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A saturated map of common genetic variants 
associated with human height

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively 
explain 40–50% of phenotypic variation in human height, but identifying the specific 
variants and associated regions requires huge sample sizes1. Here, using data from a 
genome-wide association study of 5.4 million individuals of diverse ancestries, we 
show that 12,111 independent SNPs that are significantly associated with height 
account for nearly all of the common SNP-based heritability. These SNPs are clustered 
within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, 
covering about 21% of the genome. The density of independent associations varies 
across the genome and the regions of increased density are enriched for biologically 
relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all 
SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in 
populations of European ancestry but only around 10–20% (14–24%) in populations of 
other ancestries. Effect sizes, associated regions and gene prioritization are similar 
across ancestries, indicating that reduced prediction accuracy is likely to be explained 
by linkage disequilibrium and differences in allele frequency within associated 
regions. Finally, we show that the relevant biological pathways are detectable with 
smaller sample sizes than are needed to implicate causal genes and variants. Overall, 
this study provides a comprehensive map of specific genomic regions that contain the 
vast majority of common height-associated variants. Although this map is saturated 
for populations of European ancestry, further research is needed to achieve 
equivalent saturation in other ancestries.

Since 2007, genome-wide association studies (GWASs) have identified  
thousands of associations between common SNPs and height, mainly 
using studies with participants of European ancestry. The largest 
GWAS published so far for adult height focused on common varia-
tion and reported up to 3,290 independent associations in 712 loci 
using a sample size of up to 700,000 individuals3. Adult height, which 
is highly heritable and easily measured, has provided a larger number 
of common genetic associations than any other human phenotype. In 
addition, a large collection of genes has been implicated in disorders 
of skeletal growth, and these are enriched in loci mapped by GWASs 
of height in the normal range. These features make height an attrac-
tive model trait for assessing the role of common genetic variation in 
defining the genetic and biological architecture of polygenic human  
phenotypes.

As available sample sizes continue to increase for GWASs of common  
variants, it becomes important to consider whether these larger sam-
ples can ‘saturate’ or nearly completely catalogue the information 
that can be derived from GWASs. This question of completeness can 
take several forms, including prediction accuracy compared with 
heritability attributable to common variation, the mapping of associ-
ated genomic regions that account for this heritability, and whether 
increasing sample sizes continue to provide additional information 
about the identity of prioritized genes and gene sets. Furthermore, 
because most GWASs continue to be performed largely in populations 

of European ancestry, it is necessary to address these questions of 
completeness in the context of multiple ancestries. Finally, some have 
proposed that, when sample sizes become sufficiently large, effec-
tively every gene and genomic region will be implicated by GWASs, 
rather than certain subsets of genes and biological pathways being 
specified4.

Here, using data from 5.4 million individuals, we set out to map common  
genetic associations with adult height, using variants catalogued in 
the HapMap 3 project (HM3), and to assess the saturation of this map 
with respect to variants, genomic regions and likely causal genes and 
gene sets. We identify significant variants, examine signal density 
across the genome, perform out-of-sample estimation and predic-
tion analyses within studies of individuals of European ancestry and 
other ancestries and prioritize genes and gene sets as likely mediators 
of the effects on height. We show that this set of common variants 
reaches predicted limits for prediction accuracy within populations of  
European ancestry and largely saturates both the genomic regions 
associated with height and broad categories of gene sets that are likely 
to be relevant; future work will be required to extend prediction accu-
racy to populations of other ancestries, to account for rarer genetic 
variation and to more definitively connect associated regions with 
individual probable causal genes and variants.

An overview of our study design and analysis strategy is provided 
in Extended Data Fig. 1.
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Meta-analysis identifies 12,111 height-associated SNPs
We performed genetic analysis of up to 5,380,080 individuals from 281 
studies from the GIANT consortium and 23andMe. Supplementary Fig. 1 
represents projections of these 281 studies onto principal components 
reflecting differences in allele frequencies across ancestry groups in 
the 1000 Genomes Project (1KGP)5. Altogether, our discovery sample 
includes 4,080,687 participants of predominantly European ancestries 
(75.8% of total sample); 472,730 participants with predominantly East 
Asian ancestries (8.8%); 455,180 participants of Hispanic ethnicity  
with typically admixed ancestries (8.5%); 293,593 participants of  
predominantly African ancestries—mostly African American individu-
als with admixed African and European ancestries (5.5%); and 77,890 
participants of predominantly South Asian ancestries (1.4%). We refer 
to these five groups of participants or cohorts as EUR, EAS, HIS, AFR 
and SAS, respectively, while recognizing that these commonly used 
groupings oversimplify the actual genetic diversity among participants. 
Cohort-specific information is provided in Supplementary Tables 1–3. 
We tested the association between standing height and 1,385,132 auto-
somal bi-allelic SNPs from the HM3 tagging panel2, which contains more 
than 1,095,888 SNPs with a minor allele frequency (MAF) greater than 
1% in each of the five ancestral groups included in our meta-analysis. 
Supplementary Fig. 2 shows the frequency and imputation quality 
distribution of HM3 SNPs across all five groups of cohorts.

We first performed separate meta-analyses in each of the five groups 
of cohorts. We identified 9,863, 1,511, 918, 453 and 69 quasi-independent 
genome-wide significant (GWS; P < 5 × 10−8) SNPs in the EUR, HIS, EAS, AFR 
and SAS groups, respectively (Table 1 and Supplementary Tables 4–8). 
Quasi-independent associations were obtained after performing approxi-
mate conditional and joint (COJO) multiple-SNP analyses6, as implemented 
in GCTA7 (Methods). Supplementary Note 1 presents sensitivity analyses 
of these COJO results, highlights biases due to relatively long-range link-
age disequilibrium (LD) in admixed AFR and HIS individuals8 (Supplemen-
tary Fig. 3), and shows how to correct those biases by varying the GCTA 
input parameters (Supplementary Fig. 4). Moreover, previous studies 
have shown that confounding due to population stratification may remain 
uncorrected in large GWAS meta-analyses9,10. Therefore, we specifically 
investigated confounding effects in all ancestry-specific GWASs, and 
found that our results are minimally affected by population stratification 
(Supplementary Note 2 and Supplementary Figs. 5–7).

To compare results across the five groups of cohorts, we examined 
the genetic and physical colocalization between SNPs identified in the 
largest group (EUR) with those found in the other (non-EUR) groups. 
We found that more than 85% of GWS SNPs detected in the non-EUR 
groups are in strong LD (rLD

2  > 0.8) with at least one variant reaching 

marginal genome-wide significance (PGWAS < 5 × 10−8) in EUR (Supple-
mentary Tables 5–8). Furthermore, more than 91% of associations 
detected in non-EUR meta-analyses fall within 100 kb of a GWS SNP 
identified in EUR (Extended Data Fig. 2). By contrast, a randomly sam-
pled HM3 SNP (matched with GWS SNPs identified in non-EUR meta- 
analyses on 24 functional annotations; Methods) falls within 100 kb of 
a EUR GWS SNP 55% of the time on average (s.d. = 1% over 1,000 draws). 
Next, we quantified the cross-ancestry correlation of marginal allele 
substitution effects (ρb) at GWS SNPs for all pairs of ancestry groups. 
We estimated ρb using five subsets of GWS SNPs identified in each of 
the ancestry groups, which also reached marginal genome-wide signi
ficance in at least one group. After correction for winner’s curse11,12, we 
found that ρb ranged between 0.64 and 0.99 across all pairs of ancestry 
groups and all sets of GWS SNPs (Supplementary Figs. 8–12). We also 
extended the estimation of ρb for SNPs that did not reach genome-wide 
significance and found that ρb > 0.5 across all comparisons (Supple-
mentary Fig. 13). Thus, the observed GWS height associations are  
substantially shared across major ancestral groups, consistent with 
previous studies based on smaller sample sizes13,14.

To find signals that are specific to certain groups, we tested whether 
any individual SNPs detected in non-EUR GWASs are conditionally 
independent of signals detected in EUR GWASs. We fitted an approxi-
mate joint model that includes GWS SNPs identified in EUR and 
non-EUR, using LD reference panels specific to each ancestry group. 
After excluding SNPs in strong LD (rLD

2  > 0.8 in either ancestry group), 
we found that 2, 17, 49 and 63 of the GWS SNPs detected in SAS, AFR, 
EAS and HIS GWASs, respectively, are conditionally independent of 
GWS SNPs identified in EUR GWASs (Supplementary Table 9). On aver-
age, these conditionally independent SNPs have a larger MAF and effect 
size in non-EUR than in EUR cohorts, which may have contributed to 
an increased statistical power of detection. The largest frequency  
difference relative to EUR was observed for rs2463169 (height-increasing 
G allele frequency: 23% in AFR versus 84% in EUR) within the intron of 
PAWR, which encodes the prostate apoptosis response-4 protein.  
Of note, rs2463169 is located within the 12q21.2 locus, where a strong 
signal of positive selection in West African Yoruba populations was 
previously reported15. The estimated effect at rs2463169 is β ≈ 0.034 
s.d. per G allele in AFR versus β ≈ −0.002 s.d. per G allele in EUR, and 
the P value of marginal association in EUR is PEUR = 0.08, suggesting 
either a true difference in effect size or nearby causal variant(s) with 
differing LD to rs2463169.

Given that our results show a strong genetic overlap of GWAS signals  
across ancestries, we performed a fixed-effect meta-analysis of all five 
ancestry groups to maximize statistical power for discovering associa-
tions due to shared causal variants. The mean Cochran’s heterogeneity 

Table 1 Summary of results from within-ancestry and trans-ancestry GWAS meta-analyses

Cohort ancestry or ethnic 
group

Number of 
studies

Max n (mean n) Number of GWS COJO SNPs 
(PGWAS < 5 × 10−8)

Number of GWS 
loci (35  kb)

Cumulative length of 
non-overlapping GWS loci in 
Mb (% of genome)

European (EUR) 173 4,080,687 (3,612,229) 9,863 (8,382) 6,386 552.5 (18.4%)

East Asian (EAS) 56 472,730 (320,570) 918 (807) 821 60.5 (2.0%)

Hispanic (HIS) 11 455,180 (431,645) 1,511 (1,195) 1,373 101.0 (3.3%)

African (AFR) 29 293,593 (222,981) 453 (404) 412 30.4 (1.0%)

South Asian (SAS) 12 77,890 (59,420) 69 (65) 66 4.7 (0.2%)

Trans-ancestry 
meta-analysis (METAFE)

281 5,314,291* (4,611,160) 12,111 (9,920) 7,209 647.5 (21.6%)

n denotes the sample size for each SNP. GWS: genome-wide significant (P < 5 × 10−8). COJO SNPs: near-independent GWS SNPs identified using an approximate COJO analysis implemented in 
the GCTA software. PGWAS: P value from a marginal association test. GWS loci were defined as genomic regions centred around each GWS SNP and including all SNPs within 35 kb on each side 
of the lead GWS SNP. Overlapping GWS loci were merged so that the number and cumulative length of GWS loci are calculated on non-overlapping GWS loci. The percentage of the genome 
covered was calculated by dividing the cumulative of GWS loci by 3,039 Mb (the approximated length of the human genome). 
*The number of individuals in the trans-ancestry meta-analysis (n = 5,314,291) is smaller than the sum of ancestry-group-specific meta-analyses (n = 5,380,080) because of variation in per-SNP 
sample sizes for SNPs included in the final analysis.
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Q-statistic is around 34% across SNPs, which indicates moderate het-
erogeneity of SNP effects between ancestries. The mean chi-square 
association statistic in our fixed-effect meta-analysis (hereafter 
referred to as METAFE) is around 36, and around 18% of all HM3 SNPs 
are marginally GWS. Moreover, we found that allele frequencies in our 
METAFE were very similar to that of EUR (mean fixation index of genetic 
differentiation (FST) across SNPs between EUR and METAFE is around 
0.001), as expected because our METAFE consists of more than 75% 
EUR participants and around 14% participants with admixed European 
and non-European ancestries that is, HIS and AFR). To further assess 
whether LD in our METAFE could be reasonably approximated by the 
LD from EUR, we performed an LD score regression16 analysis of our 
METAFE using LD scores estimated in EUR. In this analysis, we focused 
on the attenuation ratio statistic (RLDSC-EUR), for which large values can 
also indicate strong LD inconsistencies between a given reference and 
GWAS summary statistics. A threshold of RLDSC > 20% was recommended 
by the authors of the LDSC software as a rule-of-thumb to detect such 
inconsistencies. Using EUR LD scores in the GWAS of HIS, which is the 
non-EUR group that is genetically closest to EUR (FST ≈ 0.02), yields an 
estimated RLDSC-EUR of around 25% (standard error (s.e.) 1.8%), consist-
ent with strong LD differences between HIS and EUR. By contrast, in 
our METAFE, we found an estimated RLDSC-EUR of around 4.5% (s.e. 0.8%), 
which is significantly lower than 20% and not statistically different from 
3.8% (s.e. 0.8%) in our EUR meta-analysis. Furthermore, we show in 
Supplementary Note 1 that using a composite LD reference containing 
samples from various ancestries (with proportions matching that in 
our METAFE) does not improve signal detection over using an EUR LD 
reference. Altogether, these analyses suggest that LD in our METAFE 
can be reasonably approximated by LD from EUR.

We therefore proceeded to identify quasi-independent GWS SNPs 
from the multi-ancestry meta-analysis by performing a COJO analysis 
of our METAFE, using genotypes from around 350,000 unrelated EUR 
participants in the UK Biobank (UKB) as an LD reference. We identified 
12,111 quasi-independent GWS SNPs, including 9,920 (82%) primary 
signals with a GWS marginal effect and 2,191 secondary signals that only 
reached GWS in a joint regression model (Supplementary Table 10). 
Figure 1 represents the relationship between frequency and joint effect 
sizes of minor alleles at these 12,111 associations. Of the GWS SNPs 
obtained from the non-EUR meta-analyses above that were condition-
ally independent of the EUR GWS SNPs, 0/2 in SAS, 5/17 in AFR, 27/49 in 
EAS and 27/63 in HIS were marginally significant in our METAFE (Supple
mentary Table 9), and 24 of those (highlighted in Fig. 2) overlapped 
with our list of 12,111 quasi-independent GWS SNPs.

We next sought to replicate the 12,111 METAFE signals using GWAS 
data from 49,160 participants in the Estonian Biobank (EBB). We first 
re-assessed the consistency of allele frequencies between our METAFE 
and the EBB set. We found a correlation of allele frequencies of around 
0.98 between the two datasets and a mean FST across SNPs of around 
0.005, similar to estimates that were obtained between populations 
from the same continent. Of the 12,111 GWS SNPs identified through our 
COJO analysis, 11,847 were available in the EBB dataset, 97% of which 
(11,529) have a MAF greater than 1% (Supplementary Table 10). Given 
the large difference in sample size between our discovery and replica-
tion samples, direct statistical replication of individual associations at 
GWS is not achievable for most SNPs identified (Extended Data Fig. 3a). 
Instead, we assessed the correlation of SNP effects between our discov-
ery and replication GWASs as an overall metric of replicability3,17. Among 
the 11,529 out of 11,847 SNPs that had a MAF greater than 1% in the EBB, 
we found a correlation of marginal SNP effects of ρb = 0.93 ( jackknife 
standard error; s.e. 0.01) and a correlation of conditional SNP effects 
using the same LD reference panel of ρb = 0.80 (s.e. 0.03; Supplemen-
tary Fig. 14). Although we had limited power to replicate associations 
with 238 GWS variants that are rare in the EBB (MAF < 1%), we found, 
consistent with expectations (Methods and Extended Data Fig. 3b), 
that 60% of them had a marginal SNP effect that was sign-consistent 

with that from our discovery GWAS (Fisher's exact test; P = 0.001). 
The proportion of sign-consistent SNP effects was greater than 75% 
(Fisher's exact test; P < 10−50) for variants with a MAF greater than 1%—
also consistent with expectations (Extended Data Fig. 3b). Altogether, 
our analyses demonstrate the robustness of our findings and show their 
replicability in an independent sample.

Genomic distribution of height-associated SNPs
To examine signal density among the 12,111 GWS SNPs detected in our 
METAFE, we defined a measure of local density of association signals for 
each GWS SNP on the basis of the number of additional independent 
associations within 100 kb (Supplementary Fig. 15). Supplementary 
Fig. 16 shows the distributions of signal density for GWS SNPs identi-
fied in each ancestry group and in our METAFE. We observed that 69% of 
GWS SNPs shared their location with another associated, conditionally 
independent, GWS SNP (Fig. 2). The mean signal density across the 
entire genome is 2.0 (s.e. 0.14), consistent with a non-random genomic 
distribution of GWS SNPs. Next, we evaluated signal density around 
462 autosomal genes curated from the Online Mendelian Inheritance 
in Man (OMIM) database18 as containing pathogenic mutations that 
cause syndromes of abnormal skeletal growth ('OMIM genes'; Methods  
and Supplementary Table 11). We found that a high density of height- 
associated SNPs is significantly correlated with the presence of an 
OMIM gene nearby19,20 (enrichment fold of OMIM gene when density 
is greater than 1: 2.5×; P < 0.001; Methods and Extended Data Fig. 4a). 
Notably, the enrichment of OMIM genes almost linearly increases with 
the density of height-associated SNPs (Extended Data Fig. 4b). Thus, 
these 12,111 GWS SNPs nonrandomly cluster near each other and near 
known skeletal growth genes.

The largest density of conditionally independent associations was 
observed on chromosome 15 near ACAN, a gene mutated in short stature  
and skeletal dysplasia syndromes, where 25 GWS SNPs co-localize within 
100 kb of one another (Fig. 2 and Supplementary Fig. 17). We show in 
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Supplementary Note 3 and Extended Data Fig. 5a–d, using haplotype- 
and simulation-based analyses, that a multiplicity of independent 
causal variants is the most likely explanation of this observation. We 
also found that signal density is partially explained by the presence of 
a recently identified21,22 height-associated variable-number tandem 
repeat (VNTR) polymorphism at this locus (Supplementary Note 3). In 
fact, the 25 independent GWS SNPs clustered within 100 kb of rs4932198 
explain more than 40% of the VNTR length variation in multiple ances-
tries (Extended Data Fig. 5e), and an additional approximately 0.24% 
(P = 8.7 × 10−55) of phenotypic variance in EUR above what is explained 
by the VNTR alone (Extended Data Fig. 5f). Altogether, our conclusion is 
consistent with previous evidence of multiple types of common varia-
tion influencing height through ACAN gene function, involving multiple 
enhancers23, missense variants24 and tandem repeat polymorphisms21,22.

Variance explained by SNPs within identified loci
To quantify the proportion of height variance that is explained by 
GWS SNPs identified in our METAFE, we stratified all HM3 SNPs into two 
groups: SNPs in the close vicinity of GWS SNPs, hereafter denoted GWS 
loci; and all remaining SNPs. We defined GWS loci as non-overlapping 
genomic segments that contain at least one GWS SNP, such that GWS 
SNPs in adjacent loci are more than 2 × 35 kb away from each other 
(that is, a 35-kb window on each side). We chose this size window 
because it was predicted that causal variants are located within 35 kb 
of GWS SNPs with a probability greater than 80% (ref. 25). Accordingly, 
we grouped the 12,111 GWS SNPs identified in our METAFE into 7,209 
non-overlapping loci (Supplementary Table 12) with lengths rang-
ing from 70 kb (for loci containing only one signal) to 711 kb (for loci 
containing up to 25 signals). The average length of GWS loci is around 
90 kb (s.d. 46 kb). The cumulative length of GWS loci represents around 
647 Mb, or about 21% of the genome (assuming a genome length of 
around 3,039 Mb)26.

To estimate the fraction of heritability that is explained by common 
variants within the 21% of the genome overlapping GWS loci, we calcu-
lated two genomic relationship matrices (GRMs)—one for SNPs within 
these loci and one for SNPs outside these loci—and then used both 
matrices to estimate a stratified SNP-based heritability (hSNP

2 ) of height 
in eight independent samples of all five population groups represented 
in our METAFE (Fig.  3 and Methods). Altogether, our stratified 

estimation of SNP-based heritability shows that SNPs within these 7,209 
GWS loci explain around 100% of hSNP

2  in EUR and more than 90% of hSNP
2  

across all non-EUR groups, despite being drawn from less than 21% of 
the genome (Fig. 3). We also varied the window size used to define  
GWS loci and found that 35 kb was the smallest window size for which 
this level of saturation of SNP-based heritability could be achieved  
(Supplementary Fig. 18).

To further assess the robustness of this key result, we tested whether 
the 7,209 height-associated GWS loci are systematically enriched for 
trait heritability. We chose body-mass index (BMI) as a control trait, 
given its small genetic correlation with height (rg = −0.1, ref. 27) and 
found no significant enrichment of SNP-based heritability for BMI 
within height-associated GWS loci (Supplementary Fig. 19). Further-
more, we repeated our analysis using a random set of SNPs matched 
with the 12,111 height-associated GWS SNPs on EUR MAF and LD scores. 
We found that this control set of SNPs explained only around 27% of 
hSNP

2  for height, consistent with the proportion of SNPs within the loci 
defined by this random set of SNPs (Supplementary Figs. 18 and 19). 
Finally, we extended our stratified estimation of SNP-based heritabil-
ity to all well-imputed common SNPs (that is, beyond the HM3 panel) 
and found, consistently across population groups, that although more 
genetic variance can be explained by common SNPs that are not 
included in the HM3 panel, all information remains concentrated within 
these 7,209 GWS loci (Extended Data Fig. 6). Thus, with this large GWAS, 
nearly all of the variability in height that is attributable to common 
genetic variants can be mapped to regions comprising around 21% of 
the genome. Further work is required in cohorts of non-European 
ancestries to map the remaining 5–10% of the SNP-based heritability 
that is not captured within those regions.

Out-of-sample prediction accuracy
We quantified the accuracy of multiple polygenic scores (PGSs) for 
height on the basis of GWS SNPs (hereafter referred to as PGSGWS) and 
on the basis of all HM3 SNPs (hereafter referred to as PGSHM3). PGSGWS 
were calculated using joint SNP effects from COJO, and PGSHM3 using 
joint effects calculated using the SBayesC method28 (Methods). We 
denote RGWS

2  and RHM3
2  as the prediction accuracy of PGSGWS and PGSHM3, 

respectively. For conciseness, we also use the abbreviations PGSGWS-X 
and PGSHM3-X (and RGWS−X

2  and RHM3−X
2 ) to specify which GWAS 
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Fig. 2 | Brisbane plot showing the genomic density of independent genetic 
associations with height. Each dot represents one of the 12,111 quasi- 
independent GWS (P < 5 × 10−8) height-associated SNPs identified using 
approximate COJO analyses of our cross-ancestry GWAS meta-analysis. Data 
underlying this figure are available in Supplementary Table 10. GWS SNPs with 
the largest density on each chromosome were annotated with the closest gene. 
We highlight 24 of 12,111 associations that are mainly contributed by groups  
of non-European ancestry (3 from African ancestries, 10 from Hispanic 
ethnicities or ancestries and 11 from East Asian ancestries). The full list of 
height-associated SNPs detected in groups of non-European ancestry and 

independent of associations detected in European ancestry GWASs is reported 
in Supplementary Table 9. Signal density was calculated for each associated 
SNP as the number of other independent associations within 100 kb. A density 
of 1 means that a GWS COJO SNP shares its location with another independent 
GWS COJO SNP within less than 100 kb. The mean signal density across the 
genome is 2 and the median signal density is 1 (s.e. 0.14 and 0.0, respectively). 
The s.e. values were calculated using a leave-one-chromosome-out jackknife 
approach (LOCO-S.E.). SNPs that did not reach genome-wide significance  are 
not represented on the figure.
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meta-analysis each PGS (and corresponding prediction accuracy) was 
trained from. For example, PGSGWS-METAFE refers to PGSs based on 12,111 
GWS SNPs identified from our METAFE.

We first present results from PGSGWS across different ancestry groups. 
PGSGWS-METAFE yielded prediction accuracies greater than or equal to 
that of all other PGSGWS (Fig. 4a), partly reflecting sample size differ-
ences between ancestry-specific GWASs and also consistent with  
previous studies29. PGSGWS-EUR (based on 9,863 SNPs) was the second 
best of all PGSGWS across ancestry groups except in AFR. Indeed, 
PGSGWS-AFR (based on 453 SNPs) yielded an accuracy of 8.5% (s.e. 0.6%) 
in AFR individuals from UKB and PAGE; that is, significantly larger than 
the 5.9% (s.e. 0.6%) and 7.0% (s.e. 0.6%) achieved by PGSGWS-EUR in these 
two samples, respectively (Fig. 4a). PGSGWS-METAFE was the best of  
all PGSGWS in AFR participants with an accuracy RGWS−METAFE

2   =  
(12.3% + 9.9%)/2 = 10.8% (s.e. 0.5%) on average between UKB and PAGE 
(Fig. 4a). Across ancestry groups, the highest accuracy of PGSGWS-METAFE 
was observed in EUR participants (RGWS−METAFE

2 ~40%; s.e. 0.6%) and the 
lowest in AFR participants from the UKB (RGWS−METAFE

2  ≈ 9.4%; s.e. 0.7%). 
Note that the difference in RGWS−METAFE

2  between the EUR and AFR  
ancestry cohorts is expected because of the over-representation of 
EUR in our METAFE, and consistent with a relative accuracy (RGWS−METAFE

2  
in AFR)/(RGWS−METAFE

2  in EUR) of around 25% that was previously 
reported30. We extended analyses of PGSGWS to PGS based on SNPs  
identified with COJO at lower significance thresholds (Extended Data 
Fig. 7). As in previous studies3,20, the inclusion of sub-significant SNPs 
increased the accuracy of ancestry-specific PGSs. However, lowering 
the significance thresholds in our METAFE mostly improved accuracy 
in EUR (from 40% to 42%), whereas it slightly decreased the accuracy  
in AFR.

Overall, ancestry-specific PGSHM3 consistently outperform their  
corresponding PGSGWS in most ancestry-groups. However, PGSHM3 was 
sometimes less transferable across ancestry groups than PGSGWS,  
in particular in AFR and HIS individuals from PAGE. In EUR, PGSHM3 
reaches an accuracy of 44.7% (s.e. 0.6%), which is higher than previously 
published SNP-based predictors of height derived from individual-level 

data31–33 and from GWAS summary statistics28,34,35 across various exper-
imental designs (different SNP sets, different sample sizes and so on). 
Finally, the largest improvement of PGSHM3 over PGSGWS was observed 
in AFR individuals from the PAGE study (RGWS−AFR

2  = 8.5% versus 
RHM3

2  = 15.4%; Fig. 4a) and the UKB (RGWS−AFR
2  = 8.5% versus RHM3

2  = 14.4%; 
Fig. 4a).

Furthermore, we sought to evaluate the prediction accuracy of 
PGSs relative to that of familial information as well as the potential 
improvement in accuracy gained from combining both sources of 
information. We analysed 981 unrelated EUR trios (that is, two parents  
and one child) and 17,492 independent EUR sibling pairs from the 
UKB, who were excluded from our METAFE. We found that height of 
any first-degree relative yields a prediction accuracy between 25% 
and 30% (Fig. 4b). Moreover, the accuracy of the parental average 
is around 43.8% (s.e. 3.2%), which is lower than yet not significantly 
different from the accuracy of PGSHM3-EUR in EUR. In addition, we found 
that a linear combination of the average height of parents and of the 
child’s PGS yields an accuracy of 54.2% (s.e. 3.2%) with PGSGWS-EUR and 
55.2% (s.e. 3.2%) with PGSHM3-EUR. This observation reflects the fact 
that PGSs can explain within-family differences between siblings, 
whereas average parental height cannot. To show this empirically, 
we estimate that our PGSs based on GWS SNPs explain around 33% 
(s.e. 0.7%) of height variance between siblings (Methods). Finally, 
we show that the optimal weighting between parental average 
and PGS can be predicted theoretically as a function of the predic-
tion accuracy of the PGS, the full narrow sense heritability and the  
phenotypic correlation between spouses (Supplementary Note 4 
and Supplementary Fig. 20).

In summary, the estimation of variance explained and prediction 
analyses in samples with European ancestry show that the set of 12,111 
GWS SNPs accounts for nearly all of hSNP

2 , and that combining SNP-based 
PGS with family history significantly improves prediction accuracy. 
By contrast, both estimation and prediction results show clear attenu-
ation in samples with non-European ancestry, consistent with previous 
studies30,36–38.
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Fig. 3 | Variance of height explained by HM3 SNPs within GWS loci.  
a, Stratified SNP-based heritability (hSNP

2 ) estimates obtained after partitioning 
the genome into SNPs within 35 kb of a GWS SNP ('GWS loci' label) versus  
SNPs that are more than 35 kb away from any GWS SNP. Analyses were 
performed in samples of five different ancestries or ethnic groups: European 
(EUR: meta-analysis of UK Biobank (UKB) + Lifelines study), African (AFR: 
meta-analysis of UKB + PAGE study), East Asian (EAS: meta-analysis of UKB + 

China Kadoorie Biobank), South Asian (SAS: UKB) and Hispanic (HIS: PAGE).  
Error bars represent standard errors. b, More than 90% of hSNP

2  in all ancestries 
is explained by SNPs within GWS loci identified in this study. The cumulative 
length of non-overlapping GWS loci is around 647 Mb; that is, around  
21% of the genome, assuming a genome length of around 3,039 Mb (ref. 26).  
The proportion of HM3 SNPs in GWS loci is around 27%.
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GWAS discoveries, sample size and ancestry diversity
Our large study offers the opportunity to quantify empirically how 
much increasing GWAS sample sizes and ancestry diversity affects 
the discovery of variants, genes and biological pathways. To address 
this question, we re-analysed three previously published GWASs of 
height3,19,20 and also down-sampled our meta-analysis into four subsets 
(including our EUR and METAFE GWASs). Altogether, we analysed seven 
GWASs with a sample size increasing from around 0.13 million up to 
around 5.3 million individuals (Table 2).

For each GWAS, we quantified eight metrics grouped into four 
variant- and locus-based metrics (number of GWS SNPs; number of 
GWS loci; prediction accuracy (RGWS

2 ) of PGS based on GWS SNPs; and 
proportion of the genome covered by GWS loci), a functional-annotation- 
based metric (enrichment statistics from stratified LDSC39,40), two gene- 
based metrics (number of genes prioritized by summary-data-based 
Mendelian randomization41 (SMR; Methods) and proximity of variants 
with OMIM genes) and a gene-set-based metric (enrichment within 
clusters of gene sets or pathways). Overall, we found different patterns 
for the relationship between those metrics and GWAS sample size and 
ancestry composition, consistent with varying degrees of saturation 
achieved at different sample sizes.

We observed the strongest saturation for the gene-set and functional- 
annotation metrics, which capture how well general biological func-
tions can be inferred from GWAS results using currently available com-
putational methods. Using two popular gene-set prioritization methods 
(DEPICT42 and MAGMA43), we found that the same broad clusters of 
related gene sets (including most of the clusters enriched for OMIM 
genes) are prioritized at all GWAS sample sizes (Supplementary Fig. 21, 
Extended Data Fig. 8, Supplementary Tables 13–15 and Supplementary 
Note 5). Similarly, stratified LDSC estimates of heritability enrichment 
within 97 functional annotations also remain stable across the range of 
sample sizes (Extended Data Fig. 9). Overall, we found no significant 
improvement for all these higher-level metrics from adding non-EUR 

samples to our analyses. The latter observation is consistent with other 
analyses showing that GWASs expectedly implicate similar biology 
across major ancestral groups (Supplementary Note 5 and Supple-
mentary Fig. 22).

For the gene-level metric, the excess in the number of OMIM genes 
that are proximate to a GWS SNP (compared with matched sets of  
random genes) plateaus at sample sizes of larger than 1.5 million, whereas 
the relative enrichment of GWS SNPs near OMIM genes first decreases 
with sample size, then plateaus when n is greater than 1.5 million  
(Supplementary Fig. 23a–c). Notably, the decrease observed for n 
values of less than 1.5 million reflects the preferential localization 
of larger effect variants (those identified with smaller sample sizes) 
closer to OMIM genes (Supplementary Fig. 23d) and, conversely, that 
more recently identified variants with smaller effects tend to localize 
further away from OMIM genes (Supplementary Fig. 23e). We also 
investigated the number of genes prioritized using SMR (hereafter 
referred to as SMR genes; Methods) using expression quantitative 
trait loci (eQTLs) as genetic instruments (Supplementary Table 16) as 
an alternative gene-level metric and found it to saturate for n values 
greater than 4 million (Supplementary Fig. 23f). Note that saturation 
of SMR genes is partly affected by the statistical power of current eQTL 
studies, which do not always survey biologically relevant tissues and 
cell types for height. Therefore, we can expect more genes to be pri-
oritized when integrating GWAS summary statistics from this study 
with those from larger eQTL studies that may be available in the future 
and may involve more tissue types. Gene-level metrics were also not 
substantially affected by adding non-EUR samples, again consistent 
with broadly similar sets of genes affecting height across ancestries.

At the level of variants and genomic regions, we saw a steady and 
almost linear increase in the number of GWS SNPs as a function of sample  
size, as previously reported44. However, given that newly identified vari-
ants tend to cluster near ones identified at smaller sample sizes, we also 
saw a saturation in the number of loci identified for n values greater than 
2.5 million, where the upward trend starts to weaken (Supplementary 
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Fig. 4 | Accuracy of PGSs within families and across ancestries. Prediction 
accuracy (R2) was measured as the squared correlation between PGS and actual 
height adjusted for age, sex and 10 genetic principal components. a, Accuracy 
of PGSs assessed in participants of five different ancestry groups: European 
(EUR) from the UKB (n = 14,587) and the Lifelines Biobank (n = 14,058); South 
Asian (SAS; n = 9,257) from UKB; East Asian (EAS; n = 2,246) from UKB; Hispanic 
(HIS; n = 5,798) from the PAGE study; and admixed African (AFR) from UKB 
(n = 6,911) and PAGE (n = 8,238). PGSs used for prediction, in a, are based on 
GWS SNPs or around 1.1 million HM3 SNPs. When using all HapMap 3 SNPs, SNP 
effects were calculated using the SBayesC method (Methods), whereas PGSs 
based on GWS SNPs used joint SNP effects estimated using the COJO method 

(Methods). Both SBayesC and COJO were applied to (1) our cross-ancestry 
meta-analysis (turquoise bar); (2) our EUR meta-analysis (yellow bar); and (3) 
each ancestry-specific meta-analysis (red bar). b, Squared correlation of height 
between EUR participants in UKB and their first-degree relatives, and the 
accuracy of a predictor combining PGS (denoted PGSGWS, as based on GWS 
SNPs) and familial information. The accuracies of PGSGWS and PGSHM3 shown in  
b are the average of the respective accuracies of these PGSs in EUR participants 
from UKB and the Lifelines Biobank as shown in a. Sibling correlation was 
calculated in 17,492 independent EUR sibling pairs from the UKB and parent–
offspring correlations in 981 EUR unrelated trios (that is, two parents and one 
child) from the UKB. PA, parental average.
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Fig. 24a). We found a similar pattern for the percentage of the genome 
covered by GWS loci, with the degree of saturation varying as a func-
tion of the window size used to define loci (Supplementary Fig. 24b). 
The observed saturation in PGS prediction accuracy (both within  
ancestry—that is, in EUR—and multi-ancestry) was more noticeable than 
that of the number and genomic coverage of GWS loci. In fact, increas-
ing the sample size from 2.5 million to 4 million by adding another 
1.5 million EUR samples increased the number of GWS SNPs from 7,020 
to 9,863—that is, an increase of around 1.4-fold ((9,863 − 7,020)/7,020)—
but the absolute increase in prediction accuracy is less than 2.7%.  
This improvement is mainly observed in EUR but remains lower than 
1.3% in individuals of the EAS and AFR ancestry groups. However, 
adding another approximately 1 million participants of non-EUR 
improves the multi-ancestry prediction accuracy by more than 3.4% 
(Supplementary Fig. 24c), highlighting the value of including non-EUR  
populations.

Altogether, these analyses show that increasing the GWAS sample size 
not only increases the prediction accuracy, but also sheds more light  
on the genomic distribution of causal variants and, at all but the largest  
sample sizes, the genes proximal to these variants. By contrast, enrich-
ment of higher-level, broadly defined biological categories such as 
gene sets and pathways and functional annotations can be identi-
fied using relatively small sample sizes (n ≈ 0.25 million for height).  
Of note, we confirm that increased genetic diversity in GWAS discovery 
samples significantly improves the prediction accuracy of PGSs in 
under-represented ancestries.

Discussion
By conducting one of the largest GWASs so far in 5.4 million individuals, 
with a primary focus on common genetic variation, we have provided 
insights into the genetic architecture of height—including a saturated 
genomic map of 12,111 genetic associations for height. Consistent with 
previous studies19,20, we have shown that signal density of associations 
(known and novel) is not randomly distributed across the genome; 
rather, associated variants are more likely to be detected around genes 
that have been previously associated with Mendelian disorders of 
growth. Furthermore, we observed a strong genetic overlap of asso-
ciation across cohorts with various ancestries. Effect estimates of asso-
ciated SNPs are moderately to highly correlated (minimum = 0.64; 
maximum = 0.99), suggesting even larger correlations of effect sizes of 
underlying causal variants13. Moreover, although there are significant 

differences in power to detect an association between cohorts with 
European and non-European ancestries, most genetic associations 
for height observed in populations with non-European ancestry lie in 
close proximity and in linkage disequilibrium to associations identified 
within populations of European ancestry.

By increasing our experimental sample size to more than seven times 
that of previous studies, we have explained up to 40% of the inter- 
individual variation in height in independent European-ancestry sam-
ples using GWS SNPs alone, and more than 90% of hSNP

2  across diverse 
populations when incorporating all common SNPs within 35 kb of GWS 
SNPs. This result highlights that future investigations of common 
(MAF > 1%) genetic variation associated with height in many ancestries 
will be most likely to detect signals within the 7,209 GWS loci that we 
have identified in the present study. A question for the future is whether 
rare genetic variants associated with height are also concentrated 
within the same loci. We provide suggestive evidence supporting this 
hypothesis from analysing imputed SNPs with 0.1% < MAF < 1% (Sup-
plementary Note 6, Extended Data Fig. 10 and Supplementary Fig. 25). 
Our results are consistent with findings from a previous study45, which 
showed across 492 traits a strong colocalization between common and 
rare coding variants associated with the same trait. Nevertheless, our 
conclusions remain limited by the relatively low performances of impu-
tation in this MAF regime46,47. Therefore, large samples with whole- 
genome sequences will be required to robustly address this question. 
Such datasets are increasingly becoming available48–50. Separately, 
previous studies have reported a significant enrichment of height her-
itability near genes as compared to inter-genic regions (that is, >50 kb 
away from the start or stop genomic position of genes)51. Our findings 
are consistent with but not reducible to that observation, given that 
up to 31% of GWS SNPs identified in this study lie more than 50 kb away 
from any gene.

Our study provides a powerful genetic predictor of height based on 
12,111 GWS SNPs, for which accuracy reaches around 40% (that is, 80% 
of hSNP

2 ) in individuals of European ancestries and up to around 10% in 
individuals of predominantly African ancestries. Notably, we show 
using a previously developed method38 that LD and MAF differences 
between European and African ancestries can explain up to around 
84% (s.e. 1.5%) of the loss of prediction accuracy between these popu-
lations (Methods), with the remaining loss being presumably explained 
by differences in heritability between populations and/or differences 
in effect sizes across populations (for example, owing to gene-by-gene 
or gene-by-environment interactions). This observation is consistent 
with common causal variants for height being largely shared across 
ancestries. Therefore, we anticipate that fine-mapping of GWS loci 
identified in this study, ideally using methods that can accommodate 
dense sets of signals and large populations with African ancestries, 
would substantially improve the accuracy of a derived height PGS for 
populations of non-European ancestry. Our study has a large number 
of participants with African ancestries as compared with previous 
efforts. However, we emphasize that further increasing the size of 
GWASs in populations of non-European ancestry, including those with 
diverse African ancestries, is essential to bridge the gap in prediction 
accuracy—particularly as most studies only partially capture the wide 
range of ancestral diversity both within Africa and globally. Such 
increased sample sizes would help to identify potential ancestry-specific 
causal variants, to facilitate ancestry-specific fine-mapping and to 
inform gene–environment and gene–ancestry interactions. Another 
important finding of our study is to show how individual PGS can be 
optimally combined with familial information and thereby improve 
the overall accuracy of height prediction to above 54% in populations 
of European ancestry.

Although large sample sizes are needed to pinpoint the variants 
responsible for the heritability of height (and larger samples in mul-
tiple ancestries will probably be required to map these at finer scale), 
the prioritization of relevant genes and gene sets is feasible at smaller 

Table 2 Overview of five European-ancestry GWASs 
re-analysed in our study to quantify the relationship 
between sample size and discovery

Down-sampled 
GWAS

Max n (mean n) Number of 
GWS COJO 
SNPs

Percentage of 
the genome 
covered by GWS 
loci (35 kb) (%)

Lango Allen et al. 
(2010)19a

130,010 (128,942) 240 0.5

Wood et al. 
(2014)20

241,724 (239,227) 633 1.4

Yengo et al. (2018)3 695,648 (688,927) 2,794 5.8

GIANT-EUR (no 
23andMe)

1,632,839 (1,502,499) 4,867 9.7

23andMe-EUR 2,502,262 (2,498,336) 7,020 13.6

Summary statistics from the three published GWASs were imputed using the ImpG-Summary 
software to maximize the coverage of HM3 SNPs (Methods). GWS loci are defined as in the 
legend of Table 1. 
aSummary statistics from the Lango Allen et al. study19, initially over-corrected for population 
stratification using a double genomic control correction, were re-inflated such that the LD 
score regression intercept estimated from re-inflated test statistics equals 1.
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sample sizes than that required to account for the common variant 
heritability. Thus, the sample sizes required for saturation of GWAS 
are smaller for identifying enriched gene sets, with the identification 
of genes implicated as potentially causal and mapping of genomic 
regions containing associated variants requiring successively larger 
sample sizes. Furthermore, unlike prediction accuracy, prioritization 
of genes that are likely to be causal and even mapping of associated 
regions is consistent across ancestries, reflecting the expected similar-
ity in the biological architecture of human height across populations. 
Recent studies using UKB data predicted that GWAS sample sizes of 
just over 3 million individuals are required to identify 6,000–7,000 
GWS SNPs explaining more than 90% of the SNP-based heritability of 
height52. We showed empirically that these predictions are downwardly 
biased given that around 10,000 independent associations are, in fact, 
required to explain 80–90% of the SNP-based heritability of height in 
EUR individuals. Discrepancies between observed and predicted levels 
of saturation could be explained by several factors, such as (i) hetero-
geneity of SNP effects between cohorts and background ancestries, 
which may have reduced the statistical power of our study as compared 
to a homogenous sample like UKB; (ii) inconsistent definitions of GWS 
SNPs (using COJO in this study versus standard clumping in ref. 52); and, 
most importantly, (iii) misspecification of the SNP-effects distribution 
assumed to make these predictions. Nevertheless, if these predictions 
reflect proportional levels of saturation between traits, then we could 
expect that two- to tenfold larger samples would be required for GWASs 
of inflammatory bowel disease (×2, that is, n = 10 million), schizophrenia 
(×7; n = 35 million) or BMI (×10; n = 50 million) to reach a similar satura-
tion of 80–90% of SNP-based heritability.

Our study has a number of limitations. First, we focused on SNPs from 
the HM3 panel, which only partially capture common genetic variation. 
However, although a significant fraction of height variance can be 
explained by common SNPs outside the HM3 SNPs panel, we showed 
that the extra information (also referred to as ‘hidden heritability’) 
remains concentrated within GWS loci identified in our HM3-SNP-based 
analyses (Extended Data Fig. 6). This result underlines the widespread 
allelic heterogeneity at height-associated loci. Another limitation of our 
study is that we determined conditional associations using a EUR LD  
reference (n ≈ 350,000), which is sub-optimal given that around 24% of 
our discovery sample is of non-European ancestry. We emphasize that no 
analytical tool with an adequately large multi-ancestry reference panel 
is at present available to properly address how to identify conditionally 
independent associations in a multi-ancestry study. Fine-mapping of 
variants remains a particular challenge when attempted across ances-
tries in loci containing multiple signals (as is often the case for height). 
A third limitation of our study is our inability to perform well-powered 
replication analyses of genetic associations specific to populations with 
non-European ancestries, owing to the current limited availability of 
such data. Finally, as with all GWASs, definitive identification of effec-
tor genes and the mechanisms by which genes and variants influence 
phenotype remains a key bottleneck. Therefore, progress towards 
identifying causal genes from GWAS of height may be achieved by  
a combination of increasingly large whole-exome sequencing studies, 
allowing straightforward SNP-to-gene mapping45, the use of relevant 
complementary data (for example, context-specific eQTLs in relevant 
tissues and cell types) and the development of computational methods 
that can integrate these data.

In summary, our study has been able to show empirically that the 
combined additive effects of tens of thousands of individual variants, 
detectable with a large enough experimental sample size, can explain 
substantial variation in a human phenotype. For human height, we show 
that studies of the order of around 5 million participants of various 
ancestries provide enough power to map more than 90% (around 100% 
in populations of European ancestry) of genetic variance explained 
by common SNPs down to around 21% of the genome. Mapping the 
missing 5–10% of SNP-based heritability not accounted for in the four 

non-European ancestries studied here will require additional and 
directed efforts in the future.

Height has been used as a model trait for the study of human poly-
genic traits, including common diseases, because of its high heritability 
and relative ease of measurement, which enable large sample sizes and 
increased power. Conclusions about the genetic architecture, sample 
size requirements for additional GWAS discovery and scope for poly-
genic prediction that were initially made for height have by-and-large 
agreed with those for common disease. If the results from this study can 
also be extrapolated to disease, this would suggest that substantially 
increased sample sizes could largely resolve the heritability attrib-
uted to common variation to a finite set of SNPs (and small genomic 
regions). These variants and regions would implicate a particular sub-
set of genes, regulatory elements and pathways that would be most  
relevant to address questions of function, mechanism and therapeutic 
intervention.
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Methods

A summary of the methods, together with a full description of genome- 
wide association analyses and follow-up analyses is described below. 
Written informed consent was obtained from every participant in 
each study, and the study was approved by relevant ethics committees  
(Supplementary Table 1).

Quality control checks of individual studies
All study files were checked for quality using the software EasyQC53 that 
was adapted to the format from RVTESTS (versions listed in Supple
mentary Table 2)54. The checks performed included allele frequency 
differences with ancestry-specific reference panels, total number of 
markers, total number of markers not present in the reference panels, 
imputation quality, genomic inflation factor and trait transformation. 
We excluded two studies that did not pass our quality checks in the data.

GWAS meta-analysis
We first performed ancestry-group-specific GWAS meta-analyses of 
173 studies of EUR, 56 studies of EAS, 29 studies of AFR, 11 studies of 
HIS and 12 studies of SAS. Meta-analyses within ancestry groups were 
performed as described before19,20 using a modified version of RAREM-
ETAL55 (v.4.15.1), which accounts for multi-allelic variants in the data. 
Study-specific GWASs are described in Supplementary Tables 1–3. 
Details about imputation procedures implemented by each study are 
also given in Supplementary Table 2. We kept in our analyses SNPs with 
an imputation accuracy (r INFO

2 ) > 0.3, Hardy–Weinberg Equilibrium 
(HWE) P value (PHWE) > 10−8 and a minor allele count (MAC) > 5 in each 
study. Next, we performed a fixed-effect inverse variance weighted 
meta-analysis of summary statistics from all five ancestry groups GWAS 
meta-analysis using a custom R script using the R package meta (see 
‘URLs’ section).

Hold-out sample from the UK Biobank
We excluded 56,477 UK Biobank (UKB) participants from our discovery 
GWAS for following analyses including quantification of population 
stratification. More precisely, our hold-out EUR sample consists of 
17,942 sibling pairs and 981 trios (two parents and one child) plus all UKB 
participants with an estimated genetic relationship larger than 0.05 
with our set of sibling pairs and trios. We identified 14,587 individuals 
among these 56,477 UKB participants who were unrelated (unrelat-
edness was determined as when the genetic relationship coefficient 
estimated from HM3 SNPs  was  lower than 0.05) to each other and used 
their data to quantify the variance explained by SNPs within GWS loci 
(described below) and the prediction accuracy of PGSs.

COJO analyses
 We performed COJO analyses of each of the five ancestry group-specific 
GWAS meta-analyses using the software GCTA (version v.1.93)6,7. We 
used default parameters for all ancestry groups except in AFR and HIS, 
for which we found that default parameters could yield biased estimates 
of joint SNP effects because of long-range LD. This choice is discussed 
in Supplementary Note 1. The GCTA-COJO method implements a step-
wise model selection that aims at retaining a set of SNPs the joint effects 
of which reach genome-wide significance, defined in this study as 
P < 5 × 10−8. In addition to GWAS summary statistics, COJO analyses also 
require genotypes from an ancestry-matched sample that is used as a 
LD reference. For all sets of genotypes used as LD reference panels, we 
selected HM3 SNPs with r INFO

2  > 0.3 and PHWE > 10−6. For EUR, we used 
genotypes at 1,318,293 HM3 SNPs (MAC > 5) from 348,501 unrelated 
EUR participants in the UKB as our LD reference. For EAS, we used 
genotypes at 1,034,263 quality-controlled (MAF > 1%, SNP missing-
ness < 5%) HM3 SNPs from a merged panel of n = 5,875 unrelated parti
cipants from the UKB (n = 2,257) and Genetic Epidemiology Research 
on Aging (GERA; n = 3,618). Data from the GERA study were obtained 

from the database of Genotypes and Phenotypes (dbGaP; accession 
number: phs000788.v2.p3.c1) under project 15096. For SAS, we used 
genotypes at 1,222,935 HM3 SNPs (MAC > 5; SNP missingness < 5%) from 
9,448 unrelated individuals. For AFR, we used genotypes at 1,007,949 
quality-controlled (MAF > 1%, SNP missingness < 5%) HM3 SNPs from 
a merged panel of 15,847 participants from the Women’s Health Initia-
tive (WHI; n = 7,480), and the National Heart, Lung, and Blood Institute’s 
Candidate Gene Association Resource (CARe56, n = 8,367). Both WHI 
and CARe datasets were obtained from dbGaP (accession numbers: 
phs000386 for WHI; CARe including phs000557.v4.p1, phs000286.
v5.p1, phs000613.v1.p2, phs000284.v2.p1, phs000283.v7.p3 for ARIC, 
JHS, CARDIA, CFS and MESA cohorts) and processed following the 
protocol provided by the dbGaP data submitters. After excluding sam-
ples with more than 10% missing values and retaining only unrelated 
individuals, our final LD reference included data from n = 10,636 unre-
lated AFR individuals. For HIS, we used genotypes at 1,246,763 
sequenced HM3 SNPs (MAF > 1%) from n = 4,883 unrelated samples 
from the Hispanic Community Health Study/Study of Latinos (HCHS/
SOL; dbGaP accession number: phs001395.v2.p1) cohorts. Finally, we 
performed a COJO analysis of the combined meta-analysis of all ances-
tries (referred to as METAFE in the main text) using 348,501 unrelated 
EUR participants in the UKB as the reference panel.

To assess whether SNPs detected in non-EUR were independent of 
signals detected in EUR, we performed another COJO analysis of ances-
try groups GWAS by fitting jointly SNPs detected in EUR with those 
detected in each of the non-EUR GWAS meta-analyses. For each non-EUR 
GWAS, we performed a single-step COJO analysis only including SNPs 
identified in that non-EUR GWAS and for which the LD squared corre
lation (rLD

2 ) with any of the EUR signals (marginally or conditionally 
GWS) is lower than 0.8 in both EUR and corresponding non-EUR data. 
Single-step COJO analyses were performed using the --cojo-joint option 
of GCTA, which does not involve model selection and simply approxi-
mates a multivariate regression model in which all selected SNPs on a 
chromosome are fitted jointly. LD correlations used in these filters 
were estimated in ancestry-matched samples of the 1000 Genomes 
Project (1KGP; release 3). More specifically, LD was estimated in 661 
AFR, 347 HIS (referred to with the AMR label in 1KGP), 504 EAS, 503 EUR 
and 489 SAS 1KGP participants. We used the same LD reference samples 
in these analyses as for our main discovery analysis described at the 
beginning of the section.

FST calculation and (stratified) LD score regression
We used two statistics to evaluate whether an EUR LD reference could 
approximate well enough the LD structure in our trans-ancestry GWAS 
meta-analysis. The first statistic that we used is the Wright fixation 
index57, which measures allele frequency divergence between two 
populations. We used the Hudson’s estimator of FST

58 as previously 
recommended59 to compare allele frequencies from our METAFE with 
that from our EUR GWAS meta-analysis and an independent replication 
sample from the EBB. The other statistic that we used is the attenuation 
ratio statistic from the LD score regression methodology. These LD 
score regression analyses were performed using version 1.0 of the LDSC 
software and using LD scores calculated from EUR participants in the 
1KGP (see ‘URLs’ section). Moreover, we performed a stratified LD score 
regression analysis to quantify the enrichment of height heritability 
in 97 genomic annotations curated and described previously40. as the 
baseline-LD model. Annotation-weighted LD scores used for those 
analyses were also calculated using data from 1KGP (see ‘URLs’ section).

Density of GWS signal and enrichment near OMIM genes
We defined the density of independent signals around each GWS SNP 
as the number of other independent associations identified with COJO 
within a 100-kb window on both sides. Therefore, a SNP with no other 
associations within 100 kb has a density of 0, whereas a SNP colocalizing 
with 20 other GWS associations within 100 kb will have a density of 20. 
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We quantified the standard error of the mean signal density across the 
genome using a leave-one-chromosome-out jackknife procedure. We 
then quantified the enrichment of 462 curated OMIM18 genes near GWS 
SNPs with a large signal density, by counting the number of OMIM genes 
within 100 kb of a GWS SNP, then comparing that number for SNPs with 
a density of 0 and those with a density of at least 1. The strength of the 
enrichment was measured using an odds ratio calculated from a 2×2 
contingency table: 'presence/absence of an OMIM gene' versus 'density 
of 0 or larger than 0'. To assess the significance of the enrichment, we 
simulated the distribution of enrichment statistics for a random set of 
462 length-matched genes. We used 22 length classes (<10 kb; between 
i × 10 kb and (i + 1) × 10 kb, with i = 1,…,9; between i × 100 kb and (i + 1) × 
100 kb, with i = 1,…,10; between 1 Mb and 1.5 Mb; between 1.5 Mb and 
2 Mb; and >2 Mb) to match OMIM genes with random genes. OMIM 
genes within a given length class were matched with the same number 
of non-OMIM genes present in the class. We sampled 1,000 random 
sets of genes and calculated for each them an enrichment statistic. 
Enrichment P value was calculated as the number of times enrichment 
statistics of random genes exceeded that of OMIM genes. The list of 
OMIM genes is provided in Supplementary Table 11.

Genomic colocalization of GWS SNPs identified across ancestries
We assessed the genomic colocalization between 2,747 GWS SNPs 
identified in non-EUR (Supplementary Tables 5–8) and 9,863 GWS 
SNPs identified in EUR (Supplementary Table 4) by quantifying the 
proportion of EUR GWS SNPs identified within 100 kb of any non-EUR 
GWS SNP. We tested the statistical significance of this proportion by 
comparing it with the proportion of EUR GWS SNPs identified within 
100 kb of random HM3 SNPs matched with non-EUR GWS SNPs on 24 
binary functional annotations39.

These 24 annotations (for example, coding or conserved) are thor-
oughly described in a previous study39 and were downloaded from https://
alkesgroup.broadinstitute.org/LDSCORE/baselineLD_v2.1_annots/.

Our matching strategy consists of three steps. First, we calibrated a 
statistical model to predict the probability for a given HM3 SNP to be 
GWS in any of our non-EUR GWAS meta-analyses as a function of their 
annotation. For that, we used a logistic regression of the non-EUR GWS 
status (1 = if the SNP is GWS in any of the non-EUR GWAS; 0 = otherwise) 
onto the 24 annotations as regressors. Second, we used that model to 
predict the probability to be GWS in non-EUR. Thirdly, we used the 
predicted probability to sample (with replacement) 1,000 random sets 
of 2,747 SNPs. Finally, we estimated the proportion of EUR GWS SNPs 
within 100 kb of SNPs in each sampled SNP set. We report in the main 
text the mean and s.d. over these 1,000 proportions.

To validate our matching strategy, we compared the mean value of 
each of these 24 annotations (for example, proportion of coding SNPs) 
between non-EUR GWS SNPs and each of the 1,000 random sets of 
SNPs, using a Fisher’s exact test. For each of the 24 annotations, both 
the mean and median P value were greater than 0.6 and the proportion 
of P values < 5% was less than 1%, suggesting no significant differences 
in the distribution of these 24 annotations between non-EUR GWS SNPs 
and matched SNPs.

Replication analyses
To assess the replicability of our results, we tested whether the correla-
tion ρb of estimated SNP effects between our discovery GWAS and our 
replication sample of 49,160 participants of the EBB was statistically 
different from 1. We used the estimator of ρb from a previous study60, 
which accounts for sampling errors in both discovery and replication 
samples. Standard errors were calculated using a leave-one-SNP- 
out jackknife procedure. We quantified the correlation of marginal 
and also that of joint SNP effects. Joint SNP effects in our replication 
sample were obtained by performing a single-step COJO analysis of 
GWAS summary statistics from our EBB sample, using the same LD 
reference as in the discovery GWAS. Correlation of SNP effects were 

calculated after correcting SNP effects for winner’s curse using a previ-
ously described method12. We provide the R scripts used to apply these 
corrections and estimate the correlation of SNP effects (see ‘URLs’ 
section). The expected proportion, E[P], of sign-consistent SNP effects 
between discovery and replication was calculated using the quadrant 
probability of a standard bivariate Gaussian distribution with correla-
tion E[ρb], denoting the expected correlation between estimated SNP 
effects in the discovery and replication sample:
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where sin−1 denotes the inverse of the sine function and E[ρb] the 
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where Nd and Nr denote the sizes of the discovery and replication  
samples, respectively; hd and hr the average heterozygosity under 
Hardy–Weinberg equilibrium (that is, 2 × MAF × (1 − MAF)) across GWS 
SNPs in the discovery and replication samples, respectively; and σb

2 the 
mean per-SNP variance explained by GWS SNPs, which we calculated 
(as per ref. 60.) as the sample variance of estimated SNP effects in the 
discovery sample minus the median squared standard error.

Variance explained by GWS SNPs and loci
We estimated the variance explained by GWS SNPs using the genetic 
relationship-based restricted maximum likelihood (GREML) approach 
implemented in GCTA1,7. This approach involves two main steps: (i) 
calculation of genetic relationships matrices (GRM); and (ii) estimation 
of variance components corresponding to each of these matrices using 
a REML algorithm. We partitioned the genome in two sets containing 
GWS loci on the one hand and all other HM3 SNPs on the other hand. 
GWS loci were defined as non-overlapping genomic segments contain-
ing at least one GWS SNP and such that GWS SNPs in adjacent loci are 
more than 2 × 35 kb away from each other (that is, a 35-kb window on 
each side). We then calculated a GRM based on each set of SNPs and 
estimated jointly a variance explained by GWS alone and that explained 
by the rest of the genome. We performed these analyses in multiple 
samples independent of our discovery GWAS, which include partici-
pants of diverse ancestry. Details about the samples used for these 
analyses are provided below. We extended our analyses to also quantify 
the variance explained by GWS loci using alternative definitions based 
on a window size of 0 kb and 10 kb around GWS SNPs (Supplementary 
Figs. 18 and 19).

We also repeated our analyses using a random set of 12,111 SNPs 
matched with GWS SNPs on MAF and LD. Loci for these 12,111 random 
SNPs were defined similarly as for GWS loci. To match random SNPs 
with GWS SNPs on MAF and LD, we first created 28 MAF-LD classes 
of HM3 SNPs (7 MAF classes × 4 LD score classes). MAF classes were 
defined as <1%; between 1% and 5%; between 5% and 10%; between  
10% and 20%; between 20% and 30%; between 30% and 40%; and 
between 40% and 50%. LD score classes were defined using quartiles 
of the HM3 LD score distribution. We next matched GWS SNPs in each 
of the 28 MAF-LD classes, with the same number of SNPs randomly 
sampled from that MAF-LD class.

Prediction analyses
Height was first mean-centred and scaled to variance 1 within each sex. 
We quantified the prediction accuracy of height predictors as the  
difference between the variance explained by a linear regression model 
of sex-standardized height regressed on the height predictor, age, 20 
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genotypic principal components and study-specific covariates (full 
model) minus that explained by a reduced linear regression not includ-
ing the height predictor. Genetic principal components were calculated 
from LD pruned HM3 SNPs (rLD

2  < 0.1). We used height of siblings or 
parents as a predictor of height as well as various polygenic scores 
(PGSs) calculated as a weighted sum of height-increasing alleles. The 
direction and magnitude of these weights was determined by estimated 
SNP effects from our discovery GWAS meta-analyses. No calibration 
of tuning parameters in a validation was performed.

Between-family prediction. We analysed two classes of PGS. The 
first class is based on SNPs ascertained using GCTA-COJO. We applied 
GCTA-COJO to ancestry-specific and cross-ancestry GWAS meta- 
analyses using an ancestry-matched and an EUR LD reference, respectively.  
We compared PGSs based on SNPs ascertained at different signifi-
cance thresholds: P < 5 × 10−8 (GWS: reported in the main text) and 
P < 5 × 10−7, P < 5 × 10−6 and P < 5 × 10−5. For all COJO-based PGS, we used 
estimated joint effects to calculate the PGS. The second class of PGS 
uses weights for all HM3 SNPs obtained from applying the SBayesC 
method28 to ancestry-specific and cross-ancestry GWAS meta-analyses 
with ancestry-matched and EUR-specific LD matrices, respectively. The 
SBayesC method is a Bayesian PGS-method implemented in the GCTB 
software (v.2.0), which uses the same prior as the LDpred method61,62. 
In brief, SBayesC models the distribution of joint effects of all SNPs 
using a two-component mixture distribution. The first component 
is a point-mass Dirac distribution on zero and the other component a 
Gaussian distribution (for each SNP) with mean 0 and a variance param-
eter to estimate. Full LD matrices (that is, not sparse) were calculated 
using GCTB across around 250 overlapping (50% overlap) blocks of 
around 8,000 SNPs (average size is around 20 Mb). These LD matrices 
were calculated using the same sets of genotypes used for COJO analy-
ses (described above). We ran SBayesC in each block separately with 
100,000 Monte Carlo Markov Chain iterations. In each run, we initial-
ized the proportion of causal SNPs in a block at 0.0001 and the herit-
ability explained by SNPs in the block at 0.001. Posterior SNP effects of 
SNPs present in two blocks were meta-analysed using inverse-variance 
meta-analysis.

Prediction accuracy was quantified in 61,095 unrelated individuals 
from three studies, including 33,001 participants of the UKB who were 
not included in our discovery GWAS (that is, 14,587 EUR; 9,257 SAS; 6,911 
AFR and 2,246 EAS; Methods section ‘Samples used for prediction and 
estimation of variance explained’); 14,058 EUR participants from the 
Lifelines cohort study; and 8,238 HIS and 5,798 AFR participants from 
the PAGE study.

Within-family prediction. The prediction accuracy of sibling’s height 
was assessed in 17,942 unrelated sibling pairs from the UKB. Those pairs 
were determined by intersecting the list of UKB sibling pairs deter-
mined by Bycroft et al.63 with a list of genetically determined European  
ancestry participants from the UKB also described previously3. We then 
filtered the resulting list for SNP-based genetic relationship between 
members of different families to be smaller than 0.05. The predic-
tion accuracy of parental height (each parent and their average) was  
assessed in 981 unrelated trios obtained as described above by crossing 
information from Bycroft et al.63 (calling of relatives) with that from 
Yengo et al.3 (calling of European ancestry participants). We quantified 
the within-family variance explained by PGS as the squared correlation 
of height difference between siblings with PGS difference between sib-
lings. We describe in Supplementary Note 4 how familial information 
and PGS were combined to generate a single predictor.

Samples used for prediction and estimation of variance explained
We quantified the accuracy of a PGS based on GWS SNPs as well as the 
variance explained by SNPs within GWS loci, in eight different datasets 
independent of our discovery GWAS meta-analyses. These datasets 

include two samples of EUR from the UKB (n = 14,587) and the Lifelines 
study (n = 14,058), two samples of AFR from the UKB (n = 6,911) and the 
PAGE study (n = 8,238), two samples of EAS (n = 2,246) from the UKB and 
the China Kadoorie Biobank (CKB; n = 47,693), one sample of SAS from 
the UKB (n = 9,257) and one sample of HIS from the PAGE study (n = 4,939). 
Analyses were adjusted for age, sex, 20 genotypic principal components 
and study-specific covariates (for example, recruitment centres). Geno-
types of EUR UKB participants were imputed to the Haplotype Reference 
Consortium (HRC) and to a combined reference panel including haplo-
types from the 1KG Project and the UK10K Project. To improve variant 
coverage in non-EUR participants of UKB, we re-imputed their genotypes 
to the 1KG reference panel, as described previously38. Lifelines samples 
were imputed to the HRC panel. PAGE and CKB were imputed to the 1KG 
reference panel. Standard quality control (r INFO

2  > 0.3, PHWE > 10−6 and 
MAC > 5) were applied to imputed genotypes in each dataset.

Contribution of LD and MAF to the loss of prediction accuracy
We defined the EUR-to-AFR relative accuracy as the ratio of prediction 
accuracies from an AFR sample over that from a EUR sample. We used 
a previously published method38 to quantify the expectation of that 
relative accuracy under the assumption that causal variants and their 
effects are shared between EUR and AFR, whereas MAF and LD struc-
tures can differ. In brief, this method contrasts LD and MAF patterns 
within 100-kb windows around each GWS SNPs and uses them to predict 
the expected loss of accuracy. As previously described38, we used 
genotypes from 503 EUR and 661 AFR participants of the 1KGP as a 
reference sample to estimate ancestry-specific MAF and LD correla-
tions between GWS SNPs and SNPs in their close vicinity, and defined 
candidate causal variants as any sequenced SNP with an rLD

2  > 0.45 with 
a GWS SNP within that 100-kb window. Standard errors were calculated 
using a delta-method approximation as previously described38.

Down-sampled GWAS analyses
In addition to our EUR GWAS meta-analysis and our trans-ancestry meta-
analysis (METAFE), we re-analysed five down-sampled GWASs as shown 
in Table 2. These down-sampled GWASs include various iterations of 
previous efforts of the GIANT consortium and have a sample size vary-
ing between around 130,000 and 2.5 million (EUR participants from 
23andMe). To ensure sufficient genomic coverage of HM3 SNPs we 
imputed GWAS summary statistics from Lango Allen et al.19, Wood et al.20 
and Yengo et al.3. with ImpG-Summary (v.1.0.1)64 using haplotypes from 
1KGP as a LD reference. GWAS summary statistics from Lango Allen et al. 
only contain P values (P), height-increasing alleles and per-SNP sample 
sizes (N). Therefore, we first calculated Z-scores (Z) from P values assum-
ing that Z-scores are normally distributed, then derived SNP effects (β) 
and corresponding standard errors (s.e.) using linear regression theory 
as β Z N Z= / 2MAF × (1 − MAF) × ( + )2  and SE = β/Z. Imputed GWAS 
summary statistics from these three studies are made publicly available 
on the GIANT consortium website (see ‘URLs’ section). We next per-
formed a COJO analysis of all down-sampled GWAS using genotypes of 
348,501 unrelated EUR participants in the UKB as a LD reference panel, 
as for our METAFE and EUR GWAS meta-analysis.

Gene prioritization using SMR
We used SMR to identify genes whose expression could mediate the 
effects of SNPs on height. SMR analyses were performed using the 
SMR software v.1.03. We used publicly available gene eQTLs identified 
from two large eQTL studies; namely, the GTEx65 v.8 and the eQTLgen 
studies (see ‘URLs’ section). To ensure that our SMR results robustly 
reflect causality or pleiotropic effects of height-associated SNPs on 
gene expression, we only report here significant SMR results (that is, 
P < 5 × 10−8), which do not pass the heterogeneity in dependent instru-
ment (HEIDI) test (that is, P > 0.01; Methods). The significance threshold 
for the HEIDI test was chosen on the basis of recommendations from 
another study66.
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Selection of OMIM genes
To generate a list of genes that are known to underlie syndromes of 
abnormal skeletal growth, we queried the Online Mendelian Inher-
itance in Man database (OMIM; https://www.omim.org/). From July 
2019 to August 2020, we performed queries using search terms of 
“short stature”, “tall stature”, “overgrowth”, “skeletal dysplasia” and 
“brachydactyly.” We then used the free text descriptions in OMIM to 
manually curate the resulting combined list of genes, as well as genes in 
our earlier list from Wood et al.20 and all genes listed as causing skeletal 
disease in an online endocrine textbook (https://www.endotext.org/, 
accessed September 2020). For short stature, we only included genes 
that underlie syndromes in which short stature was either consistent 
(less than −2 s.d. in the vast majority of patients with data recorded), 
or present in multiple families or sibships and accompanied by   
(a) more severe short stature (−3 s.d.), (b) presence of skeletal dysplasia 
(beyond poor bone quality/fractures); or (c) presence of brachydactyly, 
shortened digits, disproportionate short stature or limb shortening 
(not simply absence of specific bones). We removed genes underly-
ing syndromes in which short stature was likely to be attributable to 
failure to thrive, specific metabolic disturbances, intestinal failure 
or enteropathy and/or very severe disease (for example, early lethal-
ity or severe neurological disease). For tall stature or overgrowth, we 
only included genes underlying syndromes in which tall stature was 
consistent (more than +2 s.d. in the vast majority of patients with data 
recorded) or present in multiple families or sibships and accompanied 
by either (a) more severe tall stature (>+3 s.d.) or (b) arachnodactyly. 
For brachydactyly, we required more than only fifth finger involvement, 
and that brachydactyly be either consistent (present in the vast majority 
of patients) or accompanied by consistent short stature or other skel-
etal dysplasias. For skeletal dysplasias, we only considered genes that 
underlie syndromes in which the skeletal dysplasia involved long bones 
or the spine and was accompanied by short stature, brachydactyly or 
limb or digit shortening. We also included all genes in a list we gener-
ated in Lango Allen et al.19, which was curated using similar criteria.  
The resulting list contained 536 genes, of which 462 (Supplementary 
Table 11) are autosomal on the basis of annotation from PLINK (https://
www.cog-genomics.org/static/bin/plink/glist-hg19).

URLs
GIANT consortium data files: https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files. Anal-
ysis script for within- and across-ancestry meta-analysis: https:// 
github.com/loic-yengo/ScriptsForYengo2022_HeightGWAS/blob/main/ 
run-meta-analyses-within-ancestries.R and https://github.com/
loic-yengo/ScriptsForYengo2022_HeightGWAS/blob/main/run-meta- 
analyses-across-ancestries.R. Analysis script for correction of winner’s 
curse: https://github.com/loic-yengo/ScriptsForYengo2022_Height-
GWAS/blob/main/WC_correction.R. Genotypes from 1KG: https://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. eQTL data 
for SMR: GTEx v.8: https://yanglab.westlake.edu.cn/data/SMR/GTEx_
V8_cis_eqtl_summary.html; eQTLgen: https://www.eqtlgen.org/
cis-eqtls.html. Annotation-weighted LD scores for stratified LD score 
regression analyses: https://alkesgroup.broadinstitute.org/LDSCORE/
LDSCORE/. LDSC software: https://github.com/bulik/ldsc.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Summary statistics for ancestry-specific and multi-ancestry GWASs 
(excluding data from 23andMe) as well as SNP weights for polygenic 
scores derived in this study are made publicly available on the GIANT 

consortium website (see ‘URLs’ for GIANT consortium data files). 
GWAS summary statistics derived involving 23andMe participants 
will be made available to qualified researchers under an agreement 
with 23andMe that protects the privacy of participants. Application 
for data access can be submitted at https://research.23andme.com/
dataset-access/. We used genotypes from various publicly available 
databases to estimate linkage disequilibrium correlations required 
for conditional analyses and genome-wide prediction analyses. These 
databases include the UK Biobank under project 12505 and the database 
of Genotypes and Phenotypes (dbGaP) under project 15096. Accession 
numbers for dbGaP datasets are phs000788.v2.p3.c1, phs000386, 
phs000557.v4.p1, phs000286.v5.p1, phs000613.v1.p2, phs000284.
v2.p1, phs000283.v7.p3 and phs001395.v2.p1 cohorts. Details for each 
dbGaP dataset are given in the Methods. Source data are provided 
with this paper.

Code availability
We used publicly available software tools for all analyses. These soft-
ware tools are listed in the main text and in the Methods. Source data 
are provided with this paper.
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GWAS meta-analysis of height
in 281 studies  

European
n = 4,080,687 

East Asian
n = 472,730

Hispanic
n = 455,180
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African American
n = 293,593
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Ancestry-specific meta-analysis of height

Genetic discoveries
- Heritability estimation
- Conditional analysis
- Effect size comparison
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Polygenic prediction
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GIANT consortium: Genetic Investigation of ANthropometric Traits
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EUR (75.8%)

Ancestral composition

Extended Data Fig. 1 | Broad ancestries composition. Geographical mapping 
and ancestries composition of 281 studies meta-analysed in this study. Various 
analyses were performed including (1) dectection of height-associated SNPs 
(Genetic discoveries box), (2) quantification of the genomic distribution of 

height-associated loci (Genomic distribution box), (3) assessement of the 
performances of polygenic predictors of height (Polygenic prediction box), 
and (4) assessment of the relationship between GWAS sample size and 
discoveries (Saturation of discovery from GWAS box).



Extended Data Fig. 2 | Colocalization of height-associated signals across 
ancestries. Proportion (y-axis) of GWS SNPs identified in our GWAS 
meta-analyses of non-European (non-EUR: African – AFR; East Asian – EAS; 

South Asian – SAS; Hispanic – HIS) ancestry/ethnicity participants thar are 
located within a certain distance (x-axis) of GWS SNPs identified in our GWAS 
meta-analysis of EUR participants only.
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Extended Data Fig. 3 | Replication of marginal associations in the EBB.  
a, Each dot represents one the 12,111 SNPs detected in our trans-ancestry 
meta-analysis. The x-axis represents the expected statistical power to replicate 
each association (P<0.05/9,473 = 5.3×10−6; where 9,473 is the number of 
associations reaching marginal genome-wide significance in our discovery 
trans-ancestry GWAS and with a minor allele frequency>1% in the EBB sample). 
The y-axis represents the -log10 of the association p-value in the EBB multiplied 
by the product of signs of estimated SNP effects in the discovery and in the EBB. 

Horizontal dotted line represents replication at P<0.001 and the vertical 
dotted line indicates 80% of statistical power. SNPs highlighted in green have 
an expected statistical power for replication >80%. One outlier (rs11100870), 
highlighted in red, does not replicate in the EBB sample. b, Proportion (P) of 
SNPs with a sign-consistent estimated effect between discovery GWAS 
(N~5.3M) and EBB. Expected proportions (E[P]) are calculated using 
equation (2) in the Methods. Error bars are defined as 1.96× P P m(1 − )/ , where 
m is the number of SNPs in the corresponding MAF interval.



Extended Data Fig. 4 | Enrichment of genes containing pathogenic 
mutations that cause extreme height or abnormal skeletal growth 
syndromes near hotspots of GWS SNPs. Four hundred and sixty-two (462) 
autosomal genes were curated from the Online Mendelian Inheritance in Man 
(OMIM) database. a, Red arrow indicates the observed enrichment statistic 
(OR = 2.5-fold) measuring the odds ratio of the presence of an OMIM gene 

within 100 kb of a GWS SNPs with a density > 1. The blue histogram represents 
the distribution of enrichment statistics from 1,000 random genes matched, 
which length distribution matches that of the OMIM genes. b, Enrichment of 
OMIM genes near high density GWS SNPs. High density is defined by on the 
x-axis by the minimum number of other independent GWS SNPs detected 
within 100 kb.
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Extended Data Fig. 5 | Haplotypic analysis at the ACAN locus. a, Distribution 
of estimated haplotype effects from 14,117 haplotypes covering a 100 kb long 
genomic region near the ACAN gene (hg19 genomic coordinates: 
chr15:89,307,521-89,407,521). b, Quantile-quantile plot of associations 
between these 14,117 haplotypes and height. c, Distribution of the variance 
explained by each of the 14,117 haplotypes. d, Mean signals density (y-axis) 
across simulated data where 1 causal SNP within the locus explains between 
0.5% and 5% (x-axis) of trait variance. Causal variants were sampled from a pool 
of 13 SNPs with a 1.4×10−5 < MAF < 1% genotyped in 291,683 unrelated EUR 
participants of the UKB, with no missing values at these 13 SNPs. Standard 
errors were calculated as the standard deviation (s.d.) of signal density across 

100 simulation replicates. GCTA-COJO analyses to identify independent 
signals were performed using a subset of 10,000 unrelated EUR participants of 
the UKB to mimic the large discrepancy between the size of the discovery 
GWAS and that of the LD reference used in our real data analyses. e, Proportion 
of VNTR length explained by 25 GWS SNPs identified near ACAN in 4 ancestries 
(European: EUR; South Asian: SAS; East Asian: EAS; African: AFR). f, Proportion 
of height variance explained in a sample of EUR UK Biobank participants by 
various sets of polymorphisms at the ACAN locus. rs3817428 and rs34949187 
are two missense variants and rs7176941 is an intronic variant with high 
posterior causal probability identified in ref. 28. In e and f, error bars represent 
standard error (s.e.).



Extended Data Fig. 6 | Variance of height explained by common SNPs within 
35 kb of GWS SNPs. Stratified SNP-based heritability (hSNP

2 ) estimates were 
obtained from a partition of the genome into two sets of 1000 Genomes 
imputed SNPs with a minor allele frequency (MAF) >1%: (1) SNPs within +/− 35 kb 
of GWS (GWS loci) vs. all other SNPs. Analyses were performed in samples of 

five different ancestry groups: European (EUR; UK Biobank only), African 
(AFR), East Asian (EAS) and South Asian (SAS) as described in the legend of 
Fig. 3. Estimates from stratified analyses were compared with SNP-based 
heritability estimates obtained from analysing HM3 SNPs only (dotted 
horizontal violet bar).
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Extended Data Fig. 7 | Accuracy of PGSs derived from joint effects of SNPs 
ascertained at various significance thresholds. The six panels show on their 
y-axes the prediction accuracy (R2) of multiple PGS across five target samples. 
The ancestry group and size of each target sample is indicated in the panel title. 
The top-left panel shows the averaged prediction accuracy in two European 
ancestry (EUR) target samples from the UK Biobank (UKB) and Lifelines 
Biobank (LLB). The other panels show prediction accuracies in individual target 
samples of African ancestry (AFR) from UKB and the PAGE study, East Asian 
ancestry (EAS) and South Asian ancestry (SAS) ancestry from the UKB and 
Hispanic ethnicity from the PAGE study. Each panel is divided in four columns 

representing the four significance levels used to ascertain SNPs using the 
GCTA-COJO algorithm. GCTA-COJO was applied to each ancestry-group 
specific GWAS meta-analysis with an ancestry-match linkage disequilibrium 
(LD) reference. We used genotypes from 50,000 (vs 350,000 for results 
reported in the main text) unrelated EUR participants as LD reference to run 
GCTA-COJO on the EUR- and the cross-ancestry GWAS meta-analysis. For the 
other ancestry groups, we used genotypes from 10,636 AFR individuals, 5,875 
EAS individuals, 4,883 HIS individuals and 9,448 SAS individuals as LD 
reference (as described in Methods). Error bars are standard error (s.e.).  
The number of SNPs used in each PGS is indicated (in white) within each bar.



Extended Data Fig. 8 | Enrichment of height-associated genes identified at 
various GWAS sample sizes within 20 clusters of gene sets representing 
broad categories of biological pathways. Gene-set enrichment was 
performed with MAGMA and DEPICT across seven GWAS with increasing 
sample sizes. Samples used (Lango Allen et al. (2010), n = 0.13M; Wood et al. (2014), 
n = 0.24M; Yengo et al. (2018), n = 0.7M; GIANT-EUR (no 23andMe), n = 1.63M; 
23andMe-EUR, n = 2.5M; European-ancestry meta-analysis, n = 4.08M; and 
cross-ancestry meta-analysis, n = 5.31M) are described in Tables 1–2.  
The degree of enrichment of gene sets (MAGMA, DEPICT) of known skeletal 
growth disorder genes catalogued in the Online Mendelian Inheritance in  

Man (OMIM) database among 20 clusters of gene sets (see Methods section in 
Supplementary Note 5) is indicated by the blue-red colour scale. Enrichment 
for MAGMA and DEPICT was defined to be the number of prioritized gene sets 
(top 10% of gene sets) in each cluster divided by the 10% of the number of gene 
sets in the cluster. Enrichment for OMIM was defined to be the number of OMIM 
genes in a gene set (Z > 1.96) divided by the size of the gene set divided by the 
proportion of all genes in OMIM, then averaged across the cluster. Significant 
enrichment (compared to shuffled prioritization of gene sets or genes) is 
marked with *.
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Extended Data Fig. 9 | Annotation-level saturation of GWAS discoveries  
as a function of sample size. Increase in sample size from ~4 million to ~5 million 
is achieved by including ~1 million participants of non-European ancestry.  
a, Number of annotations showing a significant heritability enrichment as 
function the function of the sample size of the GWAS used to estimate these 
enrichment. Heritability enrichment was detected using a stratified LD score 
regression (LDSC) analysis of 97 genomic annotations included in the  
“baseline + LD” model from Gazal et al. b, Correlation between Z-scores measuring 

the statistical significance of heritability enrichments of 97 annotations  
(each dot is an annotation) in our largest GWAS (x-axis) as compared to 
down-sampled GWAS (y-axis). Sample size is denoted by the colour-code.  
c, Distribution of estimated enrichment statistics for 21 annotations found 
significantly enriched (P < 0.05/97) in at least 6 of the 7 GWAS analysed here. LoF-i 
genes: Loss of function intolerant genes; TSS: Transcription Start Sites; DGF: 
Digital genomic footprint; TFBS: Transcription Factor Binding Sites; DHS: DNAse I 
hypersensitive sites; GERP (NS): GERP++ score (number of substitutions).



Extended Data Fig. 10 | Partitioning of low-frequency SNP-based 
heritability within GWS loci. Panels b–d represent partitioned SNP-based 
heritability estimates from three samples (EBB: Estonian Biobank; UKB: UK 
Biobank; LLB: Lifelines Biobank) of unrelated European ancestry individuals 
independent of our discovery GWAS. a, Partitioned SNP-based heritability 
estimates obtained from an inverse-variance weighted meta-analysis of 

estimates shown in b–d. SNPs were partitioned into four classes according to 
their minor allele frequency (MAF: 0.1% < MAF < 1% vs. MAF > 1%) and their 
position within versus outside GWS loci. The SNP-based heritability 
contributed by SNPs within GWS loci is denoted hGWS

2 , and that contributed by 
SNPs outside these loci is denoted hother

2 . These results are further discussed in 
Supplementary Note 6.
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