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Abstract
Purpose  Biomarkers that can accurately predict outcome in DLBCL patients are urgently needed. Radiomics features 
extracted from baseline [18F]-FDG PET/CT scans have shown promising results. This study aims to investigate which lesion- 
and feature-selection approaches/methods resulted in the best prediction of progression after 2 years.
Methods  A total of 296 patients were included.  485 radiomics features (n = 5 conventional PET, n = 22 morphology, n = 50 
intensity, n = 408 texture) were extracted for all individual lesions and at patient level, where all lesions were aggregated into 
one VOI. 18 features quantifying dissemination were extracted at patient level. Several lesion selection approaches were tested 
(largest or hottest lesion, patient level [all with/without dissemination], maximum or median of all lesions) and compared to 
the predictive value of our previously published model. Several data reduction methods were applied (principal component 
analysis, recursive feature elimination (RFE), factor analysis, and univariate selection). The predictive value of all models 
was tested using a fivefold cross-validation approach with 50 repeats with and without oversampling, yielding the mean 
cross-validated AUC (CV-AUC). Additionally, the relative importance of individual radiomics features was determined.
Results  Models with conventional PET and dissemination features showed the highest predictive value (CV-AUC: 0.72–
0.75). Dissemination features had the highest relative importance in these models. No lesion selection approach showed 
significantly higher predictive value compared to our previous model. Oversampling combined with RFE resulted in highest 
CV-AUCs.
Conclusion  Regardless of the applied lesion selection or feature selection approach and feature reduction methods, patient 
level conventional PET features and dissemination features have the highest predictive value.
Trial registration number and date: EudraCT: 2006–005174-42, 01–08-2008.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most 
common type of non-Hodgkin lymphoma and is asso-
ciated with an aggressive disease course. Adding the 
monoclonal antibody rituximab to treatment regimens 
has improved outcome significantly [1–3]. However, still 
approximately 30% of patients with DLBCL experience 
disease progression or relapse, leading to poor outcome 
[4]. In rituximab-treated DLBCL patients, both the orig-
inal International Prognostic Index (IPI) score [5] and 
other IPI variants such as the revised IPI and National 
Comprehensive Cancer Network IPI fail to identify a sub-
group with a poor long-term survival (e.g., < 50%) [6], 
stressing the need to identify new biomarkers that can 
accurately select a specific subgroup with poor outcome 
when treated with standard chemo-immunotherapy.

Recent studies have shown that radiomics features 
extracted from baseline [18F]-fluorodeoxyglucose posi-
tron emission tomography computed tomography ([18F]
FDG PET/CT) scans have promising predictive abilities 
in DLBCL [7–11]. Radiomics features provide detailed 
quantitative information regarding tumor morphology, 
texture, dissemination, and intensity, reflecting the tumor 
biology. In solid cancers, radiomics features are usually 
extracted from the primary lesion. However, radiomics 
analysis in lymphoma is more challenging due to the 
absence of one primary lesion in most patients and the 
often disseminated spread of the disease throughout the 
body in many different nodal and extranodal sites. Due 
to the high inter- and intra-tumor heterogeneity within 
patients, the metabolic tumor volume (MTV) at patient 
level best reflects disease burden. Therefore, some studies 
calculated radiomics features at patient level [7, 12]. As 
texture features become hard to interpret at patient level, 
other studies calculated radiomics features only for the 
lesion with the highest metabolic activity (highest maxi-
mum standardized uptake value (SUVmax)) [8, 9], or for 
the lesion with the largest volume [10, 11].

We previously demonstrated that radiomics features at 
patient level are more predictive than radiomics features 
of the hottest and the largest lesion [12]. We now aimed 
to investigate how to aggregate information from multi-
ple individual lesions in a patient to predict progression 
after 2 years, and whether this would improve predic-
tion of progression after 2 years. We compared differ-
ent lesion selection approaches and combined radiomics 
features from individual lesions with patient level radi-
omics features. Moreover, we explored the influence of 
different data reduction methods on model performance 
and investigated the feature importance of individual 
features in models.

Methods

Study population

DLBCL patients from the multicenter HOVON-84 trial 
(EudraCT: 2006–005,174-42) who had a baseline 18F-
FDG PET/CT scan and had 2-year follow-up data available 
were included in this study. 18F-FDG PET/CT scans were 
included from 58 different hospitals. Because there were 
no differences in survival between randomization arms, 
all patients were included in this analysis [13]. Detailed 
inclusion and exclusion criteria of the HOVON-84 trial 
[13] and detailed quality control criteria for PET/CT imag-
ing have been described elsewhere [12]. The study was 
approved by the Institutional Review Board and all partici-
pants gave written informed consent to participate.

Quantitative image analysis

To match quality control criteria, the mean hepatic SUV 
should be between 1.3 and 3.0 and the plasma glucose 
less than 11 mmol/L [14]. When the hepatic SUVmean was 
outside acceptable ranges, but the total image activity was 
between 50 and 80% of the total injected FDG activity, 
scans were still included. The majority of included scans 
was scanned according to EARL criteria [14]. Quantita-
tive PET/CT analysis was performed using the ACC​URA​
TE tool [15]. Lesions were delineated using a fully auto-
mated preselection of 18F-FDG avid structures defined by 
an SUV ≥ 4.0 and a volume threshold of ≥ 3 mL [16]. Non-
tumor regions were deleted and lymphoma lesions < 3 mL 
were added with single mouse clicks. Non-tumor 18F-FDG 
avid regions near tumor regions were manually removed. 
Delineations were performed under supervision of a 
nuclear medicine physician who was blinded to outcome.

Feature extraction

Four hundred eighty features pertaining to morphology 
(n = 22), intensity (n = 50), and texture (n = 408) were 
extracted both for individual lesions and for the patient 
level volume of interest (VOI). Before feature calculation, 
all images were resampled to 2 × 2 × 2 mm voxel size using 
centered-grid tri-linear interpolation. In order to calculate 
textural features, the images were discretized with a fixed 
bin size of 0.25 SUV [17]. Texture features were based on 
the gray-level co-occurrence matrix, gray-level run length 
matrix, gray-level size zone matrix, gray-level distance 
zone matrix, neighborhood gray tone difference matrix, 
and neighboring gray-level dependence matrix with up to 



European Journal of Nuclear Medicine and Molecular Imaging	

1 3

8 matrix calculation methods. For the patient level VOI, 
all voxels belonging to the different lesions were processed 
if they were part of one VOI.

Furthermore, 18 additional dissemination features were 
extracted at patient level: the number of lesions, four features 
quantifying distance between lesions as suggested by Cot-
tereau et al. [7], 10 features quantifying the differences in 
intensity between lesions, and three features quantifying the 
differences in volume between lesions. Additional informa-
tion regarding the definitions of the dissemination features 
is presented in Supplemental Table 1 and Supplemental 
Fig. 1. Five conventional PET features were extracted from 
the original images without resampling: MTV, SUVmax, 
SUVpeak, SUVmean, and total lesion glycolysis. All image-
processing and feature calculations were performed using 
RaCat software [18], which complies with the Image Bio-
marker Standardization Initiative (IBSI) standards [19].

Selected lesion and feature combinations

The predictive value of radiomics features of the follow-
ing lesion and feature combinations was tested (hereafter 
referred to as lesion selection approaches):

	 1.	 MTV, SUVpeak, and the maximum distance between 
the largest lesion and any other lesion at patient level 
(Dmaxbulk) (reference) [12];

	 2.	 Largest lesion (largest, n = 480 radiomics features and 
n = 5 conventional PET features);

	 3.	 Hottest lesion (hottest, n = 480 radiomics features and 
n = 5 conventional PET features);

	 4.	 Radiomics features of all lesions summed into one 
VOI (patient-level MTV, n = 480 radiomics features 
and n = 5 conventional PET features);

	 5.	 Maximum value of radiomics features using all indi-
vidual lesions per patient (maximum, n = 480 radiom-
ics features and n = 5 conventional PET features);

	 6.	 Median value of radiomics features using all individual 
lesions per patient (median, n = 480 radiomics features 
and n = 5 conventional PET features);

	 7.	 Patient-level conventional PET features and dissemina-
tion features (dissemination, n = 18 radiomics features 
and n = 5 conventional PET features);

	 8.	 Patient-level conventional PET features and dissemina-
tion features and radiomics features of the patient level 
VOI model (“Dissemination + patient level MTV”, 
n = 498 radiomics features (480 + 18) and n = 5 con-
ventional PET features);

	 9.	 Patient-level conventional PET features and dissemina-
tion features and radiomics features of largest lesion 
(“Dissemination + largest”, n = 498 radiomics features 
and n = 5 conventional PET features);

	10.	 Patient-level conventional PET features and dissemina-
tion features and radiomics features of hottest lesion 
(“Dissemination + hottest”, n = 498 radiomics features 
and n = 5 conventional PET features).

As an explorative analysis, we tested the predictive value 
of radiomics features of the following lesion and feature 
combinations:

	11.	 Patient-level conventional PET features and dissemina-
tion features and maximum value of radiomics features 
using all individual lesions per patient (“Dissemina-
tion + maximum”, n = 498 radiomics features and n = 5 
conventional PET features);

	12.	 Patient-level conventional PET features and dissemina-
tion features and median value of radiomics features 
using all individual lesions per patient (“Dissemina-
tion + median”, n = 498 radiomics features and n = 5 
conventional PET features).

Preprocessing methods

We tested the predictive value of the different models using 
logistic regression as classifier. Non-normally distributed 
features with a skewness in value distribution > 0.5 were log-
transformed using the natural logarithm. Six different fea-
ture reduction methods were applied using the Scikit-learn 
library (version 0.24.1) in Python 3.6: (1) principal compo-
nent analysis (PCA), where multiple orthogonal components 
are created to explain the maximum amount of variance in 
the data, (2) random forest (RF) recursive feature elimina-
tion (RFE), where feature selection is performed by itera-
tively training a model, ranking features, and then removing 
the lowest ranking features using a random forest algorithm, 
(3) RFE using a support vector machine algorithm, (4) RFE 
using a logistic regression algorithm, (5) univariate selection 
method based on ANOVA testing that retained the top 10 
percentile features and (6) factor analysis (FA), where mul-
tiple components are created to explain variance in the data 
where components can model variance in every direction.

To correct for imbalance in patients experiencing progres-
sion and patients without progression after 2 years, oversam-
pling of patients with progression was applied in each train-
ing set. Synthetic samples were generated with interpolated 
feature values using SMOTE [20], as implemented in the 
skicit-learn package in python. To assess the influence of 
preprocessing methods, models were also trained and cross-
validated without feature reduction and oversampling.

Statistical analysis

The binary endpoint of this study was progression after 
2 years; follow-up started at the date of the baseline PET/
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CT scan. Patients who died or were lost to follow-up 
within 2 years were excluded. As a sensitivity analysis, 
we used progression-free survival after 2 years as binary 
endpoint for the optimal models with regards to oversam-
pling and feature reduction.

To validate the prediction of progression after 2 years, 
a previously published approach was used [21]. In short, 
a fivefold cross-validation approach stratified for outcome 
was applied. In each fold, the model was trained on 80% 
of the data and validated on the unseen 20% of the data. 
To further limit chance findings, the cross-validation 
was repeated 50 times. To evaluate model performance, 
the area under the curve (AUC) was calculated from the 
receiver operating characteristics curve for each fold, 
yielding the cross-validated AUC (CV-AUC). To be able 
to compare the mean AUCs of the prediction models we 
used a framework that was proposed by van de Wiel et al. 
[22]. In each fold the AUCs of the two models were com-
pared using the DeLong test [23]. The median of the p val-
ues of the different folds was reported as the final p value.

To assess feature importance, relative importance coef-
ficients of each feature were derived using a random forest 
using the feature reduction method that showed the highest 
predictive value. The relative feature importance coeffi-
cients of all features in the model add up to one. PCA was 
excluded as feature reduction method as this does not yield 
interpretable features.

Results

Patients

Two hundred ninety-six patients were included in this 
analysis. The HOVON-84 patients originally included 574 
patients. When the trial started, a baseline PET/CT scan was 
not mandatory. A total of 373 patients had a baseline PET/
CT available, of which 317 adhered our quality control crite-
ria. Fourteen patients died without signs of progression and 
seven patients were lost to follow up within 2 years. Fifty-
two patients out of 296 showed progression within 2 years 
after baseline PET/CT. The majority of the included patients 
had advanced-stage disease, elevated lactate dehydroge-
nase levels, and high-intermediate or high risk IPI scores 
(Table 1). For 221 patients (75%), the largest lesion and hot-
test lesion were the same lesion. A mismatch between the 
hottest and largest lesion occurred most frequently when 
the volume of the largest lesion was less than 10 mL or, 
to a lesser extent, if the SUVpeak of the largest lesion was 
less than 10. In 73% (27 out of 37 patients) of the smaller 
lesions (< 10 mL), and in 39% (20 out of 52 patients) of the 
low-intensity lesions, a mismatch occurred, respectively. For 
the other mismatches, there was no clear relation between 

SUVpeak, volume, lesions’ anatomical locations, or base-
line clinical parameters. For 19 out of the 52 patients with 
progression (37%), there was no match between the hottest 
lesion and largest lesion.

Comparison of lesion and feature selection 
approaches

Table 2 shows the optimal model parameters to predict pro-
gression after 2 years for each lesion or feature selection 
approach with regard to oversampling and feature reduc-
tion methods. The model that combined MTV, SUVpeak, 
and Dmaxbulk (Model 1) yielded the highest CV-AUC 
(0.75 ± 0.09, Fig. 1). Patient-level dissemination features 
(Model 7; CV-AUC: 0.73 ± 0.09) predicted progression after 
2 years better than lesional-based radiomics feature selection 
approaches (Models 2–6, all p > 0.05). Furthermore, adding 
dissemination features and patient-level conventional PET 
features resulted in higher CV-AUCs compared to the model 
performance of radiomics features of the largest (Model 2: 
CV-AUC: 0.72 ± 0.10 vs Model 9: 0.68 ± 0.08, p = 0.39) 
and the hottest lesion only (Model 3: CV-AUC: 0.68 ± 0.09 
vs Model 10: 0.56 ± 0.10, p = 0.44). Moreover, adding dis-
semination features improved the predictive value of the 
patient level MTV model (Model 4: CV-AUC: 0.71 ± 0.08 
vs Model 8: 0.70 ± 0.09, p = 0.437). Model performance was 

Table 1   Patient characteristics of included patients

Abbreviations: LDH, lactate dehydrogenase; WHO, World Health 
Organization; IPI, international prognostic index

N (%)

Age Median (IQR) 65 (55–72)
 ≤ 60 years 97 (33)
 > 60 years 199 (67)

Sex Male 152 (51)
Female 144 (49)

Ann Arbor stage II 48 (16)
III 62 (21)
IV 186 (63)

LDH normal 97 (33)
 > normal 199 (67)

Extranodal localisations  ≤ 1 175 (59)
 > 1 121 (41)

WHO performance status 0 170 (57)
1 87 (29)
2 37 (13)
missing 2 (1)

IPI Low 48 (16)
Low-intermediate 73 (25)
High-intermediate 103 (35)
High 72 (24)
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lowest using radiomics features of the hottest lesion (Model 
3: CV-AUC 0.56 ± 0.10). Complex textural radiomics fea-
tures did not have additional predictive abilities compared to 
dissemination features. There were no statistical differences 
between individual models due to high variance of model 
performance values. Results of the “maximum + dissemi-
nation” (Model 11) and “median + dissemination” (Model 
12) models are presented in Supplemental Table 2. Model 
performances with progression free survival after 2 years 
as binary outcome are presented in Supplemental Table 3.

Influence of preprocessing methods used

Oversampling resulted in higher CV-AUCs for all models 
except for the largest lesion (Model 2), where the CV-AUC 
after oversampling was lower (CV-AUC: 0.68 ± 0.08 vs 
0.66 ± 0.08 after oversampling, Supplemental Table 2). For 
the dissemination feature model (Model 7), the CV-AUC was 

similar with or without oversampling (CV-AUC: 0.73 ± 0.09 
for both models) when applying RF-RFE as feature reduc-
tion method. The most frequently selected data reduction 
methods were RF-RFE and FA. For all prediction models 
that included patient level dissemination and conventional 
features (Models 7–10), there was no difference in the CV-
AUC when applying RF-RFE as feature reduction compared 
to no feature reduction. For the prediction models that used 
radiomics features from the hottest lesion (Model 3), patient 
level (Model 7), maximum averaging method (Model 5), 
and median averaging methods (Model 6), the CV-AUC 
decreased when applying RF-RFE as data reduction com-
pared to the optimal data reduction method.

Feature importance

Feature importance per lesion or feature selection approach 
for each radiomics feature group is presented in Figs. 2 

Fig. 1   cross-validated AUCs 
for each prediction model 
using different lesion selection 
approaches
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Table 2   Optimal model 
parameters to predict 
progression after 2 years for 
each lesion selection method

Abbreviations: MTV, metabolic tumor volume; RF-RFE, random forest recursive feature elimination; FA: 
factor analysis; PCA, principal component analysis

Model Lesion selection approach Oversampling Feature selection CV-AUC ± SD

1 Reference: MTV, SUVpeak, Dmaxbulk Interpolate None 0.75 ± 0.09
2 Largest None RFE-RF 0.68 ± 0.08
3 Hottest Interpolate FA 0.54 ± 0.09
4 Patient level MTV Interpolate FA 0.71 ± 0.08
5 Maximum Interpolate PCA 0.69 ± 0.10
6 Median Interpolate FA 0.61 ± 0.09
7 Dissemination None RFE-RF 0.73 ± 0.09
8 “Dissemination + patient level MTV” Interpolate None 0.72 ± 0.09
9 “Dissemination + largest” Interpolate RFE-RF 0.73 ± 0.09
10 “Dissemination + hottest” Interpolate None 0.72 ± 0.09
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and 3. Dissemination features played an important role 
in predicting outcome. For all models that included dis-
semination features, the 3 most important features were 
always pertaining to dissemination. Dmaxbulk was the most 
important predictor in all these models. Dmaxbulkcorrelated 
poorly with MTV (r = 0.20), also after correction for Ann 
Arbor stage. Three (Model 8), six (Model 9), seven (Model 
7), and eight (Model 10) out of the 10 most important fea-
tures were pertaining to dissemination, respectively. For all 
models without dissemination, the minimum intensity and 
either the morphological feature area density or the mor-
phological feature volume density were in the top 10 most 
important features. Volume density approximate enclosing 
ellipsoid was included in the top 10% most important fea-
tures for all models except for the “patient level + largest” 
model (Model 9). In all models, gray-level non-uniformity 
texture features and the morphological feature elongation 
were included in the top 10% of important features. In all 
models, except the maximum model, spherical dispropor-
tion and compactness were included. For all models, except 
the maximum and median models, the minimum histogram 
gradient was included in the 10% most important features. 
The most important features per model are presented in the 
Supplemental Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Discussion

This study showed that radiomics features at patient level 
had the highest predictive value. Prediction models based 
on more complex radiomics features with information of 
multiple lesions had no added predictive value compared to 
our previously published selection of more simple radiomics 
features when predicting progression after 2 years, regard-
less of the applied feature reduction method. Dissemination 
features showed high predictive abilities and improved out-
come prediction for radiomics features extracted from the 
hottest lesion, largest lesion, or patient level MTV, although 
not significantly.

Historically speaking, the hottest lesions have been 
used to measure response during or after treatment [24, 
25], and parameters quantifying uptake, such as SUVmax 
and SUVpeak, have shown to be predictive in DLBCL [12, 
26–28]. Therefore, it is surprising that radiomics features 
extracted from the hottest lesion have limited predictive 
value. For 75% of the patients in our dataset, the largest 
lesion also represented the hottest lesion. This was some-
what lower than the 84% reported in a recent study [10]. In 
our data, a mismatch occurred more frequently in smaller 
lesions. However, we could not find any clear correlation 

Fig. 2   Feature importance of 
individual radiomics features 
with different feature selection 
approaches A largest, B hottest, 
C patient level MTV, and D 
maximum
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between PET parameters or clinical parameters, making it 
hard to hypothesize an explanation for this mismatch. We 
previously reported a lower CV-AUC of the hottest lesion, 
compared to the largest lesion and patient level radiomics 
features [12].

Currently, there is no valid approach to test whether the 
CV-AUCs of the various models are statistically signifi-
cantly different, as there is no method to quantify correla-
tion between trained models within cross-validation and 
there is an additional correlation between train-test data 
between CV iterations [29]. Therefore, we cannot definitely 
state which lesion selection approach has the highest pre-
dictive value. To be able to compare AUCs, we calculated 
the median AUC for each model for each fold. The disad-
vantage of this approach is that the p value is based on data 
of a single fold (20% of the data), resulting in low power 
to detect true differences. Therefore, the procedure was 
repeated 50 times with a random 20% sample of the data 
in order to obtain a reliable estimate of the p value using its 
median value over 50 repeats. Nevertheless, there were no 
significant differences between individual models, making 
them interchangeable. However, it seems that patient-level 

dissemination features play an important role. When includ-
ing dissemination feature, the predictive value consistently 
increased for all models. A combination of MTV, SUVpeak, 
and Dmaxbulk showed the best predictive abilities. Nonethe-
less, this CV-AUC is only marginally higher than the CV-
AUC of other models that included dissemination features 
and patient-level conventional PET features. Yet, the model 
based on MTV, SUVpeak, and Dmaxbulk might be preferred 
for translation into the clinic as these features are easy to 
understand and relate to disease characteristics that can be 
easily recognized in the PET image by eye.

There is a growing interest in radiomics features to pre-
dict outcome or select patients for innovative new treatment 
options, as more and more studies show their independent 
predictive value besides well-established clinical predictors 
[8, 10–12, 30, 31]. In order to implement radiomics in a 
clinical setting, user-friendliness is important. After exten-
sively testing lesion and feature selection approaches com-
bined with different data reduction methods, we could not 
find any added value for textural and morphological radiom-
ics features. Moreover, textural features are known to have 
reproducibility and repeatability issues in a clinical setting 

Fig. 3   Feature importance of 
individual radiomics features 
with different feature selec-
tion approaches A Median, 
B “Dissemination + patient 
level MTV,” C “Dissemina-
tion + largest,” and D “Dissemi-
nation + hottest”
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[17], making feasibility of application of prediction models 
using textural features in clinical practice lower. Since the 
predictive value of dissemination features combined with 
conventional PET features was highest, it is advisable to 
calculate these features. Contrary to morphological and 
textural radiomics features, dissemination features are easy 
to interpret because they quantitatively reflect what can be 
visualized on PET/CT scans. They are also relatively sim-
ple to calculate and relatively insensitive to differences in 
acquisition, reconstruction, and delineation method [17, 
32]. From an ease-of-use perspective, median and maxi-
mum lesion selection methods are more time-consuming and 
therefore not preferred since all individual lesions have to 
be processed individually to calculate radiomics features for 
each lesion. Moreover, the median prediction model showed 
limited discriminative power compared to other lesion selec-
tion methods. Radiomics features extracted from the patient 
level MTV (Model 4) are predictive of outcome. However, 
the interpretation of multi-cluster radiomics features is com-
plex, both mathematically and clinically. Therefore, features 
extracted from this model might not be suitable for a clinical 
setting. Currently, there is no consensus on the optimal seg-
mentation method in DLBCL, although the SUV4.0 method 
has been suggested [33]. However, we recently showed that 
the segmentation method does not influence the discrimina-
tive power of dissemination features [32].

Several other studies have evaluated the predictive value 
of baseline radiomics features in DLBCL. Aide et al. [11] 
showed that for the largest lesion, nine textural features (out 
of 19) were univariate significant [11]. Parvez et al. calcu-
lated 42 features for the 1–3 hottest lesions and reported 
that 3 textural features significantly predicted disease-free 
survival [9]. Decazes et al. showed that in a multivariate 
analysis IPI, chemotherapy, MTV, and the total volume sur-
face ratio were all significant [31]. Two studies extracted 
the metabolic heterogeneity from the hottest lesion [8], or 
the largest lesion [10]. Both studies showed that patients 
with high MTV and high metabolic heterogeneity had sig-
nificantly lower survival rates compared to patients with 
only one of these risk factors. Nonetheless, MTV was the 
only significant predictor of outcome in a multivariate anal-
ysis. Due to the different (numbers of) features that were 
extracted, it is hard to directly compare these studies. Gen-
erally speaking, our results confirm that radiomics features 
are predictive of outcome and have added value compared 
to MTV. Moreover, we extend on these findings by show-
ing that dissemination features are very important and that 
adding complex textural radiomics features does not have 
additional predictive abilities compared to dissemination 
features.

Dissemination expressed as distance between lesions 
was first introduced by Cottereau et al., showing that dis-
semination was a predictor of outcome independent of MTV 

[7, 30]. In our study, Dmaxbulk consistently had the highest 
feature importance, indicating that dissemination is more 
important than MTV when predicting outcome. Our study 
adds to their findings by showing that dissemination features 
quantifying the differences in uptake or difference in volume 
between lesions also showed high predictive value.

By applying different lesion selection approaches on the 
same patient samples, we could directly compare their pre-
dictive value using progression after 2 years as outcome. 
Because our aim was to compare the predictive value of radi-
omics features using different lesion selection approaches, 
we did not add any clinical predictors. When developing 
a prediction model, adding clinical predictors to radiom-
ics features showed improved prediction of outcome in 
DLBCL [12, 30] and other types of lymphoma [34, 35]. A 
limitation of this study was that we did not externally vali-
date our findings in a separate cohort making our findings 
explorative, although we applied internal-validation by using 
cross-validation. More specifically, most patients who were 
included in this study had advanced stage disease; there-
fore, our results need to be validated in other cohorts with 
limited-stage DLBCL patients. Lastly, the majority of the 
patients that were included in this study did not experience 
progression, causing imbalance in outcome. We corrected 
for this by creating synthetic samples. CV-AUCs of datasets 
with and without synthetic samples were comparable for all 
models, yet an effect of class imbalance cannot be ruled out.

Conclusion

Patient-level conventional PET features and dissemination 
features have the highest predictive value to predict pro-
gression after 2 years in DLBCL regardless of the applied 
lesion selection or feature selection approach and feature 
reduction methods. Textural and morphological radiomics 
features do not show additional predictive value compared 
to conventional PET and dissemination features. Moreover, 
these features are easy to understand and correspond to dis-
ease characteristics that can be easily recognized or seen in 
the PET image. Therefore, it is advised to extract dissemina-
tion features and conventional PET features from baseline 
PET/CT scans to optimally predict outcome.
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