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Abstract
Background: During resonance frequency (RF) hyperthermia treatment, the
temperature of the tumor tissue is elevated to the range of 39–44◦C. Accu-
rate temperature monitoring is essential to guide treatments and ensure precise
heat delivery and treatment quality. Magnetic resonance (MR) thermometry is
currently the only clinical method to measure temperature noninvasively in a vol-
ume during treatment. However, several studies have shown that this approach
is not always sufficiently accurate for thermal dosimetry in areas with motion,
such as the pelvic region. Model-based temperature estimation is a promis-
ing approach to correct and supplement 3D online temperature estimation in
regions where MR thermometry is unreliable or cannot be measured. However,
complete 3D temperature modeling of the pelvic region is too complex for online
usage.
Purpose: This study aimed to evaluate the use of proper orthogonal decom-
position (POD) model reduction combined with Kalman filtering to improve
temperature estimation using MR thermometry. Furthermore, we assessed the
benefit of this method using data from hyperthermia treatment where there were
limited and unreliable MR thermometry measurements.
Methods: The performance of POD–Kalman filtering was evaluated in several
heating experiments and for data from patients treated for locally advanced cer-
vical cancer. For each method, we evaluated the mean absolute error (MAE)
concerning the temperature measurements acquired by the thermal probes,and
we assessed the reproducibility and consistency using the standard deviation
of error (SDE). Furthermore, three patient groups were defined according to
susceptibility artifacts caused by the level of intestinal gas motion to assess
if the POD–Kalman filtering could compensate for missing and unreliable MR
thermometry measurements.
Results: First, we showed that this method is beneficial and reproducible in
phantom experiments. Second, we demonstrated that the combined method
improved the match between temperature prediction and temperature acquired
by intraluminal thermometry for patients treated for locally advanced cervi-
cal cancer. Considering all patients, the POD–Kalman filter improved MAE
by 43% (filtered MR thermometry = 1.29◦C, POD–Kalman filtered temper-
ature = 0.74◦C). Moreover, the SDE was improved by 47% (filtered MR
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2 POD–KALMAN FILTERING IN MR-GUIDED HT

thermometry = 1.16◦C, POD–Kalman filtered temperature = 0.61◦C). Specifi-
cally, the POD–Kalman filter reduced the MAE by approximately 60% in patients
whose MR thermometry was unreliable because of the great amount of
susceptibilities caused by the high level of intestinal gas motion.
Conclusions: We showed that the POD–Kalman filter significantly improved
the accuracy of temperature monitoring compared to MR thermometry in heat-
ing experiments and hyperthermia treatments. The results demonstrated that
POD–Kalman filtering can improve thermal dosimetry during RF hyperthermia
treatment, especially when MR thermometry is inaccurate.
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1 INTRODUCTION

Hyperthermia is an adjuvant cancer treatment that
enhances the effects of radiotherapy and chemother-
apy by locally applying heat to the tumor region.1,2 A
retrospective analysis done by Franckena et al.3 showed
that in 420 patients with locally advanced carcinoma, the
probability of cure is correlated with the administered
thermal dose.4 That study illustrated the clinical rele-
vance of careful temperature monitoring and the need to
optimize thermal dose. However, even though intralumi-
nal thermometry is the golden standard for temperature
assessment during treatment,5,6 it has severe limita-
tions like information from only a few locations.7,8 The
combination of a magnetic resonance (MR)-compatible
hyperthermia device with MR imaging might be the ideal
technology since it enables to monitor temperature non-
invasively, achieve dose-optimization in real time, and
perform real-time quality assurance.9,10 MR thermom-
etry is currently the only clinical option to measure
temperature noninvasively; however, it is prone to noise
and motion artifacts,and its accuracy in the pelvic region
is insufficient for real-time thermal dosimetry. Hence,
new developments are urgently needed to improve MR
thermometry measurements11–13 and enable thermal
dosimetry during treatment. A combined proper orthog-
onal decomposition (POD)–Kalman filtering method was
recently proposed,14 but its performance in experimental
and in in vivo settings has not been rigorously studied.
To establish its potential, we studied the reproducibility
of this method using several heating experiments. Most
importantly, we explored the potential of POD–Kalman
filtering to reduce the sensitivity to motion artifacts and
enable the real-time temperature monitoring using in
vivo data from hyperthermia treatments.

Noninvasive monitoring of temperature is possible
using several temperature-sensitive MR parameters.
The most used MR method is the proton resonance
frequency shift (PRFS),15–17 which measures relative
temperature differences based on the phase change.
Several studies have demonstrated the feasibility of the
PRFS method in both phantoms and patients.12,18 The

study conducted by Curto et al.9 showed that MR ther-
mometry accuracy in phantoms was between 0.3◦C
and 0.5◦C. Gellermann et al.19 showed the potential
of MR thermometry in patients with recurrent rectal
carcinoma and found accuracies of 1.5◦C using ther-
mistor probes as the gold standard. Amid the different
studies that evaluated MR thermometry in a group of
patients, motion and B0 field changes appeared as
the main problem in achieving accurate MR thermom-
etry measurements.11,20,21 Feddersen et al. showed
that reliable MR thermometry measurements are not
being achieved in regions with motion, regardless of the
MR method.11 Our recent work confirmed that intesti-
nal gas motion caused strong susceptibilities artifacts
in MR thermometry, and that its quantification prior to
treatment predicts MR thermometry accuracy during
treatment.22 Moreover, the number of MR thermome-
try updates is restricted during treatment due to the
water circulation through the water bolus surrounding
the patient. Because water circulation creates signifi-
cant susceptibility artifacts, water circulation has to be
stopped for a certain period before an MR thermome-
try acquisition can be taken. Hence, the inaccuracies of
MR thermometry during hyperthermia treatment must
be solved,but there is also a strong need for temperature
information between scans.

Various studies have been investigating model-based
temperature estimation to enhance temperature mea-
surements. Potocki et al.23 proposed Kalman filtering
to estimate the temperature in unmeasured locations.24

They used the bio-heat transfer equation (BHTE)
model and temperature information acquired with inva-
sive probes.25 For high-intensity focused ultrasound
(HIFU), several studies employed filtering in combina-
tion with MR thermometry to improve the temperature
estimation.26,27 Roujol et al.28 employed a Kalman fil-
ter combined with MR thermometry and showed a
threefold accuracy improvement for temperature esti-
mation when heating a phantom and a porcine kidney.
Zhang et al.29 and Schmitt et al.30 have shown combin-
ing Kalman filtering with MR thermometry to improve
the temperature monitoring accuracy on patient data
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using HIFU. Note that HIFU focuses on heating a vol-
ume up to 1.8 cm in diameter and, around 2.4 cm in
length31–33; thus, the region of interest (ROI) used for
temperature monitoring can be much smaller, that is,
less than 20 × 20 cm2,33,34 which strongly simplifies
the thermal modeling. Overall, extensive studies using
this method in patient data or larger regions were not
performed.

The treatment region for resonance frequency (RF)
hyperthermia in pelvic tumors is approximately 14 cm
and 25.5 cm in diameter and length.35 Additionally, the
ROI for MR thermometry is 50 × 50 cm2 since the
RF antennas are placed in circular arrays around the
patient, and near field hotspots, while lower, can form
all around. Due to increased computational complex-
ity, the extensive state-space systems resulting from the
large field of view (FOV) prohibit online Kalman-filtering
techniques. Therefore, to enable Kalman-filtering for
RF-hyperthermia, adequate reduced-order models are
needed that enable fast computation. Hendrikx et al.14

validated the use of reduced thermal models for
recursive temperature estimation using POD36 of MR
thermometry in phantoms.In that study, the precomputa-
tion of patient-specific heating modes enabled accurate
and efficient models that captured the complexity of
the geometry without compromising spatial resolution.
Even though the feasibility of the POD–Kalman filter
was shown, this study did not systematically evaluate
reproducibility. Furthermore, no research has shown the
benefit of the POD–Kalman filter to improve tempera-
ture prediction of MR thermometry for large volumes
when there are limited and unreliable MR thermome-
try measurements. Moreover, the feasibility and clinical
potential of POD–Kalman filtering during RF hyper-
thermia was not shown for patient data with complex
modeling and unreliable MR thermometry.

This retrospective study presents the reproducibil-
ity of temperature estimation in heating experiments
and provides the first feasibility study of this method in
patient data. As such, we validated combining reduced
models and MR thermometry to make the best estimate
of the temperature. Our study evaluates the benefit of
this method to enable real-time temperature monitoring
when MR thermometry measurements are not reliable.
Hence, the performance of the POD–Kalman filter was
also specifically analyzed for correcting severe artifacts
and when limited MR thermometry measurements are
available.

2 MATERIALS AND METHODS

2.1 MR thermometry acquisition and
processing

For temperature monitoring, we employed the pro-
ton resonance frequency shift (PRFS) method.13,15,16

We used the clinical sequence part of a Confor-
mité Européene (CE) -marked MR thermometry imag-
ing package provided by the manufacturer Dr. Sen-
newald Medizintechnik GmbH (Munchen, Germany).
This sequence is a double echo gradient recalled echo
(DEGRE) sequence15 with parameters: echo times:
TE = 4.8 and 19.1 ms; repetition time: TR = 620 ms;
25 axial slices; slice thickness = 1 cm; no separation
between slices; FOV = 50 cm × 50 cm; acquisition
matrix = 128 × 128; reconstruction matrix = 256 × 256;
flip angle = 40◦; scan time = 83 s.

The PRFS method measures relative temperature dif-
ferences (ΔT) based on phase changes of the different
MR thermometry scans.16,37 Before switching the power
of the heating system on, the PRFS sequence acqui-
sition is started such a reference phase data (’n0) is
acquired in baseline conditions. During treatment, mul-
tiple phase data sets are acquired (𝜑n). The raw MR
thermometry was calculated by subtracting the phase
images according to Equation (1).

ΔT (n) =
𝜑n − 𝜑n0

𝛾𝛼B0TE
, (1)

where 𝛾 is the gyromagnetic ratio equal to 267.5 ×106;
𝛼 is the PRF-thermal coefficient for aqueous tissue, and
it is equal to −0.01 ppm/◦,16,38,39 which is based on
the linear relationship between the PRFS of water and
the corresponding temperature change in different types
of high water content tissues; B0 is the magnetic field
strength equal to 1.5T; TE is the echo time equal to
19.1 ms,n is the scanning time,and n0 indicates the first
scanning time before treatment (baseline condition). A
confounder of MR thermometry when using the PRFS
method is the B0 field drift due to hardware instabilities
or gradient coil-heating during scanning.40 It is crucial
to correct since the effect is in the order of the RF
shift with temperature.The standard clinical method is to
correct the drift using fat-tube references from the MR-
compatible device. Because the fat-tube references are
placed in the periphery of the FOV, these regions suffer
from low SNR.Earlier,we found that correction based on
the combination of fat-tube references and the patient’s
subcutaneous fat improves measurement accuracy.22

Hence, we combined the signals in the fat references
and subcutaneous fat and employed a 2D polynomial
spatial–temporal correction16,20,41 across the MR tem-
perature maps to remove changes in PRFS signal in
all fat regions throughout the treatment. We consider
the error caused by a possible temperature increase in
the fat regions to be minor because protons in fat do
not exhibit a temperature-dependent frequency shift.42

Moreover, the heating induced by RF heating is gener-
ally small compared to tissues with higher water content,
and the fat regions used for correction are not near
the heated regions. After the B0 drift correction, these
temperature maps were defined as MR thermometry.
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2.2 Patient and phantom modeling

All measurements were conducted in the BSD‑2000‑3D
Sigma Eye MR‑compatible system9,19 (Pyrexar Medical
Corp., Salt Lake City, UT, USA) integrated into a 1.5T
GE system (GE Discovery MR450w General Electric,
Milwaukee, WI, USA). Note that the patient and phan-
tom model generation was conducted after the heating
experiments and hyperthermia treatments.The duration
of the patient and phantom modeling was approximately
2 h.

We used two identical anthropomorphous phantoms
filled with muscle-equivalent material9 and plastic mate-
rial resembling the human pelvis, spine bones, and the
discs of a skeleton.9,14 Hence, the phantoms mimic the
shape and dielectric and thermal properties of the trunk
of a human body,and have a total length of 60 cm and a
weight of 30 kg, respectively. Before the heating exper-
iments, computed tomography (CT) scans were taken.
The different phantom tissues (muscle-equivalent fill-
ing,bone plastic and outer shell plastic) were delineated
using iSeg (v3.10 Zurich MTech AG, Zurich, Switzer-
land), and afterward, a full 3D phantom model was
generated. To reproduce the heating experiments in the
simulations, we used the software package Sim4Life
(v5.2 Zurich MedTech AG, Zurich, Switzerland), to posi-
tion the 3D phantom model inside the 3D model of the
hyperthermia device according to the MR images taken
during the experiment.9,12

The 14 patients included in this retrospective study
were diagnosed with locally advanced cervical carci-
noma. Moreover, all patients were treated with curative
intent using hyperthermia as an adjuvant to radiother-
apy, and these treatments were conducted between
2017 and 2019. All patients included were female sub-
jects with an average age of 56.7 ± 16.7 years who
had a histologically confirmed cervical carcinoma. We
included patients with various FIGO stages: IA (one
patient), IB (two patients), IIB (five patients), IIIB (four
patients), and IVA (two patients). The medical ethics
committee approved the research protocol for this inves-
tigation of Erasmus MC, University Medical Center
Rotterdam. Note that the approval was obtained prior to
the start of the study, and the ethics code is MEC 2015–
108. Additionally, we have received informed consent
from all the patients included in this study.

The modeling procedure was equal to the phantom
study, except that we used the MR images taken at the
start of treatment with the patient in treatment position
for tissue delineation instead of the CT images. Four tis-
sue types were delineated: fat, muscle, bone, and target
volume.43–45 The latter structure was used for hyperther-
mia treatment planning optimization and delineated by a
radiation oncologist.The MR thermometry FOV included
only 25 cm of the total patient volume inside the hyper-
thermia applicator (Figure 1).This limited FOV would be

inadequate for precise electromagnetic field represen-
tation since the water bolus would replace the missing
volume of the patient model. For that reason, as pre-
sented in Figure 1, fat, bone, and muscle were extended
to 50 cm by repeating the first and last slice.46 Even
though the extended volume does not fully represent the
anatomy, we believe that the effect of these errors in
the target region will be small. As mentioned before, the
focus size in the z-direction is a maximum of 25 cm;thus,
the energy deposition in the border regions will be low.
Since the border regions correspond to the extended
regions, we believe that the effect of incorrect anatomy
will be minor.

2.3 Electromagnetic and thermal
modeling

The electromagnetic propagation in the 3D models was
predicted using finite-difference time-domain (FDTD)
solver in Sim4Life. A nonuniform grid was used in the
simulations, in which the maximum grid step inside and
outside of the applicator was 2.5 mm and 10 cm,respec-
tively. The electromagnetic simulations took approxi-
mately 3 h, and the resulting 3D EM field distributions
were imported into MATLAB. The specific absorption
rate (SAR) was calculated using the power and phase
settings applied in the experiments and treatments. The
antenna settings used in the hyperthermia treatments
were optimized using our in-house treatment planning
software (VEDO).47

The 3D temperature distribution was calculated using
the Pennes’ bio-heat equation (PBHE)25:

𝜌c
𝜕T
𝜕t

= ∇ (k ∇T) + 𝜌Qm + 𝜌S − 𝜌bcb𝜌𝜔 (T − Tb), (2)

where T (◦C) is the temperature, t (min) is the time, c
(J kg−1◦C−1) is the specific heat capacity, 𝜌 (kg m−3)
is the volume density of mass, k (W m−1◦C−1) is the
thermal conductivity, 𝜔 (ml min−1kg−1) is the volumet-
ric blood perfusion, Qm (W kg−1) is the metabolic heat
generation, S (W kg−1) is the SAR, which served as a
source for the thermal simulations, and the subscript b
denotes blood properties. Energy losses were modeled
using a mix of convective and Neumann boundary con-
ditions at the interfaces of tissue and water bolus (heat
transfer coefficient: 40 Wm−2◦C−148).The initial temper-
ature in tissues was set to 20◦C (phantom) and 37◦C
(patient), while the temperature of the water bolus was
set to 20◦C. Note that the temperature elevation was
defined relative to the initial temperature. For compu-
tational reasons, to solve Equation (2) forward in time,
we spatially discretized the domain using a 3-mm grid
to obtain many coupled ordinary differential equations.
These equations were solved with well-known numerical
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F IGURE 1 Schematic representation of a patient model and its position in the hyperthermia device. The simulation and MR thermometry
FOV are displayed in the coronal (a) and axial (b) views. In the axial view, the FOVs are overlapped

TABLE 1 EM and thermal tissue properties of phantom and patient. The applicator-shell, phantom-shell, and phantom-bone present the
same properties as plastic

Material 𝜺r (-) 𝝈 (S/m) c (J/kg/◦C) K (W/m/◦C) Q (W/kg) 𝝆 (kg/m3) ω (ml/min/kg)

Applicator-shell 2.8 0.004 – – – 1180 –

Applicator-water bolus 80.95 0.0026 – – – 1000 –

Phantom-bone 2.8 0 1500 0.2 – 1600 –

Phantom-inner 78.0 0.45 3630 0.64 – 1000 –

Phantom-shell 2.8 0 1500 0.2 – 1600 –

Patient-bone 15.3 0.0643 1313 0.32 0.15 1908 10

Patient-muscle 66.0 0.708 3421 0.45 0.96 1090 300

Patient-fat 12.7 0.0684 2348 0.21 0.51 911 200

Patient-target 70.0 0.75 3950 0.51 – 1050 80

integration techniques described in detail in our previ-
ous work.14 Additionally, the total computation time for
thermal modeling was 4 min.

Table 1 lists the relative permittivity ("r) and effec-
tive conductivity (𝜎) properties at 100 MHz,49,50 and the
thermal properties. The thermal properties of the phan-
tom were assigned at baseline conditions,51 whereas
the patient tissue properties were assigned at thermal
stress conditions,52,53 except for bone.49

2.4 POD model reduction

The spatial discretization of the pelvic region’s ther-
mal model in the pelvic region results in an extensive
state-space system with approximately 105 states14,54

that is too complex to use in real-time temperature pre-
dictions. The POD model reduction36 decreases the
computational demand without compromising spatial
resolution.This method reduces the model order by pro-
jecting the original model into a subspace generated by
simulation snapshots.54 The snapshot matrix contains

a set of observations obtained by precomputed ther-
mal simulations. Equation (3) shows the formulation of
the snapshot matrix (Y ), where the columns define the
snapshots and k denotes the number of snapshots.

Y =
[
𝜉 (t1) 𝜉 (t2) … 𝜉 (tk)

]
∈ ℝn×k (3)

Contrary to our previous work, the snapshot matrix
was based on systematic impulse responses. This was
based on the research conducted by Rowley et al. who
showed that,because all reachable states can be written
by a linear combination of impulse responses, the snap-
shot matrix created can describe any reachable state.55

Next, we used the singular value decomposition (SVD)
to reduce the model order, which is defined as

Y = UΣVH, (4)

where U ∈ ℝn×n, Σ ∈ ℝn×k and V ∈ ℝk×k . Additionally,
the columns of U represent orthogonal temperature
modes from the snapshot matrix, whose importance
is given by the corresponding single value in Σ. We
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truncated the SVD to obtain a low-rank approximation of
Y as given in Equation (4). To select the reduced model
order without compromising the POD model accuracy,
we truncated the singular values such that they included
singular values that capture 95.5% of the energy in the
snapshot matrix using the 2-norm. For more details, see
Eckart–Young–Mirsky theorem for the spectral norm.56

The first m columns of U are contained in Um, that form
the orthonormal basis for the approximation space of
dimension m. Note that the orthonormal basis means
that U⊺

m Um = 1. Hence, the nodal state vector is now
approximated by Equation (5).

𝜉 (t) ≈ Umx (t) , (5)

where x is the reduced state.
Finally, the reduced system is obtained by apply-

ing Galerkin projection of the original model on the
orthonormal basis Um, and its formulation is given by

dx (t)
dt

= UT
m AUmx (t) + UT

mBq (t) + Umh (t) . (6)

As a result, dominant effects will be extracted from
this simulation-based snapshot matrix to describe the
3D temperature distribution over time. The computa-
tion time to generate the POD-reduced model was
10 min.

2.5 Kalman filter for recursive
temperature estimation

The temperature estimation using the Kalman filter24 is
summarized in two parts: (1) temperature prediction and
(2) the combination of the obtained predicted tempera-
ture with the MR thermometry measurements. The first
step predicts the temperature using the model based on
the previous temperature estimate, and the settings of
the RF-applicator antennas. The predicted temperature
at time t (xp

t ) and the prior estimate error covariance (Pp
t )

are given by

xp
t = At xt−1 + Btut, (7)

Pp
t = At Pt−1AT

t + Q, (8)

where the superscript p indicates the model-based pre-
diction; xp

t denotes the predicted temperature at time t;
At and Bt denote the reduced-order discrete-time sys-
tem matrices obtained by projecting the time-discretized
dynamics on the precomputed POD subspace,which we
obtained from multiple time simulations.14 Furthermore,
xt−1 denotes the estimated temperature at time t − 1;

ut is the control input at time t using the settings of the
RF applicator antennas, thus Btut is the heat load deliv-
ered by the RF applicator.Last, Pt denotes the predicted
state covariance,and Q is the process noise covariance,
which is approximated by a diagonal covariance matrix
and this defined as identity matrix.14

In the second step of the process, the Kalman
filter combines the model-based prediction with the
filtered MR thermometry. To this end, at each time
step, we compute the so-called Kalman gain (Kt)
that incorporates how much and where to trust the
model-based prediction and MR thermometry based
on their respective covariance matrices. Equations (9),
(10), and (11) summarize the measurement update
equations.

Kt =
(

Pp
t HT

) (
HPp

t HT + R
)−1

, (9)

xt = xp
t + Kt

(
yt − Hxp

t

)
, (10)

Pt = (I − KtH) Pp
t , (11)

where H denotes the observation matrix that relates the
model state to the measurement; yt denotes the filtered
MR thermometry that represents MR thermometry after
applying the filtering process and is described in the next
paragraph; and xt is the corrected state estimate that
combines the model-based estimate and the measure-
ments. R denotes the measurement noise covariance,
and it is approximated by a diagonal covariance matrix
where each diagonal element represents the spatial
variation around each MR thermometry voxel.14 Hence,
this parameter is derived from the standard deviation of
the MR thermometry. Note that t refers to all time points
during the treatment or experiments, and only some of
these time points refer to an MR thermometry update.
The computation time for real-time correction using tem-
perature predictions should not exceed the interscan
time (83 s). Furthermore, we chose a sampling time of 5
s; thus, every 5 s temperature estimate was available.
More details on implementing the POD–Kalman filter
can be found in our previous work.14

Furthermore, MR thermometry was filtered such that
corrupted data were excluded to avoid incorporating
these corrupt measurements into the Kalman filtering
algorithm. As presented in Figure 2, the MR thermom-
etry after the data exclusion is defined as filtered MR
thermometry, and as mentioned before, the filtered MR
thermometry was used for recursive temperature esti-
mation. We assumed data were unreliable when the
difference between two subsequent MR thermome-
try acquisitions (ΔMRT) and subsequent predictions
(ΔState) showed a significant discrepancy. We defined
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F IGURE 2 Temperature distributions of a representative patient after and before applying the mask created during the filtering process.
The subcutaneous fat is not included since this region was used for B0 field drift correction

the prediction error as Equation (14).

ΔMRT = ΔT (t) − ΔT (t − 1) , (12)

ΔState = xp
t − xp

t−1, (13)

Prediction error = ΔMRT − ΔState. (14)

We excluded data points with a prediction error higher
than 7◦C and lower than −4◦C. Additionally, we con-
sidered that between two subsequent MR thermometry
acquisitions, there should not be a decrease higher than
3◦C; thus, any ∆MRT lower than −3◦C was filtered out
of the final filtered MR thermometry. Figure 2 presents
the mask created from the above thresholds. More-
over, regions that exceeded the above thresholds were
masked out from the MR thermometry (black regions).
Consequently, these masked regions were not used in
the Kalman filter algorithm.

2.6 Experiment and treatment setup

Intraluminal thermometry and two different MR scans
were taken during experiments and treatments: a
high-resolution scan and MR thermometry. The high-
resolution scan was a T1-weighted MR image used to
generate the patient model, position verification, and
identify the catheters containing Bowman probes. The
sequence used for the high-resolution scan was a
DEGRE sequence with the following parameters: echo
times,TE= 4.8 and 9.6 ms;repetition time,TR= 120 ms;
25 axial slices; slice thickness = 1 cm; FOV = 50 cm ×
50 cm; acquisition matrix = 128 × 128; reconstruction
matrix = 256 × 256; flip angle = 70◦; scan time = 136
s. MR thermometry scans were taken to measure the
3D temperature elevation. All heating experiments and
hyperthermia treatments were conducted between 2017
and 2019.

F IGURE 3 Axial T2-weighted MR images of the two phantoms
are shown, along with the location of the Bowman probes and the
corresponding ROIs. Phantom 1 is presented in (a) and phantom 2 is
presented in (b)

2.6.1 Heating phantom experiments

For phantom 1, we used two different antenna settings
focusing at (x,y,z) = (3,0,0) cm and (x,y,z) = (−3,0,0)
cm. The total power applied in all experiments was 600
W. In the experiments using phantom 1, one scan was
taken before heating, and two sets of six automated MR
thermometry scans were taken during heating.For each
set of MR thermometry scans, one of the two foci was
used. Regarding the two experiments using phantom 2,
we applied only one set of antenna settings, with the
energy deposition focus at the center of the phantom
at (x,y,z) = (0,0,0) cm. In all experiments, the water in
the water bolus was not circulated during heating to pre-
vent artifacts.After the power was turned off,extra scans
were taken to incorporate disturbances. In one exper-
iment, three MR thermometry scans were taken while
the door of the MR room was open, and sequentially,
at the end of the experiment, an extra MR thermome-
try scan was taken with water circulation on. In all other
heating experiments, water circulation from the water
bolus was the only disturbance included. Hereto, water
circulation was turned on in the last MR thermometry
scans: One extra scan was taken in four experiments;
two extra scans were taken in two experiments, and
three extra scans were taken in the one experiment that
also included opening the door.

Figure 3 presents the location of the Bowman probes
and the corresponding ROI,with an area of 1.5 cm2.The
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F IGURE 4 Axial T2-weighted MR image (a) of the pelvic region is shown along with the Bowman probes ROIs: vagina, rectum, and bladder.
The location and path of the probes in the 3D model is shown in the sagittal (b) and coronal (c) view. The dotted line represents the axial
location of the T2-weighted MR image

intraluminal measurements acquired continuously cor-
respond to the middle slice of the simulation and MR
thermometry FOV.

2.6.2 Hyperthermia treatments

MR thermometry scans were taken approximately every
10 to 20 min following the clinical protocol. A specific
treatment plan was made for each patient to define the
settings that should be applied to the antennas.44,47,57

Treatment settings for power and phase were not mod-
ified during treatment since there were no patient
complaints in the included treatments, and the tempera-
ture registered by the probes did not exceed 43◦C. The
average heating power applied during treatment was
between 800 W and 1000 W. As shown in Figure 4,
Bowman probes were inserted into closed tip catheters
placed in the bladder, vagina, and rectum. The intra-
luminal measurements were acquired along with the
catheters. This thermal mapping was performed every
5 min with a step size of 1 cm (Figure 4).Considering all
intraluminal locations, the thermal mapping range was
8.5 cm ± 2.8 cm.

Our previous study22 showed that the Jaccard coef-
ficient (Jaccard ≥ 0.91) between two baseline scans
is predictive of MR thermometry accuracy. The Jac-
card coefficient was used to quantify the level of
intestinal gas motion and, consequently, the resulting
susceptibilities artifacts. To characterize the improve-
ment in MR thermometry accuracy, we organized the
14 patients (14 hyperthermia treatment sessions) into
three groups according to the Jaccard coefficient mea-
sured at the beginning of the treatment (Figure 5).
Hence, the patient group with a lower Jaccard coef-
ficient represents the treatments where the MR ther-
mometry measurements presented strong susceptibil-
ity artifacts due to the high level of intestinal gas
motion.

6 patients

5 patients

3 patients

Group 1: low air motion
Jaccard ≥ 0.91  

Group 2 : medium air motion
0.50 < Jaccard < 0.91  

Group 3 : high air motion
Jaccard ≤ 0.50

F IGURE 5 Schematic representation of the three groups of
patients according to the amount of intestinal gas motion. Each
group included the patients with a Jaccard coefficient (Jaccard)
between the corresponding interval

2.7 Statistical analysis

For each treatment and experiment, accuracy is
expressed by the mean absolute error (MAE). This was
calculated to quantify the degree of closeness of the
filtered and measured temperature change to the true
temperature change formulated in Equation (15).11,58,59

In addition,we calculated the standard deviation of error
(SDE) to evaluate MR thermometry and POD–Kalman
filter consistency. The formulation of SDE is presented
in Equation (18). We considered an MAE ≤1◦C11,58,59

and an SDE ≤0.5◦C11 as acceptable.

MAE =
1
n

n∑
j = 1

|||T̄XROI, j − T̄probeROI, j
||| , (15)

𝜀j = T̄XROI, j − T̄probeROI, j , (16)

𝜀 =
1
n

n∑
j = 1

𝜀j , (17)

SDE2 =
1

n − 1

n∑
j = 1

(𝜀j − 𝜀)2, (18)
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F IGURE 6 MAE and SDE of filtered MR thermometry and Kalman filtered temperature prediction in each probe location and phantom. (a)
and (b) present the MAE and SDE from phantom 1, and (c) and (b) show the MAE and SDE from phantom 2. The error lines show the standard
deviation from all experiments, and the height of the bars represents the average within the experiments. The dashed green line represents the
acceptable MAE and SDE. The bar graphs in (a) and (b) are concerning to six experiments, while the bar graphs in (c) and (d) are regarding to
two experiments

where subscript X is the POD–Kalman filtered temper-
ature or filtered MR thermometry, T̄XROI, j is the average
temperature in the ROI; T̄probeROI, j is the average tem-
perature measured by the Bowman probes, and n are
measured time points;𝜀j is the error between the method
and the average temperature measured by the Bowman
probes;and 𝜀 is the mean error value over the measured
time points. Note that the voxels included in each ROI
were weighted uniformly; thus, all voxels presented the
same weight.

The MAE and SDE were described as mean ± stan-
dard deviation. We compared the MAE and SDE using
Mann–Whitney U-test followed by a post hoc Tukey’s
test to analyze if a statistically significant difference
could be shown between the POD–Kalman filter and
MR thermometry. A p-value of 0.05 was considered to
be statistically significant. First, we considered the aver-
age MAE and SDE, including all probes, and compared
the two methods.Second,we looked into the differences
between the two methods for each patient group and
probe location. This evaluation was conducted for all
patients (14 patients) and heating experiments (eight
experiments).

3 RESULTS

3.1 Phantom heating experiments

The total average ± standard deviation of the mea-
surement noise covariance (R from Equation 9) was
0.21◦C ± 0.05◦C for all experiments.Note that the noise
covariance reported does not include the regions of
bone. Figure 6 shows MAE and SDE for probe loca-
tions and phantoms within the ROIs. The SDE results
showed that the POD–Kalman filtered temperatures
were consistently closer to the probe measurements.
Even though the SDE after the POD–Kalman filter was
significantly better than the filtered MR thermometry (p-
value < 0.01), there was no significant improvement in
MAE (p-value = 0.09).

TABLE 2 MAE and SDE of all scanning times where
disturbances were applied (water circulation and the MR room open
door). Note that these values are expressed by the mean ± standard
deviation, and for each parameter, we indicate the statistical
significance

MRT POD—Kalman p-value

MAE 1.23 ± 0.53◦C 0.51 ± 0.20◦C 0.04

SDE 1.01 ± 0.45◦C 0.53 ± 0.31◦C <0.01

Overall, the MAE values acquired for both methods
met the threshold for acceptance. The average MAE in
all phantoms and all locations were 0.39◦C ± 0.27◦C
(filtered MR thermometry) and 0.31◦C ± 0.27◦C (POD–
Kalman filtered temperature). The average SDE was
0.42◦C ± 0.15◦C (filtered MR thermometry) and 0.27◦C
± 0.13◦C (POD–Kalman filtered temperature). POD–
Kalman filtering also effectively reduced the SDE to the
acceptable limits for the three probe locations in both
phantoms.

Table 2 shows the MAE and SDE between the
probe reading and each method in the scanning times
that included disturbances to evaluate the impact of
the applied disturbances. We observed that the distur-
bances did not affect the performance of the POD–
Kalman filter since it was consistently better than MR
thermometry.

3.2 Hyperthermia treatments

3.2.1 Evaluation between probe locations

The percentage of temperature information available in
the filtered MR thermometry was approximately 50%
for all probe locations, while for the POD–Kalman fil-
tered temperature,all temperature information was used
(100%). The amount of information that remained from
the filtering process was quantified using the resulted
Mask from Figure 2.
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F IGURE 7 MAE and SDE of filtered MR thermometry and
POD–Kalman filtered temperature in each anatomical probe location
(vagina, rectum, and bladder). The error lines show the standard
deviation from all experiments, and the height of the bars represents
the average. The dashed green line represents the acceptable MAE
and SDE. The MAE and SDE are calculated for the total patients
included in this study (n = 14)

Figure 7 and Table 3 present the evaluation regarding
MAE and SDE for each anatomical probe location. As
observed in Figure 7, the POD–Kalman filtered temper-
ature presented an MAE under the acceptable threshold
for all probe locations, while MAE acquired from fil-
tered MR thermometry was always higher than 1◦C.The
number of patients whose POD–Kalman filtered tem-
peratures presented an MAE lower than 1◦C was 12
patients in the vagina probe, 10 patients in the bladder
probe, and 8 patients in the rectum probe. For all probe
locations, only half of the patients (seven patients) had
an MAE lower than 1◦C for the filtered MR thermometry.
Even though the MAE from POD–Kalman filtered tem-
perature was better in all anatomical probe locations,
the improvement was statistically significant only for
measurements in the vagina. For all anatomical probe
locations (Figure 7), SDE from POD–Kalman filtered
temperatures was significantly better than from filtered
MR thermometry (p-value < 0.05).

POD–Kalman filter reduced MAE by 43% for all
patients since we found 0.74◦C (POD–Kalman filtered
temperatures) and 1.29◦C (filtered MR thermometry).
Even though POD–Kalman filtering strongly reduced
SDE and MAE, the requirements were not met in all
patients (Figure 7). The average SDE was 1.16◦C ±
0.56◦C (filtered MR thermometry) and 0.61◦C ± 0.40◦C
(POD–Kalman filtered temperature). Even though the
POD–Kalman filter does not meet the requirements in
all patients and locations, we believe that this method
outperformed the efficacy of MR thermometry. Over-

F IGURE 8 MAE and SDE of filtered MR thermometry and
POD–Kalman filtered temperature in each patient group: 1—group 1
(low intestinal gas motion), 2—group 2 (medium intestinal gas
motion), and 3—group 3 (high intestinal gas motion). The error lines
show the standard deviation from all experiments, and the height of
the bars represents the average. The dashed green line represents
the acceptable MAE and SDE. The MAE and SDE are calculated for
the total patients included in this study (n = 14)

all, the POD–Kalman filtered temperatures were more
consistent and closer to the probe readings than MR
thermometry, with a p-value < 0.001 for MAE and SDE.
Though,we observed that the performance of the POD–
Kalman filter was ambiguous in the rectum location
since the requirements for SDE and MAE were only met
in six and eight patients, respectively.

3.2.2 Evaluation between patient groups

The percentage of temperature information available in
the filtered MR thermometry near the probe was 63%
(group 1: little intestinal gas motion), 44% (group 2:
medium intestinal gas motion), and 36% (group 3: high
intestinal gas motion). The number of patients whose
filtered MR thermometry showed more than 50% of tem-
perature information near the probe was five patients,
two patients, and zero patients for group 1, group 2,
and group 3, respectively. Note that the amount of infor-
mation not filtered out from the MR thermometry was
quantified using the mask acquired from the filtering pro-
cess (Figure 2). Since no filtering was applied in the
estimated temperatures, the percentage of information
in POD–Kalman filtered temperature was 100% in probe
regions.

Figure 8 and Table 4 confirm the relation between
MAE from filtered MR thermometry and the Jaccard
coefficient since patients with higher Jaccard coeffi-
cients have a lower MAE.22 Even though more motion

TABLE 3 MAE and SDE are expressed by the mean ± standard deviation. These were calculated for three different anatomical locations:
V-vagina, R-Rectum, and B-Bladder. The evaluation parameters concern all patients included in this study (14 patients)

MAE (◦C) SDE (◦C)
MRT POD–Kalman p-value MRT POD–Kalman p-value

V 1.25 ± 0.75 0.50 ± 0.40 <0.01 1.15 ± 0.49 0.44 ± 0.29 <0.01

R 1.32 ± 0.83 0.92 ± 0.45 0.28 1.20 ± 0.59 0.74 ± 0.44 0.03

B 1.31 ± 0.99 0.79 ± 0.71 0.06 1.12 ± 0.64 0.66 ± 0.40 0.04
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TABLE 4 MAE and SDE are expressed by the mean ± standard deviation. These were calculated for the three different groups that were
organized according to the intestinal gas motion: 1—group 1 (low intestinal gas motion), 2—group 2 (medium intestinal gas motion), and
3—group 3 (high intestinal gas motion). The evaluation parameters aconcern all patients included in this study (14 patients)

MAE (◦C) SDE (◦C)
MRT POD–Kalman p-value MRT POD–Kalman p-value

1 0.88 ± 0.57 0.81 ± 0.52 0.81 0.87 ± 0.53 0.71 ± 0.47 0.17

2 1.29 ± 0.61 0.55 ± 0.37 <0.01 1.36 ± 0.53 0.49 ± 0.21 <0.01

3 2.23 ± 1.02 0.90 ± 0.81 <0.01 1.41 ± 0.44 0.61 ± 0.44 <0.01

TABLE 5 Number of patients from each group where the
temperatures acquired in at least two probe locations presented an
MAE ≤ 1◦C

Group MRT POD–Kalman Improvement

1 (n = 6) 5 5 +0 patients (0%)

2 (n = 5) 2 4 +2 patients (43%)

3 (n = 3) 0 3 +3 patients (100%)

was measured in patients from group 2 and group
3, the POD–Kalman filter reduced MAE to below the
acceptable threshold for most patients in all groups.

The SDE acquired from filtered MR thermometry
showed that these measurements were not consistently
accurate in any group. Even though the SDE for group
1 was lower than in other groups, this value was still
0.37◦C higher than the acceptable threshold. For the
POD–Kalman temperatures, the SDE was below the
acceptable threshold only for group 2. Although the
results from group 1 showed improvement, this was not
significant when using the POD–Kalman filter in both
MAE (p-value = 0.81) and SDE (p-value = 0.17). Addi-
tionally, for group 2 and group 3, we observed that the
POD–Kalman filter performed significantly better in both
evaluation parameters. As observed in Table 4, in both
parameters, the resulting p-value was below 0.01 for
group 2 and group 3.

We quantified the percentage of patients whose
MAE was below the acceptable thresholds for each
group and method in at least two probe locations. As
presented in Table 5, in group 2 and group 3, we
observed an improvement when using the POD–Kalman
filter as more patients presented an MAE according to
the acceptable limits.11 Overall, the POD–Kalman fil-
ter allowed thermal dosimetry during treatment in most
patients (12 out of 14 patients). In contrast, MR ther-
mometry would enable thermal dosimetry in only half
of the patients presented (7 out of 14 patients).

3.2.3 Temperature evolution during
treatment

For calculating POD–Kalman filtered temperatures, the
measurement noise covariance (R from Equation 9)

was calculated for each patient. The same procedure
was done for patients where the bone regions were
not included in calculating the noise covariance. Hence,
we calculated the mean covariance, and we observed
that for all patients, the total average ± standard devi-
ation was 3.11◦C ± 1.08◦C. Furthermore, the amount
of available information in the filtered MR thermometry
was limited due to artifacts.The mask (Figure 2) created
in the filtering process was used to define the filtered
MR thermometry and,consequently, the amount of infor-
mation used in the POD–Kalman filter. Overall, over the
entire filtered MR thermometry FOV, only 41% of this
volume was used in the POD–Kalman filter.

Figure 9 displays the temperature evolution at each
anatomical probe location for a patient in group 1.
The results show that the temperature from filtered
MR thermometry measurements did not vary substan-
tially. Although the POD–Kalman filtered temperature
presented a closer agreement in the bladder, the pre-
dicted temperature in the rectum and vagina was lower
than the registered intraluminal temperature. During
treatment, the POD–Kalman filtered temperature under-
estimated the temperature by an average of 0.46◦C,
while the filtered MR thermometry underestimated
the temperature by 0.13◦C (Figure 9). In addition, the
POD–Kalman filtered temperature tends to have a lower
temperature even when the filtered MR thermometry
measurements gave higher temperatures (dotted line in
Figure 9).This contradiction is because the Kalman filter
estimates a temperature distribution consistent with the
filtered MR thermometry over the total patient volume
(MRT FOV). Hence, a local comparison at the probe
locations might yield counterintuitive results. Due to
the global nature of the Kalman filter, removing corrupt
data is crucial as the effects of these can propagate to
distant regions.

Figure 10 shows the temperature distribution acquired
by MR thermometry,filtered MR thermometry,and POD–
Kalman filtering after 60 min of treatment. The white
arrows point at the regions where POD–Kalman filtered
temperature is lower despite the temperature increase
in the model and filtered MR thermometry. In addition,
Figure 10 shows that the POD–Kalman filtered tem-
perature is smoother than the filtered MR thermometry
measurements. Regions of subcutaneous fat were fil-
tered out since they were used for drift correction. In the
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F IGURE 9 Temperature profile in the three probe locations during treatment. The temperature profiles correspond to a patient from group
1. The dotted line represents the Kalman prediction between MR thermometry updates

F IGURE 10 Temperature distributions of a patient from group 1 after 1 h of treatment: MR thermometry (MRT), filtered MR thermometry
(filtered MRT), and POD–Kalman filtered temperature (POD–Kalman). The white arrow indicates the regions of the POD–Kalman filtered
temperature where the temperature is underestimated compared to the filtered MR thermometry. Note that MRT is the MR thermometry
measurements without any filtering

F IGURE 11 Temperature profile during treatment in the three probe locations. The temperature profiles correspond to a patient from group
3. The dotted line represents the Kalman prediction between MR thermometry updates. The filtered MR thermometry (MRT) curve is not
continuous over time due to the absence of reliable measurements in the region around the probe

MR thermometry in Figure 10, we observed an increase
in temperature in the subcutaneous fat that was filtered
out. This increase was likely due to an artifact since
no complaint by the patient was reported during this
hyperthermia treatment.

Contrary to the patient from group 1 (low intestinal
gas motion), the filtered MR thermometry from a patient
of group 3 (high intestinal gas motion) was substan-
tially corrupted by noise and motion. Figure 11 shows
a close agreement between POD–Kalman filtered tem-
perature and probe measurements in the rectum and
vagina. However, we observed that the POD–Kalman

filter underestimates the temperatures obtained during
the treatment in the bladder location by 2.8◦C. This dif-
ference is possibly due to a bladder modeling mismatch.
During treatment, there were no reliable MR thermom-
etry measurements, as observed by the discontinuity
of the MR thermometry curve in all probe locations.
Only in the first scanning point reliable MR thermometry
measurements were available.

Figure 12 illustrates the temperature distribution in
two different locations in the coronal plane. The under-
estimation of the POD–Kalman filtered temperature
observed in the bladder is due to urine that was not
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F IGURE 12 Temperature distributions of a patient from group 3 after 1 h of treatment: MR thermometry (MRT), filtered MR thermometry
(filtered MRT), and POD–Kalman filtered temperature (POD–Kalman). The light green arrow points to where the bladder probe is located. Note
that the MRT is MR thermometry measurements without any filtering

modeled or identified but assigned as muscle
(Figure 12). In addition, this area presented a high
intestinal gas motion, which made the information from
filtered MR thermometry in that region inexistent.

4 DISCUSSION

In this study, we evaluated the performance of POD-
based reduced models for recursive temperature
estimation using a Kalman filter in several phantom
experiments and patient data.Even though there was no
significant improvement in MAE for phantoms, SDE was
significantly lower in the POD–Kalman filtered tempera-
ture (Figure 6). The high MAE and SDE values in probe
2 (phantom 1) are probably related to the heat diffusion
from both foci to the center region and the inhomogene-
ity of the material inside phantom 1. Furthermore, we
verified that the POD–Kalman filter was insensitive to
the disturbances during the experiment (Table 2). Since
near disturbances, MR thermometry measurements
were unreliable, POD–Kalman filter relied only on the
POD model. Overall, we observed that the MAE in both
methods was satisfactory and agreed with previous
studies.9,14 However, in all phantom experiments, the
complexity of the thermal model was low, and the noise
covariance of the MR thermometry was very low.

We observed that the POD–Kalman filtering improved
MAE and SDE compared to MR thermometry regarding
the patient data and considering all probe locations.SDE
was statistically improved at each anatomical probe
location when using the POD–Kalman filter. In the rec-
tum and bladder, the improvement by the POD–Kalman
filter was not statistically significant in MAE (Figure 7).
The model predictions for these locations are prone to
uncertainties in the modeling, and the measurements

are affected by anatomy changes (Figure 12). First,
organ movement leads to incorrect spatial tempera-
ture reference, which will cause inaccuracies in the MR
thermometry measurements.12,22,60,61 Second,the POD
model is based on the patient’s position at the start of
treatment; thus, the changes in patient anatomy during
the treatment are not considered. This was observed
in the patient from group 3, whose filtered MR ther-
mometry and POD–Kalman filtered temperature were
not physically accurate in the bladder region. The dif-
ference between the temperatures registered in the
probe and POD–Kalman filtered temperatures suggests
a model mismatch (Figure 11), which was not corrected
by the filtered MR thermometry due to the significant
inaccuracies in that region (Figure 12). Henceforth, the
POD–Kalman filter will not yield satisfactory results
when these phenomena are not physically captured by
either the modeling or MR thermometry.

Several studies have shown that MR thermometry
assessment in the pelvic region is challenging.19,22,62

Our previous study showed that the amount of intesti-
nal gas motion at the start of the treatment was an MR
thermometry accuracy predictor and that a higher level
of motion caused stronger susceptibility artifacts.Hence,
patients with a high intestinal gas motion would not be
amendable for reliable MR thermometry acquisition.22

In the current study, three patient groups were defined
according to the level of intestinal gas motion (Jaccard
coefficient). The aim was to assess if this method could
compensate for the missing or unreliable MR thermom-
etry measurements and, at the same time, still estimate
temperature accurately based on the POD model.

Based on the defined requirements for MR ther-
mometry during hyperthermia,11 we demonstrated that
the average MAE from POD–Kalman filtered tem-
perature was under the acceptable thresholds in all
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patient groups (MAE ≤ 1◦C). The results proved that
the POD–Kalman filter could estimate reliable tem-
perature for patients with a low Jaccard coefficient.
Furthermore, our findings showed that the MAE and
SDE are not significantly improved when intestinal gas
motion is low (group 1) since the MR thermometry
measurements are already satisfactory. On the other
hand, despite the unreliable filtered MR thermometry
measurements (Figure 12), the POD–Kalman filter sig-
nificantly improved the MAE in the presence of medium
(group 2) and high (group 3) intestinal gas motion by
57% and 60%, respectively. In group 2 and group 3, the
percentage of patients with reliable temperature dis-
tributions was also higher than if only the filtered MR
thermometry were used. In these groups, the number of
filtered MR thermometry data points remained less than
50%. These results indicate that the POD–Kalman filter
would allow thermal dosimetry for patients who are not
amendable for accurate MR thermometry acquisition
(Table 5).

POD–Kalman filter performance was generally sat-
isfactory; however, we also observed that this method
could not accurately estimate the temperature in some
cases. One of the reasons is that its effectiveness relies
on the accurate representation of the heating process
in the modeling. The patient model used was based on
the anatomy and position at the start of the treatment.
Hence, any change during the treatment was not con-
sidered during the estimation process. Also, there are
significant uncertainties in the thermal parameters of
each tissue,45 reducing the accuracy of thermal mod-
eling used to generate the POD library. Therefore, the
model’s inaccuracy and the possibility of nonmodeled
disturbances influence the performance of the POD–
Kalman filter and MR thermometry filtering process.
Hence, the improvement of the thermal model is sub-
ject to further research. Also, we observed in the results
from the patient from group 1 (Figure 9 and Figure 10)
that the POD–Kalman filtered temperatures were lower,
even though the temperature in the POD model and
MR thermometry were high. This contradiction is prob-
ably due to the imperfect filtering of corrupt data. In
order to solve the latter problem, we recommend fur-
ther research in improving the MR thermometry filtering
by selecting only reliable regions. Hence, as a first step,
we propose to track the anatomical changes over the
treatment using the anatomic MR images and select
the regions that showed more stability. Also, we pro-
pose the use of variational data assimilation,63 which
optimizes an initial state of a dynamical system using a
predefined objective.This function considers the amount
of noise introduced into the system and the mismatch
between simulated and observed variables. In addition
to the improvements referred to before, we believe that
further research in new MR sequences and approaches
is needed to improve MR thermometry acquisition and
performance. In the meantime, until the filtering, ther-

mal modeling, and MR thermometry performance are
improved, we advise that the estimated temperatures in
clinical practice are supported by data from intraluminal
probes.

Other studies have shown the benefit of combin-
ing Kalman filtering with MR thermometry using patient
data,29,30 and found that temperature monitoring could
be improved by this approach. However, these studies
were based on data from HIFU treatments, in which the
heating volumes are considerably smaller and model-
ing complexity is therefore lower. Our study is the first
in showing the feasibility of POD–Kalman filtering for
patient data of RF hyperthermia treatments. Our results
also indicate that the combined method provides a
systematic improvement compared to MR thermometry
alone. We established that POD–Kalman filtering could
be used in the clinic as complementary information
since it enables real-time performance.Furthermore, the
proposed POD–Kalman method presents high temporal
resolution, enabling the development of MR sequences,
real-time filtering, and corrections.

5 CONCLUSION

For MR-guided RF hyperthermia, the POD–Kalman fil-
ter approach showed significant improvements in the
accuracy of MR thermometry in heating experiments
and for data from patient treatments.For phantoms,rele-
vant improvements were observed, but the significance
could not be demonstrated with the number of exper-
iments performed since MR thermometry is already
highly accurate in phantoms.

In patients, we also observed relevant improvements
by using the POD–Kalman filter. Especially in patients
with medium and high intestinal gas motion, the POD–
Kalman filter reduced the MAE: 57% (Jaccard coeffi-
cient = 0.5–0.91) and 60% (Jaccard coefficient < 0.5).
The POD–Kalman filter was especially beneficial in
patients whose MR thermometry is unreliable. In addi-
tion, POD–Kalman has the advantage that it also
provides estimates between MR thermometry scans.
The proposed POD–Kalman method is a promising
approach that can already be used to provide additional
information during MR-guided RF hyperthermia treat-
ment since this allows real-time temperature estimation.
Further advances in modeling and MR thermometry
filtering and performance are necessary to meet the
requirements for all patients. Hence, we believe that
our results are a great motivation for improving thermal
modeling and the MR thermometry acquisition.
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