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Chapter 1

Introduction

The Whole is Greater than the Sum of its Parts

Attributed to Aristotle

Brief history of the gene

= he hereditary instructions for the development, direction and maintenance of
a cellular organism are encoded within the deoxyribonucleic acid (DNA) of
the species. This genetic blueprint is encased within its double helical molecular
structure, as revealed and made famous by Watson & Crick (as inspired by the work
of Rosalind E. Franklin) in 1953.1 The DNA resides within the nucleus of the cell as
compact structures termed chromosomes.

The chemical makeup of DNA, and thus the hereditary and biochemical prop-
erties of terrestrial life, is derived from only four basic constituents known as nu-
cleotide bases. These nucleotides can be recognized as adenine, thymine, cytosine
and guanine, shortened and canonically denoted by their characteristic acronym as
A, T, C, G respectively (Figure 1.1).

The order of these nucleotides (A, T, C and G) determines the genetic messages
which are to be followed and carried out by the complex molecular machinery of
the cell. The DNA consists of two intertwined strands, each strand recognizable
by the orientation of the nucleotides in regard to the phosphate backbone of the
DNA; going up-/ or downstream the rigid backbone (5’ -> 3"). Nucleotide bases on
opposite strands are paired in complementary fashion, an adenosine (A) is always
paired with a thymine (T) and each cytosine (C) is similarly paired with a guanine
(G) through hydrogen bond interactions.
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Figure 1.1: The major building blocks of life and members of the nucleotide family: adenine (A), thymine
(T), cytosine (C) and guanine (G).

Prior to the characterization of the physical structure of DNA, the scientific com-
munity already possessed extensive hypotheses and models of the hereditary nature
of phenotypical traits observed in life, within both animal and plant kingdoms. Un-
recognized for many years after its initial publication in 1865 and rediscovered only
~40 years later, the experiments into the proposed patterns of inheritance within
the common garden pea (Pisum sativum) by Johann Gregor Mendel captured much
of the abstract foundations of modern genetics, including the description of ex-
changeable "Zellelemente” as minute and abstract units of inheritance; later these
elements would be redefined into our current understanding of genes.? However,
the first usage of the term "gene” would only be seen much later in the work of
Hugo de Vries in 1901, proposing that mutations in pangenes were the drivers of
genetic diversity and the possible origin of species.? In 1909, Wilhelm Ludvig Jo-
hannsen extended upon this reasoning and proposed the term gene to describe
a more exact definition of these units of inheritance in regards to phenotypical
changes relating to underlying genotypical changes within species.* The whole of
these genetic messages within the species is termed the genome, containing all
DNA with its underlying genes and genetic information.

Following the notion of Mendel’s observation on his Second Law (inherited traits
are able to segregate independently), Walter S. Sutton (in 1903) discovered that
the inheritance of genes was in close relation to the outcome of chromosomal seg-
mentation during cell division, leading to the first observations that certain genes
are harbored on specific chromosomes.® Several years later in 1910, utilizing the
genetic model of the fruit fly (Drosophila melanogaster), Thomas Hunt Morgan and
colleagues discovered that genes indeed lie upon fixed positions within chromo-
somes (in this case sex-linked) and following this discovery, further employed the
fruit fly to publish the first-ever genetic map detailing the chromosomal location of
several genes within its genome. %’
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With these observations, it also became evident that the number of genes is
vastly greater than the number of corresponding chromosomes. Early cytogenetics
revealed the distinctive karyogram of the diploid human chromosomal landscape,
22 autosomal chromosomes, denoted based upon decreasing chromosomal length,
and two allosomes (XX for females and XY for males). Deviations from this canon-
ical chromosomal pattern within the parental germ-cells (giving rise to the zygote)
or aberrations during embryogenesis are linked to a wide range of genetic and phe-
notypic abnormalities within individuals. A small overview of such common genetic
disorders due to chromosomal aberrations is given in Table 1.1.

Since then, advancements in molecular techniques and technological innova-
tions have elucidated much of the complex molecular mechanics and interplay of
cellular machinery driving genetic inheritance and messaging.?%?! Several major
advances which aided in revealing the genetic code of life include several Nobel-
prize winning works within the field of chemistry, physics and physiology or medicine.
In 1957, using Escherichia coli models, Arthur Kornberg and colleagues discovered
the family of enzymes (DNA polymerase) involved in DNA replication?? and uti-
lized these DNA polymerases to invent various supporting molecular techniques to
ultimately decipher the ribonucleic acid (RNA) codon table. Har Gobind Khorana
and colleagues synthesized the first oligonucleotides, and in 1976, the first syn-
thetic gene. 23 Discoveries of more accurate and thermally-stable DNA polymerases
within other species, such as Thermus aquaticus (Taqg), and madifications to im-
prove the replicative potential of these enzymes allowed for the invention of several
key sequencing principles. In 1977, Frederick Sanger and colleagues revealed their
work on a DNA sequencing technique revolving around the selective incorporation
of chain-terminating dideoxynucleotides to sequentially determine the nucleotide
sequence of a given DNA molecule, known as Sanger sequencing.?* Subsequently,
they used this technique to fully characterize the first DNA-based genome, that of
the bacteriophage ¢X174 (PhiX).%> However, these techniques required the input
of large quantities of DNA molecules for accurate detection which warranted exten-
sive time and effort to quantify and isolate. This issue was alleviated in 1983 by
Kary Mullis and colleagues with the invention of polymerase chain reaction (PCR);
a rapid and accurate DNA template replication process which is still the de facto
method for producing the large concentrations of pure DNA necessary for sequenc-
ing. During these major discoveries which led to more accessible and automated
sequencing approaches, the first complete protein-coding gene sequence to be re-
vealed (through nuclease digestion of the respective RNA molecule and subsequent
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Table 1.1: Overview of common genetic diseases associated with large-scale germline chromosomal aberrations. Mean prevalence per 10.000 newborns
and with 95% confidence interval given (if available).

Disease Prevalence Symptom(s) Chromosomal aberra-
tion(s)
Klinefelter syndrome 17 in male births (14-20; metas- Among others; Genital abnormalities, XXY aneuploidy®*°

Down’s Syndrome

Turner’s Syndrome

Edwards Syndrome

Patau syndrome

Cri du chat Syndrome

tudy)?®

13.83 (13.63, 14.03; US)!!; 14.57
(14.43, 14.73; NL) 12

4 in female births (DE)**

2.34 (2.26, 2.42; US) !

1.08 (1.02, 1.13; US)'1;

6 (P18

hypogonadism and infertility.

Among others; intellectual disability, de-
velopmental delays, hypotonia, heart
and gastrointestinal disorders and cran-
iofacial abnormalities

Among others; Development disorders
incl. ovarian failure, infertility, osteo-
porosis, hypothyroidism, and renal and
gastrointestinal disease

Among others; intellectual disability,
heart and gastrointestinal disorders, in-
creased risk of certain types of cancers
and craniofacial abnormalities

Among others; intellectual disability, de-
velopmental delays, hypotonia, heart
and urogenital disorders and muscu-
loskeletal / craniofacial abnormalities
Among others; intellectual disability,
craniofacial abnormalities and character-
istic cat-like crying

Trisomy 2113

Structurally abnormal X chro-
mosome, monosomy X or
45,X/46,XY mosaicism. 141>

(Mosiac) Trisomy 181617

Trisomy 1316

Partial or complete deletion
of 5p. 819
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separation by electrophoresis) was that of the small bacteriophage MS2 in 1972,
which was shortly expanded upon with the first fully sequenced genome (consti-
tuting 3569 bases and present as single-stranded RNA molecule) in 1976, both by
the laboratory of Walter Fiers within the university of Gent. 2627 These prior efforts
were pivotal to the future of modern genetics in revealing the essence of genetic
mapping but showed that much manual labor was required to genotype only few
genes and/or small genomes.

Advancements within the molecular and technical instruments required to si-
multaneously sequence large batches of DNA, allowed for the promise of fully se-
guencing and investigating larger genomes; including the full genetic sequence of
man. The Human Genome Project (HGP), the largest international scientific re-
search project to date, sought to fully determine every single nucleotide of the
human genome. The HGP, initiated in 1990, revealed the first draft version of the
human genome on June 26, 2000 and provided a more finalized human genome on
April 14, 2003. The total cost of this enormous project is estimated to be around 2.7
billion U.S. dollars. This huge collaborative effort has sparked much technological
and biological innovation and is to-this-day paramount to many current landmark
studies and routine diagnostics.?82° Continued research by the HGP and many
laboratories around the world has yielded a complete human genome (currently
version GRCh38.p13) which is used as a healthy reference genome to detect ge-
nomic abnormalities within patients suffering from a wide scale of genetic diseases.
This genome consensus has been assembled from the DNA derived from the white
blood cells of four randomized healthy individuals (two male and two females). The
current draft of the human reference genome is ~3.1 billion nucleotides in length
and contains 19,982 protein-coding genes (with experimental evidence), according
to the GENCODE consortium (v33)3C. Only several challenging repeat-like genomic
regions and correct placement of several contigs are left in revealing the complete
genetic code of man. However, the current genomic sequence is more than suffi-
cient in serving as a critical and high-quality reference in distinguishing functions
and clinically-relevant mutations within genetic disease and malignancies. A small
overview of common germline single-gene disorders, in which genes only slightly
deviate from this reference genome due to small single base-substitution or inser-
tion/deletion mutations, is given in Table 1.2.

To further underscore the scientific and societal importance of unobstructed
access to this resource, the United States Supreme Court (2013; Association for
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Table 1.2: Overview of common genetic diseases associated with base-substitution or insertion/deletion mutations within single genes. Mean prevalence

per 10.000 newborns was retrieved from Orphanet3! on May 315t 2020.

Disease Prevalence Symptom(s) Affected gene Inheritance
Cystic Fibrosis 0.1-0.9 Chloride impermeability leading to  Cystic fibrosis conduc- Autosomal recessive
(hyper)production of viscid mucus tance  transmembrane
leading to progressive respiratory regulator (CFTR; 7g31)
and digestive damage
Sickle-cell anemia 1-5 Anemia, bacterial infections and Beta hemoglobin (HBB; Autosomal recessive
vaso-occlusive crisis 11p15)
Huntington’sdisease 0.1 - 0.9 Neurodegenerative disorder of the Huntingtin (HTT; 4p16) Autosomal dominant
central nervous system character-
ized by unwanted choreatic move-
ments, behavioral and psychiatric
disturbances and dementia.
Autosomal dominant  1-5 Development of multiple cysts Polycystic kidney disease  Autosomal dominant
polycystic kidney within the kidney leadingtoarange 1 (PKD1; 16p13) and
disease of renal complications polycystic kidney disease
2 (PKD2; 4q22)
Phenylketonuria 1-5 Intellectual disability, developmen- Phenylalanine hydroxy- Autosomal recessive
tal delays and motor-related disor- lase (PAH; 12q22)
ders
Fabry disease 1-5 Multisystemic lysosomal storage dis-  Alpha-galactosidase =~ A  X-linked recessive
ease leading to accumulation of sph-  (GLA; Xq21)
ingolipids
Tay-Sachs disease <1 Accumulation of G2 gangliosides Hexosaminidase A Autosomal recessive
due to hexosaminidase A defiency, (HEXA; 15q23)
leading to progressive neurodegra-
dation.
Duchenne muscular 0.1-0.9 Rapidly progressive muscular weak-  Dystrophin (DMD; Xq21)  X-linked recessive

dystrophy

ness due to degeneration of skele-
tal, smooth and cardiac muscle.
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Molecular Pathology v. Myriad Genetics, Inc.) ruled that naturally occurring human
genes are not an invention and therefore cannot be patented; ensuring that no
single individual, company, nation or country can make claim to this resource.

In similar fashion, large collaborative genome-related efforts such as The Ency-
clopedia of DNA Elements (ENCODE) project have mapped many genetic regulators,
such as proximal and distal regulatory elements which bind to the DNA based on
sequence-contexts (e.g.,, POL2RA, EZH2 and SETDB1), promoter activities (e.g.,
H3K27ac), and chromosomal interactions.3 All this research and data have been
made available to other researchers to further our understanding of the fundamen-
tals of the human genome and their relationship to genetic diseases.

The central dogma of molecular biology

The eukaryotic DNA is comprised out of a myriad of genetic elements including cis/-
trans-acting elements, genes, introns, exons, enhancers, motif-sites, centromeres,
telomeres and many others; each with their own characteristic function and es-
sential purpose. Genes are transcribed into RNA molecules through the elaborate
process of transcription, and subsequently, messenger RNA (mRNA) molecules are
followed by translation into amino-acid structures termed proteins. All cells within
the species harbor near-identical DNA, yet based on their localization, environment
and function, differently regulate and transcribe distinct genes through molecu-
lar mechanisms affecting their transcriptome. The general and basic structure of
a gene, as exists in the human genome, consists out of several of these genetic
elements. Such genes consist out of one or multiple exons containing the protein-
coding sequence(s) and are interspersed by non-coding sequences (introns). In
addition, the starting and terminal exon(s) contain non-coding sequences known
as untranslated region (UTR). These non-coding sequences will not be incorporated
into the final protein sequence and serve other purposes, such as regulatory roles
and to allow alternate conjugation of exonic sequences (rather than only the linear
follow-through; alternative splicing), which greatly expands the number of protein
configurations (isoforms) derived from a single gene.

Within eukaryotes, the transcription of DNA into mature messenger RNA capable
of subsequent translation is facilitated through an intricate and efficient multi-step
process. >3 Briefly, the canonical mRNA transcription process is facilitated by RNA
polymerase II, as promoted by one or more transcription factors, which generates
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a complementary RNA molecule based upon the DNA template. Post-transcriptional
maodifications further ready these pre-messenger RNA molecules for export out of
the nucleus and subsequent translation, most commonly through capping, polyadeny-
lation and splicing. At the 5'-side of the pre-mRNA molecule, a 7-methylguanylate
cap (m’G) is attached serving multiple functions: 1) nuclear exportation and further
processing through interactions with the nuclear cap-binding complex, 2) recruit-
ment of the 43S pre-initiation complex through interactions with the 40S ribosomal
subunit, 3) prevents endonucleolytic cleavage, and 4) assisting in the excision of the
5’ proximal intron through splicing.33-3% At the 3’-side of the pre-mRNA molecule,
additional adenine nucleotides are attached to generate the polyadenylate (poly(A))
tail. This poly(A)-tail serves to stabilize and protect the RNA molecule from degrada-
tion. 33 After these post-transcriptional modifications, the mature messenger RNA is
capable of being translated into proteins by the ribosomal machinery and facilitating
factors.

These processes allow the human genome to produce a great arsenal of RNA
molecules and proteins which maintain and propagate cellular life; an arsenal even
greater than the significant number of genes present on the genome.

Cancer: malignancy of the tissue

Repair and maintenance of the proper state of genes and cellular function(s) is
essential to all cellular life to enable the correct transfer of genetic instructions
throughout life and evolution. Spontaneous (or driven) mutational processes within
the somatic cells of an individual may give rise to an malignancy of the tissue; known
as cancer. The disease manifests itself as an uncontrolled spread and malignant
transformation of cells, both within and beyond its primary site of origin; as made
migratory through the blood and lymphoid systems. These uncontrolled clusters of
malignant cells hijack the vital resources necessary for proper organ functionality,
leading to disruptions within the careful equilibrium of the healthy cellular systems
and ultimately progressing to organ failure or otherwise fatal conditions.

Cancer is the second leading cause of death (world-wide), responsible for an
estimated 9.6 million deaths in 2018 and surpassed only in incidence by heart dis-
eases. 3’73 With an estimated 18.1 million new cases each year (and rising), both
clinical and fundamental research into the underlying molecular biology, diagnostics
and treatment of this malignancy is worthwhile.
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As summarized in tables 1.1 and 1.2, genetic disorders rarely deviate from the
canonical genomic status but, instead, stretch the extent of healthy genetic makeup
due to strict cellular regulation upon the embryonic and fetal gestation process. Ma-
lignant cells however, have acquired several key principles which evade and manip-
ulate these protective cellular processes. These hallmarks include sustained prolif-
eration, evasion of growth suppressors, replicative immortality, induced angiogene-
sis, resistance to apoptotic processes, promotion of supportive micro-environments,
metabolic rewiring, immune modulation and acquirement of invasive and metastatic
potential. 4! In addition, certain tumors (e.g., prostate cancer) exhibit extensive
genomic aberrations which are only rarely seen in germline diseases, such as catas-
trophic chromosomal re-arrangements leading to chromoanagenesis (chromothip-
sis, chromoplexis and chromoanasynthesis). 4>~

Many of these hallmarks benefiting the evolutionary progression towards ma-
lignancy have been acquired by somatic alterations accrued within the human
genome; twisting and (re-)activating the genetic harbingers of cellular instruction.
Genomic alterations can arise from various internal and external origins and can ac-
crue over time if left uncorrected and without penalty. These alterations can arise
from spontaneous events due to cellular aging and common errors during rou-
tine processes such as DNA replication or mis-repair, by enzymatic induction (e.g.,
APOBEC activity), or by environmental/chemical induction through stimuli such as
carcinogens and radiation (e.g., from ultraviolet light (UV)).*>**¢ The minimal num-
ber of genomic mutations within coding regions required for the malignant forma-
tion of tumors within primary lesions is observed to be dependent on the tissue
and site of origin.*” The median tumor mutational burden (TMB) of bone marrow
myelodysplastic syndrome is observed to be as little as 0.8 (0.8 somatic mutation(s)
per coding megabase) whilst the median TMB of skin melanoma is observed to be
as high as 14.4.%

The genetic (mis-)instructions contributing to the malignant progression of cells
ranges per primary site and tissue of origin, with specific alterations seen mostly
only within certain tissues; e.g., the TMPRSS2-ERG gene-fusion event within ma-
lignant prostate tissue and observed within 50% of prostate adenocarcinoma. *8:4°
The identification and experimental validation of key recurrent somatic mutations
within genes benefiting the evolutionary trajectory of malignant cells have yielded
large sets of cancer-associated genes.>%3 These driver genes can be categorized
into two categories; (proto-)oncogenes and tumor suppressors.>* In this distinc-
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tion, (proto-)oncogenes are those genes that stimulate cell-growth, division and
survival and which accrue somatic mutations which alter their proper operation(s).
Adversely, tumor suppressor genes serving the prevention of malignant progres-
sion are often inactivated entirely. In addition to DNA-mediated (mis-)instructions,
epigenetic changes affecting the chromatin state can also disrupt the careful equi-
librium which modulates the underlying transcription of genes and can thereby
promote malignant progression and/or differentiation. >°>°

Depending on the primary site of origin, time of clinical diagnosis, existing treat-
ment options and overall health of a patient, the 5-year survival outcomes differs
greatly between malignancies. Improvements in the diagnosis, treatment and pre-
vention of localized disease is steadily increasing the 5-year survival rate of cancer
patients.3773° As the diseases progresses, the leading cause of cancer-related death
is attributed to the undisturbed spread of malignant cells beyond their primary site
to distant nodes; known as metastasis.”’ Death following metastatic progression
accounts for roughly 66 percent (and possibly upwards to 90%) of all cases.>®
Exceptions of fatal primary disease are often restricted to malignancies which are
particularly difficult to detect early and are often only noticeable at later and ad-
vanced stages, such as pancreatic or central nervous system malignancies. >

The constitution of malignant cells within a tumor is heterogeneous as these
have not all propagated from the same parental lineage, leading to several distinct
clonal populations within the tumor; each with their own diverging and malignant
path of tumor evolution.®° This tumor heterogeneity can be evidenced by distinct
somatic aberrations observed only within clonal fractions of the malignant popu-
lation. Conversely, clinical treatment of tumors can give rise to certain subclones
which have evolved (by random mutagenesis) and have the evolutionary advan-
tage of becoming (more) resistant to the treatment given. This field of research
is slowly being advanced by the introduction of single-cell sequencing techniques
which captures more fully this heterogeneity, yet the interpretation and possible
effects on clinical decision-making are still undergoing.°!

The underlying biology of these malignancies is slowly being unraveled and
taken advantage of in novel therapies, yet much remains to be explored. Re-
cent discoveries and diagnosis are closely tied with the advancement of new or
improved molecular methodologies and sequencing techniques, together with the
experience of interpreting these results, and it stands to reason that even more bi-
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ological processes will be elucidated in coming years. This advancement will be, in
part, made possible by the availability of large sequencing data-sets which increase
our statistical power to detect rare aberrations and biological mechanisms.

Next generation sequencing in oncology

Detection of somatic mutations within a tumor genome through Next-Generation
Sequencing (NGS) of DNA reveals the evolutionary history detailing the malignant
progression and cellular origin.®? Conversely, whole-transcriptome and epigenetic
analyses allow for supplemental examination of the cellular origin and present state
of the cell. These NGS techniques allow for personalized diagnosis and putative
treatment options. The shift from the ‘one size fits all’ treatment paradigm to more
personalized approaches, utilizing prognostic and predictive biomarkers, can pre-
vent unnecessary costs due to inappropriate therapy and help reduce treatment-
related toxicity. In addition, this could extend the range of putative therapies for
late-stage metastatic disease on a per-patient basis. 63:54

Applications of NGS can reveal the tumor heterogeneity, characterize microsatel-
lite instability (MSI), homologous recombination deficiency (HRD), regional hyper-
mutation (kataegis) and key cancer-related somatic aberrations, including structural
rearrangements and copy-number alteration(s) (CNA), nucleotide substitutions and
small insertions and deletions within specific genes or regulatory elements. Anal-
ysis of RNA sequencing furthermore reveals abnormal expression or modifications
within the transcriptome, including biomarkers distinguishing healthy from malig-
nant tissues.

With increasing reports of genetic components associated with genetic disease,
it has become routine to perform targeted genome profiling on sets of a priori
clinically-relevant genes within patients, such as common drivers in cancer (e.g.,
TP53, ERBB2, MET, BRCA2, KRAS, SF3B1, PTEN, MSH2) or those associated with
epilepsy (e.g., SOX6, PICK1 and SLC1A3).>2:5%66 Recent advances in isolating cir-
culating tumor DNA (ctDNA), circulating free DNA (cfDNA) and exosomes secreted
from cancer cells within peripheral blood even allow for the non-invasive detection,
classification and monitoring of (early-stage) malignancies and prenatal genetic dis-
eases. 67-70

With the arrival of more cost-friendly, parallel, and sensitive second- and even
third-generation sequencing techniques and facilitating platforms, the cost for se-
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quencing an individual’s entire exome or genome is steadily decreasing.?%?! How-
ever, additional costs such as the storage, computational processing and trained
personnel makes whole-exome sequencing (WES) and whole-genome sequencing
(WGS) still primarily worthwhile for cancer research purposes and remains out of
reach for routine diagnostics. ! Recent and current studies, such as Drug Rediscov-
ery Protocol (DRUP), WGS Implementation in the standard Diagnostics for Every
cancer patient (WIDE) and CPCT-02 studies, are testing the feasibility of perform-
ing and interpreting WGS to broaden therapeutic options and clinical outcome for
cancer patients within the Netherlands. >34

Landmark initiatives such as the HGP and ENCODE have inspired similar col-
laborative efforts within the field of oncology to pool together their resources and
available tumor (and matched normal) tissues to generate large and uniform NGS
data-sets which span both localized and more recently, metastatic malignancies.
An overview of several of these major publicly-available cancer cohorts is given in
table 1.3.

Table 1.3: Overview of major publicly-available next-generation sequenced cancer cohorts, with an
estimated number of unique samples as of Mar. 2020.

Cohort Disease Stage Sequencing Focus # Samples

TCGA Localized disease Exome, Transcriptome and 10.511%!
Methylome

PCAWG Localized disease Genome 277872

CPCT-02 Metastatic disease Genome, Transcriptome 39533

These large data-sets already harbor the key to uncovering novel genes, aber-
rations, and biological mechanisms relating to cancer biology, including several
regulated by events within the non-coding regions of the genome.>>372 Likewise,
the molecular complexity of the disease is ever increasing with observations that
also non-coding RNA (ncRNA) play critical roles through recurrent somatic mutation,
relocation and deregulation. 374

The availability of large uniform NGS data-sets enabled the discovery of dis-
tinct genome-wide mutational signatures which could be associated with genomic
stress, somatic variation, enzymatic activities, given treatments and cellular ag-
ing.”>’% Computational procedures to deconvolute and annotate these mutational
signatures quickly became available and allowed for detection of these biologically
and clinically-relevant characteristics within single tumor genomes.
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These large cohorts and the broad applications of existing and upcoming NGS
are yet to be fully explored and will undoubtedly grant new insights into the biolog-
ical intricacies of these malignancies and will allow for novel approaches of battling
this dreadful malady which afflicts an ever-growing number of people.

The rise of computational biology

The umbrella term of “computational biology” or “bioinformatics” signifies a rather
broad field of closely-related scientific focuses and interdisciplinary skills. These
terms could be applicable within the evolutionary sciences, -omics sciences or any
such scientific discipline focusing on the computational analysis of large-scale data-
sets or when a systematic approach (i.e., automated or scripted) is warranted. This
role has historically been attempted by researchers taken up the additional man-
tle of data-scientist next to their other multitude of responsibilities. However, the
sheer data-deluge of current-day enormous sequencing efforts and likewise am-
bitions>3:7277=7% require sophisticated, structured and documented computational
workflows coupled with sufficient fingerspitzengefiihl for accurate interpretations
and reproducible results. As the complexity and need for such workflows and tech-
nical requirements are increasing, the need for dedicated staff and centers to fa-
cilitate the storage, computational power and analysis of large-scale and in-depth
research is expanding. In turn, this led to distinct and full-time roles for bioinfor-
maticians to bridge the fields of (molecular) biology and computer science.

The importance of bioinformatics within current-day science is noteworthy, with
Wren et al. (2016)8° highlighting that over one third (34%) of the most-cited
scientific papers relate to bioinformatics. These fundamental works delve in such
topics as sequencing alignment882, germline and somatic variant callers®:84, pre-
diction of 2D/3D molecular structures®®, local sequence similarities®-88, phyloge-
netic reconstruction and the conceptualization of accompanying statistical methods
such as bootstrapping techniques® and large-scale collaborations and subsequent
databasing3%3290, A recent major interest (and hype) has been placed onto the
implementation of machine-learning based methods to aid the automated image-
based classification of tissue-slides or medical scans and for the recognition of com-
plex patterns underlying gene-expressions by utilizing artificial neural networks and
feature extraction methods. 891,92

As such, modern medicine is intertwined with the use of NGS and the accom-
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panying bioinformatics for the daily operations of molecular diagnostics and clinical
decision-making.?3 The current-day costs of NGS coupled with optimized work-
flows allows for the discovery of the genetic layout and drivers underlying patient-
specific disease(s) and can thereby provide additional options such as personalized
medicine®4°*> monitoring of the mechanisms of treatment-resistance®, detec-
tion of viral integration and components®” and can provide extensive molecular
classification which is even capable of revealing the likely tissue-of-origin for can-
cers of unknown primary (CUP)%8,

Recent technical innovations such as single-cell sequencing and the increased
utility of non-invasive collection and sequencing of ctDNA have opened new promis-
ing avenues for the (longitudinal) monitoring and interrogation of the complex and
dynamic clonal interactions of malignancies, coupled with extensive interrogation
of the tumor microenvironment (TME). Due to the even-greater data-deluge and
intricacies of such biological investigation, these new avenues are again paved with
the intrinsic dependency on computational biology and will likely spark the next era
of sequencing in the field of oncology.
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Scope of this thesis

Cancer is a malignant state of the tissue which has become errant and unrespon-
sive to the internal and external checkpoints maintaining the otherwise intrinsic
and tightly-regulated processes of DNA replication, repair, and division. This malig-
nant state is greatly orchestrated and maintained through deregulated harbingers
of genetic information known as oncogenes whilst silencing the tumor suppres-
sors and its guardian roles.*? Therefore, a potential remedy or inhibition of this
malignant state lies in uncovering the complex interplay between the genetic tem-
plate (genotype) and its malignant representation (phenotype) whilst also taking
mind of the dynamic interaction with the surrounding TME and (treatment-driven)
clonal evolution. Using a variety of molecular techniques, we can already exploit
these malignant hallmarks of cancer by utilizing a wide range of genetic elements
or features which are unique, absent or over-represented within malignant tissue.
Discovering these distinct features allows us to perform molecular diagnosis and
classification of current and retrospective disease-burdens and to deduce potential
patient-specific treatment options in order to improve overall survival and quality of
life for patients.

Within this thesis, we set out to design open-source software and algorithms to
unburden the processing and interpretation of the large quantities of biological data
derived from molecular diagnosis and experimental setups. This biological data can
range from limited targeted panels of a priori-selected known oncogenes and tumor
suppressor genes to the massive data-deluge of modern-day whole genome and
transcriptome sequencing approaches. With the improved accuracy and volume of
clinically-relevant somatic markers, we set out to increase the ease of interpreting
such genomic markers for daily molecular diagnostics purposes. In addition, due to
the increased volume of detectable somatic aberrations, we set out to provide an
accurate and robust approach to translate genomic aberrations into it's respective
protein sequence variant(s) to improve the detection and quantification of (poten-
tially immunogenic) protein-variants unique to certain malignancies and genotypes.

To better understand the scores of genomic aberrations underlying the con-
tinuation or progression of malignancies and the divergent paths to treatment-
resistance(s), we sought to interrogate the somatic inventories of two large-scale
cohorts of whole-genome sequenced metastatic castration-resistant prostate cancer
(mCRPC) and locally advanced or metastatic (advanced) neuroendocrine neoplasm
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(aNEN) for new potential avenues of patient-specific treatment; as make possible
through the combined and massive effort of the CPCT-02 study and Hartwig Medical
Foundation (HMF). As WGS allows for the interrogation of the non-coding genome,
we also sought to investigate the presence of recurrent non-coding aberrations
driving castration-resistance in mCRPC.

To further investigate potential treatment strategies for (localized) prostate ade-
nocarcinoma (PRAD), we sought to investigate the as-of-yet unknown roles of the
transcription factor ERG regarding immune-related mechanisms such as immune
evasion or suppression or altered dynamics of the TME; in comparison to normal-
adjacent prostate (NAP) tissues. Whilst the genomic fusion between TMPRSSZ2 and
ERG is a prevalent somatic event in PRAD (~50% of cases), any major significance
regarding overall survival or treatment-strategies remains lacking. As the tran-
scriptomic and epigenetic landscape of TMPRSS2-ERG PRAD differs significantly
from it's TMPRSS2-ERG PRAD counterpart®, differences in regards to immune-
regulatory systems could provide evidence for clinical impact and immune-based
therapies in PRAD.

As evidenced by the introduction and scope of this thesis, the sheer utility of
NGS allows us to delve into many scientific inquiries still left unanswered in our
battle against this dreadful malady known under the common moniker of cancer.
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Abstract

Exploration and visualization of next-generation sequencing data are crucial for clin-
ical diagnostics. Software allowing simultaneous visualization of multiple regions of
interest coupled with dynamic heuristic filtering of genetic aberrations is, however,
lacking. Therefore, the authors developed the web application SNPitty that allows
interactive visualization and interrogation of variant call format files by using B-allele
frequencies of single-nucleotide polymorphisms and single-nucleotide variants, cov-
erage metrics, and copy numbers analysis results.

SNPitty displays variant alleles and allelic imbalances with a focus on loss of het-
erozygosity and copy number variation using genome-wide heterozygous markers
and somatic mutations. In addition, SNPitty is capable of generating predefined
reports that summarize and highlight disease-specific targets of interest.

SNPitty was validated for diagnostic interpretation of somatic events by showcasing
a serial dilution series of glioma tissue. Additionally, SNPitty is demonstrated in four
cancer-related scenarios encountered in daily clinical practice and on whole-exome
sequencing data of peripheral blood from a Down syndrome patient. SNPitty allows
detection of loss of heterozygosity, chromosomal and gene amplifications, homozy-
gous or heterozygous deletions, somatic mutations, or any combination thereof in
regions or genes of interest. Furthermore, SNPitty can be used to distinguish molec-
ular relationships between multiple tumors from a single patient.

On the basis of these data, the authors demonstrate that SNPitty is robust and user
friendly in a wide range of diagnostic scenarios.
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Introduction

5] enetic instabilities such as somatic copy humber alterations, loss of heterozy-
\| gosity (LOH), copy-neutral LOH/uniparental disomy, or mutational changes in
proto-oncogenes, tumor suppressor genes, and genetic regulatory elements are of
putative relevance in tumor development and progression. 12 Somatic events can
give rise to allelic imbalances (AI) by the gain or loss of alleles due to errors in mi-
totic segregation, through single-nucleotide mutations, or through insertions and
deletions of chromosomal segments, possibly as causal factors in cancers.3=>

Striking examples are tumor suppressors such as TP53 and RB1, which are inac-
tivated in many cancers by a deletion of one allele coupled with a mutational change
in the other allele.®8 Copy-neutral LOH/uniparental disomy, which occurs due to
loss of one parental allele and gain of the other allele, cannot be detected by calcu-
lating copy number state alone. It is therefore of paramount importance to extend
the investigation of Al to establish correct molecular diagnosis and prognosis.

The authors have previously investigated and validated the diagnostic poten-
tial of Next-Generation Sequencing (NGS) to detect allelic losses and imbalances
using heterozygous markers.® Using heterozygous single-nucleotide polymorphism
(SNP)s, LOH and AI could be reliably detected with higher sensitivity and with
a lower amount of input deoxyribonucleic acid (DNA) (1 to 10 ng) than other
molecular techniques such as microsatellite marker analysis and multiplex ligation-
dependent probe amplification. In addition, the combination of SNPs analysis and
gene analysis by NGS was found to be a very powerful strategy for detection of
large chromosomal aberrations and mutations relevant for molecular classification
of tumors, clinical diagnosis, treatment, and prognosis. °

By utilizing informative heterozygous markers, NGS provides cost-effective and
reliable diagnostic insights into somatic Al on a per-sample basis. Reliable results
from targeted sequencing can even be achieved without the absolute necessity of
matched normal samples, albeit slightly less accurately. !? Owing to the admixture
of both normal and malignant cells in a tissue-slice section, a single tissue biopsy
sample can be used for diagnostic investigation by utilizing heterozygous mark-
ers while taking the tumor cell percentage into account. This added benefit can
be especially helpful in scenarios where the acquisition of matched normal tissue
is challenging, for example in revisiting historical samples from biobanks or brain
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tumor preparations.

Polymorphisms detected by NGS are routinely stored in generalized and stan-
dardized variant call format (VCF) files. !! Predefined standard fields for storing the
number of sequenced reads or number of observations per reference and alterna-
tive allele(s) are available in this format. VCF files are part of the output of most
industry-standard variant calling and annotation suites. B-Allele Frequency (BAF)
for each variant are computed based on standard VCF fields. The BAF formula is
a simple division of the observations per alternative allele over the sum of obser-
vations for both reference and alternative alleles. BAF thus represents the ratio
of each alternative allele per variant present in a sequenced sample and has been
applied for copy number analysis of SNP arrays. 12

Besides using heterozygous variants, copy number analysis can be performed
based on the covered genome of the sequenced sample. Results of copy number
analysis, derived from segmentation-based algorithms such as the ONCOCNV soft-
ware package version 6.6 (ONCOCNYV, Paris, France; http://oncocnv.curie.
£r),13 are generally stored in segment files. These copy number alteration seg-
ment files contain the absolute and/or log, ratio of copy numbers per loci or region
as estimated by platform- or genome-wide analysis.

In the context of NGS-based targeted multigene panels using heterozygous
markers, BAF and copy number analysis can be used to estimate tumor cell percent-
ages, somatic aberrations and imbalances, quality of amplicons, and heterogeneity
of tumors as described below.

Currently, there are several publicly available tools to display variants from VCF
files alongside additional genetic information and annotation. For example, the In-
tegrated Genome Viewer, JBrowse, and the UCSC Genome Browser are commonly
used genome browsers. %16 However, these tools visualize variants on their re-
spective reference genome based on their exact genomic positions. For targeted
sequencing of distant sites throughout the human genome, these tools are not
always suited for apparent genome-wide diagnostic interpretation using their de-
fault settings. For instance, viewing distant or interchromosomal regions of interest
spread throughout the genome requires separate examinations. Clinical interpreta-
tion often requires a holistic view of the relationships between observed aberrations,
e.g., determining whether a glioma sample with an observed IDH1 mutation has
additional aberrations such as a somatic mutation in the TP53 gene or a 1p/19q
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co-deletion and/or loss of the CDKN2A gene.

To simplify and accelerate the genome-wide diagnostic interpretation of Al, a
visualization approach based on the relative positioning of variants on chromosomes
has been proposed. Using this approach, variants will be displayed based on relative
positioning to neighboring variants. For example, variants on chromosome 10 will
be displayed next to each other without any fixed distance between them, ordered
on ascending genomic position and chromosome. To this end, an easy-to-install and
user-friendly web application that uses relative positioning to display variants and
their respective BAF from user-submitted VCF files, called SNPitty, was developed.

Material and Methods

Sample Preparation and Processing

Tissues were microdissected manually, and all samples contain at least 70% to
80% tumor cells as indicated by our local pathologists. Dependent on the tissue,
between 1 and 10 ng of DNA was isolated and subsequently sequenced on the Ion
Torrent PGM platform with supplier’s materials and protocols (Life Technologies,
Carlsbad, CA) as described previously.9 Generally, library and template preparations
were performed consecutively with the AmpliSeq Library Kit 2.0 to 384 LV and the
Ion PGM Template OT2 200 kit. Templates were sequenced using the Ion PGM
Sequencing 200 Kit v2 on an Ion 318v2 chip. Custom in-house primer designs
utilizing heterozygous markers on the autosomal chromosomes from NCBI dbSNP
database build 138 (https://www.ncbi.nlm.nih.gov/projects/SNP) with
at least 45% global minor allele frequency were used to create panel-specific assays
targeting known genetic aberrations associated with tumor formation, progression,
and classification. 18

NGS reads were subsequently aligned against the human reference genome
(hg19; UCSC Genome Browser, last accessed February 2009) using the Torrent
Mapping Alignment Program (TMAP) software version 5.2 (Life Technologies) with
default settings. Torrent Variant Caller software version 5.2 (Life Technologies) was
used to determine and measure both novel and predefined heterozygous (hotspot)
variants using the Generic - PGM - Somatic - Low Stringency settings. Additional
heuristic filtering discarded variants with a total read depth <100. Al was assigned
using the criterion of at least two consecutive informative SNPs.?
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Copy numbers were estimated using ONCOCNV software version 6.6 with de-
fault settings using the amplicon coordinates of the respective panels. '3 The malig-
nant tissues were compared against panel-specific copy number baselines of seven
normal tissues. Briefly, read coverages per targeted regions were generated from
BAM files and normalized against the respective baseline as well as GC content of
the reference genome (hg19). Segments were aggregated per region and a single
region-level copy number estimate was generated.

A glioma tissue sample with near-100% neoplastic cells hosting 1p/19q co-
deletions was diluted as a proof of concept. A serial dilution with adjacent nor-
mal tissue was performed to establish glioma samples with varying tumor cell per-
centage mixtures (near 100%, 60%, 40%, 20%, and 10%), accompanied by a
single matched normal sample. DNA was extracted from peripheral blood of a
girl with Down syndrome (SE14-0562) using standard protocols (Qiagen, Venlo,
the Netherlands). The target (exome) was captured with the HaloPlex exome tar-
get enrichment kit (Agilent Technologies, Santa Clara, CA) and sequenced on a
HiSeq2000 system (Illumina, San Diego, CA) using the TruSeq software version
3 paired-end 100 bp sequencing protocol. The reads were trimmed for the Il-
lumina adapter, and 245M reads were subsequently aligned against the human
reference genome build 19 (hg19) using BWA'® software version 0.6.2 (Source-
Forge; http://bio-bwa.sourceforge.net/bwa.shtml) and the NARWHAL
pipeline software version 1.0 (Netherlands Bioinformatics Center, Nijmegen, the
Netherlands; https://trac.nbic.nl/narwhal)? resulting in an average tar-
get base coverage of 280x (and 94% of the target bases were covered at least
20x). Variants were called using GATK software version 2.4 (Broad Institute, Cam-
bridge, MA; https://software.broadinstitute.orqg/gatk/).2! Only infor-
mative heterozygous markers present in the dbSNP database with at least 175x
read coverage were kept for analysis. Chromosomal Al was assigned using the
criterion of at least 500 informative markers representative for the entire chromo-
some.

The Complete Genomics whole-genome sequence of the prostate cancer cell
line VCaP was processed and visualized as previously described. %2

All samples were assessed anonymously according to the code for adequate
secondary use of tissue code of conduct established by the Dutch Federation of
Medical Scientific Societies (https://www.federa.org/codes-conduct, last
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accessed February 10, 2017).

VCF files have been submitted to the European Variation Archive (EVA; https:
//www.ebi.ac.uk/eva) under accession number PRIEB21914.

Immunohistochemistry and FISH for p53 Overexpression and EGFR Am-
plification

Fluorescence in situ hybridization (FISH) was performed to validate EGFR amplifi-
cation using the Poseidon Repeat Free EGFR, Her-1 (7p11) & SE 7 Control probe
(Kreatech Diagnostics, Amsterdam, the Netherlands). Slides were examined under
a Zeiss Axio-Images M2 microscope with the Piezo scanning stage, slide images
were captured with a Zeiss AxioCam MRm rev.3 camera (Zeiss, Jena, Germany).

According to standard protocols, overexpression of p53 was assessed by im-
munohistochemistry (IHC) using mouse monoclonal antibody (clone BP53-11; Ven-
tana Medical Systems, Mountain View, CA) on the automated Ventana BenchMark
ULTRA platform.

Technical Design of SNPitty

SNPitty was implemented in the statistical platform R software version 3.4.2 (R
Project for Statistical Computing; http://www.r-project.org)?® using the
Shiny framework and several BioConductor packages: VariantAnnotation version
1.22.0 and Biobase version 2.36.0 (BioConductor; https: //bioconductor.org).2%2
A Docker image was generated to facilitate the entire installation of SNPitty and re-
quired dependencies.2® Multiple single (or multi-) sample VCF or VCF.gz files were
merged on the union of sets using BCFtools version 1.4 (https://samtools.
github.io/bcftools). Nonintersecting variants after merging were set to NA

in the respective samples lacking these variants.

BAF per variant was calculated based on a combination of available genotype
fields in the uploaded VCF files. The BAF for a specific alternative allele per sample
is calculated as follows:

Observations for alternative allele

BAF = Observations for all alleles 2.1)
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The BAF value displayed in SNPitty is a summation of the BAF for all alternative
alleles to represent the total difference to their respective reference allele. Each
independent variant (row) in the VCF file is plotted as an individual data point.

Additional regional information was added by uploading a gene transfer format
v2 (GTF) file containing the genomic ranges of each region.

Results

SNPitty Web Application

The user-friendly web application SNPitty (CCBC, Rotterdam, the Netherlands; https:
//bitbucket.org/ccbc/snpitty, last accessed January 10, 2017) was devel-
oped to support and improve diagnostic interpretation of Al. SNPitty visualizes BAF
of somatic variants and heterozygous markers detected by NGS-based targeted
multigene panels, whole-exome sequencing (WES), or whole-genome sequencing
(WGS) efforts. The web application is accessible by all modern web browsers; fig-
ure 2.1 shows an impression of the web interface. Note that all session information
and data are automatically deleted after closing a session (e.g., closing the web
interface) to ensure privacy.

A relative-positioning approach was used to provide insight into multiple distant
or interchromosomal regions of interest spread throughout the human genome in
an interactive and comprehensive manner.

SNPitty processes single VCF files and is also capable of merging multiple VCF
files, which are obtained from most of the industry-standard variant calling suites
for NGS. Submitted VCF files should contain the variants of scientific or diagnostic
interest with optional information, such as the amount of forward and reverse reads
to calculate strand bias. Genotype fields that are used for BAF calculations can
be selected manually or be inferred automatically based on available fields in the
submitted VCF files. The option of using Ion Torrent-specific flow evaluator reads
is also implemented in SNPitty.

SNPitty also allows visualization of ratios, means, or absolute counts of copy
number segments derived from segmentation-based copy number variation detec-
tion algorithms. These copy number results can be visualized simultaneously with
BAF to increase insight into germline or somatic aberrations.
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Optionally, predefined regional information for visualizing regions of diagnostic
interest can be supplied in a file using GTF format. Variants and segments are
assigned to these regions based on their genomic overlap, e.g., a predefined PTEN
region on the human chromosome 10 starting at base position 87863113 and ending
at base position 87971930 will cover all the variants and segments that overlap this
region. Therefore, disease-specific variants of diagnostic interest can be easily
categorized and quickly selected for visualization. Moreover, multiple GTF files can
be uploaded that are disease- or sample-context specific.

All submitted variants can be simultaneously displayed with BAF, read coverage,
and copy number information using interactive charts. The charts are scalable
and can be saved to various high-resolution output formats, such as PDF, SVG,
PNG, and JPEG. Variants and regions can be dynamically filtered based on various
user criteria to quickly answer diverse diagnostic questions. Heuristic filtering is
easily performed using, among others, minimal and/or maximal BAF, read depth,
strand bias, or annotation status, or via manual selection of variants, regions, and
chromosomes.

Specific variants can be highlighted using regular expressions, e.g., all vari-
ants containing a specific tag such as “rs” can be highlighted to indicate all dbSNP
database variants having an rsID. Read coverage information per sample is shown
per variant, both via overlay and/or mouse hovering. A distinct plotting window
to display the amount of forward and reverse reads (if applicable) and total read
depth is also implemented. With this window, the user can easily focus on ampli-
fications and deletions of interest, or display strand bias and quality of amplicons.
All variants present in the (combined) VCF file can be viewed simultaneously or via
an intuitive system of sliding windows using intervals, e.g., consecutively show 50,
100, or 1000 variants. Users can also choose to only display specific variants of
interest based on their respective identifiers.

PDF reports can be generated for user-specified samples based on BIpX/knitr
templates. These reports highlight the targets of interest of the respective diag-
nostic panel with full support of the statistical platform R and the BioConductor
suite. 22’ The reports are fully customizable but require some experience with R
and BIpX for advanced functionality. Several global templates are provided with
SNPitty that host a number of useful features such as sample summaries, chromo-
somal or regional overviews of variants showing BAF and coverage, and ideograms
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of the human chromosomes (hg19) showing the location of variants on the human
genome.

SNPitty is open source software under the GNU GPLv3 license and freely available
(https://bitbucket.org/ccbc/snpitty, last accessed February 10, 2017),
including documentation on usage and installation.

To ease local software deployment, a Docker image of SNPitty has been gen-
erated (https://hub.docker.com/r/ccbc/snpitty, last accessed February
10, 2017), which can be used as a lightweight virtual machine deployable on both
Unix-based and Windows machines to provide reproducible environments.

SNPitty and BAF-dependent interpretation was applied on NGS-based targeted
multigene panels utilizing heterozygous markers.® Four cancer-related diagnostic
scenarios encountered in daily clinical practice and a glioblastoma dilution series
have been showcased to validate SNPitty as a robust and all-round BAF viewer for
routine diagnostic purposes. Furthermore, a germline chromosomal amplification of
chromosome 21 is shown using WES and extended in silico validation by reproducing
BAF results of a previously published study on the prostate cancer cell line VCaP.22

Proof of Principle of the Features Present in SNPitty

To validate the robustness of BAF in diagnostic scenarios, a serial dilution of DNA
was generated from malignant glioma tissue. This glioma tumor tissue was serially
diluted with an increasing amount of adjacent normal tissue to generate mixtures
with decreasing tumor cell percentages (n = 5) and sequenced using in-house tar-
geted NGS glioma panel (Figure 2.2). The heterozygous markers that are unaltered
by Al retain a heterozygous genotype (BAF = 0.5) in both normal and (diluted) ma-
lignant tissue. Markers with a germline homozygous genotype retain BAF of 0 or 1 in
respect to the exclusive presence of the reference allele or the alternative allele(s).

A 1p/19q LOH co-deletion is present in the malignant tissue and absent in the
normal tissue, as evident by the increasing deviation from a heterozygous genotype
(BAF = 0.5) reaching a homozygous genotype (BAF = 0 or BAF = 1) in the 1p/19q
regions in respect to tumor cell percentage. The malignant tissue also harbors a
heterozygous somatic IDH1 ¢.395G>A (p.R132H) mutation. A homozygous geno-
type is present in the nonmalignant tissue and reaches a heterozygous genotype
in the malignant tissues with respect to the tumor cell percentages. This validation


https://bitbucket.org/ccbc/snpitty
https://hub.docker.com/r/ccbc/snpitty

Chapter 2

36

Chromosome 1 (1p) IDH1 Chromosome 10 Chromosome 19 (19q)
1 ERsSsivsvssisssvivivisialslatviviniaiatateiasy.  _ _ s annatnanninninnisntnivininniatniaivinainiitniR RN, _ _ _ _ o — — — — — —
v Y v v v v v v v
08
n
| [ ] | [ ]
' = = m u ¢ A
* * [ |
06 @ S Al e b .
. [ S — —_.— e —— e ——— X .- —_—— e
L ° [] [ 3
Momuuuuouuuuuuuuouuuuhuuhuﬂuupu*uuuuuuuuu%u EESUE uuuuuruuuuouu»uu.-lwuuuuﬂu*uwu*uuuuuuuuuuuuu
1 L]
R e g |l|;q.|.<| ......... .rl.quIIli.Iixi.m,lbn IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
04 .« * o ¢ L
* *
n [ | [ | n
03 ] - = n
n
02
*

Filtered variants:

® 10% Tumor & 20% Tumor M 40% Tumor 60% Tumor ¥V 100% Tumor Normal

Figure 2.2: Validation of SNPitty by serial dilution of glioma tumor tissue with matched normal.

Glioma tumor tissue was serially diluted with an increasing amount of near-adjacent normal tissue, 0% (purple circles), 10% (blue circles), 20% (red
rhombi), 40% (green squares), 60% (blue triangles), to 100% (orange triangles), respectively. The dilution series show an increasing BAF deviation for
heterozygous markers on 1p and 19q, with respect to a higher tumor cell percentage. Black dashed lines show the homozygous BAF ranges (0,1), whereas
the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values 0.05, 0.45, 0.55, 0.95, respectively. Markers that
retained homozygous state in all six samples are filtered. *IDH1 ¢.395G>A (p.R132H) somatic mutation.
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shows that BAF is a robust metric to visualize somatic aberrations in the subtype
of oligodendrogliomas, which are typically characterized by high occurrences of
1p/19q co-deletions and somatic mutations in the IDH1/IDHZ2 gene and in the pro-
moter region of TERT.?8

Detection of Genomic Amplification and Heterozygous Deletion Using SNPitty

To illustrate the visualization of read coverages and copy humber segments to as-
sess somatic copy number alterations in SNPitty, the EGFR gene copy number status
was analyzed in a glioblastoma sample. EGFR amplification is a common genetic
aberration in glioblastomas.?° By comparing the number of reads in the EGFR locus
to the surrounding regions, EGFR amplification can be appreciated and further cor-
roborated by platform-wide copy number analysis (Figure 2.3A and Supplemental
Figure S2.1). We further hypothesize that this is an EGFR amplification of a single
allele because several EGFR markers are not reaching a homozygous state but re-
tain a semiheterozygous BAF of 0.05 or 0.95. These markers might be germline
heterozygous; as a consequence, the nonamplified allele is only present in a single
copy and therefore sequenced in a lesser amount. EGFR amplification was con-
firmed by showing increased copy numbers of EGFR in the vast majority of the
malignant cells using FISH (Figure 2.3B). The two EGFR markers not showing con-
cordant read coverage originate from amplicons with lower performance on this
specific panel design.

Next to the EGFR amplification, this sample contains a heterozygous deletion
of PTEN, which is detected by deviations of germline heterozygous markers to-
ward a more homozygous state in both flanking and coding regions of PTEN. This
heterozygous deletion of PTEN is further corroborated by genome-wide copy num-
ber analysis. Furthermore, two somatic missense mutations in the coding region
of TP53, namely a c.817C>T (p.R273C) and a ¢.215C>G (p.P72R) mutation were
detected (data not shown).

An additional pleura adenocarcinoma with EGFR amplification, coupled with a
p.E746_A750delELREA and p.T790M (c.2369C>T) mutation in the EGFR region, can
be seen in Supplemental Figure S2.2.
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Figure 2.3: (@): BAF visualization of heterozygous markers (blue circles), accompanied with respective read coverage (blue bars) and log, copy number
ratio (dashed blue line with blue squares), on the EGFR and PTEN regions for a single glioblastoma sample. Black dashed lines show the homozygous BAF
ranges (0,1), whereas the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values 0.05, 0.45, 0.55, 0.95,

respectively. (b): EGFR gene amplification by FISH in respective sample. FISH analysis was performed using EGFR, Her-1 (7p11) probe (red), and SE 7
control probe (green); original magnification (x63).
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Detection of Homozygous Deletions Using SNPitty

Homozygous deletions of chromosomal regions are of clinical interest and can also
be assessed and visualized with SNPitty. For example, homozygous deletion of
CDKNZ2A, which encodes the tumor suppressor p16 and p14ARF, is known to be
a driver of glioblastoma development.!” A homozygous deletion of CDKN2A was
detected in glioblastoma tissue using SNPitty (Figure 2.4). This homozygous dele-
tion can be appreciated by the marked decrease in read coverage of the CDKN2A-
covering amplicons. Moreover, heterozygous deletion/LOH of CDKNZ2A flanking re-
gion can be appreciated by seven informative markers showing BAF deviations.
LOH in CDKNZ2A flanking regions, combined with decreased read coverages and two
heterozygous markers (BAF = approximately 0.5) in the CDKNZ2A locus, suggest a
homozygous loss of CDKNZA. A heterozygous loss of CDKNZ2A can be discarded be-
cause the two heterozygous markers do not show BAF deviations. Therefore, we
hypothesize that these NGS results originate from admixed normal tissue, which
explains a marked decrease in read coverage while retaining heterozygosity of the
two markers.

Hence, SNPitty is capable of visualizing LOH and homozygous deletion simulta-
neously from a single admixed tumor sample.

An additional glioblastoma with a homozygous CDKNZ2A deletion, coupled with
regions of heterozygosity on 1p and 19q, and AI on chromosome 7 can be seen in
Supplemental Figure S2.3.

Discovering Two-Hit Models in TP53 Using SNPitty

SNPitty is able to clearly display evidence for genes having undergone a two-hit
model of inactivation, e.g., in which a loss-of-function mutation is found in combi-
nation with LOH, as is common in tumor suppressors.® This scenario is shown for
the frequently mutated TP53 gene in squamous cell carcinoma tissue composed of
at least 70% neoplastic cells (Figure 2.5A). In this scenario, the 5’ and 3’ flanking re-
gions of TP53 show LOH as indicated by four informative markers differing between
matched normal and tumor samples, accompanied by a somatic missense mutation
[c.536A>G (p.H179R)] in the coding region of TP53. Reduced read coverage of the
markers on the flanking regions indicate a possible heterozygous deletion. IHC of
p53 confirmed the presence of a putative stabilizing TP53 mutation in the malignant
cell tissue as evident by the abnormally high presence of p53 (Figure 2.5B).
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Figure 2.4: Detection of homozygous deletions using SNPitty.
BAF visualization of heterozygous markers (blue circles), accompanied with respective read coverage (blue bars), on the chromosome arm 9p and CDKN2A

region for a single glioblastoma sample. LOH on 9p is accompanied by a homozygous deletion of CDKN2A. The remaining heterozygous state of CDKNZ2A is
a reflection of the nonmalignant tissue present in the sample. Read coverage is shown in transparent blue bars. Black dashed lines show the homozygous
BAF ranges (0,1), whereas the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values 0.05, 0.45, 0.55, 0.95,

respectively.
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An additional lung adenocarcinoma with a detected somatic p.K132R (c.395A>G)
mutation in the TP53 region, coupled with two markers showing LOH, can be seen
in Supplemental Figure S2.4.

SNPitty Allows Detection of Distinct LOH in Multiple Tumor Samples

Due to recent major therapy improvements, cancer is increasingly becoming a
chronic disease. 3° This means patients successfully treated for cancer have a greater
lifespan and as a consequence, have a higher rate of recurrence. For the treatment
of patients with multiple synchronous or metachronous tumors, it is of utmost im-
portance to obtain an accurate diagnosis; does a patient showing multiple tumors
have metastatic disease (single primary tumor accompanied by metastasis), or does
the patient have multiple independent primary malignancies developed by separate
carcinogenic events. 3!

Comparing the evolutionary history of patient-derived tumors can distinguish be-
tween synchronous or metachronous tumors. A clinical case is shown, with SNPitty,
where a patient presented multiple tumors in the colon, lung, bladder, and verte-
brae in a 12-year period.

From this patient, two biopsies from the lung and vertebrae were obtained and
subsequently sequenced. Here, these two biopsies were visualized alongside a sin-
gle matched normal tissue sample for multiple chromosomes showing AI (Figure
2.6). By visualizing the BAF of informative heterozygous markers on these chro-
mosomes, a divergent evolutionary history can be seen due to nonoverlapping Al
events. Most strikingly, the ATM region on chromosome 11 is affected by LOH in
both tumors on opposing alleles. This indicates that these tumors are a reflection
of distinct tumor entities.

Additional clonality assessments (n = 6), using SNPitty, from diverse patients
that presented multiple tumors in distinct locations can be seen in Supplemental
Figures S2.5, S2.6, S2.7, S2.8, S2.9, S2.10 and S2.11.

SNPitty Visualizes Germline Trisomy 21 Using WES Data

Large chromosomal abnormality can be identified by large regions of BAF imbal-
ance of heterozygous markers. This principle is shown using a Down syndrome
patient with an expected germline abnormality of chromosome 21. WES of periph-



43

"AlpAIadsal ‘6°0 ‘SS°0 ‘St°0 ‘S0°0 SsenjeA 4yg AlisobAzowoy Jo AjisobAzolalay paouejeq Jo siaploq aAieInd Sy 109}aJ saul| J0p-ysep

paJ ay3 sealtaym ‘(1'0) sebuel 4yg snobAzowoy ayy moys saull paysep xoeig “(sspp4 an|q) ajdwes ajeisold |ewlou paydjew ajbuis pue ‘(saienbs uaalb)

slowin) aeigauaA pue (Iquoyd pal) bun| woly buneuibuo ‘JDs 103 8T pue ‘ST ‘IT ‘0T ‘8 ‘s ‘€ ‘T Sswosowolyd uo siaylew snobAzoialay Jo uonezijensia 4yg
*Al31dNS Buisn sajdwes Jowin} 3jdinw ur HO1 PURSIP JO UoIIRQ :9°7 2.nbi4

(eaiqayiap) Jowny @ (6unT) Jown) ¢ |ewJIoN paydie|N @

swewen pasaiy

dvd

€ BWOosowoIyy | SwosowoIyy

G aWosowoiyy

|| SWOSOWOIYD 0LBWOSOWOIYD @ SWIOSOWOIYD

81 aWosowoIyy €1 BWosowoIyy

SNPitty



44 Chapter 2

eral blood from this individual shows this germline abnormality as evident by AAB
(BAF = approximately 0.33) and ABB (BAF = approximately 0.66) genotypes on
chromosome 21 (Figure 2.7). Chromosome 21 displayed an additional copy of the
entire chromosome, whereas all other autosomal chromosomes were confirmed to
diploid copy number status (only chromosome 5 is shown). Using this scenario of
a germline chromosomal abnormality, the capability of SNPitty to detect specific
germline aberrations is shown.

Additional in silico Validation of SNPitty

The robustness of SNPitty was further validated by reproducing the BAF results of
a previously published study on the instability of chromosome 5 in the prostate
cancer cell line VCaP.%2 SNPitty is capable of reproducing the BAF visualization of
large-scale genomic aberrations on chromosome 5 in the prostate cancer cell line
VCaP as shown by Teles Alves et al.?? in WGS data (Supplemental Figure S2.12).
The same near-triploid state of the VCaP genome on chromosome 5 is highlighted
by large-scale chromosomal Al coupled with clustered rearrangements on 5q.

Furthermore, a colon adenocarcinoma and cecum adenocarcinoma with somatic
abnormalities in mismatch-repair—related regions in diagnostic scenarios as encoun-
tered in daily practice are shown in Supplemental Figures S2.13 and S2.14.

Discussion

Due to complex and diverse molecular mechanisms driving tumor development and
progression, correctly interpreting data generated from NGS-based genome-wide
or targeted multigene panels is crucial for daily diagnostics. By applying SNPitty
in scenarios encountered in daily practice, the added value of SNPitty for detecting
LOH, chromosomal and gene amplifications, homozygous or heterozygous dele-
tions, single-nucleotide mutations, and clonality assessment is demonstrated. Ad-
ditionally, a scenario in which the capability to interrogate WES, WGS, and germline
datasets, for example, to detect chromosome-wide LOH or amplification, is demon-
strated.

Using the industry-standard VCF format, coupled copy number segments, and
the GTF format to define regions of interest, SNPitty facilitates a flexible and simple
method for users to explore variants and copy numbers, and to visualize aberrations
without in-depth knowledge of bioinformatics. It realizes this through a simple
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and user-friendly, dynamic, graphical web interface to visualize and filter variants
from one or multiple VCF files. High-resolution images of any plot and viewpoint
can be exported as multiple industry-standard output formats such as SVG and
PDF. Custom-made reports based on BIgX templates can highlight results of clinical
interest in a standardized manner for a wide range of diagnostic scenarios.

Here, human malignant and germline tissue was focused on using targeted NGS-
based multigene panels and WES; however, VCF files containing variants from other
species can also be visualized and interpreted using SNPitty due to uniformity of
file standards. Currently, only BTEX report templates for human reference genomes
(hg19 and hg38) have been added to automatically generate reports. Support of
alternative genomes can be added by customizing or adding additional BTgX tem-
plates.

User-specific and dynamic heuristic filtering of variants can be applied using
SNPitty to interactively filter low-quality or erroneous sites. These low-quality sites
most often arise due to poor quality of the DNA libraries, nonspecific binding of
amplicon/primer (if applicable), technical noise generated during the sequencing
procedure, usage of formalin-fixed, paraffin-embedded material, and low coverage
of the genetic aberrations of interest. 32

Currently, the methodology used by SNPitty not been as rigorously validated in-
house for use in germline malignancies as it has been for somatic events. Further
optimization, extension, and practical use will likely be needed to also provide a
more flexible and robust toolkit for a wide range of use cases involving germline
aberrations.

Applying dynamic heuristic filtering coupled with the ability to display various
regions of interest using relative positioning, rather than absolute positioning, can
more quickly give insight into potentially causal genetic aberrations. Expert inter-
pretation of these aberrations present in a clinical sample plays a crucial role in
clinical decision making. SNPitty therefore allows viewing and interpreting the var-
ious genomic aberrations simultaneously to formulate a more holistic hypothesis of
sample-specific causal factors.

SNPitty is not aimed to replace the role of conventional genome browsers such as
Integrated Genome Viewer, JBrowse, and the UCSC Genome Browser for research
purposes, because these powerful tools are aimed to handle and display a greater
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variety of data from a myriad of molecular techniques. However, due to the exten-
sive configuration required to simultaneously view multiple (distant and/or inter-
chromosomal) regions of interest in the aforementioned genome browsers, SNPitty
can be used as a robust alternative in these scenarios.

Overall, SNPitty is a user-friendly, open source, and Docker deployable web
application that can aid and accelerate research and daily diagnostic interpretation
by visualizing the results of NGS-based experiments utilizing heterozygous markers,
single-nucleotide variants, and copy number results.

Acknowledgments

We thank the Department of Pathology (Erasmus Medical Center) for providing the
samples and generating the IHC and FISH images, in particular Hein F. Sleddens
for performing FISH, and Sharmiela Ramlal, Erina de Leeuw, Hans Stoop, Janine
Shukla, Jeanine Roos, and Boukje van Gils for performing IHC; Saskia Hiltemann,
Youri Hoogstrate, and Andrew Stubbs (Erasmus Medical Center) for sharing and
helping to interpret the VCaP data; and Rutger W. Brouwer (Erasmus Medical Cen-
ter) for processing and analyzing the exome data.



48

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

D. Hanahan and R. Weinberg, Hallmarks of cancer: The next generation, Cell 144, 646 (2011).

T. Zack, S. Schumacher, S. Carter, A. Cherniack, G. Saksena, et al., Pan-cancer patterns of somatic
copy number alteration, Nature Genetics 45, 1134 (2013).

C. Lu, M. Xie, M. Wendl, J. Wang, M. McLellan, et al., Patterns and functional implications of
rare germline variants across 12 cancer types, Nature Communications 6 (2015), 10.1038/n-
comms10086.

G. Tate, T. Tajiri, T. Suzuki, and T. Mitsuya, Mutations of the kit gene and loss of heterozygosity
of the pten region in a primary malignant melanoma arising from a mature cystic teratoma of the
ovary, Cancer Genetics and Cytogenetics 190, 15 (2009).

S. Thiagalingam, S. Laken, J. Willson, S. Markowitz, K. Kinzler, et al., Mechanisms underlying losses
of heterozygosity in human colorectal cancers, Proceedings of the National Academy of Sciences
of the United States of America 98, 2698 (2001).

N. Sato, H. Tsunoda, M. Nishida, Y. Morishita, Y. Takimoto, et al., Loss of heterozygosity on 10g23.3
and mutation of the tumor suppressor gene pten in benign endometrial cyst of the ovary: Possi-
ble sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell
carcinoma of the ovary, Cancer Research 60, 7052 (2000).

S. Baker, A. Preisinger, J. Jessup, C. Paraskeva, S. Markowitz, et al., p53 gene mutations occur in
combination with 17p allelic deletions as late events in colorectal tumorigenesis, Cancer Research
50, 7717 (1990).

A. Berger, A. Knudson, and P. Pandolfi, A continuum model for tumour suppression, Nature 476,
163 (2011).

H. Dubbink, P. Atmodimedjo, R. van Marion, N. Krol, P. Riegman, et al., Diagnostic detection
of allelic losses and imbalances by next-generation sequencing: 1p/19q co-deletion analysis of
gliomas, Journal of Molecular Diagnostics 18, 775 (2016).

S. Jones, V. Anagnostou, K. Lytle, S. Parpart-Li, M. Nesselbush, et al., Personalized genomic anal-
yses for cancer mutation discovery and interpretation, Science Translational Medicine 7 (2015),
10.1126/scitranslmed.aaa7161.

P. Danecek, A. Auton, G. Abecasis, C. Albers, E. Banks, et al., The variant call format and vcftools,
Bioinformatics 27, 2156 (2011).

P. Van Loo, S. Nordgard, O. Lingjaerde, H. Russnes, 1. Rye, et al., Allele-specific copy number anal-
ysis of tumors, Proceedings of the National Academy of Sciences of the United States of America
107, 16910 (2010).


http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1038/ng.2760
http://dx.doi.org/10.1038/ncomms10086
http://dx.doi.org/10.1038/ncomms10086
http://dx.doi.org/ 10.1016/j.cancergencyto.2008.11.002
http://dx.doi.org/ 10.1073/pnas.051625398
http://dx.doi.org/ 10.1073/pnas.051625398
http://dx.doi.org/10.1038/nature10275
http://dx.doi.org/10.1038/nature10275
http://dx.doi.org/ 10.1016/j.jmoldx.2016.06.002
http://dx.doi.org/ 10.1126/scitranslmed.aaa7161
http://dx.doi.org/ 10.1126/scitranslmed.aaa7161
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1073/pnas.1009843107
http://dx.doi.org/10.1073/pnas.1009843107

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

49

V. Boeva, T. Popova, M. Lienard, S. Toffoli, M. Kamal, et al., Multi-factor data normalization enables
the detection of copy number aberrations in amplicon sequencing data, Bioinformatics 30, 3443
(2014).

H. Thorvaldsdéttir, J. Robinson, and J. Mesirov, Integrative genomics viewer (igv): High-
performance genomics data visualization and exploration, Briefings in Bioinformatics 14, 178
(2013).

0. Westesson, M. Skinner, and I. Holmes, Visualizing next-generation sequencing data with
jbrowse, Briefings in Bioinformatics 14, 172 (2013).

K. Rosenbloom, J. Armstrong, G. Barber, J. Casper, H. Clawson, et al., The ucsc genome browser
database: 2015 update, Nucleic Acids Research 43, D670 (2015).

D. Parsons, S. Jones, X. Zhang, J.-H. Lin, R. Leary, et al., An integrated genomic analysis of human
glioblastoma multiforme, Science 321, 1807 (2008).

S. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, et al., Dbsnp: The ncbi database of genetic
variation, Nucleic Acids Research 29, 308 (2001).

H. Li and R. Durbin, Fast and accurate short read alignment with burrows-wheeler transform,
Bioinformatics 25, 1754 (2009).

R. Brouwer, M. van den hout, F. Grosveld, and W. van ijcken, Narwhal, a primary analysis pipeline
for ngs data, Bioinformatics 28, 284 (2012).

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, et al., The genome analysis toolkit:
A mapreduce framework for analyzing next-generation dna sequencing data, Genome Research
20, 1297 (2010).

I. Teles Alves, S. Hiltemann, T. Hartjes, P. Van Der Spek, A. Stubbs, et al., Gene fusions by chro-
mothripsis of chromosome 5q in the vcap prostate cancer cell line, Human Genetics 132, 709
(2013).

R. Core Team, R: A language and environment for statistical computing, R: A Language and Envi-
ronment for Statistical Computing (2013).

V. Obenchain, M. Lawrence, V. Carey, S. Gogarten, P. Shannon, et al., Variantannotation: A bio-
conductor package for exploration and annotation of genetic variants, Bioinformatics 30, 2076
(2014).

W. Huber, V. Carey, R. Gentleman, S. Anders, M. Carlson, et al., Orchestrating high-throughput
genomic analysis with bioconductor, Nature Methods 12, 115 (2015).

C. Boettiger, An introduction to docker for reproducible research, (2015) pp. 71-79.

R. Ihaka and R. Gentleman, R: A language for data analysis and graphics, Journal of Computational
and Graphical Statistics 5, 299 (1996).


http://dx.doi.org/10.1093/bioinformatics/btu436
http://dx.doi.org/10.1093/bioinformatics/btu436
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1093/bib/bbr078
http://dx.doi.org/10.1093/nar/gku1177
http://dx.doi.org/10.1126/science.1164382
http://dx.doi.org/ 10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btr613
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1007/s00439-013-1308-1
http://dx.doi.org/10.1007/s00439-013-1308-1
http://dx.doi.org/ 10.1093/bioinformatics/btu168
http://dx.doi.org/ 10.1093/bioinformatics/btu168
http://dx.doi.org/10.1038/nmeth.3252
http://dx.doi.org/ 10.1080/10618600.1996.10474713
http://dx.doi.org/ 10.1080/10618600.1996.10474713

50

[28] P. Killela, Z. Reitman, Y. Jiao, C. Bettegowda, N. Agrawal, et al., Tert promoter mutations occur
frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal,
Proceedings of the National Academy of Sciences of the United States of America 110, 6021
(2013).

[29] K. Hatanpaa, S. Burma, D. Zhao, and A. Habib, Epidermal growth factor receptor in glioma: Signal
transduction, neuropathology, imaging, and radioresistancel, Neoplasia 12, 675 (2010).

[30] R. Siegel, K. Miller, and A. Jemal, Cancer statistics, 2016, CA Cancer Journal for Clinicians 66, 7
(2016).

[31] F Li, W.-Z. Zhong, F-Y. Niu, N. Zhao, J.-J. Yang, et al., Multiple primary malignancies involving lung
cancer, BMC Cancer 15 (2015), 10.1186/s12885-015-1733-8.

[32] M. Srinivasan, D. Sedmak, and S. Jewell, Effect of fixatives and tissue processing on the content
and integrity of nucleic acids, American Journal of Pathology 161, 1961 (2002).


http://dx.doi.org/10.1073/pnas.1303607110
http://dx.doi.org/10.1073/pnas.1303607110
http://dx.doi.org/10.1593/neo.10688
http://dx.doi.org/10.3322/caac.21332
http://dx.doi.org/10.3322/caac.21332
http://dx.doi.org/10.1186/s12885-015-1733-8
http://dx.doi.org/10.1016/S0002-9440(10)64472-0

51

Supplemental Data

Supplementary data and figures accompanying the chapter:

"SNPitty: An Intuitive Web Application for Interactive B-Allele Frequency and Copy
Number Visualization of Next-Generation Sequencing Data”



52

Chromosome 7 Chromosome 7 Chromosome 7 Chromosome 10 Chromosome 10 Chromosome 10

5'Flanking-EGFR EGFR 3'Flanking-EGFR 5'Flanking-PTEN PTEN 5'Flanking-PTEN
1 e g———————— 009000000 ——— — — — — — — 08— — 0 - ————— - — - - ———————————9- — N
S — .ofﬂ,clolc.o IIIIIIIIIIIIIII B e 8 ® 8 e T —
09 ° o 25
®e
° °® B
08
17500
15
0.7 [%2]
oo 13
3
o5 D o5 2
e Y OO M s — w0® 3
L = I
<[ 0.5 S — ————————— A B T T _ _ _ _ e g o 5
a B = _BE p ) IS _ B - w® 8
Y = W8 052
04 o E
.2
° M 750 3
03 2
;umk
° 5000
02 N
L] e oo o
. ° ° e o ° 2500 25
® o
=ttt N N E AN E NN R E NN E EEEY o Bt i e = - s
Oo-—-—-—-——-——"——-"—"—-"—-"—-"—-"—-"—"—"—"—"—"—"—"—"—~\—~ -~ -~ —~—~—~—~———— e ——o ——&— ———— e —~—— =g = - e oo0o——o0o o ——— °
Filtered variants:
® Glioblastoma ReadCov: Gli Copy

Supplementary figure S2.1: Detection of EGFR amplification and heterozygous PTEN deletion in glioblastoma using SNPitty.

BAF visualization of heterozygous markers (blue circles), accompanied with respective read coverage (blue bars) and log, segment, mean copy number
ratio (dashed blue line with blue squares), on the EGFR and PTEN regions for a single glioblastoma sample. Black dashed lines show the homozygous BAF
ranges (0,1), whereas the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values 0.05, 0.45, 0.55, 0.95,
respectively.
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Supplementary figure S2.6

BAF visualization of heterozygous markers (covered with >50 reads and BAF between 0.05 and 0.95) on chromosomes 1, 3, 5, 7, 8, 9, 10, 11, 13, 17, 18,

and 19 for two tumors (red rhombi and green squares) and a single matched normal sample (blue circles) derived from a single patient. Black dashed lines

show the homozygous BAF ranges (0,1), whereas the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values

0.05, 0.45, 0.55, 0.95, respectively.
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BAF visualization of heterozygous markers (covered with >50 reads and BAF between 0.05 and 0.95) on chromosomes 1, 3, 5, 7, 8, 9, 10, 11, 13, 17, 18,

Clonality assessment of diagnosti

Supplementary figure S2.10

and 19 for two tumors (red rhombi and green squares) and a single matched normal sample (blue circles) derived from a single patient. Black dashed lines

show the homozygous BAF ranges (0,1), whereas the red dash-dot lines reflect the putative borders of balanced heterozygosity or homozygosity BAF values

0.05, 0.45, 0.55, 0.95, respectively.
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153802665_FAM25A_88.7Mb
157076964_ATAD1_89.5Mb
151426618_RNLS_90.0Mb
152274312_LIPJ_90.3Mb.
rs11212118_LOC105369477_107.1Mb.
chr11:107826276_AIG

15228569_NPAT_108.0Mb
15645485_ATM_108.1Mb
15227093_ATM_108.2Mb
15949285_EXPH5_108 4Mb
chr11:108833628_TIC
1$625040_109. 1Mb
157993153_33.3Mb

rs4507 Mo
rS1572871_47.9Mb
6466_48. 1M
157338119_48.4Mb
Chr17:6715678_TIG
154796409_7.2Mb
Chr17:7577407_AIC
chr17:7578253_CIT
hr17:7578271_TIC
chr17:7578534_CIG

151893489_MAPK4_48.1Mb.
rS17736674_48 6Mb
157244552_48.6Mb
152445441_48.8Mb
159951319_49. 1M
1$12606702_49 4Mb
chr19:553066_C/T
1555913760_0.5Mb
154995472_C190r24_1.2Mb.
154807072_1.3Mb
19:1925042_C/T
157283_POP4_30.1Mb.
r$1291_ZNF573_38.2Mb
SERTAD1_40.9Mb
19:50909765_CIT
1510217_SSC5D_56.0Mb
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$56168461_LOC101927043_47.5Mb
6146386_LOC101927043_47.5Mb

s )_LOC101827043_47.5Mb
154374418_LOC101927043_47.5Mb.
152036161_LOC101927043_47.5Mb.
1$67409646_LOC101927043_47.5Mb
r54953493_LOC101927043_47.5Mb.
1$10200739_LOC10192704:
FS7604511_LOC101927043 4
rS6544980_LOC101927043_47.5Mb.
154422207_LOC101927043_47.5Mb.
151126497_EPCAM_47.6Mb.
153923550_EPCAM_47.6Mb
153924917_EPCAM_47.6Mb
rs11125137_MSH2_47.6Mb
rS11125138_MSH2_47.6Mb
1081925 Msto 476

47.5Mb.

FS7602004_MSH2_47.6Mb
1S3771278_MSH2_47.6Mb
153771280_MSH2_47.6Mb
1S3771281_MSH2_47.6Mb
5513_MSH2_47.6Mb

1S3764960_MSH2_ 47.6Mb
153821227_MSH2_47.7Mb
1520505 ¥
rS4583614_MSH2_47.7Mb
X 47.7Mb.
r512991125_MSH2_47.7Mb.
1513031342_MSH2_47.7Mb
1511901645_MSH2_47.7Mb.
rS6746426_MSH2_47.7Mb
152303424_MSH2_47.7Mb
15876937_MSH2_47.7Mb
1S879722_MSH2_47.7Mb
1S7601062_MSH2_47.7Mb
1512619323_MSH2_47.7Mb
rs11125142_MSH2_47.7Mb
1S6722011_MSH2_47.7Mb.
1534713419_KCNK12_47.7Mb,
57572456_KCNK12_47.7Mb
156736039_KCNK12_47.7Mb.
1512476727_KCNK12
1$1425613_KCNK12_47.7Mb.
$7609322_47.8Mb.
1556304087_47.8Mb

151018266

157566192_4
S7605412_47.8Mb.
156716883_47.8Mb

rs6544¢
S6723656_47.8Mb.

153136228_MSHG_48.0Mb
1S3136245_MSHE_48.0Mb
153136329_MSH_48.0Mb
152072447_MSHB_48.0Mb

$11531378_48.2Mb
1566852990_48.2Mb
1$12475184_48.2Mb

S7588109_48.3Mb.

rs49535¢
rs414661

$13010470_LOC105374593_48.4Mb
1$12713007_LOC105374
1$12616792_LOC105374503_4
157340322_LOC105374593_48.5Mb.
1513246406_RNF216_5 6Mb.
153778092_RNF216_5.7Mb.
1$852304_RNF216_5.7Mb
154724712_RNF216_5.7Mb.

151011023_5.8Mb
157794016_ZNF815P_5.8Mb.
15308098_ZNF815P_5.8Mb.

5P_5.8Mb.
15P_5.8Mb
15P_5.8Mb

5P_5.8Mb.

1562457665_OCN_5.9Mb.
1528558301_CCZ1_5.9Mb
5177_PMS2_6.0Mb
151805321_PNIS2_6.0Mb.
1$62456178_PMS2_6.0Mb
1512702462_PMS2_6.0Mb.
152286681_PNIS2_6.0Mb.
1$12112229_PMS2_6.0Mb
1562456182_PMS2_6.0Mb.
1$62456183_PNIS2_6.0Mb.
1534763665_USP42_6.1W
1S7788049_USP42_6.1Mb
rs11762792_USP42_6.1Mb.
1510272684_USP42_6.1Mb

159886265_USP42_6.1Mb

1561443193_USP42_6.1Mb
r$10265503_USP42_6.1Mb
rS6463528_USP42_6. 1M
156979025_USP42_6.1Mb
r$12667626_USP42_6.1Mb
1S7780867_USP42_6.1W
1510254043_USP42_6.1Mb

rS886675_USP42_6.1Mb
152002952 CYTH3_6.2M
157456581_CYTH3_6.2Mb.
156962026_CYTH3_6.2Mb.
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Abstract

Summary: We present an R-based open-source software termed ProteoDisco that
allows for flexible incorporation of genomic variants, fusion-genes and (aberrant)
transcriptomic variants from standardized formats into protein variant sequences.
ProteoDisco allows for a flexible step-by-step workflow allowing for in-depth cus-
tomization to suit a myriad of research approaches in the field of proteogenomics,
on all organisms for which a reference genome and transcript annotations are avail-
able.

Availability: ProteoDisco (R package version = 0.99) is available from https:
//github.com/ErasmusMC-CCBC/ProteoDisco/ and https://doi.org/
doi:10.18129/B9.bioc.ProteoDisco.


https://github.com/ErasmusMC-CCBC/ProteoDisco/
https://github.com/ErasmusMC-CCBC/ProteoDisco/
https://doi.org/doi:10.18129/B9.bioc.ProteoDisco
https://doi.org/doi:10.18129/B9.bioc.ProteoDisco
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Introduction

=1 he rise and ease of current Next-Generation Sequencing (NGS) techniques,
coupled with reduced costs in both NGS and high-resolution mass-spectrometry,
offers opportunity to incorporate sample-specific protein variants during proteomics
experiments for increased accuracy and detection rates of, for instance, distinctive
proteotypic peptides in bottom-up proteomics experiments. Expanding the reper-
toire of proteins and these proteotypic peptides can provide novel insights into
disease-specific protein variants, their underlying molecular profiles and regula-
tion, neoantigen prediction and expand our knowledge on the genetic variations
encoded in proteomes. ™ This is further fueled by the standardization and publi-
cation of proteomics resources which allows for the interrogation and combination
of existing datasets.®’ Rising global efforts in capturing the genetic sequences of
diverse organisms, disease-related genotypes and their transcriptomes with subse-
quent proteome-resources warrants the implementation of a flexible yet intuitive
toolset. This toolset should provide a bridge between genomic and transcriptomic
variants and their incorporation within respective protein variants (proteogenomics)
using industry-standard infrastructure, such as Bioconductor®, and allow for flexi-
bility in facilitating the myriad experimental settings applied in research. Therefore,
we designed and developed ProteoDisco, an open-source R software-package using
existing Bioconductor class-infrastructures to allow for the accurate and flexible gen-
eration of variant protein sequences and their derived proteotypic peptides from the
incorporation of sample-specific genomic and transcriptomic information. In addi-
tion, we present the results of ProteoDisco and two similar open-source tools which
are frequently utilized within proteogenomics (customProDB® and QUILTS?) with
their performance in generating correct protein variants and respective proteotypic
peptides from supplied genomic variants.

Approach

ProteoDisco incorporates genomic variants, splice-junctions (derived from tran-
scriptomics) and fusion genes within provided reference genome sequences and
transcript-annotations to generate their respective protein variant sequence(s). These
sequences can be curated, altered and subsequently exported into a database in
FASTA-format for use in downstream analysis. To limit the number of generated
protein variants, ProteoDisco provides filtering options based on a minimal number
of distinct proteotypic (identifiable) peptides. The global workflow of ProteoDisco
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is summarized in six steps as depicted within Figure 3.1. In addition, an extended
overview of how (novel) splice-junctions and gene-fusion events are incorporated
is shown in Supplementary Figure S3.1.

To compare the accuracy of ProteoDisco against two common alternatives for
proteogenomics studies (customProDB? and QUILTS?3), we utilized a manually-
curated dataset and two large independent proteomics studies. The manually-
curated dataset contained 28 genomic variants reported in COSMIC'? comprising
multiple variant classes; synonymous and nonsynonymous single-nucleotide vari-
ants (SNVs), multi-nucleotide variants (MNVs) and in- and out-of-frame insertion-
s/deletions (InDels). In addition, we utilized recently-published results from large-
scale colon and breast cancer cohorts within the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) to illustrate the accuracy of ProteoDisco in generating identical
proteotypic peptides as detected within these studies. 2> This comparison revealed
that ProteoDisco correctly generated proteotypic peptides from their respective ge-
nomic variants after thorough checking and yielded the highest number of expected
and reconstructed proteotypic peptides within all three datasets (Supplementary
Figure S3.2). This difference can be attributed to ProteoDisco’s native flexibility in
reference genome selection, multiple incorporation strategies, sanity-checks such
as reference base verification and the correct incorporation of stop-loss variants.
In total, only four enigmatic genomic variants (of three fragments) from Mertins et
al. could not be reconstructed to reproduce their proteotypic peptide(s).

Conclusion

In this article, we present ProteoDisco, a suitable, open-source and flexible suite
for the generation of protein variant databases usable in downstream proteoge-
nomic studies and capable of correctly incorporating a diverse range of genomic
variants and transcriptomic splice-junctions. We report that ProteoDisco accurately
produces protein variant sequences harboring previously-identified proteotypic frag-
ments from their respective genomic variants. Further examples and use-cases can
be found in the vignette of the ProteoDisco package.
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Methods

Technical design of ProteoDisco

ProteoDisco was programmed within the R statistical language (v4.1.1) and built
upon existing classes within the Bioconductor infrastructure (v3.13) to allow flexible
inheritance and future extensions. Additional information on the usage and design
of ProteoDisco can found in the extended methodology (Supplementary M&M).

Assessment of the correct integration of genomic variants into protein
variants

We generated a custom validation-dataset containing established somatic variants
(SNVs, MNVs and InDels; n = 28) and their respective protein variants as listed
within COSMIC'? (v92; GRCh37; Online Suppl. Table 1). In addition, we utilized
recent proteogenomics studies from the CPTAC cancer cohorts containing genomic
variants and their respective in silico generated proteotypic peptides which had been
measured and identified using high-throughput proteomics approaches.> In the
Wen et al. dataset® (CPTAC - Colon Cancer), genomic variants (and their respective
proteotypic peptides) were split into sample-specific variant call format (VCF)-files
based on the data present within their published Suppl. Data S15 (see reference,
sheet 1: ‘prospective_colon_label_free_in’). The Mertins et al. dataset? (CPTAC
- Breast Cancer) was aggregated into a single VCF-file based on the data present
within their published Suppl. Table S2 (see reference, sheet 2: ‘Variants’).

Using these three datasets, we ran ProteoDisco (v0.99), customProDB (v1.30.1)
and the web-interface of QUILTS (v3.0; accessed 13-04-2021) to generate cus-
tom protein-variant databases using uniform University of California, Santa Cruz
(UCSC)RefSeq ! (GRCh37) transcript-annotations and settings. The custom protein-
variant databases were generated based on two approaches within ProteoDisco.
The first approach incorporated each genomic variant independently and the sec-
ond allowed for the simultaneous incorporation of all genomic variants per overlap-
ping transcript-annotation, e.g., two variants on different coding exons would both
be incorporated within the resulting variant protein-sequence. Incorporation of all
possible combinations of mutant exons yields too many combinations and is there-
fore not included amongst the options. The generated variant protein sequences
and respective proteotypic peptides from each customized protein-variant database


https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/PAP/10.1093_bioinformatics_btab809/2/btab809_supplementary_data.zip?Expires=1645280270&Signature=n9fQMjD6X0oqGOZtFTltC3BAGqj1Qr4z60IH6jN3SQF2JjDty~-Ir~WLXiLMaZ8OzDTRk60EJql2~bA-3arpia07EmVXwpj7taD0CMl9uPBWgcOPbQYV6LasJ8doEgfVQryFUffkXmgHR1AnuQE76oKdtf~7SlRgrU-vwyFlSwFjML068qaWc3cetapRG1gfgnZ1F2r-PrDwcJOLUWQp8CQbbE-hNXPCkwusfClKVDf6AwZRnSqffHf~dqnVS22A14ndppzt09vUvdX8UdlpuGX0ew6t0ZJi2vLymgwwKTNsWe55q9sviIOgQWPGYGs00fRAcLdQ2ztwtdV9K5Y9Zw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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were compared against the proteotypic peptides as expected from COSMIC or as
detected within the respective CPTAC-studies using all three tools (Supplementary
Figure S3.1). E.g., if ProteoDisco generated three distinct proteotypic peptides for
a given genomic variant and one of those was identified within CPTAC (or COSMIC),
it was counted as a concordant result.

Code availability

All source-code has been made available within Bioconductor (https://doi.
org/doi:10.18129/B9.bioc.ProteoDisco) and deposited within GitHub
(https://github.com/ErasmusMC-CCBC/ProteoDisco) under the GPL-3 li-
cense.

Data availability

The custom validation dataset (GRCh37) which has been used in the analysis as
presented within this manuscript has been stored within ProteoDisco and is accessi-
bleathttps://github.com/ErasmusMC-CCBC/ProteoDisco/main/inst/
extdata. COSMIC (v92; accessed on 14-04-2021) was used to derive the valida-
tion dataset (GRCh37), the external validation datasets based on CPTAC (colon and
breast cancer) were generated based on the supplementary data published by Wen
et al.> and Mertins et al.?.
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Extended Materials and Methodology on the design of ProteoDisco.

The major workflow of ProteoDisco can be divided into six steps;

1. Generation of the ProteoDiscography containing the reference genome se-
quences and transcript annotations of choice, as detailed below. This Pro-
teoDiscography will also house the imported genomic and transcriptomic input
and subsequent in silico generated protein variants and related information.

2. Import of genomic variants (either VCF and MAF files or VRanges objects )
or splice-junctions from transcriptomics such as .BED output from TopHat 3,
SJ.out.tab output from STAR* or manual entries following a simple format to
for instance denote translocations and/or fusion-gene events (e.g., TMPRSS2-
ERG). ProteoDisco is capable of handling SNVs, InDels, MNV variants of both
NON-Synonymous as Ssynonymous variants.

3. Integration of genomic variants and splice-junctions into their respective tran-
scripts and coding sequence (CDS). Translation of in silico generated transcript
variants into their respective protein variants, the genetic code used for trans-
lation can be altered to allow for divergent translation tables for non-standard
organisms.

4. Determine the number of proteotypic peptides per transcript variant, this
can be determined based against the given reference database (as given
to the ProteoDiscography) or be extended with additional protein-sequence
databases. In addition, ProteoDisco can also check for proteotypic peptides
compared to the other generated protein variants.

5. Export of the generated protein variants into a distinct FASTA database for use
in downstream proteomics analysis to extend the (sample-specific or cohort-
wide) search-space.

1. Generation and design of the ProteoDiscography; the internal data-
structure.

All reference genome sequences (BSGenome objects), transcript annotations
(TxDb objects) and generated results (BioStrings, tibbles and DataFrames) through-
out ProteoDisco are housed within a custom (S4-class) termed ProteoDiscography.
The reference database and transcript annotations for the ProteoDiscography can
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be generated in two ways; using pre-generated BSGenome (reference sequences)
and TxDb (transcript annotations) objects, for instance available from BioConduc-
tor, or by supplying the reference genome sequences and transcript annotations
(FASTA and gene transfer format v2 (GTF)/GFF file, respectively) which in turn
generates these objects. In addition, the genetic code can be specified (as detailed
by Biostrings) to also allow for non-standard translation tables.

2. Import genomic variants and splice-junctions within the ProteoDiscog-
raphy.

After initialization of a ProteoDiscography, genomic variants and splice-junctions
can be imported. Genomic variants (or somatic mutations) can be imported from
.VCF or .MAF files or VRanges objects containing the genomic positions, strand
and reference/variant alleles. By default, all given reference anchors (genomic
position(s) and reference allele) of the genomic variants are checked against the
provided reference genome and nucleotide at the respective position(s) to prevent
inconsistencies. If non-matching reference anchors are detected, ProteoDisco will
either halt the import-process and whilst displaying the erroneous records or, by
setting ignoreNonMatch = TRUE, it will report and remove these non-matching
records and continue with the remainder.

Splice-junctions can be imported from standard .BED (e.g., TopHat) and.SJ.out.tab
(e.g., STAR) files or manually supplied using a simple format. Each of these for-
mats should detail the genomic position (and optionally, strand information) of the
donor and acceptor junction-sites for each splice-junction (junctionA and junctionB,
respectively). Manual input can be supplied using the following format:

1. junctionA: Genomic coordinates of the 5'-junction (i.e., the position of the first
intronic base). Format: chr:start:strand, i.e.: chr1:100:+

2. junctionB: Genomic coordinates of the 3’-junction (i.e., the position of the last
intronic base). Format: chr:start:strand, i.e.: chr1:150:+

3. sample: Sample-identifier. (optional)
4. identifier: Identifier for the splice-junction, this identifier will be used to de-

note the splice-junction in downstream analysis. (optional)

This manual-input can also be used to supply splice-junctions from transloca-
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tion events such as BCR-ABL which result in a protein variant containing exonic
sequences from two chromosomes.

In addition, users can also supply pre-determined full-length transcript sequences
into the ProteoDiscography. These manually-supplied transcript sequences can
then also be used to determine proteotypic peptides compared to the reference
database and/or protein variants. ProteoDisco houses functions to detect duplicate
samples and overwrite these (if required) or append new genomic variants and/or
splice-junctions to existing samples (based on sample names). In addition, it can
also be toggled to remove all pre-existing samples within the ProteoDiscography
prior to importation of new input.

3. Incorporation of genomic variants and splice-junctions within the
coding sequence of overlapping transcripts.

ProteoDisco facilitates options to incorporate all supplied genomic variants (incl.
synonymous variants) for all samples simultaneously or to perform this on a per-
sample basis (aggregateSamples). Similarly flexible, users can choose between in-
corporating all mutations (per-sample or all samples aggregated) within the same
transcript (e.g., a single RNA transcript containing 5 mutations; aggregateWithin-
Transcript = TRUE) or to generate separate transcripts, each harboring only a single
mutation (e.g., 5 transcripts for 5 mutations; aggregateWithinTranscript = FALSE).
Finally, users have similar functionality at exon-level (aggregateWithinExon).

Based on the parameters set by the user, genomic variants are overlapped with
the coding sequences (CDS) of each transcript within the supplied TxDb. Per vari-
ant, all overlapping CDS (from one or multiple transcripts) will be altered by in-
corporating the overlapping genomic variant(s) at the correct coding position. The
reference anchor (reference allele) will be checked if this conforms to the nucleotide
at the coding position, taking in mind the orientation of the CDS. Genomic variants
(e.g., InDels) overlapping the intron-exon or exon-intron boundary of a CDS will be
split and only the CDS-overlapping portion will be incorporated.

After all genomic variants have been incorporated within their overlapping CDS
in the transcript(s), the transcript sequence is generated by stitching all CDS of
the transcript from 5’ to 3’ together. Based on the parameters set by the user,
this will either results in a single transcript variant containing all mutant CDS or
multiple transcripts with distinct mutant CDS. In addition, the 3’ untranslated region
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(3’ untranslated region (UTR)) is also added to the mutant transcript sequence to
capture additional coding nucleotides after a possible loss of the canonical stop-
codon.

Splice-junctions are handled by determining the nearest adjacent (5’ and 3')
or overlapping CDS sequences. If a splice-junction overlaps with an existing CDS,
that CDS will be used as assigned CDS and be altered to start (if 5’; junctionA) or
end (3'; junctionB) at the genomic position of the respective junction, resulting in
a shortened CDS. If the junctions do not overlap with an existing CDS, it will be
assigned to the nearest adjacent CDS, taking in mind the orientation and strand of
the splice-junction and CDS. This will either retrieve a canonical CDS directly flanking
the splice-junctions or assign a CDS further away. The nucleotides spanning the
splice-junction to the assigned CDS will then be added to assigned CDS and thereby
effectively extending the CDS. If the splice-junction is further away than a max.
distance (as set by the user; default 250 nt), a cryptic exon (of a size set by the
user; default = 99 nt) will be generated and incorporated within all overlapping
transcripts. As we cannot discern frame-status for cryptic exons, a three or six-
frame translation (if splice-junction has no strand information) will be performed.

The generated splice-junction-derived transcript can also span two distinct genes;
e.g., if one junction is most adjacent to gene X and the second junction is most ad-
jacent to gene Y. These ‘fusion’-genes are then generated by stitching (taking the
strand into account) of all upstream CDS of gene X (ending at the assigned 5’ CDS)
with all downstream CDS of gene Y (starting at the assigned 3’ CDS); extensions
and/or shortenings are also incorporated in these situations.

Post-incorporation, all generated transcripts (genomic variants, splice-junctions
and/or manual sequences) can be curated and altered using the setMutantTran-
scripts function. After the generation of transcript variants (or manual alteration
thereof), all mutant transcript sequences are translated into their respective pro-
tein sequences and cleaved at the earliest stop-codon. If the canonical stop-codon
is lost, it will continue translating into the 3" UTR until the next-earliest stop-codon
or stop at the end of the 3" UTR. Generated splice-junctions transcripts without
known translation frame(s) will generate a three-frame (if orientations are known
and concordant) or a six-frame (if strand orientations is unknown or disconcordant)
translation of the transcript sequence(s).

4, Filtering for protein variants based on proteotypic peptides.
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To reduce number of potential protein variants, ProteoDisco provides an optional
filtering procedure to retain protein variants containing a min. number of proteo-
typic peptides not seen in the supplied TxDb (and additional) protein databases and
thereby identifiable in subsequent MS/MS analysis.

Conceptually, we cleave the protein variants with the same protease as would be
used in the respective MS/MS experiment (e.g., Trypsin) and compare the resulted
cleaved peptides against the input TxDb (and additional databases) cleaved in the
same manner (allowing user-set missed cleavages) and, subsequently, determine
the number of distinct cleaved fragments not detected in the reference protein
database(s). In addition, it can also be toggled to check for uniqueness against all
other generated protein variants within the ProteoDiscography. This extends the
ProteoDiscography with the number of proteotypic peptides per protein variants
which can be used to filter protein variants prior to exporting the protein sequences
to a FASTA file (step 5).

5. Export protein variants into a customized protein database (FASTA).

Generated protein variants can be exported into an external (FASTA) database.
As mentioned, users can subset exported proteins based on the minimum number of
proteotypic peptides. This optional filtering step removes identical peptide variants
of homologous proteins and sequences that are indistinguishable due to mutations.
Users can output all generated protein variants into the same aggregated file or
generate distinct files containing sample-specific protein variants.

The FASTA headers for each protein sequence contain identifiers and informa-
tion on the incorporated variant(s) or splice-junctions which can be easily related
back to the ProteoDiscography.
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1 Retrieve all transcript-annotations (CDS) from 3
ProteoDiscography (TxDb).

GeneA- Tx1 Exon1 H Exon3
Genomic position (chr4): 10" 30 50 70 90 110°

Gene A- Eon1 | Ewn2, | Boons
Genomic position (chr4): 10" 30 50 60 90 110t

GeneB- Tx 1 IE|_ Exon2 -
Genomic position (chr4): 225" 235 255 450"
* denotes start/end of coding sequence (CDS).

h

2 | Per splice-junction (SJ), retrieve the nearest-adjacent or
overlapping exon (CDS) for both the 5' (A) and 3' (B)
junction. If no adjacent exon can be found, generate a
new cryptic exon within the overlapping transcript.

a— s -
SJ, Sda
31 —2449  61F---"——89
Gene A- Tx 1 Exon 1 { Bonz | k)
+---4 Exon shortening
sJ; 71 SJs
""" =157 5 - 89 i
31 - 57 m.;|.\ Exon extension
31 —2449 61————89
Gene A- [ EBon1 | [TBonz.] [___Bond |

»-¢ Cryptic exon

SJs

—_
2457, 254
36—t 254 s
2361 SJ; a/9
GeneB- Tx 1 —EIM—————— Bon2

Supplementary figure S3.1: Overview of the procedure of generation mutant splice-isoforms based on inter- and intrachromosomal splice-

junctions.

Schematic overview on the handling of splice-junctions (SJ) to generate splice-isoforms. Optionally, users can opt to only generate non-canonical splice-

Per SJ, generate splice-isoforms by joining the two
assigned _moaﬁzov exons together. Optionally, ignore
splice-isoforms already present within the TxDb.

Cryptic exons are extended (respective to SJ) based on a given max. distance (in nucleotides).

Type
SJs Exon shortening
10 30 58 70
SJs 73 Exon 0 S S I, =" F A
25 24 255 450
sJ, [ 7x3- Exon 1 e Cryptic exon
25 235 76 476 + Ext. distance.

Generated mutant splice-isoforms

isoforms, thereby ignoring canonical forms already present within the ProteoDiscography TxDb.
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Abstract

Metastatic castration-resistant prostate cancer (mCRPC) has a highly complex ge-
nomic landscape. With the recent development of novel treatments, accurate strat-
ification strategies are needed. Here we present the whole-genome sequencing
(WGS) analysis of fresh-frozen metastatic biopsies from 197 mCRPC patients. Us-
ing unsupervised clustering based on genomic features, we define eight distinct
genomic clusters. We observe potentially clinically relevant genotypes, including mi-
crosatellite instability (MSI), homologous recombination deficiency (HRD) enriched
with genomic deletions and BRCAZ2 aberrations, a tandem duplication genotype
associated with CDK12~/~ and a chromothripsis-enriched subgroup. Our data sug-
gests that stratification on WGS characteristics may improve identification of MSI,
CDK127/~ and HRD patients. From WGS and chromatin immunoprecipitation se-
quencing (ChIP-seq) data, we show the potential relevance of recurrent alterations
in non-coding regions identified with WGS and highlight the central role of AR sig-
naling in tumor progression. These data underline the potential value of using WGS
to accurately stratify mCRPC patients into clinically actionable subgroups.
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Introduction

5 rostate cancer is known to be a notoriously heterogeneous disease and the
% genetic basis for this interpatient heterogeneity is poorly understood. 2 The
ongoing development of new therapies for metastatic prostate cancer that tar-
get molecularly defined subgroups further increases the need for accurate pa-
tient classification and stratification.>= Analysis of whole-exome sequencing data
of metastatic prostate cancer tumors revealed that 65% of patients had actionable
targets in non-androgen receptor related pathways, including PI3K, Wnt, and de-
oxyribonucleic acid (DNA) repair.® Several targeted agents involved in these path-
ways, including mTOR/AKT pathway inhibitors’” and PARP inhibitors®, are currently
in various phases of development and the first clinical trials show promising results.
Therefore, patients with metastatic prostate cancer could benefit from better strat-
ification to select the most appropriate therapeutic option. More extensive analysis
using WGS-based classification of tumors may be useful to improve selection of
patients for different targeted therapies. The comprehensive nature of WGS has
many advantages, including the detection of mutational patterns, as proven by the
successful treatment of patients with high-tumor mutational burden with immune
check-point blockade therapy.®~12 Moreover, WGS unlike exome sequencing, can
detect structural variants and aberrations in non-coding regions, both important
features of prostate cancer.

The stratification of prostate cancer patients, based on differences in the muta-
tional landscape of their tumors, has mainly focused on mutually exclusive muta-
tions, copy-number alterations, or distinct patterns in RNA-sequencing caused by
the abundant TMPRSS2-ERG fusion, which is recurrent in 50% of primary prostate
tumors®13-18, More recently, WGS of metastatic prostate cancer tumors demon-
strated that structural variants arise from specific alterations such as CDK127/~
and BRCA2/- genotypes, and are strongly associated with genome-wide events
such as large tandem duplications or small genomic deletions, respectively. 1°=23
Advances in WGS analysis and interpretation have revealed rearrangement signa-
tures in breast cancer relating to disease stage, HRD, and BRCA1/BRCAZ2 defects
based on size and type of structural variant?%%%, Thus, WGS enables the identi-
fication of patterns of DNA aberrations (i.e., genomic scars) that may profoundly
improve classification of tumors that share a common etiology, if performed in a
sufficiently powered dataset.
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In this study, we analyzed the WGS data obtained from 197 mCRPC patients.
We describe the complete genomic landscape of mCRPC, including tumor spe-
cific single- and multi-nucleotide variants (single-nucleotide variation(s) (SNV)s and
multi-nucleotide variation(s) (MNV)s), small insertions and deletions (InDels), copy-
number alteration(s) (CNA), mutational signatures, kataegis, chromothripsis, and
structural variant(s) (SV). Next, we compared the mutational frequency of the de-
tected driver genes and genomic subgroups with an unmatched WGS cohort of
primary prostate cancer (n=210), consisting of exclusively of Gleason score 6—7
tumors. 1>%> We investigated the presence of possible driver genes by analyzing
genes with enriched (non-synonymous) mutational burdens and recurrent or high-
level copy-number alterations. 2627 By utilizing various basic genomic features re-
flecting genomic instability and employing unsupervised clustering, we were able
to define eight distinct genomic subgroups of mCRPC patients. We combined our
genomic findings with AR, FOXA1, and H3K27me ChIP-seq data, and confirmed
that important regulators of AR-mediated signaling are located in non-coding re-
gions with open chromatin and highlight the central role of AR signaling in tumor
progression.

Results

Characteristics of the mCRPC cohort and sequencing approach

We analyzed fresh-frozen metastatic tumor samples and matched blood samples
from 197 castration-resistant prostate cancer patients using WGS generating to date
the largest WGS dataset for mCRPC (Figure 4.1a). Clinical details on biopsy site,
age, and previous treatments of the included patients are described in Figure 4.1b,
4.1c and Supplementary Data 1 (available online). WGS data was sequenced to a
mean coverage of 104X in tumor tissues and 38X in peripheral blood (Supplemen-
tary Figure S4.1a). The median estimated tumor cell purity using in silico analysis of
our WGS data was 62% (range: 16—-96%; Supplementary Figure S4.1b). Tumor cell
purity correlated weakly with the frequency of called SNVs (Spearman correlation;
rho =0.2; p=0.005), InDels (Spearman correlation; rho =0.35; p<0.001), MNVs
(Spearman correlation; rho =0.25; p<0.001) and structural variants (Spearman
correlation; rho = 0.22; p=0.002; Supplementary Figure S4.1c).
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90 Chapter 4

Landscape of mutational and structural variants in mCRPC

The median tumor mutational burden (TMB) at the genomic level (SNVs and InDels
per mega-base pair (Mbp)) was 2.7 in our mCRPC cohort, including 14 patients
with high TMB (>10). We found a median of 6621 SNVs (IQR: 5048-9109), 1008
small InDels (IQR: 739-1364), 55 MNVs (IQR: 34-86) and 224 SVs (IQR: 149-
370) per patient (Supplementary Figure S4.2a—c). We observed a highly complex
genomic landscape consisting of multiple driver mutations and structural variants
in our cohort.

We confirmed that known driver genes of prostate cancer were enriched for
non-synonymous mutations (Figure 4.2 and Supplementary Figure S4.2e) 131528,
In total, we detected 11 genes enriched with non-synonymous mutations: TP53,
AR, FOXA1, SPOP, PTEN, ZMYM3, CDK12, ZFP36L2, PIK3CA, and APC. ATM was
mutated in 11 samples, but after multiple-testing correction appeared not to be
enriched.

Our copy-number analysis revealed distinct amplified genomic regions, includ-
ing 8q and Xq and deleted regions including 8p, 10q, 13q, and 17p (Supplementary
Figure S4.2d). Well-known prostate cancer driver genes®16, such as AR, PTEN,
TP53, and RB1, are located in these regions. In addition to large-scale chromo-
somal copy-number alterations, we could identify narrow genomic regions with
recurrent copy-number alterations across samples, which could reveal important
prostate cancer driver genes (Supplementary Data 1 (available online)).

TMPRSS2-ERG gene fusions were the most common fusions in our cohort (n = 84
out of 197; 42.6%) and were the majority of ETS family fusions (n = 84 out of 95;
88.4%; Figure 4.2 and Supplementary Figure S4.3). This is comparable to primary
prostate cancer, where ETS fusions are found in approximately 50% of tumors. 131>
The predominant break point was located upstream of the second exon of ERG,
which preserves its ETS-domain in the resulting fusion gene.

In 42 patients (21.3%), we observed regional hypermutation (kataegis; Figure
4.2 and Supplementary Figure S4.4). In addition, we did not observe novel muta-
tional signatures specific for metastatic disease or possible pre-treatment histories
(Supplementary Figure 54.5).%°

To further investigate whether our description of the genome-wide mutational
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92 Chapter 4

burden and observed alterations in drivers and/or subtype-specific genes in mCRPC
were metastatic specific, we compared our data against an unmatched WGS cohort
of primary prostate cancer (n=210)!>2>, consisting of Gleason score 6—7 disease.
Comparison of the median genome-wide TMB (SNVs and InDels per Mbp) revealed
that the TMB was roughly 3.8 times higher in mCRPC (Figure 4.3a) and the fre-
quency of structural variants was also higher between disease stages (Figure 4.3b),
increasing as disease progresses. Analysis on selected driver and subtype-specific
genes showed that the mutational frequency of several genes (AR, TP53, MYC,
ZMYM3, PTEN, PTPRD, ZFP36L2, ADAM15, MARCODZ2, BRIP1, APC, KMT2C, CCAR2,
NKX3-1, C80orf58, and RYBP) was significantly altered (g < 0.05) between the pri-
mary and metastatic cohorts (Figure 4.3c—e). All genes for which we observed
significant differences in mutational frequency, based on coding mutations, were
enriched in mCRPC (Figure 4.3d). We did not identify genomic features that were
specific for the metastatic setting, beyond androgen deprivation therapy-specific
aberrations revolving AR (no aberrations in hormone-sensitive setting versus 137
aberrations in castration-resistant setting). We cannot exclude from these data that
matched sample analysis or larger scale analysis could reveal such aberrations.

We next determined whether previous treatments affect the mutational land-
scape. Using treatment history information, we grouped prior secondary anti-
hormonal therapy, taxane-based chemotherapy and systemic radionucleotide ther-
apy into different groups (Supplementary Figure S4.6). This analysis did not re-
veal systematic biases due to pre-treatment in aberrations, such as TMB, kataegis,
chromothripsis, ETS fusions, or somatically altered genes (Supplementary Data 1
(available online)).

The role of the AR-pathway in mCRPC

Focusing on the AR-pathway revealed that aberrant AR signaling occurred in 80%
of our patients. In 57.3% of patients both AR and the AR-enhancer (66.13 Mb
on chromosome X; located about 629 kbp upstream of the AR gene??) were af-
fected (Figure 4.4a). In an additional 6.6% and 14.7% of tumors only AR gene
alterations or AR-enhancer amplification occurred, respectively. The percentage
of mCRPC patients with the exclusive AR-enhancer amplification (29 out of 197;
14.7%) versus exclusively AR-locus amplification (13 out of 197; 6.6%) is similar
to previous observations, which showed 21 out of 94 castration-resistant prostate
cancer (CRPC) patients (10.3%) with exclusively AR-enhancer amplification versus
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Figure 4.3: Comparison of the mutational landscape between primary prostate cancer and
mCRPC.

(a): Tumor mutational burden (SNVs and InDels per Mbp) from a primary prostate cancer (n=210)
and the CPTC-02 mCRPC cohort (n=197). Bee-swarm boxplot with notch of the tumor mutational
burden. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers
indicate 1.5 times the IQR. Data points outside the IQR are shown. Statistical significance was tested
with Wilcoxon rank-sum test and p < 0.001 is indicated as ***, (b): Frequency of structural variant
events from an unmatched cohort of primary prostate cancer (n=210) and the CPTC-02 mCRPC cohort
(n=197). (c): Comparison of the mutational frequencies for driver genes detected by dN/dS and/or
GISTIC2, or subtype-specific genes, enriched in mCRPC relative to primary prostate cancer or vice-versa.
The difference in relative mutational frequency is shown on the x-axis and the adjusted p-value (two-
sided Fisher’s Exact Test with Benjamini-Hochberg (BH) correction) is shown on the y-axis. (d): Same
as in ¢ but using only coding mutations. (e): Overview of the mutational categories of the driver genes
detected by dN/dS and/or GISTIC2, or subtype-specific genes, enriched in mCRPC relative to primary
prostate cancer (g < 0.05). For each gene the frequency in primary prostate cancer is displayed followed
by the frequency in mCRPC.
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4 out of 94 CRPC patients (4.3%) with exclusively AR-locus amplification.?° Con-
current amplification of the AR gene and the AR-enhancer was not necessarily of
equal magnitude, which resulted in differences in copy humber enrichment of these
loci (Figure 4.4b).

To date, no AR ChIP-seq data has been reported in human mCRPC samples
and evidence of increased functional activity of the amplified enhancer thus far is
based on cell line models.3° To resolve this, we performed AR ChIP-seq on two se-
lected mCRPC patient samples with AR-enhancer amplification based on WGS data.
As controls we used two prostate cancer cell-lines (LNCaP and VCaP) and three
independent primary prostate cancer samples that did not harbor copy-number al-
terations at this locus (Supplementary Figure S4.7).3! We observed active enhancer
regions (H3K27ac) in the castration-resistant setting, co-occupied by AR and FOXA1,
at the amplified AR-enhancer. This is substantially stronger when compared to the
hormone-sensitive primary prostate cancer samples without somatic amplifications
(Figure 4.4c and Supplementary Figure S4.7). Furthermore, a recurrent focal am-
plification in a non-coding region was observed at 8q24.21 near PCAT1. This locus
bears similar epigenetic characteristics to the AR-enhancer with regard to H3K27ac
and, to a lesser extent, binding of AR and/or FOXA1 in the mCRPC setting (Figure
4.4d and Supplementary Figure S4.7).

WGS-based stratification defines genomic subgroups in mCRPC

Our comprehensive WGS data and large sample size enabled us to perform unsu-
pervised clustering on several WGS characteristics to identify genomic scars that
can define subgroups of mCRPC patients. We clustered our genomic data using the
total number of SVs, relative frequency of SV category (translocations, inversions,
insertions, tandem duplications, and deletions), genome-wide TMB encompassing
SNV, InDels and MNV, and tumor ploidy. Prior to clustering, we subdivided tandem
duplications and deletions into two major categories based on the respective ge-
nomic size of the aberration (smaller and larger than 100 kilo-base pair (kbp)) since
previous studies revealed distinctions based on similar thresholds for these struc-
tural variants in relation to specific-mutated genes. 1°-2132 Similarly, we observed a
difference in genomic size and number in our subgroups of mCRPC patients (Sup-
plementary Figure S4.8).

This analysis defined eight distinct subgroups (Figures 4.5, 4.6 and Supplemen-
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tary Figures S4.8, S4.9, S4.10 and S4.11): (A) MSI signature with high TMB and
association with mismatch repair deficiency; (B) tandem duplication (>100 kbp)
phenotype associated with biallelic CDK12 inactivation; (D) HRD features with many
deletions (>100 kbp) and association with (somatic) mutations in BRCAness-associated
genes; this was supported by high HR-deficiency scores (CHORD; Supplementary
Figures S4.8 and S4.9); (F) chromothripsis; C, E, G, H); non-significant genomic
signature without any currently known biological association. 4.1 summarizes the
key features of each subgroup.

Clusters A and B represent previously identified genomic subgroups (MSI and
CDK127/7).619:2134 In cluster B, only two patients were allocated to this sub-
group without a specific somatic mutation in the identifying gene. The well-known
mismatch repair genes: MLH1, MSH2, and MSH6 are among the cluster-specific-
mutated genes in cluster A (Figure 4.6a). Twelve out of these thirteen patients had
at least one inactivating alteration in one of these genes (Figure 4.6b). Interest-
ingly, cluster B (CDK12~/~) harbors two patients without non-synonymous CDK12
mutation or copy-number alteration; the cause of their tandem duplication phe-
notype is currently unknown (Figure 4.6b). Cluster D shows significant features of
HRD, specifically biallelic BRCAZ2 inactivation (Supplementary Figure /S4.12), mainly
mutational signature 3, enrichment of deletions (<100 kbp) and is supported by
high HR-deficiency scores (CHORD) (Supplementary Figures S4.8 and S4.9).2%3°
Remarkably, seven out of twenty-two patients did not have a biallelic BRCAZ inacti-
vation. However, four of these patients showed at least one (deleterious) aberration
in other BRCAness-related genes (Figure 4.6b).3¢ Cluster F was enriched for chro-
mothripsis events, however we could not reproduce a previous finding, suggest-
ing chromothripsis was associated with inversions and p53 inactivation in prostate
cancer.2! Apart from the chromothripsis events, no clear gene aberration was as-
sociated with this cluster (Figure 4.6b). In the remaining patients, there were no
distinct genomic signatures or biologic rationale for patient clustering (cluster C, E,
G, H). In cluster C, conjoint aberrations of BRCA1 and TP53 were observed in one
patient with a high HR-deficiency prediction score (CHORD), which is known to lead
to a small tandem duplication phenotype (<100 kbp).3? Two other patients within
cluster C displayed a weak CHORD scoring associated with HR-deficiency, however
no additional definitive evidence was found for a BRCA1 loss-of-function mutation
within these patients.

In addition to our unsupervised clustering approach, we clustered our samples
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Figure 4.5: Unsupervised clustering of mCRPC reveals distinct genomic phenotypes.

(@): Dendrogram of unsupervised clustering with optimal leaf ordering (OLO). Top eight clusters are
highlighted and denoted based on order of appearance (left to right): A to H. y-axis displays clustering
distance (Pearson correlation; ward.D). (b): Number of genomic TMB per SNV (blue), InDels (yellow),
and MNV (orange) category. All genome-wide somatic mutations were taken into consideration (square-
root scale). (c): Absolute number of unique structural variants per sample. (d): Relative frequency per
structural variant category (translocations, inversions, insertions, tandem duplications, and deletions).
Tandem Duplications and Deletions are subdivided into >100 kbp and <100 kbp categories. This track
shows if an enrichment for particular category of (somatic) structural variant can be detected, which in
turn, can be indicative for a specific mutational aberration. (e): Relative genome-wide ploidy status,
ranging from 0 to >7 copies. This track shows the relative percentage of the entire genome, which
is (partially) deleted (ploidy <2 per diploid genome) or amplified (ploidy >2 per diploid genome). (f):
Relative contribution to mutational signatures (COSMIC) summarized per proposed etiology. This track
displays the proposed etiology of each SNV based on their mutational contexts. (g): Relative frequency
of different SNV mutational changes. (h): HR-deficient prediction score as assessed by CHORD. The
binary prediction score of CHORD (ranging from 0 to 1) is shown, in which higher scores reflect more
evidence for HR-deficiency in a given sample. (i): MSI status as determined using a stringent threshold
of MSI characteristics. 33 (j): Presence of a fusion with a member of the ETS family. Green color indicates
a possible fusion. (k): Presence of chromothripsis. Pink color indicates presence of chromothripsis as
estimated by ShatterSeek. (I): Presence of kataegis. Red color indicates presence of one or more
regions showing kataegis. (m): General biopsy location.
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using the clustering scheme proposed by The Cancer Genome Atlas (TCGA) (Sup-
plementary Figure S4.13a), which defines seven clusters based on coding mutations
and copy-number aberrations in SPOP, FOXA1, IDH1, and ETS family gene fusions
(and overexpression) per promiscuous partner (ERG, ETV1, ETV4, and FLI1).!3 Un-
fortunately, we currently lack matched messenger RNA (mRNA)-sequencing data
in our cohort and therefore cannot observe overexpression of fused ETS family
members, which restricted us to only characterize the genomic breaks of these
promiscuous partners. Without incorporation of ETS family overexpression, this
proposed clustering scheme categorizes 61% of mCRPC into these seven groups
versus 68% of the original cohort containing primary prostate cancer described
by TCGA (Supplementary Figure S4.13b).!3 There was no significant correlation
between the TCGA clustering scheme and our defined genomic subtypes such as
MSI, BRCAness or CDK127/~. In addition, we did not detect statistical enrichment
or depletion (g < 0.05) between these supervised clusters and additional-mutated
genes, kataegis and chromothripsis, only the known enrichment of homozygous
CHD1 deletions in the SPOP-cluster was observed. 13

Performing unsupervised clustering and principal component analysis on the
primary prostate cancer and metastatic cohorts revealed no striking primary-only
genomic subgroup nor did we detect the presence of the mCRPC-derived genomic
subgroups in the primary prostate cancer cohort (Supplementary Figure S4.14).
This could reflect the absence of CDK12 mutations and the presence of only three
sporadic BRCA2-mutated samples (1%) in the primary prostate cancer cohort. Fur-
thermore, only one sample (1%) with MSI-like and high TMB (>10), respectively,
was observed in the primary cancer cohort. Indeed, there is a striking difference in
the mutational load between both disease settings.

Discussion

We performed WGS of metastatic tumor biopsies and matched-normal blood ob-
tained from 197 patients with mCRPC to provide an overview of the genomic land-
scape of mMCRPC. The size of our cohort enables classification of patients into distinct
disease subgroups using unsupervised clustering. Our data suggest that classifi-
cation of patients using genomic events, as detected by WGS, improves patient
stratification, specifically for clinically actionable subgroups such as BRCA-deficient
and MSI patients. Furthermore, we confirm the central role of AR signaling in
mCRPC that mediates its effect through regulators located in non-coding regions
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and the apparent difference in primary versus metastatic prostate cancers.

The classification of patients using WGS has the advantage of being, in theory,
more precise in determining genomically defined subgroups in prostate cancer com-
pared to analyses using targeted panels consisting of a limited number of genes,
or exome sequencing. The identification of subgroups based on predominant phe-
notypic characteristics encompassing genomic signatures may be clinically relevant
and our clustering analysis refines patient classification. In cluster A, we observed a
high TMB, which has been associated in other tumor types with a high sensitivity to
immune check-point inhibitors. >11:12 Clinical trials using pembrolizumab in selected
mCRPC patients are underway (KEYNOTE-028, KEYNOTE-199).37:38 Interestingly,
in both cluster B and cluster D, we identified patients that did not have the defin-
ing biallelic CDK12 or BRCAZ2 (somatic) mutation. Such patients might be deemed
false-negatives when using FDA-approved assays (BRCAnalysis™ and Foundation-
Focus™), currently used in breast cancer diagnosis and based on the presence of
BRCA1/2 mutations, to predict response to poly(ADP-ribose) polymerase (PARP)
inhibitors and/or platinum compounds. The first clinical trials combining PARP in-
hibitors with AR-targeted therapies in mCRPC show promising results.® Thus, WGS-
based stratification may improve the patient classification of DNA repair-deficient
tumors as it uses the genome-wide scars caused by defective DNA repair to identify
tumors that have these deficiencies.

The use of WGS also allowed us to gain more insight into the role of non-
coding regions of the genome in prostate cancer. We confirmed the amplification
of a recently reported AR-enhancer.2%21:30 In line with the cell line-based observa-
tions, we show AR binding at these mCRPC-specific enhancer regions, providing the
first clinical indication that AR-enhancer amplification also increases AR signaling in
mCRPC tumors. These findings are supported by previous studies demonstrating
that this amplification ultimately resulted in significantly elevated expression of AR
itself. 202130 Furthermore, we confirm a recurrent focal amplification near PCAT1,
which shows robust chromatin binding for AR in mCRPC samples, providing clini-
cal proof-of-concept of a functional enhancer that is also active and AR-bound in
cell line models. Recent research elucidated to the functional importance of this
region in regulating MYC expression in prostate cancer, which could highlight a
putative role of this somatically acquired amplification.3! However, the WGS and
ChIP-seq data presented here are not conclusive in elucidating the definitive role of
this amplified region in regulating MYC expression and further mechanistic studies
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are needed to establish a potential link to MYC regulation.

In addition, PCAT1 is a long non-coding RNA, which is known to be upregulated
in prostate cancer and negatively regulates BRCAZ2 expression while positively af-
fecting MYC expression. 30 Combining our WGS approach with AR, FOXA1, and
H3K27ac ChIP-seq data, we identify non-coding regions affecting both AR itself,
and possibly MYC, through AR-enhancer amplification as a potential mechanism
contributing to castration resistance.

A potential pitfall of our clustering analysis is the selection of features used;
for this we made a number of assumptions based on the literature and distribu-
tion of the structural variants within our cohort. %2132 As the input of features
and weights for clustering analysis are inherent to the clustering outcome, we per-
formed additional clustering analyses using various combinations of these features
and applied alternative approaches but did not detect striking differences compared
to the current approach. Another potential pitfall of the employed hierarchical clus-
tering scheme is that patients are only attributed to a single cluster. An example of
this can be seen in cluster A where a patient is grouped based on its predominant
genotype (MSI) and associated mutations in mismatch repair (MMR)-related genes
(MLH1, POLE, POLD3, and BLM), but this sample also displays an increased number
of structural variants and increased ploidy status and harbors a pathogenic BRCA2
mutation. However, it is missing the characteristic number of genomic deletions
(<100 kbp) and BRCA mutational signature associated with BRCA2~/~ samples that
define cluster D. Despite these pitfalls we conclude that unbiased clustering con-
tributes towards improved classification of patients.

The CPCT-02 study was designed to examine the correlation of genomic data
with treatment outcome after biopsy at varying stages of disease. Our cohort con-
tains patients with highly variable pre-treatment history and since the treatments
for mCRPC patients nowadays significantly impacts overall survival, the prognosis
of patients differs greatly. Therefore, correlation between genomic data and clini-
cal endpoints, such as survival is inherently flawed due to the very heterogeneous
nature of the patient population. Moreover, our analysis comparing primary and
metastatic samples shows a significant increase in the number of genomic aberra-
tions with advancing disease, meaning that the difference in timing of the biopsies
may bias the prognostic value of the data. In future studies, we plan to gather all
known clinically defined prognostic information and determine whether the genomic
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subtypes increase the ability to predict outcome. Unfortunately, some clinical pa-
rameters with prognostic importance such as ethnicity will not be available due to
ethical regulations. Moreover, we will increase the sample size, in order to correlate
genomic features to clinical parameters to better determine whether the subtypes
we identified are stable over time. Therefore, we are currently unable to present
meaningful correlations between clinical endpoints and the clusters we identified.

Overall, we show the added value of WGS-based unsupervised clustering in
identifying patients with genomic scars who are eligible for specific therapies. Since
our clustering method does not rely on one specific genetic mutation we are able
to classify patients even when WGS (or our methodology) does not find conclusive
evidence for (biallelic) mutations in the proposed gene-of-interest. Further research
should validate clinical response and outcome on specific therapies in matched sub-
groups. This study also shows that a large population of mCRPC patients do not
fall into an as-of-yet clinically relevant or biologically clear genotype and further re-
search can help elucidate the oncogenic driver events and provide new therapeutic
options.

Material and Methods

Patient cohort and study procedures

Patients with metastatic prostate cancer were recruited under the study protocol
(NCT01855477) of the Center for Personalized Cancer Treatment (CPCT). This con-
sortium consists of 41 hospitals in The Netherlands (Supplementary Data 1 (avail-
able online)). This CPCT-02 protocol was approved by the medical ethical committee
(METC) of the University Medical Center Utrecht and was conducted in accordance
with the Declaration of Helsinki. Patients were eligible for inclusion if the following
criteria were met: (1) age = 18 years; (2) locally advanced or metastatic solid tu-
mor; (3) indication for new line of systemic treatment with registered anti-cancer
agents; (4) safe biopsy according to the intervening physician. For the current
study, patients were included for biopsy between 03 May 2016 and 28 May 2018.
Data were excluded of patients with the following characteristics: (1) hormone-
sensitive prostate cancer; (2) neuro-endocrine prostate cancer (as assessed by rou-
tine diagnostics); (3) unknown disease status; (4) prostate biopsy (Figure 4.1a). All
patients provided written informed consent before any study procedure. The study
procedures consisted of the collection of matched peripheral blood samples for ref-
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erence DNA and image-guided percutaneous biopsy of a single metastatic lesion.
Soft tissue lesions were biopsied preferentially over bone lesions. The clinical data
provided by CPCT have been locked at 1st of July 2018.

Collection and sequencing of samples

Blood samples were collected in CellSave preservative tubes (Menarini-Silicon Biosys-
tems, Huntington Valley, PA, USA) and shipped by room temperature to the central
sequencing facility at the Hartwig Medical Foundation. 33 Tumor samples were fresh-
frozen in liquid nitrogen directly after the procedure and send to a central pathology
tissue facility. Tumor cellularity was estimated by assessing a hematoxylin-eosin
(HE) stained 6 micron thick section. Subsequently, 25 sections of 20 micron were
collected for DNA isolation. DNA was isolated with an automated workflow (QiaSym-
phony) using the DSP DNA Midi kit for blood and QiaSymphony DSP DNA Mini kit
for tumor samples according to the manufacturer’s protocol (Qiagen). DNA concen-
tration was measured by Qubit™ fluorometric quantitation (Invitrogen, Life Tech-
nologies, Carlsbad, CA, USA). DNA libraries for Illumina sequencing were generated
from 50 t0100 ng of genomic DNA using standard protocols (Illumina, San Diego,
CA, USA) and subsequently whole-genome sequenced in a HiSeq X Ten system us-
ing the paired-end sequencing protocol (2 x 150 base pair (bp)). Whole-genome
alignment (GRCh37), somatic variants (SNV, InDels (max. 50 bp), MNV), structural
variant and copy number calling and in silico tumor cell percentage estimation were
performed in a uniform manner as detailed by Priestley et al.>3. Mean read cov-
erages of reference and tumor Binary Alignment Map (BAM) were calculated using
Picard Tools (v1.141; CollectWgsMetrics) based on GRCh37.*

Additional annotation of somatic variants and heuristic filtering

In addition, heuristic filtering removed somatic SNV, InDels, and MNV variants
based on the following criteria: (1) minimal alternative reads observations < 3;
(2) gnomAD exome (ALL) allele frequency = 0.001 (corresponding to 62 gnomAD
individuals); and (3) gnomAD genome (ALL) >0.005 ( 75 gnomAD individuals).*
gnomAD database v2.0.2 was used. Per gene overlapping a genomic variant, the
most deleterious mutation was used to annotate the overlapping gene. Structural
variants, with B-Allele Frequency (BAF) >0.1, were further annotated by retrieving
overlapping and nearest up- and downstream annotations using custom R scripts
based on GRCh37 canonical University of California, Santa Cruz (UCSC) promoter
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and gene annotations with respect to their respective up- or downstream orienta-
tion (if known).*® Only potential fusions with only two different gene-partners were
considered (e.g., TMPRSS2-ERG); structural variants with both breakpoints falling
within the same gene were simply annotated as structural variant mutations. Fusion
annotation from the COSMIC (v85), Cancer Genome Interpreter (CGI) and Clinical
Interpretation of Variants in Cancer (CIVIC) databases were used to assess known
fusions. ¥~ The COSMIC (v85), OncoKB (July 12, 2018), CIVIC (July 26, 2018),
CGI (July 26, 2018) and the list from Martincorena et al.?® (dN/dS) were used to
classify known oncogenic or cancer-associated genes =%,

Ploidy and copy-number analysis

Ploidy and copy-number (CN) analysis was performed by a custom pipeline as de-
tailed by Priestley et al..>* Briefly, this pipeline combines BAF, read depth, and
structural variants to estimate the purity and CN profile of a tumor sample. Re-
current focal and broad CN alterations were identified by GISTIC2.0 (v2.0.23).%/
GISTIC2.0 was run with the following parameters: (a) genegistic 1; (b) gcm ex-
treme; (c) maxseg 4000; (d) broad 1; (e) brlen 0.98; (f) conf 0.95; (g) rx 0; (h)
cap 3; (i) saveseg 0; (j) armpeel 1; (k) smallmem 0; (1) res 0.01; (m) ta 0.1; (n) td
0.1; (o) savedata 0; (p) savegene 1; (q) gvt 0.1.

Categorization of shallow and deep CN aberration per gene was based on thresh-
olded GISTIC2 calls. Focal peaks detected by GISTIC2 were re-annotated, based
on overlapping genomic coordinates, using custom R scripts and UCSC gene anno-
tations. GISTIC2 peaks were annotated with all overlapping canonical UCSC genes
within the wide peak limits. If a GISTIC2 peak overlapped with <3 genes, the
most-likely targeted gene was selected based on oncogenic or tumor-suppressor
annotation in the COSMIC (v85), OncoKB (July 12, 2018), CIVIC (July 26, 2018),
and CGI (July 26, 2018) lists.26446 peaks in gene deserts were annotated with
their nearest gene.

Estimation of tumor mutational burden

The mutation rate per Mbp of genomic DNA was calculated as the total genome-
wide amount of SNV, MNV, and InDels divided over the total amount of callable
nucleotides (ACTG) in the human reference genome (hg19) FASTA sequence file:
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- _ (SNV, + MNV, + InDels,)

genomic = T (H858674662/106) 4+.1)

The mutation rate per Mbp of coding mutations was calculated as the amount
of coding SNV, MNV, and InDels divided over the summed lengths of distinct non-
overlapping coding regions, as determined on the subset of protein-coding and fully
supported (TSL = 21) transcripts in GenCode v28 (hg19)#/:

(SNV. + MNV, + InDels,)
(28711682/106)

TMBcoging = (4.2)

MSI and HR-deficiency prediction

HR-deficiency/BRCAness was estimated using the CHORD classifier (Nguyen, van
Hoeck and Cuppen, manuscript in preparation). This classifier was based on the
HRDetect*® algorithm, however, redesigned to improve its performance beyond
primary breast cancer. The binary prediction score (ranging from 0 to 1) was used
to indicate BRCAness level within a sample. To elucidate the potential target gene(s)
in the HR-deficient samples (Figure 4.4), we used the list of BRCAness genes from
Lord et al.3°,

MSI status was determined based on the following criteria: if a sample contained
>11,436 genomic InDels (max. 50 bp, with repeat-stretches of >4 bases, repeat
length sequence between 2 and 4, or if these InDels consist of a single repeat
sequence, which repeats >5 times), the sample was designated as MSI. 33

Detection of (onco-)genes under selective pressure

To detect (onco-)genes under tumor-evolutionary mutational selection, we em-
ployed a Poisson-based dN/dS model (192 rate parameters; under the full trinu-
cleotide model) by the R package dndscv (v0.0.0.9).2° Briefly, this model tests the
normalized ratio of non-synonymous (missense, nonsense, and splicing) over back-
ground (synonymous) mutations while correcting for sequence composition and
mutational signatures. A global g-value < 0.1 (with and without taking InDels into
consideration) was used to identify statistically significant (novel) driver genes.
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Identification of hypermutated foci (kataegis)

Putative kataegis events were detected using a dynamic programming algorithm,
which determines a globally optimal fit of a piecewise constant expression pro-
file along genomic coordinates as described by Huber et al.*® and implemented
in the tilingarray R package (v1.56.0). Only SNVs were used in detecting kataegis.
Each chromosome was assessed separately and the maximum number of segmental
breakpoints was based on a maximum of five consecutive SNVs (max. 5000 seg-
ments per chromosome). Fitting was performed on logq-transformed intermuta-
tional distances. Per segment, it was assessed if the mean intermutational distance
was <2000 bp and at least five SNVs were used in the generation of the segment. A
single sample with >200 distinct observed events was set to zero observed events
as this sample was found to be hypermutated throughout the entire genome rather
than locally. Kataegis was visualized using the R package karyoploteR (v1.4.1).%°

Mutational signatures analysis

Mutational signatures analysis was performed using the MutationalPatterns R pack-
age (v1.4.2).°! The 30 consensus mutational signatures, as established by Alexan-
drov et. al, (matrix Sy; i=96; number of trinucleotide motifs; j=30; number of
signatures) were downloaded from COSMIC (as visited on 23-05-2018)**. Muta-
tions (SNVs) were categorized according to their respective trinucleotide context
(hg19) into a mutational spectrum matrix M (i=96; number of trinucleotide con-
texts; j=196; number of samples) and subsequently, per sample a constrained
linear combination of the thirty consensus mutational signatures was constructed
using non-negative least squares regression implemented in the R package pracma
(v1.9.3).

Between two and 15 custom signatures were assessed using the NMF package
(v0.21.0) with 1000 iterations.>? By comparing the cophenetic correlation coeffi-
cient, residual sum of squares and silhouette, we opted to generate five custom
signatures. Custom signatures were correlated to existing (COSMIC) signatures
using cosine similarity.

Detection of chromothripsis-like events

Rounded absolute copy number (excluded Y chromosome) and structural variants
(BAF >0.1) were used in the detection of chromothripsis-like events by the Shat-
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terseek software (v0.4) using default parameters. >3 As a precise standardized def-
inition of chromothripsis has not yet been fully established, and as per the author’s
instruction, we performed visual inspection of reported chromothripsis-like events
after dynamically adapting criteria thresholds (taking the recommended thresholds
into consideration). We opted to use the following criteria: (a) Total number of in-
trachromosomal structural variants involved in the event >25; (b) max. number of
oscillating CN segments (two states) =7 or max. number of oscillating CN segments
(three states) >14; (c) Total size of chromothripsis event >20 Mbp; (d) Satisfying
the test of equal distribution of SV types (p > 0.05); and (e) Satisfying the test of
non-random SV distribution within the cluster region or chromosome (p < 0.05).

Unsupervised clustering of mCRPC WGS characteristics

Samples were clustered using the Euclidian distance of the Pearson correlation coef-
ficient (1 - r) and Ward.D hierarchical clustering based on five basic whole-genome
characteristics; number of mutations per genomic Mbp (SNV, InDels, and MNV),
mean genome-wide ploidy, number of structural variants and the relative frequen-
cies of structural variant categories (inversions, tandem duplications (larger and
smaller than 100 kbp), deletions (larger and smaller than 100 kbp), insertions and
interchromosomal translocations). Data was scaled but not centered (root mean
square) prior to calculating Pearson correlation coefficients. After clustering, OLO
was performed using the seriation package (v1.2.3).°* The elbow method was em-
ployed to determine optimal number of discriminating clusters (Supplementary Fig-
ure S4.10) using the factoextra package (v1.0.5). Bootstrapping was performed
using the pvclust package (v2.0) with 5000 iterations.

Cluster-specific enrichment of aberrant genes (either through SV, deep copy-
number alteration, or coding SNV/InDels/MNV), kataegis, chromothripsis, GISTIC2
peaks, and predicted fusions between clusters was tested using a two-sided Fisher’s
Exact Test and Benjamini—Hochberg correction.

A principal component analysis (with scaling and centering) using the prcomp
R package®> was performed on the chosen genomic features and cos? values for
each feature per principal component were retrieved to determine the importance
of each feature per respective principal component.

To test the robustness of our clustering, we performed unsupervised clustering,
and also other techniques, using various combinations of structural variants and



The genomic landscape of metastatic castration-resistant prostate cancers
reveals multiple distinct genotypes with potential clinical impact 109

clustering mechanisms as a surrogate for different genome-instability metrics but
this analysis did not reveal any striking new clusters.

Supervised clustering based on mutually exclusive aberrations

Samples were sorted on mutual-exclusivity of SPOP, FOXA1, and IDH1 coding mu-
tations and copy-number aberrations and ETS family gene fusions (and overexpres-
sion) per promiscuous partner (ERG, ETV1, ETV4, and FLI1) as defined in primary
prostate cancer.!® Supplementary Table S1A of the article “The Molecular Taxon-
omy of Primary Prostate Cancer”!® was used to determine the relative frequency
and mutational types of each of the respective primary prostate cancer within the
TCGA cohort. In addition, as the TCGA cohort did not denote high-level/deep am-
plifications, we did not incorporate these either in this analysis.

Correlation of the detection rate of genomic aberrations versus tumor cell
percentages

Absolute counts of SNV, InDels, MNV and SV were correlated to the in silico esti-
mated tumor cell percentage using Spearman’s correlation coefficient.

Correlation of pre-treatment history with detected aberrations and WGS
characteristics

Pre-treatment history of patients was summarized into ten groups:

Only chemo-treatment (with radio-nucleotides).

Only chemo-treatment (without radio-nucleotides).

Only radio-nucleotides.

Only secondary anti-hormonal therapy (with radio-nucleotides).

Only secondary anti-hormonal therapy (without radio-nucleotides).

Secondary anti-hormonal therapy + one chemo-treatment

(with radio-nucleotides)

¢ Secondary anti-hormonal therapy + two chemo-treatment
(with radio-nucleotides)

¢ Secondary anti-hormonal therapy + one chemo-treatment
(without radio-nucleotides)

¢ Secondary anti-hormonal therapy + two chemo-treatment

(without radio-nucleotides)
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» No additional treatment after androgen deprivation therapy.

Association with mutated genes, presence of chromothripsis, presence of kataegis,
MSI-status, and genomic subtypes was tested with a two-sided Fisher’s exact test
with Benjamini—-Hochberg correction.

ChIP-seq experimental set-up and analysis

ChIP-seq cell culturing: VCaP cells were incubated in RPMI medium in additional
with 10% fetal bovine serum (FBS). Bicalutamide-resistant VCaP cells (VCaP-Bic)
were cultured in RPMI medium supplemented with 10% dextran charcoal-stripped
bovine serum (DCC) and 10-6M bicalutamide. VCaP cells were hormone deprived
in RPMI medium with 10% DCC for 3 days before the ChIP-seq experiment.

ChIP-seq and peak calling analysis: For both cell and tissue ChIPs, 5 ug of an-
tibody and 50 pg of magnetic protein A or G beads (10008D or 10009D, Thermo
Fisher Scientific) were used per immunoprecipitation (IP). The following antibodies
were used: Foxal/2 (M-20, sc-6554 Santa Cruz Biotechnology), AR (N-20, sc-816
Santa Cruz Biotechnology), and H3K27ac (39133, Active Motif). ChIP-seq was per-
formed as described previously.?® In brief, fresh-frozen tissue was cryosectioned
into 30 micron thick slices and stored at —80 °C till processing. Samples were fixed
using 2 mM DSG (20593; Thermo Fisher Scientific) in solution A (50 mM Hepes-
KOH, 100 mM NaCl, 1 mM EDTA, 0.5mM EGTA) while rotating for 25 min at room
temperature, followed by the addition of 1% formaldehyde and another 20 min in-
cubation at room temperature. The reaction was quenched by adding a surplus
of glycine. Subsequently, tissue sections were pelleted and washed with cold PBS.
Tissue was disrupted using a motorized pellet pestle (Sigma-Aldrich) to disrupt the
tissue in cold PBS and obtain a cell suspension, after which the nuclei were isolated
and the chromatin was sheared. During immunoprecipitation, human control RNA
(4307281; Thermo Fisher Scientific) and recombinant Histone 2B (M2505S; New
England Biolabs) were added as carriers, as described previously.>’

Immunoprecipitated DNA was processed for sequencing using standard proto-
cols and sequenced on an Illumina HiSeq 2500 with 65 bp single end reads. Se-
quenced samples were aligned to the reference human genome (Ensembl release
55: Homo sapiens GRCh 37.55) using Burrows-Wheeler Aligner (BWA, v0.5.10)°8,
reads with a mapping quality >20 were used for further downstream analysis.
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For the tissues, peak calling was performed using MACS2 >° with option —nomodel.
In addition, peaks were called against matched input using DFilter® in the refine
setting with a bandwidth of 50 and a kernel size of 30. Only peaks that were shared
between the two algorithms were considered.

For the cell lines, peaks were obtained with MACS (v1.4; p<10-7).

The AR and FOXA1 ChIP-seq data for LNCAP with/-out R1881 was obtained
from GSE94682°!. The H3K27ac ChIP-seq data for LNCAP was obtained from
GSE114737°°,

Determining enrichment of enhancer to gene ratios: Absolute copy-numbers
segments overlapping the gene loci and putative enhancer region (as detected by
GISTIC2; focal amplification peaks with a width <5000 bp) were retrieved per sam-
ple. If regions overlapped multiple distinct copy-number segments, the maximum
copy-number value of the overlapping segments was used to represent the re-
gion. Samples with gene-to-enhancer ratios deviating >1 studentized residual from
equal 1:1 gene-to-enhancer ratios (linear model: log,(copy number of enhancer) —
log,(copy number of gene locus) 0) were categorized as gene or enhancer en-
riched. Based on the direction of the ratio, samples were either denoted as en-
hancer (if positive ratio) or gene (if negative ratio) enriched.

Comparison of unmatched primary prostate cancer and mCRPC

Mutational frequencies of the drivers (dN/dS and or GISTIC2) and subtype-specific
genes were compared to a separate (unmatched) cohort of primary prostate cancer
(n=210) focusing on Gleason score (GS) of 3+ 3, 3+4, or 4+ 3, as described
by Fraser et al.'> and Espiritu et al.>>. Briefly, whole-genome sequencing reads
were mapped to the human reference genome (GRCh37) using BWA>8 (v0.5.7)
and downstream analysis was performed using Strelka®? (v.1.0.12) for mutational
calling using a matched-normal design (SNVs and InDels), copy-number alterations
were estimated with TITAN®3 (v1.11.0), and single-nucleotide polymorphism (SNP)
array data as described in Espiritu et al.2> with Delly®* (v0.5.5 and v0.7.8) was used
for detecting structural variants (translocations, inversions, tandem duplications,
and deletions). Large insertion calls and overall ploidy was not available for the
primary prostate cancer cohort.

TMB was calculated by dividing the number of SNVs and InDels by the total
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amount of callable bases in the human reference genome (GRCh37), identical to
4.1. MNV calls were not available for the primary prostate cancer cohort.

Multiple aberrations per gene within a sample were summarized as a single
mutational event, e.g., a deletion and mutation in PTEN would only count for a
single mutation in the sample. Only non-synonymous mutations and gains/deletions
overlapping with coding regions were used. Statistically significant differences in
mutational frequencies were calculated using a two-sided Fisher’s Exact test with
Benjamini—-Hochberg correction.

The primary prostate cancer dataset was clustered together with the mCRPC
cohort using the Euclidian distance of the Pearson correlation coefficient (1-1r)
and Ward.D hierarchical clustering based on three basic whole-genome character-
istics, which were available for all samples; nhumber of mutations per genomic Mbp
(SNVs and InDels), number of structural variants and the relative frequencies of
structural variant categories (inversions, tandem duplications (larger and smaller
than 100 kbp), deletions (larger and smaller than 100 kbp), and interchromosomal
translocations).

Data availability

The data that support the findings of this study are available from Hartwig Medical
Foundation, which were used under data request number DR-011 for the current
study. Both WGS and clinical data are freely available for academic use from the
Hartwig Medical Foundation through standardized procedures and request forms
canbefound at https://www.hartwigmedical foundation.nl.33 The ChIP-
seq profiles (aligned reads and MACS/MACS2 peaks) as analyzed and shown in
this manuscript have been deposited on Gene Expression Omnibus (GEO) under
accession number: GSE138168.

Code availability

All tools and scripts used for processing of the WGS data are available at https:
//github.com/hartwigmedical/ and/or can be provided by authors upon re-
quest.
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Supplementary figure S4.1: Overview of sequencing quality metrics.

(@): Bee-swarm boxplot with notch of the mean read coverage per sample of reference and tumor tissues. Boxplot depicts the upper and lower quartiles,
with the median shown as a solid line; whiskers indicate 1.5 times the IQR. Data points outside the IQR are shown. (b): Bee-swarm boxplot with notch
of the estimated (in silico) cohort-wide tumor cell percentages. Boxplot depicts the upper and lower quartiles, with the median show