of observation we propose is sufficiently
general to encompass human observation, we ought to be able to un-
derstand the theorem from our everyday experience as observers, at
least in some limiting sense. We believe it is not hard to give examples
to show this is indeed the case. Suppose we are given a collection of
objects and are asked to determine which color each of them has from
a list of existing colors. Suppose furthermore that we have a collection
of observers that we ask to judge the color of each object. If a great
majority of observers judge all the items to be red, we ‘objectify’ the
outcome of the observation and say all members in the collection are
red, without reference to a particular observer. An observer is then
deemed objective (in the language developed here, we would say red-
sensitive) when it too, observes all these items to be red. When there
is no general accord among observers as to what color a particular
item has, we cannot objectify the color of that item and we cannot say
what it means to be a red-sensitive observer. Let us now turn to the
perspective of a single observation made by a single observer, which
is closer to the content of the theorem. If the observer attributes the
color red to an item, it must have at least one state that attributes the
color red to that item. But how is the observer to know whether the
object is indeed red, or whether it is simply in a state that attributes
red to the item. Such states of the observer do exist, for example, af-
ter having been exposed to a very bright cyan colored light, or after
being punched on the nose so that everything looks red. To know the
difference doesn’t seem so problematic in this instance. Surely an ob-
server would know if it was exposed to a bright cyan light and even
more so when it was punched on the nose. It then realizes it is per-
haps not sensitive to that property. But to be able to tell whether a
given state of the observer is indeed sensitive to a particular property,
requires exactly what we have defined on p.72 as “Introspective”. The
corollary to the main theorem on p.145 shows that there exist different
states that cannot be distinguished by a consistent and introspective
observer. Every observer has at least one state (which is sufficient for
the argument) that is potentially liable to such an ambiguity, and that
is the state that attributes the color red to an object. It follows it is
for the observer in principle not possible to tell with certainty whether
the observed property is indeed an attribute of the outside world or of
itself32.

In general we do not consider this problem to be undecidable be-
cause we believe that in the majority of cases we observe the object
to be red or not depending only on whether the object #s red or not.
However, if we are exposed to the object for only a fraction of a second,

32Tn Chapter 5 we will treat this dilemma using likelihood estimators to come to
the definition of optimal observer.
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or the observation occurred under very dim light conditions, we should
(and hopefully would) be more prudent with respect to this belief. In
dealing with observations that are made by other observers, especially
if the result of the observation seems implausible to us, we take into
account that what was claimed to have been observed may well have
been the result of the observer simply belicving it saw what it saw.
In the court of law, a lawyer can sometimes succeed to discredit the
testimony of a witness by pointing out that some of the circumstances
under which the observation happened were unfavorable to observation.
Many more examples can be found in psychology, often in relation to
what is called projection. According to psychoanalysis projection is
particularly present in the neurotic or psychotic person. It is however
well-known to be a very common phenomenon. A kind (or rude) per-
son often judges others around her to be kind (or rude), effectively
“measuring other people’s corn by one’s own bushel”. The point here
is not so much the observation of being surrounded by nice (or rude)
people in itself, but rather the impossibility for such a person to really
answer the question whether she herself is kind (or rude), or the people
encountered that day. Very often the objectification problem for the
observer is not whether it is possible to observe an sich, but rather
whether it is possible to know for sure that what is observed is indeed
an attribute of the outside world or of oneself*3.

We have given several examples to show the problem is indeed
present in everyday observation. Yet it cannot be denied that in most
practical instances we feel justified in attributing reality to the con-
tent of our observations. To explain this apparent tension, we need
to appreciate that classical observation consists of an inference that is
always based on many more elementary observations. Our eyes sample
at least 25 images per second. It is well-known that a very large part
of the information that we believe we have seen or heard is in fact not
directly observed, but inferred information. Often multiple senses are
involved and their signals combined to add plausibility to the observa-
tion. All of this suggests that probability may be a tool that can assist
us in dealing with this problem. Classical error theory is an example
of such a probabilistic tool and we can witness the remains of the un-
decidability in the minimal resolution of the last digit in the readout of
an measurement apparatus. An experimentalist will admit that we do
not know whether the value of this last digit is due to the system under

33We have illustrated this in the introduction with the example of Galileo using
his own heartbeat to measure the timing of the pendulum. As a matter of prin-
ciple, uncertainty in self-observation can spill over into uncertainty about general
observation as every observation is ultimately a form of self-observation; we have
to believe our eyes before we can make inferences about the outside world based on
what we see.
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investigation or to inherent fluctuations in the process of observation.
We analyze this situation in detail in the next chapter. We emphasize
that undecidability does not amount to impossibility per se. It does
call for an additional principle to limit its influence on the content of
the observation. We will take a lead from E.T. Jaynes [129]: “From our
viewpoint ‘undecidability’ merely signifies that a problem is one that
calls for inference rather than deduction.” Jaynes’ remark is particu-
larly apt for our situation and we will turn to probabilistic inference in
the remaining chapters.
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Chapter 4

Potential properties, proba-
bility and state space

And shall we leave Gorgias and Tisias undisturbed, who saw
that probabilities are more to be esteemed than truths?

—Socrates as quoted by Plato in Phaedrus, 370 BC

Uncertainty in measurement

Lord Kelvin once wrote “When you can measure what you are speaking
about, and express it in numbers, you know something about it”!.
That saying was later popularized to: “To measure is to know”, but
measurement comes with uncertainty and hence our knowledge about
what we have measured too. Let us pick a simple example. What do
we really mean when we say that a rod has a length of 1 m? We could
be defining the meter, but more likely we are comparing the size of
the rod to a previously defined meter. No two objects are perfectly
alike, hence the object in question is at least slightly larger or smaller
than the one we compare it with. But what is slightly? This is open
to a certain degree arbitrariness, but most people would agree that
saying a rod is 1 meter, means at least the rod has to be smaller than
2 m and larger than 0 m. In fact, most would agree it’s length should

! Blectrical Units of Measurement, Vol. 1, 1883-05-03.
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be between 0,5 m and 1,5 m. This is the idea of significant digits:
when you express a quantity in numbers, we take it as a convention in
scientific notation that —in absence of error margins— the numbers
you give are the ones you are confident about. In this sense “having
an extension of 1 m” becomes a classical property if we translate it as:
“The extension is between 0 m and 2 m.” It may be a lot closer to 1
m than this statement expresses; the question is how to turn this into
a precise statement. We pick a ruler with finer resolution, say 1 mm,
and measure the rod by fixing the zero of the ruler to one end, keeping
it close to the rod and read the number on the other end of the ruler
that seems to be nearer to the end of the rod than any other number.
That is the operational procedure. We do our best. Say we judge
that number to be somewhere between 1,013 m and 1,014 m, perhaps
slightly closer to 1,013 m. In the judgement of magnitudes like a meter
we are more confident than in this case. We may have misaligned the
zero of the ruler, we may have introduced parallax errors, the ruler or
the rod may have moved after we fixed the zero (but before we read
the second number), and so on. To verify our measurement, we repeat
it or we let someone else repeat it. We might find the outcome is
indeed very close to 1,013 m and we decide that number represents the
length of the rod. We can officially proclaim that we have established a
classical property of the rod: we claim its length at room temperature
is between 1,012 and 1,014 with certainty. The uncertainty because of
the finite precision of the measurement doesn’t really bother us. What
matters is that we have a claim that someone else can test. That is what
makes observation scientific. Parts that are designed and produced in
different parts of the world need to fit: technology needs a high degree
of certainty. It is this kind of certainty that promotes a piece of data
to stardom; it represents something real.

Suppose then that our second measurement gives us a result that is
slightly closer to 1,014 m, or perhaps even 1,016 m. When situations
like this occur, and this is very often the case in experimental science,
it is common practice to take recourse to error theory. Besides obvi-
ous mistakes, there are two important classes of measurement errors:
systematic errors and random errors. A systematic error occurs in our
example when our ruler is not very well made: it may consistently give
a slightly higher or lower reading. This type of error can be hard to
catch, but it has the advantage that, if we find out the ugly truth about
our ruler, we can accommodate for this fact and adjust all our experi-
mental data, even without having to repeat our experiments. We will
not discuss this type of error. The second type of measurement error,
the random error, is more interesting to us. The strategy to fight this
error is to repeat the measurement many times under the assumption
that each measurement makes an independent random error so that
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adding them up cancels them, at least to a certain extent. Besides the
independence and randomness, there seem to be two assumptions that
are central to this idea. The first assumption is that the true value of
the quantity we are measuring, is a function of the probability of the
outcomes in independent trials. In other words: if the outcome 1,013
m is much more likely than 1,014 m, the result will be close to 1,013
m. The second assumption is that this probability can be approrimated
by the relative frequency. These two assumptions show how this situa-
tion can only be treated by a combination of a theoretical model and
multiple measurements.

In the language we have developed in the previous chapters, we
would say the test that claims the length is 1,013 m does not yield
“yes” with certainty and the property is not actual but potential.
What we need, then, is an operational definition of a potential prop-
erty. We start with the assumption that the test yields “yes” with some
fixed probability p. It is conceivable that some fluctuating phenomena
in nature may fail to converge to a fixed relative frequency; it is how-
ever difficult to conceive how such a situation should be treated at all.
Luckily a very large and interesting class of phenomena does enjoy the
property that the relative frequency converges. Let us naively pursue
the analogy with the actual property and tentatively propose:

(Tentative version 1) If the number of tests « (that cor-
responds to property a of the system S in the state s) that
yield “yes” , divided by the total number of performed tests,
comes ever closer to a fixed number p €]0, 1] when we in-
crease the number of measurements, then the property a
will be called potential with probability p for S in the state
s.

This tentative version expresses that the relative frequency should
converge to p for many repetitions of the test, but how many tests
do we need to perform? We encounter a well-known problem in the
philosophy of probability. If the sequence of “yes” and “no” answers is
truly stochastic, then isn’t it possible to choose a starting point of the
yes-no sequence of answers and cut it off at a certain point to get pretty

2However, a property can only have two outcomes for each trial and length
measurements can have many. For a classical property, this is of no consequence,
because if one of the lengths (within some interval) is actual, all other lengths
(outside that interval) are not. However, for potential properties we have to be
more carefull. If the length measurements only give us 1,013 and 1,014, then we
proceed by calling one of the two a “yes” outcome and the other a “no” outcome.
If more outcomes are possible, we have to divide them into two groups and this is
possible in many ways. We will later treat measurements with more outcomes.
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close to any p in the unit interval®?? Clearly for some phenomena a few
measurements are sufficient, whereas other phenomena require delicate
and numerous measurements. Evidently, the number of measurements
in itself doesn’t really tell us what we need. What we need is an
operational measure of uncertainty. The uncertainty the observer is
facing, is not one about the possible outcomes if the mechanism of the
outcome production is known in the form of a probability distribution.
it wants to establish whether a property is potential or not, and this is
only possible, if it has established for itself a procedure to estimate the
value of p from the observations. In other words, this is a problem of
inverse probability rather than direct probability. Such questions are
less apparent in the definition of an actual property because we simply
demand that it yields “yes” with certainty. But then again, what is
certainty? How many measurements reveal certainty? Coincidentally,
the problem has some resemblance to the old problem of how to define
the continuity of a function. It is instructive to investigate this parallel.
Take for example the following passage written by Cauchy around 1821
in his famous Cours d’analyse [69]:

This granted, the function f(z) will be, between the two
limits assigned to the variable x, a continuous function of the
variable if, for each value of z intermediate between these two
limits, the numerical value of the difference f(x + a) — f(z)
decreases indefinitely with that of a.

The definition captures the essential idea, but the reference to “de-
creases indefinitely” is objectionable. How small is small enough to be
sure? The mathematical solution to this problem is both remarkable
and simple and has become one of the cornerstones of modern analysis
and topology. In 1817, Bolzano writes: ...the difference f(x+h)— f(x)
can be made smaller than any given quantity, if h is taken sufficiently
small. The modern definition, also known as the epsilon-delta defin-
ition, is to be found in the writings of Weierstrass*. We quote from
Kline [138], who writes:

To remove the vagueness in the phrase “becomes and re-
mains less than any given quantity” which Bolzano and Cauchy

3We are not talking about selecting outcomes, which would amount to plain
cheating.

4The basis for the idea can be traced back at least to Leibniz who writes as early
as 1687 that when the differences between two cases can be made smaller than any
datum in the given, the differences can be made smaller than any given quantity in
the result. It is generally recognized much of the credit should go to Bolzano. As
early as 1830 he explained the difference between continuity and uniform continuity:
a function is uniform continuous in its domain if one can choose a value of § that
depends only on € and not on the point in the domain. See [174].
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used in their definitions of continuity and limit of a function,
Weierstrass gave the now accepted definition that f(z) is con-
tinuous at x = xg if given any positive number €, there exists a
d such that for all z in the interval [x—xo| < 0, | f(2)—f(x0)| <
E.

The definition is considered a rigorous mathematical definition, but
it also has the flavor of an operational definition®. To show a function is
continuous in xy, one has to take the prescription of the function f(x)
to construct an inequality that relates € to d to show that —however
small you would like € to be— I can give you an neighborhood of x
that is guaranteed to give a difference in function values |f(z)— f(xo)|
smaller than that €. Rather than solving the problem how small the
difference should be, the definition somewhat provocatively asks us:
how small do you want it to be? Related to the problem of defining
continuity (and in appearance perhaps a bit closer to our problem) is
the definition of the limit of a sequence. In Bolzano’s Rein analytischer
beweis of 1817, we find [152]:

If a sequence of quantities Iy, Fy, F3, ..., F), has the property
that the difference between its n-th term F), and every later
term Fj, ., however far from the former, remains smaller than
any given quantity if n has been taken large enough, then there
is always a certain constant quantity, and indeed only one, which
the terms of the sequence approach, and to which they can come
as close as desired if the sequence is continued far enough.

Bolzano does not show the sequence has a limit, he merely states
this. In spite of this weakness, the definition of Bolzano contains the
essential elements that we find in most modern definition, which all
resemble the following:

A real number x is the limit of the sequence (z,,) if for each
e > 0, there exists a natural number /N such that, for every
n > N, we have |z, — x| < e.

The similarity with our problem is that, ideally, we would like the
relative frequency n/N to converge to the probability p, i.e., we want
p —n/N to “decrease indefinitely”, or “remain smaller than any given
quantity”. Suppose we have a sequence of tests of a potential property:

0,1,1,0,1,0,0,0,1,0,1,...

°Tt is a great merrit of mathematics that the two can actually coincide. In
fact, there are those who believe the only quantities we should be dealing with in
mathematics, are those that we know how to construct.
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From this sequence, we derive a second sequence which counts the ones
and divides by the total number of tests so far:

0, 1/2, 2/3, 2/4, 3/5, 3/6, 3/7, 3/8, 4/9, 5/10, 6/11,...

Let us call this second, derived sequence, the counting sequence. It
would be nice to be able to write something like:

(Tentative version 2) A property a is potential with
probability p €]0,1[ iff the number p is the limit of the
counting sequence (¢, ), of the sequence of tests « of a, i.e.
if for each ¢ > 0, there exists a natural number N such
that, for every test after n > N, we have |¢, — p| < e.

The improvement with respect to upon Tentative version 1 on p.
99, is that we no longer use the vague phrase “comes ever closer”.
However, an essential quality of probability is the unpredictability of
outcomes and this characteristic renders this proposal rather naive. We
do not know if every test after a given test N will keep the difference
between c¢,, and p smaller than a given . But the other essential quality
of probability is the tendency of relative frequencies to converge. We
need a more flexible notion of convergence that takes the fluctuations
in the relative frequency into account; a measure of uncertainty and
a way of expressing how that the uncertainty becomes smaller with
increasing trials.

Probability and the law of large num-
bers

La théorie des probabilités n’est, au fond, que le bon sens
réduit au calcul.

—Laplace, Théorie Analytique des Probabilités, 1814

Common sense 1s merely a stupid absence of imagination
and mental flexibility.

—H. P. Lovecraft, The Unnamable, 1925

The historical roots of the theory of probability can be traced back to
the fifteenth and sixteenth century when a few Italian writers, most no-
tably Paciola (1494), Cardano (1545) and Tartaglia (1556), discussed
the problem of how to divide the stake of a gambling game when the
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game is ended prematurely. The problem was revived in 1654 when
Chevalier de Méré wrote to his friend Blaise Pascal: “In eight throws
of a die a player is to attempt to throw a one, but after three unsuccess-
ful trials the game is interrupted. How should he be indemnified?” As
a result of the attempt to answer this question, Pascal and Fermat ex-
changed a series of letters which are now regarded as the starting point
for the modern theory of probability. Of course, we cannot know how
the game ends -that is why it is a game of chance-, so a fair division of
stakes is only possible when the players agree upon the rationale they
see behind the patterns of the game. The players have to agree in what
fraction of the total number of possible games player 1 would win, and
in what fraction of those games player 2 will win. The fact that Fermat
and Pascal separately arrived at the exact same conclusions, strength-
ened their belief in the correctness of the reasoning and results they
obtained. This is an experience that many students who encounter
probability for the first time share: that the laws are in some sense
self-evident and logical to the point of being natural even though the
results can be counter intuitive. In this sense the calculus of probabili-
ties —and in particular when we should multiply and when we should
add probabilities— is almost trivial. In fact, R.T. Cox has shown how
to derive those laws from a few simple and very reasonable assump-
tions [76] on how one should treat a quantity that expresses a measure
of probability. (Bayesians call these: reasoning with measures of be-
lief, Cox itself called these the axioms of probable inference). These
are the echoes of Laplace’s famous dictum that “Probability is nothing
but common sense reduced to calculation”. Maybe this was the reason
that neither Fermat nor Pascal published their results. However, their
correspondence seems to have prompted Christiaan Huygens® to pub-
lish “De ratiociniis in ludo aleae” (On Reasoning in Games of Dice,
[124]) in 16577 in which Huygens duly pays tribute to both great men
but complains they never explained how to obtain their results. He
then sets out for itself to solve the problems and explains in detail the
gambling principles that are required to obtain the results of Fermat
and Pascal and related problems. The first substantial volume in the
theory of probability is however Jacob Bernoulli’s “Ars conjectandi”
[51] (or, “Art of Conjecturing”) published in 1713, eight years after the
death of its author. The early roots of probability sprang forth from

6The Dutch translation of this work, “Van Rekeningh in Spelen van Geluck”
was to appear three years later.

"In those days, probability was besides a good subject for endless discussion, also
an experimental science. Respectable mathematicians were rolling dice hundreds of
times to verify their proposals and calculations, in much the same way as physicists
use random numbers generated by computers to check the validity of their statistical
models using the Monte Carlo algorithm.
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the conviction that, although some natural phenomena (e.g. dice) may
escape prediction, their behavior follows a pattern. Cardano stated
without proof that the accuracies of empirical statistics tend to im-
prove with the number of trials. This was later formalized and is now
known as the law of large numbers. The first law of large numbers for
a random variable that can only take two values was given and proved
by Jacob Bernoulli. As Bernoulli itself writes in Ars Conjectandi, it
took it over 20 years to develop a proof and he branded it his “Golden
Theorem”®. Bernoulli proof was rather complicated when looked upon
from a modern point of view. Still, this particular theorem stands as
one of the most important landmarks in the history of probability. Let
us take a look at the probabilistic process that Bernoulli was studying,
when he found the law of large numbers. To introduce the necessary
concepts efficiently, we will make use of a more modern language than
was available at the time.

Bernoulli trials of potential proper-
ties

Certainty of things, considered with respect to us, is not
the same for all things, but varies diversely and occurs now
greater, now lesser.

—Jacob Bernoulli, Ars, 1713

A Bernoulli trial is an experiment with a random outcome taken from
only two possible outcomes: “Success” and “Failure”, “1” and “0”,
“yes” or “no”, or, as Bernoulli itself calls them, fertile and sterile.
A Bernoulli process consists of a sequence of independent identically
distributed Bernoulli trials. Here is a definition: consider a (finite or
infinite) sequence of independent random variables Xi, X5, X3,... such
that:

1. For each i, the value of X; is either 0 or 1.

2. For all values of 7, the probability that X; = 1 is the same number
9
p.

81t is now generally known as "Bernoulli’s Theorem".

9We eventually want to talk about the relation between limits of measured quan-
tities versus abstract, theoretical constructs. Hence, when we state condition num-
ber 2, we talk about probability as a mathematical quantity that we know when
and how to mutiply and add. The places where this occurs will be made explicit in
the text.
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Let us apply this to a sequence of tests of a potential property. If a
trial of the property a yields an affirmation, we will write 1, otherwise,
we write 0. A possible Bernoulli process consisting of a sequence of 11
trials of the test a corresponding to the potential property a, could
look like:

0,1,1,0,1,0,0,0,1,0, 1.

The number of successes is the number of 1’s in this sequence. Suppose
that a particular process consists of N tests of which precisely k times
the result 1 was obtained. To calculate the probability of that happen-
ing, we perform a two step process. First we rewrite the sequence but
put all the fertile outcomes up front:

1,1,1,1,1,0,0, 0,0, 0, 0.

What is the probability of this (pretty rare) event occurring? This
is simply an application of the product rule for independent random
variables: the probability of obtaining twice head in two throws of a
coin, is the product of the probability of throwing a head with each
throw separately!. Repeated application of this rule then tells us the
probability of occurrence of this particular sequence, is p*(1 — p)™¥~*.
But every rearrangement of this sequence that is produced by switching
an arbitrary number of 1’s and 0’s in this sequence will yield the same
number of both, and hence will also contribute to the occurrence of
having k out of N times the result 1. There are overall N! permutations
of the symbols, but none of the k! permutations of the 1’s, nor the
(n — k)! permutation of the 0’s, will change the sequence, so it is easy
to see there are precisely N!/E!(N — k)! such rearrangements. We now
apply the sum rule of probability: the probability that either sequence
A happens or sequence B happens, is the sum of the probability that
each of them occur. Hence we have to multiply the number of possible
arrangements with the probability of each of them occurring. In this
way we obtain by sheer combinatorial counting and using the two most
basic principles of probability that the probability P(k) of precisely k
successes in N trials in (and under the assumptions given above of) a
Bernoulli process equals:

P = (§) - (1)

This probability distribution is for rather obvious reasons known as
the binomial distribution. To obtain the average and variance for the
binomial distribution, we need the definition of an expectation value

""Tn symbolic notation we have, for independent X; : p(X; = z;, X; = z;) =
p(Xi = z;).p(X; = z;).
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of a discrete random variable X. Let X be a discrete random variable
taking real values x1, x5, ... with respective probabilities pq, pa, ... (i.e.
p(x;) = p;), then the expectation value E'! of this random variable is
defined as (i runs over the values necessary to include all the x;):

E[X] = ZprZ (4.2)

With this last definition the variance is defined as:
V[X] = B[(X — E[X))%. (4.3)

A well-known and not difficult to prove property of the expectation
value, is its linearity: E[3;c; X;| = ¥;¢; E[X;]. These hold for arbitrary
X;. For the variance, we have V[cX] = V[X]. If the X; are also
independent'?, one can show that the individual variances are additive:

VI[X] = Z VX, (4.4)

This last property illustrates how useful the definition of variance (4.3)
is. That is about all we need. In our case, we have only two outcomes
and hence only two probabilities: p and 1 — p. The random variable X
is defined as the number of successes in NV trials. We then have for the
average number of successes ;1 in N trials:

BIX] = B[%:X]] (4.5)

i

This fact was already known by Cardano, who makes explicit use
of it (See [153], p. 152-154). To calculate the variance V[X] for the
random variable X which denotes the number of successes in N trials,
we evaluate (4.3) using (4.2), where we substitute the probability dis-
tribution (4.1):

Bl - B = 3= 3o (3 ) Fa- ¥ o

'The idea of expectation goes back to Huygens; that it is denoted by a capital
FE goes back to the beginning of the twentieth century when it was introduced by
W.A. Whitworth. It is no mystery why the symbol took hold, as it is the first letter
"Expectation", "Erwartungswert" and "Espérance mathématique"!

12Two random variables X and Y are independent if receiving information about
one of the two does not change our assessment of the probability distribution of the
other. Formally this means the probability of occurrence of one random variable
X taking a value x, and the other random variable Y the value y, is simply the
product of the probability of X taking value x and Y taking value y.
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To avoid doing this summation for all possible values of k£ in a Bernoulli
process, many text books prefer calculating the variance using the mo-
ment generating function of the binomial distribution. This is indeed
a very concise way of obtaining the result, but has the disadvantage of
obscuring what goes into the derivation. We can however perform a
clever trick to circumvent the summation entirely, or rather reduce it
to a trivial sum. First calculate the variance for a single Xj :

o; = E[(X; - E[X])? (4.7)
= (1-p)?’p+(0—-p?*1-p)
= p(1=p)1—=p+p) =p(l—Dp).

We have N contributions of independent random variables to the
total variance: V[X] = SN V[X;], and for each of these V[X,] =
p(1—p), (by assumption (2) of the Bernoulli process the p’s are equal).
Hence we obtain:

VIX] = Zp(l—p) = Np(1 - p). (4.8)

In the derivations so far, X was the number of successes in N trials.
We now turn to the fraction of successes (which will of course be our
estimate for p) as a new random variable X = X/N. It’s expectation
value is given by

E[X] = E[X/N] = Np/N = p.

This is of course, not very surprising. What we really are after is
the variance of the fraction of successes, which is given by:

p(l —p)

o*[X] = *[X/N] = 5 Np(1 — p) = L0

e (4.9)

Note that this function has the characteristics of what one expects of a
measure of uncertainty: it becomes very small if either of the following
three is satisfied: (a) p is close to 1, (b) p is close to 0 and (c), the
number of measurements increases. Maximal uncertainty, on the other
hand, occurs when (d) p is (close to) 1/2 and (e) N = 1. It is obvious
that all these criteria (a)—(e) are desirable properties of a measure of
uncertainty. It is also rather obvious o2 is algebraically the most simple
function which satisfies criteria (a)—(e). But there are more reasons
to suggest it is a good measure.
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Convergence of Bernoulli processes

We have calculated the expected value of the fraction of success and
the expected standard deviation of this fraction. As the latter is pro-
portional to a constant (1/p(1 — p)) and inversely proportional to the
square root of the number of measurements, it clearly becomes very
small if N is large. In fact the largest value o can attain for differ-
ent values of p, is when the nominator is maximal, which occurs when
p = 1/2, in which case 0 = #ﬁ To understand what this means for our

estimates, we turn to a truly classic result: the Chebyshev inequality!?.

Theorem 39 For any discrete random variable X with mean p and
standard deviation o, and for any positive number ¢, we have

PUX —p| > ¢) < (%)2. (4.10)

It is instructive to measure the bound on the deviation | X — u|
in “standard deviation units”, i.e. we set ¢ = ko. We then obtain
P(|X — p] > ko) < 1/k*. We then see the inequality for k < 1 tells us
a probability should be a number smaller than 1, which isn’t particu-
larly enlightening. However, for larger values of k, Eq.(4.10) does tell
us something. In words: the probability that a random variable will
differ more than % standard deviations from its mean value is never
greater than the square of the reciprocal of k. The true strength of the
Chebyshev inequality is not that it provides a tight bound for any par-
ticular distribution (it usually does not), but rather that it is extremely
general in that we only require of the random variable that its mean
and standard deviation ezist (see however the caveat in the Comments
and Notes section, p. 117). In fact, it is the best bound possible con-
sidering all possible random variables with given mean and standard
deviation. It is not difficult to obtain the (weak) law of large numbers
from this theorem. Suppose we have an infinite sequence of identi-
cal, independent random variables X, , each one with expected value
E[X;] = p. The focus of our interest is the convergence behavior of the
sample average Xy = SV X;/N. Obviously, we have E[Xy] = p. As
before, we have V[X;] = o for every i. Since the X; are independent
by assumption, we have

VI = VIS XN = VI3 X

0_2

1 1,

13See, for example, Kolmogorov’s Foundations of the Theory of Probability, pp.
42-43.
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Substituting these two results in the Chebyshev inequality (4.10), we
get:

2
< —
— Neg?
This is the law of large numbers. To put it into a more familiar form,
we note that P(| Xy —p| <e) =1— P(|Xy —p| > ) =1 — 0?/Ne2.
We see the right hand side goes to 1 as N goes to infinity. This result
is hence often summarized as:

P(| Xy —p| >¢) (4.11)

]\}i_r)nooP(XN —p)=1
We see that the chance of being off-limit with an estimate for p as
the relative frequency, diminishes with increasing /N. This is favorable,
but the Chebyshev inequality is a limiting theorem for large N. For a
finite ensemble, our estimate for the standard deviation depends on our
estimate for the probability, so we are still not in a position to claim
we have succeeded in our definition of potential property.

Maximum predictive power

In this section we will make use of a rather informal but interesting
proposal by Summhammer [187], designed by it for another purpose,
which may be of help in our search for a suitable definition of a potential
property. Assume that we have performed a dichotomic experiment N
times, where the result “1” was obtained n; times, and the result “0”
was obtained ny = N —n; times. The relative frequency of outcome 1 is
then n; /N, and this also delivers our best estimate for the probability
and associated uncertainty interval:

Ap — w. (4.12)

ny

P:N;

From this estimate we want to derive the magnitude of a physical
quantity x by means of an unspecified relation:

x = x(p)- (4.13)

Its associated uncertainty interval is then given by the propagation
of errors formula:

p)

Ax(p) = | 2B 5, - OX0)) [P

o (4.14)

(-
N
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We want to concentrate on the observation of those random variables
X(p) for which additional data always decreases the uncertainty. Indi-
cating that our estimate for p depends on N, we require that

Ax(pn+1) < Ax(pn)- (4.15)

Many functions will satisfy this requirement, and to further con-
strain the set of possible x’s, Summhammer introduces the notion of
maximum predictive power.

Definition 40 (Mazimum predictive power) A random variable x al-
lows for maximum predictive power, if the uncertainty Ax depends only
on the number of trials N, and not on the value of ny.

Summhammer calls this maximum predictive power because it al-
lows to know in advance how many times the experiment needs to be
repeated to reach a certain prescribed uncertainty level. Remark that
N is decided by the experimenter, while n; is the number of clicks na-
ture has returned, so maximally predictive random variables are those
for which the experimentalist is able to eliminate nature’s influence on
Ax. So we set, with C' some constant:

C
A = —. 4.16
x(p) Vi (4.16)
From this we get
9,
VNAY = !%\ p(1—p) =C, (4.17)
the solution of which is given by:
x(p) = Carcsin(2p — 1) + D. (4.18)

Its inverse is given by

p(x) = %(1 +sin ((x — D)/C))) = cos*(w/4 — (x — D)/2C). (4.19)

As remarked in [187], any smooth function «(x) of our random vari-
able x for which equal intervals along Y correspond to equal intervals
along «, will also be a solution. To give one particular solution, choose
C' =1 and D equal to —7/2, to recover

p = cos?(x/2). (4.20)

Let us come back to our initial problem: How many tests do we
need to perform for it to be meaningful to say a test yields “yes” with
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probability p? The answer we give here is that, for any confidence
interval Ay you require for your estimate of y, we can tell in advance
how many measurements you need, regardless of the state (or p). And
this can be done, if we insist that the relation between the random
variable and the probability is of the nature of Eq.(4.20). The essential
requirement to obtain this result is that the probability is the same
fixed number in [0, 1] for each separate trial, which is satisfied for a
Bernoulli process. We are now in a position to give our operational
definition of potential property, as first published in [42]:

Definition 41 (potential property) Given a system S and a prop-
erty a €Lg being tested by a Bernoulli process of tests. If, for any
prescribed uncertainty interval Ap, one can say in advance how many
measurements are necessary such that test o yields “yes” with proba-
bility p within that uncertainty interval Ap, then property a is called
potential with probability p for S.

What makes our definition of potential property operational is that
for any desired uncertainty level the theorist requires for the accep-
tance or refutation of a conjectured potential property, the experi-
menter knows in advance how many measurements he needs to come
to a conclusion. Certainty still follows only after an infinite number of
measurements, but for any allowable uncertainty in the estimate of the
degree of potentiality, we know how often we have to question nature
for it to be a reliable judge on our trial. Besides the operational char-
acter of the concept of a potential property, we get an unexpected clue
as to what type of mathematical representation of state space should
be used to incorporate potential properties.

Potential properties and state space
representation

From the work of Birkhoff and von Neumann [52] we know that the
properties of a quantum system correspond precisely to the closed one
dimensional subspaces. Because the state of a quantum system is also
a property, it is also represented by a closed one dimensional subspace.
It follows the representation of a property in Hilbert space quantum
mechanics as a closed one-dimensional subspace automatically fulfills
our definition of a (potential) property because the probability of the
property holding is essentially of the form of Eq.(4.20). To illustrate
this, assume we have a system S in a state that we represent by the
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unit ket |¢)) in an n-dimensional Hilbert space H,,. Let ¢ be the one
dimensional subspace that represents the property to be tested and
let |¢) be a unit ket along the ray ¢. The probability of finding the
property to hold for the system in the state [¢)) is given by the square
modulus of the inner product |{¢|¢))|* where (¢| is the Hermitian ad-
joint of |¢). With « the Hilbert space angle between 1) and ¢, defined
through the inner product [(¢|v)| = cos()|(®|d)||(|1)| and noting
both ¢ and 1 are unit norm, we see that indeed |{¢[1))|? = cos?(a)'.
On the other hand it means that for the statistical estimation of observ-
able quantities in quantum theory (at least without additional classical
errors), we always have that more data decreases one’s uncertainty, as
required in Eq.(4.15) and that for any desired uncertainty level, we
can say in advance how many measurements are required. Summham-
mer’s proposal implies measurements for unit vector states are in a
statistical sense optimal. For our purposes, we reverse that idea: our
operational definition of potential properties shows they can be repre-
sented by unit vectors in Hilbert space. As the state of a system is a
(maximal) property of the system!®, it follows the state space should
be the unit sphere. Interestingly, there was a more elaborate argument
in the literature which started from quite different considerations, but
also mathematically hinges essentially on Bernoulli trials, which hinted
at a similar result. We will treat this proposal in the next section.

Optimally distinguishing probabil-
ity distributions

There is definite mathematical connection between the ubig-
uttous statistical fluctuations in the outcomes of measure-
ments and the geometry of the set of states.

—William Wootters, Statistical distance and Hilbert space, 1981

We start again with an experiment with two possible outcomes: 0 and
1. Depending on the state of the system, the experiment can be char-
acterized by the probability p of the occurrence of outcome 1. Suppose
we have prepared four ensembles, F4, Esy, F3 and Ej, of systems such

1 An alternative derivation starts from the trace rule Pr,(A = a) = Tr(pR),
where p is the state operator and R the projection operator that projects onto
the eigenvectors ay of (the non-degenerate operator) A. Assuming the state vector
represents a pure state, p = |¢)(p|, we immediately obtain Tr(pR) = |(ax|e)|*.
Once again, with the definition of o given above, we obtain the result.

15We introduced the state as the maximal property of a system on p. 42.
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that the first ensemble F, is characterized by a value p; = 1, Ey with
py = 0.9, E3 with p3 = 0.55 and F, with p, = 0.45. By making mea-
surements on members of the ensembles, we are to estimate which of
the four values of p pertain to that ensemble. Clearly, it is easier to
distinguish (in a finite set of trials for the experiment) £; from Fs, than
it is to distinguish F5 from FEj, even though Ap is 0.1 in both cases.
This idea can be made qualitative, as Wootters has done. Suppose
that we are to distinguish two ensembles, one characterized by p, the
other by p + Ap. For N trials of an experiment with two possible out-
comes, the sequence of outcomes constitute again a Bernoulli process
with associated standard deviations

o1 = w, (4.21)

S \/(p+Ap)(1—p—Ap)
? N

We will say that two such states are distinguishable in N trials of
the experiment, iff the difference Ap is greater than the sum of these
two standard deviations:

Ap > 01 + 09. (4.22)

Define the statistical distance between the two states as the recip-
rocal of the square root of the number Ny of measurements necessary
to make distinguishable, so we get

1
vV No
such that Ap equals the sum of these two standard deviations: Ap =
o1 + 0. To the first order in Ap, using Eq.(4.21), this is equal to

| Ap|

2y/p(1—p)

For two arbitrary biases, Ap may be large, and we will denote the
respective probabilities as p; and p,. The definition of statistical dis-
tance, as given by R.A. Fisher who used this definition to study genetic
drift, then is:

d(p,p + Ap) = (4.24)

d(p1,p2) = lim (4.25)

n
N—oo /N ’
where n is the maximum number of intermediate probabilities that
can still be distinguished in N trials according to Eq.(4.22). Wootters
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shows this to be

(4.26)

_lmo A
d(pl,pz) - 9 /pl /—p(l —p)
= arccos(y/pip2 + \/(1 —p1)(1 —p2))

The result extends to the case for an experiment with & mutually
exclusive outcomes 1, Za, ..., ) with respective probabilities p;(z;) and
po(x;). This is useful because —as Wootters points out— we can then
speak about the distance between two differently loaded dice, or the
distance between two different preparations of a quantum state. The
details of the calculation can be found in ([209], [210]), but we will
give a brief exposition to show the gist of the calculation. We start
with the observation that the probabilities pi(x;) and ps(x;) for each
outcome z; can be treated as components of vectors. The probabilities
are assumed to be normalized, hence the components of the vectors
sum to one and lie in the standard (k — 1)-simplex in Euclidean k-
space. The probabilities can be written as vectors m; and 7y in the
following way:

T = (pj(x1)7p]'(x2)7 S 7pj(x/€))7 j = 17 2. (427)

We now draw a continuous, but otherwise arbitrary, curve between 7
and 79 that lies entirely in the simplex.

Figure 4-1  The shaded triangle represents the space of allowed probability
triples and contains 71 and 9. To define the statistical length of a curve we
count the number of points along C' that are distinguishable in N trials, divide
by \/N and take the limit for N — o0.
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The statistical length of that curve is defined as the maximal num-
ber of mutually distinguishable points (in N trials) on that curve, di-
vided by v/N in the limit for N — oo as shown in Fig. 4-1. The
statistical distance is then defined as the statistical length of the short-
est (in statistical sense) possible curve. Wootters needs to redefine
distinguishable for experiments with k outcomes and he does so by
approximating the multinomial distribution with a Gaussian, which is
entirely permissible when N is large. As before, two points 7 and 75
will be called distinguishable in N trials, if their regions of uncertainty
do not overlap. For large N, this is the case if

\/NkAxi2
Z(p())

SR P ey > 1. (4.28)

2

Armed with this definition of distinguishability, we can find an explicit
expression for the distance by writing the curve that connects the two
vectors as a parameter equation w(t) = (pi(t),p2(t),...,p(t)), with
7m(0) = m; and w(1) = 7y, where we have abbreviated the probability
of outcome number i, as p;(t). The statistical length is then given by

- % /O Zpit)(dp;it)fdt. (4.29)

=1

In his Ph.D. dissertation, Wootters [209] calculates the distance by
variational calculus where Lagrange multipliers ensure the variations
remain in the simplex. As he points out in his 1981 article, there is an
easier road to the same end. If we map (4.27) to the unit sphere using

P(t) = (Vpi(t), Vpa(t), - VDi(t), (4.30)
then, abbreviating \/p;(t) as 1;(t), Eq. (4.29) reduces to:

k

- [ {Be

1=1

which is nothing but the arclength of the curve in the space of the v's.
The requirement that m; and 75 lie in the simplex translates to the
requirement that the 1/'s must lie on the unit sphere:

The shortest path between two points on the unit sphere is an arc
lying on a great circle. This situation is depicted in Fig. 4-2. If the
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sphere has unit radius then the length of this path equals the angle
measured in radians. Hence we have:

d(my,me) = aI‘CCOSZ 1 (x;)ma(24). (4.31)

Using the bra-ket notation once more, we can rewrite the result of
Eq.(4.31) as :

d(my,my) = arccos (4, [t,)] (4.32)
= 4(1:0171/)2)

Figure 4-2 By mapping the probability vectors 1 and 79 to ¥y and 1, on
the unit sphere, it becomes evident the statistical distance equals the angle
between 1, and s.

It is well-known that every unitarily invariant Riemannian metric
on the unit sphere is proportional to the Hilbert space angle and hence
to d(mq,m2), so Eq.(4.30) leads to a representation of the probabilities
in such a way that the only metric between the two unit vectors, is
proportional to the statistical distance. At no point have we invoked
quantum features; yet we obtain a structure that -at least partially-
resonates with the formalism of quantum theory!S.

6Wootters did extend his argument to the quantum domain. This is necessary
and nontrivial because the inferential power of the experimenter in the quantum
domain for the distinguishing of two states, depends on whatever observable he
chooses to measure. Therefore Wootters defines the statistical distance between
two preparations (states) as the largest distance when the preparations are ana-
lyzed by the most discriminating apparatus. Again, he recovers Eq.(4.32). Because
the Hilbert space angle obtains only for the most discriminating apparatus, this
is one more indication that Hilbert space representations in some sense already
incorporate maximal statistical performance of observation.
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Conclusions and Notes

Un physicien éminent me disait un jour a propos de la loi
des erreurs: “Tout le monde y croit fermement parce que les
mathématiciens s’ tmaginent que c’est un fait d’observation,
et les observateurs que c’est un théoréme de mathématiques.”

—Henri Poincaré, Thermodynamique, 1908

A third road that leads to the unit sphere as sensible state space is
provided by considering what would constitute a proper measure of
distance between probability distributions using the Fisher informa-
tion. Ronald Aylmer Fisher was a famous statistician who observed
that, when one has to distinguish between two populations, each one
given by a finite probability distribution, it are the square roots of the
probability distributions that play a leading role, not the probabilities
themselves [98]. We will not repeat the careful analysis presented in
Uffink and Hilgevoord [196], as it is hard to improve upon and basically
leads to the same end result as Wootters’ work; we highly recommend
it to the reader. We did not derive any new mathematical result in
this chapter. We have merely shown unit norm vectors built from
square roots of discrete probabilities have desirable statistical proper-
ties that make them good candidates to represent potential properties
[42]. Whereas the result of Wootters shows the distance between such
states in terms of distinguishability in a fixed set of trials is recovered
as the arc length on the unit sphere between those states, our definition
of potential properties and the work of Summhammer shows that these
representatives automatically satisfy the condition we impose on poten-
tial properties. All three results hint that the mathematical structure
of the state space of a quantum system reflects the fact that observation
is inherently uncertain. If every observer faces a fundamental impos-
sibility to correctly identify its own state, it will unavoidably “coarse
grain” some of what it observes. It then makes utter sense to spread
the perceived states apart in such a way that equal distance between
states denotes equal probability of distinguishability. This leads to rep-
resenting states on the sphere. If we take the proposal of this chapter
seriously, that is, if the requirement of optimal distinguishability pro-
motes a representation of states as unit vectors built from square roots
of probabilities, then there should exist other examples of theories of
observation outside the quantum domain with similar features. It is
well documented ([179], [147] and [99]) and I have published myself
on the matter ([37], [28], [42]) that signal analysis, especially when
presented in operator form, shows many remarkable similarities with
quantum theory, although there are also striking differences [75]. That
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both fields employ a similar formalism, in spite of the fact that they
deal with different parts of reality, makes that point of view even more
plausible, for what unites them on a conceptual level is that both are
ultimately concerned with the optimal extraction of information from
nature in the face of uncertainties.



Chapter 5

The probabilistic observer

My thesis, paradoxically, and a little provocatively, but nonethe-
less genuinely, is ssimply this: PROBABILITY DOES NOT
EXIST!.

—Bruno de Finetti, The Theory of Probability, 1970

In this chapter we extend the notion of an observer to deal with an
observable quantity rather than a test. The physical nature of the
observable is not important and it is not assumed that the outcomes
are ordered, only that they are finite in number. As before, we main-
tain that all physical interactions, including the interaction necessary
to produce an outcome, are deterministic. Probability enters our de-
scription by including circumstances where there is a lack of knowledge
about the state of the system and/or about the state of the observer.
After we have described the mathematical framework to cover this
general lack of knowledge situation, we turn to repeated measurements
on identical system states in which, however, there remains a lack of
knowledge about the state of the observer. Important instances of this
situation can be found in classical error theory and, we hope to con-
vince the reader, in quantum-mechanical experiments. Following the
considerations of the former chapter, we will work out two specific state
spaces that seem well suited to deal with this type lack of knowledge:
the standard simplex and the (complex) unit sphere. We propose a
criterion that an observer needs to satisfy in order to be called optimal.

! Capitals are copied from the original [81].
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We show how such an observer will obtain probabilities that coincide
with Born’s rule. This shows the principle of optimal observation can
be seen as giving an interpretation for Born’s probability rule. Because
the state of the system is assumed to be identical in each trial of a re-
peated measurement, our proposal can be regarded as a hidden variable
theory, but one that maintains the quantum state represents complete
knowledge about the system. The lack of knowledge situation arises in
the measurement interaction?. We show that every set of probabilities
derivable within a finite Hilbert space by the standard machinery of
orthodox quantum theory can be reproduced by our model, although
we do not claim this is always possible in a local way. We conclude
with examining the consequences of the proposal.

(General framework

Ignorance gives one a large range of probabilities.

—George Eliot, Daniel Deronda, 1876

The deterministic interaction

By an observer we mean in this chapter a physical system M that
interacts with a system S to produce an outcome that helps to infer
the state of S with respect to a physical quantity. Every experiment
has only finitely many outcomes, so the outcome x will be assumed to
be a member of a discrete, finite, not necessarily ordered, set of out-
comes X = {x1,x9,...,x,}. In general, this definition of an observer
includes the experimental setup, apparata, sensors, as well as the op-
erator and interpreter. It is however quite irrelevant to our purposes
whether we consider an apparatus or a detector, an animal or a hu-
man being as observer, as long as we agree that it is this system that
has produced the outcome. As explained above, we will assume the

2This is the reason Diederik Aerts et al. refer to them as hidden measurements
[7]. Diederik has on several occassions expressed his concern that this choice of
vocabulary might suggest the approach assumes there may be “unseen measure-
ments” at work. As John Bell put it: “The usual nomenclature, ‘hidden variables’
is most unfortunate. Pragmatically minded people can well ask ‘why bother about
hidden variables that have no effect on anything?’ Of course, every time a scin-
tillation occurs on screen, every time an observation yields one thing rather than
another, the value of a hidden variable is revealed. Perhaps uncontrolled variable
would have been better, for these variables, by hypothesis, for the time being, can-
not be manipulated by us.” It is in very much the same spirit the name “hidden
measurements” was proposed: as an indication there are uncontrollable parameters
in the measurement interaction.
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observer comes to this outcome through a deterministic interaction.
Thus if we have perfect knowledge of the initial state of the system
and of the observer, the outcome is predetermined. Besides the fact
that all fundamental theories of physics (even classical chaotic systems
and quantum dynamics®) postulate deterministic evolution laws, the
requirement of determinism allows to regard probability as a derived
concept. So let us assume that the outcome of an observation is the
result of a deterministic interaction 7:

T: Y X Xy — X, T(s,m) = x, (5.1)

where 7 is the interaction, Xg is the set of states of the observed sys-
tem, X); the set of states of the observing system and X the set of
outcomes that our observable quantity can have. We will deal only
with the observation of outcomes that pertain to a single observable,
which is why we have chosen to have no notational reference to the
particular observable. The mapping 7 encodes how an observer in a
state m € X, observing a system in the state s € Xg, comes to the
outcome x € X. Since our observer is deterministic and every outcome
is assumed to be the result of such an interaction, we assume 7 is a
single-valued surjective mapping. We will later consider the preimage
of 7, (sometimes also called the fibre of x € X under 7, or the level set,
though we will not use this terminology) defined in the standard way:

Tfl(x) ={(s,m) € ¥g x Xy : 7(s,m) = x}. (5.2a)

We assume the set of states of S and M are appropriately chosen so that
the interaction of every couple (s, m) leads to an outcome in X, hence
we have 771(X) = X5 x ¥);. For the observation to be meaningful, the
observer faces the task of selecting an outcome from the set X that
tells something about the system under observation. As the result of
the interaction is interpreted by the observer as a certain outcome, the
outcome has to be encoded somehow in the post-interaction state of
the observer. Hence the outcome itself is also an observable quantity of
the post-interaction state of the observer. The outcome will then have
to share its story among the two participating systems that gave rise
to its existence: it will always have something to say about both the
observer and the system under study. We illustrated in Chapter 1, that
the observer cannot have logical certainty with respect to correctness of
a single, deterministic self-observation. In Chapter 3 we showed that
even in the most simple case of a classical observer, observing only
classical properties, there exist properties that cannot be adequately
observed. But all observation can be considered as a form of self-
observation.

3 According to standard quantum theory, it is only when we observe a quantum
system that the evolution is no longer deterministic.
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On the other hand, observation is an absolutely indispensable part
of doing science, hence it is only natural that every scientist believes
that truthful observation can and does indeed occur. Living in the real
world, somewhere between the extremes of the ideal and the impossible,
we wonder whether there is an optimal strategy for the observer so that
each picked outcome has the largest likelihood of telling something
about the system under observation.

Probability in a run of experiments

To increase knowledge (or decrease our uncertainty) about a system,
the observer performs a repeated experiment. For each trial in the
experiment, the interaction 7 will determine the outcome of the exper-
iment. Because 7 is single-valued, the outcome will always be the same
when the state of both the system under study and the observer are the
same. But in a real life situation, no two experiments will be exactly the
same. Suppose then that we have a lack of knowledge about the precise
state of both the system and apparatus. With B(3g) (and B(X,/)) as
the o-field of subsets of ¥g (and X,;), our repeated experiment is in
its most general form characterized by two probability measures:
as a probability measure from B(¥Xs) — [0,1] and puy, , as probability
measure B(3,) — [0,1]. So we postulate two probability spaces:

7)25 — (ZS7B<ES)7IU’25)7
PEM = (EMaB(ZM)MuEM)

Since py, and piy, - are probability measures, we have:

sy (55) = pis,, (Sar) = 1. (5.3)

The way the system and the apparatus interact is governed solely by 7:
the measures on each set are assumed to be independent. In general, it
is impossible to give a direct operational meaning to (Xg, B(Xs), is)
and (Xar, B(X), pis,,) separately, as the final probability is a com-
bination of both. To define the probability of the occurrence of an
outcome we assume 7 is a measurable, independent random variable
from g x Xy onto X. Let B(Xg x X)) be the o-algebra generated by
B(Xs) x B(Xar). The measures jiy, and piy,  induce the unique prod-
uct probability measure p : B(Xg x 3j5) — [0, 1], such that for every
os € B(Xs) and 0, € B(X)), we define the product measure as

p(os X o) = My (US)MEM (om)- (5.4)

Because of Eq.(5.3), our last equation also gives us p(Xs x Xy) = 1.
We can then construct the probability space

Psoxsy = (ZS X ZM,B(ES X EM)vp)' (5-5)
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In order for an experiment to have a meaningful outcome, experimen-
talists narrow down the possible states of the systems and they design,
construct and fine tune the apparatus used to measure the quantity of
interest. As we are able to improve our capability in filtering the set of
states of the system we are studying, as well as the set of detector states
that we are studying the system with, we increase the precision of the
questions that can be asked to nature. The final product of the efforts
of the experimentalist are modelled here as the measures jiy, and puy
and can under ideal circumstances be thought of as the preparations of
both the system and the apparatus. However, because preparation is
imperfect, we prefer to think of them as mathematical representations
of a very general kind of lack of knowledge situation. The probability
of obtaining an outcome x in this setting is defined as the probability
(given ps,, and puy, ) of picking a couple s € X5 and m € X, for which
7(s,m) = x. More precisely, the probability of obtaining an outcome x
is the measure p of 771(z) € B(Xg) x B(Xy), the subset of the states
for system and observer that give rise to the outcome x. This leads to
the following definition:

Definition 42 Given an ensemble of systems S described by the mea-
sure jis, over B(Xs) and an ensemble of observers M described by the
measure jiy,  over B(Xyr). With p the unique product measure 5.4, the
probability Pr : X x B(Xg x 3p) — [0, 1] of the observing the outcome
x in the setting described by p, and with 7='(z) defined by Eq.(5.2a),
is defined as*:

Pr(z) = p(r7(2)). (5.6)

Because 7 is a surjective function, we have that U,ex7 '(z) =
Mg X Xy, and thus > Pr,(x) = 1. This is our description of the
most general® lack of knowledge situation: fluctuations in the occur-
rence of outcomes are a consequence of the inability to prepare identical
states for the system, for the apparatus, or both. The quantity Pr,(x)
can model the probability of occurrence of the outcome x in every
type experiment, or indeed every combination of different experiments
provided they measure the same observable. The problem is that p
depends on py,  and we generally want to minimize the observers’ in-
fluence. If we are able to control or prepare the state of the observer
precisely enough, we can do so. But if we have an uncertainty about

4Technically speaking, Pr is the image measure or push-forward measure of p
under 7.

°The definition could be made even more general by defining the probability as
amap p: P(X) x B(Xg x ) — [0,1]. However, as X is assumed to be a finite,
discrete set, we have a trivial counting measure on the set of outcomes. Therefore it
is sufficient to consider only the probability for the occurrence of a single outcome.
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the precise state of the observer, it is problematic to give an opera-
tional meaning to both (Xg, B(Xs), ux) and (Xar, B(Xar), pis,,) sepa-
rately and we have to look for other strategies to obtain a probability
that depends only on the system’s state.

Repeated measurement on identical system states
Assume the observer is given a large number of identical systems, every
one of them in an identical but unknown state. To find out more about
the system, the observer will interact with each of the members of this
ensemble in turn. For each and every single interaction, the observer
picks the outcome that ‘has the largest likelihood’ of pertaining to the
system. By randomizing the probe state and picking the outcomes in
this way, the observer aims to restore objectivity, so that the informa-
tion that is gained pertains solely to the system under observation. To
calculate the probability of an outcome if the system is in the given
state s within the deterministic setting of the previous section Eq.(5.1)
is in principle straightforward. Since there is only a lack of knowledge
about the state of the observer and not about the system, we will seize
the opportunity to simplify the notation a bit and write p for py, . The
experiment our observer will perform is a repeated one, in which the
probability measure py_ on the set of states of the system is reduced
to a point measure d, on the singleton s, and the probability measure
o on the set of states for the observer, we obtain for Eq.(5.4):

P = 551“. (57)

With B(3j) the o—algebra of Borel subsets of 3,;, we have that the
probability measure i acts on the measure space (X7, B(25/)). For any
two disjoint ¢;, 0, in B(X)/), we have

p: B(3y) — [0,1] (5.8)
plosUoj) = ploi) + ploy)
p(Em) = 1.

Two observer states are equivalent if they both produce outcome x
when observing s : m; &~ my iff 7(s,my) = 7(s,my). Hence, for any
given system state s, the mapping 7 defines in a natural way a parti-
tion of the state space of the observer with each member eig(x;, s) in
the partition belonging to exactly one outcome x;. This leads to the
following important definition:

Definition 43 The set of states of the observer that give rise to the
outcome x; € X when they interact with a system under observation in
the state s, will be denoted as eig(x;, s):

eig(x;,s) ={m € Xy : 7(s,m) = x;}. (5.9)
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From the single-valuedness of 7 in Eq.(5.1), it follows that different
outcomes (for the same s) necessarily correspond to different states of
the observer, so that for z; # x;:

eig(z;, s) Neig(z;,s) = 2. (5.10)

If we assume that every observation leads to an outcome for every state
of S, we have:
UL eig(zi, ) = L. (5.11)

From (5.10) and (5.11) we see that the sets eig(z;,s) fori =1,....,n
are indeed a partition of ¥,;. To calculate Pr ,(x;) in this case, we note
that

T Hxy) = {(s,m) € {s} x Ty : 7(s,m) = 7;} (5.12)
= {(s,m) : {s} x eig(z;,s)}, (5.13)

by definition (5.9). The product measure (5.7) then factorizes as

p(r7 (1) = ds(s)uleig(@i, s)) = pleig(xs, 5)), (5.14)

and we obtain from (5.6):

Pr(z;) = u(eig(x;, s)). (5.15)

This last formula is fundamental to the remainder of this work. It says
that for a repeated experiment on a collection of identically prepared
pure system states, the probability Pr(z;) is the normalized number
of observer states that after interaction with the system in the state
s, yield outcome z. For our normalized measure p of Eq.(5.8), this is
simply i(eig(2;, s)).

Two remarks are in order here. First, the sets eig(z;, s) are not
eigenspaces in the algebraic sense of the word® but rather a generaliza-
tion of these. Indeed, if it happens to be the case that for a given s
and for (almost) every m € 3, , we have 7(s,m) = x, so that

p(eig(zy, s)) = p(Em) = 1. (5.16)

For that particular s, we obviously have Pry(z)) = 1. If the state space
is a Hilbert space, the vector s thus defined, will evidently coincide with
a regular eigenvector that corresponds to the eigenvalue x;. Our second

remark concerns the outcome x. It is obvious that (5.8) is additive in
X:

pleig(ei, s) Ueig(x;, s)) = pleig(wi, s)) + pleig(zy, s))  (5.17)

6The sets (5.9) are called in eigensets in accordance with many of the papers
from the Brussels group, see for example, [24].
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because of (5.10). Therefore we can (and will) restrict our discussion in
what follows to the probability of the occurrence of a single outcome.
The success of the program to model the probabilities in quantum
mechanics as coming from a lack of knowledge about the precise state
of the observer stands or falls with the question of defining a natural
mapping 7 (which determines the outcome and hence eig(zx, s) ) such
that the measure p of the eigenset eig(z;, s) pertaining to outcome x;
coincides with the probability obtained by the Born rule.

The optimal observer

It is easier to make a bad theory of good measurements than
to make a good theory of bad measurements.

—Willis E. Lamb, verbatim’

Definition

We can see from Eq.(5.15) that the system state s can be associated
with a probability in a fairly trivial way: the probability of a given
outcome = when the system is in a pure state s, is the probability the
observer attributes x to the outcome of the experiment. In a repeated
trial this equals the relative proportion of observer states that attribute
outcome z to that state. Even for a repeated measurement on a set
of identical pure states, probability can arise from a lack of knowledge
concerning the precise state of the observer. Suppose now the observer,
considered as a system in its own right, is in a state m. Then in exactly
the same way we can associate probabilities with that state too. The
operational meaning of this association is given either by a secondary
observer observing an ensemble of observers in the state m, or by the
observer (mis)identifying its own state m for a state of the system s.
We have argued that every outcome will say something about the ob-
server, (that is, about m), and something about the system (that is,
about s). The problem is that this information is mixed up in a single
outcome. Some outcomes might be more informative about the state
of the system, and some more about the state of the apparatus®. To

"From his talk “From Newton to Schridinger and Beyond” given at the Oviedo
Symposium Fundamental Problems in Quantum Physics in Spain, 1996.

8A typical example arises if it is known that the noise level fluctuates, but
the particular noise level for a given outcome is unknown. Eventually, we, as
operators of our detection apparatus, will have to decide whether we will retain a
given outcome or reject it. Such decisions are a vital part of experimental science.
For example, an outcome that is deemed too far off the expected value (so-called
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proceed, we regard the state as a parameter that determines the distri-
bution of the outcomes and consider the following binary hypotheses
about the investigated system

Hg : s is the state of the system under investigation.

H,; . m is the state of the system under investigation.

If it is possible (with non-vanishing probability) to get an outcome
x; in an experiment under either hypothesis, then the factual occur-
rence of x; supports both hypotheses simultaneously. What really mat-
ters in deciding between Hg and H),; on the basis of the outcome z;
is not the probability of the correctness of each hypothesis itself but
rather whether one hypothesis has become more likely than the other
as a result of getting outcome x;. All the information in the data that is
relevant for deciding between Hg and H,,, is contained in the so-called
likelihood ratios or, in the binary case, the odds:

A — LlailHs)
Y L(xi|Hy)
The idea goes back to a Lemma’ of Neyman and Pearson [132] and is
an important topic in decision theory (see, for example, Jaynes[129]).
The notation £(z;|Hg) is common in decision theory and denotes the

likelihood of the outcome x; under the assumption that Hg holds. Ac-
cording to Laplace!?, this can estimated using

L(x;|Hg) o< Prg(x;) (5.19)
L(x;|Hpy) o< Pro,(z;) (5.20)

(5.18)

Under the assumption the constant of proportionality is the same, we

obtain
~ Pry(x)

~ Pro,(a;)’
In this last two formulas, Pr is determined by Eq.(5.15). Finally, with
the function arg defined as

arg nﬁmxf(xz) ={x;: f(z;) > f(z;),Yi# j}, (5.22)

A; i=1,....n. (5.21)

outliers) is rejected and excluded from subsequent analysis. The usual rationale
for this exclusion is that an outlier does not contain information about the system
we seek to investigate, but rather that it represents a non meaningful peculiarity
of that particular measurement.

9The Neyman-Pearson lemma states roughly that the likelihood ratio test for
deciding between two hypotheses Hyg : 8 = 0y and Hy, : § = 61, is the most
powerful test. The power of a test is the probability of (correctly) rejecting the
null-hypothesis (ie., when Hy doesn’t hold).

104Tf an event can be produced by a number n of different causes, the probabilities
of the existence of these causes given the event are to each other as the probabilities
of the event given the causes”, Laplace in [131], 1774.
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we are in position to propose our strategy for the optimal observer.

Definition 44 We call a system M an optimal observer iff, for every
state m € Xy, an interaction with a system in the state s € Xg, pro-
duces the outcome x; € X that maximizes the likelihood ratio

A= ———%. 5.23
Equivalently, using (5.19) and (5.22), the optimal observer M observes
the outcome:

PI‘S(.TZ')
T; = arg max :
’ s Pr . (x;)

(5.24)

Picking the outcome z; from X that maximizes the corresponding
likelihood ratio A;, is optimizing the odds for Hg, given the states s
and m and this is what the optimal observer does. This concludes
our description of the optimal observer. The quantitative criterion for
the optimal observer was obtained using arguments from inverse prob-
ability theory, but —as this field is not without its own controversies
entirely untouched by our discussion— we are glad to announce we
will only need the definition. In fact, much of the remainder of this
thesis is devoted to the calculation of Pr¢(x;) under various circum-
stances. To calculate the probability for a repeated experiment when
an observer is optimal, we need a state space. Our main interest will
be complex Hilbert space, but it is both necessary and instructive to
look at epistemic states first.

The optimal observer for epistemic states

Remember that our outcome set X need not be a number field or even
a (partially) ordered. It may well be that we are drawing painted balls
from an urn and that we decide that x; =red and xo =green. We may
for example know that 60% of the balls in the urn are red and 40% of
the balls are green. In this section we want to show how the principles of
the foregoing sections work for an epistemic state. Epistemic states are
often called statistical states and represent mixtures. Such states can
be represented as weighted sums of ontological states. In our example
the epistemic state can be represented as 0, 6x, + 0,4x5. To do things
properly, we first define the convex closure of a number of elements
ai,...,a, € A as a weighted sum of those elements:

a1, an) = {) Naj | A €01 and > \; =1}, (5.25)
Jj=1 j=1
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For an arbitrary discrete set C, we denote with [C] the convex closure of
the elements in C. For example, the convex closure [X] of the outcome
set X is:

(X] = [z1, ..., 2] (5.26)

Geometrically [X] can be thought of as the standard (n — 1) simplex
A, _1 in a Euclidean vector space . To see this, we identify with every
single outcome z; one of the base vectors'! x; of R™. Linear combina-
tions of the x; span the whole of R™ and we call the set:

R*(X)={) Ax;| \j€Randz; € X}. (5.27)

j=1

the free vector space generated by the set X. Likewise, we call A,,_1(X)
the standard (n — 1) simplex A, _; generated by X, and we do so by
first forming the convex closure [X| and then identifying each of the z;
with one of the base vectors x;.

Ap1(X) =1 i A | A € [0,1] andi A =1} (5.28)

In what follows we will denote the outcome with x; and the unit vector
that corresponds to it, by x;. Combining .(5.26) and (5.28), we can
write

Ay 1 (X) = [x1,. .., %) (5.29)

and see from (5.27) that A,,_;(X) C R*(X).

Ideally, an epistemic state is a representation of a very large en-
semble with stable relative fractions of systems in different ontological
states. Let ¢; be the relative fraction of systems in an ontological state
that, when properly observed, will yield outcome x;. Then we can write
the epistemic state as

S =1t1X1 + ...+ t,X,. (5.30)

As t; is a relative fraction, we have for j = 1,...,n that ¢; € [0,1] and

d =1, (5.31)
j=1

and hence s € A,,_1(X). We will assume the state space of the observer
with respect to this particular observation is the same as that of the

system:
Yu =242 1(X). (5.32)

"Tn the remainder of this dissertation we will denote (real or complex) vectors
by bold characters. This will cause no confusion with the bold characters we used
previously for properties, since we will not derive new theorems about properties.



130 The probabilistic observer

In this section (,) denotes the standard real inner product in a finite
dimensional vector space, and with (x;,x;) = §;;, we have from this
last equation

tk = <S, Xk>. (533)

With a state space Eq.(5.26), and a rule to extract a probability from
a state Eq.(5.33), we are in position to characterize the sets eig(zy,s).
Let s and m be states in A,,_1(X), written as:

s = thxj and m = erxj. (5.34)
j=1 =1

By the definition of optimal observation, we have that the outcome z},
is chosen, if for all [ # k, the corresponding likelihood ratio’s satisfy
A > A;. By Egs. (5.21) and (5.30), x, is chosen, iff for [ =1,... k —
1,k+1,...,n we have:

L(zy|Hs) - L(x)|Hs)
L(wvg|Hyr) ~ Lz Har)

(5.35)

But if ¢, is the relative fraction of systems in the ensemble that will
yield outcome zj, (if Hg holds) and 7y is the fraction of observer states
that will also yield x (if Hj; holds), then we have

L(zp|Hs) _ te

—L‘(a:k\HM) = (5.36)

Likewise, we have L(x;|Hg)/L(x;|Hyr) = t;/r;. This means outcome zy,
is chosen, if for all [ # k we have ty/ry > t;/r;. Withl=1,... n,j #k
and ty, g, t;, r; defined in (5.34), we find for the eigenset (5.9):

t t
_k>_l}

eig(xp,s) = {me A,_1(X): o

(5.37)
According to Eq.(5.15), the probability of the outcome z for the re-
peated experiment on a set of identical system states equals the ratio
of observer states that tell the outcome is x, to the total number of ob-
server states. It is natural to take for p the (n — 1)-Lebesgue measure
in A,_1(X), assumed to be normalized: u(A,_1(X)) = 1. Because of
Eq.(5.15), we have:

121"(3%) = p(eig(zrk,s)). (5.38)

However, because of the way we defined the epistemic state, one expects
that this probability should also be given directly by the fraction of
systems with outcome zy, that is the k' component of s. So the
question is whether the optimal observer Eq.(5.38) can recover that
probability, i.e. whether Eq.(5.38) equals Eq.(5.33):

p(eig(zr,s)) = (s, Xp). (5.39)
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To see if this is the case, we need to characterize the eigensets for this
particular state space. To do so, we first define the open convex closure
of a set of vectors xq,...,x, € R" as

i, oxa[ ={D_Ax; A €)0,1[and Y N =1} (5.40)
j=1 j=1

With this definition, we shall characterize eig(xy,s) for the epistemic
state s as ‘almost equal’ to the set of open simplices in a simplicial
subdivision'? of A,,_;(X) that one obtains when one replaces one vertex
of the original simplex A,,_;(X) with s, the vector representing the
state:

Ci= X1,y Xg_1,8, Xkt1,-- -, Xp]. (5.41)

The scheme along with the simplicial shape of the eigensets C} are
illustrated in Fig. 5-1. The following lemma shows just how eig(zy, s)
‘almost equals’ C}.

Lemma 45 Let C} be defined by Eq.(5.41), |C;] be the convex closure
of C%, and eig(xy,s) by Eq.(5.37), then:

Cy C eig(ay,s) C [CF]. (5.42)

Proof. We start with the first inclusion. Suppose m is in one of
the open (n — 1)—simplices C}. Then, by definition (5.41) and (5.40),
there exist \; €]0, 1] such that A\; + ...+ A, =1,

m = Z AiX; + \is. (5.43)
i#k
On the other hand, we have that s € A,,_;(X), and hence there exist
t > 0,>", t =1, such that (5.30) holds:

S = Z thl. (544)
I=1
Substitution of Eq.(5.43) into Eq.(5.44) yields

i#k
Calculating the likelihood ratios Eq.(5.21), we obtain A, = 1/\;, and

for ¢ # k we have:
t;

VW

7

12 A simplicial subdivision is a decomposition of a simplex in smaller simplices.
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X1 (©

Figure 5-1 lllustration of the scheme in the simplex state space. We start with
the discrete outcome set, depicted in figure (a). The (statistical) state space
for an outcome set with three outcomes is the standard 2-simplex Ay in the
free vector space generated by the outcome set over the field of real numbers as
depicted in picture (b). In figure (c) we see the regions of the simplex that show
what outcome will be obtained from an optimal measurement. An apparatus
state picked from the darkest shaded triangle (which represents eig (o, z($))
or 025) will lead to the outcome x5, in the lightest region to x1, and the
intermediately shaded region leads to the outcome x3. The probability is the
Lebesgue measure over the depicted eigensets. |l.e., the probability of obtaining
the outcome T, is equal to the normalized area of the darkest triangle.
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We easily see that Ay > A; because \; > 0, which is satisfied by the
definition of C§ as an open closure and (5.40). Hence, by Eq.(5.37),
every m € C} gives an outcome zy, establishing the result.

For the second inclusion, suppose there exists some m € A,,_; such
that m ¢ [C}]. The sets C§ in our theorem, as can be seen from the
definition of Eq.(5.41), are disjoint open (n — 1)-simplices. Then we
see that, had we defined them by means of the closed convex closure,
they would maximally have shared

[CHINIC] = AL 20 k),
where A? ,(j, k) is the the (n — 2) simplex defined as:
A;_Q(j, ]{?) = [S, X1yenn ,Xj_l, Xj+1, ey X1y X1, - - - 7Xn]~ (545)

Assume first a is not in the boundary of [C}], i.e. not in one of the lower
dimensional sub-simplices A% ,(j, k). Then m € C? with i # k. Be-
cause of the above demonstrated first inclusion, we have m € eig(x;,s)
and hence m ¢ eig(xy,s). If, on the other hand m € A? ,(j, k), then
the outcome assignment on the basis of the maximum likelihood prin-
ciple is ambiguous, as there will be two equal maxima, and even more
when m is chosen in a still lower dimensional subsimplex. However,
we are free to choose whatever outcome we like as long as it is one
of the maxima. Because the maxima coincide, these points lie in the
boundary and hence the conclusion remains eig(xy,s) C [C]. B

To obtain the probability of Eq.(5.38), we calculate the y—measure
of [C7], which is simply the (n — 1)-dimensional volume of the simplex

[CFl-

Lemma 46 Let u be the Lebesgue measure with p(A,—1(X)) =1, and
C? is defined by the convex closure of (5.41), then we have

u([CR]) = (s, %) (5.46)

We proof this lemma using determinant calculus, similar to the
original derivation in D. Aerts [7]. Let p,_; be the (not necessarily
normalized) (n — 1) -Lebesgue measure in A,,_;(X). Then we have:

oy Pna((CR))
uled) = Pr—1(An-1)
(X Xemn S X1y -, X))
Pr1 (X1, X4])
% det[xl’ ey X 1,8, Xkt 1y - - - ,Xn]

-1
—rdet[x1, ..., Xpo1, Xiy Xig1, - - - X
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Substitution of Eq.(5.44) gives

_ det[Xq, ..., Xp—1, 0 g LXly Xpt1s - - - X
det[xb vy X1 Xy Xt 1y - - - 7Xn]
_ det[xy, ..., Xp_1, teXpy Xpa1s - - -, X (5.47)
det[xla'"7Xk—17Xk:7Xk+17"'7Xn] .
_ tedet[xXy, ..o, X1, Xk, Xpt1, - - - 5 Xn) (5.48)
det[Xy, ..., Xp 1, Xp, Xpa1, - - - 5 Xp] '
—t, (5.49)
Using Eq.(5.44) once more, we conclude that
u([CR]) =t = (s, xx). (5.50)

Theorem 47 p(eig(wy,s)) = ty.

Proof. By the first lemma (45) we have C; C eig(zk,s) C [C].
Because A C B = u(A) < p(B), we have

p(CR) < pleig(ar,s)) < p((CF])-

By the lemma (46) we have p([C}]) = t. To calculate pu(C}), we note
that 1(C}) = p([CF]) — u([CE]NC3). Because [C3]NC} is the collection
of faces of C}, a set of finite cardinality whose members have an affine
dimension maximally equal to n — 2, it is u—negligible, hence we also
have u(C}) = tj, establishing the result.H

Note that we did not specify what happens on the boundary of
[C¥]. In that case, the principle of optimal observation does not allow
us to pick a unique outcome because several of the odds A; (5.21) on
p. 127 will have the same magnitude. We will come back to this subtle
point in our last chapter, but, as the above theorems show, this is of no
consequence with respect to the magnitude of the probability for each
outcome. We see that indeed Eq.(5.39) holds and the optimal observer
recovers the probability:

Pr(zx) = ty, = pleig(zy, s)). (5.51)

In this way the observer succeeds in obtaining a quantity that, in
the limit of an infinite number of measurements, depends only on the
state of the system under investigation, and not on its own state. The
idea of obtaining the probability in the simplex state space as a uniform
measure over the eigensets was first presented in 1986 by Diederik Aerts
[7], where it was proposed under the name “hidden measurements” to
indicate the origin of the lack of knowledge. We have here extended
these ideas in two main ways. First, in publications on hidden mea-
surements, the eigensets are postulated ad hoc (i.e. because they yield
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the correct probability), whereas we have here derived their simplicial
shape from the principle of optimal observation. Second, in D. Aerts
[7], the result is presented in a real vector space, with the exception
of the two dimensional case where the Bloch sphere representation is
used. The generality of the principle of optimal observation and the
more abstract approach used here, allows to motivate the shape of the
eigensets and extend the results of D. Aerts [7] to systems with a com-
plex state space of arbitrary, albeit finite, dimension. It is important to
note another well-developed extension of the hidden measurement for-
malism that covers complex Hilbert spaces of arbitrary dimension was
found by Aerts Diederik and Massimiliano Sassoli de Bianchi [26], [27]
a few years later then the results presented here. Their construction
is based on a generalization of the Bloch-sphere representation and as
such is unrelated to what we do here. Before we turn to complex state
spaces, there are two issues of interest that we address first.

On the interpretation of epistemic states

There are two main scenarios in which epistemic states arise naturally.
An epistemic state can be the result of mixing ontological states with
appropriate weights, or it can represent a statistical tendency of a sys-
tem to evolve towards one of a set of alternatives. If we can only
perform a single experiment on each member of an ensemble described
by one epistemic state, we cannot distinguish between these two sit-
uations. To illustrate this, suppose we have an urn filled with coins.
If we are allowed to inspect each coin only after a single throw of the
coin, then we cannot know whether it is a tendency of the coin to show
heads with probability 1/2, or whether half of the coins in the urn have
both sides printed with heads and half of them have both sides show-
ing tails. If we cannot distinguish between these two situations, our
description should be amenable to both scenarios. There is however a
big difference between these two situations with respect to the optimal
observer. If the epistemic state represents a statistical tendency of a
system to evolve towards one of a set of alternatives, the derivation
of (5.51) can be repeated step-by-step; we merely interpret the coef-
ficients in (5.34) as tendencies towards an alternative, rather than as
fractions in an ensemble. The principle of optimal observation can ei-
ther be considered as a heuristic constraint on observation, or it can be
regarded as a condition that must be satisfied by the physical interac-
tion between the observer and the system. However, if we interpret the
coefficients as fractions in an ensemble —as we did above— one cannot
regard the principle of optimal observation as a physical interaction
with the epistemic state, because the observer will, on each trial of the
experiment, physically interact with a system in a non-mized state x;
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and the probability that the state x; was drawn from the ensemble, is
t;. It is however straightforward to show that exactly the same result
applies from a perspective where the observer does physically interact
with a pure state x;. Applying the maximum likelihood principle for
the optimal observer, we see that, for the trial where the observer phys-
ically interacts with the state x;, the set eig(zy, x;) is either empty, or
the whole state space of M. This can readily be seen from Eq.(5.37)
applied to s = x; :

t t
eig(zp,x;) = {m € A,_1(X) : i > T_ll . (5.52)

Indeed, if s = x; we have t;, = 1 and t; = 0 for 7 # j. If k =4, we have
% > % for all [ and eig(z;,x;) =X, so that (5.51) yields Prs(zx) = 1.
If, on the other hand, k # i, we have % < i—ll and eig(zy,Xx;) is empty
with Prg(z) = 0 as result. So the optimal observer will always assign
outcome x; when interacting with x;. If we have an ensemble that
consists of a mixture of different states x;, the probability of obtaining
x;, will then be equal to the proportion of states x; in the ensemble.

Contextual outcome assignment

It is interesting that, even for the conceptually simple statistical mix-
tures, the outcome assignment given by the optimal observer is contez-
tual in the following sense: given a state for the observer and system
that lead to the outcome z;, then the mere interchanging of the coeffi-
cients ¢; and t; (equal to the probability for the outcomes z; and xy)
can easily result in an outcome different from z;, even if neither x;,
nor xj, is equal to x;! This can readily be verified in Fig. 5-2. How-
ever, the probability Pr(zx) is a function of ¢ only as can be seen
from (5.51), hence the probability itself is non-contextual because the
effect is cancelled by the uniform distribution of the observer states.
Conversely, given a state of an observer m and a system state s that
interact to yield the outcome x;, it is often possible to change the out-
come of the optimal observer to a different outcome by interchanging
suitable coefficients of the observer, leaving r;, untouched. This means
that changing the observer’s preferences over the outcomes x; and z;,
may let the optimal observer decide z, is a more optimal outcome than
x, for j,1, q, k all different!

From Fig. 5-2 we see that, whether a contextual outcome change
by interchanging coeflicients is possible, depends on how close the state
is near the centre of the simplex. The closer to the centre, the closer
the coefficients of s in Eq.(5.30) are to 1/n, effectively limiting possi-
bilities for producing a contextual outcome change. It seems then that
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X4

Figure 5-2  (a) Suppose a measurement of the state 1), yields outcome x;.

This means the state of the observer was somewhere in the white triangle. (b)
If we interchange the second and third component of 1)° , we obtain ¢)]. The
probability of obtaining outcome x; is the same as in picture (a), because the
two triangles have the same area as we did not change the x; component in

the state ¢)° to obtain 1)]. However, an observer state choosen from the black
shaded region would yield outcome x; in picture (a), whereas it would yield xy
in picture (b).

this form of contextuality of the outcome assignment depends on the
classical entropy of the state®?.

Optimal observation in Hilbert space

Complex Hilbert spaces are of considerable interest as they arise nat-
urally in many prominent scientific areas including quantum theory
[204], signal analysis [147], [99] (both in time-frequency and in wavelet
analysis), phasors in electromagnetism and electronic networks!?, and
the more recently founded shape theory [135]. We are here particularly
interested in states that are used to describe spin-n systems, internal
degrees of freedom of a particle, properties of particles, or more gen-
erally, any experiment in quantum mechanics that has only a finite
number of outcomes. Such states are vectors in a finite dimensional
vector space over the complex numbers equipped with an inner prod-
uct and form a simple example of a Hilbert space!®. The number of

13 According to a well-known theorem due to Shannon, the higher the classical
entropy of the epistemic state x(s), the closer each coefficient is to 1/n.

141n these last two fields of research, the complex character of the phasor is seen
mostly as convenient and not forced upon us by the physics. Interestingly, the
name probability amplitude, and indeed the Born interpretation of the wave vector
in quantum mechanics as a probability density, were conceived by Born in analogy
with electromagnetic waves. In that case, the square of the norm of the amplitude
equals the energy in the wave, and conservation of probability is replaced with
conservation of energy.

5What we actually need is something more than C" (which has only a vec-
torspace structure and needs an inner product) and less than the sequence space



138 The probabilistic observer

possible outcomes in an experiment equals the dimension of the Hilbert
space. The set of states of the observed system that we will consider,
is the set of unit vectors in an n-dimensional Hilbert space that we
denote as H,,,
Ys={seH,:|s||=1} (5.53)
The norm ||.|| is defined by the usual sesquilinear Hilbert space product
that we will denote (.,.). It is well-known Hilbert spaces of the same
dimension are isomorphic and this has the interesting consequence that
the probabilistic machinery of quantum theory works in exactly the
same way for these systems, irrespective of the particular nature of
the system and/or the physical quantity involved. In the same way
as we did for the epistemic states, one can form the free vector space
C"(X) over the set of outcomes by identifying each outcome with a
base vector in C". Every state can then be as a linear combination of
these with the constraint that the resulting vector is unit norm. We
can, however, make closer contact with quantum theory in the following
way. If L(H,) is the set of linear operators that act on the elements
of ‘H,,, then an observable A is represented by a self-adjoint element of
L(H,):
AcL(H): Al= A (5.54)
As said, we assume A has a discrete, finite, non-degenerate spectrum,

which implies that eigenvectors belonging to different eigenvalues are
mutually orthogonal. Let F4 be the set of the eigenvectors of A :

Fyu={xx € H, : Ax}, = cxXp, cx € R}. (5.55)

Because (x;,x;) = d;; and )7, x; ® x; = [,(here x; ® x; is the
outer product of x with itself; it is a projector onto the closed sub-
space generated by x;), we have that F4 is an orthonormal frame. An
arbitrary element of H,, can be written in this frame F4 as:

s = Zajxj, and o; € C. (5.56)

J=1

If s is of unit norm, it satisfies (5.53), then it lies in X5 C H,, , and the
a’s obey:

Zozjoz;’f = 1. (5.57)
J

Moreover, one can verify that the observable A can be written as (x; ®
x; is a projector onto the closed subspace generated by x;) :

A = Z CLij ® Xj. (558)

J=1

(?( C) of square summable series (as we don’t need infinite series). Therefore we
write H,, to remind us this is a Hilbert space of finite dimension.
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Hence the observable A is in a one-to-one correspondence with an
orthonormal frame F4 of eigenvectors of A and we will represent the
observable by its associated frame. The state of the system S can be
expanded in this frame as:

S = ZQJXJ'7 (5.59)
j=1

where the coefficients ¢; € C and ||s|| = 1. The difference with the
epistemic states (5.30) is substantial. Whereas in the epistemic case two
interpretations of the state were possible, no such possibility exists for
states that are represented as unit vectors. The reason lies in the fact
that the points on the sphere cannot be written as a convexr combination
of other points on the sphere. Operationally this means you cannot
prepare such a state in the laboratory by mixing an appropriate fraction
of other states, hinting that the states on the unit sphere represent a
deeper ontological rather than epistemic character.

The outcome set X consists of an orthonormal frame of complex
vectors {x;}, thought of as the set of (distinct) eigenvectors of the
Hermitian operator A that represents the observable A. With this in
mind, we model the set of states of the observer as unit vectors in H,,:

Yy={meH,:|m|=1} (5.60)

The state of the observer, to us, always means the subset of the
state space that is of relevance to the production of outcomes!®. This is
especially relevant for the interpretation of sentences such as “uniform
distribution of initial observer states”, which taken too literally, would
indicate the observer is probably doing something completely different
than observing. The state of an observer with respect to an experiment
with outcome set X can be written as (r; € C):

m = ZT]'XJ'. (561)
j=1

16The observing system usually has a very large number of internal degrees of
freedom, its state space a Hilbert space of appropriately high dimensionality. Ac-
cording to quantum theory, if we have two systems, one having as state space a
Hilbert space H,, of dimension n and the other one a Hilbert space H,,, of dimension
m, then the compound system can be described by a state in H,, ® H,,, (with m pos-
sibly much larger then n). However, by the Schmidt bi-orthogonal decomposition
theorem, there exist orthonormal bases {vy,...,v,} C H, and {wy,...,w,} C
‘H,, such that the compound state can be written as ¢ = Z?:l a;jv; @ w;. The
orthonormal basis in H,, also consists of only n unit vectors. Hence the correlations
between the two systems can —in the appropriate bases— be described as if it where
the correlations of two systems, each one living in a Hilbert space of dimension no
more than n.
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Because the coefficients now assume complex values, they cannot be
interpreted as probabilities. This difference also affects the deeper,
deterministic level of the description in a profound way. Let us briefly
explain why.

For epistemic states, each eigenset is a subsimplex of the state space.
This was the essence of lemma (45). Because any two eigensets share
at most a lower dimensional face, any two different eigensets (for a
fixed system state) can be separated!'” by a single hyperplane. This is
essentially the mathematical reason why we can have a linear decision
criterion for epistemic states. But in a complex space, a hyperplane
does not separate that space in two half-spaces because we do not have
a total order relation in the field of complex numbers. To apply the
maximum likelihood criterion, one needs to decomplexify the space to
restore the order relation. This can be done in a variety of ways'® and
the principle of optimality alone cannot resolve this ambiguity. Let
us propose a minimal generalization of the real case Eq.(5.37). For
epistemic states we made to following assumption (5.36):

LllHs) _

Llolf) 7 562

As we can see, the left hand side is estimated as a trivial function of
tr, and 7y, : the quotient of k" component of the vectors representing s
and m. If we would try the same in the complex case, that quotient
would involve a phase factor (i.e. the difference between the phase
factors in nominator and denominator). Here we propose that the
likelihood ratio is a monotone function f of the ratio'® of the moduli
of the corresponding coefficients. The nature of f is irrelevant with
respect to outcome that will be obtained, and we may as well choose

Tf €, and C5 are two sets in R”, then a hyperplane H is said to separate C;
and Cy iff (] is contained in one of the closed halfspaces associated with H and
C5 lies in the opposite closed half-space. Two convex sets in R™ that share at most
an affine set of dimension n — 1 can be separated by a hyperplane.

180n the other hand, this plurality of decomplexifications need not bother us too
much. Just as in the case of the epistemic states, the observer can check the sta-
tistical validity of his outcome assignment by verifying that the probability (in the
sense of a relative frequency) that results from repeated application of his outcome
assignment, equals the anticipated probability. In the same way, we can postulate
or guess a specific form of the probability assignment and justify it a posteriori:
If the relative frequency of an outcome (as a result of the optimal observers’ out-
come assignment), converges to a limit that yields (a monotone function of) the
very probability assignment he used to obtain those outcomes, the optimal observer
knows a posteriori he was optimal. If he wasn’t, he can always restart with another
guess.

YA slightly less general formulation assumes the likelihood is any monotone
function f of the modulus of the corresponding coeficient:£(xr|Hg) = f(|qk|). This
does not affect the eigensets.
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the identity function:
Lzl Hs) _ |ax]
L(xe[Hy)  Jrel
With m defined as in Egs. (5.59) and (5.61) and j =1,...,n; j #k,
we then have:

(5.63)

eig®(zp,s) = {m € Ty Ja¢] > m} (5.64)
LA

The only difference with Eq.(5.37), is that we take the modulus of the
coefficients and that the eigenset now contains complex vectors, which
is why we have given it the superscript C. To check the consistency
of our optimal observer in the complex state space, we evaluate the
Lebesgue measure v(eig®(zy,s)). For this purpose, we regard measure
v in C" as the Lebesgue measure u over R?". The calculation of the
Lebesgue measure of the eigensets by direct integration can be avoided
by use of a mapping w that preserves the measure. Recall that a
measurable mapping w : X — Y is called measure-preserving between
two measure spaces (X,B(X),v) and (Y,B(Y), ) iff for every A €
B(Y), we have v(w!(A)) = u(A). In our following lemma we show that

the point-wise or Haddamard product ® of two vectors v = (vy, ..., v,)
and w = (wq, ..., w,), defined as

® : C'xCr-cC" (5.65)

VOW = (vjwy,vws, ..., vWw,), 5.66)

can be used to define a mapping w :

w : C"—R" (5.67)

wv) = voOv =], v, ... v,00) (5.68)

that preserves our measures up to a constant of proportionality. Take
notice of the fact that w maps elements of the (real or complex) unit
sphere to the standard simplex.

Lemma 48 Let S, = {z € C" : Y " | zizF = 1} be the complex unit
n-sphere in C", as in (5.60), and let A, _1 be the standard (n — 1)—
simplex as in (5.28). Let z = (21,22, ...,2,) € Sp. The mapping w

w:S, — A1
* * *
C{J(Z) = (21217 BQRg -y ann)
is measure-preserving up to a constant of proportionality, i.e. for the

measure spaces (Sp,B(S,),v) and (A,_1,B(A,_1), 1) with v and u
Lebesque measures and A € B(A,_1) and w1 (A) € B(S,), we have:
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Proof. Let A be an arbitrary open convex set in Ay : A = {(y1,¥2) :
a <1y <b yy =1—uy} (ie., an open line segment). FEvidently,
((A) = v/2(b — a). Consider the set B

B:{(21,22)621XZQC(C2 | le{z1:a< |Zl|2<b}7

Z2 = {22 L 29 =/ 1— |21’2 eie,e € [0,27’(’[}}

Clearly, the members in B are unit norm, hence B C 5,,. Using the
definition of w it is a matter of straightforward verification to see B is
the pull-back of A under w, i.e. w(B) = A. Its measure factorizes

272
V2

Where we have used v(Z;) = (b — a) because (See Fig.(5-3) the
boundary of Z; are two concentric cylinders: one of radius y/a and
one of radius v/b. Hence the theorem holds for open convex sets in A.
This conclusion can readily be extended to an arbitrary open (n — 1)-
dimensional rectangle set A in A,y (a;,y;,b; € R):

v(B) =v(Z)v(Zy) =7(b—a)2m = w(A).

n—1

A:{(y1>"'vyn—171_zyj) ‘ 0§aj<yj<bj S]_,V]:l,,n_l}
j=1

Its measure factorizes into:
n—1
w(A) = Vn [ [ —ay).
j=1

Next consider n-tuples of complex numbers:
B:{(Z1,22,...,zn) €1 X ... X Zn}
Zj:{ZjE(C ‘ a; < ‘Zj‘2<bj, ]#n,
=1 — |22 — ... = |zo1 |2, 0, € [0,2n]}.

Clearly we have w(B) = A. The measure of B can be factorized as:

v(B) =v(Zy)v(Z3)...v(Z,)

2™

=27 1:[ (b — ay) = %,LL(A).
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Hence the theorem holds for an arbitrary rectangle set A C A, 1. As
every open set in A,_; can be written as a pair-wise disjoint count-
able union of rectangular sets, it follows v(w™'(+)) = 27"u(-)/\/n for
all open sets in A,_;. Both v and p are finite Borel measures because
A, _1 and S, are both compact subsets of a vector space of countable
dimension. Therefore they must be regular measures?”, which are com-
pletely defined by their behavior on open sets. Hence w is measure
preserving for Borel sets.Hl

A

Ay

1-a

a b

w(A)=v2(b-a) v(B)=v(Z1)V(Z;)=m(b-a).2m

Figure 5-3 On the left we see an illustration of the identity u(A) =
\/i(b — a). On the right side, we see a representation of all the triples
(Im(z,), Re(21),Arg(z3)) that are mapped by w to A. The modulus of
Z9 cannot be displayed as this would require an extra dimension, but it
does not contribute to the measure as its value is fixed by z;. We see that

v(B) = v(Z))v(Zs) = 7n(b— a).21 = /212 u(A).

We have given a graphic representation of the action of w in Fig.
5-4.

We are almost ready to demonstrate our main result of this sec-
tion, but first we prove a lemma that shows the complex eigensets are
mapped by w to the real eigensets of the epistemic states, provided one
also maps the complex state s to the simplex by w. Remark that we
don’t have to map the x; since w has no effect on the components of
base vectors, as can readily be verified by their definition (5.67). This
is also geometrically obvious: the base vectors point exactly to the only
points where the unit sphere and the simplex meet.

Lemma 49 Let eig®(wzy, -) be defined by (5.64) and eig(xy, -) by (5.37).
Then for all unit vectors s we have

w(eig®(zr,s)) = eig(ar, w(s)). (5.69)

20 A regular measure is one for which every measurable set can be approximated
from above by an open measurable set and from below by a compact measurable
set. See, for example, Rudin [173], p. 47.
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w(Xs)

w(%1)

Figure 5-4 The action of the mapping w sends elements of the unit sphere
to the standard simplex (upper figure). The probability for the occurrence of
outcome x is the measure of the eigenset corresponding to outcome x; and
is calculated in the simplex using the measure preserving mapping w. The
eigensets are depicted in the lower figure for the simplex; it is not possible to
show graphically what these sets look like in the complex unit sphere, except
for the two dimensional case, as was presented in Fig. (5-3).

Proof. Let x; be the base vector that corresponds to outcome x;,
(k=1,...,n) and let s be given by (5.59)

S = Z qJ‘Xj. (570)
j=1

Clearly w(s) = (1¢7, 4205, - -, qnq) € A1 (X) iff qugf + ... +
¢nq: = 1 and this is true because ||s|| = 1. Let v be an arbitrary vector
in eig®(xy,s):

v :erxj. (5.71)
j=1
It is clear that w(v) is in eig(zg, w(s)) as it satisfies (5.37), since

rry Frery + .o s =1 (5.72)
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and by squaring both sides of the inequality in (5.64) we obtain:

2 2
. M (5.73)

So every vector in eig®(xy,s) is mapped to an element of eig(xy,w(s))
under w. But clearly the mapping w : eig®(xy,s) — eig(zg, w(s)) is
onto as every vector w = wixy + ... + w,X, € eig(rg,w(s)) is the
image of \/w1x;+. . .+/w,X,, which is obviously in eig®(xy, s) because

(V) + ..+ (Vwn)? = 1 and /lael/[wel > /lg;l/[w;]

We are now in a position to prove our main result.

Theorem 50 Let M be an optimal observer, observing a quantity of a
system S such that the observation can have one of n possible outcomes.
Let both M and S have as states unit norm vectors in an n-dimensional
complex Hilbert space. Then the probability for the occurrence of out-
come xy, for a repeated observation if the system state is a fixed vector
s, observed by a uniform density of observer states, is given by the Born
rule:

Pr (x;) = [(x1,8)]*. (5.74)
Proof. We first define:

Cp = Jw(xi),...,w(Xk_1),w(s),w(Xkst1),---,w(xn)]- (5.75)

With eig®(zy, s) defined by Eq.(5.64), it is straightforward to see from
the last lemma that:

Cs C w(eig®(zy,s)) C [CF]. (5.76)

Let /1 and 7 stand for the normalized versions of the measures p and v in
the proof of lemma (48): ©(.S,,) = i(A,—1) = 1, so that their constant of
proportionality equals one: 7(w™!(A)) = ji(A). By definition Pr,(z;) =
7(eig®(xy,s)), and by lemma (48), we have:

p(eig®(ax,8)) = P(w ' (CR)) = B(CP). (5.77)

The normalized measure i(C}) of the real simplex C} was calculated
for the real state space. We can repeat the exact same calculation we
did to obtain Eq.(5.50) on p. 134, which in this case gives us:

Pr(zy) = a(Cy) = (wixg), w(s)).
But (w(xg),w(s)) = |gx|* by Eq.(5.59) and the definition of the

Haddamard product. Hence, by Eq.(5.70) we get Pry(x)) = |qx]* =
|(xy,s)|?, which is (5.74).1
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We see that indeed the optimal observer recovers the Born rule
as a result of maximizing the odds with respect to the outcome that
pertains to the system. Although our observer, by Eq.(5.64), used the
ratio’s

Ay = % (5.78)
rather than \( >‘2 ’ |2
Xk, S dk
A = — . .
e m)E P (5-79)

which we obtain by substitution of the Born rule in Eq.(5.21), it still
did maximize the odds of Eq.(5.79). This is obvious if we recognize that
Egs. (5.79) and (5.78) are maximal for the same value of k because one
is the square of the other, which is clearly a monotone function. As
a consequence, it does not matter whether the optimal observer works
with Eq.(5.79) or with Eq.(5.78): repeated application of either strat-
egy on the same pure state will make the relative frequency converge to
the Born rule in exactly the same way in both cases. The result should
not be understood as a demonstration the Born rule can derived deus
ex machina. In fact, we have used a cue from quantum theory to get
to a suitable form of the likelihood ratio when we imposed Eq. (5.63).
That doesn’t make the result trivial. Indeed, the optimal observer is
forced to give an outcome and we have given an explicit scheme of
how and which outcome is produced, something about which quantum
theory remains silent. But merely giving a mechanism that produces
outcomes is not sufficient: we have to show that the choice of outcomes
is such that the probabilities at which one arrives after averaging over
the states of the observer are in agreement with empirical data. This is
what we have demonstrated and this is how the result should be under-
stood. The fact that the Born rule comes out of the calculation gives
us a justification of the ansatz expressed by Eq. (5.63); a wrong ansatz
would give rise to a probability that does not match the probabilities
used in the likelihood ratio®!.

An interesting link was pointed out to me by Thomas Durt [90]. It
turns out the regions of the Bohm-Bub model of 1966 [58], coincide with
the eigensets in the complex case, given by Eq.(5.64). Moreover, Bohm
and Bub propose a uniform measure of states that they too interpret
as apparatus states. They perform the integration directly for the two
dimensional case only and mention the integration scheme could be
extended to the more dimensional case. Their main result, in spite of
using a mathematically very different approach, is also the reproduction

21 This hints at a difficult but interesting line of research: find the most general
mathematical ansatz for L(zx|Hg) and L(xg|Hys) for complex vectors such that
the resulting probabilities after averaging over observer states, are in accordance
with the ansatz. We conjecture it is precisely the ansatz of Eq. (5.63).
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of the Born rule. For Bohm and Bub, the reproduction of the Born rule
is the a posteriori justification for the shape the regions take. From
our perspective, optimal observation yields an interpretation for the
regions employed by Bohm and Bub as the unique (modulo measure
null sets) partitioning of the set of states of the observer into subsets
such that each state of the observer optimally observes the state of the
system.

An alternative to standard quantum
theory

Although the word ‘quantum’ was used on many occasions, we did not
focus on describing quantum systems as such before. We will now show
how one can make contact with the mathematical structure of standard,
non-relativistic quantum theory. Let us summarize the mathematical
core of the orthodox theory by listing the following six postulates.

Axiom 1. The properties of a quantum system S are completely defined by
specification of its state vector |s) which is a unit norm element
of a complex Hilbert space H called the state space.

Axiom 2. With every physical observable X' (energy, position, momentum,
angular momentum,...) there exists an associated Hermitian op-
erator X, which acts in the state space. The eigenvalues x; of
the operator X are the possible values the physical observable X
can take.

Axiom 3. The probability of finding the outcome x; when we measure the
observable X’ on a system S in a state |s), is given by

Pr(X = 2) = [(x, s)|?, (5.80)

where x;, is the eigenvector of the operator X that corresponds
to the eigenvalue xy, or: X|x;) = x|xg).

Axiom 4. The state of the system immediately after the measurement of the
physical observable X is the eigenstate |x;) of X that corresponds
to the outcome zy,.

Axiom 5. The dynamical evolution of a closed system represented by [s(t))
at to is governed by a unitary time evolution operator U: [s(t)) =

U(t, to)s(to))-
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Axiom 6. When two systems interact, the resulting compound state is de-
scribed by a unitary evolution that acts on a unit vector in the
Hilbert space that is the tensor product of the Hilbert spaces of
the two separate systems.

What kind of minimal adaptation do we need to regard quantum
theory as optimal observation in Hilbert space? We can keep most
axioms in the list, replacing ‘H by H,, to remind us we have only shown
the scheme works in finite dimensional Hilbert spaces. Next we omit
Axiom 3 and replace it by two axioms, one describing the production
of an outcome, and one describing how to calculate the probability of
an outcome.

Axiom 3a. The outcome of the measurement of observable X for a system S
in state |s) € H,, is the outcome x) that maximizes the likelihood
ratio (5.79) among the set of outcomes when S is observed by an
observer in the state |m) € H,.

Axiom 3b. The probability for the occurrence of the outcome z;, is given by
the normalized uniform measure on the set of states that maxi-
mize (5.79) for xy.

We can easily show how Axioms 3a and 3b lead to Axiom 3. From
3a we conclude that the observer is optimal. The set of states that
maximize (5.79) for x, are precisely those in eig®(xy,s), defined in
Eq.(5.64) on p. 141, so from 3b we have that the probability Prg(X =
;) is the normalized measure of eig®(zy,s). Theorem (50) shows that
this leads leads to the Born rule, which is how Axiom 3 is generally
referred to. Hence both lists of axioms lead to the same experimental
consequences.

Compound systems and singlet cor-
relations

One might wonder whether Axiom 6 is not at odds with Axioms 3a
and 3b. Axiom 6 dictates that two systems in interaction are to be
described in the Hilbert space that is the tensor product of the two
Hilbert spaces of the systems that interact. Our measure theory as
introduced on p. 123 used the Cartesian product of the state of the
system and the observer. However, if we take determinism seriously,
there is no contradiction between Axioms 3a, 3b and Axiom 6. On
the condition that the system and the observer are isolated systems
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before the measurement interaction takes place, the initial state in the
tensor product space is uniquely defined by the two elements in the
Cartesian product??. Once the interaction Hamiltonian kicks in, the
evolution of the compound system can no longer be described by a
unitary transformations in the separate Hilbert spaces and a Cartesian
product is no longer appropriate. But Axioms 3a and 3b do not describe
the evolution of the compound system, only the production of the final
outcome. And that final outcome is a deterministic function of the
states of S and M, both under our assumptions, and under the unitary
evolution law described in Axiom 5 (but not under Axiom 3). This
means that, on the condition that determinism holds, it is possible to
produce the outcome either as a function of the states of S and M right
before the interaction, or as a function of the compound state in the
compound state space. They will not be the same functions, we only
argue that it is possible. Although we consider it a plus our interaction
rule defined on p. 121 and the unitary evolution in Axiom 5 are both
deterministic (in contradistinction with quantum theory), we cannot
find a unitary evolution that represents how the interaction leads to a
definite outcome. This is a consequence of the measurement problem.
But in quantum mechanics outcome states are obtained by a projection
as described in Axiom 4; a manifestly non-unitary transformation. We
feel we are entitled to our own alternative without doing worse than
standard quantum mechanics.

How do we treat compound systems then? Using Axiom 6, we
describe two systems that are prepared independently in the pure states
s and r , by forming the initial compound state as s @ r, which is again
a pure state. The evolution of that state is governed by Axiom 5. That
the compound system is in a pure state indicates there exists a test
that one can submit to the compound system and that will deliver
a given outcome with certainty?®. In the language we developed in
Chapter 2, we say that in this case the compound system has an actual
property, which defines an element of reality. Unfortunately, it is less
easy to identify actual properties of the constituent states s and r
as a result of their interaction. Mathematically this is a consequence
of describing the states of the subsystems as a partial trace over the

220r as Peres ([157], p. 115) phrases it: “Our problem is to construct a formalism
whereby the state of a composite system is expressed in terms of states of its
constituents. The situation is simple if the electron and the proton are widely
separated—they may possibly be in different laboratories, where they have been
prepared in states u and v, respectively....The state of both particles together can
then be represented as a direct product (sometimes called “tensor product”) of
these two vectors, written as w = u®v. ... Direct products can represent the state
of two (or more) systems that have been prepared independently.”.

23See, for exmple, [157] p. 30, where Peres call this the postulate of “Statistical
Determinism”.
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compound state, resulting in subsystems that are no longer described
by unit vectors, and hence no longer represent pure states. If this
is the whole story, then there do not exist actual properties for the
subsystems and we have no elements of reality for the subsystems?*.
A peculiarity of the quantum world is that the connection between
subsystems seems not even restricted by space-time separation. The
most famous demonstration of this fact is the analysis by Bell of the
EPRB experiment [50]. Because we have shown we can reproduce
the probabilities given by the Born rule, one wonders whether we can
also reproduce the probabilities to violate the Bell inequality with an
optimal observer. To investigate this question, we first note that an
arbitrary spin-1/2 state |¢) can be written as a linear combination of
two base states as

9) = alz") + 87). (5.81)

Here we denote the base states by the kets |27) and |z7) because they
refer to the states “spin up” and “spin down” measured (for example)
by a Stern-Gerlach device aligned with a spatial axis z. Being base
states, we have:

"y =(z7]z7)=1and (z7|z") = 0. (5.82)

Now consider the following vectors, parameterized?® by the angles 0
and ¢ :
lu™) = e /2 cos (0/2) |27) + /% sin (6/2) |27) (5.83)

lu™) = —e72sin (A/2) |27 + €% cos (6/2) |27). (5.84)

Because of Eq.(5.82), we have
(uT|u®) = (u"Ju") =1 and (u” |Ju") =0, (5.85)

so |uT) and |u~) can also serve as base states?®. This change of basis
can be very convenient. One can, for example, directly determine from
(5.81) and (5.83) that the probability of the outcome “spin up” for a
system prepared in the pure state |z7), measured by a Stern-Gerlach
device in a direction that makes an angle 6 with z, will be cos® (6/2) .

241t is however shown in the so-called modal interpretations of quantum mechanics
(which don’t impose Axiom 4) this may still be possible using the bi-orthogonal
Schmidt decomposition. For an overview and references, see [87].

25This representation of the spin 1/2 state is parameterized by the spherical
covrdinates 6 and ¢ and is closely related to the Bloch sphere representation of a
gbit. We will examine the Bloch sphere in more detail in the next Chapter.

26Remark that setting § = 0 makes the two bases identical, whereas setting § = 7
identifies [u™) with [27) and |u~) with |2*) (both apart from a phase factor e~1¢/2).
By direct comparison of (5.81) and (5.83) we obtain the relation between them as

B/a = tan(6/2)el?.
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Next we turn to the singlet state |o). It can be written in a basis
aligned with the z axis (the subscripts 1 and 2 indicate the relevant
subsystem) as:

Lo+ — - +
o) = ﬁ(‘zl ) ®lz2) = |z1) ® |27)). (5.86)

This state enjoys rotational invariance due to the fact that singlet states
have a vanishing total angular momentum. It can therefore be written
in a basis aligned with respect to any other axis, say u, resulting in an
expression that has the exact same functional form as (5.86).

14 — - +
o) = Z5lui) ® Juy) = Jur) ® Juz)). (5.87)

If is u tilted at an angle 6 with respect to z, we can use Eqs. (5.83)
and (5.84) to write |u;) and |u;) in terms of |2) and |z;) by direct
substitution to obtain:

L —ig CoS 2 ei% sin 2y Ug
o) = ﬁ((e (0/2) |217) + (0/2) |21)) @ |uy)(5.88)

—(—e 7T sin (0/2) |2F) + €' cos (6/2) [21)) @ [u3))(5.89)

X

—1 £

V2

+esin (0/2) |27) ® Jug ) — €@ cos (0/2) |27) @ [ud)). (5.91)

(sin (0/2) |2) @ |ug) +cos (0/2) |27) @ |uy)  (5.90)

This is the singlet state written down in the Hilbert space that has as
its 4 base states the vectors |z;") ® |ug ), |27) @ |uy ), |27) @ |ug ) and
|27) ® |uy ). A general state of the observer in this base is given by

m) = al2)") ®|uy) +bl21") @ |uy) +cl2y) @ |ug) +dlz ) ®uy ). (5.92)

where a,b,c and d are the components of a random, 4 dimensional,
complex unit vector. For each picked state of the observer (5.92), the
measurement interaction chooses the outcome which maximizes the
odds, given the singlet state (5.90). Note that a ‘single’ outcome in this
four dimensional Hilbert space, constitutes two separate outcomes, one
for each subsystem. Theorem (50) then tells us that optimal observa-
tion will deliver any of the four possible outcomes with a probability
that equals the modulus squared of the corresponding component in
(5.90). These can be directly inferred from the state (5.90). If we de-
note by Pr(z; and uj) the probability we will get the outcome “up”
for subsystem 1 measured in the direction given by z, as well as “up”
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for subsystem 2 measured in the direction given by u, (and similarly
for the other possible events) we have:

1

Pr(z{ and uy) = Pr(z; and u;) = 3 sin? (0/2) (5.93)
1

Pr(z and uy) = Pr(z] and uy) = 5 cos? (0/2).  (5.94)

We see the probabilities add up to one and calculate the correlation
function E(z,u) as the expectation value for the product of the out-
comes:

E(z,u) = +Pr(z{ and uj) + Pr(z; and u;) (5.95)
—Pr(z{ and uy ) — Pr(z; and uj) (5.96)

= sin®(6/2) — cos® (6/2) (5.97)

= —cosf (5.98)

Because of the rotational invariance of the singlet state, this corre-
lation only depends on the relative angle between the local measure-
ments. This is the quantum mechanical correlation function and Bell’s
inequality will be violated by the optimal observer in exactly the same
way as quantum mechanics predicts. But that as it may, this is not an
example of a local hidden variable theory because the maximum like-
lihood criterion compares all components of the states of the singlet
and the observer simultaneously to decide which outcome is optimal.
Such a feat cannot, in general, be achieved locally. If we were to adapt
the procedure to local measurements on each subsystem, each subsys-
tem state has to be compared with a local random unit vector for the
observer to apply the likelihood criterion. There are now two possi-
bilities. Either we follow orthodoxy and calculate the states of each
subsystem by partial tracing operation of |o) over the subspace of the
other particle. It is well-known that for the singlet state the resulting
state of each particle expresses complete ignorance and no violation
the Bell inequality occurs. Alternatively, we can assume the subsys-
tems were in a pure state, but one that the orthodox theory simply
fails to provide. The problem is then that a nonlocal interaction be-
tween the subsystems is required to maintain the spherical symmetry
of the singlet state after an outcome is obtained in one location. This is
provided for in standard quantum mechanics by the projection postu-
late. Without this constraint, no violation will follow. Bell’s theorem
can then be rephrased in our interpretation as follows: It is in general
not possible for an observer to perform local optimal measurements on
subsystems, such that the resulting outcomes are also optimal for the
compound system.

It is noteworthy that this does not necessarily imply that in our
approach the nonlocal correlations of the singlet state are transferred
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to a physical nonlocal correlation between the local observers. In a
typical experiment that studies quantum entanglement, the number
of detected non-entangled states more often than not outnumbers the
number detected of entangled states. To eliminate the influence of the
non-entangled states on the statistics, it is common practice to use
a cotncidence counter that discards the counts that are not detected
at the same moment within some fixed time interval. Although one
would not typically describe this removal of non-coincidental counts
as “spooky action at a distance”, it will nevertheless be obvious that
it is only after we have collected the locally obtained outcomes, that
we can ascertain which ones were detected simultaneously and which
were not. Hence this postselection of outcomes cannot be obtained
in a local way. It is indeed well-known that the subtraction of events
that are considered irrelevant to the demonstration, no longer warrants
the exclusion of local hidden variable models to reproduce the quan-
tum mechanical correlations. We have given an explicit example of a
local hidden variable model that exploits this loophole to reproduce
the quantum mechanical predictions for the well-known Franson two
photon interference experiments in [32] and [35]. This demonstrates
non-local actions may not always be directly recognizable as such.

Decision invariance and unitarity

The outcome chosen by a optimal observers, is the one that maximizes
the corresponding likelihood ratio A; (5.18). Any monotonously in-
creasing function of the likelihood ratio’s preserves their relative order
and hence their maximum. By Eqgs.(5.37) and (5.64), this carries over
to the coefficients of the state vectors in both the real and the com-
plex state space. The same is true for multiplication by a phase factor,
which is cancelled by taking the moduli in Eq.(5.64). As a result, the
state space is a projective vector space: if the vectors in the state space
are multiplied by z € C, 0 < |z| < oo, this does not change the result
of the decision procedure adopted by the optimal observer. This di-
rectly implies the scheme works equally well with rays as states rather
than unit vectors. But there is a much bigger class of transformations
that leave the optimal decision unaltered. For any s, the probability of
obtaining xj is defined as:

Pr (x1) = p(eig®(zy, s)). (5.99)

Obviously the vectors in eig®(zy,s), as a subset of the complex unit
sphere, have finite norm. We can then apply a linear transformation
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to the base vectors of the state space:
T:%55— Ny, T(x;) =Y _0y%;. (5.100)

The eigenset eig®(xy,s) will accordingly be transformed by applying
T to x;, and s. By Lebesgue measure theory, the volume of the trans-
formed set is proportional to the volume of the original set, the constant
of proportionality being the determinant of the transformation:

(T (eig=(zx,s))) = [ det(T)| - p(eig”(zw,s))

for all eig®(xy,s) € B(X). This is a classic result?”, and we refer the
interested reader to Rudin [173], p. 54 for a proof. Note that this
would typically be false for a nonlinear transformation. As a result,
all transformations with |det(7")| = 1 leave the probabilities invariant,
which means we have invariance under unitary transformations. Intu-
itively this is obvious: if the probabilities have their origin in a measure
on state space, then unitarily transforming the entire state space does
not alter the relative proportions of the eigensets, whence the invari-
ance. Of course, once we have the Born rule, it is trivial to derive
that the transition probability is invariant under simultanuous unitary
transformation of the states, because the Born rule is the square mod-
ulus of an inner product and a unitary transformation is defined as a
linear operator that leaves the inner product invariant. However, our
invariance principle tells us the same story at a deeper level, for not
only the probabilities are invariant under unitary transformation, also
each individually obtained outcome will be the same whether or not
we transform the state of S and M by the same unitary operator.

Whether the proposed interpretation is scientific or philosophical
depends ultimately on its falsifiability. This can be achieved only if
we succeed in tailoring the probe states of the apparatus to our needs.
If we can produce a non-uniform distribution for the initial states, we
would be able to distinguish some pairs of states better, and some pairs
of states worse than the usual Born rule allows. This implies such a
probe can only be used to our advantage if we posses some information
about the state prior to the measurement. We will work out the details
of such a proposal in the next chapter.

2T As before, we regard the complex n—space as a real 2n—space, for which the
theorem is applicable.



Chapter 6

Between Classical and Quan-
tum

Give a small boy a hammer, and he will find

that everything he encounters needs pounding.

—Abraham Kaplan, The Conduct of Inquiry, 1964

By all means, do not use a hammer.

—IBM Manual, 1925

Now that we have shown how the scheme works in the classical
simplex as well as quantum mechanical state spaces, we wonder if and
how we can treat intermediate cases. To fix our thoughts, let us revisit
the simple example we gave on p. 97 in the introduction of Chapter 4:
how to determine the length of a rod. In a classical setting we are in
principle free within large bounds to choose the number of outcomes
and we are allowed to make many observations before we settle on the
result of a single observation. For example, we can align the zero of the
measuring rod with one end point of the system and read the outcome
at the other end point as many times as we want to. If we are not
satisfied with the precision that the measuring rod affords we can pick
a better one or improve it by adding a nonius (or vernier) system to
it. As long as we are able to do this we are still in a classical regime
of observation. In the classical regime of observation, the distribution
of observer states will be highly non-uniform. Ideally, of all possible
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measurements, the only uncertainty we have about the state of the ob-
server that is assumed to be of relevance to the measurement outcome,
is an uncertainty of the order of the smallest number the measuring
rod can represent. To decrease the uncertainty about the result, even
beyond the precision offered by the smallest number the measuring rod
can represent, it is common scientific practice to repeat the measure-
ment many times. Assuming identical, independent observations, one
can apply standard error theory. In our search for ever more precise
measurements or measurements on ever smaller constituents of nature,
we eventually reach a region where we cannot repeat measurements
without absorbing the system or altering its state dramatically. We
may not even be able to choose freely the set of outcomes for a partic-
ular measurement as is the case in the quantum regime. It is then no
longer possible to obtain directly the “true” value of a physical quan-
tity because the eigenstate of the observing system may not (and in
general will not) coincide with the state of the system under investiga-
tion. We cannot attempt the same measurement (or one with altered
eigenstates) on the same system because the state of the system has
been altered or even destroyed. In view of this impossibility, we are led
to statistical observation on ensembles. We have shown it is possible
to recover an objective probability if the distribution of observer states
is uniform. We see that the best possible observation scheme in the
classical regime entails a minimal uncertainty (i.e. about the interpre-
tation of the last digit only) in the state of the observer, and in the
quantum regime a mazimal uncertainty (any outcome is in principle
possible) about the state of the observer. The consequence of such an
interpretation is that we will only be able to identify intermediate re-
gions when we allow for a more complete description of the observing
system. In essence, we need to describe how to go from this minimal to
this maximal uncertainty state. An infinite variety of situations with
varying degrees of lack of knowledge about the states of the system
and the observer can in principle be modelled by the general formula
(5.6) of p. 123. In this chapter we will investigate the probabilistic
behavior of arguably the most simple model that can describe a range
of qualitatively different experiments which have only two possible out-
comes. This model has its origin in Aerts ’sphere model [7] and was
elaborated in [12] by introducing a free parameter €, which represents
the amount of fluctuations of the measurement state. In particular
the value ¢ = 1 —maximal lack of knowledge about the measurement
state— produces a model that is isomorphic to a spin-1/2 model. The
consequences for the probabilistic structure as well as the axioms of
the quantum logic of the system when one varies e, were studied in
detail by the Brussels group under Diederik Aerts ([11], [12], [15], [17],
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[19], [91], [84]'). We show here how this model can be reformulated
as to fit naturally into the framework we have set out here. Next we
will show how to calculate conditional probabilities that allow a con-
tinuous transition from the quantum to the classical. The conditional
probabilities we obtain here were first derived in [29] and published in
[30]. Although the calculation presented here is the same as in [30],
the final result is substantially shorter than the one presented there by
analytic extension of the final result to C and taking the real part of
the expression.

The Bloch sphere representation

A spin 1/2 particle, the polarization state of a photon, a qubit, or
any two level system for that matter, are often described by a vector,
usually denoted by a ket |¢), in Hz(C), the two-dimensional Hilbert
space over the field of complex numbers. Any [¢)) € Hy(C) can be
written as a linear combination of any two vectors that span Hy(C). If
we denote our base vectors as |[+) and |—), we can write any |¢) with
appropriate complex numbers a and b as:

[¥) = al+) +0]-). (6.1)

As a and b are two complex scalars, we need four real numbers to
specify them. Because the probability related to the measurement of a
specific observable is the square modulus of the inner product:

jaf* = [{]+)[* and [B]* = [(¥/|-)I%, (6.2)

and the sum of the probabilities need to add up to one, the state needs
to be unit norm: |(y|¢))| = 1. This means only three independent num-
bers specify (6.1). Furthermore, because two states that differ only by
an overall phase, i.e. [1)') =e'?|¢)) cannot by physically distinguished,
the physically distinguishable states are formed by the equivalence class
of vectors that differ by an overall phase, which leaves only two free
parameters in (6.1). Hence without loss of generality, we can write each
|4)) uniquely? as:

1) = e %2 cos (g) |+) 4 €'?/%sin <g> |-, (6.3)

' Many more references could be given; we cite only a few representative ones and
advice the interested reader to consult the references to be found in the publications
we cite here.

2Except if the vector coincides with one of the base states; the representation
is for those two points not unique. Spherical coordinates have the same issue with
points at the pole, in which case the longitude is not defined.
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where 0 < 0 < 7 and 0 < ¢ < 27. Interpreting the free parame-
ters 6 and ¢ as angular coordinates in a spherical coordinate system
(cos ¢sinf, sin ¢sin b, cos#), we obtain a point on the two-sphere in
Fuclidean three space. In this way we obtain a one-to-one correspon-
dence between |1)) and (cos ¢ sin 6, sin ¢ sin 0, cos #), known as the Bloch
sphere representation® of the system. A Stern-Gerlach spin experiment
on this spin 1/2 system, of which the state on the Bloch sphere is given
by

w = (cos ¢sinf, sin ¢sinf, cosf), (6.4)

denoted by [¢,), and the experiment e, corresponding to the spin
experiment in the direction that corresponds to

u = (cos~ysind, sinysin d, cos J) (6.5)
on the Bloch sphere, is described respectively by the vector
[$u) = (€72 cos(68/2), €' sin(6/2)) (6.6)

and the self-adjoint operator

_ny .
H, - 1 (60085 e 81115) ‘ (6.7)

T 9 \esind  —cosd

When we denote by P,(+|¢,,) the probability the outcome will be +
when we measure H, if the system is prepared in the state |¢,,), it is
a matter of direct application of the Born rule to show that

P,(+1,,) = cos® (g) and P,(—,,) = sin? <§) : (6.8)

We have seen in Chapter 5 how to recover the probabilities of a quan-
tum mechanical n-level system. We will now turn to this specific in-
stance of a two level system, using the Bloch sphere representation.
This has the advantage of aiding the visualization of the results when
we later investigate what happens if we deviate from a uniform distri-
bution of observer states.

3This representation is also known in polarimetry where the Bloch sphere is
known as the Poincaré sphere and has found many useful applications ranging from
3D movies, radar, photography, stress analysis and so on. As Felix Bloch was just
seven years old when Herni Poincaré died in 1912, it is perhaps more appropriate
to call it the Poincaré sphere.
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Optimal observation in the Bloch
sphere

Always test your general reasoning against simple models

—J. S. Bell, On the impossible Pilot Wave, 1982

Say we have a pure state |1,,) representing a spin 1/2 particle that we
want to investigate. We do so by placing a Stern-Gerlach apparatus in
a fixed direction that we represent by a vector u. We denote the two
of outcomes® for this experiment e, by o} and o§. We could refer to
both the state and the apparatus with respect to some arbitrary chosen
spherical coordinate system. However, we are free to expand the state
in any basis we like and it will be convenient to express the state with
respect to the orthogonal vectors that correspond to the eigenstates
of H,. The eigenvectors of H, are orthogonal in Hs, but by mapping
them to the Bloch sphere, we obtain a pair of antipodal points that we
label +u and —u. Then for state [¢,,) (6.6) there exist ¢ and 6 such
that:

1) = e/ cos <g> |+ u) + /2 sin <g> | — u), (6.9)

and this state is represented on the Bloch sphere by (6.4). We assign
a state to the apparatus:

10,) = e /2 cos (%) |+ u) + e¥?sin (%) | — u) (6.10)
which has a representation on the Bloch sphere as
v = (cos fsin «, sin f sin «, cos «). (6.11)
The situation is depicted in Fig. 6-1.

To pick an outcome for this particular pair |¢,,) and |¢,), the op-
timal observer compares the likelihood ratios:

[rulpu)| o Kouldw)l (6.12)

[{+ult),)] [(—ulv,)]

If the first ratio is bigger than the second, the state of the system
makes a transition to +u, and the outcome is of; if the second ratio is

4In the last section we labelled the outcomes of a spin experiment by + and —. In
the following sections we will need to make explicit reference to which measurement
an outcome refers, so we need the notation to reflect that.
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Figure 6-1 Representations of |¢,,) and |¢,) as w and v on the Bloch
sphere.

bigger, the system makes a transition to —u and the outcome is 04.°
Inserting the values of the scalar products using (6.10) and (6.9) using
the orthogonality relations (+u| —u) = (—u|+u) = 0 and (+u|+u) =
(—u| —u) = 1, the outcome is of iff

| cos (g) \ | sin (g) \
(o3
2

|cos(%)| \sin( )\’

and o} otherwise. Multiplying each side by |cos (%) sin (%) | and di-
viding by | cos (£) cos (2) |, gives the outcome o} iff:

| tan (%) | > | tan <g> . (6.13)

Because a and 6 both take only values in [0, 7] on the Bloch sphere, a/2
and 6/2 take values in [0, 7/2]. Since the tangent is strictly increasing
on [0,7/2], (6.13) holds iff &« > 6. So the optimal observer in the Bloch
sphere has a very simple decision mechanism to pick an outcome:

o} iff a > 0 and o5 iff a < 6.

According to the main theorem expressed in Eq.(5.74) which we
proved in Chapter 5, the criteria (6.13) recover the Born rule probabil-
ities (6.8) when we calculate the probability of each outcome under the

°The demand that the system makes a state transition to one of the eigenstates
of H, is not necessary to obtain the probabilities related to single type of exper-
iment. If we don’t make any assumption about what happens to the state, then
all we can infer from the probabilities refers only to the state of the system be-
fore the measurement. It is however the equivalent of the projection postulate in
the orthodox treatment of spin in quantum theory. This allows us to makes infer-
ences about the future behavior of the system as revealed by eventual consecutive
measurements.
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Figure 6-2 On the left we have depicted a possible situation prior to the
measurement interaction. On the right a graphical representation of condition
(6.13) is shown. The dark spherical cap is the set of Bloch vectors that satisfy
a < 0, if the system state is w. A measurement with a Bloch vector vy will
have ag < 6 and will produce outcome —u. Likewise, v; taken from the
lighter spherical cap, has a;; > 6 and will yield outcome +u.

assumption that the system state is the same in each trial and we per-
form repeated measurement with a uniform distribution of observers
states®. We saw there that the probability for obtaining the outcome
x if the system state is s, is calculated as

Pr(z) = pleig(z,s))/1(Em), (6.14)

where eig(z,s) C Xy, is the subset of observer states that will give
outcome x when presented with the state s for S. In our present
situation, x = o}, s = w and ¥j; = S, so that we have:

w o pleig(of, w))
p(ol,w) - M(S)

The beauty of the Bloch sphere is that it is embedded in R?, so we
can rely on simple geometry to calculate the probability. Looking at
Fig. 6-2, we see that the set of states for the observer that satisfies the
criterion of optimality (6.13) and that will give the outcome oY, are the
ones that lie in the spherical cap that surrounds +u; so eig(o},w) is

6 Actually, we have shown that this is true for the complex n-sphere, not for the
Bloch sphere. It turns out that the bijection that maps the complex sphere to the
Bloch sphere is measure preserving, so the principle works equally well on the Bloch
sphere.
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the light shaded area in Fig. 6-2.
eig(of,w)={v:v-u<w-u} (6.15)

By the assumed uniformity of observer states, the probability of ob-
taining outcome oY is proportional to the area of this spherical cap.
From elementary geometry we know that this area is 2w Rh, with R
the radius of the sphere and h the height of the cap. With R = 1,
h =1+ cosf, and denoting s for the Lebesgue measure, we have for
the real unit sphere p(S) = 47 and we find:

plohw) — u(eiz((zl‘), w)) _ 2x(1 ;i—ﬂcos 0) _ cos? (g) (6.16)
u gy = Mleiglos,w)) _ 2m(l—cost) . o (0

Comparison with (6.8) shows the formulas give the transition proba-
bilities of a Stern-Gerlach experiment on a spin 1/2 quantum particle.

Non uniform density of observer states

Under the assumption that we have minimal knowledge about the state
of the probe, the set of observer states is uniform over the Bloch sphere
and we recover the spin 1/2 probabilities. The most simple generaliza-
tion, and we shall further on see this already leads to mathematically
quite complex expressions, is to have a uniform density over a proper
subset of the Bloch sphere and to set the density zero outside this sub-
set. To make a reasonable choice for such a set, we go back to the
measurement of the length of a stick as our guide. It is natural to as-
sume that if the actual length of the stick is very close to a reading of
the ruler, we judge it to have just that length. But if the length is close
to the middle of two readings of the ruler, the state of the observer will
play a role in deciding the outcome. A density that does just that is
depicted in Fig. 6-3.

The density of the set of observer states cuts the Bloch sphere into
three distinct pieces:

1. a spherical cap with +u as its center, which we call cap(o?);
2. a spherical segment, which we call sup(o}); and

3. a spherical cap with —u as center, which we call cap(o}).
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cap(0z)

Figure 6-3 The dark shaded spherical caps are the sets in state space where
the density of observer states is zero. This means that a system prepared in a
state that is in one of these caps, will always yield the outcome that corresponds
to the eigenvector of H,, that lies in the cap.

In cap(oY) the density of observer states is zero, so if the state w of
the system we want to observe resides within cap(o}), every allowable
state of the observer will satisfy a > #, and hence for such a w the
outcome will always be o} . On the other side of the sphere, we have
for the same reason that any w € cap(oy) will always give as outcome
oy. For states w in the spherical segment sup(oY), the outcome depends
on the condition (6.13). If we set the width of the segment equal to
2¢, its surface area equals 2w R2¢ = 4me. The width of the sub-segment
for which o > 6, equals € + cos(«), and hence the surface area of sub-
segment is 27 (e +cos(«)). The probability of obtaining outcome o will
then be 27 (e + cos(a))/(4me) = (€ + cos(a))/(2¢). The probability of
obtaining outcome o} will of course be (e — cos(«))/(2€).

Let us summarize. There are three different cases, depending on
whether w is in cap(o}), in sup(o}) or in cap(oy).

1. w € cap(o}). This is the case if w - u < e. We have p.(o},w) =0
and p(oy, w) = 1.

2. w € sup(o}). This is the case if —e < w - u < e. The transition
probabilities are then:

1 1
pe(0%, w) = Z(w -u+ €) and p(oy,w) = Z(E —w-u). (6.17)

3. w € cap(oy) This is the case if € < w - u. We have p (o}, w) = 1
and p.(oY,w) = 0.
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This model replicates the same transition probabilities as Diederik
Aerts’ epsilon model which is why we have chosen to parametrize the
density of observer states in our model with € so as to obtain an exact
replica of the results. It was in fact heavily inspired by the former
model and the only difference between the two models is the decision
mechanism of the outcome production. The epsilon model is so simple,
it can be explained in a few lines. It is usually presented as a toy
model in the form of a sphere equipped with a special rubber band
that connects (in a straight line and through the interior of the sphere)
two antipodal points on the sphere. The centered middle portion of
length 2¢ is breakable and will do so with uniform probability over that
interval, the rest of the rubber band is unbreakable. When measured,
the particle falls orthogonally onto the rubber band, it breaks and
the particle gets dragged to one of the endpoints. As outcome we
give the point to where the particle was dragged. If we calculate the
probabilities, we arrive at (6.17). One of the attractive features of the
epsilon model, is that it shows how one can build simple mechanistic
models with quite unexpected behavior. A similar, but unfortunately
much more complex construction was made for measurements with
three outcomes in [18], but it was not obvious at the time how to scale
such toy models to higher dimensions. In later publications by Aerts D.
and Sassoli di Bianchi M. ([26] and [27]), it was shown how to extend
the results using the so-called extended Bloch sphere representation.
In contradistinction, the optimal observer works without any form of
modification in arbitrary finite dimensional Hilbert spaces, both real
and complex. The hidden variable of the measurement is no longer
an element of an interval, but a vector in a Hilbert space of the same
dimension as the system, which explains why it so easily scales with
dimension. The two dimensional epsilon model was studied intensively
in the nineteen-nineties by the Brussels group under varying degrees
of lack of knowledge, parameterizing this variation by a number ¢ €
[0, 1] such that ¢ = 1 corresponds to the situation of maximal lack of
knowledge, giving rise to a quantum structure and € = 0 corresponds to
the situation of zero lack of knowledge, generating a classical structure.
Other values of € correspond to intermediate situations, giving rise
to a structure that is neither quantum nor classical, ([12], [17], [16]).
The model was studied probabilistically, with respect to its lattice-
theoretic structure and with respect to its algebra of observables ([12],
[19], [84], [91]). Interestingly, the notions of “classical” in these different
approaches do not always coincide and may occur for different values
of epsilon and w - u. In particular, there was no value for ¢ which
could produce a classical probabilistic limit. To produce a classical
probabilistic limit, we must turn to families of conditional probabilities.
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The conditional probability for in-
compatible measurements

The conditional probability is often introduced by means of Bayes’
theorem. Let us give a standard definition”.

Definition 51 Let A and B be two random variables with possible

values {ay, ..., a,} and {by, ..., by, }, respectively. The conditional proba-
bility P(A = ay, |B = by) is then defined as:

P(A=ay and B =)
P(B =by)

The meaning of P(A = a; and B = b;) is of interest to us. It denotes
the joint probability, which is the probability that A has the value
ar and B has the value b,. The use of Bayes’ theorem only makes
sense if the joint probability exists, which is a problem for incompati-
ble observables in quantum theory because the observables cannot be
assumed, nor tested, to take their values simultaneously. This prob-
lem is sometimes referred to as the non-existence of a joint-probability
distribution. ([197], see however [75], [74]) Still it is obvious that the
preparation of a system in a state can be regarded as an act of con-
ditioning. To define a more general conditional probability, we once
more rely on Piron’s notion of product question (see Chapter 2) and
condition on “an element of reality”. Following [14], we propose the
following definition of conditional probability that is operational both
in the quantum and in the classical regime and does not rely on the
existence of a joint probability.

Definition 52 We consider a system S and two (possibly incompati-
ble) experiments A and B for S with possible outcome sets X 4 and Xp.
Leta € X4 and b € Xp. The conditional probability P(A — a |B — b)
s the probability that a measurement of A will give the result a when
we know that if we had chosen to measure the observable B, we would
have found the result b with certainty.

We have used the notation A — a instead of A = a to stress that A
does not need to have value a; it may acquire value a when measured.
If A and B are compatible, then measuring B does not change the
probabilities related to the outcomes X 4. If A and B are incompatible
this definition still makes sense, as we are conditioning on something

"See Kolmogorov [140] where the Bayes formula is the very first consequence he
derives from his five axioms.
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that we (counterfactually) know to be true, even if we haven’t chosen to
measure it. As explained in Chapter 2, we can only give an operational
meaning to this conditioning when we are able to prepare states of S for
which we know that an eventual measurement of B will yield outcome
b. Note that the transition probability of quantum theory from v, to v,
(i.e. [{4;[¥;)]?) is a special case of this conditional probability. If on the
other hand, the outcomes of the experiments A and B were pre-existent
and hence only revealed by the experiments, the definition amounts to
Bayes’ rule. In Kolmogorovian probability theory there is no place for
a distinction between what is, and what becomes true as a result of
observing, so we either end up with Bayes’ rule, or with a non existing
joint probability. To calculate this probability for the model, we use
the general formula Eq.(5.6): Pr,(z) = p(7—'(x)). The choice of the
product measure p corresponds to picking a particular of measure for
S and one for M. Conditioning then is a special case, in which one can
use a measure on B(Xg) such that experiment B will give outcome b. In
fact one can regard conditioning as a change of measure or generalize
this definition to include the situation where we are interested in the
probability of the occurrence of an outcome in an arbitrary subset of
X 4 when we know the outcome for B has to be in a subset of X5. For
more details see [30], [14]. We can apply this operational definition to
our model and calculate the conditional probability with a non-uniform
distribution of observer states to analyze the resulting probabilistic
structures. We shall see how the conditional probability on the e-
model evolves continuously from the quantum transition probability
(for € = 1), to a classical Kolmogorovian probability satisfying Bayes’
formula (for e = 0).

The conditional probability and the
e-model.

For a fixed value of €, we are given the two experiments €, and e;,, each
one with two possible outcomes (o} and oY for e and o} and oY for
eS,), which we think of as spin 1/2 measurements in the directions u
and w on the Bloch sphere. The conditional probability we propose to
calculate is the probability that the experiment e, gives the outcome oY,
if the system S is conditioned in such a way that if we were to perform
the experiment e, the outcome 0}” would be obtained with certainty.
This conditioning means that the state of the system is such that its
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representative vector w is somewhere in the spherical cap cap(o?).?
We will assume a uniform distribution of states within this cap. An
example of such a cap can be seen the grey area in Fig. 6-3, only
then for w rather than u. The conditional probability (52) that the
experiment ef, gives the outcome oY (respectively o}), when the system
is conditioned for the outcome o}’ of the experiment €, is then written
as P(ef, — ofleS, — o). In a similar way we should also denote the
conditional probability that the experiment e gives the outcome o}
(respectively of) if the system is conditioned on the outcome oY of the
experiment e, by P(e — oY|eS, — o%’). However, this is notational a
too heavy burden. Anticipating that the probability depends only on
the parameter € and the angle between u and w (they are both unit
norm and only their scalar product occurs in 6.17), we abbreviate them
as:

ceond(a) = P(e - O?leiu - 0110)7 (619)

€
U
ceond(ﬂ- o Oé) - P(ez - Og|€iu - 0710)

This last equation is more than just an abbreviation. Inspection of
the meaning of the right hand side will convince you of its correctness.
Obviously we have

cond (@) + Pona(m —a) = 1, (6.20)

which we will need later on. The calculation of the conditional proba-
bility (52) becomes a surface integral with the transition probability as
the integrand, but now with w as a function of the infinitesimal surface
element. The calculation of the integral is complicated by the fact that
one has to use a different integrand for different regions. To make this
clear in the notation, let us introduce the following abbreviations (cap
and sup are defined on p. 162):

Qo = cap(oy) N cap(o}) (6.21)
s = sup(of) N cap(oy)
Q4 = cap(o}) N cap(o})

We note that these sets form a partition of cap(o}’) = Qg U Q5 U Q.
Let us look at these sets and what they mean.

1. One can easily see in Fig.6-4 that )y is not empty iff € < sin(a/2).
If the state of the system is in the region Qy = cap(o}’) N cap(0y),

8 Although we make no notational reference to it, the sets cap and sup obviously
depend on the parameter e. In [30] this set is called eig, but this would introduce
unnecessary confusion with the former chapter were another definition of eig was
used.
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it will never give outcome of. This means that for this region
the integrand is 0.

2. Likewise we find that €; is not empty iff € > cos(a/2). As can
be seen from Figs.6-4 and 6-5, the region 2y, where cap(o}’) and
cap(o}) intersect, contributes in a deterministic way to the prob-
ability in the sense that if the state of the system is in €2y it will
always give rise to the outcome of. This means that for this first
region the integrand becomes 1.

3. As can be seen from Fig. 6-4, the set €25 will only be empty if
e = 0. If the state of the system is in €2 it will produce outcome
o} or oy depending on condition (6.13). In the region 2 the
integrand is hence given by the transition probabilities (6.17).

cos(a/2) <e sin(a/2) < e < cos(a/2) € < sin(a/2)

cap(0}) w cap(0y) cap(0¥)  w  cap(0%)

= cap(0Y) AN "
u cap(olll)
' : N\
e

cap(0¥)Ncap(0)# @
cap(0})Ncap(0™) =0 cap(0}) N cap(0}) = @ cap(0¥) N cap(0™) = @

Figure 6-4 Depending on the relation between € en «, there are three distinct
situations to consider. The dotted areas represent {2, the grey areas {; and
the black area (). In the first situation, the whole spherical cap cap(o}’) is

equal to €),. In the second situation cap(o}’) it is partitioned in {2, and §2;. In
the third situation cap(o}’) consists of €29, €25 and 2.

For any A C S, we denote by u(A) = / / dA the Lebesgue measure
A

or surface area. The conditional probability is then given by:

< ala) = m[//o dQO+//“'2—V:+€dQS+//1 ] (6.22)

We remind the reader we use bold typesetting to indicate vectors
(such as u); it is crucial to make a notational difference between vectors
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and scalars in the integration. Putting this together we find that the
quantity we need to calculate, is:

fna(0) = =g (@) @)+ [ [ wan). (629
Qs

Observing that w is perpendicular to the surface of the sphere and
has unit norm we regard it as a surface normal:

w dQ, = dS. (6.24)

By use of Gauss’ theorem, we may re-write the integral to con-
tain only surfaces that are related to the sphere, which eliminates the
difficult problem of integrating the scalar product. To apply Gauss’
theorem we need to close €2, by arbitrary surfaces, preferably surfaces
with an area that is easy to calculate.

Figure 6-5 The spherical cap cap(o}’) is divided into three sets (29, {2, and
() depending on which integrandum we have to use. In the interior of the
closure of cap(o}’) we find three circlesegments: 25, Q2% and 2 that, together
with €2, they enclose a volume to which we can apply Gauss’ theorem. For this
purpose, we have drawn the normals to €2f, 23 and €2f. The picture is drawn
for ¢ = 1/2 and « close to /2, for which these sets are non-empty. For other
values, {2y and €2 or even {2y and €2 may be empty.

If we take three segments of disks that close the superposition zone,
as shown in Fig. 6-5, and call these surfaces €2, 22 and €2}, we obtain
a closed surface as follows:

Quiosed = 05 U Q5 U QS UQS. (6.25)
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We see that (2.osq is indeed compact with piecewise smooth bound-
aries, as is required for Gauss’ theorem. If we denote by V' the set of
points that is enclosed by Q.oseq, and remark that u is continuously
differentiable in V', we may apply Gauss’ theorem:

/ / u- dﬂclosed = // V -udV (626)
\%4
Q

closed

As u is a constant vector, V- u = 0. Therefore we have:

//u-dﬂs+//u-dﬂg—i—//u-dﬂ‘i+//u-de:O. (6.27)
Qs Qg Qi Qg

With the ng, n; and n; the normals to €2, 2] and 23, respectively,
we can write d€2 = nod€);, d€2] = n,d}] and d€2 = nydS2;. Hence we
have

//u-dQs:—//u-nonS—//u-nlin—//u-nssz
Qs Qs Q3 Qs

If we call o the angle between the two vectors u and w, it is easy to
see that u-ng=—1,u-n; =1 and u-n, = — cos a.We obtain:

[ w2 =2 - wi@) - costmn@).  (629)

The probability can now be expressed in terms of areas that relate
to surfaces on and in the sphere. We rewrite (6.23) as:

Pina(0) = ooy )+l e (25— —con()(9%)))
(6.29)
Using
(1) 4+ () + p(€0) = 2m(1 —¢), (6.30)
we can write (6.29) more symmetrically as:
Pina(0) = 5+ =5 S0 =( ) (1(2) =2 -+oos()u(2)
(6.31)

Thus we have managed to transform the complex integrations (6.22)
to the calculation of the areas of the different {2 which can be accom-
plished by direct integration and the use of spherical trigonometry”.

9The calculation is rather long but straightforward. For details we refer to [29].
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The result can conveniently be written using the Heaviside function!”
H(x) as:

Pipa(e) = pi(a) - H(e—cos(3)) (6.32)
+H(e—sin(5) - py(e) - H(cos (5) = ¢)

+p5(a) - H(sin(5) — o),

where

pila) =5 + (6.33)

we(a) + cos?(a/2)o¢(cx)
21(1 —¢)

(6.34)

. . w(a) — w(m — a) +sin?(2) - o¢(7 — a) + cos?(2) - o¢(a)
pi(a) = pia)+ ’ — ? ;
27(1 —¢)
(6.35)
with
1 - <COS€OC )2 1 2

w(ar) = 2¢ arccos\/ : _(62/2) — 2arcsin %, (6.36)

and
€ 1— € e - tan(a/2)

2 )
(6.37)

For the calculations we have restricted « to [0, 7/2], which greatly
facilitates the manipulation of the inverse trigonometric functions in
the calculations. It is however easy to see from Eq.(6.20) that for
a € [m/2, 7], the probability is given by 1 — P< (7 — ).

cond

o(a) = tan(%)\/l — (mf —( - ) arccos (

1—e¢

10The Heaviside function can be introduced in many ways. For our purposes, the
most simple definition will do: H(z) =0 iff <0 and H(z) =1 iff z > 0.
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A substantial simplification which we haven’t reported on before,
is to extend the domain of P ,(«) by analytic continuation in the
complex plane. The intersections regions of the spherical caps will
become complex and are filtered out taking the real part of p§(«); this

contains p5(«) and p§(«) as special cases. With the following definitions

¢ =1 —¢e and 6*(a) = 1 — €2/ cos?(a/2), we can rewrite w(a) and
o) :
Je i 2
w(a) = 4e arccosﬁ — 4 arcsin M (6.38)
€ €

o(a) = tan(a/2)d.(a) — e T arccos ((e/€') tan(a/2)) (6.39)
We further define

Aw(a) = w(a)—w (T —a),
Ao (a) = o(a) —o(m — a),
Yo'(a) = o(a)+o(m— ).
With Re the real part of a complex number, a simple calculation shows

we can write the conditional probability in the following form which
holds for a € [0, 7] :

Aw(a) + Ac(a) + (Zoc(a) + me?e™1) cos(a)
A7(1 —€) )
(6.40)

We note that there is no necessity to use complex numbers here as
(6.32) shows; it merely allows to discard the three Heaviside functions
to yield a much more concise way to write P;, ,(a). We have presented
a graph of this function in Fig. 6-6.

To interpret the graph we first consider the two extreme cases: € =
0, and € = 1. It is evident that (6.40) is continuous (and differentiable)
for (e,a) € ]0,1[x]0, 7| and continuously extendable to [0, 1] x [0, 7].
Therefore the limits are well-defined and can be calculated analytically
from (6.32). We will follow a much less rigorous, but shorter and more
instructive path, by starting from (6.31) and see what happens to the
areas involved.

1
(fond(a) = 5 + Re(

The Bayesian limit
In this case, we have to take the limit ¢ — 0. Let us first look what
lim. o PS,,q(c) means in terms of the model. If ¢ — 0, we see in Fig.

6-5 that the middle zone (), disappears. We then obtain a situation
such as depicted in Fig. 6-7.
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Figure 6-6 A plot of the conditional probability. For ¢ = 1 we recognize the
cos?(a/2) shape, while for ¢ = 0 we have a straight line representing Bayes
rule.

This has two consequences: (i) the fact that the state is condi-
tioned on o}, means that the system state has to be in the hemisphere
that contains w; (ii) the only states of the observer that are allowed
are those that lie on the equator when of and o§ are the poles. So
a measurement simply decides if the system was in the upper hemi-
sphere (with respect to the direction +u) or in the lower hemisphere.
It is evident that the probability of getting the result o} is then pro-
portional to the overlap of the hemispheres cap(o}) and cap(o}’). We
should be able to calculate this by direct application of Bayes. Let’s
see whether we can get the same result starting from (6.31). We have
lime o 0(23) = lime o u(25) = 0 and lim, o p(25) = lim o p(£25). We
also have p1(2) 4+ p(2s) + (o) = 27(1 — €). Substitution of these into
(6.31) gives:

+ lim ;[M(Ql) — 11(20)]

1
lim P = =
fimg Peona(@) = 5+l i =g
1
2

lim () () = 21— )]
= lim (o)
2#(91)
2p(cap(of’))
p(cap(of) N cap(of’))
p(cap(oy’)) '

This last formula is recognizable as Bayes’ formula (6.18) in definition
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Figure 6-7 In the limit € — 0, the conditioning on 0}, means the state of
the system is in the dark hemisphere. If we next apply a measurement along
u, then the outcome will be o} if the state was in the upper hemisphere. We
then see that the conditional probability is (7 — «/) /7.

(51) on p. 165. In Fig. 6-7, we see that the angle a between u and
w is also the angle between the equator planes (as each one stands
perpendicular to the vectors u and w). We then obtain by application
of Bayes (6.18):

lim P54 () = -2, (6.41)

d
con -

which is linear function of the angle.

The quantum limit

For this case we take the limit ¢ — 1. We then have lim,,; pu(£2;) =
lim, 1 p(20) = limey p(€2)) = lim.; u(€Q2]) = 0. Substitution into
(6.31) gives:

. € 1 . 1 s
lim e () = §+11_1}}m[005(04)ﬂ(93)]

IR 1
2T gleteri el
= cos?(a/2)

A more rigorous approach here is quite simple: we only have to take
into account the contribution of p; in Eq.(6.32) because the Heaviside
functions that are multiplied with ps and ps are zero and hence we can
directly calculate that:

‘(o) = % lim cos(a)(1 + ¢)

cond 1 de

= cos’(a/2) (6.42)

which is the well known quantum transition probability. Now that we
have identified the two extreme cases, we can interpret the graph in
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Fig. 6-6 and see that the conditional probability P< ,(a) evolves con-
tinuously from the quantum transition probability between the states
v and w to a linear function of the angle between the two vectors u
and w which satisfies Bayes’-axiom.

The intermediate case
It is interesting to see that for a substantial interval I of values e close
to 1, the graph of P¢ ,(a) becomes stronger curved than the quantum
limiting case. This can clearly be seen in Fig. 6-6. Without presenting
a proof, we have
2 pecl 2 a2
Poona @) | LDy Y o)
« Q 2

s

with equality holding only for @ = 7 in which case the curvature of
both graphs is zero. It was shown in [30] that for this region the set
of conditional probabilities cannot be reproduced in a Hilbert space
framework, nor in a Kolmorogovian probability space, demonstrating
the vast array of probabilities this model can reproduce.
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Chapter 7

Consequences of optimal ob-
servation

For it was my master who taught me not only how very
little I knew but also that any wisdom to which I might ever
aspire could consist only in realizing more fully the infinity
of my ignorance

—XKarl Popper in Unended Quest: An Intellectual Autobiography, 1974

The last few chapters have mainly been used to derive mathematical
results. In the remainder, we briefly sketch further avenues worthy of
investigation that have more of an interpretative character.

Undecidability for the optimal ob-
server

We have argued in Chapter 3 a rudimentary kind of measurement prob-
lem occurs when we allow a universal theory to describe its own means
of verification. Quantum theory, from this perspective, escapes the
unsolvable problem of how to attribute consistent values to all observ-
ables, by not giving any physical mechanism for the production of an
outcome. However, if this analysis is correct, then there have to exist
situations where our model is not able to produce definite outcomes

177
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either. It is indeed the case that there is a form of undecidability in
the scheme (and one that has increased the complexity of our proof
building). The problem can be identified most easily using Eq.(5.24):

(7.1)

xr; = arg max Prs—(:cz)
J z; Pr m(.’ljz) ’
which in turn gives rise to (5.37), but (5.64) suffers exactly the same
problem. We see that, if there exist ¢ and j such that Pr (x;)/ Pr . (z;) =
Pry(z;)/ Pr,,(z;), then there is no unique maximum and hence no
recipe for deciding whether outcome x; or x; should be produced. This
lack of a criterion to choose an outcome occurs if m lies in the boundary
of the eigensets, as was shown and discussed when we arrived at (5.45).
Luckily the Lebesgue measure of the boundary is p—negligible; apart
from pathological distributions where the support of the measure is a
subset of the boundary, this is of no consequence for the derived prob-
ability. This is the way we have chosen to treat this issue; by showing
how a regular measure can be defined on the open eigenset and this is
sufficient to determine the probability. One can imagine treating the
problem by arbitrarily assigning outcomes for states of M that lie on
the boundary of the eigenset, but there seems to be no rationale for
choosing an outcome. The worst situation occurs if all likelihood ra-
tio’s are equal; the state of the system and that of the observer coincide
and any particular outcome assignment flouts the inherent symmetry
of this situation.

The optimal observer as a paradigm
for observation

The proposed principle of observation is based on a maximum likeli-
hood criterion applied to a binary decision problem. Even so, we do
not use it in its usual decision-theoretic form. In decision theory we
seek to establish which of the hypotheses enjoys the strongest support
in evidence of the data. In our case, there is no data to feed the like-
lihood with, because we produce the data by means of the odds. The
reason for this reversal is that we are not seeking how to interpret the
data from observation, but we are looking for how to produce data.
So the way we employ the principle is rather like an inverse decision
problem, as if anticipating that the result will be judged afterwards
by a decision procedure performed by one with absolute knowledge of
the system and observer states prior to the measurement. This makes
observation effectively a form of inference. The roots of this idea go
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at least as far back as Ptolemy. Although Euclid wrote the apparent
size of an object is determined by the visual angle subtended at the
eye, Ptolemy argues that two objects with the same subtended visual
angle may be seen to be of different size when there is a perception or
knowledge of the distance at which those objects are from the observer.
That an object generally appears to have the same size, irrespective of
variations in the visual angle (called size constancy by twentieth cen-
tury researchers), has a parallel in color vision. Color constancy occurs
when we perceive something to have the same color under quite wide
variations in the intensity and color of the ambient lighting. We find a
very early account of this color constancy by Ibn al-Haytham Alhazen
around 1021 A.D. Alhazen noticed that the light that reflects from an
object depends on the color of the object. He writes ([46], I11.3.48):

...from perceiving the variations of lights falling upon visible
objects, and from perceiving that objects are sometimes lumi-
nous and sometimes not, the faculty of judgement perceives that
the colors in these objects are not the same as the lights that
supervene upon them. Then, as this notion is repeated, it is
established in the soul, as a universal, that colors in colored
objects are not the same as their lights.

That the observer perceives the color of the object irrespective of
the color of the lighting, is —according to Alhazen— because the “fac-
ulty of judgement” learns the characteristics of illumination through
experience. That perception is an automated form of judgement is
taken even more seriously in the influential work of the physicist and
mathematician Hermann von Helmholtz [118], who proposed the no-
tion of unconscious inference!. Helmholtz analyzes situations where
facts and perception disagree, such as for example at sunset when the
sun seems to go down (while it is the earth that moves), or when an
actor can persuade our senses he is much older than we consciously
know it to be. The problem of color constancy is perhaps an even
better example that these perceptual impressions “can never once be
elevated to the plane of conscious judgments” and therefore “lack the
purifying and scrutinizing work of conscious thinking” ([118], p. 27).
However unconscious the process may be, according to Helmholtz, it
has the characteristics of an inferential process [119]:

It is clearly possible, using the sensible images of memory in-
stead of words, to produce the same kind of combination which,
when expressed in words, would be called a proposition or judg-
ment.

L“Unbewusster Schluss” [118].
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Helmholtz’s ideas have been criticized precisely because, to some,
inference is per sé a conscious activity, but, as Daniel Gilbert has
pointed out [116], “Helmholtz presaged many current thinkers not only
by postulating the existence of such (unconscious inferential) opera-
tions, but also by describing their general features” . It was only in the
last decade that attempts were made to translate Helmholtz’s ideas into
a mathematical framework, not in the least because computer scien-
tists who wanted to model the human vision system were faced with the
apparent complexity that underlies human perception. The Bayesian
framework provides the tools necessary to understand and explain a
wide variety of sometimes baffling visual illusions that occur in human
perception [105]. The names that are given in this literature to the
observer are ideal and bayes-optimal. Like us, they treat observation
as inference, seeking to choose an optimal percept from the set of pos-
sible percepts, judged on the basis of how likely a real-world situation
is, given a prior probability and a sensory state. There are however
some differences in the application of the principle with respect to our
proposal. In the literature on visual perception, the prior distribu-
tions are often derived from real world statistics. Of course, this begs
the question how these prior distributions were obtained in the first
place. There are two basic possibilities to obtain a prior: (i) either a
prior distribution is based on some theoretical assumption, or (ii) it is
established by looking at the relative frequency of actual recordings.

Option (i) is the one we pursued here, where we assumed a uniform
distribution of observer states?. In the second case, which is the one
adopted in the literature on perception, one has the advantage of being
able to explain a wide variety of visual effects in human perception and
how the priors can be adapted through the use of Bayesian updating,
but we cannot explain observation itself. The relative frequency needed
to obtain the prior is rooted in the observation of data, which requires
another prior and so on ad infinitum. One can break away from this
loop by reconsideration of what a state is. In the literature on percep-
tion, states are considered only as (real) statistical mixtures, severely
limiting both the applicability and the philosophical scope of the par-
adigm. The state, as we have defined it here, can be a complex vector,
not obtainable as a mixture in principle, and yet gives rise to proba-
bilities if we attempt to observe the system’s state as good as possible.
So the state is simultaneously a description of the ‘mode of being’ (the
pure state that physically interacts), and a ‘catalogue of information’
(the probabilities the optimal observer obtains). The possibility that
the same principle governs human perception and quantum-mechanical

2The absence of a more informative prior distribution effectively reduces the
criterion of Bayes-optimality to a Neyman-Pearson maximum-likelihood criterion,
making the two approaches even more alike.
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observation strengthens the idea that observation can be considered a
form of optimal inference. Measurement apparata and human percep-
tion can be rooted in the same principle: the attempt to relate the
outcome to the object under investigation as unambiguously as possi-
ble by choosing the outcome that has the largest odds in Eq.(5.21).

Each separate trial in a series of observations is treated in our pro-
posal by selecting at random a new state for the observer. This is
reminiscent of the idea that observation needs variation of the senses
to discover the invariants that pertain to real things in the world,
as corroborated by psychological accounts of perception, in particu-
lar those of James Gibson, who devoted much of his scientific career to
the question how we perceive things. Before Gibson, it was assumed
that perception is essentially a passive process, a reception of stimuli
in neural receptors. Perception, was supposed to stem form a stimulus
that “...in general has migrated from the external world to the retina”
[59]. The act of observation, according to this view, was an integration
of sensory data into a representation of the thing perceived. Philo-
sophically, this theory was called the sense-datum theory, which states
that the perception of things is born out of a logical assembly of sense
data. As always, the experiments to test a theory, come from that
theory itself. Hence an attempt was made in the late 19th century to
retain the subject in an as passive condition is possible and to add the
sensory stimuli one by one to verify how they add up to the thing per-
ceived. Remarkably, the result of these experiments was that, holding
a subject in a rigid frame, completely passive, not only resulted in a
different perception, but eventually led to the subject ceasing to be a
perceptor all together®. Something important was missing in this kind
of description. The work of Gibson changed all of this radically. No
longer insisting on a static frame and instead supposing there was a dy-
namic element at work, Gibson noted that, while many changes occur
as the subject moves in his environment, there are certain higher order
variables of stimulus energy that retain their proportions. It is these
invariants that pertain to permanent properties of the environment.
The main conjecture following from this assumption that, perhaps, the
registration of invariants of the stimuli as the subject changes his ori-
entation of his sense organs, is what is essential to perception. The new
theory that emerged from these observations, is described by Gibson
in [106]:

The active observer gets invariant perceptions despite vary-
ing sensations. He perceives a constant object by vision despite

3In absence of sufficiently strong stimuli, the visual apparatus produces hallu-
cinations, a phenomenon known in psychology as wisual release syndrome or the
Charles Bonnet syndrome. There is an auditory variant, known as the Sacks syn-
drome [175].



182 Consequences of optimal observation

changing sensations of light; he perceives a constant object by
feel despite changing sensations of pressure; he perceives the
same source of sound despite changing sensations of loudness in
his ears. The hypothesis is that constant perception depends
on the ability of the individual to detect the invariant... The
movement of the eyes, the mouth, and the hands...seem to keep
changing...the input of sensation, just so as to isolate over time
the invariants of the level of input at the level of the perceptual
system.

If we take this view seriously, then it seems we perceive the world
by actively seeking the invariants in the relations between the changing
sensations that result from changes in our state as observer. A simple
experiment serves to illustrate this. If you move your head, the images
cast on the retina will change. Yet the world is perceived as being
stationary, not moving. If, on the other hand, the world is moving
(i.e., we look out of the window of a train), then a very similar change
in images will occur. Yet we will perceive the world as moving and
accept our head as fixed. This means that we derive that information
from more than just the images on the retina. Gibson explains this
paradox as “Motion of the retina is a misconception, motion in the
retinal image, change of pattern, is not displacement with reference to
the retina.” It is a well-known fact that the eyeball vibrates 50 times
per second. This so-called visual tremor allows the fovea, the most
sensitive part of the retina, to scan the image for invariants, such as
constant proportions. It seems variations in the state of the observer
are called for to account for observation, not only in human observation,
but also in devices constructed to observe quantum phenomena?.

Are state vectors epistemic or on-
tic?

The search for a Bayesian or epistemic interpretation of quantum states
has been subject of an increasing number of interesting publications

Interestingly, a recent publication [1] investigates the construction of a sensor
capable of tracking charged particles at the LHC, using construction inspired by
the human visual apparatus: “ We present the results of an R&D study for a
specialized processor capable of precisely reconstructing events with hundreds of
charged-particle tracks <...> suitable for processing LHC events. For this purpose
we design and test a massively parallel pattern-recognition algorithm, inspired to
the current understanding of the mechanisms adopted by the primary visual cortex
of mammals in the early stages of visual-information processing. ”
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([71], [82], [112], [144], [177], [186], [208]). An important motivation
for seeking such an interpretation is that it allows for a subjective
interpretation of the state vector by regarding it as a mathematical
representation of the knowledge an agent has about a system. The col-
lapse of the wave function is certainly much less surprising if the wave
function represents some agents’ knowledge rather than some physical
entity or process; Bayesian updating is a testimony to that. But the
epistemic interpretation has been met with well-founded critique as
well. Some argue they regard the relative frequencies obtained in ac-
tual experiments as something that relates more directly to the physical
system irrespective of what any agent happens to believe. There are
many other valid points of criticism and we refer to [168] and [115] for
an analysis of the issues that challenge epistemic interpretations. The
principle of optimal observation allows for an epistemic interpretation
of quantum probability too, and we have shown there are interesting
connections between, for example, [186] and the constraints we derived
for classical self-observers. But our proposal is also different from the
above mentioned research. To understand observation as a primitive
concept, one cannot assume to be in possession of a priori knowledge
about the world. This is translated here as the uniform distribution
of initial observer states and optimal observation of an ensemble of
identical states will then result in an unbiased probability, i.e. a quan-
tity that pertains only to the state of the system under investigation.
In this sense, the state vector (and hence also the probabilities derived
from it) can be assigned in an objective way to a system. The ontologi-
cal character of the state vector also follows from assumption Eq.(5.1);
that the state is a complete and realistic description of the system,
and it is the state of the system and the observer that physically and
deterministically interact to produce the measurement outcome. Sys-
tems are in a state that determines how it will interact. The state
vector represents complete information about a system, not merely as
a collection of objective attributes, but as a representation of the pos-
sible deterministic interactions with any other system, in particular
observing systems. But the source of probability in observation, the
randomness in the state of the observer immediately prior to an obser-
vation, may very well be fundamental. We have shown that for every
single measurement outcome, there is a trade-off between the informa-
tion that an observer can choose to extract about itself and about the
system it is observing®.

If this is indeed the underlying reason for probabilistic structure of
quantum mechanics, then the nature of the probabilities in quantum

°Tt is argued in [194] on thermodynamical grounds that any gain in information
about a system is accompanied by an equal increase of entropy in the state of the
observing system.
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mechanics is both ontic and epistemic. From an omniscient perspec-
tive, probability is epistemic and arises only because there is a lack
of knowledge situation; it can be represented as a measure over deter-
ministic interactions between the observer and the observed. But to
the one who observes within the universe, being part of what it aims
to describe, there is always a lack of knowledge that is fundamentally
irreducible. Need we add that we ourselves are part of the universe
we seek to describe? And how relevant is it that all our theories live
essentially within the boundaries of mind; the mind of the observer
who is the one that formulates and verifies them? We leave it to the
reader to ponder these questions
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