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Abstract 

Background:  Prognostic models that are accurate could help aid medical decision making. Large observational 
databases often contain temporal medical data for large and diverse populations of patients. It may be possible to 
learn prognostic models using the large observational data. Often the performance of a prognostic model undesir-
ably worsens when transported to a different database (or into a clinical setting). In this study we investigate different 
ensemble approaches that combine prognostic models independently developed using different databases (a simple 
federated learning approach) to determine whether ensembles that combine models developed across databases 
can improve model transportability (perform better in new data than single database models)?

Methods:  For a given prediction question we independently trained five single database models each using a dif-
ferent observational healthcare database. We then developed and investigated numerous ensemble models (fusion, 
stacking and mixture of experts) that combined the different database models. Performance of each model was 
investigated via discrimination and calibration using a leave one dataset out technique, i.e., hold out one database 
to use for validation and use the remaining four datasets for model development. The internal validation of a model 
developed using the hold out database was calculated and presented as the ‘internal benchmark’ for comparison.

Results:  In this study the fusion ensembles generally outperformed the single database models when transported 
to a previously unseen database and the performances were more consistent across unseen databases. Stacking 
ensembles performed poorly in terms of discrimination when the labels in the unseen database were limited. Calibra-
tion was consistently poor when both ensembles and single database models were applied to previously unseen 
databases.

Conclusion:  A simple federated learning approach that implements ensemble techniques to combine models inde-
pendently developed across different databases for the same prediction question may improve the discriminative 
performance in new data (new database or clinical setting) but will need to be recalibrated using the new data. This 
could help medical decision making by improving prognostic model performance.
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Background
Big observational healthcare databases, such as insur-
ance claims data or electronic healthcare records, often 
contain data on large and diverse populations. One area 
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where these datasets may benefit healthcare is in the 
application of machine learning to develop prognostic 
models. Prognostic models aim to predict a patient’s risk 
of experiencing some future event (e.g., cardiovascular 
illnesses) [1] based on their current and historic health. 
In general, a prognostic task can be decomposed into 
three parts, the target population/index, the outcome, 
and the time-at-risk [2]. The target population is the set 
of patients for whom you attempt to predict the risk of 
some future outcome and the index is the point in time 
you want to make the prediction. The outcome is the 
medical event you want to predict, and the time-at-risk is 
the time interval (relative to the index) you want to pre-
dict the outcome occurring within. Prognostic models 
are learned from observational healthcare databases by 
finding patients in the database who historically match 
the target population, determining features such as age, 
gender, and medical history at index for each patient and 
then observing whether they had the outcome during the 
time-at-risk. Supervised learning, such as binary classi-
fication, is then applied to learn the differences between 
the people who had the outcome during the time-at-risk 
vs the people who did not. Often the aim is to develop 
a model using the historical data but apply the model 
to current patients to calculate a probability of whether 
they will have the outcome during the future time-at-
risk. Such models could improve healthcare by inform-
ing medical decision making, but only if these models 
perform sufficiently well when implemented in their 
intended setting. For example, a model intended to be 
used by a family medicine doctor to help them decide 
which patients should be given preventative medicine 
may be developed using a large insurance claims database 
but needs to transport well into the family medicine set-
ting. The performance in a new database (transportabil-
ity) of a model is initially assessed by externally validating 
a model across diverse datasets with different patient 
case mixes [2, 3]. It is common for a model’s performance 
to deteriorate when transported to a different database 
[2]. The deterioration in performance may be due to the 
model or the differences between the development and 
validation populations [4]. A model that transports well 
to other databases is much more valuable in clinical prac-
tice. The question is how to best develop models with 
high transportability?

Big observational healthcare datasets only contain 
a sample of the population. This is frequently a non-
random sample, for example the data may over sam-
ple (or only contain) certain ethnicities, genders, ages 
or patients with low/medium/high wealth. If a database 
used to develop a prognostic model contains a non-ran-
dom sample of the target population then this will most 
likely negatively affect its performance if applied on the 

full population. However, different datasets, with varying 
patient case mixes, may give diverse perspectives when 
developing prognostic model for the same prediction 
task. Learning models across different healthcare data-
sets (e.g., a US insurance claims database, a UK primary 
care database and a US electronic healthcare record data-
base) may lead to more transportable models.

There are three potential ways to learn across multiple 
data sets. The first is the combine the data together into 
a centralized location (centralized data sharing) and then 
learn the model using the combined data. The first option 
is generally limited as sharing patient-level data between 
researchers is often not possible due to privacy restric-
tions and therefore it is not possible to train a single 
model using the combination of different datasets. The 
second approach is to use federated learning [5–8] where 
a server communicates between datasets held in different 
locations to iteratively learn a model by communicating 
multiple times with each dataset.

The second option has been illustrated to perform sim-
ilarly to models trained from centralized data sharing [9] 
but has technical issues that still require improvement 
[10]. For example, data heterogeneity [10, 11], privacy 
concerns [9, 11] and the ability to communicate or the 
number of communication rounds required all limit the 
applicability of federated learning. Some federated learn-
ing methods can reduce the number of communication 
rounds but still generally require > 30 rounds of com-
munication [12]. Some generalized linear models feder-
ated learning methods exist that only require access to 
each database once, termed ‘one-shot distributed algo-
rithms’[8]. However, the one-shot approach is not cur-
rently possible for most machine learning models. The 
third approach is to combine models developed sepa-
rately using separate datasets. The third option is most 
feasible, as it is possible for researchers to easily share 
prognostic models they develop using their own data 
and these models could be combined via ensemble tech-
niques (ensemble modeling is the common machine 
learning approach used to combine binary classification 
models). This prompts the question; can we implement 
the third option and combine models developed using 
diverse datasets to improve model transportability in 
new data (e.g., in a clinical setting)?

Ensemble learning is the process of producing mul-
tiple models, potentially pruning the set of models, and 
then combining the remaining models [13]. Often the 
ensemble increases both model accuracy and perfor-
mance stability compared to any single classifier [14]. 
Ensembles either combine homogeneous models (same 
learning algorithm) or heterogeneous models (differ-
ent learning algorithms). Homogeneous ensembles use 
the same learning algorithm but modify the perspective 
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by using different training data (e.g., different instances, 
different features or by adding noise), different metrics 
or using different model settings (e.g., hyper-parameter 
values). Heterogeneous models take a different perspec-
tive as each learning algorithm makes different assump-
tions about the data. Combining the models is often done 
by fusing the models [15], stacking [16] or using a mix-
ture of experts [17]. Examples of simple fusing models 
include (1) majority vote also known as ‘bagging’ [18], (2) 
calculating the mean predicted probability value across 
models or (3) weighted mean of the models’ predicted 
probabilities based on performance measures. Weighing 
each model’s predicted probability based on the model’s 
performance is better than taking the mean of all the 
models’ predicted probabilities when the models’ perfor-
mances differ (e.g., one model is better than the others) 
[15]. A mixture of experts is similar to weighted mean 
fusion but instead of using universal weights across the 
instances, the weights are assigned per instance [18]. 
These ensembles are considered independent ensemble 
frameworks, as the models are trained independently 
and then combined [14]. A more advanced independent 
ensemble framework is known as ‘stacking’. Stacking is a 
meta-combination method that uses the set of models’ 
predicted probabilities as features and trains a new model 
that learns to predict the outcome using these prediction 
features [16]. A limitation of stacking is that it requires 
additional labelled data to learn how to best combine the 
individual models. Alternatively, ‘dependent ensemble’ 
frameworks train models sequentially and each model 
depends on the output of the prior model [14]. Boost-
ing is a dependent fusion ensemble framework as models 
are sequentially trained, and weights are assigned to the 
objective function of each model during training based 
on prior models’ mistakes [19]. The above examples 
are just a selection of the commonly used combination 

methods and there are numerous other ways to combine 
the models [14].

Objective
This paper aims to determine whether prognostic model 
ensembles that combine regularized logistic regres-
sion models independently developed across different 
healthcare databases perform better in new data (more 
transportable) than each individual database prognostic 
model (single dataset model). A model with improved 
transportability is likely to also perform better when used 
clinically for decision making.

Methods
The Observational Health Data Science and Informat-
ics (OHDSI) PatientLevelPrediction framework is used 
throughout this paper [2] for developing prognostic 
models using observational healthcare data.

Databases
Four US claims and an EHR databases are explored, see 
Table 1.

The five databases in this study contain retrospectively 
collected deidentified data. The use of IBM and Optum 
databases were reviewed by the New England Institu-
tional Review Board (IRB) and were determined to be 
exempt from broad IRB approval.

All datasets used in this paper were mapped into the 
OHDSI Observational Medical Outcomes Partnership 
Common Data Model (OMOP-CDM) version 5 [20]. 
The OMOP-CDM was developed to enable researchers 
with diverse datasets to have a standard database struc-
ture. This enables analysis code and software to be shared 
among researchers which facilitates external validation of 
prediction models.

Table 1  Summary of the five databases used in this study

Name Type Description Start End Size 
(million 
lives)

IBM Medicare Supplemental Beneficiaries 
(MDCR)

US Claims Patients aged 65 or older with supplemental 
healthcare

2000–01–01 2019–12–31 10

IBM Medicaid (MDCD) US Claims Patients with government subsidized healthcare 2006–01–01 2018–12–31 28

Optum® De-Identified Clinformatics® Data Mart 
Database (Optum Claims)

US Claims Patients of all ages 2000–05–01 2019–12–31 84

IBM Commercial Claims and Encounters (CCAE) US Claims The patients in this database are aged 65 or 
younger. They are employees who receive 
health insurance through their employer and 
their dependents

2000–01–01 2019–12–31 152

Optum® de-identified Electronic Health Record 
Dataset (Optum EHR)

US EHR Patients of all ages 2006–01–01 2019–03–31 96
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Prediction problem
As an example, the problem: “Amongst patients with 
pharmaceutically-treated depression, which patients 
will develop < an outcome > during the 1-year time 
interval following the start of the depression episode?” 
is investigated.

The target population of pharmaceutically treated 
depressed patients is defined as: patients with a condi-
tion record of major depressive disorder and the index 
date was the first record date. Inclusion criteria are:

•	 Antidepressant recorded within 30  days before to 
30 days after the target population index date

•	 No history of psychosis
•	 No history of dementia
•	 No history of mania
•	  >  = 365 days prior observation

Twenty-one models predicting 21 different outcomes 
occurring for the first time between 1  day after index 
until 1  year after index are developed. The 21 out-
comes are: acute liver injury, acute myocardial infarc-
tion, alopecia, constipation, decreased libido, delirium, 
diarrhea, fracture, gastrointestinal hemorrhage, 
hyponatremia, hypotension, hypothyroidism, insomnia, 
nausea, seizure, stroke, sudden cardiac death, suicide 
and suicidal ideation, tinnitus, ventricular arrhythmia 
and vertigo.

The above definition of prediction problem is the same 
as used in reference [2].

In this study a random sample of 500,000 patients from 
the target population (> 1 million patients in Optum 
claims, > 2 million patients in Optum EHR and > 2 million 
in CCAE) were used throughout the study. Two database 
(MDCR and MDCD) has less than 500,000 patients, so 
no sampling was done. This improved the efficiency of 
model development and also resulted in some low out-
come counts, enabling the investigation into whether the 
outcome count impacts the ensemble performance.

Labelled data
We constructed labelled datasets for each database and 
outcome pair. For the nth patient in database k we used 
one-hot-encoding to create binary features indicating the 
presence of any medical condition or drug recorded prior 
to index (first record of major depressive disorder) and 
extracted the patient’s gender and age at index (in 5-year 
bins). Full feature construction details can be found in 
Additional file  1: Appendix A. Let xkn represent the fea-
ture vector for thenth patient in database k. Labels were 
determined per outcome, with yknj corresponding to the 
presence ( yknj = 1) or absence ( yknj = 0) of outcome j in 

the year after index for patient n in database k. This 
resulted in 105 labelled datasets {(xkn , yknj)}n.

Statistical analysis
Binary classifiers (Level 1 models)
For each database and outcome, a regularized logistic 
regression model with least absolute shrinkage and selec-
tion operator (LASSO) penalization was trained [21] 
using 80% of the data to develop the model and 20% of the 
data were held out to internally estimate the model per-
formance (test set performance). Three-fold cross valida-
tion was applied in the 80% development data to learn the 
optimal regularization value. The LASSO logistic regres-
sion implementation we used automatically searches for 
the variance (the regularization parameter), starting from 
a variance of 0.01, that maximizes the model discrimina-
tion [21]. The final LASSO logistic regression coefficients 
were learned with the optimal hyper-parameter set using 
all of the 80% development data.

Let fij(x) : Rm → [0, 1] correspond to the Level 1 logis-
tic regression model that was developed using the ith 
database (database i) to predict the jth outcome (out-
come j), where x is the m-dimension feature vector for 
a patient. Given a patient’s feature vector, the Level 1 
model developed in database i predicts a value between 0 
and 1 that corresponds to the probability that the patient 
will experience outcome j.

Performance evaluation
Internal validation is when a model is developed and 
evaluated in the same database and external validation 
is when a model is developed and evaluated in differ-
ent databases. For both internal and external validation, 
model discrimination and calibration were calculated. 
Model discrimination assesses how well a model ranks 
patients based on risk, this was calculated using the 
area under the receiver operating curve (AUROC). The 
AUROC is a ranking measure that corresponds to the 
probability that if a non-outcome patient was sampled 
and an outcome patient was sampled, the predicted risk 
assigned to the outcome patient is greater than the pre-
dicted risk assigned to the non-outcome patient. An 
AUROC of 0.5 corresponds to randomly predicting risk 
(no discriminative ability) and an AUROC of 1 corre-
sponds to perfect prediction (a higher risk is predicted for 
all patients who will experience the outcome compared 
to those who will not). Calibration assesses how closely 
the predicted risk matches the true risk. For example, if a 
model is well calibrated, then if 10 patients are assigned a 
10% risk, only 1 of them should experience the outcome. 
In this study, calibration was calculated using calibration-
in-the-large [22] which compares the model’s mean pre-
dicted risk in the population with the observed risk (a 
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model is considered well calibrated if the mean predicted 
risk matches the observed risk in the population).

The internal validation of each Level 1 model (test set 
performance) provides a benchmark performance for 
the database and outcome pair. The internal validation of 
each Level 1 model, trained in database k to predict out-
come j, was determined by calculating the AUROC and 
calibration-in-the-large using the predicted risk fkj

(
xkn

)
 

and the true label yknj for each patient in the 20% held out 
set (test set).

Binary ensemble classifiers (Level 2 models)
The ensembles in this study combine the Level 1 mod-
els developed in the different databases that predict the 
same outcome. Generally, an ensemble that predicts out-
come j is a function of the N Level 1 models that predict 
outcome j:

Seven different ensemble approaches were investigated 
to combine the Level 1 models, that predict the same 
outcome (j) but are trained on N different databases 
( {fij}i∈{1,2,...,N}

 ), using different heuristics.
A weighted fusion ensemble to predict the outcome j 

combines the Level 1 models by assigning each Level 1 
model a weight:

where wij is the weight assigned to the Level 1 model 
trained using database i to predict outcome j. We investi-
gated five different fusion ensembles. The simplest fusion 
is the uniform weighted one that simply takes the mean 
of the models’ predicted probabilities for each patient. 
This was chosen due to simplicity, for prognostic mod-
els, the simplest model that performs well is often pre-
ferred as it is easier to implement. However, we also 
investigated two performance weighted fusions as prog-
nostic model performance often varies depending on 
the development dataset and it seems reasonable to give 
a model with higher internal performance more weight. 
As AUROC is the most common discrimination metric, 
we chose this. In general, you expect a model to perform 
better when applying the model to a new dataset that has 
a similar case-mix to the development data compared to 
a different case-mix. This prompted the investigation of 
weighing each model’s predicted probabilities based on 
how similar the model’s development population are to 
the validation population (i.e., when applying an ensem-
ble, weight models developed on similar data more than 
models developed on different data compared to the 
application data). Finally, weights based on the similarity 

fj(x) = g({fij(x)}i∈{1,2,...,N}
)

fj(x) =
∑

i

wijf ij(x)

between the development population mean age and vali-
dation population mean age was investigated because 
age is often a key predictor in prognostic models, as seen 
in published dementia models [23]. Datasets often have 
skewed age distributions (contain younger or older popu-
lations compared to the general population). Although 
age is a candidate predictor in each Level 1 model, if a 
certain age group is not observed in the database (e.g., 
CCAE contains no patients aged 65 or higher), it will 
not be possible for the model to learn the association 
between the unobserved ages and the outcome. Con-
sequently, an ensemble that assigns a higher weight to 
models developed using populations that are similar in 
age to the application population may perform better.

In this study different weighting heuristics are 
investigated:

1.	 Mean Ensemble (mean)—for a patient, their pre-
dicted risk is the mean of the predicted risks of the 
included Level 1 classifiers (equal weighting so wij = 
1/N, where N is the number of models being com-
bined)

2.	 AUROC Ensemble normalized weights (auc1)—for a 
patient, their predicted risk is a weighted mean of the 
predicted risks of the included Level 1 models, where 
each Level 1 model’s weight is based on the model’s 
internal area under the receiver operating character-
istic curve (AUROC) that was calculated in the 20% 
held out data. The weights are scaled relative to an 
AUROC of 0.5 and normalized to ensure the total 
weight across models was 1 (AUROC performance 
weighting so wij =

|AUROCij−0.5|∑
k |AUROCkj−0.5|

 ), where AUROCij 
is the internal AUROC value for the Level 1 model 
developed in database i to predict outcome j.

3.	 AUROC Ensemble unnormalized weights (auc2)—
similar to 2) a patient’s risk is a weighted mean of the 
predicted risks of the included Level 1 models, where 
each Level 1 model’s weight is based on the model’s 
internal AUROC. The weights are scaled between 1 
for perfect discrimination and -1 for models that pre-
dict the opposite labels perfectly ( wij =

AUROCij−0.5

0.5  ), 
where AUROCij is the internal AUROC value for the 
Level 1 model developed in database i to predict out-
come j.

4.	 Similarity Weighted Ensemble (sim)- for a patient, 
their predicted risk is a weighted mean of the pre-
dicted risks of the included Level 1 models, but 
weights are based on how similar the Level 1 model’s 
development population mean value for each predic-
tor are compared to the population that the patient is 
in. The cosine similarity metric was used for the two 
vectors containing the mean values in the patient’s 
dataset and the Level 1 model’s development data 
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(case mix similarity weighting wij =
cosine(d,di)∑
k cosine(d,dk)

 ) 

where d is an m-dimensional vector corresponding 
to the mean values of the features included in model 
fij in the database the ensemble is being applied to 
and di is an m-dimensional vector corresponding to 
the mean values of the features included in model fij 
in database i.

5.	 Age Weighted Ensemble (age)– for a patient, their 
predicted risk is a weighted mean based on how simi-
lar the model development data population mean age 
was compared to the patient’s population mean age 
(case age similarity weighting wij =

d(µage,agei)∑
k d(µage,agek)

 ), 
where μage is the mean age in years of the patients in 
the dataset the model is being applied to, agei is the 
mean age of the patients in database i 
and  d(µage, agei) = 1/(1+

∣∣µage − agei
∣∣).

	 The mixture of expert ensembles fj(x) use the equa-
tion:fj(x) =

∑
i gij(x)f ij(x) where gij is the gating 

function value for Level 1 model developed in data-
base i to predicted outcome j. We used age as to 
determine which model is most suitable for a patient 
as differences in age between the development and 
validation datasets often impact performance.

6.	 Age Mixture of Experts Ensemble (ageME) – for a 
patient, their predicted risk is calculated using the 
Level 1 model developed using a population with a 
mean age that most closely matches the patient’s age, 
the gating function is:

	 where agek is the mean age in years of the patients in 
database k and  age is the age in years of the patient 
whose risk is being calculated.

	 Stacking ensembles involved training a Level 2 model 
that uses the Level 1 model predicted probabilities 
as features. Stacking ensembles were investigated as 
they have the advantage that they may be able to use 
small amounts of labelled data from the application 
dataset to learn how to weight each model. It would 
also be possible to learn the stacking model using 
one of the development datasets, however this would 
reduce the number of Level 1 models in the ensemble 
and was not explored in this study.

7.	 Stacking ensemble –a logistic regression model was 
trained as the Level 2 model that used the predicted 
risk from each Level 1 model as predictors (effec-
tively this learned the Level 1 model weightings). The 

gij(x) =

{
1, i ≡ min

k
(agek − age)

0, otherwise

stacking ensemble requires labelled data in the vali-
dation dataset whereas the other ensembles do not 
require this. As it is often not possible to get large 
amounts of labelled data in the validation dataset or 
application dataset, it was investigated how well the 
stacking ensemble would do if i) only 1,000 patients 
(s|1000), ii) only 10,000 patients (s|10,000) and iii) 
all available patients (s|All) were used to learn the 
weightings.

Model transportability
For each ensemble model a leave-one-database out 
approach was used to estimate external validation when the 
ensemble was transported to new data. Figure 1 illustrates 
the leave-one-database out approach. For example, to esti-
mate the mean fusion ensemble performance in predicting 
insomnia when externally validated on MDCR, the Level 
1 models trained on the MDCD, CCAE, Optum Claims 
and Optum EHR to predict insomnia were applied to each 
patient in MDCR and then the mean of the patient’s pre-
dicted risks across the four Level 1 models was calculated 
per patient. The mean fusion ensemble predictions are 
then validated using the ground truth labels in the left-out 
database where it was known which patients experienced 
insomnia. This was repeated five times by leaving each 
database out once.

Denoting the set of feature and label pairs in database k 
for outcome j as: {(xkn , yknj)}n , the vector of predicted risks 
in database k for outcome j using the mean fusion ensem-
ble across N database models excluding the database k 
model is:

The ground truth in database k is:

The external AUROC and calibration metrics for the 
mean fusion ensemble applied to database k for outcome j 
is then calculated by comparing the predictions and ground 
truth labels.

In general, the predictions for all Level 1 models and 
Level 2 ensemble models when transported to database k 
are:

predkj = (
∑

i �=k

fij
(
xk1

)

N
,
∑

i �=k

fij
(
xk2

)

N
, . . . ,

∑

i �=k

fij
(
xkm

)

N
)

truthkj = (yk1j, y
k
2j, . . . , y

k
mj)

externalAUROCk
j = AUROC(predkj , truth

k
j )
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To put the performance of the Level 1 and Level 2 
models (that do not used database k) into context, the 
‘internal benchmark’ performance  in database k was 
estimated. The ‘internal benchmark’ is defined as the 
internal validation performance (using a 20% test set 
{(x̂ki , ŷ

k
ij)}i

 ) of the Level 1 model developed in database k:

level1Predkj =

(
fij

(
xk1

)
, fij

(
xk2

)
, . . . , fij

(
xkm

))
, where i �= k

ensemblePredkj = (g

({
fij

(
xk1

)}

i �=k

)
, g

({
fij

(
xk2

)}

i �=k

)
, . . . , g

({
fij

(
xkm

)}

i �=k

)
)

The internal AUROC in database k for outcome j is 
then:

internalPredkj = (fkj

(
x̂k1

)
, fkj

(
x̂k2

)
, . . . , f kj

(
x̂kt

)
)

truthTestkj = (ŷk1j, ŷ
k
2j, . . . , ŷ

k
tj)

internalAUROCk
j = AUROC(internalPredkj , truthTest

k
j )

Fig. 1  The leave-one-database-out design used to evaluate the transportability of the Level 1 models trained using a single database and the Level 
2 ensembles that combine multiple Level 1 models. The figure shows that five different combinations were used, where four of the five databases 
were used to develop the models and the final database was used to fairly evaluate the transportability of the models. In addition, a model was 
trained using the left-out database to calculate the internal validation that could be considered the ‘internal benchmark’ performance for the 
database given sufficient training data. We compared how similar the external validation of each model was with the ‘internal benchmark’
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Given sufficient data, the internal performance of a 
model can be considered the upper bound of achievable 
performance (conditional on the same features being 
available to internal and external model development). 
If a model transported to new data has an external per-
formance close to the internal performance of a model 
developed using the data, then this can be considered 
to have transported well. Consequently, to determine 
how well a model transports the difference in perfor-
mance between the internal validation AUROC of the 
Level 1 model trained using the left-out database, data-
base k, and the external validation AUROC of models 
when applied to the left-out database k was calculated:

where externalAUROCk
j  is the performance of the 

model in database k (trained without dataset k) in pre-
dicting outcome j and internalAUROCk

j  is the Level 
1 model predicting outcome j trained in database k’s 

AUROC_differencekj = externalAUROCk
j − internalAUROCk

j

performance on the 20% test set. To show how well each 
model transports in general, box plots were created to 
show the distribution of AUROC_differencekj  across the 
different outcomes and databases. Distributions centered 
around 0 indicate excellent transportability and distribu-
tions with a small range indicate consistency.

Results
The data sizes are presented in Table 2 and the database 
characteristics are displayed in Table 3. The smallest tar-
get population was the one extracted from the MDCR 
database, and this population were older and had higher 
rates of cancer and cardiovascular issues prior to index. 

The MDCD target population was the youngest and had 
the highest rate of obesity recorded in the prior year. In 
general, the characteristics varied greatly across the data-
sets, indicating different patient case-mixes. The outcome 

Table 2  The outcome counts and percentage of target population who develop the outcome during the tine-at-risk

CCAE/Optum EHR/Optum claims contained more than 500,000 pharmaceutically treated depressed patients so we sampled 500,000 patients from each of these 
databases

A small number of the 500,000 patients sampled were excluded because the index date was the last time the patient was observed in the data (so they had no 
follow-up)

Outcome CCAE (N ~ 499,678) (%) MDCR 
(N ~ 160,956) 
(%)

MDCD (N ~ 469,302) (%) Optum EHR 
(N ~ 499,881) (%)

Optum Claims 
(N ~ 499,753) 
(%)

Acute liver injury 14,875 (3.35) 7226 (5.4) 21,654 (5.47) 18,535 (4.18) 18,619 (4.31)

Acute myocardial infarction 1494 (0.3) 935 (0.59) 3800 (0.83) 816 (0.16) 1298 (0.26)

Alopecia 10,672 (2.32) 7569 (5.64) 20,597 (5.2) 16,597 (3.69) 16,571 (3.75)

Constipation 4170 (0.85) 6399 (4.39) 9210 (2.05) 10,192 (2.13) 10,282 (2.16)

Decreased libido 491 (0.1) 1080 (0.69) 905 (0.19) 287 (0.06) 708 (0.14)

Delirium 174 (0.03) 510 (0.32) 86 (0.02) 267 (0.05) 91 (0.02)

Diarrhea 1661 (0.34) 130 (0.08) 785 (0.17) 1210 (0.24) 1603 (0.32)

Fracture 509 (0.1) 963 (0.61) 894 (0.19) 381 (0.08) 758 (0.15)

Gastrointestinal hemorrhage 985 (0.2) 1298 (0.81) 1666 (0.36) 356 (0.07) 1021 (0.2)

Hyponatremia 19,754 (4.65) 7824 (5.95) 33,518 (9.82) 24,043 (5.65) 23,304 (5.67)

Hypotension 380 (0.08) 1153 (0.74) 636 (0.14) 230 (0.05) 683 (0.14)

Hypothyroidism 297 (0.06) 642 (0.4) 1056 (0.23) 162 (0.03) 333 (0.07)

Insomnia 3046 (0.62) 2086 (1.38) 2468 (0.53) 3049 (0.62) 4114 (0.85)

Ischemic stroke all inpatient 3120 (0.64) 1824 (1.19) 2655 (0.57) 2775 (0.56) 4139 (0.85)

Nausea 2722 (0.56) 4071 (2.77) 4033 (0.89) 4368 (0.9) 5846 (1.22)

Open angle glaucoma 6117 (1.33) 3853 (2.83) 5374 (1.22) 8786 (2.03) 9943 (2.33)

Seizure 184 (0.04) 67 (0.04) 307 (0.07) 94 (0.02) 199 (0.04)

Suicide and suicidal ideation 10,221 (2.13) 993 (0.62) 21,518 (5.09) 9957 (2.1) 8063 (1.67)

Tinnitus 2628 (0.53) 4276 (2.87) 5082 (1.12) 6920 (1.44) 7643 (1.62)

Ventricular arrhythmia and sud-
den cardiac death

20,806 (4.91) 6846 (5.12) 27,233 (6.92) 23,655 (5.6) 23,772 (5.89)

Vertigo 2577 (0.53) 748 (0.47) 2269 (0.49) 2341 (0.48) 2782 (0.57)
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count was generally greater than 100 except for delirium 
in MDCD and Optum Claims and Seizure in MDCR and 
Optum EHR.

Figure 2 presents box plots of the AUROC_differences 
per Level 1 model (non-ensemble) and Level 2 model 
(ensemble) when transported to each held out database 
across the 21 outcomes. A zoomed in version of Fig.  2 
can be found in Additional file 2: Appendix B. The non-
ensemble box plots show a lower median value and 
greater range of values compared to the fusion ensem-
bles. The fusion ensembles achieved discriminative per-
formances similar to the ‘internal benchmark’ when 
transported to new databases (AUROC_difference values 
close to 0). The age-based mixture of expert and stack-
ing ensembles that used 1,000 or 10,000 labels generally 
performed worse than the non-ensembles in terms of 
discrimination when transported. The stacking ensem-
ble using all the labelled data available achieved external 
AUROC similar to the ‘internal benchmark’ but was not 
better than the fusion ensembles. The full external valida-
tion discrimination performance across the 21 outcomes 
and 5 databases for the non-ensembles and ensembles 
are presented in Additional file 3: Appendix C.

The distribution of calibration in the large values 
(observed risk—mean predicted risk) is presented in 
Fig.  3 and the distribution of model calibration  gradi-
ents  (slopes) are presented in Fig.  4. The calibration in 
the large plots show the difference between the observed 
risk and the mean predicted risk per Level 2 model 
(ensemble) or Level 1 model (non-ensemble). A model 
is well calibrated if the mean predicted risk matches the 
observed population risk, corresponding to a calibration 
in the large of 0. Figure 3 show that the mean predicted 

risks did not often match the observed population risk, 
except for the stacking ensemble. The calibration gradi-
ent (slope) can often indicate overfitting where a model is 
predicting extremely small risk (close to 0) or large risks 
(close to 1). If the gradient is much greater than 1, then 
this indicates overfitting.

Discussion
The results show that weighted fusion ensembles that 
combine multiple prognostic models developed in differ-
ent databases appear to have more stable discriminative 
performances when transported to new databases com-
pared to the Level 1 (single database) models. However, 
calibration appears to be an issue for all models that are 
transported to new databases (except stacking ensembles 
with sufficient labels).

This study showed that certain ensembles combining 
models developed independently across difference data-
bases transport better than the Level 1 single database 
models. The weighted fusion ensembles and stacking 
ensemble (that used all data) consistently achieved dis-
crimination close to the ‘internal benchmark’ in the new 
data whereas the Level 1 single models generally per-
formed slightly worse than the ‘internal benchmark’. The 
Level 1 single database models were also less consistent 
across outcomes and certain database models did better 
than others (e.g., Optum claims models transported bet-
ter than MDCR models). This variability may be due to 
each database containing diverse patient case-mixes, as 
seen in Table 3. The ensembles can combine the perspec-
tives of the Level 1 models trained with different popula-
tions making them more robust to new populations. The 
calibrations of the transported models were generally 

Table 3  Characteristics of the target population (patients with depression initiating treatment) per database

CCAE MDCD MDCR Optum Claims Optum EHR

Mean age 41 35 75 50 49

Male (%) 30.8 25.9 32.2 31.7 29.2

Mean number outpatient visits in prior year 16.3 31.2 26.8 16.6 32.4

Frequency of patients experiencing condition in prior year

 Pain 0.60 0.74 0.74 0.66 0.57

 Anxiety 0.41 0.50 0.28 0.42 0.43

 Acute inflammatory disease 0.32 0.36 0.24 0.31 0.18

 Neoplastic disease 0.22 0.14 0.46 0.27 0.17

 Essential hypertension 0.25 0.31 0.69 0.40 0.37

 Obesity 0.11 0.19 0.11 0.13 0.17

 Heart disease 0.09 0.14 0.46 0.20 0.18

 Diabetes mellitus 0.09 0.14 0.27 0.16 0.16

 Urinary tract infectious disease 0.09 0.14 0.16 0.12 0.07

 Anemia 0.07 0.12 0.20 0.12 0.11
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poor, except the stacking model (using all data) as this 
used labelled data so was effectively recalibrated. If all the 
Level 1 single database models are mis-calibrated, then it 
makes sense that any ensemble combining them would 
also be mis-calibrated. This highlights the importance of 
model recalibrating before implementing them in new 
patient populations. It may be possible to recalibrate 
without labelled data by changing the intercept based 
on how common the outcome is in the target population 
the model is being applied to. If labels are available for 

some patients, then standard recalibration techniques 
can be implemented. The auc2 fusion ensemble visually 
had the worse calibration. This is likely due to the weights 
being between -1 and 1 and not being normalized (total 
weights did not sum to 1). This highlights that not nor-
malizing the fusion weights can have a large impact on 
calibration.

The results show the type of ensemble heuristic 
impacted transportability. The ensembles that per-
formed the best in terms of discrimination when 

Fig. 2  Box plots showing the difference between the external validation AUROC minus the internal validation AUROC per non-ensemble (Level 1 
model) and ensemble method (Level 2 model) across the five databases. The rows represent the external database (the database that was excluded 
from the model/ensemble development) that was used to fairly evaluate the models/ensembles. The x-axis represents the model/ensemble 
technique. Box plots centered around 0 with a small range indicate highly transportable and consistent external discriminative performance. The 
dashed vertical lines separate the non-ensembles, the fusion ensembles, the mixture of expert ensembles and the stacking ensembles
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transported were the weighted fusion ensembles. The 
stacking ensemble did almost as well as the weighted 
fusion ensemble when there were sufficient labels, but 
it required labels in the new data it is being transported 
to whereas the weighted fusion ensembles did not. 
Requiring labels is a big disadvantage and therefore the 
weighted fusion ensembles are more useful. Interestingly, 
the simple mean fusion ensemble (uniform weighting) 
was comparable to the AUROC, age and database simi-
larity weighted ensembles. Due to its simplicity, the mean 

fusion ensemble shows promise at being able to lead to 
more transportable prognostic models. If it worth noting, 
the age weighted ensembles may have benefitted in this 
study by the databases being similar (mostly US claims 
databases). For example, Optum claims is a mixture of 
patients that are similar to the patients in CCAE and 
MDCR, Therefore the age weighting may not perform 
well when the databases are more diverse. The weighted 
fusion ensembles and mixture of expert ensemble 
may have been impacted by the outcome rate differing 

Fig. 3  Box plots of calibration-in-the-large (observed risk—mean predicted risk) values for each non-ensemble (Level 1 model) and ensemble 
(Level 2 model) when externally validated. The rows represent the external database (the database that was excluded from the model/ensemble 
development) that was used to fairly evaluate the models/ensembles. The x-axis represents the model/ensemble technique. Box plots centered 
around 0 with a small range indicate excellent external calibration performance. The dashed vertical lines separate the non-ensembles, the fusion 
ensembles, the mixture of expert ensembles and the stacking ensembles
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between the databases. If the outcome is more common 
in a database, then a logistic regression model’s intercept 
is likely to be greater and the model’s mean predicted risk 
is likely to be higher than a model trained in data with 
fewer outcomes. This effectively may add more weighting 
to Level 1 models trained in databases that have a higher 
outcome percentage in the data.

The key advantage of this study is that we were able to 
compare the transportability of Level 1 models (devel-
oped in a single database) and ensembles combining 

Level 1 models developed in different databases across 
many prediction problems and across five datasets. In 
total we trained 21 (outcomes) × 5 (databases) single 
database models and created 21 (outcomes) × 5 (data-
bases) × 7 (ensemble methods) ensemble models. The 
limitation of this study is the generalizability of findings 
as we only investigated one target population and we only 
used US data. In future work it would be useful to repeat 
this experiment across different target populations and 
externally validate the models (ensemble/non-ensemble) 

Fig. 4  The distribution of calibration gradient (slope) values for each non-ensemble (Level 1 model) and ensemble (Level 2 model) when externally 
validated. The rows represent the external database (the database that was excluded from the model/ensemble development) that was used 
to fairly evaluate the models/ensembles. The x-axis represents the model/ensemble technique. Box plots centered around 1 with a small range 
indicate excellent external calibration performance. The dashed vertical lines separate the non-ensembles, the fusion ensembles, the mixture of 
expert ensembles and the stacking ensembles
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developed in this study across non-US databases. The 
OHDSI network and collaboration could be used to scale 
up this study across more diverse databases in future 
work [24]. In addition, there are numerous ways to com-
bine the Level 1 models into an ensemble and we only 
investigated 7 simple approaches. However, these results 
provide a benchmark for comparing other ensembles 
techniques.

In this study 500,000 patients were sampled from 
each database (if there were more than 500,000 target 
population patients) as this provided a range of out-
come sizes for the 21 outcomes investigated and ena-
bled us to investigate the impact of outcome count in 
the study. Predicting rare outcomes is often an area of 
interest in healthcare and this may be where learning 
across multiple databases is more advantageous.

In future work it would be interesting to investi-
gate whether rescaling the Level 1 models’ predictions 
within the ensemble, to make the mean predicted risk 
for each Level 1 model within the ensemble equal, 
could improve the weighted fusion or mixture of expert 
ensembles. Furthermore, it would be beneficial to inves-
tigate potential methods to recalibrate the ensembles 
given the calibration was shown to be poor. In addition, 
in this study we did not investigate pruning the Level 
1 models within the ensembles, but this is an area of 
future research that may further improve transport-
ability of an ensemble. In this study none of the Level 1 
single database models achieved an AUROC ~ 0.5, but 
it may make sense to prune such models if the situa-
tion arises. Finally, we only investigated ensembles of 
LASSO logistic regression models. It would be interest-
ing to repeat the experiment using different machine 
learning modeling methods  such as logistic regression 
with Ridge or Elasticnet regularization.

Conclusion
In this study we performed a large-scale empirical evalu-
ation to investigate the transportability of a simple and 
feasible federated learning approach that uses ensemble 
learning to combine models developed independently in 
different databases. The results show that a mean fusion 
ensemble appears to transport to new data with higher 
discrimination compared to models developed in any 
single database. Consequently, developing a mean fusion 
ensemble of prognostic models developed using differ-
ent databases (but for the same task) may lead to more 
clinically robust and useful prognostic models. However, 
recalibration is likely to be required.
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