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1 Introduction

1.1 Motivation

E-grocery has come a long way since its inception in the early 2000s. In the last decade,
we have seen a steady growth of e-grocery across different geographies. In western Europe,
the average online food sales grew steadily from less than 1 percent to around 5 percent
during the 2012-2020 period (Savills Research 2021). The same growth is also seen in
the US online grocery retail (Kearney 2015). One the one hand, this growth is fuelled
by improved internet penetration, while on the other hand, the convenience of ordering
groceries from your couch any time you want and getting it delivered at your doorstep has
become increasingly popular among younger generations that grew up with computers and
e-commerce (Pymnts.com (2021), ICR (2021)). Time savings, flexibility in time of ordering,
convenient price comparison and last but not the least, mere curiosity have been the main

drivers for the growth of e-grocery across different consumer demographics (Treder 2021).

More and more grocery retailers are entering the online ecosystem to attract customers
with better offering. In the US, Walmart-owned Sam’s Club teamed up with Instacart for
same-day grocery delivery (Bosa 2018); Target recently acquired Instacart’s rival Shipt for
$550 million (Laurenthomas 2017) to boost its online offering. Starting off with selling only
wine in the early 90s, Tesco and Sainsbury have around 27% and 15% market share of the
UK online grocery market, which has currently more than ten billion pounds in yearly sales
(Supermarket News (1995), Mintel (2020), Statista (2021a)). Pure-play online retailers like
Ocado in the UK, and Picnic in the Netherlands are gaining popularity with their innovative
offerings and business models. Huge investments are being made to support online growth of
the grocery retail. In the first half of 2021, venture-backed grocery companies have already
raised over $10 billion (Browne 2021). Despite the huge investments, it is still uncertain

whether or not these companies will ever make profits. According to Luke Jensen, CEO of
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Ocado Solutions, “The amount of money that’s being put against this opportunity is grossly

disproportionate to the size of the opportunity” (Browne 2021).

Grocery retailers have seen their profitability going down in order to go online (Frangois
2020). Online grocery is a low margin, high cost business. In 2018, online food retailer
Ocado reported a loss of £44.4m (BBC 2019). The low volumes of the e-grocery channel
are considered the main reason for its low profitability. Groceries are still predominantly
purchased in physical stores. In 2019, e-grocery sales was only 3% of total US grocery sales
(Solutions 2020). The United Kingdom has the most developed online-grocery market in
Europe, with 6.5 to 6.9 percent overall penetration in 2020, compared with 5.0 percent in
France, 1.7 percent in Spain, 1.5 percent in Germany, and 0.7 percent in Italy (Giinday
et al. 2020). The COVID-19 pandemic in early 2020 was a huge impetus for the growth of
online grocery, and online grocery sales skyrocketed by around 50%. In UK for instance,
e-grocery grew from zero to 7 per cent in the last two decades, but eight weeks into the
pandemic, it went from 7 to 13 per cent (Eley and McMorrow 2020). This led to positive
profitability of the e-grocery channel of certain retailers (Eley 2021). However, at the same
time the huge surge in online sales also brought high cost to expand resources at equal pace.
The high cost of fulfillment of e-grocery orders puts additional pressure on the profitability
of the e-grocery channel (Bain 2021). Sainsburys chief executive Simon Roberts summed
the situation up, saying Covid-19 was “moving sales out of our most profitable convenience
channel and driving a huge step-up in online grocery participation, our least profitable

channel” (Eley and McMorrow 2020).

Picking a customer order and delivering it to customer’s home are the most expensive parts
of the e-grocery distribution model (De Koster (2002), Lummus and Vokurka (2002)). As
it is a competitive market, retailers offer home delivery at low or no delivery fee, which
is not necessarily equal to the actual costs. In the UK, estimates in 2015 suggest that an
average grocery order costs around £15-16, while larger grocery retailers charge around
£1-6 per order (Ram (2015), Twentyman (2015)). There is an ongoing competition among
retailers to offer cheaper and faster deliveries, irrespective of the actual costs incurred to
attract more market share. E-grocery is fundamentally dilutive for the retailers, however
they still don’t want to lose a customer to the competitor (Eley 2019). Bernstein et al.
(2008) show that offering an online channel does not necessarily lead to higher profits, but
it is a strategic necessity to remain competitive in the market. As the retail market is

increasingly seeing a shift towards online, the biggest question all retailers are facing is how
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to bring down the fulfilment costs of the e-grocery channel, while ensuring the best possible

delivery proposition.

1.2 E-grocery business models in omni-channel grocery

In current times, grocery is bought both online and in stores, which is forcing retailers to add
new channel for consumers. While traditional retailers are going online, pure online players
are also working towards a physical presence. This led to the emergence of a multi-channel
approach, whereby products or services are sold across various channels, but without any
operational or marketing interaction as such among the channels (Beck and Rygl 2015).
While offering products via multiple channels proves attractive to consumers, the siloed
structure does not help in leveraging the synergy in sales and operation planning that exist
between the two channels. Customers also demand a uniform offering of product and price
across all channels. This is why, we are seeing a transition from multi-channel to omni-
channel retailing, that aims to offer a seamless unified customer experience across every

channel. Strang (2013) defines omni-channel retail as

...a kind of boundary-less retail,
where the silos between brick-and-mortar, catalog, and Internet retailers have disappeared
- at least as far as the consumer is concerned”. However, this transformation to omni-

channel retail brings several challenges and opportunities in the operational domain (Jasin

et al. 2019).

Different delivery and pick-up models have emerged recently with regard to the fulfilment
for the e-grocery channel in an omni-channel setting. With growing popularity of omni-
channel strategies in the retail industry, stores are not merely a sales channel, but they
also take up a fulfillment function for the online channel (Gao and Su 2019). There is an
increasing adoption of Buy-Online-Pick-up-in-Stores (BOPS, also referred to as “Click and
Collect”) among omni-channel retailers, whereby a customer can make an order online and
pick up the order in stores. In a BOPS model, customers get the gratification from the
immediate access to the product without having to wait for the delivery. While e-grocery
started off with a home delivery model, in an omni-channel setting, the BOPS model is also
catching up in grocery retail. From the retailer perspective also, it is highly preferred as it
is generally less costly than home delivery. Different grocery retailers like Walmart, Costco,
and Target have been using their extensive store networks to blend digital and physical

shopping experience (Mkansi and Nsakanda 2019). Target, one of the largest retailers in
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the US, reports that the pick-up in stores by customers is 90% cheaper for them compared
to home delivery (Bain 2021).

Despite the overlap of touch points in the fulfilment process of online and offline channels,
it is not often that easy to combine the operations seamlessly. Each of the channels have
generally decentralized organization structures since they have organically developed their
systems and processes independently (Gallino and Moreno (2014), Rigby (2011), Zhang
et al. (2010)). Channel integration can also create disadvantages in one channel, thereby
offsetting the advantages of another channel (Herhausen et al. (2015), Falk et al. (2007)). As
a result, in practice, we see very few retailers having integrated fulfilment approached across
multiple channels. It also requires significant investments to align systems and processes in
an integrated omni-channel fulfilment. Hence, in order to effectively exploit the synergies
in omni-channel, the focus should be on the opportunities to piggyback on existing flows to
ensure easier adoption, rather than disrupting the whole existing set up. In our research, we
particularly keep this in mind while developing operational models to consolidate distribu-
tion flows of e-grocery with store channels. For an omni-channel retailer to be profitable in
a relatively high cost, low margin industry like grocery retail, the benefits from the synergy

across operations of different channels can significantly improve the profitability.

Cross-channel conflicts also arise in an integrated approach when one channel cannibalizes
the sales from other channels (Steinfield 2004). While that limits the cooperation across
channels, it also makes it more challenging for an omni-channel retailers to design their
omni-channel strategies. Retailers often subsidize delivery fees for e-grocery or offer same-
day delivery to attract more customers to the e-grocery channel. Though adding a new
online channel may increase the overall market share of the retailer, it may also cannibalize
the sales of the store channels. The rise of online is often associated with the demise of store
channel, as we have seen with the impact of US-based online retailer Amazon on book stores
(Worstall 2012). However, we see a come back of store in some categories in omni-channel

era, but for groceries, stores have never disappeared.
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1.3 Research Objectives and Methodology

1.3.1 Research Objectives

Our main objective is to develop quantitative models to explore the opportunities
and challenges of operating an e-grocery channel in an omni-channel environ-
ment. First, we study how an omni-channel retailer can reduce fulfilment costs of the
e-grocery channel in a buy-online-pick-up-in-store strategy. We specifically focus on achiev-
ing synergies with respect to last-mile planning of two different channels of the retailer in a
decentralized setting. We build mathematical models that can effectively capture the oper-
ational requirements of the two channels for effective collaboration. Through an extensive
numerical study on both artificial and realistic instances, we want to analyse the benefits
of the collaboration between online and store channels under different settings. Since the
benefits are mainly due to reduction of distribution costs, we therefore aim to improve

sustainability of last-mile distribution by reducing vehicle emissions.

Alongside these planning aspects, we also focus on the profitability of the home delivery
model of the e-grocery channel in omni-channel grocery setting. We aim to study the
interactions between the e-grocery and store channels in the grocery retail by building a
stylized model combining customer choice behavior and operational cost of e-grocery for
home delivery. Our objective is to perform extensive numerical experiments to understand

the impact of operational factors on the profitability of the e-grocery channel.

1.3.2 Research Methodology

In this thesis, we investigate three different types of quantitative models to capture the
aspects of last mile logistics in omni-channel distribution. For the models developed in
Chapter 2 and 3, we propose mathematical programming formulations. We present some
analytical results and exact approaches for several special cases. Theoretically, the under-
lying optimization problem is a variant of the vehicle routing problem. For small instances,
we solve the problem exactly using a standard IP solver, while for larger instances we de-
veloped efficient heuristics. We benchmark our heuristics with different set of instances and
analyse the potential benefits of the models under different settings. We use both artificial

and realistic instances in our experiments.
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In Chapter 4, we use an attraction demand model to model customer channel choices, while
for estimating the distribution costs, we use a continuous approximation model. We use
secondary data to estimate the parameters of the model. We numerically solve the resulting

integrated non-linear model to find the optimal delivery fees under different settings.

1.4 Outline of the thesis

This thesis consists of 5 chapters. After the introductory chapter, Chapter 2 describes
a new capacity sharing strategy between the e-grocery and store channels in omni-channel
retail distribution. We consider the buy-online-pick-up-in-stores model for the online chan-
nel. In this setting, these orders are typically served from a dedicated warehouse. This
often means that the stores are visited by different vehicles to replenish the store inventory
and to supply the pick-up points. Motivated by a collaboration with an omni-channel gro-
cery retailer in the Netherlands, we study how to best share capacity between the routes
associated with these different sales channels. We consider the problem of deciding which
customer orders to transfer and which to deliver directly such that the total costs are mini-
mized. We present an exact and a heuristic approach to solve this problem. Computational
experiments on both real-world and artificial instances show that substantial savings can
be achieved by sharing vehicle capacity across different channels. In this chapter, we will

answer the following research questions:

e How can we share capacity across e-grocery and store channels in the buy online and

pick up in store omni-channel model?

e What are the impacts of transfer cost, spare capacity and service cost on the total

cost savings?

Chapter 3 extends the concept of the capacity sharing strategy developed in Chapter 2. We
use physical stores as transfer points to move demand from the online channel to the offline
channel. We study the benefit of exploiting any spare capacity in the vehicles replenishing
store inventories to reduce online order fulfillment cost by transferring online orders to these
vehicles at one or more of the stores visited. This involves choosing transfer locations and
the set of stores whose online orders are transferred at these locations so as to minimize the
online order fulfillment cost. We present a mixed integer linear programming model as well

as an effective and efficient heuristic for solving this problem. An extensive computational
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study shows that significant cost benefits to the retailer can be achieved by sharing capacity

across the two channels. In this chapter, we will answer the following research questions:

e How can stores be used transfer points to share capacity across channels in the buy

online and pick up in store omni-channel model?

e What is the impact of operational factors like demand size, transfer costs and store

capacity on the total cost savings?

In Chapter 4, we take a broader perspective to understand the profitability of the e-grocery
channel in an omni-channel setting. In this setting, the customer has the choice to order her
groceries from the e-grocery or store channel of the retailer, or use an outside option. We
model the consumer demand by using utility functions for each channel. For the e-grocery
channel, the main dis-utility is the delivery fee, while for the store channel it is the travel
time to the stores. We model the key fulfillment costs viz. picking and distribution costs of
the e-grocery channel. Finally, we validate the parameters of the model using values both
from literature and industry. In our numerical analysis, we study the impact of household
and store densities on the optimal strategies of the omni-channel retailer. In this chapter,

we will answer the following research questions:

e How can we model customer choice behavior and operational costs to gain insights

into the profitability of e-grocery channel in an omni-channel setting?

e« What are the impacts of store density and household density on the optimal market

size and profitability?

Finally, Chapter 5 presents the conclusions and directions for future research.

Research Statement

This thesis was written during my work at Erasmus University Rotterdam as a PhD can-
didate. This work is part of the research project “Designing sustainable last-mile delivery
services in online retail” with project number 438-13-204, which is funded in the “Sustain-
able Logistics Program” by the Netherlands Organisation for Scientific Research (NWO)
and co-funded by Albert Heijn and Ortec. The chapters in this thesis are self-contained
papers written independently under the supervision of the doctoral advisors and the other

members of the doctoral committee. The author is responsible for formulating research
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questions, building models, performing numerical experiments and writing all the chapters

of this thesis.

Chapter 2: The content of this chapter is based on the paper, “Shared capacity routing
problem - An Omni-channel retail study” (Paul et al. 2019b) ', which is published in the
European Journal of Operational Research. For this work, I worked with Dr. Niels Agatz,
Dr. Remy Spliet and Prof.dr. René de Koster. Industry data used in this paper was provided
by a large Dutch grocery retailer.

Chapter 3: This chapter is based on the paper “Optimizing omni-channel fulfillment with
store transfers” (Paul et al. 2019a) ?, which is published in the Transportation Research
Part B: Methodological. For this paper, I collaborated with Dr. Niels Agatz and Prof.dr.
Martin Savelsbergh.

Chapter 4: This chapter is based on a working paper, “Towards Profitable Growth in E-
Grocery Retailing — the Role of Store and Household Density”, which is being prepared for
submission to a top journal at the time of writing the thesis. For this work, I worked with

Dr. Niels Agatz and Prof.dr. Jan Fransoo.

'Paul, J., Agatz, N., Spliet, R., & De Koster, R. (2019). Shared capacity routing problem An omni-
channel retail study. European Journal of Operational Research, 273(2), 731-739.

2Paul, J., Agatz, N., & Savelsbergh, M. (2019). Optimizing omni-channel fulfillment with store transfers.
Transportation Research Part B: Methodological, 129, 381-396.



2 Shared Capacity Routing Problem - An
Omni-channel Retail Study

2.1 Introduction

With the advent of omni-channel retailing, many traditional retailers are now operating on-
line sales channels next to their regular stores. At the same time, pure-play internet retailers
are expanding their physical presence by opening up regular stores (Speculations 2016). An
omni-channel service model that is increasingly popular is one that allows customers to buy
goods online and then pick them up in a store (Gao and Su 2016). According to a recent
report (Jindal 2017), 64 percent of Europe’s top 500 retailers offer such an in-store pick-up

service. A similar trend is seen in the U.S.A (Rosenblum and Kilcourse 2013).

There are different fulfillment strategies for this store pick-up service model. When the
number of pick-up orders is small, the goods ordered online can be picked from the store
inventory. However, for higher demand volumes, it is often more efficient to pick from a
warehouse and then ship to the store (De Koster 2002). The warehouse for online fulfillment
is typically different from the warehouse that handles the store replenishment as the different
order sizes (item versus pallet) require different layouts and picking processes (De Koster
2002) (Hubner et al. 2016a). Several large retailers, for example, Walmart and Tesco (Bose
2016) (Hibner et al. 2016b) use a dedicated warehouse tailored to handling e-fulfillment
orders and a different warehouse for replenishment of stores. In this paper, we focus on this
setting in which the pick-up locations at the stores are supplied from one warehouse while

the replenishment of the stores is done from a different warehouse.

Our research is motivated by a collaboration with the leading omni-channel grocery retailer
in the Netherlands. The retailer has grocery stores that also serve as pick-up point (PUP)
for goods ordered online. The PUPs are supplied from a dedicated e-fulfillment warehouse,

while the store inventory is replenished from a traditional warehouse. This means that the
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same stores are currently visited by different vehicles - one for the replenishment of store

inventory and one for the supply of the PUP.

In practice, it is often difficult for the retailer to jointly plan the supply of the pick-up points
and the replenishment of the stores because of various operational constraints and the cost
of synchronizing the different processes. For example, while the replenishment routes need
to be planned days in advance to facilitate efficient warehouse operations, the routes to
supply the PUPs are planned much later due to their short customer lead-times. Hence, in
this paper, we focus on a simple capacity sharing mechanism in which the replenishment

routes are fixed in advance and the PUP supply operations can piggyback on those routes.

This works as follows. The retailer fixes the route schedule for the replenishment routes
(fized schedule) before planning the routes for the supply of the pick-up points (flexible
schedule). If there is spare capacity available in the fixed schedule, we can transfer a shared
customer that is served in both schedules from the flexible schedule to the fixed schedule.
The transfer of the relevant customer demands takes place at the transfer point which is for
instance the warehouse associated with the fixed schedule. The retailer incurs additional
transfer costs to move the load to this transfer point using vehicles with limited capacity.
For the capacity sharing to be beneficial, the transfer costs should be less than the savings

in the transport costs.

In Figure2.1, we illustrate this capacity sharing opportunity through an example. When
there is no capacity sharing, the flexible schedule needs two vehicles to serve its four cus-
tomers A, B,C, and D as shown in Figure2.1la. Customer C is also served in the fixed
schedule. The available spare capacity in the fixed schedule makes it possible to transfer
the shared customer C' from the flexible schedule to the fixed schedule. Figure2.1b shows
that as a result, only three customers need to be visited in the flexible schedule, reduc-
ing both the travel costs and the number of customer visits. To move the demand of the

transferred customers from the depot to the transfer point it requires a transfer trip.
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(b) With capacity sharing

(a) Without capacity sharing C

B : depot, [J : transfer point, O : customers, © : shared customer, — : flexible schedule,

--» : fixed schedule, <—— : transfer trip

Figure 2.1: Capacity sharing between the fixed and the flexible schedule

In this paper, we introduce the Shared Capacity Routing Problem (SCRP) which aims
to design a flexible schedule while potentially making transfer trip(s) to utilize the spare
capacity in the fixed schedule, such that total costs are minimized. We specifically focus on

investigating the benefits of capacity sharing in different settings.

Our contribution is threefold. First, we describe a new capacity sharing strategy motivated
by an application in omni-channel retailing. Secondly, we present an exact and a heuristic
approach to solve the associated planning problem. Finally, we present a numerical study
to investigate the benefits of the proposed capacity sharing strategy using both real-world

and artificial instances.

The remainder of this paper is organized as follows. In the next section, we provide a review
of the related literature. In Section 2.3, we formally describe the problem. Section 2.4 pro-
vides some theoretical properties that are helpful in designing our solution approaches. In
Section 2.5, we present an exact method while in Section 2.6, we describe the heuristic ap-
proach to solve the problem. Section 2.7 reports computational results on various instances.

Finally, Section 2.8 summarizes our key findings and provides directions for future research.
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2.2 Related literature

Conceptually, the SCRP is a selective vehicle routing problem in which only a subset of
customers needs to be visited. Most work in this area focuses on settings in which the
objective is to maximize the collected profits from the customers given certain constraints
on the maximum tour lengths (Archetti et al. 2014). The selective vehicle routing problem is
the multi-vehicle version of the selective traveling salesman problem (Laporte and Martello
1990) or the orienteering problem (Golden et al. 1987), where a single vehicle visits a subset

of customers to maximize the collection of profits from the customers.

A selective vehicle routing problem that is similar to the SCRP is the vehicle routing problem
with private fleet and common carrier (VRPPC). In this problem, there is a penalty cost
per customer if it is served by an external carrier, and the objective is to minimize the costs
to serve all customers either by the private fleet or by an external carrier (Chu 2005, Bolduc
et al. 2008). Most work on the VRPPC is focussed on the design of heuristics with Tabu
search (Coté and Potvin 2009, Potvin and Naud 2011) and adaptive variable neighborhood

search (Stenger et al. 2013) currently showing the most promising results.

What distinguishes the SCRP from the existing work in the area of selective vehicle routing
is that the customers that can be transferred are constrained by the spare capacity in the
fixed schedule. Furthermore, the cost and capacity of transfer trips between the depot and

the transfer point also play a critical role in deciding which customers will be transferred.

The concept of sharing vehicle capacity is also relevant when we consider independent
carriers in a distribution network. Recent work by Ferndndez et al. (Ferndndez et al. 2017)
considers the centralized planning in a coalition of carriers in which demands of only a
limited number of shared customers can be transferred between the carriers. In the SCRP,
we also consider a set of shared customers between two distribution channels of a retailer.
However, in our setting, the retailer creates the fixed schedule in advance and the spare
capacity in the associated fixed routes can be used to serve some shared customers of the
flexible schedule. Unlike our paper, Ferndndez et al. do not specially consider the transfers

between the depots of the different carriers.

Research in the collaboration of carriers mostly focusses on the selection of appropriate
collaboration partners and mechanisms for exchanging requests among partners (Gansterer

and Hartl 2017). Cooperative game theory and combinatorial auctions are used for profit
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sharing in horizontal collaboration among logistic partners (Krajewska et al. 2008) (Kra-
jewska and Kopfer 2006). These questions are less relevant in our context as our work is
motivated by collaboration within a single retailer. We also primarily focus on the question

on how to operationally plan the collaboration in order to attain maximum benefits.

2.3 Problem definition

We model the SCRP on a complete directed graph G = (V, A4). Here, V = {0} |J N, where
o is the depot and N is the set of customer locations. Each customer ¢ € N has a demand
qi > 0, which has to be fulfilled from the depot o. We model two ways in which demand
can be fulfilled. Demand of each customer can be fulfilled by direct delivery, and for some

customers there is the additional option of fulfilling demand by transferring.

To fulfill demand directly, a sufficient number of vehicles is available, each with capacity
Q. We assume @Q > ¢;,Vi € N. Vehicles are used to drive a route, which is a simple cycle
in G starting and ending at the depot, and fulfills demand of each customer that is visited
along the route. A route is considered feasible if the total demand of the customers that
are visited does not exceed the capacity Q. We refer to the each route that we design to
fulfill demand directly as a flexible route and the set of such routes as the flexible schedule.
Furthermore, c;; is the cost of traversing an arc (i,j) € A. We assume that c;; satisfies the

triangle inequality.

To fulfill demand by transferring, we are given a fized schedule. A fixed schedule represents
a separate routing schedule in which deliveries are made, other then the flexible schedule.
Let S C N be a set of customers referred to as shared customers, they can be thought of
as customers that are also visited in the fixed schedule. Only the orders of these shared
customers might be transferred to the fixed schedule. Note that we do not allow splitting
of demand while serving a customer, which means that a customer is visited exactly once

directly in the flexible schedule or its demand is fully transferred to the fixed schedule.

We represent a fixed schedule as the set routes R, where every route r € R, referred to as
fized route, corresponds to a (possibly empty) collection of shared customers S, C S. We
assume all collections S, to be disjoint. Associated with every fixed route r € R is a spare
capacity B, > 0, representing the leftover capacity in the vehicle associated with fixed route

r. Customers can only be transferred if the spare capacity is not exceeded. That is, a set of
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customers T;- C S, can only be transferred if the total demand of the customers in T} does
not exceed the spare capacity E,.. We refer to such a set 15 as an r-transfer. To represent
the transfers to all fixed routes, we define a transfer-set as a set of customers T' C S which

is the union of exactly one r-transfer per route, T' = UreR T..

The demand of the transfer-set customers needs to be transported from the depot to the
warehouse associated with the fixed schedule, to transfer the goods to the fixed routes. We
refer to this warehouse as the transfer point. We use transfer vehicles of capacity Q' to
make the transfers. A fixed cost F' is incurred per transfer trip. Based on the practical
case that motivated our research, we make the following assumptions with respect to the
transfer trips: (i) There is a sufficient number of transfer vehicles available to move the
demands of all transferred customers to the transfer point. (ii) The transfer trips arrive at
the transfer point in time to be loaded on to the fixed routes before they depart so we do
not have to synchronize the different routes. (iii) Although demand may not be split when
serving a customer, it is allowed to split demand of transferred customers on the transfer

trips. As a result, for a particular choice of transfer-set T the total transfer costs are given

S
by F' | =5—

As the costs of the fixed schedule are exogenous to the model, the total relevant system
costs only include the transfer costs and the routing costs of the customers that are not
transferred. The objective of the SCRP is to determine a transfer-set and corresponding

routes for non-transferred customers so that the total costs are minimized.

As the SCRP reduces to the vehicle routing problem when there is no spare capacity in fixed
routes, the SCRP is NP-hard. The appendix provides a mixed integer linear programming
(MILP) formulation for the SCRP based on a two-index formulation for the capacitated VRP
(Irnich et al. 2014). In preliminary experiments, we could solve only very small instances
with this MILP using the GUROBI solver. In the next section, we discuss theoretical

properties of the SCRP which help us to develop our solution strategy for larger instances.

2.4 Theoretical properties

In this section, we present some theoretical properties of the SCRP that help us build our
solution strategy. Let w be the number of transfer trips used in a solution and denote

by T'(w) be the optimal solution value when using exactly w transfers. The associated
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optimal routing cost for serving all customers that are not transferred is given by R(w),

hence T'(w) = R(w) + Fuw.

Proposition 2.4.1. The optimal cost, T(w), of SCRP is in general neither conver nor

concave in w.

Proof. We prove this proposition by providing an instance for which T'(w) is neither convex
nor concave in w. Consider an instance with four customers where each of the customers
has a demand of %Q and the cost of delivering to each of them from the depot is 4. The
capacities of the vehicles of the flexible schedule and the transfer vehicles are the same, i.e.,
Q@ = Q'. The transfer cost per trip F is 5. The spare capacity of the fixed routes is such
that all the customers can be transferred. Observe that because demand cannot be split

while serving a customer, every non-transferred customer is visited by a separate vehicle.

When w = 0, no customers are transferred and every customer is visited by a separate
vehicle, hence T'(0) = 16. For w = 1, the optimal decision is to transfer one customer
to the fixed schedule, so T(1) = 17. In case w = 2, three customers can be transferred,
now it follows that T(2) = 14. Finally, for w = 3, it is optimal is to transfer all four
customers, hence T'(3) = 15. We show the optimal solutions when w is fixed to values 0, 1,
2 and 3 in Figure2.2a, Figure 2.2b, Figure 2.2c and Figure 2.2d respectively. The optimal
solution values are plotted in Figure2.3. Clearly, T'(w) is neither convex nor concave for

this instance. O
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(a) T(0) = 16 (b) T(1) =17

(d) T(3) = 15

O
S
Il
O

k-~ —— >}

B : depot, I : transfer point, O : customers, <»: flexible route, <——: transfer trip

Figure 2.2: Optimal solutions for our example (Q" = Q;¢i = 2Q; F = 5;c0i = 2,Vi € N)
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Figure 2.3: Costs of optimal solutions for our example
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Since T'(w) is in general not convex or concave in w, we pursue an enumerative strategy

over w. Next, we show how to bound our search, by defining an upper bound on w.

Proposition 2.4.2. The following are all upper bounds on w*, the number of transfer trips
in the optimal solution of the SCRP.

Sk

. UBl — rEQRI ,

Y

. UBQ — iegl ,

e UB; = LR(O);R(X)J}

where X is an upper bound on w*, for instance X = min{UB1, UB>}.

Proof. The total spare capacity in the fixed routes is given by > E,. Since we can split

TER
demands in transfer trips, the number of transfer trips required to fully utilize the available

> e

rER
Q7

spare capacity is . Hence, w* < UB;. Similarly, the total transferred demand is

limited by > g¢i, yielding w* < UBs

iEN
Next, we prove that w* < UBs. As before, denote by R(w) the optimal routing costs
when using w transfer trips. Observe that R(0) > R(w") + Fw*. When the arc costs
satisfy the triangle inequality, R is decreasing in w. Therefore, it holds for X > w™ that
R(w*) 4+ Fw* > R(X) + Fw*. Combining these observations yields w* < LwJ. O

Combining the bounds presented by Proposition 2.4.2, we can bound the optimal number of
transfer trips w* by UB = min(UB;, UB2, UB3). Note that UB; and UB> can be computed
efficiently, while computing UB3 requires solving one VRP (R(0)) and one SCRP (R(X))

with a given number of transfer trips.

Next, for a fixed number of transfer trips w, we limit the number of transfer-sets that we
consider when searching for an optimal solution. We define a transfer-set to be maximal if
no additional customers can be transferred without violating the available transfer capacity
w@’ or the total available spare capacity ZTG g Er. We can similarly define maximality
of an r-transfer. Note that not all r-transfers that are part of a maximal transfer-set are

necessarily maximal themselves.
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Proposition 2.4.3. There exists an optimal solution of the SCRP for which the transfer-set

is maximal.

Proof. Assuming that the triangle inequality holds, we know that the routing cost is de-
creasing with the number of transferred customers. Hence, if the transfer-set is not maximal,

an additional customer demand can be transferred without increasing the costs. O

We can now reformulate our problem in the following way:

min {Fw + Tmin R(N\T)}

0<w<UB

€Tmax

where, Tinae is the set of all maximal transfer-sets, and R(.S) denotes the routing cost for the
set of customers S. Next, we present a solution procedure in which we enumerate over all
relevant values of w and subsequently solve the subproblem of finding a maximal transfer-set

that minimizes the corresponding routing costs.

2.5 Exact solution approach

To solve the problem to optimality, we enumerate the number of transfer trips w from 0 to
UB. For each value of w, we enumerate all maximal transfer-sets. Finally, for every max-
imal transfer-set, we solve the vehicle routing problem (VRP) visiting the non-transferred

customers. The best found solution is optimal.

For a given maximal transfer-set, the SCRP reduces to a standard capacitated VRP. We use
a standard branch-and-cut procedure to solve the VRP, in which we make use of a 2-index
flow formulation including the well known rounded capacity constraints (Irnich et al. 2014).
We relax the rounded capacity constraints, identify violated rounded capacity constraints

when a feasible integer solution is found and add these to the formulation.

To further speed up our solution procedure, we keep track of the current best solution to the
SCRP to terminate the evaluation of certain transfer-sets as follows. If at any stage of the
branch-and-cut procedure to solve a VRP, the lower bound plus the transfer costs for the
incumbent solution is higher than the current best solution, we discontinue the evaluation

of this transfer-set and continue with the next.
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2.6 Knapsack-based Heuristic

In the exact approach as described in the previous section, we enumerate all maximal
transfer-sets and solve the associated VRP to find the optimal solution. This is not prac-
tically feasible for larger instances due to the large number of transfer-sets that need to be
evaluated by solving a routing problem. Hence, we develop a heuristic to identify promis-
ing transfer-sets and solve the corresponding routing problems. In particular, we present a
knapsack-based heuristic that aims to find an initial solution by solving a multiple knapsack
problem to determine a transfer-set. Subsequently, we implement a local search procedure

to improve the initial solution.

2.6.1 Initial solution

Instead of evaluating all maximal transfer-sets, we try to find promising transfer-sets by
solving a multiple knapsack problem given the spare capacities in the fixed routes. The
main idea is to approximate the savings of transferring customer i € N and then find the
transfer-set that maximizes the approximate total savings. We use the travel cost from the
depot to a customer i € N, ¢,; to approximate the savings of transferring a customer 1.
The reason for this is that we expect that it would generally be more advantageous to skip
customers that are further away from the depot. Preliminary experiments show that this
travel cost based approximation measure provides better results than simply maximizing

the number of transferred customers or the associated demand volume.

We formulate the corresponding optimization problem as a multiple knapsack problem
(Martello and Toth 1981) where the knapsacks correspond to the capacity constraint on
the transfer-set, and the capacity constraints on the r-transfers. Let the variable y; be 1 if

customer ¢ is transferred to the fixed schedule, and 0 otherwise. The problem is formulated
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as follows:
max Zcoiyi
iEN
st Zqiyi < E, VreR (2.1)
1€S,
Zqﬂﬁ < Qw (2.2)
ieN
yvi € {0,1} (2.3)

The capacity constraints of the fixed routes are captured in constraints (2.1). Constraint

(2.2) ensures that the total demand of the transferred customers fits into w transfer vehicles.

As solving a VRP to evaluate the cost of a particular transfer-set is computationally in-
tractable for larger instances, we use our implementation of the adaptive large neighborhood
search (ALNS) heuristic by Pisinger and Ropke (Pisinger and Ropke 2007). This approach
uses a local search framework based on simulated annealing and several destroy and repair

operators.

For each w = 1,...,UB, we determine a promising maximal transfer-set by solving the
above multiple knapsack problem, and solve the associated VRP to evaluate the transfer-

set. The solution with the least total cost, i.e., routing and transfer costs, is chosen.

2.6.2 Improvement phase

To improve the initial solution, we develop a local search heuristic that iterates between an
intensification phase and a diversification phase. In the intensification phase, we improve
the solution quality by a neighborhood search procedure. In the diversification phase, we
attempt to move away from the local optimum. If the intensification and diversification do

not lead to an improvement of the best solution for I iterations, we terminate.

Intensification

At each iteration, we search an r-transfer exchange neighborhood that is specific to our
problem. The search continues until no more improving r-transfer exchange is found. For
every transfer-set considered during the search, including the initial transfer-set, we use

standard 1-point moves and swaps to optimize the corresponding routes. Next, we provide
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a brief summary of these neighborhoods.

1-point move and swap neighborhood

A 1-point move is a repositioning of a single customer among routes in the solution. Only
at initialization of the intensification phase we also consider transferred customers for repo-
sitioning. In that case, we do not only consider repositioning customers somewhere in a
route but we also consider transferring customers currently included in a route. Similarly,

we use swaps to exchange the positions of two customers.

We consider the 1-point move and swap together in a single neighborhood. This means that
the best of all possible 1-point moves and swaps across all customers is performed at each

iteration.

r-transfer exchange neighborhood

In an r-transfer exchange, we exchange an r-transfer 7% in the current solution with another
r-transfer T» for fixed route r € R. We perform this exchange as follows. We remove all
customers in 77 and T» from the solution. Next, we transfer the customers in T>. All the
remaining customers are inserted to the flexible routes in random order at the cheapest
position. Subsequently, we re-optimize the flexible routes with the 1-point move and swaps
until no more improvement is found. The difference in the total cost before and after the

exchange gives the improvement of the exchange.

The r-transfer exchange corresponding to the best improvement is performed at each iter-

ation.

Diversification

If no more improving moves can be found, we apply a ‘destroy and repair’ strategy. In
particular, we remove m customers from the solution and insert them back to form a feasible
solution. The values for m are generated randomly between an instance specific lower and

upper limit which depend on the parameters § < 1, v < 1, [ and u in the following way:

lower = minimum{d|V|, 1} upper = minimum{~vy|V|,u}
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This destroy operation is similar to the destroy operation in the ALNS heuristic by Pisinger
and Ropke (Pisinger and Ropke 2007).

During the repair stage, a customer can either be transferred to the fixed schedule or served
in the flexible schedule. If it is feasible to be transferred, we assign it to the fixed schedule
with a probability p, otherwise we insert the customer at the first position of the first flexible

route with sufficient capacity.

2.7 Computational study

In this section, we report the results of our computational experiments. The goal of these
experiments is to assess the quality of our heuristics and the benefits of sharing the capacity
of the fixed schedule with the flexible schedule under different settings. All algorithms are
coded in JAVA and Gurobi 7.0 is used as the MILP solver. The experiments were performed
on a laptop computer with an Intel Core i7-4810MQ CPU 2.8 GHz processor.

2.7.1 Real-world case study

To assess the potential savings of our capacity sharing strategy, we apply our model to
the distribution network of a large omni-channel grocery retailer in the Netherlands. Some
of the retailer’s grocery stores also serve as PUP for groceries ordered online. To enable
efficient order picking, the PUPs are supplied from one of three e-fulfillment warehouses,

while the inventory of the same stores are replenished by one of four regional warehouses.
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Figure 2.4: Locations of PUPs (cross), Regional (star) and E-fulfillment warehouses
(square)

We use route data from ten days in February 2017 for store replenishment and PUP supply
for two regions in the Netherlands. Figure2.4 shows the locations of the regional ware-
houses, e-fulfillment warehouses and grocery stores in the two regions. Figure2.4a shows
the Southwest region (SW) where there are eleven stores with a PUP that are served in
both the channels. Similarly, Figure 2.4b shows the seven PUP stores that are served in
both channels in the Northwest region (NW). In this case, the store replenishment takes
place before the in-store pick-up points open to the customers, so all transfers are time

feasible.

The average store replenishment demand is approximately 40 roll cages. The average de-
mand of a PUP store is around 6 roll cages for the SW case and 10 roll cages for the NW
case. All trucks have a capacity of 50 roll cages. The average spare capacity of the replen-
ishment routes is approximately 20%. We set the transfer cost per trip equal to the return
distance between the two warehouses. The network structures of the two cases are similar
but the transfer costs are significantly different, i.e., 20.8 km for SW and 76 km for NW. To
create a benchmark for the case without capacity sharing, we determine the optimal routing
costs by solving a VRP in which all shared customers, i.e., the stores that have a PUP, are

visited in the flexible schedule.
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We assume that the transfer trips are done by the same type of vehicles as the PUP deliveries,
ie., @ = Q = 50 roll cages. Since the number of stores is relatively small, we solve
the instances using the exact method described in Section 2.5. Table 2.1 shows the results
of capacity sharing for the SW and NW cases. We report the savings in routing cost as
compared to the costs without capacity sharing while the savings in the number of customer
visits is relative to the number of customers (i.e., stores) in the instances.

Table 2.1: Impact of capacity sharing in real-world instances
(F = 20.8 for SW, F' = 76 for NW)

Days with ATransport ~ ACustomer-
Instance
capacity sharing  cost™ (%) visit* (%)
SW - 11 stores 10/10 334 60.9
NW - 7 stores 4/10 1.6 60.7

*average reduction for instances with capacity sharing

Table 2.1 shows that there are average cost savings of 33.4% for the SW case and only 1.6%
for the NW case. Moreover, we see that it is beneficial to consolidate demand by sharing
capacity in all ten days in the SW case and only in four out of the ten days in the NW case.
One important reason for the different savings is the fact that the transfer distance and
the associated transfer costs are much higher for the NW case than for the SW case. This
means that the routing costs savings in the NW case are offset by the higher transfer costs.
Another reason is that the higher demand per store in the NW case limits the number of
possible transfers. In both cases, we do observe around 60% reduction in the number of

customer visits for the days with capacity sharing.

Sharing capacity also helps to increase the fill rate of the vehicles that perform the store
replenishments. In particular, the fill rate of the vehicles of the fixed schedule increases by

7.4% and 12.1% in the SW and NW instances respectively.

While the current instances are small enough to be solved with our exact approach, the
retailer wants to convert many more stores into PUPs which would create larger instances.

In the next section, we generate larger instances and test our heuristic.



2.7 Computational study 25

2.7.2 Generation of artificial instances

We generate artificial instances based on the capacitated VRP instances of (NEO - Network-
ing and Emerging Optimization 2013). In particular, we use these instances to represent
the set of shared customers that is served in both the flexible and the fixed schedule. For
the flexible schedule, we use the customer demand and vehicle capacities as given in these
instances and assume the same capacities for the vehicles for the transfer trips. The best
known solutions for these instances represent the benchmark solutions for the situation

without capacity sharing.

To create the fixed routes, we specify a maximum number of customers per route (Route-
Cap). We then solve a VRP with the ALNS heuristic as described in Section 2.6.1 to obtain
the fixed routes. To generate the spare capacity for each fixed route, we specify the maxi-
mum number of customers that can be transferred to each fixed route (MazTransfer). We
do this by setting the spare capacity of a route equal to the sum of the demands of the
MaxTransfer smallest customers from the flexible schedule corresponding to that route. We
set the costs per transfer trip to half of the maximum distance between two locations in the

graph.

2.7.3 Performance of the Knapsack-based heuristic

To evaluate the performance of our heuristic, we use the VRP instance (Augerat 1995, NEO
- Networking and Emerging Optimization 2013) of size 32 (including the depot) for which
we are able to find optimal solutions using the exact approach described in Section 2.5.
We test our heuristic on different instances generated using different parameter values.
In particular, we consider RouteCap = 2,3,...,8 and relative to this capacity, we use
MazTransfer = 1,2,..., Lm’%ecapj. This means that the maximum number of customers
that can be transferred to a fixed route is less than half of the customers in that route. We
use three performance measures to evaluate the heuristic: average optimality gap, maximum

optimality gap and number of times the optimal solution is found.

Table 2.2 provides the parameter values that are used in the knapsack-based heuristic. The
values for the parameters related to the ALNS heuristic are used as reported in (Pisinger

and Ropke 2007).
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Table 2.2: Parameter settings of the knapsack-based heuristic

Parameters Description Values
1 lower bound parameters on the number 0.1
l of customers to be removed in the destroy phase 30
upper bound parameters on the number 0.4
of customers to be removed in the destroy phase 60

probability of transferring a customer 05
P .

in the repair stage

I number of iterations of the improvement phase 100

Table 2.3: Performance of the knapsack-based heuristic (|[V]| =32, Q@ = Q" = 100)

Total possible  Optimality  Solution
RouteCap  MazTransfer

transfers gap (%) time (s)
2 1 16 1.5 15.1
3 1 11 0.0 19.3
1 8 0.0 25.2
! 2 16 0.0 28.6
1 7 0.0 24.9
° 2 13 0.0 18.5
1 6 0.0 27.0
6 2 11 0.0 19.7
3 16 0.1 18.9
1 5 0.0 34.0
7 2 10 0.0 21.1
3 15 0.0 19.8
1 4 0.0 28.7
2 8 0.0 36.2
i 3 12 0.8 31.1
4 16 0.1 31.1
Average 0.2 25.0
Maximum 1.5 36.2

No. of times optimum found 12/16
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In Table 2.3, we report the statistics of the solutions obtained by the heuristic for the 16
instances. For each instance, we also report the total maximum number of customers that

can be transferred to the fixed schedule.

The table shows that our heuristic provides good quality solutions in reasonable time. The
average optimality gap is 0.2%, with a maximum gap of 1.5%. The heuristic finds the

optimal solution in 12 out of the 16 instances.

2.7.4 Savings by capacity sharing across different instances

Next, we present the results of the experiments with larger instances using the Knapsack-
based heuristic. Similar to Section2.7.3, we generate the fixed routes for these instances
using RouteCap = 2,3,4,5,6,7,8 and MazTransfer=1,2,..., LWJ. The total costs
of the flexible schedule without capacity sharing and the transfer costs per trip for the

instances are given in Table 2.4.

Table 2.4: Description of the instances

Transport Transfer
Instance cost cost per trip
(km) (km)
A-n32-k5 784 64
A-n48-k7 1,073 60
A-n64-k9 1,401 59
A-n80-k10 1,764 69

Table 2.5 shows the relative savings in transport costs and the number of customer-visits due
to capacity sharing as compared to the setting without capacity sharing across all instances
under different settings. We observe that for a given RouteCap, the savings increase with the
spare capacity (MazTransfer). Interestingly, the transport costs savings are not proportional
to the savings in customer-visits. This is because transferring a single customer that is
further away from the depot leads to more transport cost savings than two nearby customers.
The instance in which no savings can be achieved indicate that capacity sharing is not always
beneficial. That is, even if transfers are feasible, the transfer costs may outweigh the savings

in the routing costs.
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We see average computation times up to 300 seconds for the largest instance A-n80-k10.
Although the number of feasible solutions increases with the spare capacity, we do not see
any clear trend with respect to the solution times in this aspect. Note that the improvement

phase drives the longer solution times as finding an initial solution is fast in all settings.

2.7.5 Impact of service costs

Thus far, we have primarily focussed on the costs savings related to reducing the total
system-wide travel costs. However, there may be other benefits associated with visiting a
customer by one vehicle instead of two vehicles. We will refer to these non-distance related
costs as service costs. By visiting the customer once instead of twice, it may be possible to
save time, e.g., time associated with finding a parking space or waiting at the customer. In
this section, we investigate the impact of the potential service cost savings on the solutions

of the SCRP.

In our analysis, we focus solely on the service costs that can be avoided by transferring a
customer to the fixed schedule. Let 7 represent this ‘avoidable’ service costs per customer.
For example, if the total service costs of serving a customer by two vehicles separately is
20 and costs of serving all demands of a customer from both schedules by one vehicle is 15,
we can save 7 = 5. To normalize the results, we set the value of 7 to a percentage of the
transfer cost per trip. We use our heuristic to run the experiments on instance A-n48-k7

using RouteCap= 6 and MazTransfer= 3.

Table 2.6: Impact of service costs on savings (Q = Q' = 100, F' = 60)

T # of Transfered ATransport AService  ATotal

(%) customers cost (%) cost (%)  cost (%)
0 18 20.9 0.0 20.9
10 21 19.7 44.7 24.9
20 21 19.7 44.7 28.3
30 22 18.2 46.8 30.8
40 23 16.5 48.9 33.1
50 23 17.2 48.9 35.2

A denotes reduction here
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In Table2.6, we show the solution for different values of 7. To allow a fair comparison
with the earlier results, we report the percentage savings in transport cost, service cost and
total cost relative to the respective costs when there is no transfer. As expected, we see
that the number of transfers increase with the potential service cost savings 7. The results
clearly show the trade-off between the transport costs and the service costs. That is, when
T increases, it becomes more beneficial to transfer customers even if this means increasing

the routing costs.

Overall, the benefits of capacity sharing increase with the potential service cost savings.

2.8 Conclusion

This paper studies capacity sharing in an omni-channel retail setting. Motivated by a prac-
tical problem, we introduce the shared capacity routing problem (SCRP). The presented
capacity sharing strategy enables the retailer to make use of the spare capacity in its trans-
port operations to reduce the transport costs and the number of customer visits. We show

that our heuristic provides good quality solutions in a reasonable amount of time.

The computational study on the real-life case suggest potential transport cost savings be-
tween 2% and 33% by better using the available vehicle capacities in the system. The results
show that the transfer costs and the spare capacity are the main drivers of the potential
benefits of capacity sharing. The benefits increase with the spare capacity and decrease
when the transfer costs increase. Potential service cost savings may further increase the

benefits of capacity sharing.

As we are the first to work on this problem, there are still many directions for future
research in this area. One potential future research direction is to develop exact solution
procedures that can solve larger problem instances. Moreover, an interesting extension of
the problem is to consider multiple transfer points instead of a single one. The capacity
sharing strategy can also be extended to settings that involve multiple companies, which

gives rise to questions related to profit sharing.

Appendix

A mixed integer linear programming formulation
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We present a mixed integer linear programming (MILP) formulation for the SCRP. Let the
decision variable x;; be 1 if arc (4, ) is used in a flexible route, and 0 otherwise. Further-
more, let the decision variable y; be 1 if customer ¢ € N is transferred to the fixed schedule,
and 0 if it is served in the flexible schedule. The integer variable w represents the number
of required transfer trips. Let u; indicate the accumulated demand already distributed by

the vehicle when arriving at customer ¢ € N. The MILP formulation is given below:

min Z Z cijTi; + Fw

eV jev
st oy + Zirij = 1 Vie N (2.4)
JjEV
vty my o= 1 VjeN (2.5)
eV
Z gy < Qw (2.6)
1EN
Z ¢y < Ebr Vre R (2.7)
1€Sy
w—u; +Qzi; < Q—gj Vie N,jeN (2.8)
zi; € {0,1} VieV,jeV (2.9)
v € {01} VieN (2.10)
w S Zzo (211)
¢ <uw < Q Vie N (2.12)

The objective is to minimize the total cost of routing the non-transferred customers and
the cost of transferring the demand of the transferred customers to the transfer point.
Constraints (2.4) and (2.5) ensure that a customer is either visited by a single vehicle of
the flexible schedule or is transferred to the fixed schedule. Constraint (2.6) ensures that
the total demand of transferred customers does not exceed the capacity of the vehicles used
for the transfer trips. The selection of customers for transferring is constrained by the
spare capacity of the fixed routes which is modeled by constraints (2.7). The constraints
(2.8) ensure that every subtour includes the depot and does not violate the vehicle capacity
constraints, and hence represents a feasible route. Constraints (2.9), (2.10), (2.11) and

(2.12) specify the domains of the decision variables.






3 Optimizing Omni-Channel Fulfillment with Store

Transfers

3.1 Introduction

Retail supply chains are changing due to the continuous growth of online sales. Global online
retail sales are projected to increase by 20% per year between 2014 and 2021 (Statista 2020).
However, despite this growth, online sales still represent only a small fraction of total retail
sales (Ali 2018). It is unlikely that the online stores will replace the traditional brick-and-
mortar stores (Brown et al. 2013). Instead, retailers are pursuing an omni-channel strategy
that combines various sales channels to create an integrated shopping experience across
channels. Most traditional retailers now have an online sales channel (Agatz et al. 2008).
In the past years, several major online retailers have extended their physical footprint.
Amazon, for example, has recently acquired Whole Foods and is rolling out its Amazon
Go stores (Levy 2018). The buy online, pick up in store model is increasingly popular
in omni-channel retail as it provides flexibility to the customers and helps increase store
sales (Gallino and Moreno 2014). According to a study in the U.S. (Bhardwaj et al. 2018),
two-thirds of customers shopping online use physical stores somewhere along their buyer’s
journey (Lemon and Verhoef 2016). Forty percent of Best Buys (Roose 2017) and more
than fifty percent of Walmarts online sales (Evans 2018) involve in-store pick-ups. Here,
the physical store plays an important role in the omni-channel retail ecosystem as the link
between the online and offline channels. However, the fulfillment of in-store pick-ups gives
rise to new operational challenges (Hiibner et al. 2016b,a, Melacini et al. 2018, Ishfaq et al.
2016).The in-store pick-up points are often supplied from a dedicated warehouse. In the
grocery industry, where a typical order consist of 30-60 items, picking orders in the store
is inefficient and disruptive for the in-store customers (Delaney-Klinger et al. 2003, Boyer
et al. 2003). Moreover, rather than supplying the pick-up points from the warehouse that

replenishes the store inventory, a dedicated warehouse is often preferred because preparing
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pick-up orders for online customers requires different processes than preparing pallets for
store replenishment. For a detailed overview of the specific challenges in designing order
picking systems in omni-channel retail, we refer to De Koster (2002), Hiibner et al. (2016a)

and Wollenburg et al. (2018).

Our research is motivated by a collaboration with the leading omni-channel grocery retailer
in the Netherlands. The retailer has grocery stores that also serve as pick-up point (PUP)
for goods ordered online. Customers can place orders online and pick up their orders the
next day, so the PUPs are supplied on a daily basis. The store inventory is also replenished
once per day to ensure freshness of perishable items (Van Donselaar et al. 2006, 2010, Brown
et al. 2013). This means that the same stores are currently visited by different vehicles -
one for the replenishment of store inventory and one for the supply of the PUP. We study
the benefits of using available capacity in the vehicles in the offline channel (which replenish
store inventories) to reduce the fulfillment costs as well as the number of store visits in the
online channel. This is possible, because a retailer typically plans the routes to replenish
store inventories, which we refer to as the fized schedule, before planning the routes for the
fulfillment of PUPs, which we refer to as the flexible schedule. If there is capacity available
in the vehicles in the fixed schedule, it may be beneficial to transfer goods destined for a
PUP in a store that is served in both schedules from (a vehicle in) the flexible schedule to

(a vehicle in) the fixed schedule.

Paul et al. (2019b) consider a setting in which transfers can only take place at the warehouse
where the vehicles in the fixed schedule depart by using dedicated transfer trips between
the e-fulfillment center and the warehouse. In this paper, we consider the stores as potential
transfer locations and integrate store deliveries and transfers in a single route. Using the
stores as transfer locations has two main advantages over the more restrictive warehouse-
transfer setting. First, there is more capacity available in the vehicle at the stores as the
vehicle makes deliveries that free up capacity along the route. Secondly, using stores as
transfer locations means we do not have to make (additional) trips to the warehouse which
may be far from the delivery region. The main challenge in this setting is the synchronization
of the transfers and store visits. That is, the vehicle in the flexible schedule must visit a

transfer location before the vehicle in the fixed schedule.

Figure 3.1 provides an illustrative example with one single fixed route and one single flexible

route. The diamond-shaped nodes represent the stores that need to be visited by both
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routes, the circle represents a store that only needs to be visited by the fixed route. The
solid black square represents the start of the fixed route and the white square represents
the start of the flexible route. Without capacity sharing, Figure 3.1a shows both delivery
routes. With capacity sharing, a possible flexible route is shown in Figure 3.1b, where goods
for Stores 3, 5, and 7 are transferred at Stores 2, 4 and 6, respectively. This new route is
shorter and visits less stores than the original route without capacity sharing. Note that
even though store 2 does not need to be served by the flexible route, a transfer can take

place there.

(a) Without Capacity Sharing (b) With capacity sharing

B : w/h fixed route, 00 : w/h flexible route, O : store (fixed route only), < : shared store

@ / @ : transfer point , "> : fixed route, — : flexible route

Figure 3.1: Capacity sharing with stores as transfer locations

We introduce the Shared Capacity Routing Problem with Transfers (SCRPT), which seeks
to determine a flexible schedule that serves all relevant stores (to supply the in-store pick-up
points) either directly or through transfers to the fixed schedule and that minimizes the total
transport cost. The key decisions include (1) the choice of the transfer locations, (2) for
each transfer location, the set of stores for which the goods are transferred at that location,

and (3) the vehicle routes (in the flexible schedule) visiting the transfer locations and the
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stores for which the goods have not been transferred. In this study, we focus on the special

case in which both the fixed and the flexible schedule have a single vehicle route.

Our work is related to the general area of vehicle routing with transfers or transshipments
(Baldacci et al. 2016). This stream of literature typically involves multiple vehicles that can
serve customers directly or through a limited number of transshipment facilities. These prob-
lems typically do not consider synchronization or capacity issues at the transfer locations as
in our setting. Recently, a number of papers have focused on vehicle routing problems with
drones (VRP-D) and travelling salesman problem with drones (T'SP-D), which do involve
synchronization between vehicles (see the recent survey of Otto et al. (Otto et al. 2018)).
In these problems (Agatz et al. 2018)(Poikonen and Golded 2018), a vehicle can transfer
parcels to the drone at certain locations. However, due to the size of the drone, it typically
has to return to the vehicle after each delivery. Similar to the vehicle routing problem
with drones is the truck and trailer routing problem (TTRP), in which the customers are
visited by a combination of truck and trailer or just by the truck — the trailer cannot serve
a customer by itself (Li et al. 2016). The customers served by a drone in the VRP-D or
by a truck in the TTRP can be seen as equivalent to a store whose goods are transferred
in the SCRPT. The difference is that in the SCRPT, the ability to transfer goods depends
on the available transfer capacity, which, in turn, depends on the position of a store in the

fixed schedule.

Our contribution is threefold. First, we describe a new capacity sharing strategy to optimize
omni-channel fulfillment using stores as transfer locations. Secondly, we present a mixed-
integer linear programming model and an efficient heuristic to solve the associated planning
problem. Finally, we present an extensive numerical study to investigate the benefits of

sharing capacity via store transfers under different settings.

The remainder of the paper is organized as follows. In the next section, we formally define
the problem. In Section 3.3, we present a mixed integer programming formulation for the
problem. In Section 3.4, we analyze two special cases of the problem. In Section 3.5, we in-
troduce the heuristics we have developed for solving instances of the problem. In Section 3.6,
we report the results of an extensive computational study. Finally, in Section 3.7, we sum-

marize our key findings and provide directions for future research.
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3.2 Problem Definition

We consider the special case with a single vehicle for both the fixed and the flexible schedule.
This means, there is a single fized route and a single flexible route. We assume that the
capacity of the vehicles is sufficient to accommodate the total demand of the stores in their
schedule. We model the SCRPT on a complete graph G = (V, A). Here, V = NU{o}U{d},
where o is the warehouse of the fixed route, d is the warehouse of the flexible route, and
N = {1,...,n} is the set of stores visited in the fixed route (in that order). The cost of
traversing an arc (¢,7) € A is denoted by ¢;;. That is, we assume that the relevant costs are
proportional to the travel distance, e.g., fuel costs, and we further assume that these costs
satisfy the triangle inequality. The time to traverse an arc (i, j) is assumed to be a scalar

transformation of the cost c;;.

Every store ¢ € N has demand d; > 0, which has to be served in the fixed schedule. Let
S C N be the set of stores that need to be served in the flexible schedule, i.e., S denotes
the set of shared stores. Every store i € S has a demand ¢; > 0, which needs to be fulfilled
from warehouse d. Demand of store ¢ € S can be fulfilled by a delivery from the vehicle
operating the flexible route or by a delivery from the vehicle operating the fixed route, if it
was transferred to the fixed route at a store visited by that vehicle earlier in its route. We
let a, denote the departure time of the vehicle operating the fixed route, and a; for ¢ € N
denote the time at which that vehicle visits store i. We let t4 indicate the departure time of
the vehicle operating the flexible route. The departure times of the vehicles operating the
fixed and flexible routes from their respective warehouses do not have to be the same. The
demand of a shared store j can potentially be transferred at any store i € {0,1,...,5 — 1}.
If a transfer takes place at a store i, we refer to i as a transfer point. For a transfer at i to
be feasible, the time of arrival, ¢;, at store i of the vehicle operating the flexible route has
to be at or before the arrival of the vehicle operating the fixed route, i.e., a;. Note that a
store ¢ € {o} UN\ S can be visited in the flexible route just to transfer demand to the fixed

route.

At every store i € N, the vehicle operating the fixed route drops off the demand d; of store
i, hence, the capacity available to transfer demand from the flexible route to the fixed route
increases. We refer to the capacity available in the vehicle operating the fixed route to
accommodate demand from the flexible route as its spare capacity. Let e; denote the spare

1
capacity in the fixed route vehicle at location i, i.e., ef = ey 4+ > d;, where e is the spare
j=1
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capacity at the time of departure from the warehouse. To accommodate a transfer at store
i, it is also necessary that store i has enough capacity to temporarily store (and handle)
the goods being transferred. Let e; denote the store transfer capacity at the store i € N.
Therefore, the transfer capacity e; at store i for ¢ € {0} U N is min(e;, e7). If store transfer

capacity is not a limiting factor, then the transfer capacity always increases along the fixed

route.

The demand of a set of stores S; C {i+1,...,n} NS can only be transferred at store 7 if the
total demand, Zj cs, U does not exceed the transfer capacity e;. We allow partial transfers,
i.e., the demand of store ¢ € S can be transferred at multiple stores (preceding store 7 in
the fixed route). Note that if a store ¢ € S is visited by in an optimal flexible route, the
store’s demand, g;, is delivered during that visit and is not transferred earlier. Moreover, if
the store transfer capacity is not limiting, then if the demand of a store i € S is transferred
in an optimal solution, it is transferred in its entirety at a single store j (preceding store 4

in the fixed route).

The cost of the fixed route is exogenous to the model, so the only relevant cost is the cost
of the flexible route, which we seek to minimize. In Section 3.4.3 and Section 3.6.7, we also
consider transfer costs, i.e., the costs associated with the transfer of products from the

vehicle operating the flexible route to the vehicle operating the fixed route.

As the SCRPT with a single vehicle reduces to a traveling salesman problem (TSP) when
the stores have no transfer capacity, SCRPT is NP-hard.

3.3 MILP

We present a mixed integer linear programming (MILP) formulation for the SCRPT. Let
the variable x;;, for ¢ € V, j € V, be 1 if arc (,7) is used in the flexible route, and 0
otherwise. Let variable y;, for i € {0} UN, be 1 if location ¢ is used as a transfer point and 0
otherwise. Let variable z;;, for j € S and for i € {o} U{o0,1,2,...,j — 1}, be the fraction of
the demand of store j transferred at store i. Let variable ¢; € R>q, for ¢ € {0} U N, be the
time of arrival at location 4. Let variable w; € R>g, for ¢ € {o} U N, be the actual transfer

capacity used at i. Furthermore, let M; and M> be sufficiently large constants. The MILP
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formulation is given below:
min Z Z CijTij
i€V jev
s.t Z zq = 1 (3.1)
jeENU{o}
Z g = 1 (3.2)
ieNU{o}
Zl‘ij = Zﬂﬁji Vi€ N U{o}
jev jev
(3.3)
St 3w =
i€V ieNU{o}
i<j
(3.4)
ti < ai+(1—y)M Vi e N U{o}
(3.5)
yi < Z-Tji Vi e N U{o}
JEV
(3.6)
zij < Y Vie NU{o},j€S,j>1i
(3.7)
Zzijqj < ws Vi € N U{o}
J>i
jes
(3.8)
w < € Vi € N U{o}
(3.9)
i i—1
w; < 68+Zdt_ZZthq]‘ Vi e N U{o}
t=0 t=0 j>1
JjES
(3.10)
t; > titcij — (1 — a,‘ij)MQ VieV,jeNU {O}

(3.11)
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zi; € {0,1} VieV,jeV (3.12)

yi € {0,1} Vi € N U {o} (3.13)

0 < z; < 1 Vji>i,Vj€eS,ieNU{o} (3.14)
ti € Rxo VieV (3.15)

wi € Ryo Vi € N U{o}. (3.16)

The objective minimizes the cost of the flexible route. Constraints (3.1) and (3.2) ensure
that the vehicle of the flexible route leaves the warehouse and returns back to the warehouse.
Constraints (3.3) guarantee a vehicle leaves a location if visited. Constraints (3.4) ensure
that every store is either visited or transferred to the fixed route. Constraints (3.5) ensure
that a transfer can only take place at a store if it is visited in the flexible route before it
is in the fixed route. Constraints (3.6) guarantee that a location that is used as a transfer
point is visited. At any transfer point, we can only transfer (completely or partially) stores
that are visited in the fixed route after the transfer point, which is captured in Constraints
(3.7). Constraints (3.8) ensure that the demand of the stores transferred at a transfer
point does not exceed the actual transfer capacity at the transfer point. Constraints (3.9)
guarantee that the actual transfer capacity used at a store location is less than its store
transfer capacity, while constraints (3.10) update the actual transfer capacity used at every
location. Constraints (3.11) keep track of the time of the flexible route and also act as
sub-tour elimination constraints. Finally, Constraints (3.12 — 3.16) specify the domain of

the decision variables.

3.4 Special Cases

In this section, we study two special cases of the SCRPT. The analysis of these special
cases helps motivate the heuristic we have developed for solving instances of SCRPT. We
consider the case where the warehouses of the fixed and the flexible route are co-located,
the warehouses and stores are located on a circle, as shown in the Figure 3.2, and the fixed
and flexible route start at the same time. The vehicle operating the flexible route travels at
least as fast as the vehicle operating the fixed route. In the optimal fixed route, the stores

are visited in the clockwise direction in the fixed route. For convenience, we use 0 to denote
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the warehouse when it serves as the source (starting point of the route) and n + 1 when it

serves as sink (ending point of the route).

Om

B : w/h fixed route, O : w/h flexible route , O : store, --» : fixed route

Figure 3.2: SCRPT on a circle

3.4.1 Store transfer capacity is not restricting (ef > e} for all i € 5)

If the store transfer capacity is not restricting, then the transfer capacity at store i is e; = e; .
Recall that ej always increases along the fixed route. Therefore, if the demand for store
j can be transferred at store ¢ < j, then it can also be transferred at any store k with
i < k < j. Next we provide the definitions and notations which will help characterize

properties of an optimal solution to the SCRPT in this special case.

Proposition 3.4.1. If an optimal flexible route visits a set of stores S’ C S, then there
exists an optimal flexible route that visits the stores in S’ in the same order as the optimal

fized route.

Proof. Since the vehicle operating the flexible route travels at least as fast as the vehicle
operating the fixed route and the triangle inequality holds, it is always possible for the
flexible route to reach store location before or same time as the fixed route vehicle. Transfers,
if capacity feasible, allow us to skip one or more stores after a transfer. This means that a

flexible route with transfers is a subset of the stores visited in the fixed route. Now, we have
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to argue if the optimal flexible route through S’ C S follows the same order of visit as the
optimal fixed route. Eilon and Watson-Gandy (Eilon and Watson-Gandy 1971) show that
“if H is the convex hull of the nodes in the 2-dimensional space, then the order in which
the nodes on the boundary of H appear in the optimal tour will follow the order in which
they appear in H”. Since the stores in S’ C S are located on a circle, they are all part of
their convex hull and are thus visited in the order in which they appear on the circle. This

implies they will be visited in the same order as the fixed route. O

Since there exists an optimal flexible route that visits stores in the same order as the fixed

route, it suffices to consider only arcs (4, 7) with ¢ < j when constructing an optimal flexible

route. An arc (4,7) is feasible if stores ¢ + 1,4+ 2,...,5 — 1 can be transferred at 7. Let
j—1

gij = Y. gk be the transfer demand associated with arc (4, j). Furthermore, let fiaz (i)
k=it+1

be the farthest store that can be reached feasibly from i. Note that since the transfer
capacity in the fixed route increases along the route (because the store transfer capacity
is not restricting), we have that fimez(j) > fmas(i) for j > 4. The following proposition
reduces the number of arcs that need to be considered when constructing an optimal flexible

route.

Proposition 3.4.2. Ifi < j < fma(i) =n+1, then i and j will not both be visited in an

optimal flexible route.

Proof. This follows Proposition 3.4.1 and the fact that any path that visits stores i, j, and
n + 1 is dominated by the path that returns to the warehouse (n + 1) immediately after

visiting store ¢, because the triangle inequality holds. O

The above properties are used to build an auxiliary directed graph containing all the arcs
that can appear in an optimal flexible route. The problem of finding an optimal flexible
route reduces to the problem of finding a shortest path from node 0 to node n + 1 in this
auxiliary graph. Because of Proposition 3.4.1, the auxiliary graph is acyclic. Finding a
shortest path in an acyclic directed graph can be done in linear time (O(|A|), where |A] is
the number of arcs in the graph). The pseudocode for creating the auxiliary graph and for

finding a shortest path in this graph is given in the Appendix.

Note that in case it is possible to transfer the demand of store j at multiple store locations

preceding j, we aim to use the last store as a transfer point.
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3.4.2 Store transfer capacity can be restricting

If the store transfer capacity can be restricting, the transfer capacity e; = min(e;,ef) is
not necessarily increasing along the fixed route. Consequently, if the demand of store j can
feasibly be transferred at store ¢ < j, then it may not be feasible to transfer the demand of

store j at another store k with ¢ < k < j.

This situation can be accommodated as follows. As before, when the demand of a store
is transferred, we aim to transfer the demand at the last transfer point before that store.
Under this assumption, when we consider the transfer capacity at store j, we want to know
how much of the demand of stores j+1,j+2,...,n can be transferred. When store transfer
capacity is not limiting, this is simply the available capacity in the fixed route vehicle when it
visits store j, i.e., ej. However, if the store transfer capacity is limiting, it may be necessary
to transfer part of the demand at the previous transfer point. Therefore, we define the
effective transfer capacity, u;, at store j, to be the sum of the transfer capacity at j, and

the additional transfer capacity at i if store ¢ is the store visited immediately before store j.

Consider arc (7,7) and let the effective transfer capacity at store ¢ be u;. Furthermore, let
. . . . j—1

the demand that needs to be delivered at stores i +1,i+2,...,5 — 1 be g = Z;:Hl qr. If

we use arc (7, ) in the flexible route, then ¢ units of goods have to be transferred at store 4

to be delivered by the fixed route. Therefore, u; — ¢ additional transfer capacity is available

at store ¢ for demand from stores j + 1,5 + 2,...,n, which implies

uj = min{e;, e + (u; — q)}. (3.17)

If store transfer capacity is not restricting, i.e., e; > e, then the effective transfer capacity
uj at store j is the spare capacity ej. If the store transfer capacity can be restricting, then
the effective transfer capacity u; at store j is at least the store transfer capacity e;. Thus,
the effective transfer capacity u; at store j satisfies e; < u; < e} and depends on the store

i that precedes it in the flexible route.

In the auxiliary directed graph, the nodes represent store states, e.g., (j,u;), rather than
stores, e.g., j. An arc (s,s’) from state s = (i,u;) to state s = (j,u;) represents the
transition from state s to state s’. Analogous to fiaz(i), we define fiaz(i,u;) to be the

state associated with the farthest store that can be be reached from (,u;), where we note



44 Optimizing Omni-Channel Fulfillment with Store Transfers

that effective capacity of that store is uniquely determined by wu; (and the spare and store

transfer capacity at that store).

Proposition 3.4.1 holds in this case as well, which means that the auxiliary graph will again
be acyclic. The auxiliary graph contains arcs from state (i,u;) to state (j,u;) with ¢ < j
if the transfer demand, ¢;; = Ji qk, is less than or equal to u;. The effective transfer
capacity u; of the state (j,u;) Iiszzrelt using (3.17). The cost of an arc from (%, u;) to (7, u;)

is ¢ij. We have ug = 0, which implies u; = min{e?, e }.

The number of nodes in the auxiliary graph grows rapidly as the number of stores increases.
The following properties allow us to limit the number of arcs in the auxiliary graph, where
we note that each state (¢, u) defines a unique path from 0 to ¢ and thus a specific cost to

reach that state:

o For any two states (i,u1) and (i, u2) associated with store ¢, (i, u1) dominates (i, u2),

if u1 > w2 and c(iu;) < C(i,uq), Where cs is the cost incurred to reach the state s.

o If (i,u) < (k,u') < frmaz(i,u) = (n+ 1,v) with v > 0, then arc ((3,u), (k,u’)) will not

be used in an optimal flexible route.

3.4.3 Store transfer costs

In some settings, we may want to explicitly incorporate the costs associated with performing
a transfer. That is, there may be costs associated with the unloading and loading the goods
at the transfer location. In this section, we show how to incorporate a transfer costs per

store, i.e., a fixed transfer cost ¢! at store 4.

When store capacities are not restricting (as in Section 3.4.1), a transfer of the demand of
store j always takes place at the last store i before store j that is visited in the flexible
route. This means that in this case, we can account for the transfer cost by simply adding

¢TI to the cost of any outgoing transfer arc from store i.

When the store transfer capacity can be restricting (as in Section3.4.2), it may not be
possible to transfer all demand for store j at the last store ¢ before store j on the flexible
route. To facilitate a transfer, part of the demand of store j has to be transferred at one
or more stores visited earlier in the flexible route. This means that we have to explicitly

account for the possibility of partial transfers.
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To accommodate the latter case (stores with restricting transfer space and transfer costs), we
define state (i, v;) for store ¢ where v; captures the additional transfer capacity, i.e., transfer
capacity committed at stores in the path up to ¢, but not including 7. For a transition from
state (i,v;) to (j,v;) by transferring the demand ¢;; = Zé;iﬂ gk, we have the following

two options.

1. Do not use the transfer capacity at i, which gives the state j, v; — gs5; the cost of the

transition is given by the travel cost c;;.

2. Use transfer capacity at 4, which gives state (j, min(ej,v; + €) — ¢i;); the cost of the

transition is the sum of the travel cost ¢;; and the transfer costs c; .

We consider transitions from a given state (4, v;) to all j such that v; > ¢;; for option (1),
and min(e],v; + €j) > ¢;; for option (2). As before, we build an auxiliary directed graph,
where the nodes represent states, e.g., (4,v;), and the arcs represent feasible transitions.
The total cost of a path in this auxiliary graph captures the total travel cost and the total

transfer cost.

Note too that it is possible that the arc from i to j is feasible when we use the transfer
capacity, but it is not feasible if we do not use the transfer capacity. This is taken into
account during the network construction. As before, we use dominance properties to limit

the size of the graph.

3.5 Heuristic

The shortest path in the auxiliary graph does not provide an optimal solution when (a) the
customer locations are not on the boundary of a convex hull, (b) the start time of the fixed
route and flexible route are the same, but the depots are not co-located, and (c) the start
time of the flexible route is later than the start time of the fixed route. In the first case, the
shortest path in the auxiliary graph provides a feasible, but not necessarily optimal solution.
However, in the latter two cases, it is not possible for the flexible route to follow the fixed
route from the start as it is not be possible to reach the warehouse where the fixed route
starts in time. We develop a heuristic that solves a shortest path on an auxiliary graph,
but accounts for the fact that it may not always be possible to reach the warehouse, where

the fixed route starts, in time.
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The shortest path approach relies on Proposition 3.4.1 and follows the sequence of visits in
the fixed route. For the cases (b) and (c), it is not time-feasible to catch-up with the fixed
route at its warehouse and then follow it. Let ¢ be the first store in the fixed route where
the flexible route can catch-up, i.e., t. < a., where t. is the arrival time at store c if it is the

first store visited in the flexible route. Note that store ¢ might not be in set S, the set of

stores that need to be served in the flexible schedule, but it can be used as a transfer point.

We partition S, the set of stores that need to be served in the flexible schedule, into B =
{i:i€e SN{L,...,c— 1}}, the stores that appear before the catch-up point in the fixed
route and cannot be transferred and need to be visited in the flexible route, and A = {i :
i€ SN{c,...,n}}, the stores that appear after the catch-up point and need to be served,
but not necessarily visited, in the flexible route. We build the auxiliary graph with the
stores in {c,...,n} as described in the Section3.4.2. We determine the shortest path in
the auxiliary graph to obtain the initial part of the flexible route, serving the stores in
A, but that part of the flexible route should end at a store j € B rather than back at
the warehouse (d), because the stores in B also have to be visited (unless |B| = 0). The
final part of the flexible route comprises of a minimum cost Hamiltonian path starting at
store j € B, ending at warehouse d, and visiting all stores in B\ {j}. Any heuristic for
finding a Hamiltonian path can be used to do so. (In our implementation, we use nearest
neighbour construction followed by 2-exchange improvement.) The flexible route comprises
of the initial shortest path and the final Hamiltonian path. We further improve the flexible

route with a 2-exchange improvement.

It is not obvious at which store ¢ € B the initial part of the flexible route should end.
Similarly, it is not obvious that catching up with the fixed route as early as possible, i.e.,
at store ¢, is necessarily the best choice. Let store ¢ be the store nearest to the warehouse
of the flexible route at which the transfer capacity ez is sufficient to transfer the demands
of all stores in SN{¢+1,é+ 2,...,n}. Our heuristic explores all possible combinations of
a catch-up store ¢ € {¢,c+1,...,¢} and an ending store j € B, and constructs the initial
part of the flexible route (from store i to store j) using the shortest path approach, and the
final part of the flexible route (from store j to warehouse d) using the Hamiltonian path
heuristic. (In the computational study section, we sometimes refer to these parts of the

flexible route as SP and HP.)
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Note that initial part of the flexible route (obtained using the shortest path approach) gives
the sequence of stores to visit, but it does not provide the selection of transfer points and for
each of the transfer points a list of stores for which demand is transferred at that transfer
point. Typically, there are multiple possible “transfer solutions” for a given initial part of
the flexible route. Consider, for example, an initial part d —4 — 5 — 6 — 9 — ¢ of a flexible
route (with ¢ € B), and assume that the demand for stores 7 and 8, both equal to 2, is
transferred at store 6. Furthermore, suppose that the store transfer capacities at stores
4, 5 and 6, are 1, 2 and 4, respectively. Because it is allowed to transfer the demand of
a store in parts, (4,5,6), (4,6), (5,6), and (6) are all feasible sequences of transfer points
for the demand of stores 7 and 8. We have implemented a greedy approach that seeks to
minimize the number of transfer points used (by considering the store in non-increasing
order of transfer capacity). Note that if a store is chosen as a transfer point, the flexible
route has to visit that store before the fixed route does. Therefore, the selection of transfer

points may affect the cost of the final part of the flexible route.

3.6 Computational study

In this section, we report the results of a comprehensive set of computational experiments.
First, we assess the performance of our heuristic by comparing the solutions it produces to
the optimal solutions (obtained by solving the MILP formulation as presented in Section 3.3).
Next, we use solutions produced by the heuristic to study the benefits of sharing the capacity
of the fixed route with the flexible route in different settings. All algorithms are coded in
JAVA using Gurobi 7.0 (Gurobi Optimization 2018) as the MILP solver. The experiments

were performed on a laptop computer with an Intel Core i7-4810MQ CPU 2.8 GHz processor.

3.6.1 Instance generation

We generate n uniformly distributed points inside a square of size [, which represent the
locations of the stores visited by the fixed route, i.e., N. The coordinates of the lower
left-hand corner of the square are set to (0,0). The depot of the fixed route, o, is located at
(0,31). We solve a TSP on {0} UN to find the fixed route. The stores in N are identified
by their position in the fixed route. Figure3.3 shows an example of a fixed route visiting

40 stores. In our experiments, we consider two locations for the depot of the flexible route:
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(0, %Z), i.e., the warehouses are co-located, and (%l, 1), i.e., the warehouses are not co-located
(as is the case in the example in Figure 3.3). As the costs in our model are proportional to

the travel distance, the costs savings are proportional to the distance savings.
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B : w/h fixed route, O : w/h flexible route, O : store (fixed route only), & : shared store, 7 : fixed route

Figure 3.3: Sample fixed route (n = 40)

Without loss of generality, we assume that the fixed route departs from its warehouse at
time zero, i.e., a, = 0 and calculate the time of arrival a; at store ¢, for ¢ € N, in the fixed
route. The demand of each store in the fixed route is d; = 20. The demand of the stores
in the flexible route is ¢; = Bd;, for i € S, for some 0 < f < 1. That is, 5 defines the
ratio of the demand of a store in the flexible route and the demand of a store in the fixed
route. Consequently, if 5 = 1/10, then whenever the vehicle operating the fixed route drops
off the demand at a store, the increase in spare capacity corresponds to the demand of 10
stores that need to be served in the flexible schedule. We assume that the capacity of the
vehicle operating the fixed route is ZZ:1 d;, i.e., the total demand of the stores in the fixed
route. This means a fill rate of 100% and no spare capacity when the vehicle departs from
the warehouse. As a result, the spare capacity in the vehicle operating the fixed route at
store i is e] = 22:1 d;. We define o to be the fraction of the number of stores served in
the fixed route that also need to be served in the flexible route. That is, |S| = «|N| for
some 0 < o < 1. The |S| stores are randomly chosen among the n stores. We consider

two types of stores: (1) stores with restricted store transfer capacity, equal to 1.5 times
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the demand of a single store in the flexible schedule, and (2) stores with unrestricted store
transfer capacity, equal to the total demand of the stores in the flexible route. We let p be

the probability that a store is of the restricted type.

We use different combinations of n, a, and 8 to generate instances. Unless mentioned
otherwise, the fixed and the flexible routes start at the same time, i.e., t4 = a,, and the
fixed transfer cost ¢ for any store i is zero. We create five instances for each combination
of the parameters and any value reported in the result tables in the next sections is the

average over the values of the five instances.

3.6.2 Performance of heuristic

To assess the quality of our heuristic, we create instances using n = 30, 40, 50, « = 0.7, 5 =
1/10, 1/2 and 1/1, and p = 0.5. The optimal solutions for these instances are obtained by
solving the MILP described in Section 3.3. We define the optimality gap as the difference
between the heuristic solution value and the optimal solution value and express it as per-
centage of the optimal value. To assess the quality of the heuristic, we report, in Table 3.1,
the average optimality gap, the maximum optimality gap, and number of times the optimal
solution is found across all instances. We also report the solution times (in seconds) for the

different approaches.

Table 3.1: Performance of heuristic (o = 0.7, p = 0.5)

Tnstance co-located not co-located
information | f
IN| 18| Avg. opt. | Max. opt. | Time. opt. | Time. heu. | Avg. opt. | Max. opt. | Time. opt. | Time. heu.
gap (%) | sgap (%) (secs) (secs) gap (%) | gap (%) (secs) (secs)

1/10 0.0 0.0 1.0 0.3 0.3 1.3 1.9 2.3

30 21 1/2 0.7 3.2 36.7 0.3 1.1 5.2 10.4 2.6
1/1 0.1 0.5 303.2 0.3 1.4 7.1 91.9 3.1
1/10 0.0 0.0 11.8 2.0 1.6 7.8 16.4 2.6

40 28 1/2 0.4 2.0 685.5 2.2 2.1 3.7 152.6 3.4
1/1 1.6* 4.6 6,378.4* 2.1 9.8 27.6 670.9 3.9
1/10 0.0 0.0 81.1 2.1 0.0 0.0 4,786.7 2.7

50 35 1/2 0.5% 2.1 853.8% 2.1 0.8* 2.5 2,803.5* 4.3
1/1 0.7* 2.9 18,524.0%* 2.3 1.7% 3.2 29,544.3* 5.8

# of times optimal 33 /42 24 /43

*Average over 4 instances, as the MILP could be solved in 24 hours for one instance
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We observe that the heuristic performs well, especially in the setting with co-located ware-
houses. In this case, the average optimality gap is 0.5% and the maximum optimality gap
is 4.6%. The optimal solution is found for 33 of 42 instances. When the warehouses are not
co-located, the performance is still good with an average optimality gap of 2.1%. However,
the maximum gap is 27.6% and the optimal solution is found for 24 of 43 instances. The
heuristic is much faster than the MILP for all but the smallest instances. We did not find a
proven optimal solution within 24 hours for 5 instances. This suggest that using the MILP

approach for medium- and large-size instances is impractical.

When the warehouses are not co-located, the sequence in which stores are visited in an
optimal flexible route can be quite different from the sequence in which the stores are visited
in the fixed route, which results in our heuristic being less effective. Consider for example
the instance for which the optimality gap is 27.6% (in Table 3.1). The optimal flexible route
is d-12-5-1-2-8-16-15-14-d, as shown in Figure 3.4a, which does not follow the sequence in
which stores are visited in the fixed route. The optimal flexible route first visits store 12,
then visits store 5, where the demands of stores 7, 8, 9, 10, and 11 are are transferred. The
flexible route produced by the heuristic is d-12-14-15-16-5-3-2-1-7-8-9-10-11-d, as shown in
Figure 3.4b, which uses store 12 as the catch-up point and then follows the fixed route until
store 16, after which it visits stores in S before store 12. As a result, store 5 cannot be used
as a transfer point and stores 7, 8, 9, 10, and 11 have to be visited in flexible route (on the

Hamiltonian path), thereby leading to a costlier solution.

However, overall our heuristic performs well and hence, we use this heuristic to analyze the

benefits of capacity sharing under different conditions.
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(a) Optimal Solution (Cost: 80.5) (b) Heuristic Solution (Cost: 102.7)

® ® <

B : w/h fixed route,  : w/h flexible route, O : store (fixed route only), < : shared store

@ / @ : transfer point , . fixed route, — : flexible route SP, --» : flexible route HP

Figure 3.4: Case where the heuristic fails
(IN| =40, =0.7,3=1/1,p = 0.5)

3.6.3 Savings from capacity sharing

In this section, we illustrate the advantages of capacity sharing between the two distribution
channels in omni-channel retail. For each instance, we determine the costs without capacity
sharing, by solving a TSP on {d} U S, and compare it to the costs with capacity sharing, by
using our heuristic to determine a flexible route. We create instances using n = 40, 60, 80,
100, & = 0.7, 3 = 1/2, and p = 0.5. In Table 3.2, we report the transport cost savings (A
transport cost) obtained by sharing capacity across the two channels when the warehouses
of both the channels are co-located and when they are not co-located. To better understand
how capacity is shared, we also report the number of stores visited in the flexible route, the
number of stores whose demand is transferred to the fixed route, and the number of stores
used as transfer points in the flexible route. We also report the numbers for stores visited
and transferred as a percentage of the number of stores that need to be served in the flexible
route, and the number of transfer points as percentage of the number of stores visited in

the flexible route.
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Table 3.2: Savings by capacity sharing
(a=0.7,=1/2, p=0.5,cf =0)

Instance A transport Stores Stores Transfer
Warehouse
information cost visited transferred points
location
INT 18] (%) # 0% | # % | # %
40 28 72.0 3.8 136 | 25.2 90.0 | 2.8 80.0
60 42 77.6 44 105 | 382 91.0 | 42 950
co-located
80 56 78.9 4.2 7.5 53.6 95.7 | 34 81.0
100 70 81.0 5.2 74 66.0 94.3 | 4.8 95.6
40 28 67.5 52 18.6 | 23.2 829 | 2.2 443
not 60 42 74.3 52 124 | 36.8 87.6 | 2.2 42.7
-located
co-locate 80 56 74.4 5.8 104 | 50.8 90.7 | 2.0 34.7
100 70 76.7 6.8 9.7 63.8 91.1 | 2.2 374

When the warehouses are co-located, the cost savings range from 72% to 81%, where the
cost savings increase with the number of stores in the flexible schedule |S|. This can be

attributed to a decrease in the fraction of stores visited in the flexible route.

Note that the sum of the (average) number of stores visited and the (average) number of
stores transferred is greater than the number of stores | S|, that need to be served. This im-
plies that some stores without demand (i ¢ S) are visited for the sole purpose of transferring

demand to the fixed route.

We also observe that the demand of a remarkably large fraction of stores, between 90 to
95%, is being transferred; sharing capacity between the channels is greatly exploited. The
reduction in the number of stores visited in the flexible route is not only beneficial because
it results in cost savings, but also has environmental benefits as it reduces emissions and

reduces congestion in the areas where stores are located.

We see similar trends in cost savings and store visits when the warehouses are not co-located.
The cost savings range from 67% to 77%, while the reduction in store visits ranges from
82% to 92%. When the warchouses are not co-located, the benefits of capacity sharing
are smaller than when the warehouses are co-located, mainly because the number of stores
where transfers can take place is reduced. Since the fixed and flexible routes start at the
same time, when the warehouses are not co-located, it is not possible for the flexible route

to transfer demand at stores visited early in the fixed route, before the store where the two
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routes can catch up. Equally important, if these stores also have to be visited in the flexible

schedule, then they all need to be visited on the flexible route.

It is interesting to note how few transfer points are used; just over two on average when the

warehouses are not co-located.

3.6.4 Joint planning versus SCRPT

In the SCRPT, it is assumed that the route of the vehicle replenishing store inventories is
fixed and only the route of the vehicle that supplies the in-store pick-up points is planned.
In this section, we compare the savings from this capacity sharing setting to a joint planning
setting in which online orders are transferred to the warehouse handling store replenishment,
and then deliveries to the stores, of both replenishment goods and pick-up point orders, are

planned jointly, i.e., two (flexible) routes are created.

In the joint planning setting, we assume that the vehicle that transfers online orders to
the warehouse handling store replenishment, returns to the online order fulfillment center
after its last store delivery. The goal in the joint planning setting is to minimize the
system-wide costs, i.e., the sum of the costs of the two delivery routes plus the cost of
the (one-way) transfer from the online order fulfillment center to the warehouse handling

store replenishment.

For this experiment, we consider |[N| = 100, = 0.7, 8 = 1/2, and p = 0.5, and we assume
that both vehicles have the same capacity. (In practice, the vehicle delivering online orders
to pick-up points tends to be smaller.) Table3.3 shows the cost savings achieved by the
joint planning and the SCRPT for the case where the warehouse and fulfillment center are
co-located and for the case when they are not. As both routes in the joint planning setting
are flexible, we report the savings as a percentage of the total costs of the fixed and the
flexible routes when no sharing takes place. (Note that in previous tables, we reported the

savings as a percentage of the cost of flexible route when no sharing takes place.)
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Table 3.3: Savings in VRP joint planning vs SCRPT
(IN| =100, = 0.7, 83 = 1/2, p = 0.5)

Co-located

Without sharing Joint planning SCRPT A
Fixed Flexible One Fixed Flexible savings
Total | VRP Total Savings Total  Savings
Ins # route route way route route (%
cost cost cost (%) cost (%)
cost cost, transfer cost, cost points)
1 396.2 345.8 742.0 | 415.7 415.7 44.0 396.2 58.7 454.9 38.7 5.3
2 385.9 338.4 724.3 | 411.2 411.2 43.2 385.9 84.8 470.7 35.0 8.2
3 387.2 331.9 719.1 | 416.6 416.6 42.1 387.2 70.7 457.9 36.3 5.7
4 396.9 334.5 731.4 | 423.2 423.2 42.1 396.9 69.7 466.5 36.2 5.9
5 410.5 345.8 756.4 | 427.9 4279 434 410.5 38.0 448.5 40.7 2.7
Average | 395.3 339.3 734.6 | 418.9 418.9 43.0 395.3 64.4 459.7 37.4 5.6
Not co-located
1 396.2 341.8 7379 | 4471 35.4 482.4 34.6 396.2 66.8 463.0 37.3 -2.6
2 385.9 340.4 726.3 | 435.5 35.4 470.8 35.2 385.9 83.8 469.7 35.3 -0.2
3 387.2 325.6 712.8 | 444.2 35.4 479.5 32.7 387.2 75.5 462.7 35.1 -2.4
4 396.9 330.4 727.3 | 456.0 35.4 491.4 32.4 396.9 89.9 486.8 33.1 -0.6
5 410.5 340.9 751.5 | 456.4 35.4 491.7 34.6 410.5 74.1 484.6 35.5 -0.9
Average | 395.3 335.8 731.2 | 4478 35.4 483.2 33.9 395.3 78.0 473.3 35.3 -1.3

As may have been expected, the table shows that the joint planning setting results in
more savings than the SCRPT (43.0 % vs 37.4%) in the co-located case. In this case,
the additional flexibility allows for a decrease in the overall travel costs. However, we also
observe that the SCRPT results in more savings than the joint planning when the warehouse
and fulfillment center are not co-located (35.3 % vs 33.9%). One reason for this is that the
SCRPT allows the use of “freed up” capacity in the fixed route, i.e., capacity that becomes
available after store demand has been dropped off. Another reason is that the SCRPT does
not require transfers to take place at the warehouse, and costs can be saved by choosing the

first and last leg of the route carefully.

3.6.5 Effect of store overlap « and relative demand sizes

In this section, we analyze the effect of the fraction of the number of stores served in the
fixed route that also need to be served in the flexible route, i.e., &, and the ratio of the
demand of a store in the flexible schedule and the demand of a store in the fixed schedule,
i.e.,, B. We create instances using n = 50, 75, 100, « = 0.1, 0.5, 1.0, 8 = 1/10, 1/2, 1/1,

and p = 0.5. Table3.4 reports the cost savings, the number of stores visited, the number
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of stores transferred, and the number of transfer points used (in parentheses, we report the
numbers for stores visited and transferred as a percentage of the number of stores that need
to be served in the flexible route, and the number of transfer points as percentage of the

number of stores visited in the flexible route).

A higher value of f means higher demand in the stores that need to be visited in the
flexible schedule. For the same transfer capacity at stores in a fixed route, this leads to
a reduction in the number of stores transferred and an increase in the number of stores
visited. Consequently, for a given «, the savings in transport cost decrease with g as fewer
stores get transferred, and more transfer points are required to do so. This trend can be

seen across values of n.
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Table 3.4: Effect of a and 8 on capacity sharing [warehouses not co-located)

(p=105)
o — 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
Bl |IN| =50 |N| =175 |N| = 100
A 1/10 79.4 75.9 77.2 58.4 78.3 78.8 70.6 77.2 80.1
transport 1/2 79.4 70.1 72.7 58.4 74.2 74.3 70.6 76.0 76.8
cost (%) 1/1 | 794 696 640 | 584 720 648 | 706 716 688
1.2 2.8 5.4 2.4 2.8 7.0 2.2 3.6 8.4
1/10
4 of (24.0) (11.2) (10.8) | (32.0) (7.5)  (9.3) | (22.0) (7.2)  (8.4)
o
1.2 4.6 8.4 2.4 4.8 11.0 2.2 5.4 10.8
stores 1/2
(24.0) (18.4) (16.8) | (32.0) (12.8) (14.7) | (22.0) (10.8) (10.8)
visited
/ 1.2 4.8 11.0 2.4 6.0 16.4 2.2 8.0 18.4
1/1
(24.0)  (19.2) (22.0) | (32.0) (16.0) (21.9) | (22.0) (16.0) (18.4)
1/10 4.6 22.8 44.6 5.6 34.4 68.0 8.6 47.0 91.6
4o (92.0)  (91.2) (89.2) | (747) (91.7) (90.7) | (86.0) (94.0)  (91.6)
o
4.6 21.0 41.6 5.6 33.2 64.0 8.6 45.8 89.2
stores 1/2
(92.0)  (84.0) (83.2) | (747) (88.5) (85.3) | (86.0) (91.6)  (89.2)
transferred
/ 4.6 20.8 39.0 5.6 31.8 58.6 8.6 42.8 81.6
1/1
(92.0) (83.2) (78.0) | (74.7) (84.8) (78.1) | (86.0) (85.6) (81.6)
1.0 1.0 1.4 1.4 1.0 1.4 1.0 1.0 1.6
1/10
4 of (90.0)  (38.3) (20.8) | (63.3) (36.7) (21.3) | (60.0) (28.3) (20.8)
o
1.0 2.0 2.0 1.4 2.0 3.2 1.0 2.6 3.0
transfer 1/2
(90.0) (46.7) (24.4) | (63.3) (43.3) (32.0) | (60.0) (46.5)  (28.6)
points
/ 1.0 2.2 3.2 1.4 3.0 3.6 1.0 3.2 4.6
1/1
(90.0)  (51.0) (30.2) | (63.3) (53.9) (23.5) | (60.0) (44.5) (26.1)

The results in Table 3.4 do not show any clear trend for changes in a. A higher value of a
means that a higher number of stores need to be served in the flexible schedule. To better
understand the effect of «, we fix the number of stores that need to be served in the flexible
schedule. We consider two scenarios: |[N| = 100 with a = 0.5 and |N| = 50 with oo = 0.5,
where the same set of 50 stores needs to be served in the flexible schedule. The results can
be found in Table 3.5. We observe that both the the transport cost savings and the number
of stores transferred are higher for the first scenario. When |N| = 100, oo = 0.5, the stores

that do not need to be served in the flexible schedule can be and are used as transfer points.
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When |N| = 50, a = 1.0, the option to transfer goods at other desirable locations is no
longer available. This is reflected in the results, where for |[N| = 100, o = 0.5, we see that

fewer stores are visited and the demands of more stores are transferred, leading to higher

transport cost savings.

Table 3.5: Effect of a on capacity sharing [warehouses not co-located]
(IS] = 50, 8 = 1/2, p = 0.5)

|N| =100, | |N|=50,
a=0.5 a=1.0
A transport cost (%) 76.0 68.9
# of stores visited 5.4 8.6
# of stores transferred 45.8 41.4
# of transfer points 2.6 2.6

3.6.6 Effect of store transfer capacity

In the previous experiments, we assumed that about half of the stores had limited space
available to temporarily store (and handle) goods being transferred, i.e., p = 0.5. Here, we
consider different values of p, the probability that a store has limited transfer capacity, to
understand its effect on capacity sharing. The results can be found in Table 3.6, where, as
before, we report the transport cost savings, the number of stores visited, the number of

stores transferred, and the number of transfer points used.

Table 3.6: Effect of store transfer capacity on capacity sharing [warehouses not co-located]

A transport | # of stores # of stores # of transfer
g cost (%) visited transferred points
0.00 77.3 6.6 63.6 2.2
0.25 77.1 6.8 63.6 2.0
0.50 75.9 9.2 61.6 3.0
0.75 74.3 11.0 59.8 3.6
1.00 50.5 35.0 38.8 26.0
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As expected, when store transfer capacity is limited at more stores (i.e., higher values of
p), more stores are visited and the goods of fewer stores are transferred. This is reflected in
the transport cost savings, with the highest saving for p = 0.00 and the lowest cost savings

for p = 1.00.

Interestingly, the transport cost savings do not differ much for p = 0.00, 0.25, 0.50, and
0.75. A closer examination of the flexible routes for these instances reveals that stores that
have no store transfer capacity limit are chosen as transfer points. Of course, this is not
possible when all stores have a store transfer capacity limit (p = 1.00) and the transport

cost savings drop significantly.

3.6.7 Effect of store transfer costs

In this section, we study the impact of a fixed cost for transferring demand at a store, i.e.,
¢I' > 0 for i € N. In particular, we set the value of the transfer cost at every store to 7 > 0
times the average distance between any two locations in the network. The total cost is the
sum of the transport cost and the transfer cost. In Table 3.7, we report the cost savings,
the number of stores visited, the number of stores for which demand is transferred, and
the number of transfer points used. Note that the case 7 = 0.0 corresponds to the default

setting without transfer costs.
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Table 3.7: Effect of transfer costs at store on savings of capacity sharing [warehouses not

co-located|

(a=0.7,8=1/2, p=10.5)

Instance A transport A transfer A total Stores Stores Transfer
T information cost cost cost visited transferred points
[Nl S| (%) (%) (%) # % # % | # %
40 28 67.5 0.0 67.5 52 186 | 232 829 |22 443
60 42 74.3 0.0 74.3 52 124 | 36.8 876 | 2.2 427
00 80 56 74.4 0.0 74.4 58 104 | 50.8 90.7 | 2.0 34.7
100 70 76.7 0.0 76.7 6.8 9.7 63.8 91.1 | 22 374
40 28 67.3 -4.3 63.0 6.0 214 | 224 80.0 |18 318
60 42 74.5 -3.8 70.7 6.2 14.8 | 358 852 |20 338
02 80 56 74.4 -3.4 71.0 58 104 | 50.8 90.7 | 2.0 34.7
100 70 76.7 -3.2 73.5 6.6 94 642 91.7 | 20 31.3
40 28 65.4 -8.3 57.1 70 25.0 | 21.2 757 | 14 222
60 42 74.9 -8.5 66.4 74 176 | 346 824 | 1.8 27.6
02 80 56 73.6 -7.7 65.9 74 132 | 492 879 | 1.8 282
100 70 76.8 -8.0 68.8 6.6 9.4 642 91.7 | 2.0 313
40 28 62.4 -11.9 50.5 82 293 | 198 70.7 | 1.0 122
60 42 71.9 -11.5 60.4 9.8 2331|3220 76.7 |12 142
o 80 56 69.3 -10.2 59.1 12.8 229 | 4340 775 | 1.2 122
100 70 72.4 -11.1 61.3 14.0 20.0 | 56.6 809 | 1.4 149

As expected, we see less cost savings in the settings with transfer costs. The reason for this

is that some of the transportation cost savings are offset by the additional costs associated

with transfers. Intuitively, we see that the number of transfer points used decreases with

the transfer costs.

3.6.8 Effect of the capacity of the vehicle operating the fixed route

So far, we have assumed that the vehicle operating the fixed route has no available capacity

when it leaves the warehouse. Here, instead, we assume that 7% of the total demand of

the stores in the flexible schedule is available as spare capacity in the fixed route at the

warehouse. We use |[N| = 100, « = 1.0, and 8 = 1/2 in this experiment. Note that by

increasing the spare capacity at the warehouse, the transfer capacity, ej, at every store i,
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for ¢ € N, is increased by the same amount, which can lead to higher transport cost savings.
We observe in the results reported in Table 3.8, that this is indeed the case.
Table 3.8: Effect of an increase in capacity of fixed route vehicle on capacity sharing

[warehouse not co-located|]
(IN| = 100, [S| = 70, a = 0.7, B = 1/2, p = 0.5)

T A transport | # of stores # of stores # of transfer
(%) cost (%) visited transferred points

0 76.7 6.8 63.8 2.2

10 77.6 7.6 62.8 2.6

20 78.0 7.6 63.0 2.8

When the warehouses are not co-located and the fixed and flexible routes start at the
same time (as is the case in the default settings), it is, of course, not possible to use the
warehouse of the fixed route as a transfer point. However, even when the flexible route can
start earlier and the warehouse of the fixed route can be used as a transfer point, in the
instances we generated, it never is. It is always better to catch-up at a store that is closer
to the warehouse of the flexible route. We note that this is an artifact of our instances. If
visiting the warehouse of the fixed route does not require a long detour, it may be beneficial

to use it as a transfer point in the flexible route.

3.6.9 Effect of the earliest start time of flexible route

When the warehouse of the flexible route is not co-located with the warehouse of the fixed
route, the flexible route needs to catch up with the fixed route before it can transfer goods.
A similar situation arises when the warehouses are co-located, but the flexible route starts
later than the fixed route. This may occur when the retailer wants to accommodate more
online orders and sets a late online order cut-off time. Here, we study how a later start of

the flexible route impacts the benefits of capacity sharing.

We use |N| = 100, a = 0.7, 8 = 1/2, p = 0.5. The duration of the fixed route for this
setting is around 400 units of time. We let the flexible route start § units of time after the

fixed route for 6 = 30, 45, and 60. The results can be found in Table 3.9.
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Table 3.9: Effect of late start of flexible route on capacity sharing [warehouse co-located]
(IN] =100, |S| =70, «a =0.7, 8 =1/2, p=10.5)

5 A transport | # of stores # of stores # of transfer
cost (%) visited transferred points

0 81.0 5.2 66.0 4.8

30 72.9 12.4 58.4 2.8

45 68.2 16.2 54.6 2.0

60 63.0 18.4 52.2 1.2

As expected, when the transfer options reduce (when 6 increases), the transport cost savings
decrease (the number of transfer points decreases, the number of stores transferred decreases,
and the number of stores visited increases). As ¢ increases, the flexible route can only catch
up with the fixed route at a “later” store. Therefore, fewer stores can be transferred, and

more stores have to be visited (at least all those before the catch-up point).

In Figure 3.5, we illustrate the effect of a late start of the flexible route on capacity sharing
for a particular instance. When the flexible route starts at the same time as the fixed route
(6 = 0), the flexible route is d-1-3-4-25-10-89-d, as shown in Figure 3.5a. When the flexible
route starts 30 units of time after the fixed route (§ = 30), the flexible route is d-12-11-25-
27-26-10-9-8-6-4-2-1-d; the first store it can catch up with the fixed route is store 12. Since
the stores before the catch-up point cannot be transferred, they have to be visited, which

contributes to the increase in transport cost.
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(a) 6 =0 (Cost: 58.7) (b) 6 = 30 (Cost: 80.9)
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Figure 3.5: Late start of flexible route [warehouse co-located]
(IN| =100, « = 0.7, 8 =1/2, p = 0.5)

3.7 Conclusion

We have introduced the Shared Capacity Routing Problem with Transfers to minimize the
transport cost of online order fulfillment in an omni-channel retail environment. We have
developed an exact as well as a heuristic approach for its solution. We have conducted
an extensive computational study to assess the benefits of capacity sharing, in terms of

transport cost savings and a reduction in the number of store visits.
The following is a summary of the insights gained from our computational study:

e The benefits of capacity sharing can be significant, especially when the volume of
goods to be delivered to the store pick-up points is small compared to the volume of

goods for replenishing store inventories.

e To achieve the benefits of capacity sharing, it is sufficient to have just a few stores

with ample transfer space.

e The benefits of capacity sharing depend on the locations of the warehouses for store
replenishment and online order fulfillment because it impacts the first possible transfer

location and time.
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e The benefits of capacity sharing will be greater if the vehicle supplying the store pick-
up points can depart its warehouse earlier or not much later than the vehicle that

replenishes store inventories.

e The benefits of capacity sharing do not depend strongly on the capacity of the vehicle

that replenishes store inventories.

A natural extension of the research reported in this paper is to consider multiple fixed routes

and multiple flexible routes.
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Appendix

Shortest path in topologically sorted directed acyclic graph

1: Define dist[i] as the shortest path distance of node ¢ from the source s in Gy = (V1, A1)

2: Initialize dist[i] = {00, 00,...},Vi = 1,...,|Vi| and dist[s] = 0, where s is the source
vertex
3: for every vertex u in a topological ordering of G do

4:  for every adjacent vertex v of u do

5: if dist[v] > dist{u] + cuv then
6: dist[v] = dist{u] + cuv
7 end if

8: end for

9: end for=0

During computation of dist[v], we store the u corresponding to the least cost in P(v). We

can reconstruct the shortest path bases on P(v).






4 Towards Profitable Growth in E-Grocery
Retailing — the Role of Store and Household

Density

4.1 Introduction

Online grocery sales have seen spectacular growth rates world wide, especially during the
Covid-19 pandemic (ResearchAndMarkets.com 2020). However, online sales still account for
only 5%—-10% of total grocery sales in most markets. One of the main reasons that e-grocery
sales have not developed as rapidly as other categories, such as electronics and books, is the
operational challenges involved. Grocery products are bulky and fragile; they also include
fresh food with expiration dates and different temperature requirements. A typical grocery
order consists of 30-60 different stock-keeping units (Seow et al. 2003) that need to be
“picked” individually. Moreover, the customers in home delivery setups must be at home
in order to receive the goods — which necessitates the use of time windows to coordinate

receipt of the groceries (Agatz et al. 2011).

E-grocery operations are characterized by high costs per transaction. The two primary cost
drivers are order picking and last-mile delivery operations. In picking, the cost per customer
order depends mostly on the level of automation (Hiibner et al. 2016b). In last-mile delivery,
costs depend on the drop density (i.e., number of deliveries per fixed area) and the service
time spent at the customer. A higher drop density is associated with lower travel times and
less distance between customers. Because drop density is related to the number of customers
that can be served together in space and time, it is linked also to lead times, time-window
options, household density, and total number of customers that shop online. Service time
depends on the size of the order and on the retailer’s specific service offering. For instance,

it generally takes more time to deliver “into the kitchen” than simply to the doorstep.
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Since the delivery fee is a barrier to shopping online, grocers typically charge a low fee
(or even offer free delivery) to attract more customers. Given the low profit margins of
grocery products and the relatively small order sizes, the retailer’s per-order fulfillment
costs often exceed the associated revenue (Capgemini 2019). Thus e-grocery operations —
whether conducted by pure players or multi-channel retailers — generally incur losses. For
example, the UK-based e-grocery retailer Ocado reported a £214 million loss in 2019 (Castia
2020).

There is ongoing debate over whether or not online grocery will ever be more than a niche
market (Dannenberg et al. 2020). Several industry analysts expect e-grocery market shares
to reach double digits in the next 5-10 years (Colliers International 2019, FMI et al. 2020),
and hundreds of millions of dollars have been invested in e-grocery operations around the
world (Ecommerce News Europe 2019, Begley et al. 2020, Park 2020). At the same time,
others are more critical. The retail bank HSBC is “unconvinced of [the] long-term viability
of home deliveries for grocery” (Edwards 2016). In a recent study of the German market,
Dannenberg et al. (2020) conclude that “even the unprecedented growth in e-grocery during
the [Covid-19] crisis does not indicate a fundamental long-term shift from stationary to

online food retail.”

What is often missing in this debate is a good understanding of the interaction between the
store channel and the e-grocery channel. On the one hand, growth in the online market share
is typically at the expense of the store channel. On the other hand, studies have shown that
e-grocery sales increase disproportionately in areas with less store coverage (Chintagunta
et al. 2012). Hence the growth of e-grocery shopping cannot be studied separately from

developments in the store channel.

The two sales channels have different value propositions. The e-grocery channel provides
customers with the convenience of home delivery, but it may also be perceived as costly
and inflexible because it requires customers to plan ahead. In contrast, brick-and-mortar
stores provide instant gratification and allow customers to touch and feel fresh items without
having to wait or pay delivery fees (NPD 2018). The situation is in constant flux as both

channels continuously look for ways to improve the shopping experience for customers.

Our study focuses on how household and store densities affect the market shares of the
e-grocery and store channels. For the online channel, higher household density is associated

with higher drop densities and thus lower last-mile fulfillment costs — characteristics that
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allow for more competitive pricing of the online service to win market share. Yet we show
that, contrary to conventional wisdom, higher household densities do not always lead to
a more competitive e-grocery channel because store densities are then typically higher as
well. Thus we observe competing effects, as high household densities correspond to lower
fulfillment costs whereas high store densities limit the appeal of home online grocery. To
analyze this intriguing relationship, we develop a stylized model of cross-channel choice
behavior that captures the effects of household and store densities while incorporating the
different cost structures of each channel. The model considers a grocery retailer that operates
both a network of stores and an e-grocery home delivery service. Customers choose to shop
for groceries through the e-grocery channel, at the store, or via an outside alternative. We
calibrate the model using empirical data from an European context and then derive insights

into how market shares could evolve in different environments.

We find that e-grocery channel profits increase with household density but decrease with
store density. Picking costs also play a significant role in the profitability of the e-grocery
channel. When the retailer’s two channels are jointly optimized, e-grocery is a profitable
option only when picking costs are low. In addition, we document that increases in customer
valuations of the e-grocery channel can significantly boost its profitability. An increase in
online sales will come at the expense of sales in the store channel, which jeopardizes that

channel’s financial viability. One possible outcome is the eventual closing of stores.

Our results suggest three strategic paths to profits in e-grocery: service, niche, or subsidies.
The service path requires a substantial increase in valuation of the online channel in compar-
ison to the store channel; only such an increase can induce customers to pay higher delivery
fees. The niche path requires that the online channel focus on areas with high household
density and low store density. In these areas, the relative costs of the online channel are
most competitive while valuations of the store channel are relatively low — given the costs
of traveling to a store. Finally, the subsidy path relies on the deep pockets of investors and
shareholders to subsidize the online channel until such time that stores face imminent clo-
sure. In that event, the store channel’s relative valuation declines and so the online channel

can charge higher delivery fees.

This study’s principal contributions can be summarized as follows. First, we present a
stylized model that allows one to study the “cannibalization” of sales between the e-grocery

channel and the store channel. Thus we model customer choice behavior across sales channels
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as well as its effects on operational fulfillment costs. In this model, we bring together
different aspects that have previously been studied only in isolation. Second, we provide
fundamental new insights into the drivers of the e-grocery channel’s profitability and market
share. Finally, we calibrate our model based on real-world industry data and thereby
illuminate expected developments in the market shares of the different channels in various

environments.

The rest of our paper proceeds as follows. Section4.2 reviews the related literature. In
Section 4.3, we formally describe the model. Section 4.4 presents some theoretical results,
and Section 4.5 reports the results from our numerical experiments. We conclude in Section 4.6

with a summary of our key findings and suggestions for future research.

4.2 Literature review

This paper contributes to the literature on omni-channel grocery retailing. Our method
builds on research addressing customer choice behavior and the literature on e-grocery

operations.

So-called attraction demand models are commonly used to model consumer choice in mar-
keting, economics, operations, and revenue management (Harsha et al. 2019). There is a
large stream of literature that uses stylized attraction models to study the interaction be-
tween different sales channels. Bernstein et al. (2008) focus on the benefits, for a traditional
brick-and-mortar retailer, of adding an e-grocery channel. They derive multinominal logit
models and study industry equilibria for different market conditions. In a similar vein,
these models have been used to study a variety of specific omni-channel retail settings, such
as “showrooming” (Balakrishnan et al. 2014) and “buy online with pickup in store” (Gao
et al. 2021). Most of the extant work considers channel choice and pricing based on simple
linear cost models. In contrast, we focus on effects of the nonlinear fulfillment costs typical
of e-grocery retailing. In particular, we model marginal fulfillment costs that — owing to
economies of scale — decrease with the number of orders. Moreover, whereas most papers in
this stream of work are devoted to developing theoretical frameworks, we collect empirical
input data to provide real-world insight on potential market shares and the profitability of

grocery operations.
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The empirical research on channel choice in grocery retailing is limited. Previous studies
on e-grocery shopping compare online and offline purchase behavior in terms of brand
loyalty (Danaher et al. 2003), shopping behavior (Andrews and Currim 2004, Breugelmans
et al. 2007, Kull et al. 2007), and consumers’ perceptions of shopping online for groceries
(Ramus and Nielsen 2005). Chintagunta et al. (2012) empirically quantify different types of
transaction costs in the online and offline grocery channels. Boyer and Hult (2005) show, in
an e-grocery context, the importance of the retailer’s website — and of product and service

qualities — for encouraging repeat purchase intentions.

A number of papers discuss the advantages and disadvantages of different strategies for e-
grocery and omni-channel fulfillment operations (Yrjo et al. 2001, de Koster 2002, Hays et al.
2005, Hibner et al. 2016b). There is a growing body of research on the specific challenges
of offering an effective and cost-efficient grocery delivery service, especially as regards last-
mile operations. Several early studies focus on how customer density and the length of the
delivery time window affect last-mile delivery costs (Lin and Mahmassani 2002, Boyer et al.
2009). Others have addressed optimizing the design of the time-window offering in order to
facilitate efficient routing operations and customer service (Agatz et al. 2011, Yang et al.
2016) while discussing the related (dynamic) pricing decisions (Klein et al. 2019, Strauss
et al. 2020, Vinsensius et al. 2020). In this paper, we apply continuous approximation (cf.
Ansari et al. 2018) to estimate the expected last-mile distances for different drop densities.
Such routing approximations are well suited for strategic analysis of the case where customer

locations are not precisely known.

Order picking constitutes a large portion of the costs of online order fulfillment (Kémé-rainen
et al. 2001). It is well documented that warehouse-based picking is more efficient than store-
based picking (Hibner et al. 2016b). Although there is extensive research on warehouse
operations and order picking for e-commerce (Boysen et al. 2019), much less attention has
been given — in the literature on warehouse layout design and order-picking strategies — to
the particular challenges of picking groceries (e.g., temperature zones, sensitive products).
One notable exception is the recent work of Vazquez-Noguerol et al. (2021), who study
how best to organize picking processes for the e-grocery channel in a regular store. Their
empirical work highlights the need to account for different product and order characteristics

when designing a process for picking.
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4.3 Model

We consider a grocery market of area A in which N* households and N°® grocery stores are
uniformly distributed. Let 6" = Nh/A be the household density. Consider an omni-channel
grocery retailer that serves the market through its N; stores and also through its e-grocery
channel with home delivery service. Households buy fresh groceries at the stores or via the
e-grocery channel; they also have the option of obtaining their groceries from an outside
option. Since the share of the store channel in the grocery market is large, we represent the
outside option by the stores not belonging to our retailer. We assume that weekly spending is
uniform. The gross margins for the e-grocery and store channels are denoted by m. and ms,

respectively.

4.3.1 Customer choice model

To model household choice for grocery shopping, we use a general “attraction demand”
model (Huang et al. 2013). Customers choose between different channels so as to maximize
their utility. Here, each channel has a specific utility that is associated with the attractive-
ness of the shopping experience in that channel. Let u. denote the utility of the e-grocery

channel, us of the store channel, and u, of the outside option.

A customer incurs also certain disutilities when shopping online or in the store. One disu-
tility of shopping online is the delivery fee p. Another disutility of the e-grocery channel is
related to the inconvenience of waiting for the groceries to arrive (e.g., lead time, number
of time windows, length of the time window). Let w (0 < w < 1) denote the disutility with
respect to waiting time of delivery, where w = 0 is the highest level of disutility and w =1

is the lowest. Then the overall utility of the e-grocery channel can be written as

ue = fv—7p — (1 — w); (4.1)

where v is the valuation of the channel for having groceries at home and ( is a multiplier
that captures the general customer preference for the e-grocery channel, which is due to such
factors as convenience. The values of the parameters 77 and 7% (with 77, 7% > 0) reflect

the sensitivity of the customer to (respectively) the delivery fee and the waiting time.

In line with the literature (e.g., Forman et al. 2009, Chintagunta et al. 2012), we suppose

that travel time and transportation costs are the main disutilities of visiting the physical
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store. There is much empirical evidence suggesting that customers are more likely to shop
online when they live farther away from a physical store (Cachon 2014). We model the
average distance to a store in relation to the store density. With increases in the number NJ
of retailer’s stores, the average distance of a customer to the nearest store decreases —
thereby boosting the store channel’s utility. Let 6; = NJ /A be the density of stores in the
retailer’s store channel. We follow Cachon in approximating the average round-trip distance,
¢+/+/3%, under the assumption that all customers in the store’s service area purchase from
the retailer’s nearest store. The overall utility of the store channel, us, can be defined
as follows:

we = v — %7 (4.2)

where ¢; depends on the shape of the area. The parameter o (with a > 0) determines
the customer preference for the store channel that is due to such factors as assortment,
freshness, environmental concerns, Internet connectivity and speed, and the hours during
which stores are open. Hence 3/« captures the relative popularity of the e-grocery channel

over the store channel.

The customer has the choice of an outside option whose utility is u,. Since the outside
option is represented by the stores not belonging to our retailer, it follows that the utility

of that option is affected only by the customer’s cost of traveling to a store. Therefore,

Pt

Uo = (B4 a)v — (4.3)

In this expression, d; = N, /A is the density of grocery stores not belonging to the retailer,
with Ny = N° — NZ. The multiplier (8 + «) of the valuation of the outside option is chosen
such that, in absence of other costs, a customer chooses the retailer and the outside option

with equal probability.

We use the attraction demand model (Gallego et al. 2006) to determine the probability of
choosing channel i € {e, s, 0}, where v; = ul/zl ui; U, = 0 corresponds to the monopolistic
setting in which there is no outside option. The number of customers choosing a channel 4
to purchase groceries is given by NI = 'yiNh. vi < 0 implies that the channel ¢ has no

customer demand.



72 Towards Profitable Growth in E-Grocery Retailing — the Role of Store and Household Density

4.3.2 Cost model

The store channel is characterized by low variable fulfillment costs and high fixed costs.
The costs of serving an additional customer are negligible in the supermarket context.
In contrast, the e-grocery channel is characterized by high variable costs that stem from
order picking and last-mile delivery operations. For each sales channel, we view the supply
of products to the stores and to the e-fulfillment warehouses as fixed costs that are not
associated with specific customer orders. So in line with common management accounting

practice, we focus on the variable costs and the contribution margin

4.3.2.1 E-grocery channel

The customer orders grocery products that must then be picked and packed into bags or
crates for delivery. Picking grocery products is challenging because they require different
temperature zones and are both fragile and bulky. Different customer orders are often picked
in parallel, and the picking time per order depends on the general picking setup (warehouse
or store) and level of automation (K&dmé-rdinen et al. 2001, Hiibner et al. 2016b). In

modeling this dynamic, we use ¢” to denote the picking cost per order.

Next we consider the costs of the last-mile delivery from an e-grocery fulfillment center to
the customer home. The fulfillment center operates a fleet of homogeneous vehicles, each
with a capacity of ) orders. We assume there is only one vehicle per shift and consider
a single shift per day. Hence the number of vehicles that the e-grocery channel needs for
delivering to N households is given by N/ /Q. Each vehicle has a cost ¢” that reflects
leasing and depreciation expenses. We assume that the vehicle fleet and associated costs
can vary with the number of customers, since the size of the (leased) fleet can be adjusted.

We use ¢’ to denote the per-vehicle labor cost of loading orders into the vehicle.

A delivery route consists of three parts: (i) the “stem” distance between the e-fulfillment
center and the delivery area; (ii) the travel distance between consecutive customers within
the delivery area; and (iii) the service times spent at the customers. We approximate the
expected travel distance per route based on the customer density (as in Beardwood et al.
1959, Daganzo 1984). For a fulfillment center that is located in the center of a roughly
circular service area of size A, we can estimate the stem distance as %q&k \/TM; here ¢y,

depends on the shape of the region (Daganzo 2005). The e-grocery channel has an effective
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household density of 'ye6h. Hence the total inter-customer distance traversed in a route is
estimated as ¢r(Q — 1)/1/7e0".

Time-window constraints influence the effective spatial density. Multiple narrow time win-
dows require the delivery vehicle to visit the same area multiple times, which means that
the density is spread out over time. We use the time windows offered for delivery as a proxy
for w, the disutility due to the waiting time for delivery. The higher the number of time
windows, the lower the disutility. To incorporate this effect into our cost model, we multiply
the household density by w; then the inter-customer distance becomes ¢ (Q — 1)/+/7ed w.
When disutility w declines, the inter-customer distance increases because the effective cus-

tomer density is reduced. The total distance traversed in all routes is therefore

(4 A Q-1 \N:
d= <3¢k\/;+¢km> 0 . (4.4)

The costs related to the travel distance comprise fuel costs and labor costs for the driver.

In developed markets, labor accounts for the bulk of all travel costs. Let ¢ denote the labor
and fuel costs per kilometer (km) of driving. Combining the fixed cost of a vehicle and its

loading cost, we can express the total travel cost associated with routes as

i (w4 A, Q-1 ,\N!
c(c +c+3¢k 7Tc +¢kmc ok (4.5)

A customer order typically consists of several bags or crates of groceries, often sorted by the

required product temperature zones. For delivery to the customer, we let ¢® represent the

service-time cost per order, which reflects the labor costs associated with the service time.

When we combine these cost components, the total cost of distribution (picking cost +

transport cost + service cost) for the e-grocery channel is
Co = NP + ¢ + *NE. (4.6)

We can now use (4.6) to write the distribution cost per order as

Ce v s ¢k t
e = ~ U4+ ——=C,
Nk v/ YedPw

where f represents the fixed cost per order depending on the vehicle capacity @ and shape

of the distribution region.
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4.3.2.2 Store channel

For the store channel, most operational costs (e.g., real estate, store labor) are fixed. Stores
generally have full-truckload deliveries, so we can assume that each store’s distribution
costs are fixed. Labor is a high fixed cost for all supermarket operations (Group 2019,
Campbell 2021). In the store channel, the average replenishment size of a store is fixed;
hence warehouse picking costs are also fixed for stores of a given size. Therefore, our model

assumes that there are no variable fulfillment costs associated with the store channel.

4.3.3 Contribution margin and strategies

We focus on maximizing the contribution margin — that is, the gross margin minus the
variable costs. Recall that me and ms represent the gross margin per order for (respectively)
the e-grocery and store channels. The customer choice model gives the total demand for
the e-grocery channel as N* = ~.N". So given the cost model (4.6), we can write the
total contribution margin of the e-grocery channel as II. = (m. + p)Neh — (.. For the
store channel, the variable costs per order are negligible and so its contribution margin is

I, = ms NP,

The total contribution margin for the retailer is given by II = II. + II;. The contributions
per order are denoted by II, TI., and II; for (respectively) the retailer, the e-grocery channel
only, and the store channel only. (We shall often use “contribution” as shorthand for

“contribution margin” when our meaning is clear from the context.)

We consider two different strategies. In the first strategy, the retailer maximizes the contri-
bution margins of the e-grocery and store channels independently — which for our purposes
amounts simply to maximizing the e-grocery’s contribution only. We refer to this as the
online strategy. In the second, omni-channel strategy, the retailer jointly maximizes the
contributions from both channels. The online strategy corresponds to the case where a re-
tailer manages its different sales channels independently, which is a widespread practice.
We seek to derive the optimal e-grocery delivery fee that either maximizes the contribution
margin from the e-grocery channel alone (“online”) or maximizes the total contribution

margin (“omni-channel”).
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4.4 Analytical results

This section presents some analytical results that help us better understand the different
trade-offs and interactions. The proofs of Propositions 1, 2, and 3 are given in (respectively)

Appendix A, B, and C.

Proposition 4.4.1. There exists a unique optimal delivery fee p* that mazimizes the con-

tribution margin.

Mazimizing the contribution amounts to balancing the delivery fee’s effect on revenues and
costs. A lower fee corresponds to less revenue per customer but also creates more demand.
And more demand, which yields economies of scale in last-mile delivery, leads to lower

marginal costs per customer.

Proposition 4.4.2. The optimal market share of the e-grocery channel is lower under the

omni-channel strategy than under the online strategy.

Because the e-grocery channel’s market share declines with a higher delivery fee, Proposi-
tion 2 implies also that the optimal delivery fee p* is lower for the online strategy than for
the omni-channel strategy. The reason is that the omni-channel strategy makes an explicit
trade-off between the advantages of gaining more market share from the competition and
the disadvantages of cannibalizing the retailer’s own store channel by drawing customers

from the profitable stores to the less profitable e-grocery channel.

We are unfortunately not able to derive a closed-form expression for the optimal delivery
fee — owing to the nonlinear nature of our cost and demand modeling. However, we can
analyze the break-even delivery fee to understand how it behaves in relation to our key
parameters. Since the margins are low, we expect that the behavior of the break-even
delivery fee will be similar to that of the optimal fee. Let the break-even delivery fee p® be
the delivery fee at which the marginal revenues of the e-grocery channel are equal to its
marginal costs, and let p° be the minimum delivery fee at which no customer will choose to
shop at the e-grocery channel. The optimal delivery fee p* is bounded by these two extremes;

_ ButrV(1—w)
= — .

that is, p® < p* < p°. To determine p°, we set u. = 0 in (4.1). Then p°

Proposition 4.4.3. For the e-grocery channel, the break-even delivery fee p°

(i) decreases with the household density, sh = Neh/A;
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(ii) increases with the picking costs per order, cP; and

(iii) increases with the store density of the store channel, d;.

It makes sense that the delivery fee required to break even increases with the costs per
order of the e-grocery channel, which include both picking costs and distribution costs; the
additional revenue from the delivery fee is needed to offset the costs. Less intuitive is that
the break-even delivery fee increases with higher store densities. We can better understand
this outcome by recognizing that the online market share decreases with the store density
as the e-grocery channel becomes relatively less attractive. Fewer online orders reduce
drop densities and hence the economies of scale in last-mile delivery, thus leading to higher
fulfillment costs per order. Then the revenue loss from lowering delivery fees is greater
than the cost reduction from serving more customers. We conclude that the retailer should

increase its delivery fee at higher store densities.

4.5 Numerical analysis

To estimate our parameters, we use real-world data from the grocery industry together
with social and demographic statistics. In this section we present the results of a series of
numerical experiments based on those parameters. Our numerical study offers insights into
the relative magnitude of effects of different parameters and into the conditions necessary for
profitable growth of the e-grocery market. When deriving the optimal solution, we enumerate
the delivery fee’s possible values (pl7 <p < pO). Because we use realistic values, our study
also provides insights into the long-run profitability and expected market shares of the

e-grocery channel.

4.5.1 Parameter estimates

Table 4.1 reports our estimates for the parameters of the customer choice and operational
cost model described in Section 4.3. The estimates are based on data from the Netherlands.
We use public sources but have verified the estimates with several major Dutch online

grocery retailers.
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Table 4.1: Model parameters

Parameter Notation Baseline value Sources

Preference of customer for store «a 2.8 Authors’ estimate based on current
channel prices and market shares
Sensitivity to delivery fee P 2.4 Authors’ estimate based on current

prices and market shares

Sensitivity of customer to service T 5.0 Authors’ estimate based on current
quality w.r.t time prices and market shares
Picking cost per order e €12.5 Reinhardt (2001), Moons et al.

(2019), Ehrler et al. (2019)

Service time cost per order c’ €4.2 Drive (2018), Yang et al. (2014)
Annual cost per vehicle c’ €19,000 Schonewille (2016)
Loading cost per vehicle I €8.3 Punakivi and Saranen (2001),

Moons et al. (2019)

Vehicle capacity in orders Q 18 Industry partner data
o 1.32 Daganzo (1984)
Cost per km c €1.8 Statista (2020), Mock (2014),

Moons et al. (2019)

Gross margin Me, M 13% Marshoek (2018), Galante et al.
(2013)

To model demand, we consider a weekly cycle because it corresponds to the typical online
grocery shopping cycle (Statista 2019). We model the operating costs per shift while assum-
ing that weekly demand is spread equally across six shifts. Weekly spending on groceries
is about €100 per household in the Netherlands (Nibud 2021). For grocery products, we
assume a gross margin of 13% (Galante et al. 2013, Marshoek 2018) irrespective of the chan-
nel (so me = ms). This assumption is reasonable since empirical evidence on the impact
of different order patterns online and offline is not conclusive (Kacen 2003, Belavina et al.
2017, Acosta 2020). We consider a disutility cost of €4 per kilometer traveled per store
visit; this cost reflects opportunity and fuel costs as well as urban travel speeds (Mock 2014,

Schonewille 2016, Belavina et al. 2017, Statista 2020).
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Now we evaluate fulfillment costs in the e-grocery channel. Estimates from OW Robots
(2021a) indicate that it takes some 30 minutes to pick a grocery order in a “manual” ware-
house setting. At an average hourly wage of €25 (Moons et al. 2019), this time corresponds
to picking costs of €12.5 per order. For the last-mile distribution operations, we consider
the labor cost, fuel costs, and vehicle cost. We use a yearly fixed cost of €19,000 per vehicle
for leasing and damage costs (Schonewille 2016). The number of vehicle trips needed de-
pends on the number of orders per vehicle trip. The maximum number of orders per vehicle
depends on the their size (i.e., volume and weight) in relation to vehicle capacity. For an
average order of €100, we assume a vehicle capacity @ of 18 orders. We assume an average
loading time of 20 minutes per vehicle trip (Punakivi and Saranen 2001, Moons et al. 2019),
which corresponds to a loading cost of €8.3 per vehicle. The delivery costs per kilometer —
based on urban speed, fuel consumption, and labor costs — is €1.8. We further assume an
average service time at the customer of 10 minutes, which is consistent with our industry
partner’s experience and that of other European retailers offering service “up to the kitchen
table” (Klein et al. 2019). Using the average hourly wage of a driver, we obtain a service

cost of €4.2.

To fit the utilities of shopping online and in the store as well as the price sensitivity with
respect to delivery fees, we compare the market shares of two competing grocery retailers
in the Dutch market: Albert Heijn Online and Picnic (Statista 2020a, 2021b). Whereas
Picnic offers its customers free delivery but with no time-window choice, AH Online charges
a delivery fee of about €8 yet offers more delivery time windows. The product prices are
similar at the two grocers (Els 2017). We estimate price sensitivity parameters based on

these observed combinations of delivery fees and market share.

Next we shall vary the household and store densities to generate insights into how these

aspects affect overall online performance.

4.5.2 Impact of household density and store density

In our first set of experiments, we find the delivery fees and corresponding online market
shares that maximize the e-grocery channel’s contribution margin for different household
densities and store densities (i.e., under the “online” strategy). Panel (a) of Figure 4.1 shows
the profit per order for the e-grocery channel; panels (b) and (c) plot the corresponding

market shares and delivery fee, respectively.
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(a) Online profit per order (€) (b) Online market share (%)
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Figure 4.1: Online profitability versus household density and store density for the online
strategy

In these experiments, we vary the household density between 1,000 per km? and 7,000
per km?. We consider the household density because it is more commonly used, than is
population density, to model grocery shopping. For reference, Rotterdam (the Netherlands)
has nearly 1,400 households per km?, which corresponds to a population density of 2,900
per km? (Rotterdam-Partners 2018, Statista 2020b); Seoul (South Korea) has a household
density of 6,600 per km? for a population density of 16,700 per km? (Statistics Korea 2016,
City Mayors Statistics 2018). We similarly vary the store density from 1 to 7 per km?.

Looking at the impact of household density, we see that the e-grocery channel’s profitability
(Figure4.1a) increases with household density. A greater number of households per square

kilometer results in smaller inter-customer distances and thus lower fulfillment costs per
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order. This cost reduction has a positive effect on the e-grocery channel’s profitability. Hence
the e-grocery market share increases also with household density (Figure4.1b) because the
lower fulfillment costs enable lower delivery fees (Figure4.1b). This dynamic is consistent
with the analytical results (presented in Section4.4) for the break-even delivery fee. We
can see that, at lower household densities, the unit profits are negative and so the retailer
might as well shut down the e-grocery channel (zero market share) by way of charging an
exorbitant delivery fee. These results reveal that per-unit profitable e-grocery operations are
possible only for higher household densities. In particular, the e-grocery channel generates
losses for all combinations of household and store densities to the left of the figure’s IT = 0.0

line.

For the city of Rotterdam, which has one of the highest household densities in the Nether-
lands, our results indicate that per-unit profitability is impossible. Indeed, real-world ev-
idence suggests that none of the Dutch online grocers is currently profitable (NU.nl 2020,
RTL Nieuws 2021). One reason for the relatively low online market shares and profitability
is that store density in the Netherlands is high (Belderok et al. 2019). According to various
surveys of Dutch shoppers, the argument given most often for mot buying food online is

that there is already a supermarket close to their home (Statista 2021b).

As for the impact of store density on the e-grocery channel’s profitability, we see that
the latter decreases with the store density. At high store densities, the average distance
between the store and the consumer is small, which makes the store channel more attractive
and hence more competitive. For example, the US grocery retailer Trader Joe’s recently
discontinued its delivery services in New York City, citing the high store density and being
“already [in] close proximity to customers” as compelling reasons. Only at very low store
densities and high household densities (> 2,500 households per km?) do we observe higher
market shares and profits per order. Despite the theoretical interest of this result, high
household densities are in fact often associated with high store densities (McGuirt et al.
2015). Figure4.la also shows where Rotterdam (our baseline city) and Seoul (another

high-density city) are located on the graph in terms of their household and store density.

Figure 4.1c illustrates that the delivery fee increases with the store density. This outcome is
consistent with our analytical results and with a recent study of Capgemini (2019). These
findings indeed suggest that the optimal fee behaves similarly to the break-even delivery fee,

as the contribution margin per order is generally low for the e-grocery channel and there is
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little room for reducing the delivery fee in order to protect the retailer’s online market share.
Our results indicate that an average delivery fee of at least €8 is needed to be profitable.
In the United Kingdom, which features a mature and competitive e-grocery market, we
see that several grocery retailers charge a lower fee. Yet this observation is still consistent
with our results because these e-groceries are, in effect subsidized and do not generate any
profits (Eley and McMorrow 2020). The positive relationship between store density and the
delivery fee depends on 3/« or the relative consumer preferences for each sales channel.

We discuss (in Section 4.5.4) how this result is affected by changed consumer preferences.

In the next set of experiments, we consider the omnichannel strategy in which we explicitly
model the interaction between the different channels and maximize the joint contribution

of the e-grocery and store channel of a single grocery retailer.

Under the omni-channel strategy, it is not profitable to operate the e-grocery channel in any
scenario — even when household density is high and store density is low. Although adding
the e-grocery channel may help boost the retailer’s overall market share, that benefit does
not offset the costs of cannibalizing sales from its own store channel. The reason is that
the effective contribution margins of the e-grocery channel are lower than those of the store
channel, a difference that is due to the additional revenues from the delivery fee failing to
offset the high online fulfillment costs. The implication is that, in the short term, online
sales reduce the omni-channel retailer’s overall profitability. Some grocery retailers (e.g.,
Albert Heijn) have acknowledged this reality. For that reason, grocery discounters such as
Lidl have decided not to open an e-grocery channel: “The costs of going online just don’t

add up” (Lidl’'s UK in the CEO, Christian Hértnagel, quoted in Retailweek 2021).

4.5.3 Impact of household density and picking costs

Picking is one of the main cost drivers in the e-grocery channel. A recent study by McKinsey
(Kuijpers et al. 2018) suggests that the best retailers can achieve picking costs of €5 per
order at a dedicated pick location. Grocery retailer Ocado claims that heavy warehouse
automation enables it to pick a 50-item order in 10 minutes (Financial Times 2020, OW
Robots 2021b, This Is Money 2021), which would correspond to even lower picking costs
per order. Note that picking times in a regular supermarket are typically much longer.
A recent empirical analysis by Vazquez-Noguerol et al. (2021) reports average picking times

of 43 minutes per order in this context (the equivalent of about €18). Here we study the



82 Towards Profitable Growth in E-Grocery Retailing — the Role of Store and Household Density

impact of picking costs by varying that cost between €0 and €12 per order. Moreover, we
vary the household densities because they are a key driver of last-mile distribution costs.

We fix the store density to the base-case value of 1.2/km?.

Figure4.2 plots the contribution margin per order for different household densities and
picking costs for the online strategy. As expected, the profitability of the e-grocery channel
decreases with picking costs. For the base case, the retailer’s e-grocery channel is not
profitable and breaks even only at an extremely high household density. At the current
picking cost, even when household density increases, the retailer finds it suboptimal to lower
its delivery fee and thereby increase market share — as shown in panel (b) of the figure. The
primary reason for this outcome is that an order’s contribution margin is negative at the
current cost structure. The graph confirms that a retailer’s online market share increases

when picking costs are lower. So if the picking cost is €5 per order, for example, then online

sales account for 10% of the retailer’s total grocery market.

Warehouse automation can increase contribution margins by 8% by reducing the fulfilment
cost (Capgemini 2019). However, this comes at very high investment costs of hundreds of

millions of euros (Pooler 2018).
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Figure 4.2: Online profitability versus household density and store density for the online

strategy

The positive effect of lower picking costs on the online market share is observed also in

the omni-channel strategy. With a picking cost of €12.5 per order (as in Section4.5.2),
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it is not profitable to operate the e-grocery channel for any store and household density
combination. Yet when the picking cost is halved, the retailer benefits from operating an
e-grocery channel alongside its store channel — provided that the household density is high

enough (see Figure4.3).

Store density (# / sq.km)

Household Density (x10% / sq.km)

Ye =0.0 - - 4. =5% Ye = 10%

Figure 4.3: Online market share for the omni-channel strategy (picking cost = €6.25/order)

4.5.4 Cannibalization of the store channel

Our experiments based on current estimates for the costs and customer valuation across
channels usually result in online market shares well below 10%. We find that it is not
profitable to operate an e-grocery channel when household density is low, which suggests
that online grocery sales should not much affect the supermarket landscape. However,
customer preferences may change over time. One pertinent example is that the long-term
effect of the Covid-19 pandemic on grocery shopping preferences remains still unclear. We
shall now explore the impact both of higher customer valuation and of lower picking costs
on e-grocery market shares; our aim is to identify the point at which cannibalization by the

e-grocery channel threatens the store channel’s profitability.

Recall from our online utility function (4.1) that 8/« captures customers’ relative preference
for the e-grocery channel over the store channel. A customer’s willingness to pay for the e-
grocery channel increases with 8. To determine the break-even point, we estimate the fixed

costs F' per store. The store channel’s contribution is then Il; = msNP — FN?. In view of
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the Dutch supermarket data from Marshoek (2018), we consider a cost F' of €25,000 per
week for a store whose weekly revenue is between €150,000 and €250,000; this cost includes
fixed labor, rent, and replenishment costs. From the same report, we obtain 13% as the

gross product margin available to cover these costs.

In Figure 4, panel (a) illustrates the regions in which the e-grocery and the store channel are
not profitable under the online strategy — that is, while maximizing the e-grocery channel’s
contribution. We observe that, when the relative online valuation is low (8/a < 0.35),
the e-grocery channel is not profitable for scenarios with higher picking costs. The graph
shows that, as picking costs rise, we need a greater valuation (and thus a higher delivery
fee) to offset the costs. At the other end of the spectrum, we see that if online valuations
are relatively high then the retailer should close its physical stores and operate only the
e-grocery channel. For 8/a > 1.8 (i.e., when online valuation is almost double the offline
valuation), the market share of the store channel is too low to cover its fixed costs. Note
that the corresponding optimal delivery fee in this case ranges between €26 and €36 for the
e-grocery channel when 1.8 < 3/a < 3.0. The optimal delivery fee increases with relative
online valuation. We remark that these “optimal” delivery fees seem unrealistically high,

which suggests that store closures via this mechanism are unlikely in the short term.
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Figure 4.4: E-grocery and store channels’ no-profit zones for different relative online val-
uations and picking costs



4.6 Conclusion 85

Panel (b) of Figure 4 shows similar no-profit zones for the e-grocery and store channels when
the total contribution margin is maximized under the omni-channel strategy. Although
similar trends are evident, the “tipping points” have shifted. In the omni-channel strategy,
if picking costs exceed €10 then the e-grocery channel is not profitable when the relative
online valuation is low (8/a < 0.55). From the store channel perspective, unprofitability
begins under higher relative online valuations (8/a > 2.1). The corresponding optimal
delivery fee is from €30 to €41 for the e-grocery channel when 2.1 < 8/a < 3.0. In
the omni-channel strategy, the interaction between the two channels comes into play. We
conclude that, when the omni-channel strategy is pursued, it takes higher relative online
valuations for the e-grocery channel to cannibalize sales of grocery stores to the extent that

stores start generating losses.

4.6 Conclusion

This study addresses the effect of household and store densities on the e-grocery channel’s
profitability. We develop a stylized model to capture the principal cost factors affecting
customers’ utility and hence their choice of channel when purchasing groceries. Whereas
the delivery fee and service level (with respect to time) drive online utility, for the store
channel a major factor is the cost of visiting the store. By assessing both customer choice
behavior and operational costs, we generate insights into what drives the profitability and
market shares of the different channels in their optimal settings. We use real-world data
to estimate the model’s parameters. This approach gives us a solid benchmark based on
realistic scenarios — one against which we can compare the effects of relevant parameters on

the resulting equilibria.

We find that the e-grocery channel becomes profitable with increasing household density and
decreasing store density. The former’s effect is due to reducing the distribution costs; the
latter’s effect stems from increasing the relative consumer disutility of using the e-grocery
channel. The cost of picking individual orders in the e-grocery channel plays a crucial role
in that channel’s profitability. The e-grocery channel is not profitable at the cost structure
estimate based on current industry data; this finding accords with current market conditions,
where the e-grocery channel yields very low (or even negative) profitability. Considering

the retailer’s optimal overall strategy, we conclude that — for almost any realistic estimate
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of store and households density — it is never optimal to launch an e-grocery channel owing

to its high operational costs.

It is clear that these basic insights can be strongly affected only by changes in the relative
consumer preferences for the online channel. Substantial increases in the online channel’s
perceived value may induce consumers to pay much higher delivery fees. In that event,
the store channel’s market share could decline to the extent that the fixed cost of a store
network cannot be recovered. Such high customer valuations may develop first in some

specific markets.

Our results suggest three strategic paths toward profitability in e-grocery: service, niche,
or subsidies. The service path requires a large increase in valuations of the online channel
vis-a-vis the store channel without which it will be difficult for customers to accommodate
themselves to paying higher delivery fees. In the United States, for example, this effect has
been observed during the Covid-19 pandemic: many consumers appreciated the perceived

health safety benefits of home delivery compared to visiting a store.

The niche path requires that the online channel focus on areas with high household density
and low store density. In such areas, the relative costs of the online channel are most
competitive and the valuation of the store channel is relatively low because of the travel
costs to reach a store. These niches can be observed in many Chinese cities with very
high household densities and very low supermarket density. For instance, Beijing has a
population of about 20 million people but fewer than than 200 supermarkets. In comparison,
the Netherlands is home to more than 2,000 supermarkets serving 17 million people; hence

it is a much less attractive market environment for pursing a niche strategy.

The subsidy path relies on the deep pockets of investors and shareholders to subsidize
the online channel until such time that physical stores can respond only by closing. This
dynamic reduces the relative valuation of the store channel and thus allows the online
channel to charge higher delivery fees. The subsidy path is a challenging one because it
requires not only a longer-range perspective but also deep-pocketed investors willing to bet
on some of the e-grocery “pure players”. We expect to see more differentiation in strategies

as the market develops.



Appendix 87

Appendix

Appendix A

A function f(x) defined on the domain x € Q has a unique maximal solution if f is strictly

2
concave on ). Furthermore, f is strictly concave if and only if 32—5 < 0. So once we show

43I,
dp?

< 0, it will be sufficient to prove that there exists a unique optimal delivery fee p* that

maximizes the e-grocery channel’s contribution margin under the online strategy. Formally,

we have
dQHe v s ¢kct dQFYe
=(met+tp—f' - - - ——
dp? ( 21/ we dp?
t
s+ Uo drye

9 pp_9KC u . 4.7
+< T oVohw (ue + us +uo)? ) dp .7

Recall that the cost per order for the e-grocery channel is given by C, = f¥ + ¢P + ¢* —
¢rct/r/6Mwry.. Hence the e-grocery channel has a positive contribution margin only when

me+p—f*'—c?—c° — q&kct/\/éhw'ye > 0. Also, d;pge = *(Tp)Qi(uzrjjfZZﬁ < 0 because

us + uo > 0.

For the second term in (4.7), we have dJ; = —Tp% < 0. In our model, 5" is the

household density. An average urban city has household density greater than 1,000/km?, for

: _p_dkc us+uo s : s d2Ie
which 2 — 7 oo it e tuio)? > 0. Combining all these expressions, we obtain - < 0.

d

"1 < 0, which implies that ©1

We can similarly establish the inequality dj}; < 0. Hence

there also exists a unique optimal delivery fee that maximizes the contribution margin in
the omni-channel strategy. Note that the optimal delivery fee need not be same for the

online strategy as for the omni-channel strategy.

Appendix B

Let IT' be the total contributions of the e-grocery channel (II%) and the store channel (II})
for the online strategy (i.e., II' = II{ + II%), and let p* denote the corresponding optimal
delivery fee. Let ITI? analogously be the total contribution in the omni-channel strategy
and p® the corresponding optimal delivery fee. Proposition 1 shows that the optimal fees

are unique. Since the omni-channel strategy maximizes 112, it follows that II' < II?. By
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definition, TI? < II! because the online strategy maximizes Il.. Therefore, I} < II2. The
implication is that, for a marginal contribution m per order in both channels, the store

channel’s market share is higher in the omni-channel strategy: v2 > 2.

We know that ~s is increasing with the delivery fee p — that is, since dJ; > 0. If p* and p?
are the optimal delivery fees for (respectively) the online and omni-channel strategies then,
for v2 > ~%, we have p' > p?. According to equation (4.1), the market share of the e-grocery
channel decreases with a higher delivery fee. So for p! > p?, the e-grocery channel has a

lower market share in the omni-channel strategy than in the online strategy.

Appendix C

Setting Il = 0 yields

Ctd)k 1
ohw \/’%

PP =+ —me+ (4.8)
Parts (i) and (ii) of the proposition are proved as follows. It is clear from (4.8) that, if

~e > 0, then p decreases with household density 6" and increases with the picking cost ¢P.

It is intuitive that high household density and automated picking reduce the total cost of

serving a customer. Hence, the break-even delivery fee decreases in both cases.

(iii) The e-grocery channel’s utility u. is independent of store density d;. However, if d;

dye
dusg

increases then so does the store channel’s utility. Since < 0, it follows that the e-grocery
channel’s market share decreases with the utility of the store channel and thereby also with
the store density. By (4.8), the break-even delivery fee decreases with the e-grocery channel’s

market share and therefore increases with store channel’s store density.



5 Conclusions and Future Research

This thesis studies opportunities and challenges of online grocery operations in omni-channel
retail. First we focus on strategies to exploit the synergy between last-mile operations of
online grocery and the store replenishment. We build mathematical models and effective
solution approaches to solve the associated problems. Through extensive numerical exper-
iments, we study the impact of different operational factors on the benefits of capacity

sharing across the distribution channels.

We also study the interactions of the online and store channels to understand the profitability
and market shares of the online grocery channel. We combine the customer choice model
with operational cost modeling to investigate the impact of household and store densities

on the profitability of the online channel.

Below, we first summarize the main results of our research and then, discuss several new

directions for future research.

Main results

In the second and third chapters we focus on building an operational model to share capacity
of vehicles in the online and store replenishment channels, when the online channel uses the
buy online pick up in stores model. Chapter 2 focuses on a simple and practical capacity
sharing strategy whereby a fixed transport schedule (i.e., store replenishment from a store
fulfilment center) and a flexible transport schedule (i.e., online order fulfilment from an
online fulfilment center) of an omni-channel retailer have a common set of customer visits.
We introduce the shared capacity routing problem (SCRP) to present a strategy by which
the spare capacity in the vehicles of the fixed schedule can be used to serve the customers
of the flexible schedule. Our problem is motivated by a practical problem faced by one of

the largest grocery retailers in the Netherlands.
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In the SCRP described in Chapter 2, the flexible schedule can reduce its distribution costs
by transferring its demand to the fixed schedule. However, there is a transfer cost involved.
While the MILP developed by us can be solved in reasonable time for smaller instance,
we also develop an efficient matheuristic to solve the SCRP for large set of instances. In
our heuristic, we try to find promising sets of customers to transfer by solving a multiple
knapsack problem given the spare capacities in the fixed routes. Finally, we build an ALNS-
based improvement phase to improve the solution quality. We then assess the benefits of
this capacity sharing strategy using both real-world and artificial instances. The following

are the key results from our numerical study:

e The computational study on the real-life case suggests potential transport cost savings

between 2% and 33% by better using the available vehicle capacities in the system.

e The results show that the transfer costs and the spare capacity are the main drivers
of the potential benefits of capacity sharing. The benefits increase with the spare

capacity and decrease when the transfer costs increase.

e There is potential savings in service costs at customer location due to reduction in

number of visits to customers.

In Chapter 3, we extend the SCRP model to increase the capacity sharing between the two
channels. In the SCRP we have two main challenges viz. limited spare capacity at the start
of the fixed schedule, and ensuring the transfer of demand before the departure of the fixed
routes. We develop the shared capacity routing problem with transfers (SCRPT) to address
those challenges. In the SCRPT, stores are also used as potential transfer points, which
creates more spare capacity as customers are served in the fixed route. The key decisions
include choice of transfer locations and set of stores whose demand need to be transferred.
We develop an efficient heuristic to solve the SCRPT for large instances. To assess the
benefits of capacity sharing in the SCRPT, we perform an extensive numerical study. The

following is a summary of the insights gained from our numerical study:

e The benefits of capacity sharing can be significant, especially when the volume of
goods to be delivered to the store pick-up points is small compared to the volume of

goods for replenishing store inventories.

e To achieve the benefits of capacity sharing, it is sufficient to have just a few stores

with ample transfer space.
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e The benefits of capacity sharing depend on the locations of the warehouses for store
replenishment and online order fulfillment because it impacts the first possible transfer

location and time.

e The benefits of capacity sharing will be greater if the vehicle supplying the store pick-
up points can depart from its warehouse earlier or not much later than the vehicle

that replenishes store inventories.

e The benefits of capacity sharing do not depend strongly on the capacity of the vehicle

that replenishes store inventories.

Finally in Chapter 4, we move our focus to the home delivery model of the online grocery and
study the interaction between the store and the e-grocery channel in an omni-channel setting.
We combine customer choice behavior and operational costs, which allows us to analyse the
interaction of the online and store channels under different settings. In particular, we study
the impact of household and store density on the profitability of the retailer. We calibrated

our model with real-world data. The following are the key results from our numerical study:

e The profitability of the e-grocery channel increases with household density due to

reduction in distribution costs.

e The profitability of the e-grocery channel decreases with store density due to the

relative decrease in the online market share with store density.

e Picking costs significantly affect the profitability of the e-grocery channel, making it
almost impossible for the e-grocery channel to be profitable using a manual dark-store

setting.

e Increase in consumer preference of the online channel will substantially impact the
current dynamics. If customers are willing to pay more for delivery fee, it might lead
to cannibalization of sales of the store channel to an extent that reducing the number

of stores is cost-wise optimal.

Future research

In this thesis, we build mathematical models and carried out extensive numerical exper-
iments to understand the opportunities and challenges of online grocery in omni-channel

retail. The results not only provide valuable insights but also point towards interesting
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directions for future research. In this section, we discuss the potential extensions of the

problems described and analysed in this thesis.

In Chapters 2 and 3, we have seen significant reduction in transportation costs can be
achieved for the online channel by sharing the capacity of the vehicles in the store replen-
ishment channel. We build on the premise that there is a fixed schedule and common set of
customer locations visited in both the fixed schedule and a flexible schedule. The planning
of the flexible schedule is dependent on the fixed schedule to be ready so that decisions on
the transfer sets and locations can be made. This potentially can make capacity sharing
planning challenging as the flexible schedule might need to be prepared ahead of time. In
such cases, a tentative fixed schedule using anticipatory vehicle routing techniques can be
used to develop the capacity sharing strategies for the flexible schedule. In future research,
it will be interesting to evaluate the benefits and challenges of capacity sharing when a

tentative fixed schedule is used.

In our capacity sharing strategies, we consider two distribution channels of the same omni-
channel retailer. However, this capacity sharing between a fixed and flexible schedule can be
applied across two or more different organizations. This will raise additional challenges of
profit sharing across the participating organizations. In collaborative vehicle routing (refer
to Gansterer and Hartl (2018) for a detailed survey), several profit sharing mechanisms are
used. An interesting extension of our capacity sharing strategy will be to incorporate the

profit sharing between the carriers involved.

Finally in Chapter 4, we take a strategic lens to understand the profitability of online
grocery channel of an omni-channel retailer. The insights derived from our analysis throw
light on the optimal market share and delivery fee of the online channel under different
settings of household and store densities. Our stylized customer choice model is based
on customer’s preference for delivery fee, quality of service and walking to store. The
factors affecting customer’s choice are not limited to these only, and more importantly
the customer’s preferences change over time due to several external influences. Consider
the Covid-19 pandemic affect, which drastically changed the customer choice model. An
interesting direction for future research will be to perform empirical studies to estimate
the impact of these factors into the customer utility and accordingly, determine the market

shares and delivery fees in optimal settings.
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Summary

Online grocery has grown rapidly in different parts of the world over the last two decades.
Many grocery retailers are making substantial investments to develop an online sales channel
next to the traditional stores. However, it is still not clear whether online grocery retailing
can be profitable in the long run. Grocery retail is a low margin, high cost business. Picking
and delivering an online grocery order is labor intensive and costly. The delivery fee typically

does not cover all the fulfilment costs.

With the emergence of omni-channel grocery retail, customers are provided with a seamless
experience across online and offline channels. There are many synergies that exist between
online and offline distribution, which if utilized properly can lead to significant cost savings
to the retailer. We develop capacity sharing strategies between the vehicles of store replen-
ishment and online fulfillment in buy-online-pick-up-in-store omni-channel model. Through
an extensive numerical study on artificial instances and realistic instances (from our in-
dustry partner), we show that significant savings in distribution costs can be achieved by
sharing capacity of vehicles across two channels. The savings in distribution costs also have
a positive impact in reducing vehicle emissions, thereby, improving the sustainability of

last-mile distribution in omni-channel retail.

Alongside these planning aspects, we also study the interaction between the online and store
channel in an omni-channel setting. We build a stylized model to capture customer choice
behavior and operational costs. We analyse the interaction of the online and store channels
under different settings. In particular, we study the impact of household and store density
on the profitability of the retailer. Our results show that online profitability increases with
household density and decreases with store density. Picking costs significantly affect the
profitability of the e-grocery channel, making it almost impossible for the e-grocery channel
to be profitable using a manual dark-store setting. We also find that that an increase in
the popularity of the online channel could substantially impact the current dynamics to the

point where it would be profitable to reduce the number of physical stores.






Samenvatting (Summary in Dutch)

In verschillende delen van de wereld is de online verkoop van levensmiddelen in de laatste
decennia sterk gegroeid. Veel supermarkteninvesteren in de ontwikkeling van een online
verkoopkanaal naast de bestaande winkels. Toch is het niet duidelijk of de het thuisbezor-
gen van boodschappen op de lange termijn winstgevend kan zijn. De marges op levens-
middelen zijn laag. Het orderpicken en bezorgen van e boodschappen is arbeidsintensief en
gaat gepaard met hoge kosten. Het bezorgtarief dekt doorgaans niet alle kosten van een

bestelling.

Met de opkomst van de omnichannel supermarkt kunnen klanten hun aankopen doen
in verschillende online en offline kanalen. FEr bestaan veel synergieén tussen online en
offline logistieke distributieprocessen en het goed benutten daarvan kan tot aanzienlijke
kostenbesparingen leiden. In dit proefschrift hebben we strategieén ontwikkeld voor de ca-
paciteitsverdeling tussen de voertuigen voor winkelbevoorrading en online athaalorders in
een buy-online-pick-up-in-store (online kopen, in de winkel afhalen) omnichannel model.
Door middel van een uitgebreide numerieke studie op basis van verschillende data (0.a. van
onze praktijkpartner) laten we zien dat er aanzienlijke besparingen op de distributiekosten
mogelijk zijn door de voertuigcapaciteit over twee kanalen te verdelen. De besparing op
distributiekkilometers heeft ook een positief effect op het verminderen van voertuigemissies,

waardoor de fijndistributie van de omnichannel supermarkt duurzamer wordt.

Naast deze planningsaspecten onderzoeken we ook de interactie tussen het onlinekanaal
en de fysieke winkel . We hebben een gestileerd model gemaakt dat het keuzegedrag van
klanten en de operationele kosten meeneemt. Hiermee hebben we de interactie tussen het
onlinekanaal en de fysieke winkel onder verschillende omstandigheden geanalyseerd. We
hebben daarbij voornamelijk gekeken naar het effect van de winkel en bevolkingsdichtheid
op de winstgevendheid van de supermarkt. Onze resultaten laten zien dat winstgevendheid
van het onlinekanaal toeneemt bij een hogere bevolkingsdichtheid en afneemt bij een hogere

winkeldichtheid. De pickkosten hebben een grote invloed op de winstgevendheid van het
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onlinekanaall, waardoor het bijna onmogelijk is om winstgevend te zijn als de boodschappen
handmatig worden verzameld in de winkel of het distributiecentrum. We zien ook dat een
grote groei van de vraag binnenin het onlinekanaal een aanzienlijke impact kan hebben op
de bestaande dynamiek en dat het op een bepaald moment rendabel wordt om het aantal

fysieke supermarkten te verminderen.
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Online grocery has grown rapidly in different parts of the world over the last two decades. However,

it is still not clear whether online grocery retailing can be profitable in the long run. Grocery retail is

a low margin, high-cost business. Picking and delivering an online grocery order is labor intensive

and costly. The delivery fee typically does not cover all the fulfilment costs. Many grocery retailers are
making substantial investments to develop an online sales channel next to the traditional stores. With the
emergence of omni-channel grocery retail, customers are provided with a seamless experience across
online and offline channels. There are many synergies that exist between online and offline distribution,
which if utilized properly can lead to significant cost savings to the retailer.

In this thesis we explore capacity sharing strategies between the vehicles of store replenishment and
online fulfillment in buy-online-pick-up-in-store omni-channel model. Through an extensive numerical
study, we show that significant savings in distribution costs can be achieved by sharing capacity of vehicles
across two channels. Alongside the planning aspects, we also study the interaction between the online
and store channel in an omni-channel setting. Our results show that online profitability increases with
household density and decreases with store density. We also find that that an increase in the popularity

of the online channel could substantially impact the current dynamics to the point where it would be
profitable to reduce the number of physical stores.
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