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Background and purpose: Image-guided adaptive brachytherapy (IGABT) is a key component in the treat-
ment of cervical cancer, but the nature of the clinical workflow makes it vulnerable to suboptimal plans,
as the theoretical optimal plan depends heavily on organ configuration. Patient anatomy-based quality-
assurance (QA) with overlap volume histograms (OVHs) is a promising tool to detect such suboptimal
plans, and in this analysis its suitability as a multi-institutional clinical QA tool is investigated.
Materials and methods: A total of 223 plans of 145 patients treated in accordance with the current state-
of-the-art IGABT protocols from UMC Utrecht (UMCU) and Erasmus MC (EMC) were included. Machine-
learning models were trained to predict dose D2cm3 to bladder, rectum, sigmoid and small bowel with the
help of OVHs. For this strategy, points are sampled on the organs-at-risk (OARs), and the distances of the
sampled points to the target are computed and combined in a histogram. Machine-learning models can
then be trained to predict dose-volume histograms (DVHs) for unseen data. Single-center model robust-
ness to needle use and applicator type and multi-center model translatability were investigated.
Performance of models was assessed by the difference between planned (clinical) and predicted D2cm3

values.
Results: Intra-validation of UMCU data demonstrated OVHmodel robustness to needle use and applicator
type. The model trained on UMCU data was found to be robust within the same protocol on EMC data, for
all investigated OARs. Mean squared error between planned and predicted D2cm3 values of OARs ranged
between 0.13 and 0.40 Gy within the same protocol, indicating model translatability. For the former pro-
tocol cohort of Erasmus MC large deviations were found between the planned and predicted D2cm3 values,
indicating plan deviation from protocol. Mean squared error for this cohort ranged from 0.84 to 4.71 Gy.
Conclusion: OVH-based models can provide a solid basis for multi-institutional QA when trained on a suf-
ficiently strict protocol. Further research will quantify the model’s impact as a QA tool.
� 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 170 (2022) 169–175 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Brachytherapy (BT) is an integral component of the treatment of
locally-advanced cervical cancer (LACC) patients [1,2]. Over the
past years the complexity of BT treatment has increased, and the
standard has shifted towards image-guided adaptive brachyther-
apy (IGABT) [3,4]. In line with this development, the additional
use of interstitial needles to intracavitary implants (IC + IS) instead
of solely intracavitary implants (IC) has increased [5]. IC + IS tech-
niques allow better shaping of the dose distribution, but can com-
plicate the clinical workflow and the creation of optimal treatment
plans [6].
Added to the increased complexity of BT treatments, the adap-
tive nature of the treatments makes IGABT workflows bound to
time pressure, which can cause deterioration of treatment plan
quality. Apart from adequate target coverage being the primary
goal in cervical IGABT planning, the lowest dose to the maximally
exposed 2 cm3 of individual Organ At Risk (OAR) volumes (D2cm3) is
constrained and defined invariant to tumor size or to patient anat-
omy [7]. Depending on the patient and the use of interstitial nee-
dles, these constraints can be more easily met. To ensure a
minimum quality of the treatment plans, the use of dummy-runs
has been reported to improve familiarity with the protocol and
to homogenize results among institutes [8–11]. Cohort analyses
and comparisons of dose-volume parameters with other institutes
can give insight in an institute’s plan quality and possibly provide
guidance for general improvement. However, this knowledge
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Table 2
Treatment characteristics of included patients. Application and applicator types are
grouped based on data from all included fractions per patient.

UMCU EMC-2 EMC-1

Number of plans n = 120 n = 32 n = 71
Number of patients 60 14 71
Number of BT fractions given per patient
4 fractions 60 4 3
3 fractions 0 10 68
Application type per patient
IC 19 0 55
IC + IS 31 32 16
Mix fractions 10 0 0
Applicator type per patient
Ovoid 24 32 71
Ring 28 0 0
Mix fractions 8 0 0
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cannot be utilized to recognize individual suboptimal plans and
guide planning for individual patient cases.

As a solution, knowledge-based quality-assurance (QA) tools
have the potential to assess the quality of a treatment plan. By uti-
lizing prior high-quality plans, predictions for treatment plans of
current patients can be made, while taking into account the speci-
fic anatomy of the individual patient [12]. Such QA tools can be
trained on gold-standard datasets, and prospectively identify sub-
optimal plans that might benefit from further optimization. Theo-
retically, these tools could even be exchanged between institutes,
provided these institutes employ a similar BT treatment protocol
and equipment. Previous studies have reported the use of
anatomy-based models to predict dose-volume parameters of
external beam treatments [13–16]. As an example, Wang et al. pro-
posed the use of Overlap Volume Histograms (OVHs) to prospec-
tively detect outliers in terms of plan quality of external beam
radiotherapy (EBRT) for prostate cancer patients [17]. With this
methodology, points are sampled on an organ of interest, after
which the distances of all points to the target are computed and
combined in a histogram. The OVHs are then a suitable basis to
predict Dose Volume Histograms (DVHs) with machine-learning
strategies. For BT planning of LACC-patients, it has already been
demonstrated that D2cm3 values of OARs depend heavily on the
proximity of organs-at-risk (OARs) [14], but no report has been
made to validate a knowledge-based QA tool in a multi-center
setting.

The purpose of this study was to investigate the potential of
OVH-based QA for cervical cancer patients in a clinical multi-
institutional BT setting. Model robustness to needle use and appli-
cator type was investigated based on the patient cohort of one
institute, and multi-center translatability was validated with
multi-center data.
Materials and methods

LACC-patients treated with HDR BT were included from UMC
Utrecht (UMCU) and Erasmus MC Rotterdam (EMC). The study
was approved by the medical ethics committee under number
MEC-2021-0337. A total of 60 patients (120 plans) from UMCU
and 14 patients (32 plans) from EMC (EMC-2) were included, trea-
ted in accordance with EMBRACE II protocol. Additionally, 71 MR-
guided BT pre-EMBRACE II plans (71 patients) from Erasmus MC
were included (EMC-1), treated with one or more fractions of
MR-guided BT between 2015 and 2018 prior to the implementa-
tion of EMBRACE II protocol in the clinic (EMC-1). Details of the
dosimetric aims for UMCU and both EMC cohorts can be found in
Table 1. Treatment planning within the EMC-1 cohort had the same
cumulative aims for the high-risk CTV (HRCTV) coverage and OAR
D2cm3 constraints, with an exception for the small bowel (aim of
60 Gy instead of 70 Gy within EMBRACE II). This protocol did not
include further planning aims from the EMBRACE II protocol, such
as the use of an intermediate-risk CTV (IRCTV), and was therefore
Table 1
Overview of the dosimetric criteria for the full treatment (external beam radiotherapy and
cohort (EMC-1), a/b = 10 Gy is used for the HRCTV and a/b = 3 Gy for OARs.

Dosimetric criteria UMCU and EMC-2

Structure Limit EQD2Gy

HRCTV D90% 85 Gy
IRCTV D98% –
Bladder D2cm3 90 Gy
Rectum D2cm3 75 Gy
Sigmoid D2cm3 75 Gy
Small Bowel D2cm3 75 Gy
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less strict. Further details on the planning for the EMC-1 cohort can
be found in the work by Oud et al. [18].

Applicators and application type (IC versus IC + IS) were regis-
tered. About 46% of the UMCU patients was treated with a ring-
based applicator only, 40% with a ovoid-based applicator, and the
remainder with a combination of both. Patients within the EMC-
1 cohort were less often treated with additional needles (IC + IS)
compared to patients within the EMC-2 cohort (23% versus
100%). Full treatment characteristics are shown in Table 2. Plots
of distributions of planned D2cm3 of OARs (after scaling for cover-
age) and planning volumes of OARs and targets can be found in
Appendix A.

Planning BT MR images, structure sets and the three-
dimensional dose distributions were collected for all patients.
OVHs between delineated OARs and HRCTV and between the
delineated OARs and the IRCTV were used to quantify patient anat-
omy, as discussed above and analogous to previously described in
literature [19]. Scaling of the full physical dose distributions was
performed to account for differences in fractionation schemes. In
clinical practice the BT fractions are given in addition to a 25-
fraction external beam radiotherapy course of 1.8 Gy (UMCU and
EMC-2), or 23-fraction course of 2 Gy (EMC-1). BT was adminis-
tered in four fractions (UMCU) or generally three fractions (EMC).
Full dose distributions were scaled to D90% of the HRCTV to
7.5 Gy, for inter-patient and inter-institute comparison. This phys-
ical dose scaling was chosen to achieve a total biological dose of
the HRCTV of 88 Gy (a/b = 10) given in 4 BT fractions. Dose-
volume histograms (DVHs) were constructed for all OARs based
on the scaled dose distributions. OVHs were constructed for all
OARs separately with respect to HRCTV or IRCTV. Points were sam-
pled on the OAR of interest, after which the closest distance to the
target of interest was calculated for each sampled point. These dis-
tances were then combined into a histogram. The full dataset com-
brachytherapy) for the EMBRACE II cohorts (UMCU and EMC-2) and pre-EMBRACE II

EMC-1

Aim EQD2Gy Limit EQD2Gy Aim EQD2Gy

>90 < 95 Gy 85 Gy >90 < 95 Gy
>60 Gy – –
<80 Gy 90 Gy <80 Gy
<65 Gy 75 Gy <65 Gy
<70 Gy 75 Gy <70 Gy
<70 Gy 75 Gy <60 Gy



Fig. 1. Results of leave-one-out validation of UMCU data. OVHs and DVHs are constructed for all patients and all OARs with respect to the HRCTV (A) and IRCTV (B), and used
to construct a random-forest model. The planned and predicted D2cm3 values are plotted here, together with the Pearson’s correlation coefficient, the standard deviation of the
mean and the mean squared error. The shaded area depicts the 95% Confidence Interval.
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Table 3
Model performances for different data splits. Leave-one-out validation was used to determine the prediction interval for outlier detection. For all predicted values of the OARs the
mean squared error is calculated, as well as the number of outliers outside of the prediction interval.

OVH with HRCTV Bladder Rectum Sigmoid Small Bowel

Intra-validation Leave-one-out mse [Gy] outliers (%) mse [Gy] outliers (%) mse [Gy] outliers (%) mse [Gy] outliers (%)
UMCU IC 0.55 2/38 (5) 0.43 2/38 (5) 0.28 2/38 (5) 0.61 2/38 (5)
UMCU Ovoid 0.56 2/48 (4) 0.41 4/48 (8) 0.34 1/48 (2) 0.35 3/48 (6)
UMCU 0.42 6/120 (5) 0.36 7/120 (6) 0.26 6/120 (5) 0.32 4/120 (3)

Inter-validation
Training Testing
UMCU IC UMCU IC + IS 0.45 3/62 (5) 0.38 3/62 (5) 0.69 11/62 (18) 0.53 3/62 (5)
UMCU Ovoid UMCU Ring 0.55 2/56 (4) 0.58 6/56 (11) 0.37 4/56 (7) 0.45 3/56 (5)
UMCU EMC-2 0.40 2/32 (6) 0.13 0/32 (0) 0.30 2/32 (6) 0.37 2/32 (6)
UMCU EMC-1 4.69 30/71 (42) 3.46 33/71 (46) 1.35 25/70 (36) 0.84 10/56 (18)
UMCU EMC-1 IC + IS 2.29 5/16 (31) 0.96 3/16 (19) 0.92 5/16 (31) 1.31 3/16 (19)
UMCU EMC-1 IC 5.46 25/55 (45) 4.20 30/55 (55) 1.52 20/54 (37) 0.69 7/40 (18)

Multi-center analysis of machine-learning predicted dose parameters in brachytherapy
prised of an OVH and a DVH for each included plan, and for each
combination of OAR and target structure.

After data pre-processing, random-forest models were con-
structed and tested for different sub-dataset combinations. Ran-
dom forest networks were selected for their relative robustness
to overfitting [20]. The training and testing was performed for all
OARs (bladder, rectum, sigmoid and small bowel) and all target
structures (HRCTV and IRCTV), if available. A trained model can
then predict a full DVH for an unseen OVH of one type of OAR
and target structure. Evaluations were done based on different data
stratifications, first to investigate the robustness of the model
within one center, then to investigate the applicability of the
model to data from other center and other protocol. An overview
of data collection, OVH construction and the modeling is displayed
in Appendix B.

Data stratifications to investigate needle and applicator type
robustness were:

� Training with IC UMCU plans (38), testing with UMCU IC + IS
plans (62)

� Training with UMCU ovoid-based plans (48), testing with UMCU
ring-based plans (56)

Data stratifications to investigate multi-center model translata-
bility were:

� Training with all UMCU plans (120), testing with EMC-1 plans
(71)

� Training with all UMCU plans (120), testing with EMC-2 plans
(32)

For each stratification, each of the following steps were
performed:

1. A leave-one-out analysis was performed on the training dataset
to set the prediction interval (intra-validation phase)

2. A random-forest model was trained on the full training set and
applied to the testing data (inter-validation phase)

Within the intra-validation phase for each iteration of the
leave-one-out analysis, OVH data was reduced with Principal Com-
ponent Analysis (PCA), after which a random-forest model was fit-
ted to the remaining leave-one-out data. The model was then
applied to the left-out OVH to predict the D2cm3 value, and the
planned (clinically delivered) D2cm3 and predicted D2cm3 values
were registered. The mean squared error (mse), the standard devi-
ation of the mean (r) and the Pearson correlation coefficient r
were calculated for all planned and predicted D2cm3 values. To
evaluate the use of OVHs in a QA setting, the prediction interval
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was defined as the 95% confidence interval of the difference
between planned D2cm3 and predicted D2cm3 values. This interval
reflects the natural distribution of the training dataset.

Within the inter-validation phase, the full training dataset was
used to train a random-forest model after PCA application. The
trained model was consequently applied to the OVH data of the
testing set to find the predicted D2cm3 values. The difference
between planned D2cm3 and predicted D2cm3 values was registered,
after which the mse was calculated. Predictions outside of the pre-
diction interval (outliers) were identified, as defined by the train-
ing set in the intra-validation phase. All code was implemented
in Python 3.5.2 and DICOM handling was performed with in-
house developed software Matterhorn. Data preprocessing and
machine-learning was performed with Scikit-learn version 0.19.2
[21].

For all plans within the EMC-1 and EMC-2 cohort, protocol com-
pliance was investigated. Clinical records about all plans regarding
protocol compliance were collected. All plan records were catego-
rized in three categories: protocol compliant, protocol non-
compliant and unknown. The first category comprised plans where
no problems were reported and the plans were mentioned to be
adequate, or compliant. In the second category plans were placed
that had reports of trade-offs that were considered during plan-
ning, such as OAR constraints that posed limitations to protocol
compliance and clinical difficulties during treatment (e.g. problems
with implantation). For some plans no available records or remarks
could be retrieved. Plans having one or more OARs with outliers
outside of the prediction interval were then investigated to find
possible explanations for their deviations.
Results

Intra-validation results of the full UMCU dataset are displayed
in Fig. 1A and 1B and Table 3 for all OARs with respect to HRCTV
and IRCTV. The range of mse for all OARs varied between 0.26
and 0.43 Gy. Models based on HRCTV and IRCTV showed compara-
ble r, correlation r and mse for each target-organ pair. The least
variation in planned dose was found for the bladder, as well as
the lowest Pearson’s correlation of all OARs. The light blue regions
in the figures display the prediction interval. Similarly, results after
stratification of the UMCU data based on application type (IC-based
plans) and applicator type (ovoid-based) can also be found in
Table 3 and in Appendix B and C. Stratification of the UMCU data
based on applicator type (ovoid-based for training and ring-
based for testing) showed comparable mse for bladder and sig-
moid, but a slightly higher mse was observed for rectum and small
bowel. Training on IC-based plans and validation with IC + IS-based
plans resulted in similar mse for bladder and rectum for the valida-



Fig. 2. Results of training with UMCU data, validation with EMC-2 and EMC-1 data. OVHs and DVHs are constructed for all patients and all OARs with respect to the HRCTV
(A) and IRCTV (B), and used to construct a random-forest model. The planned and predicted D2cm3 values are plotted here, together with the mean squared error. The shaded
area depicts prediction interval based on the leave-one-out validation of the UMCU data. EMC-1 patients were not planned with an IRCTV, therefore no data is visible for them
in B.
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tion data, but higher mse was found for sigmoid and bowel. The
number of outliers outside of the prediction interval was compara-
ble for training and testing, and is also reported in Table 3.

Results based on institute stratification (UMCU for training ver-
sus EMC-2 and EMC-1 for testing) are shown in Fig. 2A and B. No
EMC-1 data points are displayed in Fig. 2B, as no IRCTV was delin-
eated and used for planning within this cohort. Clear differences
can be observed for all OARs between cohorts in Fig. 2A – the
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mse for all OARs of the EMC-2 cohort varied between 0.13 and
0.40 Gy, whilst the values for the EMC-1 cohort varied between
0.84 and 4.69 Gy. When investigating the clinical records of plan
compliance for the EMC-1 and EMC-2 plans in Table 4, the majority
of the plans within the EMC-2 cohort (81%) did not have an outlier
for one or more of the OARs. The outliers that were found did cor-
respond in 80% of the cases with reported difficulties to comply to
the protocol. Within the EMC-1 cohort a far smaller percentage of



Table 4
Classification of plans from EMC-2 and EMC-1 with OVH-based predicted outliers. Clinical records were investigated to find possible reporting of planning difficulties that could
demonstrate awareness of sub-optimality of these plans. Plans were marked as protocol compliant if a record did not contain such information, and with unknown when no
report could be found.

OVH-based predicted outliers for EMC patients All EMC-1 (n = 71) EMC-1 IC (n = 55) EMC-1 IC + IS (n = 16) All EMC-2 (n = 32)

No outliers for all OARs Protocol compliant 11 7 4 13
Protocol non-compliant 8 6 2 5
Unknown 0 0 0 8

Outlier (1 of OARs) Protocol compliant 10 6 4 1
Protocol non-compliant 7 5 2 3
Unknown 1 1 0 2

Outliers (>1 of OARs) Protocol compliant 2 2 0 0
Protocol non-compliant 29 26 3 0
Unknown 3 2 1 0

Multi-center analysis of machine-learning predicted dose parameters in brachytherapy
the plans (27%) did not have any predicted outliers for the OARs,
and 48% of the plans had more than one outlier for the OARs. IC-
based plans were also more often classified as outlier (76%) than
IC + IS-based plans (63%).
Discussion

In this paper we presented a machine-learning based method to
predict D2cm3 values of OARs in MR-based BT planning for cervical
cancer patients in a multi-center setting. The models were found to
be robust to application and applicator details within a single-
center setting, and have proven to be translatable to a multi-
center setting. Overall, inter-validation results were comparable
to results reported in a prior study utilizing geometric features to
depict patient anatomy [14], and slightly worse than another small
(n = 20) study [15]. Both these studies reported results for CT-
based planning, where target delineation is shown to differ from
a MR-based setting [22]. Additionally, both publications described
single-center studies.

For this study, dose distributions were compared based on
physical dose, not based on EQD2Gy dose. Taking this into account,
it is expected that a direct model translation to Pulsed Dose Rate
(PDR) type plans is not possible. PDR models will therefore most
likely have to be constructed and validated separately. Further-
more, D2cm3 dose constraints for OARs were considered for this
analysis as it is most widely used for BT planning of cervical cancer
patients. Other dosimetric parameters were not considered in this
work, but could be of interest in future studies.

Models based on HRCTV showed comparable results to IRCTV-
based models for the EMC-2 cohort. Although planning aims for
IRCTV are different than for HRCTV this is not entirely surprising,
as the IRCTV is largely an isotropic expansion of the HRCTV. The
OAR would be closer to the IRCTV, resulting in a shifted but simi-
larly shaped OVH, yet the organ’s DVH would not change. With a
consistent shift of OVH, this has no expected consequences for
model performance.

The EMC-1 cohort contained more plans that were marked as
outliers than the EMC-2 cohort. EMC-1 patients were treated with
a protocol similar to EMC-2 patients, containing the same D2cm3

aims and goals for all OARs except small bowel. However, needle
use was less frequent for EMC-1 patients. Therefore, it could be
argued that the high number of outliers was caused by the major-
ity of patients being treated with only IC-based plans. Interstitial
needles allow better modulation of the dose, and can improve tar-
get coverage while maintaining OAR sparing [6]. Patients within
the UMCU cohort were preselected to be treated with IC-only plans
if the anatomy and tumor size were expected to be favorable, but
for EMC-1 patients this was not the case.

However, even for IC + IS patients within the EMC-1 cohort an
unexpectedly high percentage of plans was classified as outliers.
Treatment remarks concerning protocol compliance for these plans
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were investigated to find explanations for this. As an example, it
was found that two outliers within this cohort were identified to
originate from plans for patients suffering from tumor infiltration
in the bladder or rectum, explaining the unexpectedly high dose
to these organs. For nine outliers clinical records reported a higher
accepted dose to specific OARs to obtain sufficient target coverage,
possibly explained by suboptimal needle or implant position. Yet,
the remainder of plans were reported to be protocol-compliant
and still classified as outlier. This is particularly interesting from
a QA point-of-view, as these plans might not have been the most
optimal plans for the patients’ anatomies, and could therefore have
benefited from further optimization. It appears that a protocol
ought to be sufficiently strict to be trained on to predict D2cm3 val-
ues for any OAR of new patients, which was not the case for the
EMC-1 patients. A less strict protocol leaves too many degrees of
freedom and results in suboptimal dose distributions.

In this study clinical data was used for both model-building and
validation, implicitly representing trade-offs and other decision-
making present during BT planning. Fully-automated planning
could improve consistency of planning, and it has been demon-
strated for LACC patients that fully-automated planning can pro-
vide high-quality plans [18,23–25]. Fully-automated planning
could generate high-quality datasets to improve the prediction
accuracy of OVH models, but a necessity for QA will remain to val-
idate the quality and optimality of also fully-automated clinical
plans [17].

To summarize, this work presents a method to predict D2cm3

values in a complex multicenter setting based on clinically-used
treatment data. The D2cm3 predictions based on the individual
patient geometry could encourage planners to improve planning
beyond dosimetric constraints as dictated by protocol, decreasing
normal tissue irradiation. The construction of the OVHs and the
subsequent prediction of the achievable D2cm3 value is performed
in mere seconds without the necessity of applicator reconstruction,
which makes it a feasible tool for clinical practice. Models can be
swiftly trained on different patient cohorts or treatment character-
istics, implying they could be used to detect outliers in multi-
center study settings without the need of sharing patient-
sensitive data. Future studies will quantify the use of OVH-based
models as a QA tool by re-planning patients outside of the predic-
tion interval to improve plan quality, and with this quantify its
potential to better personalize BT planning.
Conclusion

In this paper an OVH-based approach is presented to predict
D2cm3 values in BT planning for LACC-patients for all relevant OARs
in a multifactorial multi-center setting. The constructed model
based on single-center data can identify plans from a different
institute, for which trade-offs between OAR sparing and target cov-
erage had to be made.
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