
This dissertation embodies the genomic opportunities 
and diverse research strategies that lay at our disposal 
to improve our understanding of schizophrenia, a major 
psychiatric disorder that a! ects millions of people 
worldwide. Through my research, I aimed to go beyond 
the " ndings of large-scale genetic studies and conducted 
research that uses state-of-the-art methodology and 
integrative genomic data analyses to shed light on the 
biology of schizophrenia.

On a personal level, my aim was to learn about the 
illness and deepen my understanding of its phenotypic 
and biological characteristics and complexity. Having 
loved ones who have been diagnosed with the illness, I 
have seen the impact on and su! ering of those a! ected 
up close. This research has in part been a journey of 
understanding pain and trauma in my life and expanding 
the depths of my support and love for those who su! er 
and have su! ered.

The photo on the front shows the arms of my mother and 
myself in union. With an illness that is so stigmatized, I felt it 
was important to communicate warmth and hope. As we 
wait on a cure to be discovered, we rely on what we know 
are protective factors; family and community support.
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Outline of thesis

 Human genomics is a rapidly evolving area of research that is revolutionizing our 
understanding of biology and our ability to improve human health. The Human Genome 
Project was completed in 2003, which characterized the make-up of human DNA for the ! rst 
time, costing an estimated $2.7 billion. Today, sequencing a whole human genome costs less 
than $1,000. Collecting genome-wide gene expression or DNA methylation (DNAm) data costs 
$250 or less per biological sample. Advancements in biotechnology alongside new scienti! c 
understanding have fueled many large-scale genomic studies across human populations the 
past decade. By analyzing genetic variation at millions of sites in the genome we are now able 
to successfully perform a genome-wide association study (GWAS) in hundreds of thousands or 
even millions of individuals. These investigations have provided novel and more accurate insights 
into the genetic architecture of human health and disease, including that of major psychiatric 
illnesses. Genomic research can help accelerate the identi! cation of genes or pathways that 
cause psychiatric illnesses and may aid in rede! ning the existing psychiatric nosology from 
descriptive-based assessments to more biologically driven diagnoses. As genomic technologies 
have become the norm in research and derived methodology, and scienti! c insights are clarifying 
our understanding of disease mechanisms, the opportunities to translate these genomic ! ndings 
to the clinic are promising.
 My thesis focuses on understanding the molecular causes and consequences of 
schizophrenia from a genomic perspective. Schizophrenia is a severe psychiatric disorder 
characterized by diverse psychopathology that a" ects almost 1% of the population. Patients 
present long-term symptoms and disabilities, high unemployment rates, and a life expectancy 
that is reduced by 15 years compared to the general population. A pressing need for more e" ective 
treatment exists, but the biological mechanisms that underlie the causes of schizophrenia are 
poorly understood. The past decade has seen signi! cant advances in schizophrenia research, 
particularly in the application of genetics and genomics. Genetic research on schizophrenia has 
been a trailblazer in psychiatric genetics, prompting the ! rst genome-wide association study 
(GWAS) of any psychiatric illness that identi! ed over 100 regions in the genome that increase 
risk for the illness. This was a landmark moment in psychiatric genetics, providing overwhelming 
evidence of the biological origins of schizophrenia. The next key steps are to translate genetic 
! ndings into mechanistic insights and advance precision diagnostic and treatment tools. 
Complementary approaches that investigate disease consequences are important as well. 
Advancing our understanding of the molecular consequences of antipsychotic medication and 
its side-e" ects or that of environmental and lifestyle factors, for example, can help improve the 
quality of life of current and future patients. Schizophrenia is a complex illness that is caused by 
interactions between various combinations of genetic, biological, environmental, psychological, 
and/or social factors. This dissertation focuses on the genomic signatures of schizophrenia. Using 
both in vitro experiments and case-control cohorts, multiple genomic technologies, and state-of-
the- art statistical methodology, I aim to disentangle, and if possible, clarify some of the biological 
complexity that underlies the illness.
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 My dissertation has several key aims: (1) to translate !ndings from GWAS into disease 
biology by investigating the functional mechanisms that underlie schizophrenia heritability, 
(2) to map the molecular pro!le of clozapine response by genome-wide gene expression and 
DNA methylation data analyses, and (3) to investigate the molecular consequences of the illness 
by quantifying biological age using DNAm clocks. Part 1 of my thesis describes functional 
investigations of schizophrenia biology using in vitro experimental systems. I show how to integrate 
heritability measured from large-scale human population studies with molecular signatures 
obtained from in vitro model systems. Human neural stem cells (hNSCs) and lymphoblastoid 
cell lines (LCLs) are used to capture dimensions of early neuronal development and molecular 
responses to antipsychotic medication, respectively. In Chapter 3, I describe how polygenic risk of 
schizophrenia concentrates in a speci!c longitudinal gene cluster that is important for synaptic 
function during neuronal di"erentiation. In Chapter 4, I describe how clozapine exposure induces 
widespread changes in gene expression related to cholesterol metabolism, but not schizophrenia 
genetic risk. Overall, the !rst part of my dissertation highlights the value of combining in vitro 
experimental systems with integrative genomic data analyses and thereby the value of translating 
!ndings from the bench to human biology.
 Part 2 describes an investigation of di"erential aging in schizophrenia using DNAm data 
from whole blood. DNAm pro!les are modi!able by lifestyle and environmental in#uences 
and can be used to track the pace of biological aging. DNAm clocks are recently developed 
biomarkers of aging and represent algorithms that can estimate an individual’s biological age. 
These clocks are predictive of current and future health, including mortality risk. In the second 
part of my thesis, I !rst provide a comprehensive evaluation of data processing and normalization 
strategies to optimize the performance of DNAm-based algorithms, including DNAm clocks. Then, 
by aggregating data across four European cohorts, I describe a meta-analysis that shows that 
individuals diagnosed with schizophrenia age di"erently than non-psychiatric control individuals 
for the !rst time. This work describes one of the largest DNAm studies on schizophrenia and 
highlights how speci!c and identi!able groups of patients, particularly women with schizophrenia 
in later adulthood, appear signi!cantly older in their biological age, a phenomenon associated 
with an increased mortality risk. Part 3 discusses these results and their broader implications for 
schizophrenia research and other psychiatric illnesses in general. I discuss the lessons learned 
further and outline future research and clinical implications.

 In Chapter 2, I provide a more detailed introduction to the clinical presentation and 
genetic aspects of schizophrenia. I describe the presentation of the phenotype and the medical 
criteria used to determine a diagnosis. I further outline recent progress and results from genetic 
and genomic studies.

Part 1 | Functional Investigations of schizophrenia biology
 In Chapter 3, I describe a longitudinal model of human neuronal di"erentiation for 
studying schizophrenia polygenic risk. Schizophrenia heritability has been reported to be 
enriched for biological processes important for early brain development and the function of 
neurons. Human neural stem cells were used to generate neurons across 30 days of di"erentiation 

Chapter 1
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in an experimental laboratory model system. In this work, I describe a statistical framework for 
identifying longitudinal gene expression changes over time and how to integrate these molecular 
pro! les with polygenic risk of major psychiatric illnesses. I demonstrate how schizophrenia 
heritability concentrates in a gene cluster important for synaptic functioning that is upregulated 
during neuronal di" erentiation. More broadly, this study shows the value of integrating genetic 
e" ect sizes estimated from large-scale genetic studies with genomic pro! les identi! ed in in vitro 
experimental systems.

 In Chapter 4, I describe an LCL model to study clozapine biology. Clozapine is an e" ective 
antipsychotic medication that is associated with signi! cant metabolic adverse e" ects, such as 
weight gain and in rare cases agranulocytosis. LCLs were exposed at increasing concentrations 
of clozapine and genome-wide gene expression and DNAm pro! les investigated to gain 
mechanistic insights into the function of clozapine. This study demonstrates how clozapine 
induces widespread changes in gene expression, mainly through cholesterol and cell 
proliferation pathways, in contrast to more speci! c changes in DNA methylation levels. Gene 
expression changes are furthermore enriched for cholesterol genetic risk but not schizophrenia 
risk highlighting a potential use of LCLs to study molecular dynamics of antipsychotic medication 
in vitro.

Part 2 | DNA methylation algorithms and biological aging in schizophrenia
 In Chapter 5, I describe how technical variation can a" ect DNAm-based predictors, in 
particular the performance of DNAm clocks. By implementing >100 data processing pipelines of 
commonly used DNAm methods, I provide a comprehensive evaluation of method performance 
and put forth guidelines and recommendations that minimize technical variation and maximize 
statistical power in analysis of DNAm-based biomarkers. 

In Chapter 6, I describe a large meta-analysis of DNAm aging in schizophrenia. By analyzing four 
European cohorts and three di" erent DNAm clocks, I describe how age and sex speci! c e" ects 
are primary drivers of di" erential DNAm aging in schizophrenia. Integration of schizophrenia 
polygenic risk identi! ed that women in later adulthood who carry high genetic risk demonstrate 
the strongest age acceleration. This work suggests that speci! c and identi! able patient groups are 
at increased mortality risk as measured by the Levine DNAm clock. I describe how the biological 
speci! city of the clock translates to epidemiological characteristics of the illness and how these 
may help in disease management and prevention in the clinic.

Part 3 | Discussion of results and conclusions
In Chapter 7, I discuss the research ! ndings described in this dissertation, along with clinical 
implications for schizophrenia and new perspectives on our understanding of the illness. I place 
the work in a broader context through the lens of psychiatric and complex human trait genetics 
and describe limitations of my work alongside future research ideas.

Outline of thesis
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CHAPTER 2
The clinical presentation of 
schizophrenia and current 

genomic research standings
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 Schizophrenia is a severe and complex psychiatric disorder characterized by a 
heterogeneous combination of emotional, behavioral, and cognitive symptoms. The illness is 
caused by genetic or environmental factors, or both, and has an enormous burden on individuals 
a! ected, their families, and society (Kahn et al. 2015; Owen, Sawa, and Mortensen 2016). 
Compared with the general population, individuals with schizophrenia have a two- to threefold 
increased mortality risk (McGrath et al. 2008) and a life expectancy that is reduced by 15 years on 
average (Hjorthøj et al. 2017). The median lifetime morbid risk is estimated at ~0.7%, meaning 
that about 7 individuals per 1,000 will be a! ected, with substantial variation across geographical 
regions (McGrath et al. 2008). A large number of patients present long-term psychiatric symptoms 
and disability with the underlying biological mechanisms largely unknown and a cure yet to 
be found. Current treatment consists of prescription of antipsychotic medication combined 
with psychological and cognitive therapy and social support, while a need for more e! ective 
treatments remains. Among the foremost challenges is therefore to gain a deeper understanding 
of the causes and pathogenesis of the disorder in order to develop novel and e! ective treatments 
that are actionable in the clinic. Recent advances in human genetics and psychiatric research are 
starting to accelerate this process providing new avenues to explore.

Clinical presentation
 The core features of schizophrenia are characterized by distorted thinking and perception 
and diminished emotional expression. Features are generally divided into “positive”, “negative”, 
and “cognitive” symptom domains. Positive symptoms are behaviors and thoughts that are usually 
not present, such as during a psychosis. An individual may experience a disconnect from reality 
presented through delusions, hallucinations, and disorganized behavior. Negative symptoms are 
characterized by a decrease in function in certain behavioral domains, such as social withdrawal, 
impaired motivation, a! ective " attening, and a reduction in spontaneous speech. Cognitive 
symptoms represent impairment over a wide range of cognitive functions, including but not 
limited to impaired attention, working memory dysfunction, and disrupted executive functions. 
The course of symptom expression can be either continuous or episodic with progressive or 
stable de# cit. Patients can present one or more episodes with complete or incomplete remission. 
Clinical diagnosis of schizophrenia is generally assessed by criteria of the American Psychiatric 
Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric 
Association 2013) or by criteria of the World Health Organisation’s International Statistical 
Classi# cation of Diseases and Related Health Problems (ICD-10) (World Health Organization, WHO 
Sta! , and WHO 1992). Figure 1 shows an overview of symptom domains and diagnostic criteria 
for schizophrenia.

The clinical presentation of schizophrenia and current genomic research standings
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DSM-5: 
A) Two or more of the following symptoms for up to 1 month unless treated 

successfully: delusions, hallucinations, disorganized speech, disorganized 
behavior, and negative symptoms (e.g. emotional flattening and avolition)


B) Level of functioning is significantly decreased in work, personal 
relationships and/or personal care.


C) Symptoms of the disorder persist at least 6 months.

D) Exclusion of schizo-affective disorder, unipolar and bipolar affective 

disorder. Symptoms cannot be attributed to the use of drugs or 
medication, or to a somatic disorder.


E) In the case of a pre-existing autism spectrum disorder, at least 1 month 
with prominent hallucinations or delusions.


ICD-10: 
A) At least one of the following: echoing/insertion/withdrawal/broadcasting of 

thoughts, delusional perceptions, hallucinatory voices, impossible 
delusions of some kind.


B) Alternative to (A): at least two of the following: persistent hallucinations in 
any modality, incoherence or irrelevant speech, catatonic behavior, 
negative symptoms.


C) Present for most of the time for at least 1 month

D) Disorder is not caused by substance use or organic brain disease

Figure 1. A schematic overview of the de! nition of schizophrenia and how it exists around the classi! cation 
of other major psychiatric illnesses. The left panel is a color map with a schematic overview of phenotypic 
domains in which the symptomatology of the illness is visualized in relation to other major psychiatric illnesses 
and broader domains of emotions. The boundaries of these domains are illustrated as ! uid representing the 
heterogeneity in symptoms and their partly overlapping characteristics. The image is adopted from Burmeister 
et al. 2008 (Burmeister, McInnis, and Zöllner 2008). The overview in the right panel is adopted from Kahn RS, et al., 
2015 (Kahn et al. 2015) and lists the diagnostic criteria for schizophrenia as described in the DSM-V and ICD-10 
guidelines.

 The ! rst psychotic symptoms usually present themselves in late adolescence or early 
adulthood and often institute ! rst contact with mental health services. A prodromal phase 
characterized by a decline in cognitive and social functioning can precede the ! rst psychotic 
episode by many years (Kahn and Keefe 2013). Similar to its symptom heterogeneity, age at 
reported onset of the disorder has substantial variation with men reporting an earlier peak age 
at onset (early twenties) than women (mid-twenties) (Sham, MacLean, and Kendler 1994; Eranti 
et al. 2013). Individuals with an earlier age at onset are more likely to have more severe cognitive 
de! cits and poorer global outcome than those with later onset (Rajji, Ismail, and Mulsant 2009). 
Those with later onset, especially female patients, have greater symptom overlap with mood 
disorders, such as major depressive and bipolar disorder (Sham, MacLean, and Kendler 1994; Hare 
et al. 2010). Overall, there is an inverse relationship between age at onset and familial risk of 
schizophrenia indicating that individuals with an earlier onset of symptoms are more likely to 
carry greater genetic risk for the illness (Sham, MacLean, and Kendler 1994; Hare et al. 2010).

The consequences of schizophrenia and burden of the illness
 Although schizophrenia has a relatively low prevalence, it is ranked as one the most 
disabling illnesses globally (GBD 2016 Disease and Injury Incidence and Prevalence Collaborators 

Chapter 2
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2017; Salomon et al. 2015). Not only do patients live many years with the consequences of the 
illness (Robinson et al. 2004; Harrison et al. 2001), they also report signi! cant years of life lost 
due to increased risk of early death compared to the general population (Charlson et al. 2018; 
McGrath et al. 2008; Hjorthøj et al. 2017). Over the past decades, the burden of the illness has 
further increased. In part, this can be attributed to growth and ageing of the population while 
barriers to health care, such as access to medical care and social stigma, are likely contributors 
as well (Saha, Chant, and McGrath 2007). People diagnosed with schizophrenia are more likely to 
be unemployed, homeless, living in poverty, and overall report an excess prevalence of chronic 
physical illness at younger ages (Charlson et al. 2018; Strassnig et al. 2014). The comorbidity of 
schizophrenia with subsequent age-related somatic conditions, such as cardiovascular and 
respiratory illnesses and diabetes, signi! cantly contribute to the excess early mortality (Laursen, 
Nordentoft, and Mortensen 2014; Olfson et al. 2015). In addition to the su" ering of patients and 
their loved ones, schizophrenia also places a signi! cant burden on the economy and society 
through direct cost of healthcare and indirect costs of cessation or reduction in work productivity 
(H. Y. Chong et al. 2016; Knapp, Mangalore, and Simon 2004). In the Netherlands, it is estimated 
that 2% of the national healthcare budget is spent on the treatment of schizophrenia, despite a 
prevalence of 0.6% (Evers, S M A, and A J H 1995). In the United States, the cost of schizophrenia 
is estimated at 2.5% of the total healthcare budget (Moscarelli, Rupp, and Sartorius 1996). These 
cost estimates are conservative as individuals diagnosed with schizophrenia are more likely to 
become homeless, unemployed, lose their access to the health care system, and die of subsequent 
comorbid conditions, thereby challenging accurate modeling of the burden of schizophrenia 
(Evers, S M A, and A J H 1995). Improving our understanding of the illness, both through the lens 
of its etiology as well as how it impacts the lives of individuals and the consequences of the illness 
they live with, is therefore needed to alleviate su" ering, and improve the quality of life of those 
a" ected.

Schizophrenia genetics and the success of large-scale studies
 Early genetic epidemiological studies using family and twin data have shown that genetic 
factors contribute to schizophrenia (Gottesman 1990; Sham, MacLean, and Kendler 1994). 
Studies of twin meta-analysis and population twin registries report an overall heritability of up 
to 81% (Polderman et al. 2015; Hilker et al. 2018; Sullivan, Kendler, and Neale 2003), indicating 
a substantial but not exclusive contribution of genetic factors. While not the only risk factor, 
having a ! rst-degree relative with schizophrenia is one of the most important ones (Murray et 
al. 2002). Monozygotic twins for example report diagnostic concordance rates of about 33%, 
while for dizygotic twins it is reported at 7% (Hilker et al. 2018; Kendler and Robinette 1983), 
further indicating that illness vulnerability is not solely determined by genetic factors. There is 
also consistent evidence of shared environmental in# uences on the risk for schizophrenia, which 
is estimated at 11% (Sullivan, Kendler, and Neale 2003). Figure 2 shows an overview of the history 
of schizophrenia genetic research over time.

The clinical presentation of schizophrenia and current genomic research standings
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1953

Introduction of the concept 
“dementia praecox”

Law of inheritance 
was introduced

First GWAS results of 
European consortia 

published

First GWAS in African 
and Latino populations

1865 19161893

First family-study 
published

1946 1970 1983 1987 2000-3 2008-9 2011 2014 2016 2018 2019

Publication of “The Genetic 
Theory of Schizophrenia: An 

Analysis of 691 twin index 
families”

Discovery of DNA 
double helix

Theoretical and/or technological advancements Genetic studies of schizophrenia

DISC1 structural 
variant identified in 
Scottish pedigree

PCR method 
invented

Linkage map of human 
genome established

First draft of human 
genome published

HapMap Project was 
established to characterize 

LD structure of genome

2006

First GWAS

Polygenic architecture of 
schizophrenia shown 

through application of PRS

PGC1 GWAS

PGC2 GWAS identifying >100 
regions in the genome

First GWAS in East 
Asian population

Elucidation of strongest 
GWAS locus into biological 

processes through the 
function of the C4 gene 

Figure 2. A timeline of the history of schizophrenia genetic research. The recent acceleration of our understanding 
of the genetic architecture of schizophrenia is the result of decades of research advancements, both in the theory of 
phenotype de!nition and in technological innovations that allowed large-scale genetic studies to be conducted. 
While early family studies of schizophrenia indicated heredity to play a role, it was not until our understanding of 
the genome matured and research groups joint e"orts in international consortia that enabled characterization of 
the genetic architecture of schizophrenia. This is embodied by the work of the Psychiatric Genomics Consortium 
(PGC). First through their GWAS e"orts in European populations, which are now extended to Asian, African, and 
Latin-American populations as well.

 Given its high heritability and relatively more distinct clinical presentation compared to 
other psychiatric illnesses, schizophrenia research has been a leading undertaking in psychiatric 
genetics. This is embodied by the e!orts of the Psychiatric Genomics Consortium (PGC), a global 
consortium representing hundreds of scientists from across the world. The PGC conducted a 
landmark genetic study (a GWAS) of schizophrenia comprising 36,989 cases and 113,075 controls 
and identi"ed 108 independent regions across the genome as signi"cantly associated with the 
illness (Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). This work was 
published around the start of my research on schizophrenia biology. A later GWAS with increased 
sample size reports 145 independent loci (Pardiñas et al. 2018) and the most recent iteration even 
270 loci (Consortium et al., n.d.). As GWAS examines only common genetic variation, studies of 
lower frequency variation have been conducted as well to advance our understanding of the 
genetic causes of the illness. Copy number variation (CNV), which are deletions or duplications of 
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stretches of DNA, are increased in schizophrenia compared to the general population (Marshall et 
al. 2017). Signi! cantly associated CNVs collectively explain 0.85% of the variance in schizophrenia 
liability in the PGC sample. In comparison, 3.4% of the variance in disease liability is explained for 
the 108 signi! cant GWAS loci. In addition to CNVs, rare single variants that are predicted to be 
damaging or deleterious in their outcome are detected at increased frequency in schizophrenia 
as well (Purcell et al. 2014; Olde Loohuis et al. 2015; Singh et al. 2017). Figure 3 shows an overview 
of schizophrenia genetic risk variants across the allele frequency sprectrum. Together, these 
results unequivocally demonstrate the success of using large-scale genetic studies to identify 
genetic risk of schizophrenia. Several important lessons have emerged from these ! ndings so far.

Figure 3. An overview of schizophrenia genetic risk variants across the allele frequency spectrum. For each 
genetic variant or locus, the strength of association (odds ratio) with schizophrenia is presented alongside the 
frequency of the risk allele in the control population. Only genome-wide signi! cant variants are shown. Blue 
data points represent 176 common variant associations from a meta-analysis of a large European GWAS of 
schizophrenia (Ripke et al., 2014). Red data points show the association of 17 copy number variants reported in 
Marshall et al., 2017. The green data point shows the association of a rare loss-of-function variant based on exome 
sequencing data (Singh et al., 2016). Both axes are transformed to a logarithmic scale. For comparison, the dotted 
horizontal line shows the association of aggregated polygenic risk computed from common variant associations 
(based on Ripke et al., 2014). The odds ratio is derived from Ori et al., 2019 (BiorxivID: 727859).

Lesson 1: polygenicity
 One of the main insights from GWAS has been the con! rmation that the genetic 
architecture of schizophrenia is polygenic, meaning that many distinct regions in the genome 
collectively contribute to an individual’s genetic propensity to develop the illness at some point in 
their life. For example, while no single genetic variant from the GWAS explains more than 0.1% of 
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schizophrenia risk, ~10,000 of SNPs together explain up to 18.4% of the genetic risk (Schizophrenia 
Working Group of the Psychiatric Genomics Consortium 2014; Martin et al. 2019). In line with 
Fisher’s in!nitesimal model, which proposes that a large number of independent genetic loci 
contribute additively to continuous phenotypic variation, each variant thus explains a small 
fraction of the overall heritability. This has important implications for functional investigations 
of schizophrenia biology. Results from candidate gene studies, especially those using full gene 
knockouts, for example, need to be carefully evaluated before !ndings are extrapolated to gain 
mechanistic insights into schizophrenia (Farrell et al. 2015). Future experimental follow-up studies 
furthermore need to pursue new strategies that allow for modeling many small gene e"ects 
collectively in combination with state-of-the-art laboratory techniques that measure molecular 
and cellular readouts.

Lesson 2: pleiotropy
 A second key insight is that there is signi!cant widespread shared heritability between 
major psychiatric disorders (Lee et al. 2013; O’Donovan and Owen 2016). In other words, psychiatric 
genetic risk is pleiotropic and genetic variants that confer risk for schizophrenia also confer risk for 
bipolar disorder and major depressive disorder, for example. Based on common variant analysis, 
schizophrenia shares a high genetic overlap with bipolar disorder (~68%) and a moderate overlap 
with major depressive disorder (~43%) (Lee et al. 2013; Brainstorm Consortium et al. 2018). 
Pleiotropy has also been reported for rare variants. CNVs that confer risk for schizophrenia also 
a"ect a range of childhood neurodevelopmental disorders, such as autism spectrum disorder 
and intellectual disability (Malhotra and Sebat 2012). A !nding that is also supported by rare 
coding variants (O’Donovan and Owen 2016). It has been theorized that neurodevelopmental 
disorders, including schizophrenia, lay on an etiological and neurodevelopmental continuum, 
where genetic variants are shared but the phenotypic expressivity across disorders is variable 
(Owen and O’Donovan 2017). While overlapping mechanisms are likely at work, how pleiotropy 
and variable expressivity operate on a biological level remains an important open question for 
future research.

Lesson 3: biological insights
 A third key insight stems from genes and pathways that have been identi!ed through 
genetic variants associated with schizophrenia. Early studies of rare disruptive CNVs in 
schizophrenia reported enrichment in neurodevelopmental and synaptic gene sets (Walsh 
et al. 2008; Glessner et al. 2010; Kirov et al. 2012), !ndings that were later replicated by e"orts 
with larger sample sizes (Pocklington et al. 2015; Szatkiewicz et al. 2014; Marshall et al. 2017). 
Neurodevelopmental pathways are also highlighted by genome-wide burden analysis of rare 
single deleterious variants, which are enriched in schizophrenia (Olde Loohuis et al. 2015). 
Genes involved in synaptic function are furthermore implicated through analyses of common 
variants, in addition to pathways of neuronal functioning and the immune system (Aberg et 
al. 2013; Stefansson et al. 2009; Schizophrenia Working Group of the Psychiatric Genomics 
Consortium 2014). More sophisticated analyses that better leverage genome-wide information 
found schizophrenia heritability to be signi!cantly enriched for central nervous system tissues 
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with the strongest signal observed in fetal brain chromatin annotations (Finucane et al. 2015), 
again highlighting early brain development. Together these ! ndings not only demonstrate that 
schizophrenia genetic risk concentrates in speci! c biological annotations, they also show that 
results of rare and common variant analyses are starting to converge to similar pathways and 
thereby strengthening the evidence for their role in schizophrenia biology. To pave the way for 
functional follow-up studies of GWAS associations, experimental model systems that are relevant 
to the biology of the disorder are needed. Lack of access to the brain and our inability to measure 
neurobiological markers in vivo is currently limiting fundamental and translational brain-related 
research. Alternative approaches that capture dimensions of human brain function can help 
accelerate our understanding of the etiology of schizophrenia.

Lesson 4: clinical implementation and utility so far
 In addition to improving our understanding of the disease biology, the identi! cation 
of a large number of independent genetic variants associated with schizophrenia initiated 
new e" orts to utilize genetic information to advance actionability in the clinic. Two examples 
of research for this purpose are drug repositioning and disease risk predictions. The process of 
! nding and developing new clinical uses for existing licensed drugs outside their initial medical 
domain is known as repositioning (Ashburn and Thor 2004; C. R. Chong and Sullivan 2007). 
While antipsychotics can provide e" ective treatment for schizophrenia, they do not alleviate all 
symptoms and often contribute to serious side-e" ects (Leucht et al. 2013), leading to reduced 
adherence and lower e#  cacy. Why antipsychotics show better results for some patients but not 
all remains unclear. A better understanding of how drug and disease mechanisms interact is 
therefore needed. New insights may help improve the e#  cacy of existing drugs and help design 
new drugs. Genomic data can be used for this purpose. GWAS results can for example prioritize 
drugs and their biological targets for a given phenotype and help guide drug discovery (Héléna 
A. Gaspar, Hübel, and Breen 2019). For schizophrenia, the dopamine D2 receptor gene (DRD2), 
a main target of antipsychotics, lies within a genome-wide signi! cant locus identi! ed by GWAS 
(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). Target gene-sets 
of dopamine receptor antagonists are in addition found to be enriched for schizophrenia GWAS 
signal (de Jong et al. 2016). In general, schizophrenia genetic ! ndings so far point to overlap 
with some targets from known antipsychotics but also new drugs like antiepileptics and calcium 
channel blockers, o" ering possible leads for developing new therapeutics (H. A. Gaspar and Breen 
2017; So et al. 2017; Ruderfer et al. 2016). Such an overlap between drug target gene sets and 
genes that harbor elevated genetic risk for the disease would not be unique to schizophrenia. For 
coronary artery disease for example, several primary drug target genes, such as the downstream 
molecular targets of statins, have now also been identi! ed by GWAS (Turner et al. 2018). Similar 
observations have been reported for diabetes mellitus and rheumatoid arthritis. More in general, 
GWAS genes tend to be closer to drug target genes in gene network analysis of biological 
pathways (Cao and Moult 2014). This suggests that the study of molecular targets of medication 
used to treat the illness can shed light on both the biology of adverse e" ects of the drug as well 
as possible causal genes and pathways involved in the disease. As our knowledge of the biology 
of antipsychotics is still limited, integrating genes and pathways associated with the drug with 
genetic risk of schizophrenia may yield new insights.
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 A second line of research aiming to advance actionability in the clinic using information 
from GWAS has been through investigations of polygenic risk score (PRS) predictions. PRSs, 
also called polygene scores or genetic values, are a weighted sum of risk alleles of SNPs and 
represent a single composite value that quanti!es the cumulative genetic load of common 
variant associations for an individual (Torkamani, Wineinger, and Topol 2018; Janssens 2019). Early 
disease detection, subsequent prevention and medical interventions are integral components of 
advancing human health. The potential of estimating a probabilistic susceptibility of an individual 
to disease is therefore driving a rapidly progressing !eld of research investigating the personal 
and clinical utility of PRS. Particularly in psychiatry, this has created hope for a new classi!cation 
system based on biological validity (Kapur, Phillips, and Insel 2012). Schizophrenia was one of the 
!rst human diseases for which PRS, calculated from e"ect sizes of the GWAS, was shown to be 
able to discriminate between individuals diagnosed with the illness and those without the illness 
(International Schizophrenia Consortium et al. 2009). While this !nding has now been robustly 
replicated and shown for other psychiatric illnesses as well (Schizophrenia Working Group of 
the Psychiatric Genomics Consortium 2014; Martin et al. 2019), their low predictive value and 
the complexity of polygenic inheritance, among other challenges, currently limit the immediate 
utility of these results (Torkamani, Wineinger, and Topol 2018; Janssens 2019). There is nevertheless 
signi!cant promise for future clinical utility as sample sizes and ancestral diversity of genetic 
studies of schizophrenia continue to increase (Lam et al. 2019; Sullivan et al. 2017; Gulsuner et 
al. 2020) and PRS methodology is further re!ned (Martin et al. 2019). In parallel, investigations of 
other genomic biomarkers, such as gene expression and DNA methylation measures, may provide 
complementary value to further stratify patients into meaningful subgroups across conventional 
diagnostic boundaries.

DNA methylation as a tally for health and disease
 Schizophrenia is a complex illness with a multifactorial etiology and variable disease 
trajectory. Many factors, such as DNA sequence, epigenetic DNA modi!cations, gene expression 
and protein di"erences, changes in cellular pro!les, environmental factors, stochastic factors, and 
the complex and dynamic interaction between these are thought to act in concert to in#uence 
the outcome of the illness (Haque, Gottesman, and Wong 2009; Flint and Munafò 2014; Kahn 
et al. 2015). Measuring these factors in the context of the illness is an important step towards 
understanding their contribution. DNA methylation (DNAm), the covalent attachment of a methyl 
(CH3) to the DNA, is a measurable genomic signature and a form of epigenetic modi!cation and 
regulation. In mammals, DNAm usually occurs at 5-methylcytosine (5mC) at cytosine-guanine 
dinucleotides (CpGs) sites in the genome. DNAm has been described in diverse roles in human 
development and disease, including transcription activation, X-chromosome inactivation, 
genomic imprinting, patterning waves during development, and many other key regulatory 
and cellular processes, including aging (Greenberg and Bourc’his 2019; Horvath and Raj 2018). 
Recent technological advancements allow for genome-wide measurement of DNAm in a high-
throughput manner thereby enabling large-scale studies to be conducted (Beck 2010).
 Over the past years, several observations have been established that suggest that DNAm 
is a meaningful biological signature to study in schizophrenia. First, DNAm can be in#uenced 
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by both internal and external cues. Twin studies have reported the contribution of additive 
genetic e! ects, shared environmental e! ects, and unshared (or unique) environment to DNAm 
variation at 16%, 17%, and 67% respectively (Hannon et al. 2018). This architecture " ts well with 
the multifactorial origin of complex phenotypes, like schizophrenia. Secondly, DNAm measured 
in blood tissue tracks health and lifestyle exposure that are associated with schizophrenia, such 
as smoking, body-mass-index (BMI), and diet (Gao et al. 2015; Joehanes et al. 2016; Zhang and 
Kutateladze 2018; Wahl et al. 2017). Large epigenome-wide association studies (EWAS) have 
found wide-spread changes across the genome as a consequence of such exposures. These 
associated DNAm changes furthermore predict future development of health and disease o! ering 
opportunities for clinical utility (Wahl et al. 2017; Sugden et al. 2019). The third observation comes 
from EWA studies of schizophrenia. In a large cohort, >350 CpG sites were found to be associated 
with the illness. Overall the " ndings could be di! erentiated between DNAm changes that were 
associated with schizophrenia through smoking and those that were independent of smoking 
behavior and other indirect e! ects (Hannon et al. 2016). Indeed, measured DNAm signatures are 
a composition of intrinsic and extrinsic factors that have impacted an individual’s biological state 
thus far (Teschendor!  and Relton 2018; Lappalainen and Greally 2017). While reverse-causation 
and interpretation of results remain main challenges of the outcome of DNAm studies, the 
landscape of DNAm does o! er new opportunities to study health and disease. This is embodied 
by the fourth and " nal observation; the development of DNA methylation clocks as a biomarker 
of aging and a tally of health and disease, including mortality risk.
 The phenomenon of aging can be described as a cumulative result of biological processes 
over time. Chronological age is one of the strongest, if not the strongest, risk factor for functional 
impairments, disease development, and mortality. There is however signi" cant heterogeneity in 
the aging process of individuals in the populations (Lowsky et al. 2014). Tracking the rate of aging 
above and beyond chronological age, which is an imperfect surrogate measure of the aging 
process, has therefore been of major interest for a long time (Baker and Sprott 1988). In theory, 
a marker sensitive to the pace of biological aging can be an important clinical tool for disease 
prevention and management (see Figure 4). Several molecular markers have been extensively 
studied, such as levels of P16 and telomere length, both markers of cellular senescence (Waaijer 
et al. 2012; Epel et al. 2008). Singular predictors however capture speci" c processes of aging and 
are less predictive of global aging and all-cause mortality risk than composite biomarkers (Jylhävä, 
Pedersen, and Hägg 2017). Recent approaches using -omics data, suggest that genome-wide 
pro" les of gene expression and epigenetic marks can be aggregated to a single value of aging 
that better captures the complexities of the aging process (Peters et al. 2015; Horvath and Raj 
2018). In particular, DNA methylation-based biomarkers of aging, also called “epigenetic clocks” or 
“DNA methylation clocks” (DNAm clocks), show great promise in tracking the pace of biological 
aging (Horvath 2013; Hannum et al. 2013; Levine et al. 2018). DNAm clocks outperform traditional 
biomarkers of aging (Jylhävä, Pedersen, and Hägg 2017), are signi" cant predictors of age-related 
conditions and mortality (Chen et al. 2016; Levine et al. 2018), and have been associated with 
several diseases (Horvath et al. 2014), including psychiatric conditions (Boks et al. 2015; Wolf et al. 
2019; Han et al. 2018). These clocks may thus o! er an opportunity to study how biological aging 
is impacted in schizophrenia.
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Figure 4. The pace of biological aging is de! ned by both intrinsic and extrinsic factors. The relationship between 
biological age (y-axis) and chronological age (x-axis) is visually shown. The pace of aging can be measured by the 
slope of the relationship. When biological age tracks with chronological age the pace of aging is “neutral”. However, 
when biological age is higher than chronological age, biological age is accelerated. Similarly, when biological age 
is lower than chronological age, biological age is decelerated. Various factors that contribute or that are related to 
biological aging are listed in the ! gure as well.

There are long-standing epidemiological observations that describe associations of schizophrenia 
with age-related disabilities and morbidities at younger ages. Dating back to the work of Emil 
Kraepelin and others at the beginning of the 1900s, premature progressive deterioration of 
cognitive functions (dementia praecox) during early adulthood is reported as a core feature of 
what is now known as schizophrenia (Kraepelin 1921). In addition to cognitive decline, excess 
obesity-related and metabolic abnormalities, decrease in cardiovascular ! tness, impaired 
motor functions, among other age-related conditions (Strassnig et al. 2014). The most striking 
evidence that supports a theory of accelerated aging, comes from studies of excess mortality 
in schizophrenia. That is, even at younger ages, individuals diagnosed with schizophrenia show 
higher rates of all-cause mortality compared to the general population (Laursen, Nordentoft, and 
Mortensen 2014; Olfson et al. 2015). Processes of biological aging may therefore be accelerated 
in schizophrenia, either through an increased prevalence of age-related conditions with 
e" ects that compound over time or as a more integrated part of the pathophysiology of the 
illness (Kirkpatrick et al. 2008). As epigenetic signatures can be modi! able (Sugden et al. 2019), 
DNAm-based predictors may have clinical utility. Quanti! cation of biological aging can help 
with identi! cation of at-risk individuals or even prevention of age-related diseases (Belsky et al. 
2015; Field et al. 2018). As the burden of age-related diseases continues to rise, early detection 
and subsequent opportunities for interventions before disabilities and co-morbidities become 
established will be important (Mo#  tt and Caspi 2019; Taylor and Reynolds 2020). DNAm clocks 
are now emerging as promising tools for screening and intervention and o" er new opportunities 
to study the phenomenon of aging, and possibly signatures of molecular consequences, in SCZ.
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Chapter 3

Abstract
 Common psychiatric disorders are characterized by complex disease architectures with 
many small genetic e!ects that contribute and complicate biological understanding of their 
etiology. There is therefore a pressing need for in vitro experimental systems that allow for 
interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms. 
We have developed an analytical framework that integrates genome-wide disease risk from 
genome-wide association studies with longitudinal in vitro gene expression pro"les of human 
neuronal di!erentiation. We demonstrate that the cumulative impact of risk loci of speci"c 
psychiatric disorders is signi"cantly associated with genes that are di!erentially expressed and 
upregulated during di!erentiation. We "nd the strongest evidence for schizophrenia, a "nding 
that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic 
function primarily drives the association with schizophrenia risk. These "ndings reveal that in 
vitro human neuronal di!erentiation can be used to translate the polygenic architecture of 
schizophrenia to biologically relevant pathways that can be modeled in an experimental system. 
Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular 
readout and the application to the genetics of complex traits.

Manuscript status: published in Biological Psychiatry 2019 Apr 1;85(7):544-553
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A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk

Introduction
 Major psychiatric disorders feature a high heritability but have a largely unknown etiology(D. 
H. Geschwind and Flint 2015; Polderman et al. 2015). The increasing sample sizes of genome-wide 
association studies (GWAS) successfully result in identi! cation of more susceptibility loci for these 
disorders(Sullivan et al. 2017). A major challenge is to understand and interpret the cumulative 
impact of many loci that collectively contribute to psychiatric disease risk and how to translate 
this complex polygenic architecture to biological pathways that drive the underlying molecular 
and cellular disease processes. Lack of applicable in vitro model systems and a framework to study 
polygenic psychiatric risk hinders the translation of genetics ! ndings to disease biology(Falk et al. 
2016).
 Early brain development has been implicated in psychiatric disorders such as schizophrenia 
(SCZ)(Gulsuner et al. 2013; Purcell et al. 2014; Olde Loohuis et al. 2015; H. K. Finucane et al. 
2015), autism spectrum disorder (ASD)(Daniel H. Geschwind 2011; Rubeis et al. 2014), and self-
reported depression (SRD)(Hyde et al. 2016). Di" erentiation of human embryonic stem cells 
(hESCs) into neuronal lineages has been demonstrated to hold great promise to model early 
brain development(Shi et al. 2012; van de Leemput et al. 2014; Stein et al. 2014), and may thus 
o" er a unique opportunity to study psychiatric disease biology in vitro. However, it has remained 
unclear whether the molecular dynamics underlying in vitro human neuronal di" erentiation are 
associated with polygenic psychiatric disease susceptibility.
 We set out to investigate in vitro human neuronal di" erentiation in the context of 
polygenic psychiatric disease risk. To accomplish this, we performed a densely-sampled 
time series experiment and robustly detected transcriptome-wide changes across neuronal 
di" erentiation. To study the aggregate impact of risk loci, we integrated longitudinal in vitro gene 
expression signatures with GWAS summary statistics of major psychiatric disorders. We observe 
signi! cant enrichment of genetic risk for multiple disorders in genes that are upregulated across 
di" erentiation. We further show that this e" ect is strongest for SCZ and primarily driven by a 
longitudinal gene cluster that is involved in synaptic functioning. These ! ndings support to use 
of in vitro neuronal di" erentiation as a promising model system to study genetic psychiatric risk, 
particularly in the context of schizophrenia.

Methods
Approval for stem cell research
 This study and all described work was approved by the University of California, Los Angeles 
Embryonic Stem Cell Research Oversight (ESCRO) committee.

In vitro human neuronal di! erentiation
 WA09(H9)-derived hNSCs were commercially obtained (Gibco) as neural progenitors and 
subsequently expanded as adherent culture according to the manufacturer’s guidelines. Low 
passage hNSCs (< 4 passage rounds) were plated in 12-well plates coated with poly-D-lysine 
(0.1 mg/mL, VWR) and laminin (4.52ug/cm2, CorningTM) at 1.5x105 cells, which were equally 
distributed and subsequently cultured in expansion medium as described above. After 24h of 
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proliferation, media was changed to neuronal di!erentiation medium consisting of Neurobasal® 
Medium (Gibco), 2% B-27® Serum-Free Supplement (Gibco), 2mM GlutaMaxTM-I Supplement, 0.05 
mM β-mercaptoethanol (Gibco), and 1x Pen Strep. Media was changed every 2-3 days.

Experimental design and assessment of gene expression
 Human neural stem cells were di!erentiated over a course of 30 days and RNA harvested at 
seven time points (day 0, 2, 5, 10, 15, 20, and 30) in triplicates or quadruplicates (n = 24). Genome-
wide array-based transcriptome data was collected at the UCLA Neuroscience Genomics Core 
using Illumina’s HumanHT-12 v4 Expression BeadChip Kit.

Data pre-processing and quality control
 Gene expression data was extracted using the Gene Expression Module in GenomeStudio 
Software 2011.1. Data was background corrected with subsequent variance-stabilizing 
transformation and robust spline normalization was applied(Du, Kibbe, and Lin 2008; Lin et al. 
2008). We excluded low quality probes and subsequently performed sample outlier detection by 
Euclidean distance and standardized connectivity. The FactoMineR package (v1.28) in R was used 
to perform principal component analysis (PCA). For subsequent downstream analyses, we used 
the normalized expression values of 19,012 high quality #ltered probes for all 24 samples.

Transcriptome-based in vitro cellular identity
 To investigate in vitro cellular identity across di!erentiation, we used transcriptomic 
signatures of cell-type speci#c genes of seven main cell types identi#ed in the mouse cerebral 
cortex (Zhang et al. 2014). We extracted normalized gene expression values of these genes for 
each cell type from our own in vitro dataset and calculated mean standardized expression levels 
of cell type-speci#c genes for each of the seven cell types across days of di!erentiation.

Transition mapping to a spatiotemporal atlas of early human brain development
 To investigate global transcriptomic matching between in vitro gene expression pro#les 
and in vivo gene expression pro#les of neocortical brain regions, we applied transition mapping 
(TMAP), which is implemented in the online CoNTExT bioinformatic pipeline (https://context.
semel.ucla.edu)(Stein et al. 2014). Analyses were run for in vitro time points day-0 vs day-30, day-0 
vs day-5, day-5 vs day-15, and day-15 vs day-30 across both temporal and spatial dimensions of 
human cortical development.

Time-series di!erential gene expression and cluster analysis
 Two multivariate empirical Bayes models were used to identify di!erentially expressed 
genes across di!erentiation. We computed the one-sample T2-statistic and a probability of being 
di!erentially expressed using the mb.long() function in the Timecourse package (v 1.42) and the 
betr() function in the BETR package (v 1.26) in R, respectively(Tai and Speed 2006a), (Aryee et 
al. 2009). As both methods rank probes by their di!erential expression over time, di!erentially 
expressed genes were classi#ed as the union of the set of probes with a probability of 1.0 using 
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BETR and an equally sized set of top ranked probes using the T2-statistic. We subsequently applied 
fuzzy c-means clustering to all di! erentially expressed probes and computed cluster membership 
values using the fclusList() and membership() function in the Mfuzz package in R(Kumar and 
E Futschik 2007; Schwämmle and Jensen 2010). Clusters were annotated using Database for 
Annotation, Visualization, and Integrated Discovery (DAVID, v6.8) (Huang, Lempicki, and Sherman 
2009) and probes with a membership > 0.5.

Integration of GWAS data with in vitro transcriptomic signatures
 Illumina probe IDs were mapped to Ensembl gene IDs using NCBI build 37.3, duplicate IDs 
removed, and gene boundaries extended symmetrically by 10kb to include regulatory regions. 
Annotation " les were then created mapping each gene ID or chromosomal position with in vitro 
gene parameters of interest, such as T2-statistic and cluster membership values. These " les were 
then used as input to Multi-marker Analysis of GenoMic Annotation (MAGMA) and strati" ed LD 
score regression (sLDSR) to integrate in vitro signatures with GWAS data and study the cumulative 
impact across risk loci.

GWAS summary statistics and ancestry matched reference panels
 GWAS summary statistics were obtained for SCZ(Schizophrenia Working Group of 
the Psychiatric Genomics Consortium 2014), major depressive disorder (MDD) (CONVERGE 
Consortium 2015), SRD(Hyde et al. 2016), bipolar disorder (BPD)(Group 2011), ASD(The Autism 
Spectrum Disorders Working Group of The Psychiatric Genomics Consortium 2017), attention 
de" cit hyperactivity disorder (ADHD) (Demontis et al. 2017), cross disorder(Consortium 2013), 
Alzheimer’s disease (AD)(Lambert et al. 2013), and adult human height (Wood AR Esko T Yang 
J Vedantam S Pers TH Gustafsson S Chu AY Estrada K Luan J Kutalik Z Amin N Buchkovich ML 
Croteau-Chonka DC Day FR Duan Y Fall T Fehrmann R Ferreira T Jackson AU Karjalainen J Lo KS 
Locke AE Mägi R Mihailov E Por 2014) (Supplemental Table S2). For each trait we used the most 
recent GWAS summary statistics that was publically available at the time of the analysis. The 1000 
Genomes Project Phase 3 release (1KG) was used as reference panel to model ancestry-matched 
LD (1000 Genomes Project Consortium et al. 2015).

MAGMA gene-set analysis
 MAGMA (v1.06)(de Leeuw et al. 2015) was used to perform gene-set analyses of GWAS data. 
MAGMA uses a multiple regression framework to associate a continuous or binary gene variable 
to GWAS gene level p-values. For each GWAS phenotype, we generated gene-level p-values by 
computing the mean SNP association using the default gene model (‘snp-wise=mean’) with 
+/- 10kb extensions of gene boundaries and SNPs with minor allele frequency (MAF) > 5%. For 
each annotation, we then regressed gene-level GWAS test statistics on the corresponding gene 
annotation variable using the ‘--gene-covar’ function while adjusting for gene size, SNP density, 
and LD-induced correlations (‘--model correct=all’), which is estimated from an ancestry-matched 
1KG reference panel. Testing only for a positive association, i.e. enrichment of GWAS signal, we 
report one-sided p-values along with the corresponding regression coe#  cient.

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk
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Strati! ed LD Score Regression
 We applied an extension to strati! ed LD score regression (sLDSR), a statistical method that 
partitions SNP-based heritability (h2) from GWAS summary statistics (H. K. Finucane et al. 2015). 
This allows us to quantify the e" ects of continuous-valued annotations on the heritability (Gazal 
et al. 2017). For each annotation, we ! rst estimated partitioned LD scores using the ldsc.py --l2 
function with MAF > 5%, a 1 centimorgan (cm) window, and an ancestry-match 1KG reference 
panel. We ran sLDSR (ldsc.py --h2) for each annotation of interest while accounting for the full 
baseline model, as recommended by the developers (H. K. Finucane et al. 2015; Gazal et al. 2017), 
and an extra annotation of all genes detected in our in vitro model (n = 12,414). As we only test 
for a positive association, we report the contribution to the per-SNP h2 (τ) and the associated one-
sided p-value, which is calculated using standard errors that are obtained via a block jackknife 
procedure (Bulik-Sullivan et al. 2015; H. K. Finucane et al. 2015).

Results
Longitudinal in vitro gene expression pro! ling con! rms neuron-speci! c di" erentiation 
and matches in vivo human cortical development
 To study the molecular dynamics underlying in vitro human neuronal di" erentiation, 
we di" erentiated an hNSC line (WA09/H9) to a neuronal lineage across 30 days. Genome-wide 
gene expression pro! les were assayed densely at seven time points in at least triplicates (n=24 
samples). To verify that the data was in agreement with the intended di" erentiation protocols, we 
investigated speci! c gene expression signatures over time. We ! rst examined gene expression 
patterns of traditional gene markers (Tanapat 2013; Magavi and Macklis 2002) and found that 
neural stem cell and proliferation markers (MKI67, Nestin, and SOX2) are downregulated, while 
early neuronal markers (BDNF and DCX) are upregulated as di" erentiation progresses (Figure 
1A-B). MAP2, a more mature neuronal marker(Tanapat 2013; von Bohlen Und Halbach 2007), 
is ! rst upregulated and subsequently downregulated at later time points, suggesting that the 
di" erentiated culture maintains a relatively immature neuronal identity.

 Next, we explored PCA on normalized gene expression values using the full transcriptome 
and found a large proportion of the variance in expression to be explained by the di" erentiation 
process, with minimal e" ects of technical variation (Figure 1C & S1). Investigation of transcriptome-
based cell type-speci! c gene expression signatures of major classes of cell types in the cerebral 
cortex shows that relative neuronal gene expression increases as neuronal di" erentiation 
progresses over time (Figure 1D). There is no evidence of glial- or endothelial-speci! c gene 
expression, which con! rms a broadly neuronal in vitro cellular identity.
 Having established that the in vitro di" erentiation process is predominantly neuronal, 
we applied transition mapping (TMAP) to assess the correspondence of longitudinal in vitro 
transcriptome data to in vivo signatures of both brain developmental stages and laminae of the 
human neocortex. We ! nd signi! cant matching between the in vitro longitudinal DGE pro! les 
(day-0 vs day-30) and in vivo developmental stage from 4 weeks post-conception (PCW) to 24 
PCW (Figure S2).
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Figure 1. In vitro gene expression pro! les con! rm a neuron-speci! c di" erentiation process. Relative gene 
expression of traditional stem cell (A) and neuronal (B) markers plotted across days of di! erentiation. (C) PCA of in 
vitro transcriptomic data with PC1 (x-axis) and PC2 (y-axis) visualized. Variance explained per component is shown 
in parentheses. (D) Transcriptome-based cellular identity is shown by average expression of cell type speci" c genes 
across days of di! erentiation. The " rst number in the parentheses represents the number of genes for which the 
average expression is plotted. The second number represents the corresponding number of probes assayed. OPC 
= oligodendrocyte precursor cells, NFO = newly formed oligodendrocytes, MP = myelinating oligodendrocytes. 

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk
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Figure 2. In vitro gene expression pro! les match in vivo human cortical development. TMAP output visualizes 
the amount of overlap between in vitro and in vivo DGE pro! les colored by –log10(p-value) (see ! gure S2 for more 
details on interpretation). Note that p-values are shown on varying color scales between graphs. Abbreviations 
and numbering above maps correspond to schematic representations on the left (adopted from Stein et al., 
2014) of di" erent developmental stages (A) and laminae (B). VZ = ventricular zone, SZ = subventricular zone, IZ 
= intermediate zone, SP=subplate zone, CPi= inner cortical plate, CPo = outer cortical plate, MZ = marginal zone, 
PCW = post conception weeks, M = months, Y = years, Period = developmental stage.

This overlaps with the primary period of neurogenesis in the neocortex, which starts around 6 
PCW (Clancy, Darlington, and Finlay 2001; Stiles and Jernigan 2010). To gain more insight into this 
overlap, we partitioned the TMAP analyses in three comparisons and examined how in vitro to in 
vivo matching progressed over time across di! erentiation. We see a clear progression in matching 
from early developmental stages to later stages (Figure 2A). For example, in vitro day-0 vs day-5 
show strong overlap with in vivo period-1 (4-8 PCW) vs period-4 (13-16 PCW), while in vitro day-
15 vs day-30 shows stronger overlap with in vivo period-2 (8-10 PCW) vs period-8 (birth-6M). 
Similarly, in vitro longitudinal DGE shows progression from overlap of early time points with inner 
laminae, to overlap with more upper cortical layers as in vitro neuronal di! erentiation advances 
(Figure 2B and S2).

Chapter 3
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In vitro neuronal di! erentiation reveals speci" c longitudinal gene clusters
 To identify biological pathways associated with neuronal di! erentiation, we applied an 
analysis framework speci" cally tailored to time-series gene expression data (see Methods and 
Supplemental Methods). A total of 7,734 probes, mapping to 5,818 genes, were di! erentially 
expressed over time (Figure S3). We " nd that these genes are, on average, more constrained 
to genetic variation compared to non-di! erentially expressed genes (section S2). Using only 
di! erentially expressed probes, we next applied fuzzy c-means clustering and identi" ed eight 
distinct longitudinal gene clusters (Figure 3 and S4). For each probe, we generated a corresponding 
cluster membership value, representing the degree to which a gene belongs to a cluster. To 
identify most informative biological interpretation of each cluster, we analyzed genes with 
high cluster membership for enrichment of functional annotations using DAVID (Supplemental 
Methods and Table S1).
 We identi" ed three clusters with decreasing gene expression over time that are signi" cantly 
enriched for cell division and RNA regulation and processing genes, re# ective of stem cell 
proliferation and cell fate determination that is tightly controlled and regulated by RNA dependent 
processes (Hattori, Buac, and Ito 2016). Second, there are three clusters showing increased gene 
expression levels over time that are primarily enriched for neuronal processes, such as neuron 
formation and synaptic function. Another independent cluster shows an inverted U-shaped 
expression pattern during development, enriched for genes involved in transcriptional regulation. 
The " nal cluster is enriched for genes involved in extracellular region and cell adhesions. These 
processes are important for cell connectivity and have also been implicated in cell proliferation 
and neuronal migration (Barros, Franco, and Muller 2011; Bikbaev, Frischknecht, and Heine 2015). 
Together, these eight gene clusters reveal di! erent biological mechanisms that are associated 
with neuronal di! erentiation and consistent with known biology of neurodevelopment. We 
hypothesize that the study of these longitudinal gene expression clusters can help decipher 
disease mechanisms involved in psychiatric phenotypes.

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk
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Figure 3. Identi! ed gene clusters highlight biological pathways important for neuronal di" erentiation. 
Top signi! cant functional annotations and corresponding enrichment score are shown for each gene cluster. 
Longitudinal gene expression is visualized for high member genes only (black line represents mean gene 
expression). Each cluster is color-coded with the number of genes at membership > 0.5 denoted. See table S1 for 
full annotation results.

Di! erentially expressed genes are enriched for polygenic psychiatric disease risk
 To examine how aggregate psychiatric disease risk is distributed across genes that are 
important for neuronal di! erentiation, we applied gene-set analysis and partitioning of h2 with 
MAGMA and sLDSR, respectively. We used GWAS summary statistics from major psychiatric 
disorders in addition to Alzheimer’s disease (AD) and adult human height, which served as non-
psychiatric control phenotypes that are heritable and polygenic. Using a two-step approach, we 
" rst investigated disease susceptibility on overall di! erential expression level and subsequently 
proceeded to deconstruct these associations across the longitudinal gene clusters. We " nd 
that genes that are di! erentially expressed are enriched for genetic risk of multiple psychiatric 
disorders. We " nd signi" cant e! ects with MAGMA for SCZ (P=0.001), ADHD (P=0.002), and SRD 
(P=0.003) (Table 1 and Table S3). With sLDSR, we " nd nominally signi" cant e! ects for SCZ (P=0.01) 
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and SRD (P=0.02) and a suggestive association for ADHD (P=0.06) (Table 1 and Table S4). We 
observed a suggestive enrichment for BPD, and no enrichment for the cross disorder, ASD, MDD 
CONVERGE or for adult height and AD.

Table 1. Di! erentially expressed genes are enriched for polygenic risk of multiple psychiatric disorders. Shown 
are results of MAGMA and sLDSR for di! erentially expressed genes. P-values highlighted in bold show phenotypes 
that survive multiple testing correction (n=9). See Table S3 and S4 for more details. Beta = regression coe"  cient, SE 
= standard error, Beta_std = change in Z-value given a change of one standard deviation in log T2 statistic, τ(tau) 
= the contribution to the per-SNP h2.

 We next investigated whether enrichment across di! erentially expressed genes was 
driven by up- or downregulation of genes during di! erentiation. For SCZ, we " nd that the e! ect is 
driven by genes that are upregulated (MAGMA P=5.0x10-7, sLDSR P=6.1x10-5) and not by genes 
that are downregulated (MAGMA P=0.98, sLDSR P=0.61) (Figure 4 and Figure S6). For SRD, we only 
" nd a stronger enrichment in upregulated genes with MAGMA (P=3.5x10-4), while ADHD shows 
no speci" c evidence for either up or downregulated genes.

Figure 4. Schizophrenia polygenic risk lies in genes up-regulated during neuronal di! erentiation. A more 
detailed investigation of the e! ect of di! erentially expressed genes on the heritability of SCZ, ADHD, and SRD. The 
y-axis denotes the –log10 P-value of the enrichment. No di!  = genes that are not di! erentially expressed; Di!  = log 
(T2-statistic) as shown in Table 1; Up = genes upregulated during di! erentiation; Down = genes downregulated 
during di! erentiation. The dotted line represents the threshold for P=0.0056 (n=9 traits).

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk

 
 

 
  

 MAGMA LDSC 
Phenotype Beta (SE) Beta_std P-value per-SNP h2 (SE) P-value 
Psychiatric      
  Schizophrenia 0.022 (0.0065) 0.097 8.66 x 10-4 9.36 x 10-9 (4.13 x 10-9) 0.02 
  MDD PGC 0.009 (0.0044) 0.043 0.03 1.30 x 10-8 (1.22 x 10-8) 0.29 
  ADHD 0.008 (0.0042) 0.036 0.06 2.08 x 10-8 (4.04 x 10-8) 0.60 
  Bipolar disorder 0.008 (0.0054) 0.036 0.13 1.43 x 10-8 (6.83 x 10-8) 0.04 
  MDD CONVERGE 0.005 (0.0042) 0.021 0.27 7.03 x 10-8 (2.52 x 10-8) 5.36 x 10-3 
  ASD -0.003 (0.0041) -0.015 0.41 9.56 x 10-9 (2.00 x 10-8) 0.63 
  Cross disorder 0.003 (0.0048) 0.014 0.51 4.48 x 10-9 (4.66 x 10-9) 0.34 
      
Neurodegenerative      
  Alzheimer’s disease 0.003 (0.0044) 0.014 0.48 -2.46 x 10-10 (3.99 x 10-9) 0.95 
      
Non-brain      
  Height* -0.003 (0.0107) -0.012 0.79 -1.20 x 10-8 (5.50 x 10-9) 0.03 
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Psychiatric disease risk aggregates to speci! c longitudinal gene clusters
 Next, we explored the relationship between di! erentially expressed genes and disease risk 
on cluster level. For this analysis, we only included traits that show signi" cant disease enrichment 
across di! erentially expressed genes using MAGMA after correcting for multiple testing (SCZ, 
ADHD, SRD) and our control traits (AD, height). These disease traits showed at least a nominally 
signi" cant e! ect with sLDSR as well. Using both MAGMA and sLDSR, we integrated cluster 
membership values with GWAS summary statistics (n=5) and assessed whether genome-wide 
disease risk aggregates to any of the eight experimentally identi" ed longitudinal gene clusters. 
Overall, MAGMA and sLDSR show a strong concordance across phenotypes and clusters (rho 
= 0.92, p<2.2x10-16, n=40, see also Figure S7). After Bonferroni correction (n=40), we " nd " ve 
signi" cant phenotype-cluster associations with MAGMA and three with sLDSR (Figure 5 and Table 
S5/S6).
 We " nd that multiple upregulated clusters show enrichment for SCZ with the strongest 
evidence for the synaptic function cluster (MAGMA P=1.8x10-7, sLDSR P=7.2x10-5) (see Figure 
S8). For SRD, we " nd signi" cant associations in the transcription regulation (P=2.5x10-5) and the 
neuron formation (P=1.2x10-4) gene cluster with MAGMA only. While the analysis of adult height 
using all di! erentially expressed genes did not yield any evidence for enrichment of genetic signal, 
enrichment is observed at the cluster level. The cell connectivity cluster (P=3.7x10-4) is enriched 
for height, in addition to suggestive enrichments in the cell division and RNA regulation cluster, 
which are not present for any of the psychiatric phenotypes. Remarkably, across all 8 clusters the 
enrichments of SCZ and height are inversely correlated (rho=-0.85, P=0.011, n=8; see also section 
S3 and Figure S9-10).
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Figure 5. Polygenic psychiatric risk is distributed across speci! c longitudinal gene clusters. Results from sLDSC 
(diagonal pattern) and MAGMA (solid colors) are shown for each phenotype (labels on the right) colored by gene 
cluster. Gene cluster annotation and cluster expression pattern are shown on top. The y-axis states the –log10 
(p-value). The dotted horizontal line represents the threshold for Bonferroni correction (p=0.05/40).

 Finally, in order to take into account the full spectrum of correlations and dependencies 
between clusters (Figure S11), we performed a conditional analysis for SCZ, the trait for which 
the strongest cluster enrichments are observed with both methods. Using the same MAGMA 
model, for each cluster, we conditioned on the highest gene members (membership > 0.5) of the 
other seven clusters (Table 2). We ! nd that the SCZ enrichment is driven by the synaptic function 

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk
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 MAGMA Primary MAGMA Conditional 
Schizophrenia - clusters Beta (SE) P-value Beta (SE) P-value 
  Cell division -0.045 (0.017) 1.00 -0.047 (0.027) 0.96 
  RNA regulation -0.040 (0.017) 0.99 -0.044 (0.027) 0.95 
  RNA processing -0.006 (0.017) 0.64 -0.011 (0.024) 0.68 
  Neuron formation 0.048 (0.017) 2.12x10-3 0.018 (0.036) 0.30 
  Synaptic function 0.077 (0.017) 1.82x10-6 0.070 (0.026) 2.88x10-3 
  Cell signaling 0.052 (0.016) 6.88x10-4 0.032 (0.023) 0.08 
  Transcription regulation 0.048 (0.016) 1.67x10-3 0.019 (0.025) 0.22 
  Cell connectivity -0.061 (0.017) 1.00 -0.076 (0.026) 1.00 

cluster (p=2.88x10-3) only. The same conditional analysis for SRD, which only showed a signi!cant 
enrichment with MAGMA, shows that this e"ect is primarily driven by the transcription regulation 
cluster (p=5.42x10-3) (Table S7).

Table 2. The association with SCZ risk is driven by the synaptic function gene cluster. Gene level association 
signal is regressed on cluster membership while adjusting for high membership genes of all other seven clusters. 
Shown are the results of the primary analysis (not adjusted for other clusters) and the conditional analysis with 
MAGMA. Beta = regression coe!cient, SE = standard error.

Replication in the CORTECON RNA-seq dataset shows strong concordance with discovery 
analyses
 To evaluate reproducibility of our !ndings, we performed a comprehensive replication 
analysis in the CORTECON RNA sequencing (RNA-seq) dataset of in vitro human cortical 
di"erentiation (van de Leemput et al. 2014). While the CORTECON project was executed 
using widely di"erent experimental procedures (section S4.1), we detect largely overlapping 
transcriptomic patterns with the discovery dataset. Between datasets, we see robust sample 
correlations across the di"erentiation trajectory (section S4.2, Figure S12), including in stem cell 
and early neuronal gene marker expression patterns (section S4.4, Figure S14-15). We observe a 
highly signi!cant overlap in di"erentially expressed genes (section S4.5) and in identi!ed gene 
clusters (section S4.6, Figure S16-17). We in addition !nd that genes di"erentially expressed 
during 37 days of di"erentiation in CORTECON, which closely maps to 30 days of di"erentiation 
in the discovery set, are signi!cantly associated with SCZ risk (beta=0.047, P=0.007, section S4.7). 
As in the discovery dataset, this association is driven by genes that are upregulated over time 
(P=0.008) but not downregulated (P=0.74). While the identi!ed gene clusters show signi!cant 
overlap with the eight gene clusters from the discovery analysis (Figure S17), we do not observe 
the association with SCZ risk to be distributed to a single gene cluster.
 To investigate whether similar genes are driving the association with SCZ risk between 
our discovery analysis and the CORTECON dataset, we adjusted our analysis in the CORTECON 
dataset for the synaptic gene cluster (n= 779 genes) of the discovery analysis. We !nd that the 
strength of the association between SCZ risk and day-37 upregulated genes decreases when 
we account for synaptic genes from the discovery analysis (beta=0.044, P=0.031, section S4.7). 
We have highlighted a set of genes that have high membership to the synaptic gene cluster, are 
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di! erentially expressed in CORTECON, and are signi" cantly associated to SCZ based on the GWAS 
(Figure S18). Taken together, this suggests that the same group of genes underlie the association 
between SCZ polygenic risk and transcriptomic signatures across di! erentiation and further 
demonstrates the concordance between both datasets.

Discussion
 We investigated a longitudinal in vitro stem cell model of human neuronal di! erentiation 
to study psychiatric disease susceptibility based on evidence from GWAS. We con" rmed that our 
in vitro model highlights transcriptomic pro" les that are in line with an emerging neuronal identity 
that recapitulates signatures of in vivo cortical development across speci" c developmental time 
periods and laminae of the human neocortex. This is in line with previous " ndings (Stein et al. 
2014) and highlights that longitudinal gene expression dynamics underlying our model of human 
neuronal di! erentiation can be informative to study genes and pathways involved in in vivo human 
cortical development. Importantly, neuronal cell types (Skene et al. 2017; Genovese et al. 2016; 
Forrest et al. 2017) and early brain development (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium 2014; Olde Loohuis et al. 2015; H. Finucane et al. 2017) have been postulated 
as integral components of SCZ disease susceptibility. Here, we observe that genes di! erentially 
expressed across neuronal di! erentiation are signi" cantly associated with genome-wide disease 
risk of SCZ, a " nding that we replicate in an independent dataset. Our " ndings suggest that SCZ 
risk aggregates to genes involved in synaptic functioning during development. Although not the 
only pathogenic process contributing to SCZ, synaptic dysfunction is most strongly supported by 
genetic data, postmortem expression studies, and animal models (Genovese et al. 2016; Hall et al. 
2015; Lips et al. 2011; Pocklington, O’Donovan, and Owen 2014; Schwarz et al. 2016; O’Dushlaine 
et al. 2015). We are the " rst to provide evidence for this hypothesis using a longitudinal in vitro 
cell-based model and aggregate polygenic disease risk. Our results suggest that high gene 
members of the synaptic function gene cluster enriched for SCZ (Figure S18), such as Calcium 
Voltage-Gated Channel Subunit Alpha 1C (CACNA1C), located at a genome-wide signi" cant SCZ 
locus (Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014), are suitable 
candidates for functional follow-up in this in vitro model. We " nd no evidence for AD, a late-
onset non-psychiatric brain disease, nor for adult human height in this neuronal cluster. Together, 
our " ndings demonstrate that longitudinal transcriptomic signatures important for neuronal 
di! erentiation recapitulate the in vivo context and align with the genetic basis of the disease. 
SCZ disease biology, and in particular synaptic functioning, can thus be studied through these 
molecular processes captured by this in vitro model.
 We also observed a signi" cant enrichment of genetic signal with MAGMA for SRD in genes 
upregulated during di! erentiation and show that this enrichment is predominantly driven by 
genes in the transcription regulation gene cluster. Interestingly, the SRD GWAS reported that 
the top SNPs were enriched for transcription regulation related to neurodevelopment (Hyde et 
al. 2016), which is in line with our in vitro " ndings. We observed no enrichment of the GWAS 
of recurrent and severe MDD in Han-Chinese women (CONVERGE Consortium 2015). The latter 
sample represents the most genetically and phenotypically homogeneous GWAS of MDD. The 
fact that for these results no enrichment for any of our gene sets was observed may suggest 
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that neurodevelopmental processes play a lesser role in MDD (Peterson et al. 2017). Alternatively, 
larger sample sizes are needed to better capture the genome-wide genetic risk associated with 
MDD (Figure S19). Self-reported depression is a much broader phenotype that may include other 
psychiatric traits, which could drive the observed neurodevelopment and transcription !ndings. 
Although it remains unclear how these results and the application of the model extrapolate to 
the MDD phenotype, our approach does highlight enrichment in distinct clusters for SRD and 
SCZ and could help shed light on how these two complex traits di"er in their etiology.
 A strength of our approach is the longitudinal analysis framework that we developed. We 
implemented an experimental design across a dense and repeatedly sampled time-series and 
integrated longitudinal transcriptomic signatures with genome-wide disease risk using available 
GWAS summary statistics. This increases statistical power to directly investigate the cumulative 
impact of risk loci on genes important to our model system. While we speci!cally chose to 
perform our experiments across an isogenic background to minimize variation and maximize 
statistical power to identify transcriptomic signatures, our framework can easily be extended to a 
multi-sample design (e.g. cases vs controls) (Tai and Speed 2006b; Aryee et al. 2009), which makes 
it relevant for many disease-speci!c experimental settings.
 Our experimental procedure applied di"erentiation towards a broad neuronal phenotype. 
Our work does not exclude disease associations with speci!c subtypes of neuronal cells or other 
major brain cell types, nor does it exclude cell non-autonomous changes that may contribute. We 
provide a proof-of-concept of an in vitro model of neuronal cells for studying complex diseases, 
such as SCZ, and present an analytical framework that includes longitudinal assessment of gene 
expression pro!les. This approach can readily be extended to study in vitro di"erentiation of 
other major brain cell types, such as astrocytes or oligodendrocytes. In addition, co-culture with 
astrocyte may facilitate a more mature neuronal culture (Tang et al. 2013; Johnson et al. 2007) 
and provide further insights into the temporal speci!city of SCZ genetic risk. Although we show 
strong evidence for SCZ risk in early prenatal neurodevelopment, our !ndings do not preclude an 
additional contribution of postnatal neurodevelopment to the etiology of the disease (Birnbaum 
et al. 2014; Pers et al. 2015; Sekar et al. 2016).
 In summary, as GWAS risk loci have small e"ect sizes and are abundantly distributed across 
the genome, new approaches are needed that allow for functional investigation of polygenic 
disease architectures. Embracing the polygenic nature of psychiatric disorders is an important 
step forward in translating !ndings from GWAS to disease biology. Our approach allowed us to 
narrow down on potential core disease processes and opens up new avenues to study disease 
in the context of polygenicity. Future work may for example incorporate model perturbations 
to study aggregate disease risk in !ner detail or use the model for functional !ne mapping of 
speci!c SCZ GWAS loci across an isogenic background in a controlled environment. Overall, this 
work contributes to understanding the functional mechanisms that underlie psychiatric disease 
heritability and polygenicity in the post GWAS era.
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Chapter 3 - Supplemental Materials
Full supplemental information can be found here:
https://doi.org/10.1016/j.biopsych.2018.08.019

S1. Supplementary Material and Methods
S1.1 Approval for stem cell research
 The University of California, Los Angeles Embryonic Stem Cell Research Oversight (ESCRO) 
committee approved this work. Their policy is based on the recommendations of the National 
Bioethics Advisory Commission, the National Academies of Science-Institute of Medicine 
guidelines, and standards created by the California Institute for Regenerative Medicine.

S1.2 Human neural stem cell line
 WA09(H9)-derived hNSC is a commercially available and commonly used neural stem 
line with standardized and well-documented neuronal di! erentiation protocols(1–3). These 
cells originate from a donated human embryo (F), produced by in vitro fertilization for clinical 
purposes, that was cultured to a blastocyst after which an ESC line was established(4, 5). This 
cell line is of European ancestry(6) and has a normal karyotype. It was in addition successfully 
tested for stem cell characteristics and approved by NIH for stem cell research(7). WA09 ESCs were 
di! erentiated to NSCs by the vendor and obtained by us as neural progenitors. Tissue culture 
plates were coated with CELLstart CTSTM (Thermo Fisher Scienti" c) diluted (1:50) in DPBS with Ca2+ 
and Mg2+ and hNSCs cells expanded in KnockOutTM DMEM⁄F-12 Basal Medium (Gibco) with 2% 
StemPro® Neural Supplement (Gibco). 2mM GlutaMaxTM-I Supplement (Gibco), FGF Basic and EGF 
Recombinant proteins (Gibco, both at 20 ng/ml), and 1x Pen Strep (Thermo Fisher Scienti" c). Cells 
were plated at 1.0x105 cells per 3.8 cm2, dissociated with preheated StemPro Accutase (Gibco) 
and subsequently passaged at ~90% con# uency. This cell line tested negatively for mycoplasma 
contamination both at the vendor
and in our lab.

S1.3 Experimental design and RNA extraction
 Cells all originated from the same batch of hNSCs di! erentiated from the WA09 hESC 
line. We speci" cally chose to perform our experiments across an isogenic background to 
minimize variation and maximize statistical power to identify transcriptomic signatures across 
di! erentiation. Each sample was cultured in a separate well and represents an independent 
di! erentiation process, which makes for semi-technical replicates. After RNA extraction, samples 
were quanti" ed using the Quant-iTTM RiboGreen® RNA Assay Kit (Thermo Fisher Scienti" c). RNA 
integrity was assessed through RIN scores using the Agilent 2100 Bioanalyzer (mean +/- sd = 
9.26 +/- 0.63). Transcriptome data was collected at the UCLA Neuroscience Genomics Core using 
Illumina’s HumanHT-12 v4 Expression BeadChip Kit, which is a cost-e! ective platform.

S1.4 Data preprocessing and quality control
 We select for probes present in at least 1 sample at detection p-value of <0.01. Probes 
were in addition " ltered for quality by “perfect” or “good” annotation using the illuminaHumanv4.
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db package (v1.26) in R. Network adjacency by Euclidean distance and standardized connectivity 
(Z.K) were calculated on !ltered probes values using the WGCNA package to detect outliers, 
de!ned as having Z.K. < -2(8, 9). All samples survived this exclusion threshold. As RNA samples 
were randomized across gene expression arrays, batch has no explanatory value on days of 
di"erentiation (R2=0.0, p=1.0, see also Figure S1).

S1.5 in vitro cellular identity
 An RNA-sequencing (RNA-Seq) transcriptome database of major classes of cell types 
present in the cerebral cortex was used to assess cell type-speci!c gene expression across 
neuronal di"erentiation. Brie#y, gene expression data of puri!ed populations of neurons, 
astrocytes, oligodendrocyte precursor cells (OPC), newly formed oligodendrocytes (NFO), 
myelinating oligodendrocytes (MO), microglia, and endothelial cells from mouse cerebral cortex 
was downloaded from the database(10). Fold changes in gene expression values, using fragments 
per kilobase of exon per million fragments mapped (FPKM), for each gene in each cell type were 
compared to the mean expression level across the other six cell types. To enrich for cell type-
speci!c genes, we selected the top genes sorted by fold change, with a minimal fold change of 2 
and FPKM < 5 in the other brain cell types.

S1.6 Transition mapping to a spatiotemporal atlas of early human brain development
 To investigate global transcriptomic matching between in vitro gene expression pro!les 
and in vivo gene expression pro!les of neocortical brain regions, we applied transition mapping 
(TMAP)(11). This method uses a spatiotemporal transcriptome atlas of the human brain(12) and 
laminar expression data dissected via Laser Capture Microdissection from fetal human brain as in 
vivo input(13). Both data sets contain brain samples from multiple individuals. TMAP only includes 
neocortical regions in the analyses. The method performs serial di"erential gene expression (DGE) 
analysis between any developmental stages or cortical laminae in the in vivo datasets and DGE 
analysis between two in vitro time points of choice. Both DGE lists are sorted on –log10(p-value) 
and multiplied by the sign of the beta coe$cient from the DGE analysis. TMAP subsequently 
implements the Rank Rank Hypergeometric Overlap (RRHO) test to determine overlap between 
the in vitro and in vivo DGE ranked lists and produces RRHO Di"erence maps that visualizes the 
extent of overlap(14). The TMAP and RRHO analyses are implemented in the online CoNTExT 
bioinformatic pipeline (https://context.semel.ucla.edu). Analyses were run for in vitro time points 
day-0 vs day-30, day-0 vs day-5, day-5 vs day-15, and day-15 vs day-30 across both temporal and 
spatial dimensions of human cortical development.

S1.7 Time-series di!erential gene expression analysis
 Two multivariate empirical Bayes models are used to identify di"erentially expressed 
genes across in vitro neuronal di"erentiation. The !rst method exploits the correlation structure 
among time points and replicates to identify non-constant genes and applies moderation by 
borrowing the information across genes into the analyses to reduce type-I and type-II errors 
due to poorly estimated variance-covariance matrices(15). This method is implemented in the 
Timecourse package (v 1.42) in R. We used the mb.long() function to calculate the one-sample 
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T2 statistic that ranks genes based on their log10 probability to have di! erential expression over 
time. The second method, Bayesian Estimation of Temporal Regulation (BETR), is an extension of 
the " rst approach and uses a # exible random-e! ect model that allows for correlations between 
the magnitude of di! erential expression at di! erent time points(16). This method explicitly 
models the joint distribution of the samples across time points and calculates the probability of 
a gene being di! erentially expressed using Bayes rule. BETR is implemented in the betr package 
(v 1.26) in R. These two methods complement each other as the " rst approach has increased 
sensitivity for transient expression di! erences while BETR has increased sensitivity to detect 
genes with non-constant expression that is small but sustained over multiple consecutive time 
points(16). To maximize our power to detect di! erentially expressed genes across time points and 
replicates, we applied both methods to rank genes by their probability of having non-constant 
gene expression across in vitro neuronal di! erentiation.

S1.8 Fuzzy c-means cluster analysis
 Fuzzy c-means clustering is a soft clustering approach that allows probes to obtain fuzzy 
memberships to all clusters, minimizes the e! ect of noise in the data, and avoids erroneous 
detection of clusters generated by random gene expression patterns. Fuzzy c-means clustering is 
performed in Euclidian space on standardized gene expression values. This ensures that genes with 
similar changes in expression cluster together. Membership values represent cluster a$  liations and 
highlight the extent of similarity in expression between genes. To calculate cluster membership 
values, we " rst have to estimate a fuzzi" er, which determines the level of cluster fuzziness, and 
the optimal cluster number to use. These two parameters were empirically estimated from the 
data (fuzzi" er = 1.55, number of clusters = 8) as previously described using the Mfuzz package in 
R(17, 18) (Figure S20). We used these two optimal estimates and subsequently calculated cluster 
membership with the fclusList() and membership() function in the Mfuzz package. Because these 
functions only take gene expression values of a single-replicate time series as input, we randomly 
sampled 100 single-replicate time series from our data and calculated cluster membership values 
using standardized gene expression values for each independent time series (Figure S21). We 
then proceeded to calculate average cluster membership for each probe for each cluster across 
our 100 independently sampled time series (Figure S22). These average cluster membership 
values were then used for all downstream analyses.

S1.9 Functional annotation of clusters
 The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6. 8) was 
used for functional annotation of each cluster(19). We restricted our analysis to probes with high 
membership, i.e. cluster membership > 0.5, to identify most informative functional annotations 
(Table S1). At a membership value of > 0.5, there is no overlap in genes between clusters (Figure 
S23). With this setting, 4,318 genes were assigned to a cluster with an average cluster size of 
540 genes with the smallest and largest cluster having 221 and 891 genes, respectively. DAVID 
was run using unique Ensembl IDs and the following databases: UP_KEYWORDS, UP_SEQ_
FEATURE, GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, BIOCARTA, KEGG_PATHWAY, 
INTERPRO, UCSC_TFBS. Genes signi" cantly detected during di! erentiation (n = 12,414) were 
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set as background to determine gene overrepresentation in clusters. The functional annotation 
clustering tool was applied at default settings to group gene list with overlapping gene IDs. 
Cluster annotations were called signi!cant if the enrichment > 1.0 and at least 1 gene list in the 
annotation cluster survived Bonferroni correction (P < 0.05).

S1.10 Intolerance of loss-of-function variation across clusters
 The probability of being loss-of-function (LoF) intolerant (pLI) was used to infer functional 
gene constraint across clusters. pLI measures were downloaded (April 2017) for 18,225 genes 
from the ExAC Browser (http://exac.broadinstitute.org/downloads). The statistical framework 
underlying the pLI metric is described by others in more detail elsewhere(20). The Wilcoxon Rank-
Sum test was used to test if cluster constraint was statistically di"erent between groups.

S1.11 Generation of annotation !les for MAGMA and sLDSC
 To integrate GWAS data with in vitro transcriptomic signatures, annotation !les mapping 
Ensembl gene IDs or chromosomal position to in vitro gene parameters were created. Illumina 
probe IDs were mapped to Ensembl gene IDs using NCBI build 37.3, duplicate IDs removed, and 
gene boundaries extended symmetrically by 10kb to include regulatory regions. Continuous 
gene parameters used are the T2-statistic and cluster membership values, which are !rst collapsed 
per gene ID using the mean values across probes and subsequently log-transformed and rank-
transformed, respectively. For binary annotation !les, we assigned genes or chromosomal 
positions a 1 or 0 for being above or below a speci!ed threshold, respectively. These !les were 
then used as input to Multi-marker Analysis of GenoMic Annotation (MAGMA) and strati!ed LD 
score regression (sLDSR) to integrate in vitro signatures with GWAS data and study the cumulative 
impact across risk loci.

S1.12 GWAS summary statistics used
GWAS summary statistics were checked and reformatted using the munge_sumstats.py program 
within the ldsc software, which removes low quality and ambiguous variants(21). SNPs in the 
MHC region (hg19 - chr6: 28477797 – 33448354) were !ltered out due to extensive linkage 
disequilibrium (LD) between markers in this region. The APOE locus (hg19 – chr19: 44,409,039–
46,412,650) was removed from analysis of AD to minimize the e"ect of variants with large e"ect 
sizes in downstream regression analyses. For MDD, we included GWAS results from the China 
Oxford and VCU Experimental Research on Genetic Epidemiology (CONVERGE) consortium(22) 
and 23andMe Inc., a personal genetics company(23). The latter uses a proxy of self-reported 
depression as a phenotype. We did not include the MDD GWAS of the PGC(24) in our analyses as it 
has a strong genetic correlation with the self-reported depression GWAS (rg=0.72)(23) but a lower 
h2 z-score. The 1000 Genomes Project Phase 3 release (1KG) was used as reference panel to model 
ancestry-matched LD(25). We used 503 individuals of European ancestry and 301 individuals of 
East Asian ancestry in analyses of GWAS data derived from target population of Europeans and 
Han Chinese, respectively.
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S1.13 MAGMA gene-set analysis
 MAGMA (v1.06)(26) was used to perform gene-set analyses of GWAS data, which uses 
a multiple regression framework to associate a continuous or binary gene variable to GWAS 
gene level p-values. For each GWAS trait, we generated gene-level p-values by computing the 
mean SNP association using the default gene model (‘snp-wise=mean’). SNPs were mapped to 
genes using Ensembl gene IDs and NCBI build 37.3 with +/- 10kb extensions of gene boundaries 
using the --annotate ! ag. We only included SNP with minor allele frequency (MAF) > 5% and 
dropped synonymous or duplicate SNPs after the " rst entry (‘synonym-dup=drop-dup’). For 
each annotation, we then regressed gene-level GWAS test statistics on the corresponding 
gene annotation variable using the ‘--gene-covar’ function while adjusting for gene size, SNP 
density, and LD-induced correlations (‘--model correct=all’), which is estimated from an ancestry-
matched 1KG reference panel. In all analyses, we included only genes for which we had both the 
gene variable and GWAS gene level test statistic available. Testing only for a positive association, 
i.e. enrichment of GWAS signal, we report one-sided p-values along with the corresponding 
regression coe#  cient.

S1.14 Strati! ed LD Score Regression - generating annotation ! les and LD scores
 For sLDSR, we used a recent extension to the method that partitions h2 by continuous-
valued annotations(27). This extension relies on the assumption that if a continuous annotation 
is associated to increased h2, LD to SNPs with larger values of this annotation will increase 
the χ2 statistic of a SNP more than LD to a SNP with smaller values. We " rst generated sLDSR 
annotation " les and computed LD scores for each continuous-valued annotation. We mapped 
gene log(T2-statistic) and standardized cluster memberships to SNPs in 1KG reference panel 
BIM " les. To increase the number of SNPs in our analyses, we extended gene boundaries with 
100kb on each end, similar to here(28). SNPs that intersected with a gene were annotated with 
the corresponding gene variable, while SNPs that did not map to genes were annotated with 
zero. For each annotation, we then estimated partitioned LD scores using using the ldsc.py --l2 
function with MAF > 5% and a 1 centimorgan (cm) window. As recommended, only HapMap3 
SNPs IDs, with the MHC region removed, were written and used in the " nal regression model. In 
case of binary gene annotations, a 1 (in the annotation) and 0 (not in annotation) coding was 
used. In a similar fashion, we computed LD scores for all 53 annotations in the baseline model 
(see Supplementary Methods for details). We in addition generated weight " les that contain non-
partitioned LD scores using only SNPs that will be included in the " nal regression model. These 
are LD scores computed from the HapMap3 SNPs with the MHC region removed. Frequency " les 
were generated with the -- freq ! ag in PLINK 1.9(28–30).
 We next generated baseline annotation " les using BED " les of 52 functional annotations, 
which were downloaded from the LDSC web portal. Genomic interval coordinates in each BED 
" le were intersected with SNPs present in 1KG reference panel BIM " les. If a SNP intersected with 
an interval in a BED " le it was annotated as 1 for that particular annotation. If a SNP did not 
intersect, it was annotated as 0. In addition to 52 annotations, we also added a recommended 
base annotation that coded a 1 for every SNP. These 53 annotations makeup the baseline model. 
With the generated sLDSR annotation " les and 1KG reference panels we estimated LD scores 
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for each annotation using the ldsc.py --l2 function with MAF > 5% and a 1 centimorgan (cm) 
window. As recommended, only HapMap3 SNPs, with the MHC region removed, were written 
and used in downstream analyses. As a sanity check, we correlated our estimated CEU baseline 
LD scores to the baseline LD scores that can be downloaded from the LDSC web portal and found 
a high concordance. For example, the mean Pearson correlation between computed LD scores 
across baseline annotations on chromosome 22 is 0.99 (n=53, sd=0.002). Thus, we proceeded and 
used the baseline model in our analyses as it has been shown to provide more accurate mean 
estimates of enrichment. The baseline model and the details of each annotation are described 
elsewhere(28, 31).

S1.15 Strati!ed LD Score Regression – main model
 We ran sLDSR (ldsc.py --h2) for each annotation of interest while accounting for the full 
baseline model and an extra annotation of all genes detected in our in vitro model (n = 12,414). 
That is, for each annotation we ran the following model;
 1.   Full baseline model with 53 annotations.
 2.   Annotation of all genes detected during in vitro neuronal di!erentiation.
 3.   Annotation of interest (e.g. cluster membership).

If an annotation of interest (3) is associated with increased h2, LD to SNPs with large values of 
that annotation will increase the c2 statistic of a SNP more than LD to SNPs with smaller values. To 
determine if this e!ect is signi"cant and speci"c to this annotation, it estimates the contribution 
of that annotation to the per-SNP h2 while accounting for the baseline and the all genes detected 
annotation (1 + 2). As we only test for a positive association, we report the contribution to the per-
SNP h2 (τ) and the associated one-sided p-value, which is calculated using standard errors that are 
obtained via a block jackknife procedure.

S1.16 CORTECON replication
 The CORTECON human cortical di!erentiation dataset, described in detail somewhere 
else(32), was used for replication analysis. Brie#y, H9 human ESCs were induced to neural 
progenitors over a course of 12 days. On day 13, neural progenitor induction medium was 
changed to a culture medium supporting cortical di!erentiation and cells further di!erentiated 
up to 77 days. RNA was extracted at day nine time points (0, 7, 12, 19, 26, 33, 49, 63, and 77 
days) in duplicates and paired-end RNA-seq data collected. FASTQ "les were mapped to the 
human genome (hg19) and raw count data made available through the CORTECON repository 
(http://cortecon.neuralsci.org/). Raw RNA-seq data for 44,562 transcripts and 24 samples were 
downloaded from the repository and analyzed in R. Transcripts with at least ten reads in more than 
two samples (n=19,008) were called signi"cantly detected and retained for further analyses. The 
count data was subsequently read into a DEseqDataSet object, then normalized by size factors 
and transformed by stabilizing the variance over the mean (vst() function) using the DESeq2 
package in R(33). Entrez Gene IDs were mapped to Ensembl Gene IDs and duplicates collapsed 
by their average transformed expression value. Transformed values were used as input for the 
PCA analysis, visualization of marker gene expression, and fuzzy c-means clustering as described 
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for the discovery analyses. To identify di! erentially expressed genes, the nbinomLRT() was applied 
to test for signi" cance of change in deviance between a full model (gene xp ~ 1 + Time) and a 
reduced model (gene xp ~ 1) for each gene. The model " rst estimates size factors and dispersion 
and then uses the likelihood ratio test (LRT) to assess if the increased likelihood of the data using 
the full model is more than expected given the reduced model. For the purposes of replication 
and comparison between datasets, only genes signi" cantly detected in both datasets were used 
in the analysis (n=11,290).

S1.17 Statistical Analysis
 Statistical analyses were performed with R (https://www.r-project.org) or an otherwise 
speci" ed algorithm. Signi" cance with MAGMA and sLDSR was determined at a one-sided α level 
of 0.05. If applicable, Bonferroni correction for multiple comparison is applied and denoted in 
" gures and tables.
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Supplementary Figures and Results

Figure S1. Results of PCA on control probes. The human HT-12 v4 beadchip contains 887 control probes that 
capture technical variation. Plotted above are PC1 and PC2 with variance explained in parentheses. Dots in 
the graphs represent samples and are color-coded by (A) array and (B) time. PC1 explains the majority of the 
information of the control probes but has no correlation with time in culture.
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Figure S2. Gene expression overlap between in vitro neuronal di! erentiation and in vivo human cortical 
development. CoNTExT was used to apply transition mapping and generate Rank Rank Hypergeometric Overlap 
di! erence maps. (A) Shows a toy example of how to interpret di! erence maps of overlap between in vivo time 
points and in vivo laminae. in vitro day-0 vs day-30 di! erential gene expression (DGE) pro" le was mapped to serial 
DGE pro" les of (B) human brain developmental stages and (C) laminae of the human cerebral cortex. Di! erence 
maps show the amount of matching between in vitro and in vivo DGE pro" les. Maps are colored by –log10(p-
value) denoted by each corresponding color bar. On the right of (B) and (C), results are also shown for analyses 
with permuted in vitro sample labels. Abbreviations and numbering above maps correspond to schematic 
representations on the left (adopted from Stein et al., 2014) of di! erent developmental stages and laminae. VZ 
= ventricular zone, SZ = subventricular zone, IZ = intermediate zone, SP=subplate zone, CPi= inner cortical plate, 
CPo = outer cortical plate, MZ = marginal zone, PCW = post conception weeks, M = months, Y = years, Period = 
developmental stage.
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Figure S3. A scatterplot showing the concordance between two methods that identify non- constant genes 
over time. The x-axis shows the probability from BETR. The y-axis shows the log transformed T2 statistic from the 
second method. Each dot represents a probe. Blue color indicates the union of probes that are con! dently called 
as having non-constant expression over time (n=7,734). The Spearman correlation between the ranks is shown in 
the top right corner.
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Figure S4. Experimentally-derived longitudinal gene clusters. An enlarged representation of gene expression 
patterns of high con! dence gene members for each cluster (see also ! gure 3). The x-axis denotes the time across 
di" erentiation and the y-axis gene expression values standardized to day-0. The black line highlights the average 
expression patterns of each cluster.
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S2. Supplementary Results
S2.1 Upregulated genes are more likely to be intolerant to loss-of-function functional variation
 Recent work has shown that intolerance to loss-of-function (LoF) functional variation (i.e. 
constraint) in genes and gene sets can highlight core biological processes and likelihood of disease 
pathogenicity(20, 34). High constraint genes have been implicated in neurodevelopmental 
disorders, such as autism spectrum disorder (ASD) and intellectual disability(34), and are in 
addition more likely to be adjacent to GWAS signal than the average gene(20). We therefore 
investigated constraint across clusters and extracted probabilities of LoF intolerance (pLI) from 
the ExAC database(20). The median pLI across all 18,225 genes extracted from the browser is 
0.027. Di!erentially expressed genes (n=5,545, median pLI=0.285) have increased average 
gene constraint compared to non-di!erentially expressed genes (n=6,839, median pLI=0.085). 
This di!erence between the groups is signi"cant (W=2.09x107, P < 2.2x10-16). Genes that are 
upregulated during di!erentiation primarily drive the increase in constraint. More speci"cally, 
genes in clusters that are a#liated to neuronal maturation (median pLI = 0.55, n=633) and synaptic 
function (median pLI = 0.52, n=616) show a signi"cant increase in pLI while genes a#liated to cell 
division (median pLI = 0.067, n=543), RNA binding (median pLI = 0.046, n=285), and extracellular 
matrix (median pLI = 0.104, n=490) show a signi"cant decrease in pLI relative to di!erentially 
expressed genes (see Figure S5 for test statistics). This shows that genes that are upregulated 
during neuronal di!erentiation have a lower tolerance to functional disruption than the average 
gene expressed, which makes these genes interesting to study in the context of disease.

Chapter 3



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

81  

 

  

Supplementary Figure S5-8

Figure S5. Genes upregulated during neuronal di! erentiation are intolerant for loss-of-function genetic 
variation. Cluster annotations shown with average gene constraint and its association with gene cluster 
membership shown across clusters.

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

 82  

 
 

 
  

  
  Figure S6. Height and Alzheimer’s disease show no h2 enrichment in up-regulated genes. A more detailed 

investigation of the enrichment of h2 of SCZ, height, and Alzheimer’s disease across di! erentially expressed genes. 
The y-axis denotes the –log10 P-value of the enrichment. No di!  = genes that are not di! erentially expressed; Di!  
= log (T2-statistic) as shown in Table 1; Up = genes up-regulated during di! erentiation; Down = genes down-
regulated during di! erentiation. The dotted line represents the threshold for P = 0.0056 (n=9 tests).

Figure S7. MAGMA and sLDSC show strong concordance in results. Each dot represents the results of phenotype-
cluster combination for both MAGMA (y-axis) and sLDSC (x-axis) (n=40). The regression line is shown in blue with 
the Spearman correlation between the ranks in the bottom right corner.
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Figure S8. A plot showing the association between SCZ gene-level association statistics and synaptic cluster 
gene membership. Standardized membership values to the synaptic function cluster and standardized gene level 
association statistics are shown on the y-axis and x-axis, respectively. The regression line is shown in blue with 
Pearson correlation test statistics denoted in the top right corner. The plotted association is not yet corrected for 
gene size, SNP density nor LD.
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S2.2. Cluster enrichments of schizophrenia and height are inversely correlated
 For height, we found e!ects in opposite direction of psychiatric traits in the downregulated 
gene clusters. We "nd an inverse correlation between enrichments of SCZ and height across eight 
gene clusters (rho=-0.86, P=0.011, n=9, see also Figure S9), despite the absence of any evidence 
of a genetic correlation across the whole-genome (rg=-0.002, p=0.95)(35). Our "ndings however 
do suggest a genetic correlation. Indeed, large-scale epidemiological studies have, for example, 
reported an inverse relationship between adult height and SCZ(36, 37). A population-based 
cohort study of >1 million Swedish men describes a 15% reduction in SCZ risk for tall subjects 
compared to short subjects(37). It has therefore been suggested that height and SCZ are likely 
to have overlapping genetic causes that can be both discordant and concordant(38). Our results 
are in line with this hypothesis and suggest that discordant and concordant e!ects aggregate on 
pathway levels that are dependent on time and place during development (Figure S10). While 
future work is needed to further explore the genetic relation between SCZ and height, these 
observations illustrate the added value of individual longitudinal gene clusters and highlight a 
complex genetic relationship between these two phenotypes.
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Supplementary Figure S9-11

Figure S9. Schizophrenia and height show an inversely correlated pattern of enrichment results. Shown are 
MAGMA results with each dot representing the regression coe!  cients of enrichment for schizophrenia and height 
on the x-axis and y-axis, respectively. The Spearman correlation between the ranks of both methods is shown in the 
top right corner along with the corresponding signi" cance level.
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  Figure S10. The genetic correlation between schizophrenia and height varies across cluster while absent 

across the whole genome. Genetic correlations were determined using cross-trait LD score regression and SNPs 
with MAF > 5%. Strati! ed correlations were computed using only a subset of SNPs that overlap with genomic 
coordinates of the highest gene members of that cluster (membership > 0.5). For one cluster (RNA processing), 
the subset of SNPs was too few to compute a genetic correlation. For di" erentially expressed genes (DEGs), the 
correlation was computed on SNPS overlapping the union of DEGs (n=5,818). Error bars represent the standard 
error.
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  Figure S11. The correlation structure across clusters. A matrix with spearman’s correlations calculated between 
gene membership values across clusters. The rho is denoted in each cell and the strength of the correlation color 
coded according to the bar on the right.

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

 88  

 
 Discovery dataset CORTECON dataset 
   
Cell line WA-09 hNSC WA-09 hESC 
Days of differentiation 30 days 77 days 
Time points 0, 2, 5, 10, 15, 20, 30 0, 7, 12, 19, 26, 33, 49, 63, 77 
   
ESC culture:   

coating Manufacturer’s protocol Grown on MEFs 
medium Manufacturer’s protocol HES-medium 

   
Neural progenitor culture:   

induction Manufacturer’s protocol Day1-12; cyclopamine, N2 
coating CellStart Matrigel 
medium StemPro NSC SFM 

+FGF/EGF 
KSR-medium  
+ LDN193189/SB431542 

   
Neuronal culture:   

induction Day 1 Day 13 
coating Poly-D-Lysine/Laminin Matrigel 
medium Neurobasal B27 Neurobasal B27 + N2 + FGF2 

   
RNA extraction: Qiagen’s Allprep kit Qiagen’s RNAprotect + RNeasy kit 
   
Transcriptomic technology Array RNA-sequencing 
   

  

S2.3. Replication analysis in the CORTECON RNA-Seq dataset (Figure S12-17)
S2.3.1 Comparison of dataset characteristics and di!erences
We !rst compared the main characteristics and experimental variables between both dataset 
(Table 1). Similar to the discovery dataset, the CORTECON project used the WA-09 stem cell 
line(32). However, for the discovery data we obtained human neuronal stem cells (hNSCs) and 
di"erentiated progenitors to a neuronal fate up to 30 days, whereas the authors of the CORTECON 
study started at the embryonic stem cell state and performed neural progenitor induction 
themselves. After induction, they subsequently di"erentiated to a dorsal telencephalic fate up 
to 77 days. Furthermore, di"erentiation protocols, RNA isolation procedures, time points and 
number of replicates collected, and gene expression platforms used are di"erent. We in addition 
implemented a data processing and analysis pipeline that is di"erent from our discovery analysis 
to accommodate the use of RNA-seq data. While we emphasize that these datasets are very 
di"erent, we did embark on assessing the reproducibility of marker gene expression levels, global 
transcriptomic signatures, and SCZ GWAS enrichment in the CORTECON dataset.

Table Note. Dataset characteristics and experimental settings between discovery and replication dataset. 
While both dataset use the WA-09 cell line, they are di!erent in many ways. Further details on the CORTECON 
dataset can be found in van de Leemput & Boles et al., 2014.
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S2.3.2 Transcriptome correlation analysis highlights time-speci! c similarity between datasets
 To gain insight in the degree of comparability between dataset and assess transcriptomic 
similarity between di! erentiation trajectories, we performed a correlation analysis between 
all pair of samples across datasets. Using overlapping genes signi" cantly expressed and in the 
top quartile of variable genes across time points in each dataset (n=856), we computed the 
Spearman rank correlation across all pairs and visualized these in the heatmap below (Figure 
S12). We " nd that as di! erentiation progresses the transcriptomic similarity between datasets 
follows the di! erentiation trajectory over time. For example, day-30 of di! erentiation in the 
discovery dataset shows a negative correlation with the earliest time points in the CORTECON 
dataset. The observed correlation gradually shifts to a positive correlation as neurons develop 
over time, with day-77 in the replication having the largest positive correlation with day-30 in the 
discovery dataset (mean rho = 0.31). This demonstrates that genes that change most over time 
and that are expressed in both dataset share signi" cant similarity in their expression levels across 
the trajectory of di! erentiation between experiments. To align datasets for subsequent analyses, 
we aimed to select a time window in the CORTECON dataset that best matches the 30-day in 
vitro di! erentiation trajectory of the discovery experiment. As we started our di! erentiation at the 
neural progenitor stage (day-0), we chose day-12 in CORTECON as the " rst time point as this is the 
end of neural progenitor induction (day-13 is start of neuronal induction). Day-0 of discovery and 
day-12 of CORTECON also display a strong correlation based on gene expression levels (mean rho 
= 0.51). We selected two endpoints of di! erentiation in CORTECON; day-49 (37 days of neuronal 
di! erentiation) and day-77 (65 days of neuronal di! erentiation), with the " rst mapping most 
closely to the number of days of di! erentiation in our discovery dataset (i.e. 30 days).
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Figure S12. Transcriptome correlation analysis reveals similarity of di! erentiation trajectories between 
datasets. To gain insight in the degree of comparability between dataset and assess transcriptomic similarity 
between di! erentiation trajectories, we performed a correlation analysis between all pair of samples across 
datasets. The x-axis shows samples of the CORTECON dataset ordered by days of di! erentiation and replicate. The 
y-axis shows the discovery dataset. The Spearman rank correlation is shown across a color gradient. The black lines 
and arrows indicate the starting point of neuronal induction for each dataset.
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S2.3.3 Principal component analysis highlights the di! erentiation trajectory
 We investigate global transcriptomic signatures across di! erentiation using principle 
component analysis (PCA). PCA is performed using all time points and replicates (n=24) and 
variance stabilized, normalized counts of 16,791 protein-coding genes that passed QC. We 
" nd that the " rst PCs explain 67% of the data and capture the di! erentiation process quite 
accurately (Figure S13; left plot). Zooming in on day12-77, the start of neuronal induction until 
the end of di! erentiation, we " nd that some samples do display an irregular pattern (middle 
plot, highlighted by black circle) and deviate from the expected smooth gradual transition on 
the PC-axis as di! erentiation progresses. This may be due to a batch e! ect or sample mix-up/
contamination at some point during sample processing. Based on the alignment of the samples 
on the axis of the " rst PC using the full dataset (left plot), we excluded two replicates of day 19 
(samples day19-C/D). We do believe there is still a batch e! ect in the data but are not able to track 
this back accurately and thus account for it. For further analysis within day12-77, this leaves seven 
time points with two replicates each (n=14; right plot).

Figure S13. in vitro gene expression pro! les capture the di" erentiation trajectory in the CORTECON dataset. 
Shown are the PCA plot of the discovery dataset (top) with three PCA plots of three subsets of the CORTECON 
dataset (bottom) with principle compontent (PC) 1 and PC2 plotted with variance explained in parentheses on 
the axis labels.
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S2.3.4 Traditional gene markers show consistent patterns of expression across datasets
 To con! rm that the di" erentiation trajectories are in line with the implemented protocols, 
we examined traditional neural stem cell and neuronal marker genes and their expression 
patterns over days of di" erentiation. We identi! ed three stem cell markers (MKI67, Nestin, and 
SOX2) and four neuronal markers (BDNF, DCX, TUBB3, and MAP2). These markers are signi! cantly 
detected in both dataset and commonly reported to evaluate the di" erentiation trajectory(39, 
40). Using normalized expression levels; we standardized each gene’s expression values with the 
! rst time point at zero and a standard deviation of one. We then plotted each marker gene’s 
standardized expression values over time for both the discovery and replication dataset. We ! nd 
that the classical neural stem cell markers Nestin and SOX2 and MKI67, a marker of proliferation, 
are downregulated over time as cells di" erentiate away from their progenitor state towards a 
neuronal lineage (Figure S14). This observation is consistent between both datasets and in line 
with what has been reported.

Figure S14. Stem cell and proliferation marker genes are downregulated over time in both datasets. Shown 
are standardized gene expression values of three traditional neural stem cell marker genes plotted over time. The 
x-axis shows the days of di! erentiation. Neuronal induction was induced at day-1 in the discovery and day-13 in 
the replication. MKI67 - proliferation marker protein Ki-67; NES - Nestin; SOX2 - sex determining region Y-box 2.

 Next, we examined four neuronal markers and ! nd a consistent pattern between 
datasets of upregulated expression as neuronal di" erentiation progresses for BDNF and DCX, 
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which are early markers of neuronal di! erentiation and developing neurons (Figure S15)(41). 
In the CORTECON dataset, we " nd an indecisive pattern of expression for TUBB3 and MAP2 as 
di! erentiation progresses over time that does not align with the more gradual expression pattern 
in the discovery dataset. This may suggest that the e! ect of their neuronal induction protocol 
may be more variable or heterogenous and a! ecting only a subset of genes involved in speci" c 
(and more mature) domains of neuronal functioning. It may also re# ect the irregular pattern we 
observed in the PCA analysis (Figure S13), although it remains speculative. Taken together, we do 
believe that both datasets largely show the same results, which is that neural stem cell markers 
are downregulated and early neuronal markers upregulated as di! erentiation progresses. Based 
on the expression of TUBB3 and MAP2 in both datasets, we conclude that these neuronal cultures 
remain however immature, which limits the developmental range of the model. Having said that, 
an important next experiment would be to implement strategies to improve the maturity of the 
culture, for example with co-culturing of astrocytes.

Figure S15. Early neuronal marker genes are upregulated over time in both datasets. Shown are standardized 
gene expression values of three traditional neural stem cell marker genes plotted over time. The x-axis shows the 
days of di! erentiation. Neuronal induction was induced at day-1 in the discovery and day-13 in the replication. 
BDNF - brain-derived neurotrophic factor; DCX - doublecortin; TUBB3 - tubulin beta-3 chain; MAP2 – microtubule 
associated protein 2.

S2.3.5 Di! erentially expressed genes show signi" cant overlap between datasets
 To identify genes di! erentially expressed across di! erentiation, we applied a likelihood 
ratio test (LRT) using the DESeq2 gene di! erential expression pipeline(33). We choose to deviate 
from the bioinformatics pipeline in our discovery analysis as the methods to identify di! erentially 
expressed genes are speci" cally designed for microarray gene expression time series data. As 
RNA-seq data consists of counts that follow a negative binomial distribution, these methods are 
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 CORTECON Day 12-49  
OR=1.51; P=9.8e-26 Differentially 

expressed 
Not differentially 

expressed 
Totals 

Differentially 
expressed 

2,739 2,516 5,255 

Not differentially 
expressed 

2,166 3,001 5,167 

Totals 4,905 5,517 10,422 

   D
isc

ov
er

y 

 CORTECON Day 12-77  
OR=1.28; P=4.0e-10 Differentially 

expressed 
Not differentially 

expressed 
Totals 

Differentially 
expressed 

3,314 1,941 6,267 

Not differentially 
expressed 

2,953 2,214 4,155 

Totals 5,255 5,167 10,422 

 

not suitable for the CORTECON time series dataset. The DESeq model, for each gene, implements 
the LRT to compare (1) a full model [gene counts ~ 1 + time] against (2) a reduced model [gene 
counts ~ 1]. The LRT determines if the increased likelihood of the data using the full model with 
the time variable (model 1) is more than expected if the time component is truly zero (model 2). 
While the DESeq method is a widely used pipeline to analyze RNA-seq data, we do acknowledge 
that it relies on a linear regression model and is therefore less powered to identify genes with 
nonlinear expression across di!erentiation. Methods to analyze time series RNA-seq data are 
however scarce and this framework will allow us to identify genes di!erentially expressed in the 
CORTECON dataset and compare with the genes identi"ed in our discovery analysis. We analyzed 
two di!erentiation windows in the CORTECON dataset; day 12-49 (n=10, 37-days of neuronal 
di!erentiation) and day 12-77 (n=14, 65-days of neuronal di!erentiation). For day 12-49, we 
identify 7,379 genes out of 16,791 genes to be di!erentially expressed over time at FDR < 5% of 
which 4,905 are also signi"cantly detected in the discovery dataset. Of the 4,905 genes, we "nd 
that 2,739 (56%) are also identi"ed as di!erentially expressed in our discovery analysis, which is 
a highly signi"cant overlap that is unlikely to happen by chance (P=9.8e-26, OR = 1.51, Table 2). 
When we analyze the 65 days of neuronal di!erentiation window (day 12-77), we "nd 9,869 genes 
di!erentially expressed at FDR < 5% of which 6,267 are also detected in our discovery dataset. Of 
these 6,267 genes, 3,314 (53%) are also di!erentially expressed in our discovery analysis, which is a 
signi"cant overlap (P=4.03e-10, OR=1.28, Table 2) but to a lesser extend as the genes found within 
the 37-day di!erentiation window.

Table note: Time series gene di!erential analysis results in the CORTECON dataset signi"cantly overlaps with 
discovery. Shown are contingency tables that were used as input for the Fisher’s exact test to assess the overlap in 
di!erentially expressed genes between discovery and replication dataset. Shown are the results for day 12-49 (top) 
and day 12-77 (bottom) with the odds ratio and the signi"cance level of the test denoted in the upper left corner.
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These results demonstrate that genes that are important for in vitro neuronal di! erentiation 
signi" cantly overlap between datasets. Moreover, we " nd that the 37-day di! erentiation window 
in the CORTECON dataset maps more closely to the transcriptome of the 30-day di! erentiation 
window of our discovery dataset than the 65-day di! erentiation window. This is most likely driven 
by di! erent transcriptomic signatures that are present at later di! erentiation time points and 
highlights the importance of temporal alignment and speci" city when comparing neuronal 
di! erentiation transcriptome datasets. We next performed time series cluster analysis to group 
di! erentially expressed genes into longitudinal gene clusters that are active over time.

S2.3.6 CORTECON gene clusters show signi! cant overlap with discovery dataset
 We applied our time series clustering pipeline and identi" ed six and seven longitudinal 
gene clusters for 37 days of di! erentiation and 65 days of di! erentiation, respectively. After 
computing mean cluster membership values for each di! erentially expressed gene for each 
cluster, we identi" ed genes with high degree of membership to a cluster (membership > 0.5) 
and used these to identify functional annotation enrichments via DAVID (v6.0). Visualized below 
(Figure S16) are the results, including the overlap between high membership cluster genes 
between 37-days and 65-days and the top functional annotation associated with each cluster.

A longitudinal model of human neuronal differentiation to investigate schizophrenia polygenic risk



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

 96  

 

 Figure S16. Time series gene expression cluster analysis in the CORTECON dataset. Time series gene expression 
cluster analysis in the CORTECON dataset. Shown are the gene clusters identi! ed for both 37-days of di" erentiation 
(y-axis) and 65-days of di" erentiation (x-axis) with the top three functional annotations denoted. Gene overlap 
between clusters is shown, with strength of overlap visualized by the outcome of the hypergeometric overlap test 
(-log10 p-value).

 Similarly to the discovery dataset, we ! nd gene clusters that are downregulated over 
time and enriched for cell division, RNA processing, and chromosome organization functional 
annotation. Likewise, we ! nd clusters that are upregulated over time that are associated with 
neuronal functioning. Across 65-days of di" erentiation, we ! nd an additional cluster that is 
upregulated during late di" erentiation that is not present in the 37-day di" erentiation window. 
Note that we do not detect any clusters with nonlinear expression patters, which we did in the 
discovery analysis. This is a limitation of the DESeq2 regression framework. Interestingly, we 
observe similar top functional annotations across upregulated clusters for both day-37 and day-
65. Glycosylation and glycoproteins and transmembrane annotations particularly stand out. 
Glycosylation refers to a post-translational modi! cation of protein and lipids by monosaccharides 
or oligosaccharide chains and plays an important role during vertebrate development, including 
regulation of the nervous system. While we did ! nd a similar cluster in our discovery analysis, it 
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was not as abundantly distributed across all upregulated clusters. This may be due to speci! c 
di" erences in di" erentiation protocols which additional studies may provide biological insights 
into. To compare the CORTECON gene clusters with the discovery gene clusters, we investigated 
the overlap between clusters identi! ed during 37 days of di" erentiation in CORTECON and 30 
days of di" erentiation in the discovery analysis. We ! nd that gene clusters that are downregulated 
over time show signi! cant overlap between datasets (Figure S17). Similarly, upregulated gene 
clusters show a signi! cant degree of overlap. As noted before, nonlinear gene clusters in the 
discovery dataset show weak or no overlap with clusters identi! ed in CORTECON. This likely does 
not re# ect true di" erences between datasets but is an outcome of di" erential bioinformatic 
pipelines used to identify di" erentially expressed genes. Overall these ! ndings do highlight that 
transcriptomic signatures that are important for in vitro neuronal di" erentiation are largely shared 
across datasets and that there are also ! ner di" erences within gene clusters and the functional 
annotations that they associate with.

Figure S17. Gene clusters identi! ed in CORTECON overlap signi! cantly with cluster of the discovery analysis. Shown 
are the gene clusters identi! ed for both 37-days of di" erentiation (y-axis) and our 30-days of di" erentiation in the 
discovery (x-axis) with the top three functional annotations denoted. Gene overlap between clusters is shown, with 
strength of overlap visualized by the outcome of the hypergeometric overlap test (-log10 p-value).
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SCZ GWAS Enrichment Beta (SE) Beta_std P-value 
Discovery 30 days    

Differentially expressed 0.022 (0.007) 0.094 0.001 
Upregulated 0.120 (0.025) 0.069 9.2E-07 
Downregulated -0.054 (0.025) -0.030 0.984 

CORTECON 37 days    
Differentially expressed 0.047 (0.019) 0.033 0.007 

Upregulated 0.056 (0.023) 0.030 0.008 
Downregulated 0.014 (0.023) 0.008 0.740 

CORTECON 65 days    
Differentially expressed 0.004 (0.020) 0.003 0.847 

Upregulated -0.002 (0.022) -0.001 0.929 
Downregulated 0.006 (0.021) 0.004 0.756 

 

 

  

S2.3.7 SCZ polygenic risk is signi!cantly associated with CORTECON di"erently expressed 
genes that are upregulated over time
 In our discovery analysis, we found that SCZ polygenic risk is signi!cantly associated
with di"erentially expressed genes that are upregulated over time during di"erentiation 
(beta=0.12, P=9.2E-07). This association is speci!cally driven by a longitudinal gene cluster that 
is enriched for synaptic function annotations (yellow cluster in Figure S17). We performed a 
similar two-step analysis in the CORTECON dataset, where we !rst associated SCZ polygenic risk 
with di"erentially expressed genes and subsequently followed up on identi!ed gene clusters. 
Using MAGMA, we replicate our !nding that genes di"erentially expressed during 37 days of 
di"erentiation in CORTECON are signi!cantly associated with SCZ risk (beta=0.047, P=0.007, 
Table 3). This is, similar to the discovery dataset, driven by genes that are upregulated over time 
(P=0.008) and not downregulated (P=0.74). We !nd no association of SCZ risk with di"erentially 
expressed genes across 65 days of di"erentiation in CORTECON.

Table note: SCZ polygenic risk is enriched in genes di!erentially expressed across 37 days of in vitro neuronal 
di!erentiation. Shown are results of MAGMA using di!erentially expressed genes as gene-set for our discovery 
analysis, CORTECON 37 days of di!erentiation (day12-49), and CORTECON 65 days of di!erentiation (day12-77). 
Beta = regression coe"cient, SE = standard error, Beta_std = change in Z-value given being in the gene-set as 
compared to out of the gene-set.

We examined the association within 37 days of di"erentiation further by analyzing the six gene 
clusters we identi!ed but !nd no evidence of the association with SCZ risk to be distributed 
across a speci!c gene clusters.
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SCZ GWAS Enrichment Beta (SE) Beta_std P-value 
CORTECON 37 days    

Differentially expressed 0.047 (0.019) 0.033 0.007 
Upregulated 0.056 (0.023) 0.030 0.008 
Downregulated 0.014 (0.023) 0.008 0.740 

CORTECON 37 days - 
Synaptic genes adjusted 

   

Differentially expressed 0.044 (0.019) 0.031 0.015 
Upregulated 0.044 (0.023) 0.024 0.036 
Downregulated 0.022 (0.022) 0.012 0.843 

 
 

 

  

Table note: SCZ polygenic risk association in CORTECON is not distributed to a speci! c gene cluster. Shown 
are results of MAGMA with rank-transformed gene membership values of each cluster as predictor of SCZ GWAS 
gene-level z-scores. Beta = regression coe!  cient, SE = standard error, Beta_std = change in Z-value given 1SD in 
standardized membership value.

To investigate whether similar genes are driving the association with SCZ risk between our 
discovery analysis and the di! erentially expressed genes across 37 days of the CORTECON dataset, 
we adjusted our analysis in the CORTECON dataset for the synaptic gene cluster (n= 779 genes) 
of the discovery analysis. We " nd that the strength of the association between SCZ risk and day-
37 di! erentially expressed genes that are upregulated decreases when we account for synaptic 
genes from the discovery analysis (beta=0.044, P=0.031, see table below). This suggests that, in 
part, similar genes underlie the association between SCZ GWAS risk and transcriptomic signatures 
across in vitro neuronal di! erentiation between both datasets.

Table note: SCZ polygenic risk association in CORTECON is in part driven by synaptic genes identi! ed in 
discovery. Shown are results of MAGMA with di" erentially expressed genes as gene-set with and without correction 
for the synaptic genes identi# ed in the discovery analysis (n=779). Beta = regression coe!  cient, SE = standard error, 
Beta_std = change in Z-value given being in the gene-set as compared to out of the gene-set.

 

SCZ GWAS Enrichment Beta (SE) Beta_std P-value 
CORTECON 37 days    
Cluster 1 0.008 (0.016) 0.009 0.311 
Cluster 2 0.003 (0.015) 0.003 0.432 
Cluster 3 0.004 (0.015) 0.005 0.393 
Cluster 4 -0.021 (0.015) -0.024 0.918 
Cluster 5 -0.019 (0.015) -0.022 0.894 
Cluster 6 -0.020 (0.015) -0.022 0.900 
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Supplementary Figure S18-23

Figure S18. High membership synaptic genes signi! cantly associated with SCZ risk. Shown are relative 
expression patterns over time in the discovery datasets of genes with high membership (m > 0.5) to the synaptic 
function gene cluster. These genes (n=12) are also identi! ed to be signi! cantly di" erentially expressed in the 
CORTECON dataset (FDR < 5%) and have a SCZ GWAS gene-level p-value < 2.5e-06 (Bonferroni correction). For 
each gene, we show the gene symbol alongside its synaptic gene cluster membership value (m) and SCZ GWAS 
gene p-value.
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Figure S19. GWAS sample size matters. (left) A bar plot showing the regression coe!  cient (MAGMA) of the 
association between the T2 statistic (likelihood of being di" erentially expressed) and SCZ gene level test statistics 
for three SCZ GWAS studies of increasing sample sizes. The numbers of cases for each study are denoted on the 
x-axis labels. (right) A similar plot showing the association of SCZ risk and membership to the synaptic function 
cluster for each GWAS. Regression coe!  cients are shown with corresponding standard errors.
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Figure S20. A plot showing minimum centroid distance against increasing numbers of clusters. We sampled 
100 independent single-replicate time series (see supplementary ! gure 5) and performed fuzzy c-means clustering 
for each time series across various numbers of clusters with a fuzzi! er of 1.55. For each we calculated the minimum 
centroid distance across clusters. Shown above in red are the mean across time series with corresponding standard 
errors in black. The x-axis shows the number of clusters and the y-axis the minimum centroid distance. The optimal 
cluster number is chosen as the number before which there starts a gradual decrease in minimum centroid 
distance as cluster number increases. This indicates that additional clusters add little information. The optimal 
cluster number was set at 8.
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 26 

 

 
 
  Figure S21. A schematic example of sampling independent single-replicate time series. We calculated average 
cluster membership for each probe for each cluster across 100 independently sampled single-replicate time series. 
Give the data we can sample 5,184 independent single-replicate time series (4^3 X 3^4). Above are two dummy 
examples shown of how a single-replicate time series could look like. The yellow color denotes the sampled samples 
and the red line shows a path that de! nes the single-replicate time series that these samples make up.
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Figure S22. A plot showing the variation in cluster membership values across 100 independently sampled 
time series. We performed soft clustering on 7,734 probes using fuzzy c-means clustering with a fuzzi! er of 1.55 
and a cluster number of 8. Cluster memberships were calculated as the average membership determined across 
100 independently sampled time series. The x-axis above shows average cluster membership and the y-axis the 
standardized standard deviation. Data is shown for a speci! c cluster with each dot representing a probe. The 
blue line represents a smoothened curve representing the relationship between standard deviation and average 
membership with 95% con! dence intervals in grey. This relationship is consistent across all 8 clusters.
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Figure S23. The overlap between clusters across the membership range. The percentage of unique genes 
by Ensembl ID was calculated across di! erent membership values for each cluster. These percentages were 
subsequently averaged across 8 clusters. The y-axis shows the average percentage of unique genes (i.e. no overlap 
between clusters) with membership value on the x-axis.
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Abstract
 Clozapine is an important antipsychotic drug. However, its use is often accompanied by 
metabolic adverse e!ects and, in rare instances, agranulocytosis. The molecular mechanisms 
underlying these adverse events are unclear. To gain more insights into the response to clozapine 
at the molecular level, we exposed lymphoblastoid cell lines (LCLs) to increasing concentrations 
of clozapine and measured genome-wide gene expression and DNA methylation pro"les. 
We observed robust and signi"cant changes in gene expression levels due to clozapine (n = 
463 genes at FDR < 0.05) a!ecting cholesterol and cell cycle pathways. At the level of DNA 
methylation, we "nd signi"cant changes upstream of the LDL receptor, in addition to global 
enrichments of regulatory, immune and developmental pathways. By integrating these data 
with human tissue gene expression levels obtained from the Genotype-Tissue Expression project 
(GTEx), we identi"ed speci"c tissues, including liver and several tissues involved in immune, 
endocrine and metabolic functions, that clozapine treatment may disproportionately a!ect. 
Notably, di!erentially expressed genes were not enriched for genome-wide disease risk of 
schizophrenia or for known psychotropic drug targets. However, we did observe a nominally 
signi"cant association of genetic signals related to total cholesterol and low-density lipoprotein 
levels. Together, these results shed light on the biological mechanisms through which clozapine 
functions. The observed associations with cholesterol pathways, its genetic architecture and 
speci"c tissue e!ects may be indicative of the metabolic adverse e!ects observed in clozapine 
users. LCLs may thus serve as a useful tool to study these molecular mechanisms further.
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Introduction
 Antipsychotic drugs (APs) play an important role in the treatment of psychotic disorders 
such as schizophrenia (SCZ). Clozapine is one of the most e! ective antipsychotic drugs (AP)
(Leucht et al. 2013; Kane et al. 1988; Taylor 2017). However, the decision to prescribe clozapine 
is complicated by its potential to induce severe adverse e! ects (Leucht et al. 2013). The most 
severe adverse e! ect, with a prevalence of <1%, is clozapine-induced agranulocytosis, a dramatic 
reduction of white blood cells (Andersohn, Konzen, and Garbe 2007). More common adverse 
e! ects include weight gain, dyslipidemia and type 2 diabetes. These adverse metabolic e! ects 
are, in addition to the chance of developing agranulocytosis, the primary reasons for patient 
noncompliance and discontinuation of treatment (Cohen 2014; Weiden, Mackell, and McDonnell 
2004).
 The biological mechanisms underpinning the e! ect of clozapine, as well as its adverse 
e! ects, remain elusive. A twin study estimated that the heritability of APs-induced weight gain 
is approximately 60%(Gebhardt et al. 2010), suggesting a substantial role for genetic factors. 
Candidate genes studies of clozapine-induced adverse e! ects have yielded ambiguous results 
and lack consistent replication (reviewed by(Roerig, Ste! en, and Mitchell 2011; Müller, Chowdhury, 
and Zai 2013; Chowdhury, Remington, and Kennedy 2011; Lett et al. 2012; Yan, Chen, and Zheng 
2013)). Two genome-wide association studies (GWAS) investigating antipsychotic-induced 
metabolic adverse e! ects have yielded inconclusive " ndings, primarily due to insu#  cient sample 
sizes and the potential polygenic nature of this trait (Malhotra et al. 2012; Adkins et al. 2011).
 Intermediate molecular phenotypes, such as gene expression studies in speci" c cell lines 
or tissues, may improve our understanding of the molecular function of clozapine. Previous 
studies have found that atypical antipsychotic drugs may induce cholesterol metabolism 
through transcription factors such as sterol regulatory element binding proteins (SREBP1 and 
2) (Ferno et al. 2011), suggesting that drug-induced cholesterol metabolism is related to these 
adverse metabolic e! ects. However, such " ndings were not consistently replicated when 
pro" ling whole blood (Ferno et al. 2011; Harrison et al. 2016; Vik-Mo et al. 2008). It is possible that 
changes in DNA methylation could mediate changes in gene expression, such as the AP-induced 
hypomethylation of the FAR2 gene leading to insulin resistance (Burghardt et al. 2016). However, 
such studies are currently limited and those performed provide inconsistent results (Swathy et al. 
2017; Swathy and Banerjee 2017; Stapel et al. 2017; Ota et al. 2014; Melas et al. 2012; Kinoshita et 
al. 2017; Burghardt et al. 2016; Houtepen et al. 2016; Rukova et al. 2014).
 A major obstacle towards understanding clozapine-induced metabolic e! ects is 
that clozapine therapy is a relatively rare (~6%) treatment plan in patients diagnosed with 
schizophrenia (Burghardt et al. 2016; Stroup et al. 2016), of which then only 1% develop CIA. Such 
factors challenge our ability to adequately sample a large and controlled prospective cohort of 
patients thereby limiting progress in understanding both metabolic and hematological adverse 
e! ects. To augment the lack of available in vivo data, we implemented an in vitro lymphoblast 
cell line (LCL) model to study the e! ects of drug exposure at the molecular level. Cell-based 
models have been successfully employed for pharmacogenomic studies, including LCL models 
to study clozapine function (Welsh et al. 2009; Wen et al. 2012; Morag et al. 2010; de With et al. 
2015). Here, we exposed LCLs to increasing doses of clozapine and collected both expression 
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and methylation pro!les. Through integrative genomic analyses, we aim to extrapolate in vitro 
molecular signatures of clozapine towards relevance of in vivo function and study clozapine 
response without the need to assemble a large cohort of patients. We identi!ed signi!cant 
changes in transcriptomic signatures associated with cholesterol and cell cycle pathways. By 
then integrating these molecular pro!les with genome-wide association study (GWAS) summary 
statistics of di"erent traits and diseases, we show that clozapine-associated genes also overlap 
with genetic signals related to total cholesterol and low-density lipoprotein (LDL) levels but not 
schizophrenia genetic risk. Clozapine-associated genes are furthermore related to speci!c human 
tissues, such as liver and those involved in immune, endocrine and metabolic functioning.

Methods
Lymphoblast cell lines
 We used lymphoblast cell lines (LCLs) from four unrelated samples, all part of the 
collection of Utah residents of Northern and Western European ancestry (HapMap CEPH/CEU 
phase 1) (Consortium and †The International HapMap Consortium 2003). We obtained LCLs 
from the Coriell Institute for Medical Research (Camden, NJ, USA) and maintained the cell lines 
as previously described (Consortium and †The International HapMap Consortium 2003; de With 
et al. 2015). To study methylation changes after exposure to clozapine, we performed a separate 
experiment using six LCLs (HapMap, CEPH/CEU phase 1) consisting of two parent-o"spring trios.

In vitro experimental design and clozapine exposure
 Clozapine, purchased from Sigma Aldrich, was dissolved in culture medium with dimethyl 
sulfoxide (DMSO), with a maximum concentration of 0.1%. Clinical concentration of clozapine 
was set at 2μM (Baumann et al. 2004). To enhance the downstream molecular e"ects of clozapine-
exposure, we chose to expose the lymphoblast cells with supratherapeutic concentrations, as 
was done in previous studies of clozapine (Leykin, Mayer, and Shinitzky 1997; Tschen et al. 1999; 
de With et al. 2015). Cell lines were exposed for 24 hours to clinical concentration (Supplementary 
Methods), 10x, 50x and 100x clinical concentration (20μM-100 μM-200 μM clozapine) and vehicle 
(DMSO); each concentration was measured in 4 cell lines, after which RNA was obtained for gene 
expression analysis (Supplemental Figure 1A). To study DNA methylation changes in response 
to clozapine, we subsequently performed an independent experiment similar to the gene 
expression experiment. LCLs were exposed to vehicle DMSO, 1x, 20x, 40x and 60 times clinical 
concentration for 24h and 96h (Supplemental Figure 1B). We measured cell viability using the 
TC10 automated cell counter.

Sample processing and data collection
 After desired exposure time, we lysed cells and performed RNA and DNA collections 
using column-based extraction methods from Qiagen according to manufacturer’s instructions 
(Supplementary Methods). Gene expression pro!ling was carried out using Illumina® HumanHT-12 
v4 Expression BeadChip technology. DNA methylation assays were performed with Illumina® 
In!nium HumanMethylation450 Beadchip arrays.
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𝑌𝑌!,# = 𝛽𝛽0!,# + 𝛽𝛽1!,#𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶	 +	𝜀𝜀!,#    (2) 
 

Data preprocessing and normalization
 We processed raw gene expression values using the “Lumi” R-package (Du, Kibbe, and 
Lin 2008). We log2 transformed and quantile normalized the raw data, keeping only expressed 
gene transcripts (detection p < 0.01) for further analysis (22,926 probes). We processed DNA 
methylation values using the “WateRmelon” Bioconductor package (Pidsley et al. 2013), removing 
probes that were known to cross-hybridize, probes containing SNPs in target CpG regions, probes 
with detection p-value greater than 0.01 in 5% of samples, and probes with beadcounts > 3 
(n=86,068 probes in total)(Chen et al. 2013; Price et al. 2013). We normalized the data using the 
dasen function and computed β-values, de" ned as the ratio of the methylated probe intensity 
and the overall intensity (sum of methylated and unmethylated probe intensities), to measure 
methylation levels. To limit the e# ect of heteroskedasticity, we included only variable probes with 
β-values between 0.2 – 0.8 in our analyses (165,014 probes) (Du et al. 2010).

Statistical analyses
 To detect clozapine-induced molecular changes, for each probe, we tested for 
association between gene expression (1) or DNA methylation levels (2) with increasing clozapine 
concentrations using the following linear models implemented in R using the “Limma” package 
(Smyth, n.d.):

where Y is the normalized gene expression (g) or DNA methylation levels (m) for an individual 
probe, b0 the intercept, b1 the e# ect of clozapine concentration, b2 the e# ect of RIN, and e 
the residual variation of the model. We ran each model for each probe per individual i and 
subsequently performed a meta-analysis across all individuals by combining p-values using 
Stou# er’s method with directionality of the e# ect sizes taken into account. We included RNA- 
integrity number (RIN) as a covariate in the gene expression model and applied a Bonferroni 
correction to correct for multiple testing, resulting in a signi" cance threshold of p < 2.18x10-6 
for the gene expression analysis (n = 22,926 probes) and p < 3.03x10-7 for the DNA methylation 
analysis (n = 165,014 probes).

Gene ontology analysis
 We performed functional gene ontology analysis using DAVID (Database for Annotation, 
Visualization and Integrated Discovery, version 6.8, interrogated February 2018)(Huang, Lempicki, 
and Sherman 2009; Huang, Sherman, and Lempicki 2009), with default settings (Supplementary 
Methods).

Integrative genomic strategies applied to a lymphoblast cell line model to study clozapine response
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Functional enrichment analysis of DNA methylation data
 We used Genomic Regions Enrichment of Annotations Tools (GREAT, v3.0) to predict the 
biological function of the top methylation probes associated with clozapine exposure. GREAT 
links both proximal and distal genomic CpG sites with their putative target genes and implements 
both a gene-based test and a region-based test using the hypergeometric and binomial test, 
respectively, which allows us to assess enrichment of genomic regions in biological annotations 
of pathway databases (Supplementary Methods)(McLean et al. 2010). The statistical outputs of 
GREAT for both gene-based and region-based tests were subsequently adjusted for multiple 
testing using Bonferroni correction.

Weighted gene co-expression network analysis
 We performed a gene expression network analysis using weighted gene co-expression 
network analysis (WGCNA) in R. Brie!y, WCGNA identi"es distinct modules using the shared 
variation in gene expression based on pairwise correlation. To account for the biases related to 
di#ering probe numbers between genes assayed on the array, we provided as input the mean 
probe expression of genes residing within nominally signi"cant di#erentially expressed genes 
(p<0.05), considering 5,708 probes within 4,897 genes (Horvath 2011; Langfelder and Horvath 
2008; Zhang and Horvath 2005). To assign biological function to each WCGNA module, we 
performed gene ontology analysis using DAVID we performed.

Additional DNA methylation analyses
 We ran a candidate gene study for CpG sites in close proximity of genes with evidence of 
clozapine-induced di#erential gene expression. Methylation probes within the gene body, in the 
3’ and 5’ untranslated regions and up to 1,500 nucleotides upstream of the transcription start site 
of the 463 ‘top genes’ (p<0.05) were selected for a post-hoc analysis (n = 1,004). These results can 
be found in Table 1 of the Supplemental Material.

GTEx cross tissue analysis
 To translate the in vitro e#ects of clozapine to in vivo human biology, we investigated 
how clozapine genes behave across 22 human tissues represented in the GTEx data set. We 
downloaded gene level quanti"cations (version 6, date: April 24, 2019) from the GTEx Project web 
portal (Melé et al. 2015) and transformed gene expression values using a log2 transformation (1 
+ RPKM value). We then tested 1) if clozapine-associated genes have higher or lower average 
expression within each tissue and 2) if between tissue distance is di#erent for clozapine-associated 
genes compared to the expected based on chance. To calculate between tissue distance, we 
used the top half most variable genes across GTEx samples that were also signi"cantly detected 
in our in vitro assay (n=7,025). We then performed multidimensional scaling using the isoMDS() 
function in the MASS R package (v7.3)(Melé et al. 2015; Venables and Ripley 2002) and calculated 
between tissue Euclidean distances using the dist() function in R (v.3.3.3) and the median gene 
expression values for each tissue for clozapine associated genes (N=463).
 To established whether clozapine-associated genes signi"cantly deviated from the 
expected, we established a null distribution by repeating this procedure using the Euclidean 
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distance for samplings of similarly sized sets of genes. Within each sampling, genes were sampled 
with a probability that matched the distribution of average gene expression of clozapine-
associated genes in our LCL experiment. This was done to account for di! erentially expressed 
genes having higher gene expression levels. Our null distribution therefore better captured the 
expected e! ect. Null distributions were built separately for the expected average gene expression 
within each tissue and for the expected Euclid distance for each tissue pair. P-values were then 
established by calculating the proportion of samplings that were higher or lower than the statistic 
of the observed clozapine-associated genes and corrected for multiple testing by Bonferroni 
correction. Analyses were conducted separately for genes upregulated and downregulated after 
clozapine exposure.

MAGMA gene-set analysis
 To investigate if clozapine-associated genes were enriched for schizophrenia or 
cardiovascular-related genetic association signals, we performed gene-set analysis using MAGMA 
(multimarker analysis of genomic annotation) (de Leeuw et al. 2015). We tested the following 
three gene-sets, each with three di! erent signi" cance thresholds:
 1.   All genes di! erentially expressed, either up- or downregulated;
 2.   Upregulated di! erentially expressed genes;
 3.   Downregulated di! erentially expressed genes.

We obtained GWAS summary statistics for schizophrenia (Schizophrenia Working Group of the 
Psychiatric Genomics Consortium 2014), body mass index (Yengo et al., n.d.), coronary artery 
disease (Nikpay et al. 2015), type 2 diabetes(Scott et al. 2017), total cholesterol, triglycerides, 
high-density-lipoprotein, and low-density-lipoprotein(Scott et al. 2017; Surakka et al. 2015). For 
each GWAS, we computed aggregate gene-level test statistics using a 10kb window around the 
transcription start and end site of each gene; a total of 11,533 genes were available for analysis. 
We then tested for association between GWAS gene level Z-scores and experimental gene-sets 
(de" ned above). We estimated linkage disequilibrium (LD) using the 1000 Genomes European 
reference panel (Scott et al. 2017; Surakka et al. 2015; 1000 Genomes Project Consortium et al. 
2015) and ran MAGMA using a two-sided competitive test by accounting for probes tested in our 
experiment while also correcting for gene size, SNP density, minor allele count and LD.

Antipsychotic drug gene-sets and enrichment of schizophrenia heritability
 As a complementary analysis, we investigated whether manually curated antipsychotic drug 
gene-sets overall are associated with schizophrenia heritability. We performed gene-set analysis 
on antipsychotic drug targets that were previously reported to be enriched for schizophrenia 
heritability [55]. Drug target list were curated using drug-gene interaction databases (Wagner 
et al. 2016; Roth et al. 2000). We identi" ed 50 sets of drugs with ATC (Anatomical Therapeutic 
Chemical) code N05A, a drug class to which all antipsychotic drugs belong, including clozapine. 
Using the schizophrenia GWAS as input to MAGMA, we ran gene-set analysis (1) per individual 
N05A antipsychotic drug gene-set, (2) for all N05A drug target genes combined, and for (3) all 
N05A drug target genes combined excluding clozapine.

Integrative genomic strategies applied to a lymphoblast cell line model to study clozapine response
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Up-regulated genes Down-regulated genes 
Gene P-value Gene P-value 

STMN1 
(Stathmin 1) 

5.16*10-16 LSS 
(Lanosterol synthase) 

6.14*10-17 

HIST2H2AC 
(Histone cluster 2 H2A family member C) 

1.98*10-15 MAL 
(Mal, T-cell differentiation protein) 

1.10*10-16 

RPS7 
(Ribosomal protein S7) 

2.52*10-15 MIR1974 
(MicroRNA 1974) 

5.56*10-16 

HIST1H2BJ 
(Histone cluster 1 H2B family member J) 

4.42*10-15 LDLR 
(Low density lipoprotein receptor) 

3.97*10-14 

HIST2H2AA3 
(Histone cluster 1 H2A family member A3) 

1.97*10-14 DHCR7 
(7-dehydrocholesterol reductase) 

4.26*10-14 

RPS15 
(Ribosomal protein S15) 

2.17*10-14 PASK 
(PAS Domain Containing Serine/Threonine Kinase) 

5.09*10-14 

HIST2H2AA4 
(Histone cluster 2 H2A family member A4) 

2.78*10-14 RGS1 
(Regular Of G Protein Signaling 1) 

2.31*10-13 

HIST1H2AC 
(Histone cluster 1 H2A family member C) 

2.79*10-14 LYPD6B 
(LY6/PLAUR Domain Containing 6B) 

4.38*10-13 

AURKA 
(Aurora Kinase A) 

5.19*10-14 TPP1 
(Tripeptidyl Peptidase 1) 

6.77*10-13 

SGOL1 
(Shugoshin 1) 

2.09*10-13 RENBP 
(Renin Binding Protein) 

7.54*10-13 

 

LD Score Regression estimation of heritability and genetic correlations
Pre-computed LD scores from the 1000 Genomes European reference panel provided through the 
LD Score Regression (LDSR) github and GWAS summary statistics !le processed and reformatted 
to sumstats format were used as input to (LDSR) to estimate SNP-based heritability (SNP-h2) (B. 
K. Bulik-Sullivan et al. 2015). Genetic correlations between traits were estimated using cross-trait 
LDSR via the --rg "ag (B. Bulik-Sullivan et al. 2015).
110

Results
Clozapine exposure induces widespread gene expression changes
 We exposed lymphoblast cell lines to increasing concentrations of clozapine and used a 
linear regression model to identify genes with a subsequent dose-response change in expression 
levels (Supplemental Figure 1A). In total, we tested 22,926 gene expression probes, of which 
5,708 showed nominal signi!cance (p<0.05) and 518 probes exceeded a Bonferroni-corrected 
p < 2.18*10-6. These 518 probes consisted of 234 up-regulated probes and 284 down-regulated 
probes, representing a total of 463 unique genes, which we de!ne as our main set of genes 
robustly associated with clozapine exposure. The top 10 up-regulated and down-regulated 
probes are shown in Table 1. See Supplement for the complete list of di#erentially expressed 
genes.
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Table 1. Top 10 up- and downregulated genes after clozapine exposure (previous page). Gene symbols are 
shown with corresponding gene name and p-value of di! erential gene expression analysis. Full list of genes are 
shown in Supplementary Table 1.

 Gene ontology enrichment analysis of up-regulated genes showed signi! cant functional 
enrichment for cholesterol metabolism (13 genes, p = 4.15*10-15) and steroid biosynthesis (11 
genes, p = 1.01*10-8) (Table 2), while analysis of down-regulated genes were enriched for cell 
division processes and related annotations, such as mitosis (44 genes, p = 1.87*10-39), chromosome 
(49 genes p = 3.03*10-35) and nucleosome (16 genes, p = 3.12*10-14) and other cell cycle pathways 
(Table 2).

Gene expression network analysis after clozapine exposure
WGCNA network analysis of clozapine-induced di" erentially expressed genes (N=4,987) yielded 
15 co-expression modules, ranging in size from n=61 to 1,791 genes. Five gene co-expression 
modules were altered upon clozapine exposure: M14 (upregulated, 61 genes), M10 (upregulated, 
155 genes), M9 (upregulated, 158 genes), M3 (upregulated, 579) and M1 (downregulated, 1,791 
genes), which were nominally signi! cant. The M14 co-expression module was enriched for 
genes involved in cholesterol metabolism (13 genes, p = 4.8*10-15), the M1 co-expression module 
was enriched for genes involved in cell cycle (133 genes, p = 7.3*10-32) and the M9 and M3 co-
expression module was enriched for mitochondrial genes (15 genes, p = 6.7*10-6 and 46 genes 
p = 3.8*10-7 respectively). The M10 co-expression module was enriched for genes involved in the 
nucleosome (9 genes, p = 1.4*10-7).

Minimal changes in DNA methylation at single CpG sites after clozapine exposure
We then performed DNA methylation pro! ling to assess whether these e" ects were due to 
epigenetic changes. For statistical analysis, we applied an analytical approach similar to our gene 
expression analyses. Targeted analysis on the 1,004 CpG sites near the 463 di" erentially-expressed 
genes revealed 3 probes exhibiting signi! cant changes in DNA methylation (p < 1.08*10-4), 
including a probe upstream of the low-density lipoprotein receptor (LDL-R) gene (cg22971501, 
p=4.75*10-5) after 24h; one probe upstream of the cyclin F (CCNF) gene showed a signi! cant 
change in DNA methylation after 96h (Table S4). Beyond these examples, global methylation 
di" erences were not observed after 24h or 96h at the level of individual probes.

Integrative genomic strategies applied to a lymphoblast cell line model to study clozapine response
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Functional annotation cluster Enrichment 
score 

Best 
P-value 

Best fold 
enrichment 

Average 
P-value 

Average fold 
enrichment 

Number of 
pathways 

Upregulated pathways       
Cholesterol/lipid/steroid biosynthesis 8.44 4.15*10-15 46.92 1.19*10-3 18.46 19 
Cholesterol/Steroid biosynthesis 4.77 1.01*10-8 68.45 4.66*10-4 54.32 3 

       
Down-regulated pathways       

Mitosis/cell division 31.26 1.87*10-37 14.77 1.12*10-21 10.69 5 
Chromosome/centromere 16.47 3.03*10-35 21.32 7.76*10-8 15.79 9 
Histone/nucleosome 6.93 3.12*10-14 20.72 1.73*10-3 9.13 18 
Spindle 6.02 4.95*10-12 12.89 7.45*10-4 10.13 6 
Nucleotide/ATP-binding 5.72 1.46*10-13 2.71 7.78*10-5 2.47 5 
Microtubule/kinesin 4.60 1.90*10-4 16.92 4.99*10-2 8.56 19 

 

Table 2. Main functional annotations associated with clozapine exposure based on gene expression. Output 
of pathway enrichment analyses using DAVID is shown. The enrichment score is used as the main metric of 
importance. It is de! ned as the geometric mean of all enrichment p-values of each annotation term within the 
group. It is expressed as the minus log of the p-value, an enrichment score of 1.3 is nominally signi! cant. This table 
shows clusters with an enrichment score > 4.6, corresponding to a p-value < 0.01. Fold enrichment is a measure to 
express the enrichment of this particular group of genes in comparison with the genes in the human genome. A list 
of all pathways is available in supplemental information.

DNA methylation is a! ected at the pathway level
 To investigate if our top associated DNAm probes aggregated to changes at the pathway 
level, we performed pathway enrichment analysis using GREAT, which incorporates functional 
annotation from various databases to predict cis-regulatory function of genomic regions of 
interest. When considering probes exhibiting FDR < 10%, we observed enrichment for protein 
binding and regulation of cellular processes after 24h of clozapine treatment. When considering 
the top 1000 probes, we also observed enrichment of immune-related functions, such as the 
Major Histocompatibility Complex (MHC) class II protein complex and Graft- versus-host disease 
after 24h. We found signi! cant enrichment for estradiol regulation and various embryonic 
developmental processes (Figure 1 and Table S5) when considering the top 1000 probes after 
96h.
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Figure 1. Clozapine-associated DNAm probes concentrate to speci! c biological annotations (previous page). 
Genomic Regions Enrichment of Annotations Tool (GREAT) was used to assign biological context to genomic 
regions associated to clozapine exposure. GREAT uses the annotation of nearby genes and regulatory elements 
to performed enrichment analysis across known functional databases. The x-axis shows the -log 10 p-value of 
the region-based analysis (binomial test), while the y-axis shows the enrichment for the gene-based analysis 
(hypergeometric overlap test). Results are shown for (A) the top probes after 24 hours (FDR < 0.10, n=177), (B) the 
top 1,000 probes after 24 hours, and (C) the top 1,000 probes after 96 hours. Each dot represents an annotation. 
Signi! cant annotations, after Bonferroni correction, are color-coded according to the test used.

DNA methylation changes are time-dependent
To examine if clozapine a! ected each time point similarly, we correlated e! ect sizes at each 
CpG probe between time points. Across all probes, we found a signi" cant negative correlation 
between the Z-score of the association between DNA methylation levels and clozapine exposure 
at 24h and 96h (Pearson r = -0.32, P<2.2x10-16). This correlation was preserved among probes at 
FDR < 10% at 24h (n=177, Pearson r = -0.38, P=1.3x10-7) but not among the top probes at 96 hours 
(n=177, Pearson r = -0.12, P = 0.10), highlighting possible time-dependent e! ects after clozapine 
exposure (Figure 2).

Figure 2. Clozapine-induced DNA methylation changes are time-dependent. Correlation analysis was 
performed between DNAm probe associations after 24 and 96 hours of clozapine exposure. The Pearson correlation 
was computed for (A) all probes tested, (B) the top probes associated after 24 hour exposure (FDR < 0.10, n = 177 
probes), and (C) the top 177 probes after 96 hours of drug exposure.

Clozapine transcriptomic pro! les highlight multi-tissue e" ects in GTEx
 We then asked whether our in vitro derived transcriptomic signatures could be used to 
help translate the function of clozapine in humans. For this purpose, we used gene expression 
data from the GTEx Project, including LCLs (n = 22 GTEx tissues, Figure 3A). First, we overlapped 
preferentially-expressed genes of each GTEx tissue, as previously reported (Melé et al. 2015), with 
the clozapine-associated genes detected in our assay. Preferentially expressed genes in GTEx-
LCLs exhibited the most overlap with the genes identi" ed by our experiment followed by whole 
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Tissue gene expression

blood (Supplementary Figure 2). We then investigated if the mean tissue expression of clozapine-
associated genes was signi! cantly di" erent from the mean expression of all the genes tested in 
our experiment. We found that genes downregulated by clozapine have lower expression in all 
tissues except testis and LCLs (Figure 3B and Table S9). Downregulated genes are enriched for cell 
cycle processes and their higher expression in the testis and LCLs likely represent the proliferative 
nature of these tissues. Genes upregulated by clozapine have signi! cantly higher average 
expression in liver, muscle, lung, and ! broblasts, and lower average expression in testis tissue. 
We then asked whether clozapine-associated genes have di" erent between-tissue distances as 
a proxy to investigate possible functional links with other tissues. Distance is calculated using 
the Euclidean distance measure. A lower value indicates that two tissues are more similar while a 
higher distance value indicates that these tissues are more dissimilar. Of the 406 tissue pairs, we 
found that genes upregulated by clozapine have signi! cantly deviating between-tissue distances 
across 31 pairs of tissues (Figure 3C). Spleen tissue stands out with having the most di" erent 
distance with other tissues (N=20). We also found multiple di" erences for adipose, lung, and 
breast tissue pairs. The distance between cervix uteri and ovary tissue, adrenal gland and thyroid 
tissue, muscle and nerve tissue are signi! cantly more dissimilar as well for upregulated clozapine 
genes compared to all genes detected in our assay. For downregulated clozapine genes, we 
detected signi! cantly dissimilar distances for 27 tissue-pairs, all involving testis tissue (Figure 3C).

Chapter 4



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

123  

Figure 3. Clozapine-associated genes show tissue-speci! c expression patterns in GTEx (previous page). (A) 
Using gene expression data from the GTEx project, multidimensional scaling (MDS) was performed to visualize 
tissues and their relationships in a parsimonious way. The top half most variable genes (n=7,025), that were also 
signi! cantly detected in our experiment, across a random subset of 2,000 GTEx samples were used as input in the 
MDS analysis. (B) A forest plot visualizing mean tissue gene expression of clozapine-associated genes across several 
tissues. Clozapine genes were divided into groups that are up regulated and down regulated after drug exposure. 
The expected mean gene expression, based on 10,000 weighted samplings, is shown as well (dotted vertical line). 
Within each tissue, the observed mean tissue gene expression (x-axis) is normalized by subtracting the expected 
mean gene expression. P-values indicate whether the mean gene expression of clozapine up regulated genes 
signi! cantly deviate from the expected mean expression within a tissue. P-values are corrected for the number of 
tissues tested. Downregulated genes were not tested. See Supplementary Tables for results of all tissues (C) Between 
tissue distance across all GTEx tissue pairs. Each point represents one tissue pair. The y-axis shows the Euclidean 
distance between tissues computed using only clozapine-associated genes. The x-axis shows the expected mean 
Euclidean distance across 50,000 weighted samplings. Tissue pairs for which the between tissue distance, based 
on clozapine genes only, signi! cantly deviates from mean expected distance (Padjusted <0.05), are color-coded. 
P-values are adjusted for multiple testing by Bonferroni correction (n test = 465 pairs x tests = 930).

Clozapine transcriptome signatures are not enriched for schizophrenia disease risk
 Previous studies have found associations between schizophrenia genetic susceptibility 
and antipsychotic drug targets (Gaspar and Breen 2017; Skene et al. 2018). To investigate 
whether clozapine-induced in vitro gene expression signatures are also associated with genetic 
susceptibility of schizophrenia, we conducted gene-set enrichment analysis using all di! erentially 
expressed genes (n=463). We did not observe a signi" cant enrichment (p = 0.91). We then 
considered upregulated genes, and did not observe signi" cant enrichment (p = 0.74), nor for 
downregulated genes (p = 0.64). Gene sets de" ned according to <1% and <5% FDR did not 
change these " ndings (Table S7).
 To further understand these " ndings, we investigated whether SCZ genetic susceptibility 
aggregates to antipsychotic drug target genes with and without clozapine targets. As SCZ 
genetic risk has been associated with antipsychotic drug target genes, it could be that this signal 
is primarily driven by non-clozapine genes. To examine this, we used drug target gene lists from 
drug-gene interaction databases as previously reported (Wagner et al. 2016; Roth et al. 2000). 
We were able to extract 53 drug target gene-sets belonging to the N05A class of drugs with 
antipsychotic actions, including clozapine. Across drug target gene-sets, we mapped all targets to 
104 unique genes of which 41 were detectable in our gene expression data but none overlapped 
with di! erentially expressed genes identi" ed. We found no evidence for SCZ risk to be enriched 
in antipsychotic drug target genes overall (n = 96 genes, p = 0.96) nor with clozapine targets 
excluded (n = 52, genes, p = 0.60). We did observe a strong concordance between the p-values of 
individual drug gene-sets tested in our analysis and the p-values reported by the previous study 
(Gaspar and Breen 2017) (n = 50 drug gene sets, rho = 0.85, p = 1.49*10-15), indicating our analysis 
framework was able to reproduce previous " ndings at the level of individual drug target gene-
sets. Our analysis however does not observe an association between schizophrenia genetic risk 
and clozapine-associated genes nor antipsychotic drug target genes.

Integrative genomic strategies applied to a lymphoblast cell line model to study clozapine response
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Genes upregulated after clozapine exposure show an association with GWAS signal of 
total cholesterol and low-density lipoprotein.
 Next, we explored whether di! erentially expressed genes were enriched for genetic signal 
of cholesterol- and cardiovascular disease-related traits. Using summary statistics of large GWASs 
for each trait, we observe signi" cant SNP-h2 and a rich correlation structure between these 
traits (Figure 4A and 4B). We then integrated the observed SNP-h2 with our detected clozapine 
transcriptomic signatures. While no association remained signi" cant after correction of multiple 
testing (72 tests, p < 6.9*10-4), we did observe an increasing association between total cholesterol 
and LDL heritability and clozapine gene-sets across more stringent thresholds of di! erentially 
expressed genes (i.e., <FDR 5%, <FDR 1%, and Bonferroni correction (Figure 4C). Such trends were 
not observed for HDL or any of the other traits tested, including SCZ (Figure 4C).

Figure 4. Clozapine gene-set analysis across cardiovascular traits. (A) SNP-based heritability estimates on the 
observed scale. (B) Genetic correlations between traits used in the analysis. The magnitude of the genetic correlation 
is only color-coded for estimates with p-value < 0.01. (C) MAGMA e! ect sizes (β) of GWAS trait associations with 
clozapine target genes are shown for down- and unregulated genes identi# ed to be di! erentially expressed at FDR 
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5%, FDR 1%, and Bonferroni correction thresholds. Asterisks denote nominal signi! cance of *P<0.05, **P<0.01. SCZ 
= schizophrenia, BMI = body mass index, CAD = coronary artery disease, Type2DB = type 2 diabetes, TC = total 
cholesterol, TG = triglycerides, HDL = high-density-lipoprotein, LDL = low-density-lipoprotein.

Discussion
 We used an in vitro cell system of LCLs to study molecular e! ects of clozapine exposure to 
better understand the mechanisms involved in adverse e! ects of psychotropic drug use and make 
several important observations. First, genome-wide gene expression pro" ling of cells exposed 
to clozapine showed strong activation of cholesterol metabolism and deactivation of genes 
involved in cell cycle processes. These " ndings align with our observation of changed levels of 
DNAm upstream of the LDL-R and CCNF gene after clozapine exposure. Second, DNAm analyses 
suggest that e! ects of clozapine are time-dependent, indicating that time of drug exposure is an 
important experimental variable to take into account when studying clozapine. Third, integration 
of in vitro transcriptomic signatures with human tissues in GTEx highlight liver tissue and several 
immune and endocrine tissues as possible downstream e! ectors of clozapine exposure. Finally, 
genetic analysis of the results suggests that clozapine-response in LCLs is independent from 
schizophrenia disease risk and depleted from known drug targets of antipsychotic drugs, while 
it is likely linked to the genetic architecture involved in cholesterol and low-density lipoprotein 
levels.
 in vitro gene expression changes after exposure to clozapine have been reported 
before for various cell lines. Here, we for the " rst time applied a genome-wide analysis of gene 
expression in lymphoblastoid cell lines in response to clozapine exposure. The central role of 
cholesterol metabolism in the response to clozapine is concordant with previously reported 
studies performed in other cell types and for di! erent antipsychotic drugs(Ferno et al. 2011; Foley 
and Mackinnon 2014). Even though most of these were based on candidate genes rather than 
by genome-wide analyses, the results consistently implicate cholesterol metabolism in response 
to antipsychotic drugs (Raeder et al. 2006; Choi et al. 2009; Vik-Mo et al. 2009; Lauressergues et al. 
2010, 2011; L.-H. Yang et al. 2007; Zhi Yang et al. 2009; Hu, Kutscher, and Davies 2010; J. Fernø et al. 
2005; Liu et al. 2009; Lauressergues et al. 2012; Johan Fernø et al. 2009). At the gene network level, 
clozapine-associated genes group to clear gene clusters. In addition to cholesterol metabolism, 
we observed mitochondrial and nucleosome pathways to be upregulated after clozapine 
exposure, while cell cycle processes were downregulated, for example.
 A small number of studies have identi" ed a link between genetic markers in genes involved 
in cholesterol metabolism and adverse e! ects of antipsychotic treatment, helping to further 
substantiate these " ndings (Chowdhury, Remington, and Kennedy 2011; L. Yang et al. 2015, 2016). 
Additional studies suggest that alterations in cholesterol metabolism by antipsychotic drugs may 
contribute to the bene" cial e! ects in treating psychosis. Cholesterol is extremely important in 
brain development and in sustaining neuronal connections and myelination (Dietschy 2009). 
Furthermore, Le Hellard et al. described an association between genes important in cholesterol 
metabolism (SREBP1 and SREBP2) and schizophrenia (Dietschy 2009; Le Hellard et al. 2010), 
which was con" rmed in a schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium 2014).

Integrative genomic strategies applied to a lymphoblast cell line model to study clozapine response



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

 126  

 In addition to signi!cantly upregulated genes, we also identi!ed 284 genes that are 
downregulated in the presence of clozapine, with signi!cant enrichment for genes involved in 
cell cycle pathways. A small number of studies have shown di"ering gene expression levels in 
cell cycle genes in patients with schizophrenia, compared to healthy controls (Z. Yang et al. 2017; 
Lin et al. 2016; Okazaki et al. 2016; Wang et al. 2010; Gassó et al. 2017). A similar connection with 
antipsychotic drug e"ects has not been reported before. It is possible that genes involved in cell 
cycle play a role in the etiology of schizophrenia, making it a possible target of antipsychotic drugs 
such as clozapine. Conversely, the described e"ect may be a direct consequence of clozapine 
toxicity. We have shown before that clozapine, in high concentrations, has a direct e"ect on 
viability of lymphoblastoid cell lines (de With et al. 2015). Downregulation of genes involved in 
cell cycle processes could thus be a direct (toxic) e"ect of clozapine. The toxic e"ects of clozapine 
and its metabolites have been associated with clozapine-induced agranulocytosis (de With et 
al. 2015; Williams et al. 1997; Pereira and Dean 2006; Lahdelma et al. 2010). We note that for this 
study, we used LCLs, which are blood-derived cells, but from a di"erent progenitor cell and with 
di"erent cellular functions than neutrophils. The question remains whether !ndings from in vitro 
LCL can be directly extrapolated to in vivo e"ects of clozapine on neutrophils.
 While we found strong e"ects of clozapine exposure at the gene expression level, we 
did not observe similar global e"ects at the level of DNA methylation. We did !nd 3 di"erently 
methylated CpGs located within genes implicated by our gene expression analysis, including the 
LDL receptor gene. These e"ects, however, were not observed after 96h of clozapine exposure. 
Additionally, we observed overall enrichment of regulatory and immune pathways in the top 
associated DNAm probes. Although previous studies have indicated that antipsychotic drugs 
may induce changes in DNA methylation (Kinoshita et al. 2017; Burghardt et al. 2016; Houtepen 
et al. 2016; Rukova et al. 2014), we did not !nd evidence for immediate large e"ects on DNA 
methylation based on CpG sites assayed in our experiments. Possibly, subtle changes in DNA 
methylation patterns play a regulatory role in the observed gene expression changes but a 
larger sample size is needed to decipher these changes(Jones 2012). In addition, inclusion of 
more concentrations to which cells are exposed in vitro may provide !ner experimental resolution 
to observe subtle epigenetic changes and identify key regulatory drivers. DNA methylation is 
one type of epigenetic regulation and assaying other regulatory mechanisms, such as histone 
modi!cation or RNA regulation, may provide further insights into the regulatory dynamics that 
drive widespread changes in gene expression (Allis and Jenuwein 2016). Lastly, we observed 
DNA methylation changes to be time-dependent. While the clinical meaning of this remains 
speculative, our !ndings do suggest that the existing literature should be evaluated in the 
context of the duration of drug exposure. In addition, future studies could gain more insights into 
the function of clozapine when modeling drug exposure time as a variable in their analyses.
 To further explore our gene expression !ndings, we set out to investigate these e"ects 
and their association with genetic susceptibility of schizophrenia. We did not observe signi!cant 
enrichment of schizophrenia heritability across clozapine-associated genes. Two previous studies 
did report an association between schizophrenia heritability and antipsychotic target genes 
(Gaspar and Breen 2017; Skene et al. 2018). Their approach, however, di"ered from ours. While 
they used lists of antipsychotic target genes originating from pharmacological databases, we 
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used a list of experimentally derived gene sets after in vitro exposure to clozapine in LCLs. The 
genes we found to be di! erentially expressed did not overlap with antipsychotic drug target 
genes used in these two previous studies, which may explain the discrepancy in " ndings. If we 
assume that the clozapine-induced gene expression di! erences are a proxy for adverse e! ects, 
the lack of evidence of the enrichment analysis suggests that the genetic architecture of disease 
susceptibility is likely independent from susceptibility to adverse e! ects. We explored this further 
by examining the enrichment of genetic signal linked to cholesterol and cardiovascular disease-
related traits such as body mass index, coronary artery disease, type 2 diabetes, and triglyceride 
levels. We observed a nominally signi" cant increased enrichment for total cholesterol and LDL 
genetic signal in upregulated genes in response to clozapine exposure. While these " ndings did 
not survive multiple testing correction and should be interpreted with caution, the observed 
cholesterol and LDL heritability enrichment increased as we narrowed down on the most strongly 
associated clozapine genes suggesting that this association warrants further investigation. 
Mapping population-based heritability to in vitro experimental systems can then serve as a 
powerful approach to study biological pathways through integration of polygenic disease risk 
(Ori et al. 2019). Metabolic adverse e! ects are often observed in patients using clozapine (and 
antipsychotics in general) and improving our understanding of the mechanisms that underlie 
these adverse e! ects is an imperative area of research.
 An important advantage of in vitro experimental models is the controlled laboratory 
environment, which not only decreases the signal-to-noise ratio in the collected data but also 
allows for precise manipulation of the model in follow up work. While our current results are 
consistent with previous " ndings in other cell types (Raeder et al. 2006; Choi et al. 2009; Vik-Mo et 
al. 2009; Lauressergues et al. 2010, 2011; L.-H. Yang et al. 2007; Zhi Yang et al. 2009; Hu, Kutscher, 
and Davies 2010; J. Fernø et al. 2005; Liu et al. 2009; Lauressergues et al. 2012; Johan Fernø et al. 
2009), it remains unclear whether LCLs are an appropriate cell type to capture the molecular 
changes that are most relevant for studying adverse e! ects of antipsychotics in patients. To gain 
insight into the transferability of the in vitro clozapine-response in LCLs to functions of human 
tissues, we investigated how clozapine-associated genes are expressed across GTEx tissues. As 
gene expression patterns have been shown to have a signi" cant degree of sharing across human 
tissues (GTEx Consortium et al. 2017; Buil et al., n.d.) e! ects discovered in one tissue may thus 
be informative for other tissues. We observed that preferentially expressed genes in GTEx-LCL 
tissue overlap the most with clozapine genes identi" ed in LCLs in vitro, with whole blood ranked 
as second highest tissue. Preferentially expressed genes, however, represent only a subset of 
the clozapine genes. Using all associated genes, we demonstrated that upregulated clozapine 
genes have signi" cantly di! erent average expression in liver, muscle, lung, and testis tissue. 
Given the numerous and diverse set of reported possible adverse e! ects by clozapine treatment 
(Iqbal et al. 2003), it may not be unsurprising to " nd signi" cant di! erences in mean expression of 
clozapine genes across multiple human tissues. Our " nding of higher expression in the liver " ts 
well the clinical presentation of clozapine treatment and the observed cholesterol gene ontology 
signature of upregulated clozapine genes in our assay. The liver is a central player in the function 
of cholesterol in the body and clozapine-related hepatotoxicity has furthermore been reported in 
cases of treatment with the drug (Keane et al. 2009; Kellner et al. 1993). We observe no di! erences 
for any of the GTEx brain tissues.
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 On top of within tissue e!ects, we also performed a more explorative analysis to examine 
clozapine gene expression-based similarity between tissues and found speci"c tissue pairs that 
were signi"cantly di!erent than tissue similarities based on expression of all genes. Here, we 
highlight some interesting observations. We observed a decrease in similarity for tissues involved 
in immune (spleen), endocrine (testis, ovary, adrenal and thyroid gland) and metabolic (adipose) 
functioning. The spleen and testis in particular stand out with a signi"cant change in dissimilarity 
to many tissues. The spleen is the largest secondary lymphoid organ in the body and hosts a 
wide range of immunological functions, including the storage of leukocytes (Lewis, Williams, and 
Eisenbarth 2019). While it remains speculative if splenic dysfunction could for example lead to 
agranulocytosis, our "ndings do solicit for more research on the mechanism between clozapine 
and splenic function. An intriguing and perhaps also surprising "nding is the implication of the 
testis among analysis of genes downregulated by clozapine. The testis has two primary functions; 
to produce sperm and to produce hormones, in particular testosterone, which is a sex steroid 
synthesized from cholesterol (Eacker et al. 2008). Genes downregulated by clozapine are enriched 
for cell division processes and cell proliferation is an important function of testicular cells (Sohni 
et al. 2019). While little is currently known about how clozapine or other antipsychotics may a!ect 
testicular function in adult humans, our "nding does again point to cholesterol-related biology. 
In addition to the testis, we also observe deviation in between-tissue similarity for several other 
endocrine tissues. As endocrine (and metabolic) abnormalities are known causes of human 
obesity, the identi"ed transcriptomic pro"le of clozapine and tissue relations may point to new 
avenues to study clozapine-induced weight gain (Baptista 1999). Together, these "ndings suggest 
that clozapine disproportionately a!ects the function of speci"c tissues. Our results furthermore 
demonstrate how experimental molecular signatures can be integrated with external genomic 
datasets, such as the GTEx project, to help translate in vitro "ndings to human biology.
 While our work highlights the value of LCLs as an experimental tool to study the molecular 
mechanisms of clozapine response, particular in relation to possible molecular adverse e!ects, it 
does come with several limitations. First, we exposed the cells to supratherapeutic concentrations 
of clozapine to induce strong downstream molecular e!ects. In our gene expression analysis, we 
robustly identify hundreds of genes that showed a dose-response change in expression level. 
While these genes overlap with functional pathways that have previously been associated with 
clozapine as well, caution is still warranted in extrapolating these "ndings for clinical interpretation. 
Our work presents a "rst step in using LCLs as a model system but more research is needed 
to determine how these "ndings translate to in vivo molecular signatures observed in patients 
that are exposed to clinical concentrations of the drug. Second, our gene expression and DNAm 
experiments were conducted as separate experiments that used di!erent concentrations and cell 
lines, which may have impacted our results. Future work should synchronize these experiments 
as much as possible. Third, we performed our experiment in a relatively small number of cell 
lines that, in the case of our DNAm experiment, were also derived from two nuclear families. 
Heterogeneity in clozapine response between cell lines likely exists and may have biased the 
"ndings of our study. Future work could use LCLs of di!erent individuals than used in our study 
or use a larger number of cell lines that allows for correction of relatedness and other possible 
confounders.
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 We used LCLs as an in vitro model for studying molecular e! ects of clozapine exposure in 
an e! ort to improve our understanding of antipsychotic-induced adverse e! ects. Genome-wide 
gene expression pro" ling demonstrated a robust up-regulation of cholesterol metabolism and 
down-regulation of cell cycle pathways, with only limited changes in DNA methylation pro" les. 
We did not " nd evidence that genes up- or down-regulated during clozapine exposure were 
enriched for genetic variation associated with schizophrenia. On the other hand, the observed 
enrichment signal with the genetic basis of total cholesterol and LDL levels and multi-tissue 
involved across immune, endocrine, and metabolic functions may provide important leads 
linked to antipsychotic drug induced metabolic adverse e! ects. The necessary challenge of large-
scale, systematic prospective patient cohort studies of adverse e! ects of clozapine and other AP 
remains, while in vitro studies such as ours provide only glimpses of what may be relevant.
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Chapter 4 - Supplemental Materials

Full supplemental materials can be found here:
https://www.biorxiv.org/content/10.1101/2020.09.22.308262v1.supplementary-material

S1. Supplementary Material and Methods
S1.1 Clozapine exposure and in vitro experimental design
 We performed drug exposure experiments in 6-well plates (Genesee, San Diego, CA, USA) 
and assessed cell viability using the TC10 automated cell counter (Bio-Rad, Hercules, CA, USA), 
according to manufacturer’s instructions. Clozapine was purchased from Sigma Aldrich (St. Louis, 
MO, USA). Previous work has suggested that clinical concentrations of antipsychotics may not 
induce signi!cant gene expression changes in vitro (Fernø et al. 2006). There is evidence that in 
vivo concentrations of antipsychotic drugs are higher in brain tissue than in peripheral blood 
(Weigmann et al. 1999; Kornhuber et al. 1999). We therefore chose to expose cell lines to di"erent 
clozapine concentrations, with clinical concentration set at 2μM (Baumann et al. 2004). Clozapine 
was dissolved in culture medium with dimethyl sulfoxide (DMSO), with a maximum concentration 
of 0.1%. Cell lines were exposed for 24 hours to clinical concentration, 10x, 50x and 100x clinical 
concentration (20μM-100 μM-200 μM clozapine) and vehicle (DMSO); each concentration was 
measured in 4 cell lines, after which RNA was obtained for gene expression analysis.
 To study DNA methylation changes in response to clozapine, we performed an experiment 
similar to the gene expression study; LCLs were exposed to di"erent concentrations of clozapine 
(vehicle (DMSO), 1x, 20x, 40x and 60 times clinical concentration) and exposure times were 24h 
and 96h (Supplemental Figure 1B).

S1.2. Sample processing and gene expression data
We performed RNA extraction with Qiagen RNeasy mini kit (Qiagen, Valencia, CA, USA), according 
to manufacturer’s instructions. RNA quantity and quality were measured with T2100 BioAnalyzer 
(Agilent, Santa Clara, CA, USA) and veri!ed with a NanoDrop Spectrophotometer (NanoDrop 
products, Wilmington, DE, USA). Gene expression pro!ling was carried out using Illumina® 
HumanHT-12 v4 Expression BeadChip technology (Illumina, San Diego, CA, USA).

S1.3. Sample processing and DNA methylation data
 After desired exposure time, cells were lysed and DNA was extracted with DNeasy® Blood 
and Tissue kit (Qiagen, Valencia, CA, USA), according to the instructions of the manufacturer. DNA 
quality and quantity were assessed with the picogreen® assay (VWR, West Chester, PA, USA) and 
Nanodrop (ThermoScienti!c, Wilmington, DE, USA). DNA methylation assays were performed 
with Illumina® In!nium HumanMethylation450 Beadchip arrays (Illumina, San Diego, CA, USA), 
assaying approximately 450,000 CpG sites.
Gene ontology analysis
 We performed functional gene ontology analysis using DAVID (Database for Annotation, 
Visualization and Integrated Discovery, version 6.8, interrogated February 2018) (Huang, Sherman, 
and Lempicki 2009; Huang, Lempicki, and Sherman 2009), with default settings.
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S1.4. Functional enrichment analysis of DNA methylation data
 Genomic Regions Enrichment of Annotations Tools (GREAT, v3.0) was used to predict the 
biological function of the top methylation probes associated to clozapine exposure. GREAT links 
both proximal and distal genomic CpG sites with their putative target genes and implements 
both a gene-based test and a region-based test using the hypergeometric and binomial test, 
respectively, to assess enrichment of genomic regions in biological annotations (McLean et 
al. 2010). CpG sites were uploaded to the GREAT web portal (http://great.stanford.edu/public/
html/) and analyses were run using the hg19 reference annotation and the whole genome as 
background. Genomic regions were assigned to genes if they are between 5 Kb upstream and 
1 Kb downstream of the TSS, plus up to 1 Mb distal. Pathway annotations from GO Biological 
Processes, GO Cellular Component, GO Molecular Function, MSigDB, and PANTHER were used to 
infer biological meaning for CpG sites associated with clozapine.

S2. Supplementary Results
S2.1. Clozapine-associated genes and their preferential expression in GTEx tissues
 To investigate tissue-speci! city of genes identi! ed to be di" erentially expressed after 
clozapine exposure, we used an available list of genes that are preferentially expressed in an 
individual tissue as identi! ed by GTEx (Melé et al. 2015). Preferential tissue expression is de! ned 
as all instances where the mean expression of the gene in the tested tissue was signi! cantly 
higher (FDR<0.01 and a log2 fold change >= 4) than in the samples from the rest of the tissues. 
Visualized below is the fraction of genes with tissue preferential expression that are detected in 
our assay (x-axis) versus detected in our assay and associated to clozapine exposure (FDR < 5%) 
for each tissue. We observe that almost half of the di" erentially expressed genes have preferential 
expression in LCL tissue in GTEx. The second highest tissue is whole blood.

Figure S2. Di! erentially expressed genes are preferentially expressed in LCL tissue in GTEx.
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Genome wide gene expression profiles
Illumina Beadchip technology

4 unrelated HapMap cell lines, exposed to clozapine 24h
1x-10x-50x clinical concentration

Data normalisation and probe selection
(22 926 probes available for downstream analysis)

Linear model analysis per individual

Meta-analysis of individual-level data

Gene-ontology enrichment analysis
DAVID

Network analysis (WGCNA)
using probes p<0.05

MAGMA analysis

Supplementary Figures

Supplementary Figure 1A. Flow chart of gene expression analyses plan.
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Genome wide methylation profiles
Illuminum 450K Infinium beadchip technologytechnology

3 trio HapMap cell lines, exposed to clozapine 24h & 96h
1x-20x-40x-60x clinical concentration

Data normalization and probe selection
(167 000 probes available for downstream analysis)

Linear model analysis per individual

Meta-analysis of individual-level data

Gene-ontology enrichment analysis

Candidate gene analysis
464 genes from GX analysis

Supplementary Figure 1B. Flow chart of DNA methylation analyses plan.
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24h clozapine exposure 
Probe ID Annotation P-value Gene expression 

Probe ID 
Gene expression 
P-value 

cg05455234 PCNT  
(Pericentrin) 

1.98*10-5 ILMN_1810922 
 

5.68*10-8 
 

cg22971501 LDLR 
(Low Density Lipoprotein 
Receptor) 

4.75*10-5 ILMN_2053415 
 

3.97*10-14 
 

cg01233620 CLEC16A 
(C-Type Lectin Domain 
Containing 16A) 

6.30*10-5 ILMN_1781752 
 

1.04*10-7 
 

96h clozapine exposure 
cg26647200 CCNF 

(Cyclin F) 
6.87*10-6 ILMN_1773119 

 
4.41*10-11 
 

Supplementary Table 1. List of di!erentially expressed genes
Available as excel sheet online.
 

Supplementary Table 2. Top 10 DNA methylation probes after 24h and 96h of clozapine exposure. 

Supplementary Table 3. Candidate gene analysis: signi"cant methylation probes after 24h and 96h of 
clozapine exposure.

Supplementary Table 8. Gene-set analyses results of the schizophrenia GWAS at varying signi"cance levels.
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24h clozapine exposure 96h clozapine exposure 
Probe ID Chr# Coordinate Annotation P-value* Probe ID Chr# Coordinate Annotation P-value* 

cg09495017 16 57,124,763 CNOT1 5.40*10-7 cg21293934 18 14,738,230 ANKRD30B 8.87*10-7 
cg16258062 2 234,048,887 - 5.60*10-7 cg19182557 2 130,061,825 - 9.21*10-7 
cg16258062 1 47,654,324 FOXE3 1.15*10-6 cg15463280 11 95,955,596 - 2.36*10-6 
cg15066636 6 33,187,127 HLA-DPB2 1.42*10-6 cg12564567 11 115,876,398 - 5.87*10-6 
cg17488052 1 77,993,925 USP33 1.48*10-6 cg26647200 16 2,422,776 CCNF 6.87*10-6 
cg25181236 4 56,082,032 CLOCK 1.48*10-6 cg09333631 3 44,777,608 KIF15, KIAA1143 7.99*10-6 
cg01531409 14 59,781,022 PPM1A 2.07*10-6 cg16924010 3 195,500,852 - 8.51*10-6 
cg09840472 7 22,730,922 - 2.27*10-6 cg01842314 10 106,102,325 CCDC147 1.07*10-5 
cg24207009 17 73,549,157 TNRC6C 2.37*10-6 cg23898204 2 724,927 - 1.11*10-5 
cg27170003 17 3,713,677 CAMKK1 2.39*10-6 cg15000279 19 33,976,849 - 1.28*10-5 

 
 

 

Set Bonferroni FDR < 1% (q<0.01) FDR<5% (q<0.05) 
Differentially expressed genes p = 0.92 

(311 genes) 
p = 0.74 

(919 genes) 
p = 0.22 

(1543 genes) 
Upregulated genes p = 0.75 

(138 genes) 
p = 0.71 

(457 genes) 
p = 0.99 

(772 genes) 
Downregulated genes p = 0.64 

(173 genes) 
p = 0.39 

(462 genes) 
p = 0.09 

(771 genes) 
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DNA methylation algorithms 
and the role of biological age 
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Abstract
 DNA methylation (DNAm) based predictors hold great promise to serve as clinical tools 
for health interventions and disease management. While these algorithms often have high 
prediction accuracy and are associated with many disease-related phenotypes, the reliability of 
their performance remains to be determined. We therefore conducted a systematic evaluation 
across 101 di!erent data processing strategies that preprocess and normalize DNAm data and 
assessed how each analytical strategy a!ects the reliability and prediction accuracy of 41 DNAm-
based predictors. Our analyses were conducted in a large EPIC DNAm sample of the Jackson 
Heart Study (N=2,053) that included 146 pairs of technical replicate samples. By estimating the 
average absolute agreement between replicate pairs, we show that 32 out of 41 predictors (78%) 
demonstrate excellent test-retest reliability when appropriate data processing and normalization 
steps are implemented. Across all pairs of predictors, we "nd a moderate correlation in performance 
across analytical strategies (mean rho=0.40, SD=0.27), highlighting signi"cant heterogeneity in 
performance across algorithms within a choice of an analytical pipeline. (Un)successful removal 
of technical variation furthermore signi"cantly impacts downstream phenotypic association 
analysis, such as all-cause mortality risk associations. We show that DNAm-based algorithms are 
sensitive to technical variation. The right choice of data processing and normalization pipeline is 
important to achieve reproducible estimates and improve prediction accuracy in downstream 
phenotypic association analyses. For each of the 41 DNAm predictors, we report its test-retest 
reliability and provide the best performing analytical strategy as a guideline for the research 
community. As DNAm-based predictors become more and more widely used, both for research 
purposes School of Medicine as well as for clinic applications, our work helps improve their 
performance and standardize their implementation.

Manuscript status: in submission
Preprint available: https://www.biorxiv.org/content/10.1101/2021.09.29.462387v1
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Introduction
 DNA methylation (DNAm) is a form of epigenetic regulation that is essential for human 
development and implicated in health and disease(Greenberg and Bourc’his 2019; Schübeler 
2015). Through advancements in biological technology, large-scale DNA methylation pro! ling 
has become more a" ordable and widely used. Microarray technologies now enable the 
simultaneous interrogation of DNAm states of more than 850,000 CpG dinucleotides across the 
genome, using the latest EPIC array(Pidsley et al. 2016). An application of DNAm data has been in 
developing DNAm-based algorithms to predict health-related phenotypes, including blood cell 
type proportions(Houseman, Molitor, and Marsit 2014; Salas et al. 2018), ageing(Horvath 2013; 
Hannum et al. 2013; Q. Zhang et al. 2019; Horvath et al. 2018; Lin et al. 2016; Weidner et al. 2014; Lu, 
Seeboth, et al. 2019; Vidal-Bralo, Lopez-Golan, and Gonzalez 2016), all-cause mortality risk(Levine 
et al. 2018a; Lu, Quach, et al. 2019; Y. Zhang et al. 2017; Chen et al. 2016), cancer risk(Yang et al. 
2016; Youn and Wang 2018), body-mass-index (BMI), and smoking signatures(McCartney et al. 
2018), among others. These molecular predictors have great potential for clinical applications. A 
thorough and systematic investigation of their performance has however not been conducted so 
far.
 Unlike the genome, the DNA methylome is of dynamic nature and largely explained by 
non-shared individual environments(Hannon et al. 2018). Like other high-throughput molecular 
data, DNAm can furthermore be impacted by variation in laboratory conditions, sample handling, 
reagents and/or equipment used(Leek et al. 2010). Technical variation is often widespread and 
tackling such e" ects is of critical importance to study biological variation in any -omic analysis, 
including DNAm. Over the years, a plethora of methods have been developed to identify and 
remove unwanted technical variations from DNAm data(Pidsley et al. 2013; Fortin et al. 2014; 
Xu et al. 2016; Teschendor"  et al. 2013; Niu, Xu, and Taylor 2016; Xu et al. 2017; Maksimovic, 
Gordon, and Oshlack 2012). Previous studies have investigated the impact of speci! c methods on 
outcomes of DNAm analysis and demonstrated the importance of correcting for probe design 
type, batch e" ects, and hidden confounders while the e" ect of di" erent normalization strategies 
gave mixed results(van Rooij et al. 2019; Wu et al. 2014; Wang et al. 2015; Marabita et al. 2013). A 
systematic and unbiased evaluation of commonly used data preprocessing and normalization 
strategies of DNAm data for the application of DNAm-based predictors has however not yet 
been conducted. DNAm is an important tool to study health and disease and understanding 
how analytical strategies impact algorithm performance is critical for method standardization 
and implementation for both research and clinical purposes.
 Here, we performed a comprehensive investigation of 41 DNAm predictors and evaluated 
algorithm performance by measuring their test-retest reliability across 101 data preprocessing and 
normalization strategies in the Jackson Heart Study (JHS)(Taylor et al. 2005). The JHS has collected 
a large sample of 850K EPIC DNAm arrays in blood that includes 146 pairs of technical replicates. 
These replicates represent identical DNA samples that were assayed twice at independent 
time points. The agreement in DNAm predictor estimate between technical replicates after 
data preprocessing and normalization allowed us to quantify the degree to which an analytical 

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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strategy can successfully remove unwanted technical variation. We report the best test-retest 
reliability for each predictor and demonstrate how reducing technical variation is critical for 
optimal algorithm performance in downstream phenotypic analyses. Our work emphasizes the 
importance of data processing and normalization of DNAm data and provides best practices to 
optimize the performance and reliability of DNAm predictors.

Methods
Cohort descriptions
 The Jackson Heart Study is a large observational study of African American individuals 
from the Jackson, Mississippi (USA), metropolitan area(Taylor et al. 2005). JHS seeks to study the 
causes and disparities in cardiovascular health and related phenotypes in African Americans. Data 
and biological materials have been collected from 5,306 participants. For a subset of the cohort, 
peripheral blood samples were collected at baseline and subsequently used to quantify DNA 
methylation using the Illumina In!nium MethylationEPIC BeadChip that covers over 850,000 CpG 
sties. These samples have been included in previous DNAm studies(Lee et al. 2019; Lu, Quach, et 
al. 2019). See Table S1 for cohort characteristics. In our analysis, we included individuals for which 
DNAm data, phenotypic variables, and mortality data were available (N=1,909, 62.2% women, 
mean (SD) of age = 56.1 (12.4) years). For 146 individuals, technical replicates were collected. We 
therefore divided this dataset into two samples; 1) a general cohort sample that does not include 
technical replicate pairs (N=1,761, 62.6% women, mean(SD) of age=56.0 (12.3)) and 2) a technical 
replicate sample (N=146, 57.5% women, mean (SD) of age=57.4 (14.0)). Replicate pairs represent 
DNAm samples that were assayed twice using the EPIC array at separate occasions but originate 
from the same DNA extraction sample.

Data preprocessing and normalization strategies
 To perform a systematic evaluation of available data preprocessing and normalization 
strategies, we incorporated all methods that are available through the commonly used R packages 
min!(Aryee et al. 2014), wateRmelon(Pidsley et al. 2013), and ENmix(Xu et al. 2016). Within the 
same package, we implemented all possible combinations of background correction, dye-bias 
correction, probe correction, and data normalizations as was feasible within the structure of the 
package. In total, this yielded 101 strategies to prepare DNAm data (Table S2). For each sample, 
raw intensity values were read from IDAT !les into an RGChannelSetExtended object in the R 
programming environment using the read.metharray() function in min!. Sample quality control 
was performed by excluding samples with more than 5% of CpG sites with a detection P-value 
greater than 0.05 (using the p!lter() function in the wateRmelon package) and by removing 
outlying samples based on a low median of chipwide (un)methylation across CpG sites (using 
the getQC() function in min!). In total, 44 samples were removed. No probes were !ltered out 
to minimize missing probes in downstream DNAm prediction analysis. Data processing and 
normalization were then executed in batches of 96 samples for computational e"ciency. The 
output of each analytical pipeline was a matrix with beta values for each sample. Table S3 shows 
an overview of our sample quality control analysis.

Chapter 5



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

151  

DNAm-based predictors
 DNAm predictor estimates were calculated using regression coe!  cients as reported by 
the corresponding study unless stated otherwise. Custom R scripts were implemented that take 
as input a matrix of EPIC array beta values and output predicted estimates as a linear combination 
of weighted CpG methylation levels. For DNAm clocks, inverse transformation was applied to 
calibrate the DNAm age estimates in units of years, as required by the algorithm. For instance, 
Horvath’s epigenetic clock regressed log-linear age (that leveraged age at 20) on DNA methylation 
levels and required this calibration step.
 Next, we brie" y describe the di# erent predictors included in our study. Table S4 presents 
an overview of predictor characteristics. For full details on each predictor, we refer to their 
corresponding studies.

DNAm clocks:
 The following predictors all output a form of DNAm age and capture a di# erent aspect of 
biological age depending on characteristics of their training dataset. The Hannum clock uses 71 
CpG probes and was developed in a whole blood 450K DNAm dataset of 656 individuals(Hannum 
et al. 2013). The Horvath clock was developed using 3,931 multi-tissue and -cell type samples 
using both 27K and 450K array samples(Horvath 2013). The Horvath clock uses 353 CpG probes 
that are present on both arrays. The BioAge4HAStatic clock is an extended measure of the 
Hannum clock and de$ ned by forming a weighted average of Hannum’s estimate with 3 cell types 
that are known to change with age: naïve (CD45RA+CCR7+) cytotoxic T cells, exhausted (CD28-
CD45RA-) cytotoxic T cells, and plasmablasts(Chen et al. 2016). The Weidner clock uses 3 CpG and 
was developed in a 27K DNAm dataset of whole blood samples from 575 individuals(Weidner et 
al. 2014). The Lin clock uses 99 CpG and was developed in a dataset of 450K array whole blood 
samples of 656 individuals(Lin et al. 2016). The VidalBralo clock uses 8 CpG probes and was 
developed in a dataset of 450K array whole blood tissue of 390 individuals(Vidal-Bralo, Lopez-
Golan, and Gonzalez 2016). The Skin & Blood clock uses 391 CpG probes and was developed 
in a dataset of 450K and EPIC arrays of a mixture of human $ broblasts, skin tissue, buccal cells, 
endothelial cells, whole blood, and cord blood samples (N=896)(Horvath et al. 2018). The Zhang 
clock uses 514 CpG probes and was developed in a dataset of EPIC and 450K arrays of 13,566 
samples. The majority of the samples were derived from whole blood with a small subsample 
from saliva tissue(Q. Zhang et al. 2019).

Mitotic clocks:
  The MiAge calculator uses 268 CpG probes and was developed on 4,020 samples of 8 
cancer types using 450K DNAm arrays(Youn and Wang 2018). MiAge outputs an estimate of 
mitotic age (total number of lifetime cell divisions) for a given human tissue. The epiTOC calculator 
was developed in a 450K DNAm dataset of 650 whole blood samples. EpiTOC uses a subset of 
385 Polycomb group targets promoter CpGs to predict an estimate of age acceleration in cancer. 
EpiTOC yields a score, denoted “pcgtAge”, as the average DNAm over CpG sites, representing the 
age-cumulative increase in DNAm at these sites due to putative cell-replication errors(Yang et al. 
2016).

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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Mortality risk estimators:
 The Zhang mortality score is de!ned by a weighted average of 10 CpGs that are associated 
with mortality status(Y. Zhang et al. 2017). The Zhang mortality score predictor was trained on a 
discovery cohort of whole blood 450K DNAm samples from 954 individuals (N=402 deceased at 
follow-up) and validated in a cohort of 1,000 individuals (N=231 deceased at follow-up). The second 
mortality estimator, Levine clock, is a predictor of “phenotypic age”, which is a DNAm surrogate 
of the composite score based on ten mortality markers (9 clinical markers + chronological age)
(Levine et al. 2018b). A training cohort of 456 whole blood samples were then used to identify 513 
CpGs predictive of phenotypic age. Only probes available on the 27K, 450K, and the EPIC array 
platform were used in their analysis. The linear combination of the weighted 513 CpGs is called 
“DNAm PhenoAge”. The third mortality risk estimator isGrimAge from Lu et al., which is de!ned 
by a composite score based on seven DNAm-based plasma protein markers, DNAm-based pack 
years of smoking, chronological age and gender(Lu, Quach, et al. 2019). GrimAge used a training 
dataset of whole blood samples of 1,731 individuals. The DNA methylation pro!ling was based 
on the 450K beadchip but the biomarker was trained on the CpGs present on both the 450K and 
the EPIC array in order to ensure compatibility for both platforms. GrimAge was calculated using 
a python executable that was developed by the authors of the original study, which also outputs 
several DNAm-based plasma protein markers, three blood cell types, and pack years of smoking 
(see below).

Plasma protein markers:
 DNAm-based estimators were developed for the following seven plasma proteins; 
adrenomedullin (ADM), beta-2-microglobulin (B2M), Cystatin-C, growth di"erentiation factor 
15 (GDF-15), leptin, plasmin activator inhibitor 1 (PAI-1), tissue inhibitor metalloproteinases 1 
(TIMP-1). These plasma proteins were measured using an immunoassay and the predictor trained 
using a whole blood 450k DNAm dataset of 1,731 individuals in Framingham Heart Study (FHS) 
cohort(Lu, Quach, et al. 2019). ADM, B2M, cystatin-C, GDF-15, leptin, PAI-1, and TIMP-1 are de!ned 
by 186, 91, 87, 137, 187, 211, and 42 CpGs, respectively. Each of these individual estimates were 
calculated using the GrimAge python executable.

Smoking predictors:
 Two DNAm-based smoking predictors were included in our analysis. The Lu estimator 
was trained using a whole blood 450K DNAm dataset of 1,731 individuals in FHS and uses 172 
CpGs for prediction, which is a component of GrimAge(Lu, Quach, et al. 2019). We estimated 
Lu pack years of smoking using the GrimAge python executable. The McCartney estimator was 
developed using EPIC DNAm data (only probes that are also present on the 450K platform) of 
3,444 individuals(McCartney et al. 2018). The McCartney estimator uses 233 CpGs and outputs, 
similar to the Lu predictor, the number of pack years of smoking.
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Blood cell type estimator:
 We included DNAm-based blood cell type estimators for nine cell types in our 
analysis. For neutrophils (Neu), B cells, monocytes (Mono), natural killer cells (NK), CD4+ T 
cells (CD4T), and CD8+ T cells (CD8T), estimators were developed using 850K EPIC DNAm 
data from magnetic sorted cells(Salas et al. 2018). These six cell types were estimated using 
the estimateCellProp(refdata=”FlowSorted.Blood.EPIC”, nprobes=50) function of the ENmix 
R package. Plasma B cells (PlasmaBlasts), naive CD8+ T cells, and CD8+, CD28-,CD45RA- T cells 
(CD8pCD28nCD45RAn), were estimated based on the Horvath method (Horvath and Levine 
2015) and computed using the same python executable as was used for the GrimAge estimator. 
These estimates are the same estimates that can be obtained through the online DNAm Age 
Calculator; https://dnamage.genetics.ucla.edu/.

Other estimators:
 We also included DNAm-based estimators that are developed for body-mass-index (BMI, 
in kg/m2), alcohol (units: per week), educational attainment (Edu, in years), total cholesterol (in 
mmol/L), HDL cholesterol (in mmol/L), LDL with remnant cholesterol (in mmol/L), total:HDL 
cholesterol ratio (HDL_ratio), waist-to-hip ratio (WHR), body fat (in %). These estimators were 
developed in a whole blood EPIC DNAm dataset (only probes that are also present on the 450K 
platform) of between 2,819 to 5,036 individuals and used between 205 to 1,109 CpG sites to 
predict DNAm-based estimates(McCartney et al. 2018). Finally, we also included an estimator of 
leukocyte telomere length (TL). This DNAm-based TL predictor was developed in a whole blood 
450K/EPIC DNAm dataset of 2,256 individuals and uses 140 CpGs(Lu, Seeboth, et al. 2019).

Statistical analyses
 In the sample of technical replicates, the intraclass correlation (ICC) was calculated using 
the ICC() function of the R psych package (v2.1.3). More speci! cally, we use ICC(2,1), which is a 
type of ICC that calculates reliability from a single-measurement using a two-way random e" ects 
model(Shrout and Fleiss 1979; Koo and Li 2016). ICC(2,1) assumes absolute agreement, which 
means the estimates of the replicates are expected to have exactly the same value. We also 
calculated ICC(1,1), ICC(3,1), ICC(1,k), ICC(2,k), ICC(3,k) for comparison with other ICC types.
 In the general JHS sample (i.e., without technical replicates), we calculated multiple 
statistical measures on the distribution of the output estimates of each predictor. The coe#  cient 
of variation was calculated by dividing the standard deviation by the mean of the distribution 
of the estimates. DNAm age acceleration residual (ΔAge) was calculated by regressing DNAm 
age on chronological age using the lm() function in R. To relate DNAm predictor estimates with 
mortality risk, a Cox proportional hazards regression model was ! t using the coxph() function of 
the survival package (v3.2). Finally, to assess if the above statistical properties change depending 
on the type of data processing pipeline used, we calculated Spearman correlations between the 
ICC calculated in the replicate JHS sample and the various statistics generated in the general JHS 
sample across the 101 pipelines For this we use the cor.test(method=”spearman”) function of the 
stats package. The statistical analyses were performed in R (v4.0.3).

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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Results
 To evaluate how unwanted technical variation in DNAm data impacts the performance of 
DNAm-based predictors, we implemented 101 data processing and normalization strategies in 
the JHS dataset. For each analytical strategy, which we will refer to as a “pipeline”, we then extracted 
beta values and calculated estimates of 41 DNAm-based predictors in (1) JHS data1: a sample of 
146 technical replicate pairs and (2) JHS data 2: a general sample of 1,761 non-replicate samples 
that do not overlap with the individuals in the replicate dataset. Figure 1 shows an overview of our 
analysis plan. In the sample of technical replicates, we quanti!ed the average absolute agreement 
between replicate pair values (i.e. reliability) by means of the ICC for each DNAm predictor and 
each pipeline separately (41 predictors x 101 pipelines = 4,141 ICC analysis). We also generated 
DNAm estimates in the general sample. This allowed us to correlate the ICC of a pipeline that was 
estimated in the sample of replicates with predictor estimates in the independent general JHS 
sample.

Figure 1. Schematic overview of analysis plan to evaluate DNAm algorithm performance. DNAm analyses are 
conducted using DNAm EPIC array samples in JHS. JHS includes a signi!cant number of technical replicate pairs 
thereby allowing for a careful investigation of how the removal of unwanted technical variation impacts DNAm 
algorithm performance across 101 data processing pipelines. JHS has also collected information on disease-
related phenotypes, including mortality status after follow-up. This allowed us to assess how removal of technical 
variation in DNAm predictor estimates by a data processing pipeline impacts downstream phenotypic association 
analyses.

 We calculated the ICC estimates derived from a two-way random e"ect model to assess 
the reliability of each predictor for each data processing pipelines. The ICC is a zero to one 
estimate that quanti!es the average absolute agreement across technical replicate pairs that 
were processed at a di"erent occasion. We also calculated !ve other types of ICCs and found high 
concordance between the di"erent ICC measures (mean rho=0.99, SD=0.01, see Figure S1). Table 
S5 reports all ICC statistics for each DNAm predictor and pipeline. In the remainder of the paper 
we will refer to ICC(2,1) as ICC, unless stated otherwise.

Chapter 5
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Most DNAm-based predictors yield high reliability when the best analytical pipeline is 
implemented
 Table 1 shows all 41 DNAm predictors alongside general information on each algorithm 
and corresponding ICC statistics, including the data processing and normalization pipeline that 
yielded the highest reliability for each predictor. Across all predictors and pipelines (N=4,141), we 
observed a signi! cant degree of similarity between replicates (all ICC P-values < 0.05/4,141). The 
median across all ICC estimates is 0.93 with a range of 0.22-0.99.
 The GrimAge predictor reports the highest reliability (ICC=0.994, P=6.6e-144), followed 
by ZhangAge (ICC=0.992, P=8.4e-132), and TIMP_1 (ICC=0.992, P=8.5e-133). In fact, 32 out of 41 
predictors (78%) reach a reliability of an ICC > 0.9 with at least one data processing pipeline. The 
predictors with higher ICCs have more narrow ICC distributions than predictors with lower ICCs 
(see Figure 2), suggesting that predictors with higher reliability are more robust to the choise 
of data processing pipelines. The predictors with the lowest reliability are CD8pCD28nCD45RAn 
(ICC=0.85, P=1.63e-41), PlasmaBlast (ICC=0.84, P=7.19e-52), PAI-1 (ICC=0.84, P=2.80e-40), and 
CD8_naive (ICC=0.83, P=1.17e-39).
 Across pipelines and predictors (N=4,141), the ENmix package yielded higher reliability 
(median ICC=0.93, range=0.61-0.99) than the min!  (median ICC=0.91, range=0.22-0.99) and 
wateRmelon (median ICC=0.91, range=0.49-0.99) packages. Among the best performance of each 
41 DNAm predictors, i.e. achieving the highest reliability, 32 (78%), 4 (10%), and 3 (7%) predictors 
were from the ENmix, min! , and wateRmelon package, respectively. Among ENmix pipelines; 
out-of-band (OOB) background estimation (15 out of 32), REgression on Logarithm of Internal 
Control probes (RELIC) dye-bias correction (19 out of 32), no quantile normalization (12 out of 32), 
and the Regression on Correlated Probes (RCP) probe-type bias correction (31 out of 32) yielded 
the highest reliability most often (see Figure S2). Two ENmix pipelines achieved the highest 
reliability for three predictors. The analytical pipeline that included OOB background estimation, 
RELIC dye-bias correction, no normalization, and RCP probe-type bias correction (i.e. “ENmix:oob_
relic_nonorm_rcp”) performed best for the BioAge4HAStatic, LDL, and CD8pCD28nCD45RAn 
predictors. The pipeline that included OOB background estimation, RELIC dye-bias correction, 
quantile normalization, and RCP probe-type bias correction (i.e. “ENmix: oob_relic_q1_rcp”) 
performed best for the B2M, DNAmTL, and HDLratio predictors.

 

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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Figure 2. The distribution of intraclass correlations across pipelines for each DNAm algorithm. For each 
predictor, a histogram of ICC values across 101 pipelines is shown. The ICC quanti! es the degree of absolute 
agreement between estimator values of a pair of technical replicates. The predictors are ranked based on their max 
ICC value. The name of the predictor is printed on top. In each panel, the median, lowest, and highest ICC value of 
a corresponding data processing pipeline for that predictor is shown as well.

There is signi! cant heterogeneity in pipeline performance across predictors
 Among the 41 best performing pipelines (i.e. the pipeline with the largest ICC value for 
each of the 41 predictors), there are 27 di! erent data processing and normalization strategies, 
which highlights signi" cant heterogeneity in choice of best pipeline between predictors. As ICC 
di! erences between pipelines of a predictor can be small and pipelines beyond the highest ICC 
may also be informative, we calculated the median rank across the 41 predictors for each of the 
101 pipelines (see Table S6). The pipeline with the best median rank (at 15) across predictors is the 
“ENmix: oob_relic_q1_rcp”. While this observation suggests this pipeline yields the best average 
performance across predictors, it still scored average to low for multiple predictors. For example, 
for the BMI predictor the “ENmix: oob_relic_q1_rcp” pipeline had one of the lowest ranks (ICC = 
0.89, rank = 91). A data processing pipeline can also introduce more spurious variation instead of 
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removing technical variation. That is, the raw data pipeline that does not apply any data processing 
and normalization yielded a median rank of 85 (range: 7 to 100). For the CD4T and CD8 naive 
predictors, the raw data pipeline ranked as the seventh best performing pipeline highlighting 
that most pipelines perform worse than no data processing at all for these two predictors. The 
“Min! : raw_quantile_strat” and “Min! : illumina_bg_quantile_strat” had the lowest median rank of 
100 and yielded the lowest reliability for 17 and 9 predictors, respectively (Table S5).
 To assess the concordance in pipeline performance across predictors more formally, we 
calculated the rank correlation in pipeline reliability between all pairs of predictors. In Figure 3 we 
visualize the result of this analysis via a clustered correlation heatmap.

Figure 3. DNAm predictors have a moderate degree of concordance in performance between pipelines. 
Shown is a clustered correlation heatmap of pipeline reliability concordance between predictors. The color coding 
depicts Spearman’s rho and clustering is performed using hierarchical clustering. Only correlations with a P-value 
< 0.01 are colored.

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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For some predictors the ranking in pipeline performance is very similar. For example, the GrimAge, 
Smoking_Lu, Cystatin_C, and GDF_15 predictors show strong concordance (mean rho = 0.92). As 
noted, these four predictors were developed in the same dataset and the Cystatin_C, GDF_15, and 
Smoking_Lu estimates are included in the GrimAge algorithm. Across all pairs of predictors, we 
!nd a moderate correlation in pipeline performance (mean rho=0.40, SD=0.27). Some predictors 
however show little to no concordance with other predictors. The ranking of pipelines of the BMI 
and NK predictor, for example, have a mean rank correlation of 0.14 (SD=0.20) and 0.21 (SD=0.24), 
respectively, with that of other predictors. For a handful of predictor-pairs we even observe a 
negative correlation, suggesting that pipelines that yield high reliability for one predictor yield 
low reliability for another. Pipeline performance of the BioAge4HAStatic and Mono predictors for 
example have a correlation of -0.45 (P=2.1e-06). Our !ndings thus far show that speci!c pipelines 
are more e"ective in removing unwanted technical variation for a predictor and that signi!cant 
heterogeneity exists in pipeline performance across predictors.

The choice of data processing pipeline impacts downstream analysis of predictors
 Next, we evaluated if the performance of a pipeline can also a"ect downstream 
phenotypic analyses of a predictor. For these analyses, we used the general JHS data 2 sample. 
For each pipeline, we calculated the mean and standard deviation (SD) of the predictor estimate 
distribution in the general JHS sample. For each predictor, we then correlated these two statistics 
(i.e., the mean and SD) with the ICC estimates of the pipelines obtained in the technical replicate 
sample. We !nd that the choice of pipeline has a signi!cant impact on the distribution of the 
predictor estimate. Of the 41 predictors, 33 (80%) are signi!cantly impacted on the distribution of 
their estimates after Bonferroni correction P<0.0012). For 22 predictors (54%), we !nd a signi!cant 
correlation for both the mean and standard deviation. For DNAmTL, we, for example, observe 
a negative correlation between the performance of a pipeline and the mean of the estimate 
distribution (rho=-0.71, P<2.2e-16) and a positive correlation with the standard deviation of the 
estimate distribution (rho=0.79, P<2.2e-16) . The best performing pipeline yields a mean estimate 
of 6.83 kilobases (SD=0.34). The least performing pipeline yields a mean estimate of 7.20 kilobases 
(SD=0.29). This shows that the more e"ective a pipeline is in removing technical variation, the 
lower the DNAm-based predicted estimate of telomere length and the larger the variation 
between individuals. The direction of e"ect of the relationship between pipeline performance 
and the mean and standard deviation of the DNAm variables varies between predictors as well. 
HorvathAge, for example, is impacted on its standard deviation (rho=0.39, P=5.6e-05) but not 
on the mean (rho=-0.10, P=0.27). HDLratio is impacted on its mean but unlike DNAmTL shows a 
positive correlation with pipeline performance (rho=0.38, P=9.8e-05). HDLratio is not impacted 
on the standard deviation of its distribution (rho=0.00, P=0.96). Correlation plots and correlation 
statistics of all predictors are shown in Supplementary Note 1. A full overview of test statistics can 
be found in Table S7.
 Several DNAm age predictors are known to predict all-cause mortality risk. We therefore 
examined if pipeline performance also impacts their association with mortality risk. We focus on 
four predictors: HorvathAge, PhenoAge, GrimAge, and ZhangAge. Each predictor has di"erent 
training characteristics and captures a di"erent aspect of biological age and/or mortality 
risk(Horvath and Raj 2018). ZhangAge is a blood-based DNAm clock and was developed 
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on the largest training dataset and shown not to be associated with mortality risk despite its 
improved precision(Q. Zhang et al. 2019). We ! nd that pipeline performance signi! cantly impacts 
downstream analysis for all four predictors (Figure 4).

Figure 4. Pipeline performance impacts downstream analyses of DNAm age predictors. Shown are association 
between pipeline ICC and the correlation with chronological age (left panels), the hazard ratio of mortality risk 
prediction (middle panel), and the z-score of the mortality risk prediction (right panels) for Horvath Age (top row), 
PhenoAge (2nd row), GrimAge (3rd row), and ZhangAge (bottom row). Pipelines are color-coded by package/
method. Spearman rank correlation statistics are shown in the top left corners.
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 For HorvathAge, pipelines that achieve greater reliability also achieve a greater correlation 
between HorvathAge and chronological age (rho=0.47, P=1.8e06). Better performing pipelines 
furthermore achieve greater power to predict all-cause mortality (rho=0.52, P=3.3e-08). For 
PhenoAge, we did not !nd an e"ect on the correlation with chronological age but did !nd 
the survival analysis to be signi!cantly impacted. Better performing pipelines achieve greater 
power for PhenoAge (rho=0.68, P<2.2e-16) but also a smaller hazard ratio (rho=-0.39, P=5.3e-05), 
suggesting that unsuccessful removal of technical variation in DNAm data can in#ate the 
magnitude of mortality risk. In contrast to our !ndings for HorvathAge, we found that better 
performing pipelines produced a lower correlation with chronological age for GrimAge (rho=-
0.67, P < 2.2e-16). Similar to PhenoAge, we found that pipelines that achieve greater reliability 
yield more signi!cant associations with mortality for GrimAge (rho=0.75, P<2.2e-16) but also 
a smaller hazard ratio (rho=-0.62, P<2.2e-16). The most reliable pipeline reports a signi!cant 
hazard ratio of 1.12 (SE=0.01, P=1.60e-30), which veri!es GrimAge as a strong predictor of all-
cause mortality, especially when spurious technical variation is appropriately accounted for. For 
ZhangAge, we found no impact on the correlation with chronological age. Better performing 
pipelines produced smaller and less signi!cant e"ects in associations with all-cause mortality. 
The most reliable pipeline produced a non-signi!cant hazard ratio of 1.10 (SE=0.05, P=0.06), 
con!rming that ZhangAge does not predict mortality risk. Taken together, using the general JHS 
sample, we demonstrate how pipeline performance has a signi!cant impact on downstream 
phenotypic analysis of DNAm predictors.

Predictor reliability is inversely associated with sample size of the training dataset
 To assess if speci!c features of the predictors are associated with higher reliability, we 
investigated the number of CpG probes and the sample size of the training dataset in relation to 
the ICC of the best performing pipeline (see Figure S3). Using predictors for which such information 
was available, we !nd that the sample size of the dataset in which a predictor was developed is 
inversely associated with the observed predictor reliability (N=37, rho=-0.39, P=0.02). We did not 
!nd a signi!cant association between the number of predictor CpG probes and reliability of a 
predictor (N=37, rho=-0.21, P=0.20).

A smaller number of replicate pairs can be used to measure reliability
 In our analyses, we made use of a large number of replicate pairs. We therefore assessed 
how sample size a"ected our measure of reliability and if a smaller number of replicate pairs 
yield similar !ndings. Across reliabilities from all pipelines and predictors, we observe good 
concordance (rho > 0.94) with as low as ten replicate pairs compared with measures obtained 
from larger sample sizes (Figure S4). Di"erences however exist between predictors with some 
predictors still requiring a larger number of replicate pairs (Supplementary Note 2).
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Discussion
 DNAm-based predictors are emerging as powerful new methods to study health and 
disease, but little is known about the reliability of the estimates they produce. To investigate their 
performance, we carried out a systematic evaluation of 41 predictors across 101 data processing 
and normalization strategies and assessed to what degree algorithm performance is impacted by 
(un)successful removal of technical variation. Leveraging a large technical replicate sample in the 
JHS, we demonstrate that the choice of analytical pipeline has a signi! cant impact on the reliability 
of predictors as well as on the outcomes of downstream phenotypic analyses. We highlight that 
speci! c pipelines are more e" ective in removing unwanted technical variation for a predictor but 
that signi! cant heterogeneity exists in pipeline performance across predictors. Pipelines of the 
ENmix package achieved the highest reliability and were most frequently represented among the 
best performing pipelines. As research on DNAm-based predictors will continue to grow, our work 
provides best practices for the research community to help standardize their implementation 
and improve their performance.
 To quantify method performance, we used a type of intraclass correlation that measures 
test-retest reliability by assessing the degree of absolute similarity between technical replicate 
pairs. Guidelines from reliability research suggest that ICC values less than 0.5 are indicative of 
poor reliability, values between 0.5 and 0.75 indicate moderate reliability, values between 0.75 
and 0.9 indicate good reliability, and values greater than 0.90 indicate excellent reliability(Koo and 
Li 2016). The ICC range of best performing pipelines across predictors was 0.83-0.99, indicating 
good to excellent reliability for these predictors. For 32 out of 41 predictors (78%), we found 
excellent reliability (ICC > 0.9) for at least one data processing pipeline. Several predictors show a 
reliability close to 1, which demonstrates that repeated collections of DNAm data yield almost the 
same predictor estimate and highlights their potential as a biomarker for health-related outcomes. 
Among predictors with high reliability are predictors of mortality risk, smoking behavior, blood 
cell types, and cancer risk. Demonstrating internal validity for these DNAm tools is important for 
research purposes but even more so for their potential utilization for health management and 
disease prediction in the clinic. GrimAge, a strong predictor of all-cause mortality, for example, has 
the highest test-retest reliability of 0.994. This ! nding demonstrates excellent test-retest reliability 
based on technical replicates from the same biological sample. It remains an open question if 
the measured reliability translates to repeated measures of DNA samples extracted from di" erent 
blood draws at the same time point or across time points. The analytical framework we applied can 
however be easily extended to study design of other types of (biological) replicates. Establishing 
method reliability in other contexts of technical and biological variation is an important next step 
for future research.
 We found that the choice of analytical pipeline is essential as multiple data processing 
strategies produced poor reliability (ICC<0.5) for several predictors. For some predictors, like 
for CD4T and CD8 naive T cells, using the raw data achieves higher reliability than most data 
processing pipelines. This highlights that analytical decisions on how to best prepare DNAm 
data require careful consideration as certain data processing and normalization steps can even 
reduce algorithm performance. Among the best performing pipelines of each predictor, we 
found signi! cant heterogeneity across predictors. That is, there are 27 unique pipelines across the 
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41 predictors. On average, pipelines of the Enmix package achieved the highest reliability most 
frequently. While there is no one optimal pipeline to use for all predictors, several data processing 
steps stand out as producing high reliability for multiple predictors. For example, almost half of 
the best performing pipelines make use of the RELIC dye-bias correction method. RELIC uses 
the information between pairs of internal normalization control probes to correct for di!erences 
between color channels that measure intensity levels of the array(Xu et al. 2017). The EPIC array 
contains 85 pairs of controls that target the same DNA region in housekeeping genes and contain 
no underlying CpG sites. RELIC uses the relationship between the pairs of controls to correct for 
dye-bias on intensity values for the whole array. Another data processing step that produced 
high reliability is the RCP probe type-bias correction method. 31 out of 41 of the best performing 
pipelines make use of this data processing step. RCP uses the existing correlation between pairs 
of nearby type I and II probes to adjust the beta values of all type II probes(Niu, Xu, and Taylor 
2016). Both RELIC and RCP have been shown to reduce technical variation in DNAm data and are 
implemented in the ENmix package. While both approaches are e!ective in removing unwanted 
technical variation, we still recommend using the best performing pipeline for a speci"c predictor 
as reported in Table 1 as RELIC and RCP both show heterogeneity in performance across predictors.
 The choice of analytical pipeline does not only impact the test-retest reliability of a 
predictor but also signi"cantly a!ects downstream phenotypic analyses. We show that 80% of 
predictors are impacted on the mean and/or standard deviation of their distribution in the general 
JHS cohort. We furthermore analyzed DNAm clocks and showed that the strength of correlation 
between DNAm age and chronological age is a!ected in opposite directions for HorvathAge and 
GrimAge. While the correlation with chronological age becomes stronger with better performing 
pipelines for HorvathAge, the correlation becomes weaker for GrimAge. For DNAm clocks that are 
shown to be associated with mortality risk, successful removal of technical variation produced 
smaller hazard ratios but more signi"cant associations. This highlights that not appropriately 
accounting for technical variation can decrease statistical power and in#ate risk estimates for 
these predictors. It also shows that despite the narrow distribution of reliability estimates for these 
predictors, for example GrimAge has an ICC range of 0.921-0.994 indicating excellent reliability 
across all pipelines, the choice of pipeline still impacts downstream association analyses. We note 
that in our association analysis with mortality risk, we adjusted for chronological age, and still 
found that the choice of pipeline in#uences the outcome of the analysis. This is di!erent from 
"ndings of a previous study that reported that the choice of pipeline in#uences the mean of 
DNAm age but not the DNAm age acceleration residual(McEwen et al. 2018). This study however 
only compared three data processing and normalization strategies and could have missed this 
e!ect as it did not perform a systematic evaluation across many pipelines. Finally, we con"rm 
that ZhangAge, a DNAm clock developed in the largest blood based DNAm dataset, does not 
associate with mortality risk.
 We also investigated if speci"c characteristics of a predictor impacted the measured 
reliability. We found that the sample size of the training dataset has a moderate inverse relationship 
with the reliability of a predictor. This suggests that predictors developed in larger training 
datasets are more sensitive to technical variation than predictors developed in a smaller dataset. 
This relationship could for example arise if larger training datasets on average have more technical 

Chapter 5



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

165  

factors that are not properly accounted for. The ZhangAge predictor, however, was developed 
in the largest training dataset and shows the second to highest reliability of all predictors we 
investigated. This indicates that other factors in addition to sample size of the training dataset 
are likely to play a role as well. ZhangAge was developed using 65 training sets across 14 cohorts, 
where each training set had a certain number (ranging between 1 and 13) of cohorts randomly 
sampled from the 14 cohorts(Q. Zhang et al. 2019). This strategy is, as far as we know, unique to 
this predictor and may have helped select for CpG probes that are less impacted by technical 
variation due to its many training sets of di! erent randomly assigned cohort compositions. As 
training datasets with large sample sizes are essential to developing more accurate DNA-based 
predictors, a strategy to randomize the potential e! ect of technical factors, like was implemented 
for the development of ZhangAge, could be worthwhile to consider for new predictors as well. 
We did not " nd a signi" cant relationship between the number of CpG probes and the observed 
reliability of a predictor.
 Our study comes with limitations. First, we measured reliability using technical replicate in 
one study. A di! erent cohort or di! erent types of repeated measures may yield di! erent outcomes. 
Ideally, one would use study-speci" c replicate samples and assess if similar best practices are 
achieved or if alternative strategies are more appropriate to remove technical variation most 
optimally for that speci" c study. If future studies have the means to include replicate samples, 
they should aim to include at least ten replicate pairs. We determined that for most predictors 
a sample size of ten replicate pairs can already provide meaningful insights into their reliability. 
Second, several predictors were not fully compatible with the EPIC array platform. Predictors that 
were developed on older DNAm array platforms showed lower reliability. Missing probes could 
have a! ected the outcome of our analysis. Having said that, as the older 27K and 450K DNAm 
array platforms are discontinued, any future application of predictors that are not fully compatible 
with the EPIC array will face a similar challenge.
 In summary, this study demonstrates that considerable variation exists in the performance 
of DNAm-based predictors depending on the data processing and normalization strategy 
implemented. Analytical pipelines that best remove unwanted technical variation in DNAm 
data achieve excellent test-retest reliability for most predictors thereby demonstrating their 
potential as biomarkers for health-related outcomes. DNAm is an important tool to study health 
and disease. As the number of DNAm predictors continues to rise, understanding how best to 
improve and implement these algorithms will be essential for downstream clinical applications.

A systematic evaluation of 41 DNA methylation predictors highlights considerable variation in algorithm performance
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Full supplemental materials can be found here:
https://www.biorxiv.org/content/10.1101/2021.09.29.462387v1.supplementary-material

Table S1. Cohort characteristic of JHS. In total, 1,907 individual and 2,053 850 EPIC array samples were 
included in our analysis. Our analyses were conducted in two subsets of this cohort, a subset that consist of only 
the technical replicate samples (n=146 individuals) and a subset that contains the remainder of the cohort. Shown 
above are standard cohort characteristics, including the percentage of individuals that died after follow-up for the 
general sample.

Figure S1. Comparative analysis of ICC types across DNAm-based predictors and data processing pipelines. 
Shown are the bivariate scatterplots (left bottom) and the Spearman correlation (right top) between ICC types 
across all pipelines and predictors (N= 101x41 = 4141). The distribution of each ICC type is shown on the diagonal. 
***P-values < 2.2e-16. This ! gure was made using the chart.Correlation() function of the PerformanceAnalytics R 
package (v2.0.4).
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Figure S2. Characteristics of best performing pipelines of predictors. These graphs are based on the 42 best 
performing data processing pipelines (i.e., pipeline with the highest reliability of each predictors). Top left shows 
the corresponding package. 32 out of 41 pipelines are part of the Enmix package. The top right shows which 
background estimations ranked among the 32 Enmix pipelines. Middle left shows the ENmix dye bias correction 
method. Middle right shows the Enmix normalization method. The bottom graph shows if a pipeline used probe-
type bias correction (i.e. “RCP method”).
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Figure S3. Association of predictor features with reliability. Shown are scatter plots of the relationships between 
predictor features (i.e., training sample size and number of CpG probes) and the reliability (i.e., ICC) of the best 
performing pipeline for each predictor. Shown are the statistics of the correlation test (method=”spearman”) and 
a corresponding regression line.
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Figure S4. Reliability measures across di!erent sample sizes of replicate pairs. Shown are the bivariate 
scatterplots (left bottom) and the Spearman correlation (right top) between the interclass correlations (all pipelines 
and predictors (N= 101x41 = 4141)) obtained across di!erent sample sizes of replicate pairs. The sample size of the 
set of replicate pairs is shown on the diagonal across. For each sample size, we performed a bootstrap analysis 
in which we randomly selected the speci"ed number of pairs from the total of 146 replicate pairs and computed 
the intraclass correlation across ten independent samplings. We then computed the mean intraclass correlation 
across these ten samplings and correlated this obtained mean ICC across di!erent sets of replicate pairs. ***P-values 
< 2.2e-16. This "gure was made using the chart.Correlation() function of the PerformanceAnalytics R package 
(v2.0.4).
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Chapter 6

Abstract
 The study of biological age acceleration may help identify at-risk individuals and contribute 
to reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) 
clocks, we investigated biological aging in schizophrenia (SCZ), a severe mental illness that is 
associated with an increased prevalence of age-related disabilities and morbidities. In a multi-
cohort whole blood sample consisting of 1,090 SCZ cases and 1,206 controls, we investigated 
di!erential aging using three DNAm clocks (i.e. Hannum, Horvath, Levine). These clocks are 
highly predictive of chronological age and are known to capture di!erent processes of biological 
aging. We found that blood-based DNAm aging is signi"cantly altered in SCZ with age- and sex-
speci"c e!ects that di!er between clocks and map to distinct chronological age windows. Most 
notably, di!erential phenotypic age (Levine clock) was most pronounced in female SCZ patients 
in later adulthood compared to matched controls. Female patients with high SCZ polygenic risk 
scores (PRS) present the highest age acceleration in this age group with +4.30 years (CI: 2.40-
6.20, P=1.3E-05). Phenotypic age and SCZ PRS contribute additively to the illness and together 
explain up to 22.4% of the variance in disease status in this study. This suggests that combining 
genetic and epigenetic predictors may improve predictions of disease outcomes. Since increased 
phenotypic age is associated with increased risk of all-cause mortality, our "ndings indicate that 
speci"c and identi"able patient groups are at increased mortality risk as measured by the Levine 
clock. These results provide new biological insights into the aging landscape of SCZ with age- 
and sex-speci"c e!ects and warrant further investigations into the potential of DNAm clocks as 
clinical biomarkers that may help with disease management in schizophrenia.
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Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects

Introduction
 As the population continues to age, reducing the burden of age-related disability and 
morbidity is timely and important, particularly for mental illnesses (Taylor and Reynolds 2020; 
Mo!  tt and Caspi 2019). Ranked as one of the most disabling illnesses globally(Salomon et 
al. 2015), schizophrenia (SCZ) has signi" cant impact on patients, families, and society. SCZ is 
associated with a two- to threefold increased risk of mortality(McGrath et al. 2008; Olfson et 
al. 2015; Allebeck 1989a) and a 15 year reduction in life expectancy compared to the general 
population(Hjorthøj et al. 2017; Laursen, Nordentoft, and Mortensen 2014). Despite elevated rates 
of suicide and other unnatural causes of death, most morbidity in SCZ is attributed to age-related 
diseases, such as cardiovascular and respiratory diseases and diabetes mellitus(Saha, Chant, and 
McGrath 2007; Hayes et al. 2017; Olfson et al. 2015). Processes of biological aging may therefore 
be accelerated in patients diagnosed with SCZ, either through an increased prevalence of age-
related conditions or as a more integrated part of the illness (Kirkpatrick et al. 2008). Quanti" cation 
of biological aging can help with identi" cation of at-risk individuals or even prevention of age-
related diseases (Belsky et al. 2015; Field et al. 2018). While di# erent aging biomarkers have been 
studied in SCZ, no clear demonstration of altered biological age has been shown (Nguyen, Eyler, 
and Jeste 2018). The recent development of DNA methylation (DNAm) age predictors however 
o# ers new opportunities to study the phenomenon of aging in SCZ.
 DNAm age predictors, or “epigenetic clocks’’, are biomarkers of ageing that generate a 
highly accurate estimate of chronological age, known as DNAm age (Horvath 2013; Hannum et 
al. 2013; Levine et al. 2018). The di# erence (Δage) between predicted DNAm and chronological 
age is associated with a wide-range of health and disease outcomes, including all-cause mortality 
(Marioni et al. 2015; Chen et al. 2016; Perna et al. 2016; Levine et al. 2015), socioeconomic adversity 
and smoking(Fiorito et al. 2017), metabolic outcomes, such as body mass index (BMI) and obesity 
(Quach et al. 2017; Horvath et al. 2014), and brain-related phenotypes, such as Parkinson’s disease, 
posttraumatic stress disorder, insomnia, major depressive disorder, and bipolar disorder (Horvath 
and Ritz 2015; Boks et al. 2015; Carroll et al. 2017; Han et al. 2018; Fries et al. 2017). As epigenetic 
signatures can be modi" able (Sugden et al. 2019), DNAm-based predictors may have signi" cant 
clinical utility. Studies of DNAm aging so far found limited to no evidence for altered biological 
age in either brain or blood in SCZ (Voisey et al. 2017; Okazaki et al. 2019; Viana et al. 2017; 
McKinney et al. 2017). These studies, however, (i) consisted of small sample sizes and thus limiting 
the ability to detect a biological signal, (ii) used a single DNAm clock that may have not been most 
informative for aging studies of mental illnesses, and (iii) did not consider aging di# erences across 
the lifespan of patients. As morbidities in the SCZ population di# er between older and younger 
individuals, and females and males (Olfson et al. 2015), analyses of both age- and sex-speci" c 
e# ects is warranted and could identify di# erential aging patterns, nevertheless.
 To investigate DNAm aging in SCZ, we used three independent DNAm age estimators; the 
Hannum (Hannum et al. 2013), Horvath (Horvath 2013), and Levine clock (Levine et al. 2018). Each 
clock is designed using di# erent training features and captures distinct characteristics of aging 
(Horvath and Raj 2018); (i) the Hannum age predictor was trained on whole blood adult samples, 
(ii) the Horvath predictor was trained across 30 tissues and cell types across developmental 
stages, and (iii) the Levine combines DNAm from adult blood samples with clinical blood-based 
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measures. As the Levine estimator is trained on chronological age and nine clinical markers, its 
output is referred to as DNAm PhenoAge or “phenotypic age”. The Hannum estimator is said to 
capture measures of cell extrinsic aging in blood, whereas the Horvath clock measures more cell 
intrinsic aging as it was trained across multiple tissues and therefore is less dependent on cell 
type composition. All three clocks, in di!erent but complementary ways, capture the pace of 
biological aging that is associated with various age-related conditions and diseases, including 
all-cause mortality (Horvath and Raj 2018; Chen et al. 2016).
 DNAm clocks were implemented across four European case-control cohorts, representing 
a sample of almost twice the size of the largest SCZ DNAm age study conducted so far. Analyses 
are performed across the full sample and strati"ed by age and sex. We then integrated DNAm age 
with age of onset, duration of illness, and SCZ polygenic risk. DNAm smoking scores and blood 
cell type proportions were used to gain further insights into di!erential aging patterns. This study 
overall reports an in-depth investigation of the DNAm aging landscape in schizophrenia.

Material and Methods
Cohort and sample description
 Details of samples included in this study can be found in the Supplementary Information. 
Brie#y, unrelated patients with SCZ and ancestry-matched non-psychiatric controls from four 
cohorts of European ancestry were included; the Netherlands (N=1,116), Scotland (N=847), 
Sweden (N=96), and the United Kingdom (N=675). Cases were selected on the basis of a clinical 
diagnosis of SCZ using the Diagnostic and Statistical Manual for Mental Disorders (DSM-IV), 
Research Diagnostic Criteria (RDC), or the International Classi"cation of Diseases 10 (ICD10). 
Controls were una!ected subjects without a history of any major psychiatric disorder. Whole 
blood DNAm data was available for a total of 2,707 samples (1,399 cases and 1,308 controls; Table 
S1).

Genome-wide DNA methylation pro!ling and data processing
 To quantify DNA methylation, DNA was extracted from whole blood and bisul"te 
converted for hybridization to the Illumina In"nium Human Methylation Beadchip. Samples 
were assayed with either the 27K or 450K beadchip, which contain 27,578 and 485,512 probes 
that interrogate CpG sites across the genome, respectively. For each platform, data processing 
pipelines were implemented, which includes background correction, color channel and probe 
type correction, and normalization of the data, to minimize the e!ect of technical variation on the 
"nal beta values. Samples with more than 5% of probes detected at P > 0.05 were excluded from 
further analyses (n=13). Full details are described in the supplementary methods.

DNAm-based estimation of biological age
 To compute blood-based DNAm age estimates, processed beta values were used as input 
to the Hannum(Hannum et al. 2013), Horvath(Horvath 2013), and Levine (Levine et al. 2018) 
DNAm clock. These DNAm age estimators use a set of CpGs that are selected via an optimization 
algorithm to collectively minimize the error associated with estimating chronological age 
(Supplementary Information). Horvath DNAm age estimates were calculated using R scripts 

Chapter 6



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

181  

from the Horvath DNA Methylation Calculator (https://dnamage.genetics.ucla.edu). Hannum 
and Levine estimates were obtained by using the reported set of probes with corresponding 
regression weights. We de! ne Δage by subtracting chronological age at the time of the blood 
draw from the predicted DNAm age.

Statistical analyses
 To investigate epigenetic aging di# erences in SCZ, we ! rst removed samples with 
discrepant phenotypic sex and predicted sex based on DNAm data (n=9), as well as samples with 
missing chronological age data (n=237), bipolar disorder diagnosis (n=26), and duplicate samples 
(n=126). For each epigenetic clock, we regressed Δage on technical principal components (PCs), 
using the ! rst components that cumulatively explain >90% of variation in intensity values of 
control probes, and added the residuals to mean(Δage) to generate a measure in the same units 
as Δage that is adjusted for technical variation (Δage-adjusted). We used the adjusted value for 
subsequent analyses and refer to it as Δage.
 As association analyses of DNAm age between groups are sensitive to the distribution of 
chronological age, particularly at older ages, any case older than the oldest control was excluded 
from each cohort (n = 5 for NLD, 16 for SCT, 4 for SWD, and 1 for UK). Chronological age was 
furthermore included as a covariate in all analyses, as recommended(Khoury et al., n.d.). To 
minimize the e# ect of outlying samples, we excluded samples >3SD from mean Δage across 
cohorts (ranging from n=13 to 16 for the three clocks). These are samples for which DNAm age 
diverged substantially from chronological age, which are likely artifacts.
 For each clock and each cohort, we implemented a multivariable regression model 
predicting Δage as a function of schizophrenia status, sex, and age. For the Dutch cohort, batch 
and array platform were also included as covariates, as this cohort consists of multiple datasets 
from both the 27K and 450K platform. For each clock, regression coe$  cients with corresponding 
standard errors for each of the four cohorts were then supplied to the rma() function of the 
metafor package(Viechtbauer 2010) in R to ! t a meta-analytic ! xed-e# ect model with inverse-
variance weights and obtain an overall e# ect size and test statistic. To quantify the signi! cance of 
age- and sex-speci! c e# ects, we determined the contribution of interaction e# ects on top of the 
main disease e# ect. We ! rst combined all cohorts to maintain necessary sample sizes across age 
and sex groups. Age groups were de! ned by grouping samples by decades with ages 18 and 19 
included in the ! rst decade (18-30, 31-40, etc.). To quantify the gain in variance explained in Δage, 
models with the interaction term were compared to a baseline model without the interaction 
term. For each analysis, statistical signi! cance was determined using Bonferroni correction, i.e. P 
< 0.05 / number of tests.

SCZ polygenic risk quanti! cation
 Polygenic risk scores (PRS) were obtained from analyses of the SCZ GWAS conducted 
by Psychiatric Genomics Consortium (PGC)(Schizophrenia Working Group of the Psychiatric 
Genomics Consortium 2014). Using a leave one out approach, weights were generated in a 
training dataset based on all samples minus the target cohort in which the PRS were calculated. 
For each individual, weighted single nucleotide polymorphisms (SNPs) were summed to a 

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects

https://dnamage.genetics.ucla.edu/


572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 182PDF page: 182PDF page: 182PDF page: 182

 182  

genetic risk score that represents a quantitative and normally distributed measure of SNP-
based SCZ genetic risk. To reduce between cohort-variation and maximize statistical power, we 
used a previously developed analytical strategy that uses principal  component analysis (PCA) 
to concentrate disease risk across PRSs of ten GWAS p-value thresholds into the !rst principal 
component (PRS1)(Bergen et al. 2019) (Supplementary Information). PRS1 explains 70.7% of the 
variance in risk scores and 19.9% of the variance in SCZ status, which is more than any of the 
original p-value thresholds (4.9-17.4%). The other PCs had no explanatory value in disease status 
(mean R2 = 0.0%), which means that PRS1 captures the majority of SNP-based SCZ polygenic risk. 
PRS1 was generated for 1,933 individuals, 853 cases and 1080 controls, and modelled as both a 
quantitative and categorical variable to predict Δage.

De!ning age at onset and illness duration
 Age at onset is de!ned as the earliest reported age of psychotic symptoms or by the 
Operational Criteria Checklist (OPCRIT), depending on the cohort. This data is available for a 
subset of cases (N = 710) across the Dutch, Scottish, and UK cohorts. Illness duration is de!ned as 
the time between age at onset and blood collection. A more detailed description of each cohort’s 
de!nition is available in the Supplementary Information.

DNA methylation-based smoking scores and blood cell type proportions
 Smoking scores and blood cell type proportions were estimated from the data (see 
Supplementary Methods) and used as a proxy to further decompose di#erential aging e#ects.

Estimating the contribution of di"erential aging in schizophrenia
 Using a multivariable logistic regression model for disease status, we !tted batch,
cohort, DNAm smoking score, DNAm blood cell type proportions, and Δage as explanatory 
variables. We !rst performed a variable reduction step to select the most contributing variables to 
disease status by use of a regularized logistic regression using the glmnet() function in R (“glmnet” 
package, v2.13)(Friedman, Hastie, and Tibshirani 2010). Alpha was set to “1” (Lasso) and the lambda 
parameter estimated at the optimal value that minimizes the cross-validation prediction error rate 
using the cv.glmnet() function. For each selected variable, we then report the variance explained 
in SCZ status (glm, family = ”binomial”) for both the individual variable as well as adjusted for all 
other selected variables using the NagelkerkeR2() function in the “fmsb” package (v 0.6.3). The 
signi!cance of each variable to their contribution was computed by comparing the model with 
and without the variable of interest using the likelihood ratio test of the anova() function.

Results
 Figure 1 shows a schematic overview of the study design and analysis framework used to 
investigate DNAm aging in SCZ. After data pre-processing and quality control, 1,090 SCZ cases 
and 1,206 controls (2,296 subjects of 2,707 initial samples) were included in our analysis. The 
overall sample has a mean age of 40.3 years (SD=14.4) and consists of 34.5% women (Table S1 
and Figure S1).
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Figure 1. Overview of study design and analysis framework. DNA methylation (DNAm) data was available 
for a total of 2,735 samples across four European cohorts. See Table S2 for more details on samples. DNAm age 
estimates were generated using three DNAm clocks, each designed to capture di! erent features of aging (box 
2). To investigate di! erences in aging between cases and controls, Δage was computed (box 3) and analyzed 
according to the step-wise framework shown in box 4. SCZ = schizophrenia, NLD=Netherlands, SCT=Scotland, 
SWD=Sweden, UK=United Kingdom, PRS=polygenic risk scores.

Across cohorts, all three clocks produce a high correlation with chronological age (Pearson’s r 
= 0.92-0.94; Figure 2A and S2). Using duplicates in the Dutch cohort, we assessed consistency 
between pairs of technical replicates, i.e. samples for which blood was collected at the same time 
but DNA processed at di! erent times and DNAm data obtained on di! erent arrays. Comparing 
Δage estimates between these pairs, we # nd a signi# cant correlation for each clock (Figure 
S3); Hannum (rho = 0.79, n = 10), Horvath (rho = 0.53, n=118), Levine (rho = 0.67, n=118). Δage 
directionality (i.e. age deceleration or acceleration) is concordant in 90%, 73%, and 86% of pairs 
for Hannum, Horvath, and Levine, respectively, highlighting that the obtained estimates of DNAm 
age are reproducible for all three clocks. Comparing Δage estimates between clocks using all 
samples, we # nd a moderate concordance (Pearson’s r = 0.39-0.43; Figure S4), demonstrating that 
a signi# cant proportion of the variation in Δage is clock-speci# c. As these three estimators were 
trained on di! erent features of biological aging, investigating them in conjunction may thus yield 
broader insights into di! erential aging.

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects
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DNA methylation age is altered in an age-dependent manner
 Across the full sample, patients with SCZ are on average 1.53 years older in phenotypic 
Δage (Levine clock) compared to controls (Pmeta= 3.45E-08) (Figure 2B). The intrinsic cellular age 
(Horvath) predictor revealed an opposite pattern, with SCZ cases appearing 0.47 years younger 
compared to controls (Pmeta= 0.06). No di" erences were observed between cases and controls 
when applying the blood-based Hannum DNAm age predictor. Within the analysis of each clock, 
we observed no evidence of heterogeneity between the four cohorts (Phet > 0.05, Table S5).

Figure 2. DNA methylation aging is altered in schizophrenia and conditional on chronological age. Presented 
are results visualizing DNAm aging in SCZ for each clock; Hannum (left), Horvath (middle), Levine (right). Cases 
are shown in blue and controls in black. (A) The correlation between DNAm age and chronological age. The 
Pearson’s correlation estimate and corresponding p-value are shown in the bottom corner. (B) Boxplots of Δage 
between cases and controls with the meta-analytic e" ect size and p-value across cohorts shown. β represents 
the mean change in Δage in cases compared to controls. (C) Δage is visualized across chronological age with a 
regression line $ tted separately for cases and controls and the meta-analytic interaction e" ect and p-value shown. 
β represents the change in Δage in cases per year of chronological age compared to controls. P-values are adjusted 
for multiple testing across clocks (n=3).
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 Modelling the interaction e! ect between disease status and chronological age on Δage 
reveals a di! erential rate of aging between cases and controls (Figure 2C). That is, the slope of 
Δage across chronological age is 0.05- and 0.06-years steeper in cases compared to controls for 
the Horvath (Pmeta=2.3E-03) and Levine clocks (Pmeta=7.1E-03), respectively, with no evidence of 
heterogeneity between cohorts (Figure S5 and Table S6). As no signi# cant e! ects were observed 
for the Hannum Δage, we decided to focus our downstream analysis on the phenotypic (Levine) 
age and intrinsic cellular (Horvath) age only. To further disentangle the relationship between Δage 
in SCZ conditional on chronological age, we estimated di! erential aging by 10-year intervals, with 
years 18 and 19 included in the # rst age group. We observe signi# cant DNAm age deceleration 
in early adulthood (18-30 years) with patients estimated at -1.23 years younger (Pmeta=3.9E-03) 
in intrinsic cellular age with no signi# cant di! erence at later ages (Figure 3A). In phenotypic age, 
SCZ patients displayed signi# cant DNAm age acceleration from 30 years and older (Figure 3B), 
with the most pronounced age acceleration between 50-60 years (2.29 years, Pmeta=9.0E-03). 
We again # nd no evidence of heterogeneity within age groups between cohorts (Figure S6 and 
Table S7-8).

Figure 3. Di! erential DNAm aging in schizophrenia maps to speci" c age windows between sexes. (A-B) Shown 
are Δage di" erences between cases and controls across age groups for the Horvath (A) and Levine clock (B). For 
each age group, number of cases and controls, and meta-analytic e" ect size (β) and p-value (P) are presented. 
P-values are corrected for multiple testing (2 clocks x 5 groups = 10 tests). See Table S5 for more details on results and 
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corresponding statistics. (C-H) Sliding age-windows, using 5-year bins with steps of 1-year, were used to estimate 
di! erential aging (β) at # ner resolution across the range of chronological age. Signi# cant shifts in Δage between 
cases and controls, de# ned by the standard error of β deviating from zero for at least 3 steps, are highlighted by the 
shaded areas on the graph with the dotted vertical lines indicating the respective ages of the intervals. Identi# ed 
age intervals for the Horvath and Levine clock are shown in C-E and F-H, respectively. Results for women (middle) 
and men (right) are presented in blue and red, respectively. The e! ects in the total sample are displayed in black 
(left).

Age- and sex-speci! c e" ects contribute to DNAm aging
 To quantify the overall contribution of age- and also sex-speci! c e" ects, we estimated the 
gain in variance explained of Δage by adding the interaction terms of age and sex with disease 
status to a baseline model and assessed the gain in model performance. For both measures 
of aging, inclusion of interaction terms presented a signi! cantly better ! t, with the three-way 
interaction model (i.e. disease status, age and sex) explaining the most variance in Δage (Table 1 
and S9). We observe a larger gain in model ! t for the three-way interaction for phenotypic aging 
(P=0.01) than for intrinsic cellular aging (P=0.24), suggesting that sex-speci! c e" ects are more 
pronounced for Levine Δage.

Table 1. Age- and sex-speci! c e" ects signi! cantly contribute to DNAm aging in schizophrenia. Shown are 
the contributions of interaction e! ects between disease status and age and sex on Δage. The baseline model 
corresponds to Δage ~ dataset + ethnicity + platform + age.continuous + sex. For other models, the variable(s) in 
addition to the baseline variables are shown with the corresponding variance explained (RÇ) in Δage. Interaction 
terms with chronological age are modeled as a continuous variable (age.continuous) or a categorical variable (age.
groups). The latter uses previously de# ned decades. Model comparison is performed to assess if the contribution of 
an interaction term is signi# cant compared to a model without that term. The chi-square test is used to test two 
models with corresponding p-value presented. The results of these analysis are shown for both the Horvath and 
Levine clock. P-values are corrected for the number of tests performed (2 clocks x 4 comparisons = 8).

Estimating and mapping windows of di" erential aging in schizophrenia
 As our categorical age groups in the previous analyses were chosen somewhat arbitrarily, 
we conducted an exploratory analysis to re! ne age-dependent aging e" ects to identify speci! c age 
windows that are associated with di" erential aging. We implemented a sliding window approach 
across chronological age, both in the full sample and within each sex separately. Using 5-year 
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bins and sliding steps of 1 year, we tested cases versus age-matched controls and constructed a 
more precise picture of di! erential aging across chronological age in SCZ. At this " ner resolution, 
we mapped changes in Δage to speci" c ages with di! erent patterns between men and women. 
For intrinsic cellular age, we observe a deceleration e! ect during early adulthood from 29 years 
and younger across all samples, with the shift in di! erential aging occurring earlier in women 
(<25) (Figure 3C). For both men and women, we observe age deceleration in mid-forties and for 
women we also " nd age acceleration between 50-56 years (Figure 3C-E).
 For phenotypic age, we mapped the age acceleration e! ect to 27 years and older across 
the whole sample with di! erences between the sexes (Figure 3F-H). In women, we " nd age 
acceleration between 25-29 years and from 36 years and older (Figure 3G). In men, we " nd age 
acceleration between 27-39 and 49-59 years (Figure 3H). More details on each age window and 
corresponding e! ect sizes are shown in Table S10. Thus far, our results show that DNAm aging, 
measured through the Horvath and Levine clock, is signi" cantly di! erent in SCZ and characterized 
by age-speci" c e! ects with some distinctions between the sexes, particularly for Levine Δage.

DNAm aging a! ects SCZ above and beyond smoking and blood cell types
 To investigate the e! ect of smoking and blood cell type composition, we use DNAm-
based smoking and cell type estimations (see Methods) as a proxy to evaluate their contribution 
to DNAm aging in SCZ. While DNAm clocks, by design, will encapsulate such e! ects, quantifying 
the contributions of each factor increases interpretability and helps understand the factors 
contributing to the di! erential aging " ndings. We observe that blood cell type proportions 
explain signi" cantly more variance in DNAm aging than DNAm smoking scores (Supplementary 
Results S2.1). Inclusion of DNAm smoking score and blood cell proportions as covariates in our 
main models explains part but not all of the observed disease e! ects (Table S11 and Figure S8-9). 
Using a penalized regression framework (Table S12), we show that Levine Δage independently 
contributes to the variance in disease status in women older than 36 above and beyond smoking 
scores and blood cell type proportions (Supplementary Results S2.2 and Figure S10). A signi" cant 
proportion of the Horvath Δage e! ect on disease status is reduced by adjusting for smoking 
(Table S11). However, smoking is not associated with Horvath Δage in controls (Pearson r=0.01, 
P=0.95) nor in cases (Pearson r=-0.08, P=0.28) (Figure S11). As smoking covaries with SCZ disease 
status, it is di$  cult to distinguish these signals.

Age deceleration by multi-tissue Horvath clock is not present in brain
 We investigated DNAm aging in frontal cortex postmortem brain samples of 221 SCZ 
cases and 278 controls. The multi-tissue Horvath clock accurately predicts DNAm age in the brain 
as well (r=0.94, P < 2.2e-16). We, however, " nd no di! erence in DNAm aging between cases and 
controls (ß=-0.29, P=0.46) and no evidence of age-dependent aging. More details are shown in 
the Supplementary Results (S2.3).

Phenotypic age acceleration is associated with SCZ polygenic risk in women
To further decipher the factors underlying the signal of di! erential aging in SCZ, we examined 
the possible role of SCZ polygenic risk, age at onset, and illness duration (Figure S12). We " rst 
focus on the phenotypic age acceleration in female SCZ patients of age 36 years and older, as 
these individuals showed the most consistent and pronounced aging e! ect. We " nd stronger age 
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acceleration in cases with both low and high SCZ genetic risk (Table 2). More speci! cally, patients 
in the highest PRS1 tertile are predicted to be 4.30 years older in phenotypic age compared 
to controls (P=1.3E-05), patients with median range PRS1 are 1.89 years older (P=4.5E-02), and 
patients in the lowest quartile are 2.89 years older (P=2.8E-03). By permutation of PRS1 bins, we 
! nd that the e" ect in the highest PRS1 tertile is unlikely to occur by chance (P=0.024). For the 
association between Levine Δage and PRS1 to be most pronounced in the low and high tertile, is 
even less likely to happen by chance (P=0.006). At maximum, this group of women carrying high 
SCZ genetic risk have on average 7.03 higher phenotypic Δage (95% CI: 3.87-10.18; P=1.7E-05) 
(Figure 4A). We do not observe such an association in women age < 36 years, men with age > 
36 years, nor across the whole dataset (Figure 4B and S13). Finally, by permuting the ranks of 
PRS1 within female cases >36 years, we ! nd a mean maximum phenotypic Δage case-control 
di" erence of 3.69 years (95% CI: 1.26-6.12) across 1000 permutations, further demonstrating the 
signi! cance of the observed maximum of +7.03 years phenotypic Δage di" erence. For age at 
onset and illness duration, we did not ! nd signi! cant association with Δage across partitioned 
bins (after permutation, P > 0.05) (Table 2). This is further con! rmed when we integrated these 
two variables across PRS1 tertiles, demonstrating that the most pronounced di" erences in Δage 
are observed across PRS1 bins and not across the distribution of age at onset and illness duration 
in this subset of women (Figure S14).
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Table 2. Integration of Levine Δage with PRS, age of onset, and illness duration in women in later adulthood 
(precious page). Analyses were performed using women >36 years of age. Only cases with available information 
were included in the analyses. Each phenotype was analyzed as both a continuous variable and as a categorical 
variable using equal tertiles from low to high bins. Mean values in cases for each phenotype are presented along 
with the association with Δage (β) and corresponding 95% con# dence intervals and p-values. PRS1 = polygenic 
risk score PC1 (see Supplementary Information) scaled to mean zero with standard deviation of 1, AOO = age of 
onset, DUR = illness duration. Asterisk* indicates that signi# cance (P < 0.05) by permutation analyses.

 We conducted a similar investigation on the observed intrinsic cellular age deceleration 
in all SCZ patients aged 29 years and younger but found no signi! cant associations between 
Horvath Δage and PRS1, age at onset, or illness duration (Table S13 and Figure S15). While we did 
observe the strongest Horvath age deceleration in the high PRS1 tertile (β=-1.58, P=3.0E-03), this 
was not signi! cant after permutation analysis (P>0.05). We did not analyse other identi! ed age 
windows of di$ erential aging as these either had too few individuals with genetic or phenotypic 
information available or more modest disease e$ ects limiting any further strati! cation.
 Finally, we assessed how Levine Δage and SCZ PRS1 compare in predicting SCZ disease 
status in our sample. Across the whole sample, PRS1 and Levine Δage explain 17.0% and 2.6% 
of the variance in disease status, respectively. Together, they explain 19.2%. In women in later 
adulthood, SCZ PRS1 and Levine Δage explain 11.5% and 9,8% independently and 22.4% jointly 
(Figure 4C).

Figure 4. DNAm aging associates with SCZ PRS and additively contributes to SCZ disease status. (A) Using a 
sliding-window approach, Levine Δage di$ erence between cases and controls are shown across bins of ranked 
PRS1. Each bin contains 20 cases and slides from low to high PRS1 per shifts of one sample. The estimated Δage 
di$ erence compared to all female controls >36 years is shown for each sliding bin in blue with the standard error 
in shaded blue. The most signi# cant bin is highlighted by the grey vertical bar. (B) A similar analysis but then across 
all samples. (C) The variance explained in schizophrenia disease status (y-axis) by SCZ PRS and Levine Δage shown 
for all samples (left) and for women in later adulthood (right). The estimates shown are derived on top of the e$ ect 
of sex, ethnicity, batch, platform, and chronological age.
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Discussion
 We performed a large study of biological aging in schizophrenia using multiple epigenetic 
clocks based on whole blood DNA methylation data. We observe signi!cant patterns of sex-
speci!c and age-dependent DNAm aging in SCZ, a !nding consistent across four European 
cohorts. The most signi!cant di"erential aging pattern that we observe is in females ages 36 years 
and older in which we detect advanced phenotypic age acceleration, as measured by the Levine 
clock. We also observe intrinsic cellular age deceleration in SCZ patients during early adulthood, 
as measured by the Horvath clock. Phenotypic age acceleration in female patients is associated 
with a higher burden of SCZ polygenic risk. This high SCZ risk group displays accelerated aging 
of an average of +4.30 years compared to age-matched female controls. Phenotypic age and 
SCZ PRS furthermore contribute additively to SCZ and explain up to 22.4% of the variance in 
disease status. Our !ndings suggest that speci!c and identi!able patient groups are at increased 
mortality risk as measured by the Levine clock and warrant further research on DNAm clocks to 
examine its clinical relevance.
 The Levine estimator was constructed by predicting a surrogate measure of phenotypic 
age, which is a weighted average of 10 clinical markers, including chronological age, albumin, 
creatinine, glucose and C-reactive protein levels, alkaline phosphatase and various blood cell 
related measures (Levine et al. 2018). By design, the Levine estimator is a composite biomarker 
that strongly predicts mortality, in particular that of age-related diseases, such as cardiovascular-
related phenotypes. A 1-year increase in phenotypic age is associated with a 9% increased 
risk of all-cause mortality and a 10% and 20% increase of cardiovascular disease and diabetes 
mortality risk, respectively (Liu et al. 2018; Levine et al. 2018). Our !ndings of multiple year increase 
in phenotypic age in SCZ could thus imply an increased mortality in patients that is linked to 
cardiovascular disease, a previously well-established epidemiological observation (McGrath 
et al. 2008; Allebeck 1989b; Olfson et al. 2015). A recent study however found that DNAm age 
acceleration only predicts mortality in SCZ cases without pre-existing cancer using the Hannum 
clock (Kowalec et al. 2019). They did not !nd such evidence using the Levine clock. The smaller 
sample size and predominantly male cohort may have reduced the predictive power of the study. 
Our !ndings warrant a more focused and larger study of DNAm aging in female patients in later 
adulthood, preferably strati!ed by SCZ genetic risk. Our results align well with the observation 
that patients with SCZ, particularly women, are reported to be at high mortality risk due to 
cardiovascular disease and diabetes (Olfson et al. 2015; Osby et al. 2000a; Galletly et al. 2012). 
Assuming that cardiovascular risk is modi!able in SCZ (Kugathasan et al. 2018), phenotypic age 
could serve as a potential biomarker to identify at-risk individuals and in this way help with disease 
management and improvement of life-expectancy. 
 In contrast to age acceleration in phenotypic age, we observe age deceleration in intrinsic 
cellular age (i.e. the Horvath DNAm age), an e"ect that is most pronounced in patients age 29 
and younger. Unlike the association !ndings in females, we did not observe clear patterns with 
genetic and phenotypic variables that could help to further decipher the signal. Horvath Δage 
furthermore showed strong age-speci!c e"ects but less clear sex-speci!c e"ects. We did not 
observe age deceleration in postmortem brain samples of the human cortex, indicating that the 
observed aging signal in SCZ may be blood-speci!c. Horvath DNAm aging has been shown to 
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be associated with molecular processes of development and cell di! erentiation (Horvath 2013; 
Horvath and Raj 2018), including through blood-based DNAm age measures in human (neuro)
developmental phenotypes (Je! ries et al. 2019; Hoshino et al. 2019). Our " ndings may indicate 
that patients diagnosed with SCZ in this age group show evidence of delayed or de" cient 
development and that this is detectable in blood through the multi-tissue Horvath clock. This 
however remains speculative and future work is needed to further dissect how blood-based 
Horvath age deceleration is associated with SCZ.
 While we did observe aging e! ects with the Horvath and Levine clock, we did not with 
the Hannum clock. The Hannum clock is less predictive of age acceleration e! ects on mortality 
risk than the Levine clock (Levine et al. 2018), which could explain the lack of " ndings in our 
analyses. The Hannum estimator furthermore cannot be used on " rst generation 27K DNA 
methylation arrays which reduced the sample size of this study with 30% and may have impacted 
the statistical power of these speci" c analyses. This highlights the bene" ts of designing methods 
that are inclusive to all platforms, so all data, both old and new, can be leveraged.
 After publication of the preprint of our manuscript (Ori et al., n.d.), Higging-Cheng et al. 
also reported signi" cant DNAm alterations in SCZ (Higgins-Chen et al. 2020). This smaller study 
included 567 SCZ cases and 594 non-psychiatric controls with most of the sample (UK and 
SCT cohorts) also included in our study. Similar to our " nding of 1.53 years of phenotypic age 
acceleration in schizophrenia cases, they report a 1.4- to 1.9-year increase in Δage in SCZ cases 
compared to controls. In addition, using GrimAge, a newly trained DNAm mortality clock (Lu et 
al. 2019), they observe age acceleration of 2.5- to 5.8-years. Unlike phenotypic age acceleration, 
this increase is largely driven by smoking e! ects. Similar to our work, this work highlights the 
value of analysing multiple clocks in conjunction and again suggesting that distinct biological 
processes of aging are altered in SCZ. In addition to the larger sample size, there are other key 
di! erences between our study and Higgins-Cheng et al. First, we performed detailed phenotypic 
analyses including explicit modelling of age and sex-speci" c e! ects. Second, methodically, we 
performed meta-analyses across cohorts as opposed to individual analyses per cohort. This 
approach, combined with multiple testing correction, is robust to cohort-speci" c artefacts in the 
data. Third, we integrated DNAm age with SCZ polygenic risk. Our PRS analyses yielded important 
insights into speci" c patient groups that could be at higher risk of all-cause mortality and that 
DNAm Δage and SCZ polygenic risk contribute additively to the illness. The latter suggests that 
combining genetic and epigenetic predictors can augment downstream prediction of outcomes 
in SCZ, similarly to what was recently shown for BMI (McCartney et al. 2018).
 A systematic review of aging biomarkers found that less than a quarter of studies explored 
an interaction e! ect or statistically compared the regression slope between groups in SCZ 
(Nguyen, Eyler, and Jeste 2018). Our " ndings of sex-speci" c and age-dependent DNAm aging 
support their recommendations to speci" cally examine interaction e! ects with age and sex 
in aging studies but also more general in epigenetic studies of SCZ, such as epigenome-wide 
association studies. Future work should also be extended to integrate nonlinear models to fully 
capture the complex relationship between DNAm aging and clinically relevant variables across 
the lifespan of patients. These models will help validate and further re" ne the most relevant age 
intervals.
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 A limitation of the study is the cross-sectional design of the cohorts used. While we do 
!nd an association with SCZ polygenic risk, dissecting cause-and-e"ect relationships remains 
challenging. Independent replication studies are needed, preferably using longitudinal prospective 
cohorts with genomic data and information on symptom recurrence and severity, comorbidities 
and other phenotype-related variables. These studies can assess the clinical relevance of DNAm 
aging in SCZ above and beyond other known health risk factors and disease biomarkers, such as 
medication use. An urgent open question remains whether DNAm age signatures are modi!able 
with regards to clinical and lifestyle factors associated with SCZ. Improvement of existing 
methodology and/or development of new DNAm age biomarkers (Zhang et al. 2019; Bell et al. 
2019) may in addition help to better study di"erential aging in SCZ and related disorders with 
increased mortality. Combining blood-based DNAm age with that of other aging pro!les, such as 
MRI-based brain age (Schnack et al. 2016), may further advance our understanding of aging and 
SCZ disease progression, including the increased mortality (Cole et al. 2018). Finally, our !ndings 
support an integrative strategy with polygenic disease risk to improve clinical utilization.
 Schizophrenia, like other mental illnesses, are associated with a wide-range of subsequent 
chronic physical conditions, including many age-related diseases (Scott et al. 2016). While health 
and life expectancy of the general population continues to improve, the mortality disparity 
between patients with schizophrenia and those una"ected continues to increase (Saha, Chant, 
and McGrath 2007; Hayes et al. 2017; Osby et al. 2000b; Lawrence, Hancock, and Kisely 2013). As the 
burden of age-related diseases continues to rise, early detection and subsequent opportunities 
for interventions before disabilities and co-morbidities become established will be important 
(Mo#tt and Caspi 2019; Taylor and Reynolds 2020). Molecular biomarkers of aging, such as DNAm 
clocks, are now emerging as candidate tools for screening and intervention. Taken together, this 
study strengthens the need for more research on DNA methylation aging in SCZ, a population 
vulnerable to age-related diseases and excess mortality.
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Supplemental Materials
Full supplemental materials can be found here:
https://www.biorxiv.org/content/10.1101/727859v2.supplementary-material

S1. Supplementary Methods
S1.1 Cohort descriptions
The Netherlands (NLD)
The Dutch cohort is a case-control sample with inpatients and outpatients recruited from di! erent 
psychiatric hospitals and institutions across the Netherlands, coordinated via academic hospitals 
in Amsterdam, Groningen, Maastricht, and Utrecht. Detailed medical and psychiatric histories 
were collected, including the Comprehensive Assessment of Symptoms and History (CASH), an 
instrument for assessing diagnosis and psychopathology. Only patients with a Diagnostic and 
Statistical Manual for Mental Disorders fourth edition (DSM-IV) diagnosis of schizophrenia were 
included as cases. All patients and controls were of Dutch descent, with at least three out of four 
grandparents of Dutch ancestry. The controls were volunteers and were free of any psychiatric 
history, the majority via the CASH. Whole blood DNA methylation data is collected for 586 cases 
and 516 controls. DNAm pro" les were obtained using the Illumina’s In" nium 27k Human DNA 
methylation Beadchip (v1.2) and the In" nium 450k Human DNA methylation Beadchip (v1.2). The 
27k dataset can be found on GEO (GSE41037) with more details elsewhere (Horvath et al. 2012; 
van Eijk et al. 2015). Part of the 450k samples can be found under GSE41169. We have furthermore 
assayed an additional 200 controls and 196 cases.

University College London (UK)
 More details on the cohort can be found elsewhere (International Schizophrenia 
Consortium 2008; Datta et al. 2010; Hannon et al. 2016). The UCL cohort is a case-control sample 
recruited from London and South England consisting of unrelated cases and ancestrally matched 
controls. All subjects were included if both parents were of English, Irish, Welsh or Scottish descent, 
with at least three out of four grandparents having the same origins. All cases were selected for 
having prior International Classi" cation of Diseases 10 (ICD10) diagnosis of schizophrenia made 
by National Health Service (NHS) psychiatrists. The research subjects were then given interviews 
with the Schedule for A! ective Disorders and Schizophrenia-Lifetime Version (SADS-L) schedule 
and further data were collected from NHS medical and nursing case notes and all other available 
sources. Therefore, all cases were selected on the basis of having a primary clinical diagnosis of 
schizophrenia made by a psychiatrist at interview according to ICD10 criteria and then at the 
probable level of schizophrenia with Research Diagnostic Criteria (RDC) made at interview by a 
second research psychiatrist. The control subjects were also interviewed with the initial clinical 
screening questions of the SADS-L and selected on the basis of not having a family history of 
schizophrenia, alcoholism or bipolar disorder and for having no past or present personal history of 
any RDC-de" ned mental disorder. Whole blood DNA methylation data (450K) is publicly available 
for 353 patients and 322 controls through GEO (GSE80417).
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Aberdeen (SCT)
 More details on the cohort can be found elsewhere (International Schizophrenia 
Consortium 2008; Datta et al. 2010; Hannon et al. 2016). The Aberdeen cohort is a case-control 
sample that contains patients diagnosed with schizophrenia and non-psychiatric controls 
who have self-identi!ed as born in the British Isles (95% in Scotland). All cases met the DSM-
IV and ICD-10 criteria for schizophrenia. Diagnosis was made by Operational Criteria Checklist 
(OPCRIT). Controls were volunteers recruited through general practices in Scotland. Practice lists 
were screened for potentially suitable volunteers by age and sex and by exclusion of individuals 
with major mental illness or use of neuroleptic medication. Volunteers who replied to a written 
invitation were interviewed using a short questionnaire to exclude major mental illness in the 
individual themselves and their !rst-degree relatives. Whole blood DNA methylation data (450K) 
is publicly available for 414 patients and 433 controls through GEO (GSE84727).

Sweden (SWD)
 The Swedish cohort is a case-control sample that contains both patients and controls of 
older age, i.e. 50-70 years. Whole blood DNA methylation data (450K) is collected for 96 samples, 
for which after matching by predicted sex and genotype information, 37 cases and 32 controls 
were included in the analysis.

S1.2 Data preprocessing and normalization
 IDAT !les and thus raw "uorescence intensity values were available for the Dutch and 
Swedish cohorts while for the UK and Scottish cohorts methylated and unmethylated intensity 
values were downloaded from GEO data repository (Table S1). To analyze DNAm quanti!cations, 
we employed three data processing pipelines to accommodate the 450K and 27K arrays with raw 
data available and the 450K arrays with only methylation intensity values from GEO. For samples 
with IDAT !les available, raw intensity values were read into an RGChannelSetExtended object 
in the R programming environment using the read.metharray() function in the min! package 
(v1.20.2)(Aryee et al. 2014). For samples with IDAT !les available (Dutch and Swedish cohort, 
n=1,212), we used probe detection P-values to exclude outlying samples. That is, samples with 
more than 5% of probes detected at P > 0.05 were excluded from further analyses (n=13). To 
capture technical variation, surrogate variables that cumulatively explained >90% of variation of 
the control probe intensity levels were estimated using the ctrlsva() function of the ENmix package 
(v1.10)(Xu et al. 2015) and stored to account for technical variance in downstream analyses. For 
the 450K arrays, background distributions were estimated using 600 chip internal control probes 
and dye-bias correction applied using the “RELIC” procedure(Xu et al. 2017) implemented through 
the preprocessENmix() function. Probe design type correction was applied by Regression on 
Correlated Probes (RCP) through the rcp() function of the ENmix framework(Niu, Xu, and Taylor 
2016). For the 27K arrays, normal-exponential out-of-band (noob) correction, which applies 
background correction with dye-bias normalization, was applied using the preprocessNoob() 
function in min!(Triche et al. 2013). For 450K arrays with only methylated and unmethylated 
intensity values available, background distributions were estimated and adjusted separately for 
each color channel and probe type using preprocessENmix() and probe design type correction 
subsequently applied using RCP.
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S1.3 DNA methylation clocks
 DNA methylation (DNAm), the addition of a methyl group to a cytosine nucleotide 
primarily at cytosine-phosphate-guanine (CpG) sites in the genome, is variable across the lifespan 
and has been shown to change relatively consistently between individuals(Bell et al. 2012; 
Christensen et al. 2009; Horvath et al. 2012). Variation across the epigenome can be aggregated 
and used to generate a highly accurate estimate of chronological age, known as DNAm age or the 
“epigenetic clock”(Horvath 2013; Hannum et al. 2013; Levine et al. 2018). The Hannum clock uses 
71 probes with regression weights determined through a training dataset of whole blood 450K 
DNA methylation data in 656 adult samples, aged 19 to 101. The Hannum estimator accurately 
predicts age in whole blood samples of adults. The Horvath clock uses 353 CpGs, present on 
both the 27K and 450K array, with regression weights determined using 8,000 samples across 30 
tissues and cell lines from children and adults across the lifespan, age 0 to 100 years (mean = 43, 
SD = 25). The Horvath estimator accurately predicts age across the lifespan and across tissues, 
including blood and brain. The Levine clock uses 513 CpGs, present on both the 27K and 450K 
array, with regression weights obtained by regressing the weighted average of ten routine clinical 
parameters, including age, on DNA methylation levels in whole blood of on average older adult 
samples. This generates an estimate of so called “phenotypic age” that is predictive of age in 
whole blood of older adults.
 For each sample and each clock, DNAm age was estimated by incorporating DNAm levels 
of the pre-selected set of probes, identi! ed by each estimator as predictive of chronological 
age, into a mathematical model that weighs each probe’s methylation value and sums it to an 
aggregate DNAm age estimate. The Hannum and Horvath clock estimated DNAm age on average 
closer to chronological age (mean Δage Hannum = 1.0, Horvath = 1.7), while the Levine clock (i.e. 
phenotypic age) underestimated age by 7.7 years. See Table S1 for more details. The Levine clock 
was trained in an older adult population on a surrogate measure of biological age, generated 
through a Cox regression optimized to identify mortality-associated variables(Levine et al. 2018). 
It therefore underestimates chronological age at younger ages.

S1.4 Statistical analyses
 For each clock and each cohort, we implemented a multivariable regression model 
predicting Δage as a function of schizophrenia status, sex, and age (model 1) and as well as 
predicting Δage as a function of sex and the interaction between schizophrenia status and 
chronological age (model 2). Chronological age and sex were included as covariates in all analyses, 
unless stated otherwise. Regression models were set up in R as follows;

 model 1: lm(Δage ~ sex + age + status)
 model 2: lm(Δage ~ sex + age + status + status:age)

 For the Dutch cohort, batch and array platform were also included as covariates, as 
this cohort consists of multiple datasets from both the 27K and 450K platform. For each clock, 
regression coe#  cients with corresponding standard errors for each of the four cohorts were 
then supplied to the rma() function of the metafor package(Viechtbauer 2010) in R to ! t a meta-
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analytic !xed-e"ect model with inverse-variance weights and obtain an overall e"ect size and 
test statistic.
 To quantify the signi!cance of age- and sex-speci!c e"ects, we determined the 
contribution of interaction e"ects on top of the main disease e"ect. We !rst combined all cohorts 
to maintain necessary sample sizes across age and sex groups. Age categories were de!ned by 
grouping samples by decades with ages 18 and 19 included in the !rst decade (18-30, 31-40, 
etc.). To quantify the gain in variance explained in Δage, models with the interaction term were 
compared to a baseline model without the interaction term.

 model 3: lm(Δage ~ cohort + sex + age.groups + status + age.group:status)
 model 4: lm(Δage ~ cohort + sex + age.groups + status + age.groups:status + sex:status
 + age.group:sex + age.group:sex:status)

S1.5 De!nition of age at onset across cohorts
The Netherlands
 Age at onset is calculated preferentially by !rst using the date of !rst reported psychotic 
episode. If this information is not available the following order of variables is used as substitute; 
date of start treatment due to psychosis, date of start treatment with antipsychotic medication, 
date of !rst psychotic problems determined through the Comprehensive Assessment of 
Symptoms and History (CASH). Age at onset is available for 148 patients with overlapping DNAm 
data.

University College London (UK)
 Age at onset is de!ned by the Operational Criteria Checklist (OPCRIT) and available for 321 
patients.

Aberdeen (SCT): 
 Age at onset is available for 241 patients. 

S1.6 PRS1 rationale and explanation
 Polygenic risk scores (PRS) were generated by extracting each SNP’s log odds ratio from 
an independent discovery GWAS of SCZ and applying these weights to SNPs in a second target 
dataset. For each individual, PRS is established by calculating the sum across weighted SNPs. 
As our cohorts were included in the discovery GWAS, the weights were derived from a leave-
one-out analysis with that speci!c cohort excluded. Risk score pro!les were calculated across 
ten GWAS P-value thresholds (5x10-8, 1x10-6, 1x10-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1.0), as 
previously described (Schizophrenia Working Group of the Psychiatric Genomics Consortium 
2014). While there is a rich correlation structure across p-value thresholds, the threshold with 
the most discriminatory power between cases and controls often di"ers between cohorts, 
which discourages from a one-size !ts all approach. In addition, between-site variability and 
accompanying shifts in the distribution of polygenic risk can limit the interpretability of di"erential 
disease risk.
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Figure note: each cohort with genetic data available has a di! erent optimal GWAS p-value threshold that 
maximizes the magnitude of di! erential SCZ risk explained by PRS (highlighted in green). This demonstrates that 
choosing a single threshold across cohorts is suboptimal. NLD=Netherlands; SCT=Scotland, UK=United Kingdom, 
OR=odds ratio of PRS on disease status; ΔR2.prs=the unique variance explained in disease status by PRS.

 Recent work using principal component analysis (PCA) in combination with normalization 
of the PRS across sites has shown to e! ectively eliminate between-site variation and concentrate 
disease risk information into the " rst principal component (Bergen et al. 2019). This strategy 
works e! ectively because; (1) between-site variability can be eliminated by subtracting from all 
PRS values measured at one site the mean PRS among controls at that site, which aligns the 
PRS distribution with controls centered at zero; (2) PCA extracts disease relevant information 
across correlated thresholds of risk scores and concentrates this into a single component, which 
maximizes discriminatory power between cases and controls.
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 Figure note: shown is the correlation structure of SCZ PRSs computed across various GWAS p-value thresholds 
(S1-10). While there is signi!cant overlap between PRS of various thresholds, there is still unique information in each 
threshold that is not shared across threshold. The Pearson correlation is shown in each cell and color-coded as well. 
Principal component analysis can be used to extract disease risk information across thresholds and concentrating 
this in one dimension, represented by a single value.

We therefore adopted the analysis framework of Bergen et al, 2019 and !rst aligned the PRS 
distribution for each cohort and p-value threshold at mean zero for controls. We then performed 
PCA on all the normalized scores, i.e. across thresholds and cohorts, to concentrated disease risk 
in the !rst principal component and refer to this single value as “PRS1”. PRS1 explains 70.7% of the 
variance in PRS scores and captures 19.9% of the variance in disease status (OR=2.55) without 
adjusting for age and sex.
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Figure note: between-site variability can be eliminated by subtracting from all PRS values measured at one site the 
mean PRS among controls at that site. Importantly, while accounting for cohort di! erences, this normalization 
does not a! ect the variance explained by PRS overall compared to the original scores (see ΔR2.site between original 
and normalized scores). OR=odds ratio of PRS on disease status; ΔR2.prs=the unique variance explained in disease 
status by PRS; ΔR2.site=the unique variance explained in disease status by cohort.

PCA on the normalized scores concentrates SCZ disease risk into the PC1 (highlighted in 
green). The discriminatory power by PC1 is superior to the original scores across various p-value 
thresholds. ΔR2.prs=the unique variance explained in disease status by PRS; ΔR2.site=the unique 
variance explained in disease status by cohort.
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The distribution of PRS1 across cohorts (bottom panel) compared to PRS using the S6 P=0.05 
threshold (top panel). PRS1 showns greater discriminatory power between cases and controls for 
each of the three cohorts.

S1.7 DNAm-based estimation of smoking
 We computed a DNAm-based smoking score using CpG sites signi!cantly associated with 
smoking. This smoking estimate has been shown to be a good proxy for smoking status (Elliott 
et al. 2014) and successfully used to account for the e"ects of smoking in large-scale DNAm 
studies of schizophrenia (Hannon et al. 2016). In a similar fashion as these studies, we calculate a 
weighted score across 183 DNA methylation sites, with the weights being e"ect sizes obtained 
from an epigenome-wide association study of smoking (Zeilinger et al. 2013).

S1.8 DNAm-based estimation of blood cell types
 Estimated blood cell-type proportions were computed for all 450K array samples using 
the Horvath Methylation Age Calculator software. Further details on the derivation of estimates 
on CD8 T cells, CD4 T cells, nature killer cells, B cells, monocytes, and granulocytes can be found 
here (Houseman et al. 2012) and for plasma blasts, CD8+CD28-CD45RA-T cells, naive CD8 T cells 
here (Horvath 2013).
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S2. Supplementary Results
S2.1 Analysis of DNAm aging in relation to estimates of smoking and blood cell types
 Patients with SCZ smoke more than the general population(Kelly and McCreadie 2000) and 
blood cell type composition changes across the lifespan(Ja! e and Irizarry 2014). To investigate 
the e! ect of these factors, we use DNAm-based smoking and cell type estimations (see Methods) 
as a proxy to evaluate their contribution to DNAm aging in SCZ.

While DNAm clocks, by design, will encapsulate such e! ects, quantifying the contributions of 
each factor increases interpretability and helps understand the factors contributing to the 
di! erential aging " ndings. Here, we quanti" ed the e! ects of DNAm smoking scores and blood 
cell types proportions on Horvath and Levine Δage in relation to the e! ect of disease status. 
For the Horvath clock, a baseline model with batch, ethnicity, sex, and age (as continuous) 
explains 3.9% of the variance in Δage. The addition of DNAm smoking scores and blood cell type 
proportions increases the " t of the model to 4.9% and 8.2%, respectively. The baseline model 
with both smoking scores and cell type estimates explain 9.4% of the variance in aging. While this 
reduces the main e! ect of disease status, the interaction between status and age (as categorical 
variable) remains signi" cant and thus, as far as we can measure, independent of smoking and cell 
type composition.

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects
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  Table S11. Age- and sex-speci!c on DNAm aging in schizophrenia adjusted for smoking and cell type 
estimates. Shown are the contribution of interaction e!ects between disease status and age and sex on Δage when 
adjusted for DNAm smoking scores (baseline model y) and blood cell type proportions (baseline model z). The full 
baseline model is de#ned as Δage ~ dataset + ethnicity + age.continuous + sex + DNAm smoking score + DNAm 
blood cell type proportions. For other models, the variable(s) in addition to the full baseline variables are shown 
with the corresponding variance explained (R2) in Δage. Interaction terms with chronological age are modelled as 
a continuous variable (age.continuous) or a categorical variable (age.groups). The latter uses previously de#ned 
decades. Model comparison is performed to assess if the contribution of an interaction term is signi#cant compared 
to a model without that term. The chi-square test is used to test two models with corresponding p-value presented. 
The results of these analysis are shown for both the Horvath and Levine clock. These analyses included only 450K 
samples for which smoking scores and cell type estimates can be computed (N=1,621, 867 controls, 754 cases).

For the Levine clock, a baseline model with batch, ethnicity, sex, and age (as continuous) 
explains 3.1% of the variance in Δage. The addition of DNAm smoking scores and blood cell type 
proportions increases the "t of the model to 5.3% and 22.1%, respectively. The baseline model 
with both smoking scores and cell type estimates explain 22.8% of the variance in aging. This 
indicates that blood cell type composition explains a large proportion of the variance in Levine 
Δage, which is expected as the Levine clock is trained on blood mortality markers, including 
blood cell counts. Modeling smoking scores and blood cell type proportions as covariates 
reduces the main e#ect of disease status on Levine Δage. The interaction between status and age 
(as continuous variable) remains signi"cant, similar to the analysis of Horvath Δage. For Levine 
Δage, the three-way interaction of status, age, and sex shows a slightly better model "t, after 
accounting for smoking and cell types, as well.

S2.2 Levine Δage a"ects schizophrenia independently from smoking and cell types in 
women
 In women age 36 and older, the patient group in which we observed the most profound 
aging e#ects, a lasso logistic regression selected dataset/ethnicity, smoking, 5 cell types, and 
Levine Δage as independent variables to explain a total of 23.6% of the variance in SCZ disease 
status (P=2.2E-08) (Table S12). Levine Δage explains 7.7% individually and 2.8% (P=3.3E-03) when 
adjusted for other selected variables (Figure 6C).

Chapter 6



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 209PDF page: 209PDF page: 209PDF page: 209

209  

 

 

 

 
 

  

 In individuals 29 years and younger, the group with signi! cant Horvath deceleration 
aging, the lasso regression selected batch/ethnicity, age, sex, smoking, 7 cell types, and Horvath 
Δage as independent variabls to explain 49.8% of the variance in disease status (Table S12). A 
large proportion of this e# ect is driven by smoking, which explains 28.8%. Horvath Δage explains 
3.1% of the variance in SCZ individually and 0.6% adjusted for other select variables (P=0.14). A 
signi! cant proportion of the Horvath Δage e# ect on disease status is reduced by adjusting for 
smoking. However, smoking has no association with Horvath Δage in controls (Pearson r=0.01, 
P=0.95) nor in cases (Pearson r=-0.08, P=0.28) (Figure S12). As smoking covaries with SCZ disease 
status, it is di$  cult to distinguish these signals. In relation to SCZ genetic risk, smoking and blood 
cell types demonstrate limited e# ects on the observed pattern of di# erential aging across PRS1 
(Figure S13).

S2.3 Analysis of postmortem brain samples
 DNAm age estimates were generated for postmortem brain frontal cortex samples using 
publicly available data across four datasets (Table S2). The same data processing steps as described 
above were used for sample ! ltering and to generate beta values as input to estimate DNAm age. 
We excluded 16 samples due to missing data or discrepancy between reported and predicted 
sex and included only adult (age >= 18) frontal cortex samples, leaving 499 samples, 221 cases 
and 278 controls. Given the available sample sizes for some of the cohorts, we modeled Δage as 
a function of age and sex and disease status while correcting for cohort instead of performing a 
meta-analysis.

Figure note: multiple datasets of postmortem brain DNAm data were included in in the analysis. Shown above are 
some sample characteristics and accompanying GEO accession numbers for each dataset before quality control. 
AA = African American, EUR = European, DLPFC = Dorsolateral prefrontal cortex.

Only the Horvath clock yielded DNAm age estimates that closely correlated with chronological 
age. While the Hannum and Levine clock demonstrated decent correlations as well, they 
signi! cantly underestimated chronological age. We therefore only investigated the Horvath 
clock, a multi-tissue estimator, and analyzed di# erential aging between cases and controls.

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects
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  Figure note: correlation plots between DNAm age estimates and chronological age for postmortem brain 

samples. Results are shown for the Hannum (left), Horvath (middle), and Levine clock (right). Cases are colored blue 
and controls black. Pearson correlation and corresponding p-values are shown in the right bottom corner.

As with our analyses in blood, we !rst removed samples with descrepancies between reported 
sex and DNAm-based estimated sex (n=14) and samples with missing age information (n=2). 
Next, we regressed Δage on principal components of the control probes that explain >90% of 
the variation in control probe intensity values. The residuals were then added on mean(Δage) 
to generate Δage-adjusted, which preserves Δage in interpretable units (i.e. years). Using a 
multivariable linear regression model, we estimated di#erential DNAm aging in SCZ as follows;

 model 1: lm(Δage ~ dataset + sex + age + status)
 model 2: lm(Δage ~ dataset + sex + age + status + status:age)

Across the full dataset, we found no di#erence between cases and controls (ß=-0.29, P=0.46). 
We in addition did not observe a signi!cant age-dependent disease e#ect, neither modeling 
age as a continuous variable (P=0.20) nor as a categorical variable (P=0.11). We also did not !nd 
Horvath age deceleration during early adulthood (age 18-30, ß=-0.09, P=0.92), like we observed 
in blood. We therefore conclude that there is no di#erential DNAm aging in the frontal cortex 
using postmortem brain samples.

Figure note: results of Horvath DNAm aging in frontal cortex postmortem brain samples of SCZ cases and controls. 
The left plot shows the correlation between DNAm age estimates and chronological age. The right plot shows a 
forest plot of the aging e!ects (ß) between cases and controls across various age groups.
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Full cohort

Men

Full cohort

Women

A B

C D

Supplementary Figures

Figure S1. Sample distribution across chronological age. (A) Full sample colored by disease status. (B) Full sample 
colored by ethnicity. Women (C) and men (D) colored by disease status.
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R = 0.91 R = 0.96 R = 0.96 R = 0.86

R = 0.94 R = 0.93 R = 0.95 R = 0.81

R = 0.92 R = 0.92 R = 0.96 R = 0.75

Figure S2. Correlations between DNAm age and chronological age by ethnicity. Shown are correlations for the 
Hannum (top), Horvath (middle), and Levine clock (bottom) across cohorts.
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Figure S3. Sample duplicate pair concordance for DNAm age estimates of the Horvath and Levine clock. 
Using Δage across 118 duplicate pairs, the concordance between pairs is shown for the Horvath (top-left) and 
Levine (top-right) plot. For the Hannum clock (bottom), only duplicates with both samples on the 450K array 
(N=10) could be used.
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 Horvath

Levine

P(adj) = 2.3E-03

P(het) = 0.78

P(adj) = 7.1E-03

P(het) = 1.00

Figure S4. Correlation structure across clocks highlights that they capture both shared and distinct aspects 
of aging. Shown are pair-wise scatter plots below the diagonal, histograms on the diagonal, and the Pearson 
correlation above the diagonal for DNAm age (left) and Δage (right) across the three clocks.

Figure S5. Di! erential DNAm aging across cohorts. Shown are results for modeling the interaction between 
disease status and chronological to estimate Δage di" erences between cases and controls conditional on age. 
For each estimator - Hannum (top), Horvath (middle), Levine (bottom) - number of cases and controls, and meta-
analytic e" ect size (β) and adjusted p-value (Padj) are presented. See Table S4 for more details on results and 
corresponding statistics. The Swedish cohort was excluded from this analysis as it has only a limited spread in age 
(i.e. 50-70 years).
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Horvath clock 

Heterogeneity: age 18-30

P(het)=0.51

A Levine clock 
Heterogeneity: age 51-60

B

P(het)=0.25

Figure S6. Heterogeneity of aging e! ects within age groups across cohorts. Shown are results for Δage 
di" erences between cases and controls in speci# c age groups for the Horvath (left) and Levine (right) clock. Each 
forest plots show a signi# cant meta-analytic e" ect size and the p-value of Cochran’s heterogeneity test (Phet). See 
Table S7 and S8 for more details on results and corresponding statistics. The Swedish cohort was excluded from the 
left plot as it has only a limited spread in age (i.e. 50-70 years).

Figure S7. Sex-strati" ed di! erential aging by age groups in schizophrenia. Shown are Δage di" erences between 
cases and controls across age groups strati# ed by sex for the Horvath (A) and Levine clock (B). Results for women 
and men are presented in blue and red, respectively. The e" ects in the total sample are displayed in black.
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Figure S8. Horvath di! erential aging across chronological age adjusted for DNAm smoking and cell type 
proportions. Sliding age-windows, using 5-year bins with steps of 1-year, were used to estimate di! erential aging 
(β) at # ner resolution across the range of chronological age. Graphs on the left show results without adjustment 
for smoking and cell types. Graphs on the right show results with adjustment for smoking and cell types. A) total 
sample size, B) women only, C) men only. For the right graphs only 450K samples were included, as DNAm smoking 
and cell types estimates cannot be calculated for 27K samples. These analyses therefore include less samples.
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Total
>27

A

>36

WomenB
25-29

27-39 49-59

MenC

Adjusted models

Adjusted models

Adjusted models

Figure S9. Levine di! erential aging across chronological age adjusted for DNAm smoking and cell type 
proportions. Sliding age-windows, using 5-year bins with steps of 1-year, were used to estimate di! erential aging 
(β) at # ner resolution across the range of chronological age. Graphs on the left show results without adjustment 
for smoking and cell types. Graphs on the right show results with adjustment for smoking and cell types. A) total 
sample size, B) women only, C) men only. For the right graphs only 450K samples were included, as DNAm smoking 
and cell types estimates cannot be calculated for 27K samples. These analyses therefore include less samples.
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Levine Δage: women > 36 years

Horvath Δage: all samples <29 years

A B

C D

Figure S10. Smoking and blood cell type composition contribute in part to DNAm aging. Presented are the 
results of a sensitivity analysis of DNAm-based estimated smoking score and blood cell type proportions in the 
450K subsample of the cohort. (A/C) The proportion of schizophrenia variance explained by Δage after adjustment 
of various variables that are signi" cantly associated with disease status. The “All” model presents the variance 
explained by Δage independent from all other variables. (B/D) Δage e# ect size is shown across bins (N = 20 cases/
bin) of ranked PRS1 (unit = SD) for several models that adjust for covariates. The baseline model represents the 
e# ect of Δage adjusted for batch, ethnicity and chronological age. Results are shown for Levine Δage women > 
36 years, 99 cases and 181 controls (C) and Horvath Δage all samples < 29 years, 141 cases and 238 controls (D) 
separately.
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Figure S11. Smoking has only minimal e! ects on DNAm aging. Shown is the relationship between Δage and 
DNAm-based smoking score for men (left plot; age 18-30, case = 165, control = 163) and women (right plot; age 
41-70, case=144, control=159). DNAm Δage was " rst regressed on batch, ethnicity and chronological age. The 
Pearson correlations and corresponding p-values are shown on top of each plot. Cases and controls are presented 
in blue and black, respectively.

Figure S12. Variable distribution of PRS, age of presentation, and illness duration. The distribution of SCZ PRS1 
score (left; cases in blue), age of presentation (middle), and illness duration (right) for each of the three cohorts with 
available information.
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Women: <36 years

All samples

Women: >36 years

Men: >36 years

Figure S13. The association between DNAm aging and PRS1 is unique to women > 36. Using a sliding-window 
approach, Δage di" erence between cases and controls are shown across bins of ranked PRS1. Each bin contains 20 
cases and slides from low to high PRS1 per shifts of one sample. The Levine Δage e" ect in each bin is shown in blue 
with the standard error in shaded blue. If the standard error is not shown, it was dropped to increase visual clarity. 
Results are presented for women > 36 (top left), women < 36 (top right), men > 36 (bottom left), and all samples 
(bottom right).
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PRS1 
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PRS1 
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PRS1 
high
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PRS1 
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CAll: <29 yearsA B

β(Δage) = -3.53

Figure S14. Integration of DNAm aging with PRS, age of presentation, and illness duration across identi! ed 
age intervals. (A) Using a sliding-window approach, Horvath Δage di" erence between cases and controls are 
shown across bins of ranked PRS1. Each bin contains 20 cases and slides from low to high PRS1 per shifts of one 
sample. The estimated Δage di" erence compared to all male controls < 29 years is shown for each sliding bin in 
blue with the standard error in shaded blue. The most signi# cant bin is highlighted by the grey vertical bar. (B ) 
DNAm aging e" ects strati# ed by PRS1 and age of onset. (C) DNAm aging e" ects strati# ed by PRS1 and illness 
duration.

Figure S15. The association between Horvath Δage and PRS1 is more pronounced <29 years. Using a sliding-
window approach, Δage di" erence between cases and controls are shown across bins of ranked PRS1. Each bin 
contains 20 cases and slides from low to high PRS1 per shifts of one sample. The Horvath Δage e" ect in each bin is 
shown in blue with the standard error in shaded blue. If the standard error is not shown, it was dropped to increase 
visual clarity. Results are presented for all samples < 29 (left) all samples > 29 years (right).

Younger than 29 years Older than 29 years
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NLD SCT SWD UK Total

Samples (N) 926 665 69 636 2.296

   Cases 461 260 37 332 1.090

   Controls 465 405 32 304 1.206

Age (years) 35.8 (13.2) 44.6 (12.9) 59.7 (5.94) 40.4 (15.0) 40.3 (14.4)

   Cases 35.5 (13.3) 44.2 (14.1) 59.6 (6.30) 43.7 (14.6) 40.9 (14.8)

   Controls 36.1 (13.2) 44.9 (12.2) 59.9 (5.58) 36.8 (14.7) 39.8 (14.1)

Females 309 (33.4%) 185 (27.8%) 39 (56.5%) 259 (40.7%) 792 (34.5%)

   Cases 122 (26.5%) 83 (31.9%) 20 (54.1%) 90 (27.1%) 315 (28.9%)

   Controls 187 (40.2%) 102 (25.2%) 19 (59.4%) 169 (55.6%) 477 (39.6%)

Hannum DNAm age 37.9 (15.4) 46.0 (14.1) 61.7 (8.37) 41.6 (15.7) 43.1 (15.6)

Hannum Δage 0.0 (4.7) 1.4 (4.2) 2.0 (4.4) 1.2 (4.7) 1.0 (4.6)

Horvath DNAm age 37.0 (14.0) 47.6 (13.5) 62.0 (7.7) 41.2 (14.5) 42.0 (15.0)

Horvath Δage 1.2 (4.8) 3.0 (4.7) 3.2 (4.5) 0.9 (5.7) 1.7 (5.12)

Levine DNAm age 27.5 (15.1) 37.6 (15.4) 52.9 (8.1) 32.6 (16.5) 32.6 (16.4)

Levine Δage -8.33 (6.7) -7.0 (6.2) -6.8 (5.4) -7.8 (6.6) -7.7 (6.5)

Supplementary Tables

Table S1. Sample characteristics and DNA methylation age estimates across cohorts. Sample characteristic 
and mean values of chronological age and DNAm age estimates of each clock are presented for each cohort 
after quality control. Δage is de" ned by subtracting chronological age from DNAm age. Standard deviations are 
in parentheses unless otherwise de" ned. NLD = the Netherlands, SCT = Scotland, SWD = Sweden, UK = United 
Kingdom.
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Dataset PI/Contact Ancestry Platform Data type used Total Cases Controls Age (sd)

GSE4103 RA Ophoff Dutch 27K IDAT files 624 337 287 33.3 (12.1)

GSE4119 RA Ophoff Dutch 450K IDAT files 96 62 34 31.1 (10.2)

TBD RA Ophoff Dutch 450K IDAT files 324 160 164 34.4 (11.4)

TBD RA Ophoff Dutch 450K IDAT files 72 36 36 59.2 (5.7)

TBD PF Sullivan Swedish 450K IDAT files 96 48 48 59.8 (5.9)

GSE80417 A McQuillin Scottish 450K (un)methylated

intensities

847 414 433 44.6 (12.9)

GSE84727 D St. Clair UK 450K (un)methylated

intensities

675 353 322 40.4 (15.0)

Total EUR 27/450K Mixed 2.734 1.410 1.324 40.4 (28.1)

Table S2. Overview of datasets included in study. Multiple datasets of whole blood DNAm data across four 
European cohorts were included in the study. Shown above are some sample characteristics and accompanying 
GEO accession numbers for each dataset before quality control. PI = Principal Investigator, UK = United Kingdom, 
EUR = European.

Table S3. Overview of datasets included in brain analysis. Multiple datasets of postmortem brain DNAm data 
were included in in the analysis. Shown above are some sample characteristics and accompanying GEO accession 
numbers for each dataset before quality control. AA = African American, EUR = European, DLPFC = Dorsolateral 
prefrontal cortex.

Dataset Ancestry Platform Tissue Data type Total Cases Controls Age (sd)

GSE74193 AA/EUR 450K DLPFC IDAT files 503 224 279 46.9 (15.4)

GSE61107 - 450K Frontal 
cortex

IDAT files 48 24 24 61.7 (19.2)

GSE61380 - 450K Frontal 
cortex

(un)methylated

intensities

33 18 15 44.0 (15.7)

GSE61431 - 450K Frontal 
cortex

(un)methylated

intensities

43 20 23 61.8 (17.5)

Total Mixed / 
unknown

450K Frontal

cortex

Mixed 627 286 341

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects
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lm(formula = Δage ~ Dataset + Ethnicity + Platform + Age.continuous + Status*Age.groups*Sex)

Horvath Δage Levine Δage

Model variables Df Sum Sq Mean Sq P-value Df Sum Sq Mean Sq P-value

Dataset 6 1795 299,2 2,0E-15 6 679 113,2 6,7E-03

Ethnicity - - - - - - - -

Platform - - - - - - - -

Age.continuous 1 116 115,8 2,1E-02 1 1054 27,7 1,5E-07

Sex 1 46 45,7 1,5E-01 1 412 412,2 1,0E-03

Age.group 4 645 161,3 6,1E-06 4 512 128,0 9,3E-03

Status 1 288 288,0 2,8E-04 1 916 915,7 9,8E-07

Age.group:Status 4 227 56,7 3,4E-02 4 491 122,7 1,2E-02

Status:Sex 1 12 11,9 4,6E-01 1 51 50,9 2,5E-01

Age.group:Sex 4 329 82,1 4,5E-03 4 694 173,5 1,1E-03

Age.group:Sex:Status 4 66 16,3 5,5E-01 4 273 68,3 1,3E-01

Residuals 2135 46331 21,7 - 2137 81187 38,0 -

Table S9. Results three-way interaction model of age, sex, and status on Δage. Shown are the contributions 
of each variable in the three-way interaction model presented by an analysis of variance table. The full model is 
displayed in the top row. Age.groups are de! ned by decades. Ethnicity and Platform are collinear with Dataset and 
thus do not have output. Df = degrees of freedom; Sum Sq; sum of squares; Mean Sq; mean of squares; P-value 
corresponds to the F-test in the anova() function.
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Horvath Δage Levine Δage

Model variables Model comparison Δage  R² P-value Δage  R² P-value
Model x: baseline 3,9% - 3,1% -

Model y: baseline (+ smoking) - 4,9% - 5,3% -
Model z: baseline (+ cell types) - 8,2% - 22,1% -
Model 0: baseline (+ smoking/cell) - 9,4% - 22,8% -
Model 1: + status Model 0 vs 1 9,3% 0,86 22,8% 0,26
Model 2: + status*age.continuous Model 1 vs 2 9,4% 0,10 23,2% 1,3E-03
Model 3: + status*age.groups Model 1 vs 3 10,6% 2,1E-04 23,2% 0,05
Model 4: + status*age.groups*sex Model 3 vs 4 10,8% 0,15 23,6% 0,05

Sex Age interval Controls Cases Clock Direction β (Δage) 95% CI P

Women <25 84 28 Horvath decelerated -2,36 -4.07 — -0.64 7,3E-03

Women 25-29 75 28 Levine accelerated 3,12 0.67 — 5.64 1,3E-02

Women >36 217 192 Levine accelerated 3,21 1.93 — 4.50 1,3E-06

Women 43-47 41 29 Horvath decelerated -3,05 -5.07 — -1.04 3,5E-03

Women 50-56 45 32 Horvath accelerated 2,96 0.69 — 5.24 1,1E-02

Men 27-39 206 249 Levine accelerated 1,72 0.62 — 2.81 2,3E-03

Men <29 187 223 Horvath decelerated -1,39 -1.11 — 1.37 3,6E-03

Men 44-48 62 45 Horvath decelerated -2,10 -4.03 — -0.17 3,3E-02

Men 49-59 126 110 Levine accelerated 2,44 0.67 — 4.21 7,1E-03

Table S10. Sex-speci! c DNAm aging in schizophrenia is variable across chronological age. For each identi! ed 
change point and corresponding age interval, the number of samples and estimated Δage di# erence between 
cases and controls (β) with corresponding 95% con! dence intervals (CI), and p-value (P) are presented. The sex, 
type of clock, and direction of aging e# ect are shown as well.

Table S11. Age- and sex-speci! c e" ects of DNAm aging in schizophrenia adjusted for smoking and cell type 
estimastes. Shown are the contributions of interaction e# ects between disease status and age and sex on Δage 
when adjusted for DNAm smoking scores (baseline model y) and blood cell type proportions (baseline model z). 
The full baseline model is de! ned as Δage ~ dataset + ethnicity + age.continuous + sex + DNAm smoking score 
+ DNAm blood cell type proportions. For other models, the variable(s) in addition to the full baseline variables 
are shown with the corresponding variance explained (R.) in Δage. Interaction terms with chronological age are 
modeled as a continuous variable (age.continuous) or a categorical variable (age.groups). The latter uses previously 
de! ned decades. Model comparison is performed to assess if the contribution of an interaction term is signi! cant 
compared to a model without that term. The chi-square test is used to test two models with corresponding p-value 
presented. The results of these analysis are shown for both the Horvath and Levine clock. These analyses included 
only 450K samples for which smoking scores and cell type estimates can be computed (N=1,621, 867 controls and 
754 cases).

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects



572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori572168-L-bw-Ori
Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022Processed on: 11-1-2022 PDF page: 226PDF page: 226PDF page: 226PDF page: 226

 226  

Women: >36 years 
(case = 165, control = 178)

Variable R2 Variable P Variable R2 
adjusted

P adjusted

Model - all selected variables 23,6% 2,2E-08 - -

    Levine Δage 7,7% 6,0E-06 2,8% 3,3E-03

    Batch/Ethnicity 1,6% 5,2E-01 2,9% 1,1E-01

    Smoking 9,3% 6,7E-07 4,7% 1,6E-04

    CD8.naive 0,1% 5,8E-01 1,0% 7,4E-02

    CD4.naive 2,6% 9,5E-03 0,2% 4,6E-01

    CD8T 6,2% 5,5E-05 0,3% 3,7E-01

    NK 6,2% 5,1E-05 0,0% 7,2E-01

    Granulocytes 8,7% 1,5E-06 0,7% 1,3E-01

All samples: <29 years 
(case = 152, control = 146)

Variable R2 Variable P Variable R2 
adjusted

P adjusted

Model - all selected variables 49,8% 3,7E-32 - -

   Horvath Δage 3,1% 2,1E-03 0,6% 1,4E-01

   Batch/Ethnicity 7,4% 3,6E-05 0,6% 5,4E-01

   Age 0,0% 8,3E-01 0,2% 3,9E-01

   Sex 8,9% 1,2E-07 1,0% 2,7E-02

   Smoking 28,8% 3,3E-23 18,6% 2,3E-19

   CD8T 3,7% 7,8E-04 0,0% 9,7E-01

   Granulocytes 3,4% 1,3E-03 0,4% 1,7E-01

   CD8pCD28nCD45RAn 5,3% 5,3E-05 1,0% 3,1E-02

   PlasmaBlast 0,2% 4,3E-01 0,6% 7,8E-02

   NK 7,8% 7,9E-07 0,4% 1,5E-01

   Bcell 3,1% 1,9E-03 0,0% 7,3E-01

   Mono 2,8% 3,2E-03 0,5% 1,1E-01

Table S12. DNAm aging signi! cantly contributes to schizophrenia independent of smoking and cell types. 
Shown are variables that signi! cantly explain variance in SCZ disease status, selected by a penalized logistic 
regression analysis. The top and bottom table present results for women >36 years and all samples <29 years, 
respectively. Only samples assayed on the 450K platform were included as DNAm-based smoking scores and cell 
type proportions could be computed and included in the analysis. The top row of each table shows the proportion 
of variance explained in disease status (R^2) for all selected variables combined and the signi! cance of a logistic 
regression model (glm, family=“binomial”) with each variable included compared to the null model of no variance 
explained. We also show the proportion of variance explained by each variable individually (Variable R2) and 
by each variable adjusted for all other selected variables (Variable R2 adjusted). The signi! cance of Variable R2 
adjusted is computed by comparing the model with all variables to a model with the variable of interest removed 
using the anova(test = “LRT”) function. The result of this test is shown in the “P adjusted” column.
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All samples: <29 Controls Cases Mean value 
in cases

β  
(Horvath Δage) 95% CI P

Polygenic risk

All - no stratification 379 243 0,22 -1,30 -2.00 — -0.60 3,1E-04

PRS1 - continuous - 243 0,22 -0,35 -0.77 — 0.07 1E-01

PRS1 - low 379 81 -0,77 -1,01 -2.05 — 0.02 5,6E-02

PRS1 - mid 379 81 0,17 -1,32 -2.36 — -0.27 1,7E-02

PRS1 - high 379 81 1,25 -1,58 -2.62 — -0.54 3,0E-03

Age of onset

All - no stratification 379 190 19,48 -1,47 -2.23 — -0.71 1,6E-04

AOO - continuous - 190 19,48 -0,03 -0.21 — 0.15 7,3E-01

AOO - early 379 64 15,91 -1,49 -2.61 — -0.37 9,8E-03

AOO - mid 379 63 19,19 -1,06 -2.23 — 0.10 7,2E-02

AOO - late 379 63 23,41 -1,85 -3.03 — -0.68 2,0E-03

Illness duration

All - no stratification 379 190 4,92 -1,47 -2.23 — -0.71 1,6E-04

DUR - continuous - 190 4,92 0,06 -0.14 — 0.25 5,7E-01

DUR - short 379 64 1,50 -1,86 -3.04 — -0.70 1,8E-03

DUR - mid 379 63 4,68 -1,31 -2.45 — -0.17 2,5E-02

DUR - long 379 63 8,63 -1,23 -2.38 — -0.08 3,6E-02

T

Table S13. Integration of Horvath Δage with PRS, age of onset, and illness duration in early adulthood. 
Analyses were performed by stratifying the analyses to only men and women <29 years of age. Only cases with 
available information were included in the analyses. Each phenotype was analyzed as both a continuous variable 
and as a categorical variable using equal tertiles from low to high bins. Mean values in cases for each phenotype 
are presented along with the association with Δage (β) and corresponding 95% con# dence intervals and p-values. 
PRS1 = polygenic risk score PC1 (see Supplementary Information) scaled to mean zero with standard deviation of 
1, AOO = age of onset, DUR = illness duration.

Epigenetic age is accelerated in schizophrenia with age- and sex-specific effects
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Discussion of results and 
conclusions
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CHAPTER 7
Discussion of research findings 
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 We are in a promising era of human genomic and psychiatric research. Not only did 
we identify regions in the genome and, in some instances, even the underlying genes that 
confer risk for psychiatric disorders for the ! rst time, but we are also rethinking the phenotypic 
domains and the classi! cation systems in which clinical diagnoses of psychiatric disorders 
exist. Our understanding of the molecular causes and consequences of psychiatric disorders 
is currently, however, still limited and no cures are available yet. Clarifying the underlying 
biological mechanisms of psychiatric disorders is a necessary step towards the development of 
new treatments and the further humanization of these devastating and stigmatized illnesses. 
Genomics has proven to be an instrumental approach for studying the biology of complex 
human traits, including schizophrenia, a major psychiatric disorder that a" ects millions of people 
worldwide. Large-scale genetic studies have, for example, been successful at identifying genetic 
variations associated with schizophrenia, thereby propelling new insights into its pathogenic 
mechanisms. The next step forward is to conduct more mechanistic studies that build upon these 
genetic associations to clarify the molecular and cellular processes that are disrupted. On the 
other hand, understanding how non-genetic determinants and molecular consequences of the 
illness contribute to its pathophysiology is equally important.
 My dissertation had the broad aims of: (1) translating the ! ndings from GWAS into disease 
biology by investigating the functional mechanisms that underlie schizophrenia heritability, 
(2) mapping the molecular pro! le of clozapine response by genome-wide gene expression 
and DNA methylation data analyses, and (3) investigating the molecular consequences of the 
illness by quantifying biological age using DNAm clocks. These aims are embedded in two 
sections of the dissertation. The ! rst part focuses on understanding the molecular biology of 
schizophrenia by using in vitro experimental systems, while the second part of the dissertation 
investigates the reliability DNAm-based predictors and the role of DNAm age in schizophrenia 
using DNA methylation clocks. My research primarily focuses on schizophrenia, but its ! ndings 
and implications have broad relevance for other psychiatric illnesses and complex genetic traits 
in general. Next, I discuss the ! ndings and conclusions of my research by summarizing them in 
eight take-home messages that I believe to be important. Finally, I discuss the limitations of the 
work and its implications for future research.

Part 1: Functional investigations of schizophrenia biology
Take-home 1: embrace polygenicity in functional investigations of schizophrenia
 Schizophrenia is a complex genetic trait with a highly polygenic disease architecture. How 
best to integrate aggregate disease risk – i.e., the genetic susceptibility that is distributed across 
hundreds to thousands of alleles – with in vitro experimental systems is a largely open question in 
the post-GWAS era, particularly for psychiatric disorders. Functional experiments of single genes 
or genetic variants can be powerful in demonstrating molecular consequences, i.e., assuming the 
causal variant has been identi! ed, but fail to take into account the polygenic nature of the illness. 
Furthermore, gene silencing or full gene knockouts may induce a downstream e" ect in gene 
function that could be substantially o"  compared to the functional consequences induced by 
the disease-associated allele. Incorporating polygenicity into the experimental design of follow-
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up functional investigations of genetic risk of complex human traits may, therefore, o!er insights 
beyond what studies of single genes or genetic variants in isolation of the rest of the genome can 
yield.
 I conducted a functional investigation of schizophrenia genetic susceptibility by using 
an in vitro stem cell model of human neuronal di!erentiation, detailed in Chapter 3. This in vitro 
experimental model captures speci"c spatiotemporal dimensions of early stages of development 
in the human brain. Using an analytical approach tailored to time-series data, I identi"ed eight 
longitudinal gene clusters that are involved in the development of neurons. An important aspect 
of this work was to integrate these gene clusters with the heritability of schizophrenia that is 
measured by the GWAS. Using statistical methods that are tailored to modeling genome-wide 
disease risk, I integrated schizophrenia polygenic risk with longitudinal transcriptomic signatures 
of human neuronal di!erentiation. What I found is that schizophrenia polygenic risk is signi"cantly 
enriched in genes that are di!erentially expressed during neuronal di!erentiation, and more 
speci"cally, that this enrichment is driven by a speci"c longitudinal gene cluster of genes involved 
in synaptic functioning. To the best of my knowledge, this is the "rst demonstration of how parts 
of the heritability of schizophrenia can be detected in an in vitro experimental model of human 
neuronal di!erentiation.
 Finding appropriate model systems for functional investigations of psychiatric disorders 
is a signi"cant challenge. This "nding is therefore of value, as it provides validity for using in vitro 
human neuronal di!erentiation as a model to study genetic susceptibility of schizophrenia. 
It is important to emphasize that the genes that contribute to the observed enrichment of 
schizophrenia genetic risk likely only capture parts of the measured heritability of the GWAS. 
Genes involved in other cell types or di!erent developmental stages, and that are therefore not 
measured or variable in this experiment, could carry genetic risk as well. Schizophrenia heritability 
has, for example, been shown to map on several brain cell types, including pyramidal cells, 
medium spiny neurons, and interneurons (Skene et al. 2018). While the cellular identity of the in 
vitro neuronal di!erentiation model I used was broadly neuronal, I did not establish more in-depth 
classi"cation by cellular taxonomy of the brain. It could be true that a di!erent di!erentiation 
protocol would change the outcome of the heritability analysis. Tweaking the experimental 
parameters of the model will help further understand how downstream molecular changes are 
associated with schizophrenia genetic risk and help in the search for what genes and pathways 
underlie the observed heritability. In the "gure below, I present a conceptual framework of what 
to think about when using GWAS heritability to map disease biology in follow-up functional 
investigations.
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In vitro experimental readout

The slope (β) quantifies the heritability present in 
a biological annotation of interest. By adjusting 
in vitro experimental parameters, one can 
subsequently quantify how much change in 
heritability is observed and thus experimentally 
track genes and pathways involved in disease 
etiology.

β

Figure 1. Modeling heritability in a dish. Shown is a conceptual presentation of a bioinformatic framework that 
integrates GWAS heritability with functional annotations obtained through experimental lab models. Both the 
x- and y-axis can be updated, for example when GWAS sample sizes increase (y-axis) or when new experiments 
are conducted in the lab (x-axis). The model can be used to scan the available functional space, to the extent the 
model can capture, and “track” disease heritability to study the biology that underlies the trait of interest in an 
unbiased fashion.

 In my work, I choose a 30-day in vitro human neuronal di! erentiation of an isogenic neural 
stem cell line as an experimental model and a genome-wide gene expression as a functional 
readout. An important question is how the enrichment of schizophrenia heritability changes when 
one matures the culture for a longer period or di! erentiates to a more speci" c neuronal lineage 
or a di! erent brain cell type, like astrocytes or oligodendrocytes. In addition to gene expression, 
one can also use epigenetic, proteomic, or other molecular and cellular units as readouts. 
The more dimensions and functional layers we analyze, the more light will be shed on (1) our 
understanding of the molecular biology that underlies aggregate genetic risk of schizophrenia, 
and (2) how speci" c the observed enrichment of synaptic genes is for the model of human 
neuronal di! erentiation. I see such an analysis framework as a stepping-stone to move from 
genetic susceptibility, identi" ed in the GWAS, to a single-nucleotide resolution understanding 
of schizophrenia biology across the genome. Once a speci" c spatiotemporal dimension and 
experimental model is identi" ed to be relevant for studying the genetic susceptibility of a trait 
of interest, more high-throughput, labor heavy, and/or cost-heavy assays can be performed, 
such as single cell analyses or massively parallel reporter assays (MPRAs). MPRAs, for example, 
functionally screen thousands of genetic sequences for regulatory activity in parallel and have 
been successfully applied in understanding enhancer activity (Klein et al. 2020; Patwardhan et 
al. 2012). Future work could perform a MPRA of schizophrenia-associated genetic sequences in 
a model of human neuronal di! erentiation to understand how these individual genetic variants 
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contribute to the observed heritability enrichment in the synaptic gene cluster. Similar analysis of 
neuronal di!erentiation using induced pluripotent stem cells of individuals with a schizophrenia 
diagnosis or a high burden of schizophrenia genetic risk could be an important avenue to explore 
as well (Buxbaum et al. 2019). In a study that I co-authored, we identi"ed that schizophrenia cases 
carry an increased burden of low frequency deleterious mutations across the genome compared 
to controls (Olde Loohuis et al. 2015). Extending functional investigations to capture the collective 
burden of low frequency to rare variants and subsequently integrating this with genome-wide 
polygenic risk, should be explored as well in future research to further "ne-map schizophrenia 
genetic susceptibility.
 The opportunities to expand on this work really are abundant. The challenge is to 
carefully select and think through an experimental plan when there are many decisions to 
make and parameters to set. Heritability analysis of common genetic variation can serve as a 
complementary approach to already existing laboratory techniques and assays to search for and 
map disease biology. By leveraging the success of the GWAS and integrating heritability analysis 
into functional investigations, we also embrace the highly polygenic nature that is inherent to 
psychiatric disorders in our search for clarity.

Take-home 2: schizophrenia genetic risk maps to synaptic biology but higher functional 
resolution is needed
 GWAS has uncovered hundreds of genetic variants that in#uence risk of schizophrenia with 
new discoveries continuing to be made as the sample sizes grow and new cohorts are included 
(Consortium et al., n.d.). While the mapping of causal variants to pathogenic mechanisms remains 
challenging for any complex human trait (Gallagher and Chen-Plotkin 2018), the evidence in 
schizophrenia so far does strongly suggest that synaptic biology and plasticity are implicated. 
Synapses are intercellular junctions specialized in fast, cell-to-cell information transfer in the brain 
(Südhof 2018). Synapses are at the heart of brain plasticity and shape the development of the 
human brain. Both small and large de novo mutations identi"ed in individuals with schizophrenia 
diagnoses show enrichment in synaptic genes, in particular genes encoding proteins of the 
N-methyl-D-aspartate (NMDA) receptor (NMDAR complex) and proteins that interact with the 
activity-regulated cytoskeleton-associated protein (ARC complex) (Glessner et al. 2010; Malhotra 
et al. 2011; Kirov et al. 2012; Fromer et al. 2014). The NMDAR and ARC complexes represent 
interconnected biological mechanisms at the postsynaptic density (PSD), which is a dense 
network of proteins embedded in the postsynaptic membrane of neurons (Hall et al. 2015).
 These "ndings are further solidi"ed by analysis of ultra-rare protein-altering variants (URVs) 
in a large case-control exome sequencing cohort (Genovese et al. 2016). This study observed an 
excess of disruptive URVs in synaptic genes, including the NMDAR and ARC complexes and in 
genes that bind to the fragile X mental retardation protein (FMRP) and the RNA Binding Fox-1 
and Fox-3 proteins (RBFOX1/3). FMRP, RBFOX1, and RBFOX3 are RNA binding proteins that have 
been observed at synapses and regulate synaptic messenger RNAs and downstream synaptic 
function (Fernández, Rajan, and Bagni 2013; Lee et al. 2016). The authors were concerned that the 
enrichment of disrupted URVs in synaptic genes could simply be a result of the experiments that 
generated these synaptic gene sets and annotations conducted in neurons, which have a high 
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expression of synapse-associated genes. The enrichment signal could therefore be confounded 
by synaptic genes, which are also broadly neuronal genes. Genes expressed in neurons, and the 
central nervous system in general, are known to carry a larger burden of schizophrenia genetic risk 
(Finucane et al. 2018). A similar train of thought holds for my ! nding of schizophrenia heritability 
enrichment in a longitudinal gene cluster of synaptic genes. As I di" erentiated neural stem cells 
to a neuronal lineage, genes that are then activated have predominantly neuronal speci! city. 
However, I found that even when I conditioned my enrichment analysis on the expression of 
other upregulated gene clusters, which consist of neuronal genes, the observed association with 
the synaptic gene clusters remained signi! cant. This observation is similar to what the study of 
disrupted URVs in schizophrenia found when they performed their analysis separately for non-
synaptic and synaptic neuronal genes. That is, the excess burden in synaptic gene sets was only 
seen in the synaptic neuronal genes and not in other neuronal genes. While this is an important 
observation, gene sets of synaptic protein complexes and RNA binding proteins still consist of 
hundreds to possibly even thousands of genes. More functional speci! city is required to further 
disentangle how synaptic biology contributes to the pathogenic mechanism of schizophrenia.
 To generate a more comprehensive de! nition of genes and cellular processes at the 
synapse, the Synaptic Gene Ontologies (SynGO) database was established. SynGO is a recently 
established public data resource that contains evidence-based expert-curated annotations 
for synaptic function and processes (Koopmans et al. 2019). SynGO contains almost 3,000 
annotations against 1,112 experimentally validated synaptic genes. While thousands of synaptic 
genes are still awaiting validation, SynGO currently represents the most carefully curated and 
detailed classi! cation of genes involved in synaptic biology. SynGO analysis demonstrated that 
de novo mutations found in schizophrenia were also enriched in SynGO genes, con! rming results 
described above. This is in line with SynGO genes being highly intolerant to loss-of-function 
mutations. The latest schizophrenia GWAS also performed heritability enrichment analysis on 
SynGo ontologies and con! rmed strong common genetic variant associations with postsynaptic 
terms, but also found associations with presynaptic and transsynaptic genes and processes 
(Consortium et al., n.d.). Together, this demonstrates that studies of both rare and common genetic 
variant associations converge on the ! nding that schizophrenia pathophysiology concentrates at 
the synapse for a large part.
 Synaptic genes are not con! ned to one cellular compartment or a single biological 
process but are intricately connected in their function. Further understanding of schizophrenia 
pathogenicity will require a ! ner functional resolution of synapse biology. My ! nding that 
schizophrenia polygenic risk is enriched in a synaptic gene cluster of an in vitro cell-based 
experimental model is therefore timely and important. E" orts to prioritize likely causal genes 
have yielded several synaptic genes that show converging evidence of genetic association across 
multiple study designs (Consortium et al., n.d.). These genes should be primary candidates for 
follow-up mechanistic studies. In-depth functional investigations of empirically supported 
genetic associations can yield valuable insights into disease pathogenicity. One such study, 
for example, found that genetic variation in the major histocompatibility complex locus, 
representing the strongest genetic association with schizophrenia at population level, in part 
stems from distinct alleles of the complement component 4 (C4) genes (Sekar et al. 2016). They 
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showed that the common C4 genetic variation associates with schizophrenia and increases 
expression in multiple brain regions and localizes to dendrites and synapses in neurons. In mice, 
C4 is involved in synaptic pruning during postnatal development. How C4 function relates in vitro 
human neuronal di!erentiation and to the activity of the synaptic gene cluster remains to be 
answered. Further mapping of the genetic susceptibility of schizophrenia on speci"c molecular 
and regulatory processes involved in synaptic biology will be pivotal.
 Future work on schizophrenia pathogenicity that aims to use in vitro human neuronal 
di!erentiation as an experimental model would bene"t from a robust quanti"cation of synapse 
formation and strength. Activity-dependent synaptic activity is important for brain development 
and a de"ning property of neurons (Chaudhury et al. 2016; Rebola, Srikumar, and Mulle 2010) 
I did not perform any quanti"cation of cellular morphology or neurophysiological properties 
in my investigations. As experimental conditions, like culture media, are known to a!ect the 
neurophysiological properties of neurons (Bardy et al. 2015), more work is needed to assess 
how this impacts the observed "ndings. in vitro co-cultures of neurons and astrocytes could be 
an avenue to explore. Astrocyte co-cultures exert pro-maturational e!ects on neuronal cells, 
especially on the development of synapses (Hedegaard et al. 2020; Banker 1980). Astrocytes have 
important roles in regulating neurotransmitter and general synapse homeostasis and promote 
neurite outgrowth for example. Performing neuronal di!erentiation with co-cultured astrocytes 
could therefore yield greater activity of synapses and more diversity in genes as well.
 Finally, alterations in synaptic biology have been implicated in other psychiatric disorders 
as well (Koopmans et al. 2019). As genetic in#uences on psychiatric disorders transcend diagnostic 
boundaries (Cross-Disorder Group of the Psychiatric Genomics Consortium. 2019), dissecting 
shared and disorder-speci"c pathogenic mechanisms will be pivotal for clarifying the biology 
of schizophrenia. The recent developments of genomic structural equation modeling allow for 
joint analysis of genetic architecture of complex traits (Grotzinger et al. 2019), and could be an 
avenue for exploring and identifying schizophrenia-speci"c polygenic risk. For now, schizophrenia 
genetic susceptibility maps strongly onto synaptic biology, but it may be that this is the rule and 
not an exception in general psychiatric pathophysiology.

Take-home 3: Lymphoblast cell lines make for a useful experimental tool to study adverse 
molecular medication e!ects associated with clozapine
 Unraveling the pathogenic mechanisms of schizophrenia can help us understand the 
molecular chain of events that cause the illness and thereby accelerate the development of new 
therapeutics. While pathogenic mechanisms are central to the biology of the illness, they are 
not the only molecular and cellular events that impact the health of patients. Individuals with a 
diagnosis of schizophrenia, for example, also su!er from the biological consequences of adverse 
antipsychotic medication e!ects (Gonçalves, Araújo, and Martel 2015). These adverse e!ects can 
drastically reduce quality of life, even with life-threatening consequences in some cases, and 
signi"cantly lower adherence to pharmacological treatment as well (Dibonaventura et al. 2012). 
To improve our understanding of antipsychotic medication, and thereby our ability to provide the 
necessary medical care for patients, more clarity on the molecular consequences of these drugs 
is needed.
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 In Chapter 4, I investigate the molecular signatures of clozapine response by implementing 
a human lymphoblast cell line model in which cells were exposed to increasing doses of the 
antipsychotic drug. While clozapine is one of the most e! ective antipsychotic drugs in reducing 
symptoms of schizophrenia and has good drug adherence among antipsychotics, it can induce 
strong secondary outcomes (Leucht et al. 2013). In rare instances, the use of clozapine may lead to 
agranulocytosis, for example (Andersohn, Konzen, and Garbe 2007). Far more frequent, however, 
are unwanted outcomes of weight gain and sedation (Leucht et al. 2013; Baptista 1999). These 
adverse e! ects are likely to contribute to serious long-term cardiometabolic consequences, such 
as diabetes and cardiovascular diseases, which are reported at higher rates in patients diagnosed 
with schizophrenia (Galletly et al. 2012; Olfson et al. 2015). So far, the molecular mechanisms 
underlying clozapine response are not well understood. Using an in vitro lymphoblast cell line 
model, I therefore examined genome-wide gene expression and DNAm changes in response 
to clozapine exposure. LCLs were exposed to clozapine concentrations from 1x up to 100x 
clinical concentration, which is an extension of previous experimental lab work to investigate 
LCL cell viability in response to clozapine (de With et al. 2015). The rationale is that a wide range 
of concentrations will help to identify genes and DNAm sites that have a dose-response change 
in expression level. Using this experimental study design, the aim was to gain insights into the 
basic molecular mechanisms that underlie adverse e! ects of the drug by identifying genes and 
pathways that change in activity in response to drug exposure in vitro. Two novelties of the study 
are the genome-wide analysis across multiple genomic data layers and the state-of-the-art 
integrative analyses with other genomic resources, such as SNP-based heritability from GWAS 
and the GTEx human tissue gene expression dataset.
 The results showed strong activation of hundreds of genes after exposure to clozapine. 
Genes upregulated by clozapine response are linked to cholesterol metabolism and steroid 
biosynthesis, while downregulated genes are involved in various cell division processes. The 
central role of cholesterol metabolism in the response to clozapine is concordant with previously 
reported candidate gene studies performed in other cell types and for other antipsychotic 
drugs as well (Fernø et al. 2005; Foley and Mackinnon 2014). My analysis of genome-wide gene 
expression changes after clozapine exposure demonstrates that transcriptomic consequences 
are widespread and are not limited to a handful of genes. As abundant as the changes in gene 
expression are, so few are the changes in levels of DNA methylation. CpG sites upstream of the 
low-density lipoprotein receptor (LDL-R) gene and the cyclin F (CCNF) gene did show a signi" cant 
change in DNA methylation after 24 and 96 hours, respectively. These genes are involved in similar 
biological processes as the annotations related to changes in gene expression. The LDL-R gene is 
responsible for the uptake of cholesterol-carrying particles into the cell and is a central player in 
cholesterol metabolism (Fass et al. 1997), and the CCNF is involved in the coordination of essential 
cell cycle events (Bai, Richman, and Elledge 1994). How the changes in gene expression and DNA 
methylation are linked, if they are at all, is another avenue to explore.
 To gain insights into how in vitro gene expression signatures of clozapine response 
translate to gene expression in human tissues, I performed both within and between tissue 
analysis in the GTEx gene expression dataset using the identi" ed clozapine-associated genes as 
the starting point. The GTEx project is an ongoing e! ort to build a comprehensive public resource 
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for studying tissue-speci!c gene expression and regulation (Lonsdale et al. 2013). Across 22 
human tissues, I found that clozapine-associated genes are most preferentially expressed in GTEx-
LCL tissue. Whole blood tissue ranked as second best. This is not unexpected given that LCLs are 
blood-derived cells and show that features of the in vitro experiment translate to the GTEx dataset. 
Investigating all genes in GTEx, and not being limited to genes that are preferentially expressed in 
speci!c tissues, highlighted that clozapine genes have signi!cantly di"erent gene expression in 
multiple tissues, including the liver, muscle, lung, and testis. In addition to within tissue analysis, 
I also performed between tissue analysis and found tissue pairs related to immune (spleen), 
endocrine (testis, ovary, adrenal, and thyroid gland), and metabolic (adipose) functioning, which 
clozapine treatment may a"ect disproportionately. As endocrine and metabolic abnormalities 
are known causes of human obesity, the identi!ed gene expression signature of cholesterol 
pathways in response to clozapine exposure together with downstream tissue e"ects may point 
to new avenues to study clozapine-induced weight gain using in vitro experimental studies. 
Other observed tissue e"ects, such as for endocrine organs like the testis and ovaries, warrants 
more research on the downstream e"ects of clozapine in these speci!c tissues.

Take-home 4: More questions than answers – there is still a lot we do not know about the 
molecular function of clozapine
 My research on clozapine has yielded insights into the molecular response of the drug. 
While my !ndings point to speci!c genes, pathways, and tissues that could be implicated, 
these insights are merely the tip of the iceberg of how clozapine functions and raise important 
questions to address. Clozapine-associated genes were, for example, not di"erentially expressed 
in any brain tissue in GTEx, which is surprising given that clozapine is an antipsychotic drug that 
is used in treatment of brain disorders. The lack of association with brain tissues suggests that 
the LCL model may capture tissue-speci!c molecular signatures related to clozapine’s adverse 
molecular e"ects, but not necessarily to genes and pathways related to its main therapeutic 
e"ects that yield symptom relief. That is, if clozapine’s therapeutic e"ects are indeed mediated 
through brain cells. Gene expression analysis of human induced excitatory neurons at least 
supports upregulation of cholesterol biosynthesis pathways in response to clozapine as well 
(Das et al. 2021). How the main molecular e"ects of the drug di"er from secondary unwanted 
outcomes is unclear. Performing similar in vitro experiments and genomic analysis in other cell 
types as well, including brain cell types, will shed more light on how generalizable the molecular 
signatures of clozapine response in LCLs are compared to other cell types. Multi-cell type analyses 
can then help di"erentiate molecular mechanisms of adverse and therapeutic e"ects in response 
to clozapine exposure.
 To explore how clozapine-associated genes relate to the possible biology of schizophrenia, 
I assessed if di"erentially expressed clozapine genes overlap with genes that are associated with 
schizophrenia genetic risk. Previous studies have found an association between gene targets of 
antipsychotic drugs and the genetic susceptibility of schizophrenia (Gaspar and Breen 2017; Skene 
et al. 2018), which suggests that antipsychotic drug targets overlap with pathogenic mechanisms 
of the illness. If this is the case, the identi!ed genes and pathways associated with clozapine may also 
give insights into causal mechanisms of the illness. To !nd an overlap between disease-associated 
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loci and targets of already-approved drug therapy would not be exclusive to schizophrenia and 
clozapine, as this has been reported for other illnesses as well. A well-known example is the GWAS 
of coronary artery disease that identi! ed genetic loci that harbor gene targets of statins and 
other lipid-lowering medications (Tragante et al. 2018). However, I did not ! nd such evidence for 
clozapine-associated genes and the schizophrenia GWAS. That is, genes up- or downregulated 
by exposure to clozapine do not carry more genetic risk of schizophrenia than genes that are not 
di" erentially expressed in lymphoblast cell lines. I did observe an enrichment of total cholesterol 
and LDL heritability in clozapine genes. While caution is warranted with the interpretation of this 
observation, it does align with the large number of cholesterol-associated genes that were found 
to be di" erentially expressed. Again, these ! ndings suggest that clozapine-induced molecular 
pro! les in lymphoblast cell lines may provide insights into metabolic adverse e" ects of the drug, 
but not necessarily mechanisms related to therapeutic e" ects or schizophrenia pathogenicity. 
It may well be that other studies observed an overlap between antipsychotic drug targets and 
schizophrenia genetic risk because their drug targets were identi! ed in other tissue or cell types, 
by using other antipsychotic drugs or through in silico experiments, or because their ! ndings 
are false positives. Overall, it remains an open question as to what the mechanistic functions of 
clozapine precisely are, both with regard to its e" ective actions and secondary outcomes. Given 
the high reported e#  cacy of the drug to reduce symptoms of schizophrenia, future work should 
investigate this further.
 Clozapine and its metabolites have been associated with clozapine-induced 
agranulocytosis (Mijovic and MacCabe 2020; Bablenis, Weber, and Wagner 1989), which is an 
extreme form of neutropenia (lower-than-normal levels of white blood cells). Clozapine-treated 
people report a 0.4% incidence of agranulocytosis (Li et al. 2020). In high concentration, clozapine 
has been shown to a" ect the viability of LCLs (de With et al. 2015), which could be related to the 
downregulation of genes involved in cell cycle processes that are observed in this dissertation. 
In the between-tissue GTEx analyses, the spleen tissue signi! cantly stood out as being impacted 
by clozapine-associated genes compared to other tissues. The spleen is the largest secondary 
lymphoid organ in the body and hosts a wide range of immunological functions, including the 
storage of leukocytes (Lewis, Williams, and Eisenbarth 2019). It is tempting to speculate that 
changes in cell cycle processes and splenic dysfunction upon clozapine exposure play a role in 
clozapine-induced agranulocytosis. This could serve as a plausible hypothesis to investigate in 
future research.
 The ! ndings of the genomic study on clozapine exposure should be interpreted in 
light of several limitations. First, clozapine concentrations ranging between 1x to 100x clinical 
concentration were used to induce a strong drug response and subsequent changes in 
downstream gene expression and DNAm levels. While the molecular pro! les identi! ed do capture 
key genes and biological pathways similar to those that have been reported by previous studies 
of clozapine response, it does remain an open question how these ! ndings can be translated 
toward the clinic. Performing similar in vitro experiments but across a range of concentrations 
closer to the clinical concentration of clozapine and comparing those outcomes with the current 
! ndings is a next step. In vivo studies in human subjects are often costly and limited in their study 
designs. An important advantage of in vitro experimental models is the controlled laboratory 
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environment that allows for precise manipulation of the in vitro model. LCLs could serve as an 
experimental model system to study the molecular mechanisms of adverse e!ects further.
 The results are likely biased by the in vitro cell type used and may include an 
overrepresentation of LCL-speci"c molecular e!ects. Studying one cell type in isolation will 
neither capture the complexity within human tissues nor the dynamics of cross-talk between 
tissues. This is a limitation of the study. Conducting similar in vitro analysis in other cell types or 
in three-dimensional tissue culture would be an important avenue to explore in future research 
on clozapine response. While my "ndings suggest that clozapine a!ects speci"c genes and 
pathways, and may disproportionately a!ect the function of speci"c tissues, they do not provide 
direct mechanistic insight yet. As the exact cascade of molecular and cellular events up clozapine 
exposure remains to be elucidated further, these "ndings can help formulate what next steps 
are needed to better understand the function of the drug. Future investigations should also 
take time-dependent e!ects of clozapine exposure into account, as my analysis showed that 
molecular pro"les associated with clozapine exposure are di!erent between 24 and 96 hours 
of drug exposure. This observation is similar to "ndings of a candidate gene expression study in 
human brain and liver cells that reported di!erent patterns of expression of cholesterol-related 
genes depending on antipsychotic drug exposure time (Vik-Mo et al. 2009). Insights into time-
dependent e!ects of clozapine are important because evidence of randomized controlled trials 
showed particularly strong e#cacy for acute treatment of psychosis (Go! et al. 2017). How 
molecular changes in response to clozapine exposure compare to in vitro molecular pro"les of 
other antipsychotic drugs is an open question as well.
 Finally, it will be important to determine how the identi"ed in vitro molecular changes 
upon clozapine exposure relate to molecular outcomes in patients treated with clozapine. A 
relatively small study that investigated whole blood tissue of 152 psychosis patients, of which 
55 received clozapine, did not "nd signi"cant changes in the expression of any genes (Harrison 
et al. 2016). This suggests that clozapine likely does not have large e!ects on gene expression 
in blood tissue and/or that a greater study sample size is needed to characterize its molecular 
consequences at the level of gene expression. There is evidence from studies of other psychiatric 
disorders that suggest that the inclusion of a larger number of individual may indeed be needed 
to study clozapine. In a study that I co-authored, we investigated gene expression in blood of 
people diagnosed with bipolar disorder using a larger case-control cohort of 480 individuals. We 
found that treatment with lithium medication had a strong e!ect on gene expression levels in the 
blood of patients and that changes due to the illness (and thus independent of medication use) 
were minimal (Krebs et al. 2020). While this study of lithium treated bipolar disorder patients does 
not provide evidence that larger cohorts of clozapine treated patients will identify signi"cant 
molecular changes, it does suggest that pursuing such an avenue could be a worthwhile e!ort. in 
vitro functional analyses are by design limited in their translation to human biology. More human 
molecular studies are needed to study the function of clozapine in patients that are treated with 
the drug.
 To summarize, my research on clozapine response identi"ed speci"c genomic signatures 
that are associated with the antipsychotic drug and provide insights into possible adverse 
molecular consequences of clozapine. My "ndings were obtained using an in vitro experimental 
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model system and the results should be interpreted within the limitations of the study design 
and laboratory model system. While in vitro studies such as that employed in this dissertation 
may only capture elements of what may be relevant in vivo, they can serve as very useful 
tools, particularly when their output is integrated with external human genomic datasets, as 
demonstrated in my work. As the necessary challenge of large-scale, systematic prospective 
patient cohort studies of adverse e! ects of clozapine and other AP remains, genomic research 
in LCLs o! ers a complementary strategy towards understanding the molecular consequences of 
clozapine further.

Part 2: DNA methylation algorithms and the role of biological age in schizophrenia
 Part 1 of my dissertation focused on functional investigations of schizophrenia in which 
I studied biological pathways that underlie the genetic etiology of the illness and possible 
molecular consequences of antipsychotic medication. In Part 2 of my dissertation, I investigate the 
role of DNAm age in schizophrenia in a large case-control cohort. DNAm is a type of epigenetic 
modi" cation that is known to be in# uenced by both genetic and environmental factors (Hannon 
et al. 2018), and has been associated with schizophrenia (Mill et al. 2008; Hannon et al. 2016; Ja! e 
et al. 2015). New developments in epigenetic research have introduced DNAm-based algorithms 
as quantitative tools to study health and disease. DNAm clocks, which estimate biological age, 
are of particular interest as they have been associated with various diseases, including psychiatric 
illnesses and all-cause mortality (Horvath and Raj 2018). Early epidemiological reports have 
described schizophrenia as a life-shortening illness (Allebeck 1989), an observation that has now 
been con" rmed by larger epidemiological studies. Individuals diagnosed with schizophrenia 
su! er disproportionately from age-related disabilities, report two-to-three times excess mortality, 
and have a lifespan of 15 years reduced by compared to the general population (McGrath et al. 
2008; Olfson et al. 2015).
 It remains an open question whether higher rates of age-related disabilities and morbidities 
reported in patient populations are a consequence of the illness or whether processes of innate 
aging are part of the etiology of schizophrenia. The molecular quanti" cation of a changed aging 
process in schizophrenia could be an important step towards measuring the degree of risk for 
age-related disability and morbidity and would enable future research on this important question. 
My aim is therefore to study how DNAm age is expressed in schizophrenia and if DNAm aging, by 
measures of epigenetic age acceleration and age deceleration, is impacted in patients diagnosed 
with the illness. At the start of the project, multiple functional aging predictors had been studied, 
but no clear demonstration of di! erential aging in schizophrenia was reported (Nguyen, Eyler, 
and Jeste 2018). DNAm clocks o! er a new perspective to study aging in schizophrenia as markers 
of biological age and predictors of mortality. I " rst discuss a methodological study I conducted on 
DNAm predictors’ sensitivity for technical variation in general and the prospects for implementing 
these genomic tools in the clinic. I then discuss the outcomes of an in-depth analysis of the 
DNAm aging landscape in schizophrenia, and the implications of my " ndings for research and 
clinical utilization.
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Take-home 5: DNAm-based predictors are promising new genomic tools but require 
careful implementation
 Before discussing how DNAm age is expressed in schizophrenia, I will !rst discuss the 
reliability of DNAm-based predictors and their potential for clinical utilization. Both DNAm clocks 
and DNAm-based predictors hold great promise as genomic tools for health interventions and 
disease management in the clinic (McCartney et al. 2018; Shah et al. 2015). However, like other 
high-throughput molecular data, DNAm can be impacted by variations in sample handling, 
laboratory conditions, reagents, and/or equipment used (Leek et al. 2010). Technical variation is 
often widespread and tackling such e"ects is of critical importance to study biological variation 
in any -omic analysis, including DNAm. To investigate how reliable DNAm-based predictors are, I 
performed a systematic evaluation of the performance of 41 predictors, including multiple DNAm 
clocks, across more than 100 commonly used data processing and normalization strategies. 
These analytical strategies represent di"erent ways to prepare DNAm data using published 
methodology, which I will refer to as “pipelines”. In this study, I made use of a large sample of 
technical EPIC array DNAm replicates collected by the JacksonHeart Study. This allowed me to 
quantify the average absolute agreement between replicate pairs as a measure of test-retest 
reliability for each predictor. The test-retest reliability is an index of internal validity and indicates 
to what degree a method can produce outcomes that are reproducible (Koo and Li 2016). As 
high test-retest reliability is a necessary criterion for a method to qualify as a biomarker in clinical 
medicine, my work has important value for both research purposes and clinical utilization. 
This study was an enormous undertaking and represents the largest systematic and unbiased 
evaluation of the performance of DNAm-based algorithms.
 I found that the performance of DNAm-based predictors is highly sensitive to technical 
variation, and that the choice of analytical pipeline to prepare DNAm data has a signi!cant impact 
on their reliability and downstream phenotypic analyses. Having said that, all predictors produced 
at least good to excellent test-retest reliability if an appropriate analytical pipeline is used. The 
majority of predictors (32 out of 41) even achieved excellent reliability, indicating that estimates of 
these predictors are highly reproducible if unwanted technical variation is successfully removed. 
Out of the 41 best performing pipelines, 27 were unique to a predictor, demonstrating that 
signi!cant heterogeneity exists in pipeline performance across predictors. There is thus no one-
size !ts all approach for analyzing these methods. Data processing and normalization strategies 
from the ENmix software package performed best most often. Data processing steps that 
performed well for multiple predictors were out-of-band (OOB) background estimation (Triche et 
al. 2013), REgression on Logarithm of Internal Control (RELIC) probes dye-bias correction (Xu et al. 
2017), and the Regression on Correlated Probes (RCP) probe-type bias correction (Xu et al. 2017; 
Niu, Xu, and Taylor 2016). These methods leverage speci!c features of the EPIC DNAm array, such 
as internal control probes and the distribution of type I and II probes, to account for technical 
variation. While such analytical strategies performed well for most predictors, their performance 
still varied considerably. I therefore provided data processing and normalization best practices for 
each predictor for the research community to use. The programming code for all the analytical 
pipelines are available too, so they can be implemented by others easily. My aim is that this will 
help improve the performance of the algorithms and increase comparability of results across 
studies by standardization of data processing and normalization pipelines implemented by the 
research community.
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 Several predictors show a test-retest reliability close to 1, which means that repeated 
collections of DNAm data yielded almost identical predictor estimates between pairs of 
replicates. Among predictors with excellent reliability (intraclass correlation > 0.90) are predictors 
of ageing, mortality risk, smoking behavior, blood cell types, plasma protein levels, and cancer 
risk. Their high reproducibility makes them strong candidates for clinical biomarkers to aid in 
health management and disease prevention. GrimAge, a strong predictor of all-cause mortality, 
for example, showed the highest test-retest reliability. A one-year increase in predicted GrimAge 
compared to chronological age, gives an individual a 10% higher risk of dying (Lu et al. 2019). 
Implementation of GrimAge as a biomarker in the clinic could, therefore, have a signi! cant 
impact on health and lifespan. While GrimAge had excellent reliability across all 101 pipelines 
(reliability range = 0.921-0.994), the performance of a pipeline still signi! cantly impacted 
downstream phenotypic analyses. Pipelines that more e" ectively remove unwanted technical 
variation yielded a weaker correlation with chronological age, a lower mortality risk estimate, 
and greater statistical power in survival analyses than pipelines that were less successful in their 
performance. The choice of pipeline did not only impact downstream analysis of the GrimAge 
predictor. In fact, the distribution of output estimates of 80% of predictors showed changes in 
either the mean or standard deviation in relation to the performance of a pipeline, even when 
reliability of a predictor was high across most pipelines. This indicates that pipelines that produce 
improvements in DNAm-based predictor reliability, even if these are incremental improvements, 
can have signi! cant impact on downstream phenotypic analyses. These ! ndings therefore 
warrant the careful consideration of the choice of analytic pipeline when preparing DNAm data 
for implementation of these predictors.
 My ! ndings demonstrated good to excellent test-retest reliability for these 41 DNAm-
based predictors based on technical replicate pairs that originated from the same biological 
sample. That is, a replicate pair represents a single DNA sample for which DNAm data was 
collected at two separate occasions. This indicates that DNAm-based predictors are promising 
candidates for biomarkers in the clinic based on their high reproducibility. It remains an open 
question if the measured reliability translates to repeated measures of DNA samples extracted 
from multiple blood draws at the same time point or across time points. This should be an 
important next step for investigation in future research. The analytical framework I applied can 
be easily extended to study designs of other types of (biological) replicates and establish method 
reliability in other contexts of technical and biological variation and across di" erent studies. As 
research on DNAm-based predictors will continue to grow, my work produced new insights into 
algorithm performance and provides a comprehensive overview of best analytical practices 
when implementing these predictors for the research community to build on.

Take-home 6: DNA methylation age is a! ected in schizophrenia with age- and sex-speci" c 
e! ects
To investigate the expression of DNAm age in schizophrenia, I conducted a meta-analysis of three 
DNAm clocks (i.e., the Hannum, Horvath, and Levine clock) in a large multi-cohort case-control 
sample. The aim of this study was to investigate if DNA methylation age is di" erent in individuals 
diagnosed with schizophrenia compared to non-psychiatric controls. In my analyses, I included 
three DNAm clocks that were developed in training datasets with speci! c biological characteristics 
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that allows them to capture di!erent aspects of the ageing process. What I found was that DNAm 
age was signi"cantly altered in schizophrenia with age- and sex-speci"c e!ects for multiple 
clocks. Furthermore, I observed an intriguing association between DNAm age acceleration and 
schizophrenia polygenic risk. This represents the largest study of DNAm age in schizophrenia 
and highlights DNAm clocks as novel genomic tools for quantifying changes in biological age in 
relation to the illness. The strengths of the study are its meta-analytical framework and the careful 
dissection of DNAm aging e!ects by age and sex. A systematic review of aging biomarkers found 
that less than a quarter of studies performed age-strati"ed analyses (Nguyen, Eyler, and Jeste 
2018). My "ndings support their recommendation to speci"cally examine interaction e!ects 
with age and sex in aging studies, but also more general in epigenetic studies, for example like 
epigenome-wide association studies. Finally, my analyses are also the "rst to integrate DNAm 
age with genetic data and detailed phenotypes, such as age of onset and illness duration in a 
schizophrenia population. While it remains unclear whether the observed di!erences in ageing are 
intrinsic to schizophrenia or if they represent molecular consequences of the illness, my "ndings 
present an in-depth analysis of DNAm age in schizophrenia and unequivocally demonstrate that 
biological age is altered.
 One of the main "ndings of the study is that people with a schizophrenia diagnosis 
present an increase of +1.53 years in Levine DNAm age compared to their chronological age 
compared to controls. The observed Levine DNAm age acceleration (i.e., Levine Δage) is more 
pronounced in older adult women diagnosed with schizophrenia and independently contributes 
to the variance in disease status in these women above and beyond smoking scores and blood 
cell type proportions. A recent DNAm aging study replicated my "nding of Levine DNAm age 
acceleration in schizophrenia. In a smaller cohort, with partially overlapping samples, researchers 
reported a +1.40 to +1.90 increase in Levine Δage in cases compared to controls (Higgins-Chen et 
al. 2020), which is similar to the +1.53 years increase in Levine DNAm age observed in my analysis. 
However, they did not perform age- or sex-strati"ed analyses, nor did they integrate DNAm 
age with schizophrenia polygenic risk. I found that Levine Δage is positively associated with 
schizophrenia polygenic risk in women in later adulthood, indicating that women with higher 
burdens of genetic risk of the illness display even faster age acceleration. The high polygenic 
risk group displays accelerated aging of an average of +4.30 years compared to age-matched 
female controls. The Levine clock is constructed by predicting a surrogate measure of phenotypic 
age (also called PhenoAge), which is a weighted average of ten clinical markers known to be 
associated with mortality risk, including chronological age, albumin, creatinine, glucose and 
C-reactive protein levels, alkaline phosphatase, and various blood cell related measures (Levine et 
al. 2018). By design, the Levine estimator is a composite biomarker that strongly predicts mortality, 
in particular that of cardiovascular-related phenotypes. A one-year increase in Levine DNAm 
age is associated with a 9% increased risk of all-cause mortality and a 10% and 20% increase of 
cardiovascular disease and diabetes mortality risk respectively (Levine et al. 2018). My "ndings 
of multiple year increase in Levine DNAm age in schizophrenia could thus imply an increased 
mortality in these individuals that is linked to disease.
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 In contrast to Levine DNAm age acceleration, I observed age deceleration in Horvath 
DNAm age, which measures intrinsic cellular age. Horvath Δage showed strong age-speci" c 
e# ects but no clear sex-speci" c e# ects. During young adulthood, cases were -1.23 years younger 
in Horvath DNAm age compared to their chronological age than controls. Cases also presented 
Horvath DNAm age deceleration during their mid-forties. Horvath DNAm aging has been shown 
to be associated with molecular processes of development and cell di# erentiation, including 
human (neuro)developmental phenotype. For example, individuals diagnosed with Tatton-
Brown Rahman syndrome and Sotos syndrome, two overgrowth conditions, present accelerated 
Horvath DNAm age, while people with Kabuki syndrome, clinically characterized by poor growth, 
display decelerated Horvath DNAm age (Je# ries et al. 2019). The observation of Horvath DNAm 
age deceleration in schizophrenia stands out because the majority of DNAm age studies of 
health-related outcomes report evidence of epigenetic age acceleration, but rarely of epigenetic 
age deceleration (Oblak et al. 2021). For schizophrenia, it may indicate that some patients show 
evidence of delayed or de" cient development, and that this is detectable in blood through the 
multi-tissue Horvath clock. While speculative, this does present an intriguing hypothesis for 
future research. Horvath DNAm age deceleration in schizophrenia is mostly observed during 
developmentally sensitive windows, i.e., during late adolescence/young adulthood and the age-
period of menopause. The etiology of schizophrenia has, furthermore, been shown to overlap 
with speci" c neurodevelopmental disorders (Owen et al. 2011). I did not observe age deceleration 
in postmortem brain samples of the human cortex, suggesting that the observed e# ect of 
epigenetic age deceleration is blood-speci" c. The overall cohort sample size of the postmortem 
brain analysis was, however, small and analyses in larger cohorts are therefore warranted. There 
was no heterogeneity in the e# ect size across the di# erent cohorts used in the meta-analysis in 
blood tissue, making the " nding of DNAm age deceleration in schizophrenia more robust and 
less likely to be a false positive. How blood-based Horvath DNAm age deceleration is associated 
with the trajectory of the illness and clinical outcomes and if it is at all related to a delayed or 
de" cient development remains to be deciphered.
 One fascinating outcome of my epigenetic investigations in schizophrenia is the opposite 
aging e# ect with two di# erent DNAm clocks, i.e., DNAm age deceleration with the Horvath clock 
and age acceleration with the Levine clock. I did not observe di# erential DNAm aging for the 
Hannum clock. Unlike the multi-tissue Horvath clock, which was developed across di# erent 
human tissues and cell types (Horvath 2013), the Hannum and Levine clocks were developed using 
DNAm samples derived from whole blood (Hannum et al. 2013). As the Horvath clock was trained 
using a wide variety of di# erent cell types, it captures aging processes intrinsic to cells, while the 
Levine clock (and the Hannum clock) captures aging processes extrinsic to cells. Intrinsic cellular 
aging is less dependent on cell type composition and captures aging processes shared across cell 
types (Horvath and Raj 2018). My " nding of opposite di# erential e# ects in intrinsic and extrinsic 
cellular aging processes suggests that two di# erent aspects of biological age may be a# ected in 
schizophrenia. It has been hypothesized that schizophrenia is a syndrome of accelerated aging 
(Kirkpatrick et al. 2008; Nguyen, Eyler, and Jeste 2018), but my " ndings indicate that biological age 
is a# ected more broadly in schizophrenia, and that the precise mechanisms are more complex. 
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This is in line with evidence from studies of brain age in schizophrenia. A longitudinal brain age 
study using structural MRI scans for example reported age accelerated in the brain (Schnack et 
al., n.d.). They found that patterns of di!erential brain aging were not constant and suggested 
the involvement of two di!erent aging processes; one that is homogeneous and re"ective of 
brain age acceleration and another one that is re"ective of individual variation and possibly 
medication use. In a study that I co-authored, we investigated if blood-based DNAm age and 
brain-based MRI age are associated. What we found was that the accelerated aging observed in 
the brain and blood re"ects distinct biological processes (Teeuw et al. 2021). While this represents 
a #rst explorative study of brain and blood aging in a small cohort and requires replication in a 
larger sample, it implies that tissues are impacted di!erentially. In a large collaborative e!ort, the 
ENIGMA Epigenetics Working Group, which I was involved in as well, demonstrated that blood-
based DNAm CpG sites are predictive of brain volume of the hippocampus in a large cohort (Jia 
et al. 2019). Future studies that aim to link blood and brain aging in larger samples could therefore 
be a worthwhile e!ort, as our current analyses may have been underpowered. Combining blood-
based DNAm age with that of di!erent bodily ages and from multiple cellular levels could better 
capture various aspects of biological aging and thereby advance our understanding of aging in 
schizophrenia (Cole et al. 2018; Jansen et al. 2021).
 Future research on DNAm age in schizophrenia ideally would be conducted in prospective 
cohorts with detailed records on disease onset and progression of patients and medication use 
available. A limitation of my work is the cross-sectional design of the cohorts used and the lack of 
information on medication use, which probably a!ected the observed outcomes to some extent. 
While I did #nd an association between DNAm age acceleration and schizophrenia polygenic risk, 
dissecting cause-and-e!ect relationships was not possible. While one would, of course, ideally 
use a longitudinal study design in future research, cohorts that can enable such analyses are 
unfortunately rare. Developing new statistical methodology to extract causal relationships based 
on cross-sectional study design, by studying families or by extending mendelian randomization 
analyses to DNAm data, for example, should be explored as well. Taken together, my work 
demonstrates that DNAm age is a!ected in schizophrenia, a population vulnerable to age-related 
diseases and excess mortality, and strengthens the need for more research on the role of blood-
based DNAm age in schizophrenia.

Take-home 7: Blood-based DNAm predictors hold promise as clinical tools for 
schizophrenia, but more research and funding are needed
 Excess mortality in schizophrenia is a well-established epidemiological observation (Olfson 
et al. 2015; McGrath et al. 2008). My #nding of signi#cant Levine DNAm age acceleration suggests 
that the increased mortality risk could be quanti#ed at the molecular level. Early detection of 
those with a predicted shorter lifespan has potential for high clinical impact, particularly for 
people diagnosed with schizophrenia who, on average, live 15 years shorter compared to the 
general population. The Levine clock not only predicts all-cause mortality but is also a strong 
predictor of cardiovascular-related mortality. People who su!er from schizophrenia have a 
two- to three-fold increase in cardiovascular-related mortality risk as well, women in particular 
die disproportionately of cardiovascular diseases (Olfson et al. 2015; Saha, Chant, and McGrath 
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2007). Adverse health outcomes associated with weight gain and/or metabolic syndrome as a 
consequence of antipsychotic medication are believed to be a main contributor to the observed 
excess mortality (Remington 2006). The Clinical Antipsychotic Trials of Intervention E! ectiveness 
(CATIE) schizophrenia study estimated that men are 138% more likely to have metabolic 
syndrome than randomly matched controls, and women 251% (McEvoy et al. 2005). Metabolic 
syndrome and its accompanying diseases are thus highly prevalent in patients and represent 
an enormous source of cardiovascular risk, especially for women. Minimizing metabolic risk is 
therefore of high priority for people diagnosed with schizophrenia, particularly those receiving 
long-term antipsychotic medication (Hert et al. 2009). As cardiovascular risk is modi" able and 
cardioprotective medication in people taking antipsychotic medication has been shown to 
reduce mortality risk (Kugathasan et al. 2018), the Levine DNAm clock could serve as a potential 
biomarker to identify at-risk individuals and, in this way, help with disease management and the 
improvement of life-expectancy in people with schizophrenia. The Levine DNAm clock reported 
a test-retest reliability of 0.97 in my analyses of algorithm performance and thus makes for an 
excellent candidate for further research. One of my main " ndings is that women in later adulthood 
with a diagnosis of schizophrenia showed the fastest Levine DNAm age acceleration. Women are 
overrepresented among those who develop the illness in later adulthood and are at higher risk 
for neglect of medical care (Dickerson 2007). My " ndings warrant a more focused and larger study 
of DNAm aging in women in later adulthood, preferably strati" ed by polygenic risk of the illness.
 Reducing the burden of age-related disabilities and morbidities is an important goal in 
medicine. The Global Burden of Disease Study identi" ed that age-related diseases account for 
more than half of the total burden of disease in 2017 (Chang et al. 2019). DNAm-based predictors 
could serve as quantitative biomarkers for health care prevention and disease management, 
particularly for psychiatric disorders. Identi" cation of biomarkers for psychiatric care is one of the 
grand challenges in global mental health (Collins et al. 2011). In this dissertation, I have described 
why the study of ageing is important in schizophrenia and how biological age is a! ected in detail. 
While my " ndings are promising, more research is needed to replicate results and investigate the 
degree of clinical actionability that can be achieved when using DNAm clocks or other DNAm-
based predictors. In a " rst attempt to assess the clinical value of DNAm clocks, I co-authored a 
study on the association between DNAm age acceleration and all-cause mortality in a Swedish 
cohort of 190 schizophrenia cases and 190 controls, with a 2:1 oversampling of individuals who 
died (Kowalec et al. 2019). We investigated the Hannum, Horvath, and Levine clock, but did not 
" nd a signi" cant association between DNAm age acceleration and mortality in schizophrenia 
for any of the clocks. Despite the small cohort, we had >80% power to detect a hazard ratio of 
1.17 given the study design and sample size. This warrants caution and emphasizes the need for 
more research on the role of DNAm age in schizophrenia and its predictive capacity for mortality 
risk. The sample that was used in the Swedish study did include more men than women. In fact, 
76% of the cases and 71% of the controls who died were male, which likely decreased statistical 
power in our analyses. Given my " nding of stronger Levine DNAm age acceleration in women 
diagnosed with schizophrenia, future studies on the association between DNAm age acceleration 
and mortality in schizophrenia should prioritize the inclusion of women.
 Future research should also consider the development of schizophrenia speci" c ageing 
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biomarkers, for example, by developing DNAm clocks with sensitivity to medication use or for 
other phenotypic characteristics related to the trajectory of the illness, like substance use or the 
degree of chronicity. Combining DNA methylation clocks with other types of biological data is an 
important avenue to explore as well. A recent study that combined ! ve - omic based biological 
clocks (telomere length, epigenetic, transcriptomic, proteomic, and metabolomic clocks) showed 
a low correlation among predictors and demonstrated that a composite index that combined all 
! ve blood-based clocks yielded the strongest association with various health outcomes (Jansen 
et al. 2021). This suggests that one’s biological age is best re" ected by combining aging measures 
from multiple data layers. As awareness of the value of peripheral biomarkers of schizophrenia is 
increasing (Lai et al. 2016), we need more research on and allocation of funding towards blood-
based -omic analyses in schizophrenia. The ! gure below visualizes the number of publications 
on schizophrenia genetic and epigenetic research over time (panel A) and highlights how blood-
based epigenetic studies are still lagging behind that of genetic studies.

Figure 2. Blood-based epigenetic research is lagging behind in schizophrenia, as is research funding. (A) 
Shown are the number of publications per year between 1990 and 2018 for schizophrenia (epi)genetic research. 
Web of Science was used with the following queries; (1 - black) TS=(“schizophrenia” AND “genetics”), (2 - blue) 
TS=(“schizophrenia” AND “epigenetics”), (3 - red) TS=(“schizophrenia” AND “blood” AND (“genetics” OR “epigenetics”). 
Terms were searched for in abstract, title, and keyword ! elds of a publication. (B) Overall funding of the National 
Institute of Health (NIH) in 2018 shown for speci! c disease groups.

Collecting genome-wide -omic data, including DNAm data, is expensive and research on 
schizophrenia is underfunded compared to other illnesses (panel B), despite its high disease 
burden. Therefore, I believe that expanding resources to perform blood-based epigenetic 
research and other blood-based -omic research will be a critical component of translating the 
value of ageing and health predictors towards clinical actionability for schizophrenia. For now, it 
remains an open question whether DNA methylation clocks are the much-needed biomarker to 
aid in the care of people diagnosed with schizophrenia.
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Take-home 8: Open and collaborative science is the path forward
I was fortunate to collaborate with many national and international colleagues in my research 
e! orts. I have, for example, been involved in working groups of the Psychiatric Genomics 
Consortium (PGC) and contributed as a data analyst to research projects that involved hundreds 
of colleagues across the world (Stahl et al. 2019; Bipolar Disorder and Schizophrenia Working 
Group of the Psychiatric Genomics Consortium. 2018). This has shaped my vision of science and 
what can be achieved when we operate as a collective. In addition, many key data analyses in my 
research made use of publicly available data and software generated and developed by others. 
These were essential components that helped me conduct my research and shaped the outcome 
of this dissertation. In the functional investigations of schizophrenia polygenic risk, for example, 
I used the GWAS summary statistics of genetic analyses of hundreds of thousand individuals 
that were made available through the PGC (Sullivan et al. 2017) to map heritability to in vitro 
transcriptomic pro" les. Furthermore, I replicated the enrichment of schizophrenia heritability 
I observed in di! erentially expressed genes during neuronal di! erentiation in the CORTECON 
RNA sequencing resource of human cortical development (van de Leemput et al. 2014), which I 
freely downloaded from the GEO database to use as an independent replication dataset. In the 
same study, I also mapped in vitro transcriptomic pro" les associated with neuronal di! erentiation 
to spatiotemporal dimension of human brain development using gene expression of the Allen 
Brain Atlas resource. The Allen Human Brain Atlas is a freely available multimodal atlas of gene 
expression and anatomy consisting of a detailed overview of molecular and cellular data of the 
human brain (Shen, Overly, and Jones 2012). In my study of clozapine response in lymphoblast 
cell lines, I investigate how the identi" ed clozapine-associated genes were expressed in the GTEx 
gene expression dataset of 22 human tissues. The GTEx data, freely available for download from 
the GTEx web portal and part of the GTEx biobank, represents the most comprehensive atlas of 
human gene expression across tissues (Lonsdale et al. 2013). By using data from the Allen Human 
Brain Atlas and the GTEx project, I was able to investigate how the in vitro gene expression pro" les 
observed in my experiments translated to human biology across tissues and developmental 
periods. The wealth of publicly available human genomic data represents a treasure trove for 
new research and in vitro experimental studies need to leverage these datasets more. I hope my 
research will contribute to this by leading by example.
 Similar to my in vitro functional investigations, open access genomic data was important 
in my analyses of DNAm age as well. That is, I included DNAm data of a British and a Scottish 
cohort in the meta-analysis of DNAm aging in schizophrenia alongside DNAm data from several 
Dutch cohorts. The former two datasets are available through the Gene Expression Omnibus 
(GEO) database and have been used in large schizophrenia DNAm studies in the past (Hannon 
et al. 2016). In the same meta-analysis, a Swedish case-control cohort was also included via a 
collaboration with colleagues at the University of North Carolina at Chapel Hill in the USA and 
the Karolinska Institutet in Stockholm, Sweden. From the British and Scottish cohorts, phenotype 
data on age of onset and illness duration of cases, alongside schizophrenia polygenic risk scores, 
were made available by principal investigators of the cohorts and could therefore be analyzed 
jointly with similar data of the Dutch cohort. The sharing of both genetic and phenotype data 
across studies is what made the in-depth analyses of DNAm aging landscape in schizophrenia 
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possible. Finally, in my investigating of the test-retest reliability of DNAm-based predictors, I used 
DNAm data from the JacksonHeart Study, a large community-based cohort study evaluating 
the etiology of cardiovascular, renal, and respiratory diseases among African Americans in the 
Jackson, Mississippi metropolitan area in the USA (Taylor et al. 2005). They o!er access to data 
collected by the cohort. Their large number of EPIC DNAm array technical replicate pairs were 
essential to evaluating the impact of technical variation on the performance of DNAm-based 
predictors.
 In the output of my research, I have tried to pay the opportunities that open and 
collaborative science provided me forward. De-identi"ed genomic data that was collected as 
part of the studies in this dissertation were uploaded to the GEO database and all manuscripts 
posted on bioRxiv, an open access preprint repository for biological sciences. The programming 
code to run analyses of the 101 data processing and normalization pipelines of DNAm data was 
uploaded to my github repository. Through these open science practices, I aim to make the 
dissemination of my research output accessible to all levels and stakeholders in society. Perhaps 
the most valuable lessons I have learned during my academic journey so far are the importance 
of a strong commitment to making information and knowledge transparent and accessible, and 
what can be achieved through collaborative science.

Conclusion
 This dissertation had the ambitious aim to disentangle and, if possible, to clarify some of 
the biological complexity that underlies schizophrenia, a debilitating illness that a!ects millions 
of people worldwide. While little is known about the precise molecular mechanisms that cause 
a person to fall ill or that relate to consequences of the illness, genomic research is accelerating 
our understanding of the biology of schizophrenia. This dissertation embodies the genomic 
opportunities and diverse research strategies that lay at our disposal to clarify the biomedical 
complexity of schizophrenia. I have summarized the output of my work in eight important take-
home messages.
 I demonstrated the usefulness of laboratory experimental systems to study schizophrenia 
biology and the importance of embracing polygenicity in functional investigation of its 
genetic risk. I highlighted that schizophrenia polygenic risk maps to synaptic biology and that 
in vitro human neuronal di!erentiation can serve as a valuable model system to further map 
schizophrenia heritability in the post-GWAS era. Similarly, I described lymphoblast cell lines as a 
useful experimental tool for studying the biology of clozapine response and that more research 
is needed to understand the therapeutic mechanisms and molecular adverse e!ects of this 
e!ective antipsychotic drug. I demonstrated the importance of accounting for technical variation 
when analyzing DNAm-based predictors and how these algorithms have good to excellent 
test-rest reliability making them suitable biomarker candidates. This could have implications 
for schizophrenia, as I showed that Levine DNAm age is a!ected in the illness, and that this 
e!ect is particularly strong in women in later adulthood. I plead for more research and funding 
allocation towards blood-based DNAm investigations as the study of DNAm clocks can have 
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high downstream clinical impact for schizophrenia. Finally, I emphasized the importance of open 
and collaborative science, without which the research in this dissertation would not have been 
possible.
 Taken together, these functional investigations represent in-depth data-driven e! orts to 
gain new knowledge of schizophrenia biology through integrative genomic analyses. My " ndings 
provide important building blocks for future genomic research to understand the molecular 
causes and consequences of the illness. While there are still many challenges to overcome, my 
research highlights that the avenues to do so have never been more open.
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Summary

Summary
 One in every 200 people will be diagnosed with schizophrenia during their lifetime and 
about 1.5 million people received a schizophrenia diagnosis this year, worldwide. Despite the fact 
that so many people su! er from the illness and its high burden on families and societies, we know 
so little about the biology of schizophrenia with no cures yet available. Genomic technologies 
and new developments in quantitative genetic methodology have proven to be instrumental in 
advancing our knowledge on the biology of complex human diseases, including schizophrenia. 
Large-scale genetic studies have for example been successful at identifying genetic variation 
associated with schizophrenia thereby propelling new insights into its disease mechanisms. The 
next step forward is to conduct further functional investigations that build upon these genetic 
associations to clarify the molecular and cellular processes that are disrupted. At the same time, 
gaining understanding of the molecular consequences that impact the bodies and lives of those 
who su! er from the illness is equally important as well.
 This thesis is a collection of my research on the biology of schizophrenia and embodies 
the genomic opportunities and diverse research strategies that lay at our disposal to clarify and 
improve our understanding of the illness. With the use of laboratory model systems of brain 
and blood cells, large case-control cohorts, newly developed DNA methylation algorithms, and 
by re-using and leveraging external genomic datasets, I conducted an in-depth investigation 
into the biology of schizophrenia. My aim was to go beyond the " ndings of large-scale genetic 
studies and conduct research that uses state-of-the-art methodology and integrative genomic 
analyses to identify new pieces to the puzzle of schizophrenia biology in the post-GWAS era. As 
an outcome of my research, I provide eight take-home messages that I believe are important 
conclusions for our understanding of the biology of schizophrenia or that are important insights 
on conducting psychiatric genomic research moving forward.
 Clarifying the biological mechanisms associated with schizophrenia is a necessary step 
towards the development of new treatments and further humanization of this severe and 
stigmatized illness. My " ndings provide important building blocks for future genomic research 
to understand the molecular causes and consequences of the illness. While there are still many 
challenges to overcome, my research highlights that the avenues to do so have never been more 
open.
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My eight important take-home messages:
 We need to embrace polygenicity in functional investigations of schizophrenia.
Schizophrenia genetic risk maps to synaptic biology but higher functional resolution is 
needed to understand the disease mechanisms.
Lymphoblast cell lines make for a useful experimental tool to study adverse molecular 
medication e!ects associated with clozapine.
My research on clozapine yielded more questions than answers – there is still a lot we do 
not know about the molecular function of the antipsychotic drug.
DNA methylation algorithms are promising new genomic tools but require careful 
implementation and calculations to maximize their potential.
DNA methylation age is a!ected in schizophrenia with age- and sex-speci"c e!ects. 
Blood-based DNA methylation algorithms hold promise as clinical tools for schizophrenia, 
but more research and funding are needed.
Open and collaborative science is the path forward to decipher the biology of 
schizophrenia, and in scienti"c research as a whole.

1.
2.

3.

4.

5.

6.
7.

8.
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Samenvatting
 Een op de 200 mensen krijgt ergens in hun leven een diagnose van schizofrenie en 1.5 
miljoen mensen hebben wereldwijd dit jaar een schizofrenie diagnose gekregen. Ondanks de 
enorme impact van de ziekte op het lichaam en leven van mensen, hun dierbaren, en onze 
samenleving, is onze kennis over de biologie van schizofrenie heel beperkt. Daarbovenop is er 
momenteel ook nog geen geneesmiddel beschikbaar. Nieuwe ontwikkeling in genomische 
technologieën en in methodologie in de kwantitatieve genetica hebben het afgelopen decennium 
een belangrijke rol gespeeld in nieuwe kennis die is vergaard over de biologie van complexe 
ziektes, zoals schizofrenie dat is. Grootschalige genetische studies hebben bijvoorbeeld speci! eke 
regio’s in ons DNA geidenti! ceerd, die een mens een verhoogde kans geven voor het ontwikkelen 
van de ziekte. Dit is een uiterst belangrijke mijlpaal in psychiatrisch genetisch onderzoek, omdat 
het ons voor eerst een kijkje geeft in mogelijke genetische oorzaken die ten grondslag liggen aan 
schizofrenie. Vervolgonderzoek is nu nodig dat de functionele mechanismen verder ontrafeld en 
daarmee de moleculaire en cellulaire processes kan verhelderen die een rol spelen bij de ziekte. 
Tegelijkertijd is het net zo belangrijk om de moleculaire gevolgen, die een ernstige impact maken 
op het lichaam en het leven van patiënten, ook beter in kaart te brengen.
 Deze dissertatie is een verzameling van mijn onderzoek naar de biologie van schizofrenie. 
Het representeert de technologische ontwikkeling en diversiteit in genomisch onderzoek die tot 
onze beschikking staat om het ziektebeeld van schizofrenie en diens moleculaire gevolgen beter 
in kaart te brengen. Met behulp van kweekmodellen van neuronale en bloedcellen, grootschalige 
case-control cohorten, recent ontwikkelde DNA methylatie algoritmes, en hergebruik van al 
gepubliceerde genomische datasets, heb ik een diepgaand onderzoek naar de biologie van 
schizofrenie uitgevoerd. Mijn doel was om voort te borduren op de uitkomsten van grootschalige 
genetische studies en door gebruik van de nieuwste methodiek en integratieve genomische 
analyses de volgende stap te nemen in het beter begrijpen van de biologie van schizofrenie. 
Met mijn dissertatie presenteer ik acht conclusies die ik van belang acht voor onze kennis over 
de ziekte of voor het ondernemen van genetisch onderzoek naar psychiatrische ziekten in het 
algemeen.
 Het verhelderen van de biologie van schizofrenie is een essentiële stap naar het 
ontwikkelen van nieuwe behandelingen en het humaniseren van deze ernstige ziekte die 
nog steeds gestigmatiseerd wordt in onze samenleving. Mijn bevindingen bieden belangrijke 
bouwstukken voor vervolgonderzoek om de moleculaire oorzaken en gevolgen van de ziekte 
beter te begrijpen. Alhoewel er nog veel uitdagingen te overwinnen zijn, laat mijn onderzoek zien 
dat de wegen naar oplossingen en daarmee ook onze hoop op een beter leven voor patiënten 
nog nooit zo rijk zijn geweest.

Samenvatting
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Mijn acht belangrijkste conclusies:
In functioneel onderzoek naar schizofrenie zullen wij diens polygene architecture 
moeten omarmen.
Het genetisch risico van schizofrenie is geassocieerd met synaptische genen en 
pathways maar een hogere functionele resolutie is nodig om het ziektemechanisme 
beter te kunnen begrijpen .
Kweekmodellen van lymfoblastoide cellijnen zijn een bruikbaar experimenteel handvat 
om de moleculaire bijwerkingen van clozapine te onderzoeken.
Mijn onderzoek naar clozapine heeft meer vragen dan antwoorden boven water gebracht 
- we weten nog steeds weinig over de precieze werking van deze antipsychotische 
medicatie.
DNA methylatie algoritmes zijn nieuwe veelbelovende genomische methoden die wel 
zorgvuldige berekeningen nodig hebben voor een betrouwbare implementatie.
DNA methylatie leeftijd is aangetast in schizofrenie op een manier die verschillen laat 
zien per leeftijd en geslacht.
DNA methylatie algoritmes die gebruikmaken van meting uit bloed hebben de potentie 
een klinisch hulpmiddel te worden voor de behandeling van schizofrenie, maar hiervoor 
zal eerst meer onderzoek en !nanciering nodig zijn.
Een wetenschap waarin transparantie, toegankelijkheid en samenwerking centraal staan, 
is het pad voorwaarts om schizofrenie op te lossen, maar ook voor wetenschappelijk 
onderzoek in het algemeen.
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Propositions
GWAS SNP-heritability is a population parameter that can be experimentally studied in 
a laboratory dish.
Blood-based DNA methylation data is an undervalued resource in psychiatric genomic 
research.
Replication of results should be the aim in genomic research and not optimization of 
data processing pipelines, as technical confounding is inevitable in any -omic analyses.
Schizophrenia may indeed be a syndrome of aging with biological age being altered 
both intrinsically as part of its etiology as well as by consequences of the illness that 
compound over time.
To improve the therapeutic impact of the antipsychotic clozapine, drug modi! cation 
e" orts should focus on reducing its molecular adverse e" ect on cholesterol-related 
genes and pathways in blood cells.
Most GWAS ! ndings re# ect variants and genes with no direct relevance for the underlying 
biology of the phenotype studied.
Genetic causality is rarely deterministic for complex traits.
The illusion of meritocracy in academia hinders scienti! c progress that can be achieved
when researchers operate as a uni! ed collective.
Science that does not foster diversity, equity, and inclusion at its core, is not science but 
is oppression.
Data that is collected by government research funding should be made open access and 
available to all stakeholders immediately.
This thesis is not heritable but GWAS will likely ! nd a genetic association.

Propositions
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