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Abstract. Warehouses are becoming increasingly robotized. Autonomous rack-climbing
robots have recently been introduced in e-commerce fulfillment centers. The robots not only
retrieve loads from any level in a rack but also, roam the warehouse and bring the loads to
order picking stations without using conveyors or lifts. This paper models and analyzes this
system under both single and dual commands with different robot assignment (dedicated
versus shared) and storage location assignment (class-based and random) policies. We study
these policies in the presence of robot congestion. We evaluate the impact of two blocking
protocols, a wait-outside-aisle policy and a block-and-recirculate policy, on the order
throughput time. The system is modeled using semiopen queuing networks (SOQNs) for the
different operating policies. The analytical models are validated using simulation. We also
use this model to compare this system with a shuttle-based system. The results show that (1)
the choice of the wait-outside-aisle policy or the block-and-recirculate policy mainly depends
on the number of the robots in the system and the throughput requirement and that (2) the
dedicated robot assignment policy can be an attractive policy, especially for a large system.

Funding: W. Chen was supported by the National Natural Science Foundation of China [Grant
72001189] and Qianjiang River Talent Scholarship [Grant QJC1802002]. Y. Gong is supported by the
Artificial Intelligence inManagement Institute and Business Intelligence Center.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1140.
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1. Introduction
Our research is motivated by new robotic storage and
retrieval systems that use rack-climbing robots. A rack-
climbing robotic storage and retrieval (CRSR) system
can use robots to move unit loads in three dimensions.
A CRSR system includes three main parts: aisles that
include single-deep storage racks, a remotely located
workstation where products are picked for customer
orders from totes, and robots that can climb the racks
to collect totes and transport totes between aisles and
the workstation at the ground floor. In this system,
each aisle contains two single-deep storage racks with
vertical-direction rails in each rack section. The robots
can use these rails to climb and descend in each rack
section. All horizontal movements are carried out at the
ground level. One such system has been developed by
a French company Exotec and has several implementa-
tions in firms such as C-discount, E.LECLERC, and
Carrefour (Exotec Solutions 2019). Attabotics is another
supplier of such systems (Attabotics 2020a, b).

Different shuttle or autonomous mobile robotic
(AMR) systems (for more information about AMR
systems, see Azadeh, Roy, and De Koster 2019b) can

be distinguished (e.g., the autonomous vehicle-based
storage and retrieval (AVS/R) systems (Malmborg
2002, Kuo, Krishnamurthy, and Malmborg 2007,
Tappia et al. 2016), puzzle-based compact storage and
retrieval (PCS/R) systems (Gue and Kim 2007), the
vertical AVS/R systems (Azadeh, Roy, and De Koster
2019a), and the robotic mobile fulfilment (RMF) sys-
tems (Yuan and Gong 2017, Weidinger, Boysen, and
Briskorn 2018, Lamballais, Roy, and De Koster 2020)).
Compared with these systems, the robot in a CRSR
system can freely roam on the ground floor between
the aisles in addition to climbing vertically in the rack.
This makes the CRSR system flexible and scalable.

Our paper investigates the analysis and design of a
CRSR system. The order throughput time is a key per-
formance measure, as it indicates the duration to fin-
ish an order; also, it reflects the service offered by the
CRSR system. Different factors (e.g., the layout of the
system, the blocking delays of robots) may impact
the order throughput time. A particular challenge is to
determine the assignment of robots to aisles. Because the
robots can move between different aisles, the assignment
of robots to aisles affects the order throughput time. In
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this paper, we study the dedicated assignment and the
shared assignment. In a dedicated assignment, each aisle
has dedicated robots to store or retrieve the totes. In a
shared assignment, all aisles share all robots. Increasing
the quantities of robots may cause robot blocking and
congestion. However, more robots can decrease the
order throughput time. We consider two blocking poli-
cies to mitigate this problem, a block-and-recirculate
(BAR) policy (see Azadeh, Roy, and De Koster 2019a)
and a wait-outside-aisle (WOA) policy. We also consider
two storage policies: class-based storage, based on a
decision of the storage space in time turnover frequency
classes, and random storage.

In this paper, we investigate the following main
research questions.

1. How do we establish analytical models to estimate
the order throughput time of the CRSR system consid-
ering these operating policies?

2. Which blocking policy, a block-and-recirculate
policy or a wait-outside-aisle policy, leads to shorter
order throughput time for a given number of robots?

3. Which assignment policy is best: dedicated or
shared?

4. What rack structure (length and height) is the
most beneficial for a CRSR system while taking robot
blocking into account?

To answer the research questions, we study the sys-
tem using semiopen queuing networks (SOQNs), which
can handle these operating policies and synchronize
orders with robots. The system with the block-and-recir-
culate policy is modeled as an SOQNwith finite capacity
nodes. We use mean value analysis for jump-over net-
works to calculate the order throughput time under the
block-and-recirculate policy and adopt an aggregation
method to estimate the order throughput time under the
wait-outside-aisle policy. We then use simulation to vali-
date our models. Analytical models are used to study
the assignment policy of robots to aisles and to compare
different assignment policies. We also compare the wait-
outside-aisle and block-and-recirculate policies and
investigate the effect of blocking delays.

Our paper has the following contributions. (1) We
develop accurate analytic models to estimate system
performance for these new rack-climbing robotic stor-
age and retrieval systems. (2) We contribute system
design insights. We investigate the optimal rack size
of this new system and compare two assignment poli-
cies in the presence of robot congestion. We also com-
pare two blocking policies on the system performance.
We compare cost and system performance of the rack-
climbing robotic storage and retrieval system with tra-
ditional AVS/R systems with external workstations.
This comparison can be found in Online Appendix F.

We organize the remainder of the paper as follows.
We review the related papers in Section 2. The system
and the operating polices are presented in Section 3.

The analytical models are shown in Section 4. Section 5
presents solution approaches. In Numerical results are
presented in Section 6. Section 7 draws conclusions and
suggests future works.

2. Literature Review
This section reviews the literature on shuttle or AMR
systems and on queueing networks with the block-
and-recirculate protocol.

2.1. Shuttle or AMR Systems
Shuttle or AMR systems can be distinguished in differ-
ent types, such as the PCS/R system (Gue and Kim
2007), the AVS/R system (Malmborg 2002, Kuo, Krish-
namurthy, and Malmborg 2007, Tappia et al. 2016), the
vertical AVS/R system (Azadeh, Roy, and De Koster
2019a), and the RMF system (Yuan and Gong 2017,
Weidinger, Boysen, and Briskorn 2018, Merschformann
et al. 2019, Lamballais, Roy, and De Koster 2020).

In a PCS/R system, all loads (e.g., pallets or totes
containing the stock keeping units (SKUs)) are stored
on semiautonomous shuttles (or conveyor modules),
which can transport them from and to a depot. All
loads are stored in a grid, which has only a few open
locations (called “escorts”) to achieve a very high stor-
age density. The system moves the open locations
repeatedly, like in a Sam Loyd’s puzzle game, to cre-
ate a retrieval path for the requested load to the depot.
This application is currently used in automated park-
ing systems, whereas applications in warehouses are
mostly in a pilot stage. Gue and Kim (2007) study a sin-
gle tier of the PCS/R system and obtain closed-form
results of retrieval time. Zaerpour, Yu, and De Koster
(2017b) investigate a multitier PCS/R system and
derive closed-form expressions for the expected
retrieval time. They propose a mixed integer nonlinear
model to optimize the system dimensions. Zaerpour,
Yu, and De Koster (2017a) study the class-based storage
policy in a PCS/R system. They conclude that their
proposed storage policy can improve the average
response time of the system up to 55% compared with
the random storage policy.

AVS/R systems were introduced by Savoye Logis-
tics in the 1990s. A typical AVS/R system is aisle
based. Semiautonomous vehicles (shuttles) drive on
rails and store and retrieve totes at the different tiers,
whereas lifts take care of the vertical tote transport.
The number of lifts may constrain the throughput
capacity. Such systems have high throughput capacity
because of the large number of shuttles and are fre-
quently used in e-commerce warehouses to handle
small items with medium turnover speed. Different
types of queuing network models have been used to
estimate the performance of AVS/R systems (e.g.,
open queueing networks (Heragu et al. 2011, Marchet
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et al. 2012, Epp, Wiedemann, and Furmans 2016),
semiopen queueing networks (Roy et al. 2012, 2015,
2017; Cai, Heragu, and Liu 2014; Tappia et al. 2016),
fork-join queueing networks (Zou et al. 2016), nested
queueing networks (Kuo, Krishnamurthy, and Malm-
borg 2007, Fukunari and Malmborg 2008), and closed
queueing networks (Fukunari and Malmborg 2008)).
Heragu et al. (2011), Marchet et al. (2012), and Epp,
Wiedemann, and Furmans (2016) evaluate the transac-
tion cycle time of the tier-captive AVS/R system by
the open queueing network. In order to study how
the number of vehicles impacts the system perform-
ance, some researchers adopt SOQN because SOQN
can give an accurate representation of the system when
the transport vehicle is a common constrained resource
that should be used by all jobs. Cai, Heragu, and Liu
(2014) and Ekren et al. (2014) build an SOQN to study
an AVS/R system with tier-to-tier vehicles. Roy et al.
(2015) use SOQN to study how the dwell point of
vehicles and the location of a crossaisle affect the system
performance. Zou et al. (2016) study the parallel opera-
tion of the AVS/R system by a fork-join queueing net-
work. Kuo, Krishnamurthy, and Malmborg (2007) and
Fukunari and Malmborg (2008) study the AVS/R sys-
tem by a nested queueing network model. Malmborg
(2002) uses continuous Markov chain models to study
the vehicle utilization and expected response time.

A vertical AVS/R system is similar to an AVS/R
system, but it does not contain lifts. Robots are aisle
captive and climb the rack in the first column; then,
they travel at the top tier to the designated column,
descend, and retrieve or store a tote at the designated
position. They then travel to the bottom tier and move
to the pick station located at the aisle end. Azadeh,
Roy, and De Koster (2019a) study a vertical AVS/R
system with a single aisle using a closed queuing net-
work (CQN). They optimize the shape of the rack and
study how different robot blocking policies impact the
system performance.

The RMF system consists of movable “pods” (a storage
shelf) containing products and robots, which can drive
underneath the pods to fetch them and transport them to
workstations, where items can be picked or replenished.
The literature about the RMF system focuses on design
optimization and operational control. Lamballais, Roy,
and De Koster (2020) show that the location of worksta-
tions impacts the maximum order throughput. Zou et al.
(2017) adopt an SOQN to optimize the shape of the sys-
tem. Yuan and Gong (2017) develop an SOQN to calcu-
late the optimal number of the robots to achieve a certain
throughput time. Zou et al. (2018) propose an SOQN to
investigate different battery recovery strategies for the
RMF system. Merschformann et al. (2019) develop simu-
lation models to study various decision problems, includ-
ing the order to station assignment, pod selection, and
pod storage assignment choices. Roy et al. (2019) analyze

both order picking and replenishment processes in an
RMF system based onmulticlass CQN.

A CRSR system combines elements of RMF systems
as the robots can freely roam between different aisles
horizontally, on the ground, to transport totes
between the aisles and a workstation. It also has ele-
ments of the vertical AVS/R systems because the
robots can climb and descend in a rack section. How-
ever, it also differs from these systems. Unlike the ver-
tical AVS/R systems, the robots move on the ground
before climbing, and they can freely roam between
aisles and the workstation, which gives them higher
flexibility in deployment.

2.2. Queueing Networks with the Block-and-
Recirculate Protocol

This paper uses two different protocols to reduce the
congestions to prevent blocking. Antiblocking protocols
have been studied in both manufacturing and ware-
house environments. Papadopoulos and Heavey (1996),
Perros (1994), and Balsamo et al. (2001) review queueing
networks with blocking in the manufacturing environ-
ment. Yao and Buzacott (1987) study flexible manufac-
turing systems with a variation of the block-and-recircu-
late protocol in warehouses. Van der Gaast et al. (2020)
develop a capacity model for sequential zone picking
systems using the block-and-recirculate protocol. The
systems are modeled as a multiclass block-and-recircu-
late closed queueing network. Azadeh, Roy, and De
Koster (2019a) use these results and build a closed
queueing network with the block-and-recirculate proto-
col for the vertical AVS/R system with a recirculation
blocking policy. They present a jump-over approxima-
tion method to estimate the performance of the system.
Tappia et al. (2019) use a CQN to study the blocking
delays in integrated storage-order picking systems with
block-and-recirculate protocol. A jump-over method is
used to solve the CQN proposed in Tappia et al. (2019).

Table 1 summarizes the differences among the systems
studied in this paper and the systems investigated in the
literature. Our system is close to the vertical AVS/R sys-
tem studied by Azadeh, Roy, and De Koster (2019a). It
differs from the vertical AVS/R system because the
vehicles can roam the aisles. This makes it necessary to
study the effect of the robot-to-aisle assignment in combi-
nation with robot blocking and congestion.

3. System Description
The CRSR system is described in Section 3.1. Section
3.2 describes the robots assignment policies studied in
this paper. Section 3.3 discusses the blocking policies.

3.1. Rack-Climbing Robotic Storage and
Retrieval Systems

Figure 1 illustrates the layout of a CRSR system. It
includes three components: aisles with single-deep
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storage racks, a remotely located workstation, and
robots that can climb the racks and transport stored
product totes between aisles and the workstation. The
workstation is located at the bottom center. The prod-
ucts are stored in high-level racks and brought to the
workstation by rack-climbing robots. The robots can
independently transport totes between storage loca-
tions and the workstation at the ground floor and
climb the storage rack to retrieve or store totes. When
a retrieval transaction is completed, the robot dwells
at the workstation. Traffic in the aisles and crossaisles
is unidirectional. A side view of the CRSR system
with a single aisle is shown in Figure 2. Each robot
can climb and descend vertically in a rack section and
access each storage position within the aisle by mov-
ing horizontally on the ground floor. We shows the
main notations in Table 2.

Following the allowed direction, the control system
assigns the robot from its dwell point to the designated
location. Because in practice, both single and dual com-
mands are applied (Exotec Solutions 2019), in the
remainder of the paper, we investigate both dual com-
mands (storage followed by a retrieval) and single com-
mands (retrieval transaction only). We assume that
orders arrive according to a Poisson process. This is a
reasonable assumption for online order arrivals. It is,
however, possible to model other (e.g., phase-type) dis-
tributions in an approximate fashion, albeit at the
expense of a more complex analysis and possible loss
of accuracy. The operational steps are as follows.

a. If a robot is not available, the arriving order must
wait in the first come, first served sequence; otherwise,
an available robot will be assigned to handle the order,
and the robot moves from its workstation (dwell point)
to the entrance of designated aisle i, following the
allowed travel direction (µa

i ).
b. The robot moves from the aisle entrance to the

bottom of the designated rack section. For the single-
command cycle, the robot climbs to the retrieval posi-
tion, loads the tote, and descends to the bottom of rack.
For a dual-command cycle, the robot climbs to the stor-
age position, unloads the tote, descends to the bottom
of the storage rack, moves to the designated rack for
the retrieval, climbs to the retrieval position, loads the
tote, and descends to the bottom of rack (µb).

c. The robot moves from the exit of the aisle i to the
workstation, following the allowed travel direction (µc

i ).
d. If the worker is not available, the robot waits for

service at the workstation. Otherwise, the worker han-
dles the robot at the workstation (µw).

The storage location assignment policy influences
performance. We have selected two dominant rules
from practice: random and class-based storage. Ran-
dom assignment is frequently used, as demand is
often unknown or nonstationary. Class-based storage
is robust against demand fluctuations and optimal for
a small number of classes when taking space con-
sumption of multiple loads per product into account,
according to Yu, De Koster, and Guo (2015). However,
other choices are possible (e.g., the “linear decision

Table 1. Overview of Main Literature

System features Reference Blocking delay Robot-aisle assignment

AVS/R: Horizontal movements
by aisle-captive vehicles;
vertical movements by lifts;
high-level storage racks

Malmborg (2002),; Kuo,
Krishnamurthy, and
Malmborg (2007); Fukunari
and Malmborg (2008);
Marchet et al. (2012); Roy
et al. (2014, 2015, 2016, 2017);
Zou et al. (2016)

None; collision-avoidance
protocol

Shared; shared

Vertical AVS/R: Horizontal and
vertical movements by aisle-
captive robots; high-level
storage racks

Azadeh, Roy, and De Koster
(2019a)

Wait-on-spot; block-and-
recirculation policies

Shared

RMF: Horizontal movements
by robots; low-level mobile
racks

Yuan and Gong (2017); Zou
et al. (2017); Merschformann
et al. (2019); Roy et al. (2019);
Lamballais, Roy, and De
Koster (2020)

None Shared; robots assigned to
storage zones

PCS/R: Horizontal movements
by shuttles; vertical
movements by lifts; compact
storage without aisles

Gue and Kim (2007); Zaerpour,
Yu, and De Koster (2017a, b)

None Shared

CRSR: Horizontal and vertical
movements by rack-climbing
robots; high-level storage
racks

This paper Wait-outside-aisle, block-and-
recirculate policies

Dedicated and shared
assignment policies
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rule”) (Ang, Lim, and Sim 2012, Ang and Lim 2019),
which may impact the system performance.

Under the random storage policy, all products are
stored randomly over the aisles and locations. Under
the class-based storage policy, products are classified
into a small number (typical three) of classes accord-
ing to their turnover. The storage positions are also
divided into the same number of areas (see Online
Appendix A). Because the robot travel time is the sum

of vertical travel time (depending on distance from
the ground level) and horizontal travel time (constant
for a given aisle), the optimal item allocation division,
minimizing the total travel time, will be along horizontal
tiers, as in this way, the fast movers can be given a
shorter total travel time compared with an allocation in
groups of rack sections. The highest-turnover product
class, containing NA

sp products, is assigned to the lowest
nA rack tiers. Products from the lowest-turnover class

Figure 1. Top View of a CRSR System
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Figure 2. Robot Blocking (Aisle Side ViewwithMaximum Four Robots in Each Aisle)
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(NC
sp products in total) are stored in the nC-highest tiers

in the rack. The remaining NB
sp products are stored in the

intermediate nB levels of the rack.
Equation (1) calculates the number of storage posi-

tions demanded by every product class:

NA
sp �

∑nA
k�1

Nk
sp, NB

sp �
∑nA+nB

k�nA+1
Nk

sp, NC
sp �

∑nh
k�nA+nB+1

Nk
sp:

(1)

Therefore, for a given demand curve and number of
products per storage class, the number of storage
positions in one storage rack is Nsp �NA

sp +NB
sp +NC

sp.
The height-to-length ratio of the shelf rack is r � nh=nl.
Assuming a continuous space storage rack, we can
obtain the length and height rack by Equation (2):

nl � (Nsp=r)1=2, nh � rnl: (2)

Moreover, we can obtain the height of each zone area
by Equation (3):

nA � nhNA
sp

Nsp
, nB � nhNB

sp

Nsp
, nC � nhNC

sp

Nsp
, (3)

where nA + nB + nC � nh.

3.2. Assignment Policies of Robots to Aisles
In a CRSR system, the rack-climbing robots can move
between different aisles. We investigate two robot
assignment policies: a shared assignment policy (SAP)
and a dedicated assignment policy (DAP). In the SAP,
all aisles have a similar storage and demand profile, and

they are all considered as regular aisles. In the DAP, the
aisles are divided into fast-response (FR) aisles, close to
the workstation, and regular aisles. Some robots are
dedicated to the FR aisles, whereas the remaining robots
are dedicated to the regular aisles. Within each group,
the robots are shared among aisles, but a robot can only
visit aisles to which it has been assigned. The inventory
stored in the regular aisles is used to fulfill the low-
priority orders. FR aisles are used to fulfill orders that
must be delivered within short time windows (e.g.,
within two hours after ordering). FR aisles can be imple-
mented in different ways. Typically, SKUs are dispersed
over multiple storage locations (Lamballais, Roy, and De
Koster 2020). This can be done purposefully, so that
urgent items also have inventory in the FR aisles. Alter-
natively, products can be divided based on turnover
speed, with fast movers stored in the FR aisles. In order
to make a fair comparison between the two robot assign-
ment strategies, we compare themwith the same storage
strategies within the different aisles, namely random or
class based, and identical demand rates for each aisle in
the two policies. The purposeful split of inventory over
multiple storage locations to reduce response times is
common in e-commerce warehouses, where very short
lead times are required. If the average robot-to-aisle ratio
of the FR aisles exceeds that of the regular aisles, a DAP
will reduce the response time for the products stored in
the FR aisles (albeit at the expense of the response time
for products stored in the regular aisles). We investigate
the effect of this trade-off between SAP and DAP and
optimize the robot assignment under the DAP.

Table 2. The Notations Used in This Paper

Notation Description

w, l, h Width, length, and height of a storage position (m)
nl, nh The number of rack sections and tiers in one shelf rack (system length and height)
na The number of aisles
wa, wc Width of an aisle and crossaisle (m)
C System storage capacity, C � 2nanlnh
Co Storage positions in one rack, Co � nlnh
N The number of robots in the system
vv, vh The velocity of robots in the vertical direction and on the ground, respectively (m/s)
t The load/unload time of a robot (s)
Dai The travel distance between the workstation and the entrance of the aisle i (m)
λ The order arrival rate (per hour)
Nsp The number of storage position in each storage rack
FA,FB,FC Demand rate of products belonging to the storage zone A, B, or C
Nk

sp The number of storage positions in tier k, k � 1, 2, : : : ,nh
K Ratio of ordering cost to holding cost rate in each storage rack
nA,nB,nC Height of A, B, C zones in each storage rack (by the number of tiers)
PA,PB,PC Probability that the product belongs to A, B, C class in each storage rack
Ta
i The travel time from the workstation to the entrance of the aisle i, i � 1, 2, ⋯ na (s)

Tb The service time in the aisle (s)
Te
i The travel time from the exit of the aisle i to the workstation(s)

Tei ,w The travel time from the exit of the aisle i to the workstation, i � 1, 2, ⋯ na (s)
Pa
i The routing probability of a robot to aisle i in the shared assignment policy, i � 1, 2, ⋯ na

pbi The blocking probability at aisle i, i � 1, 2, ⋯ nl
tw The handling time at the workstation (s)
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3.3. Blocking Policies in a CRSR System
Because the robots climb and descend bidirectionally
within a rack section in an aisle, robot deadlock might
occur, namely when two robots attempt to simultane-
ously access the same section in the rack or the opposite
rack section in the same aisle. This may be prevented
by waiting in front of the rack section when it is occu-
pied by another robot. When driving in an aisle, at
ground level, robots cannot overtake, and so, robot
blocking can occur if a robot is waiting to enter a rack
section that is occupied by another robot (see Figure 2).

We limit this blocking in the WOA policy by setting
a threshold, Ob, to limit the maximum number of
robots that can work in the same aisle at the same
time. When the robot arrives at the entrance of the
designated aisle, it examines the status of the aisle. If
the number of robots working in the designated aisle
is less than Ob, the arriving robot will enter the aisle.
Otherwise, the arriving robot must wait outside the
aisle. We assume there is sufficient waiting space out-
side the aisle. If a robot has completed its transactions
and has departed from the aisle, one waiting robot
can enter the aisle and move to the destination rack
section (see the robots with dashed lines in Figure 3).

In the block-and-recirculate policy, we limit blocking
as follows. When the robot arrives at the entrance of the
aisle, it examines the status of the aisle. If the number of
robots in the aisle (including the robots that are working
in the designated aisle) is less than Ob, the arriving robot
will move to the designated rack section and work in it.
Otherwise, the robot circulates around the storage racks.
When the robot has finished one loop, it examines the
status of the aisle again. If the number of the robots in
the aisle is still more than Ob, the robot keeps recirculat-
ing (see the robots with dotted lines in Figure 3).

4. Performance Evaluation Models for the
CRSR System

In this section, we propose SOQNs to analyze a CRSR
system with different policies. Then, we calculate the
service time of the service nodes in the SOQNs.

4.1. SOQNs for the CRSR System with
Different Policies

4.1.1. Shared Robot Assignment Policy with the Wait-
Outside-Aisle Policy. We establish an SOQN with the
shared robot assignment policy and the WOA policy
considering both random and class-based storage pol-
icies and dual and single commands.

Figure 4 describes the system under the WOA pol-
icy with enough waiting buffers outside the aisles.
The arriving order (a request for a tote) may wait for a
robot to be transported, and a robot may also wait for
an order. We use a synchronization node, J, to capture
this synchronization between robots and orders. After

the synchronization of the robot and an order, the robot
moves from the workstation (its dwell point) to the
entrance of designated aisle i with probability pai ,
(i � 1, 2, ⋯ na). We assume that the value of pai equals
1=na under SAP (i � 1, 2, ⋯ na). We use an infinite
server (IS), µa

i , to model the robot travel from the dwell
point to the entrance of the designated aisle i. Under the
WOA policy, the robot will check the number of robots
in the aisle when it arrives at the entrance of the aisle i.
If the number of robots in the aisle is less than Ob, in the
single-command cycle (retrieval), the arriving robot
moves from the entrance of the aisle to the designated
rack section (µl), retrieves a load in the designated rack
(µs), and then moves from the bottom of the designated
rack section to the exit of the aisle (µe); in the dual-
command cycle (first storage and then retrieval), the
arriving robot moves from the entrance of the aisle to
the designated rack section (µl), stores the tote in the
designated rack section (µd), moves to the designated
retrieval rack section (µm), retrieves the tote in the rack
(µs), and then moves from the bottom of the designated
rack section to the exit of the aisle (µe). We use µb to
present the operational steps in the aisle node. The sta-
tion µb consists of Ob servers as the WOA policy allows
a maximum Ob robots to work in the aisle at the same
time. If the number of robots in the aisle reaches Ob, the
arriving robot must wait outside the aisle (at the queu-
ing of the node µb). From the exit of the aisle i, the robot
moves to the workstation (service node µc

i , modeled as
an infinite server) and is then processed at the worksta-
tion (service node µw) after possible queuing. In some
cases, no waiting buffers exist outside the aisle. The
detail information for the system without waiting buf-
fers under the WOA policy can be found in Online
Appendix B.

4.1.2. Dedicated Robot Assignment Policy with the
Wait-Outside-Aisle Policy. We establish an SOQN
with the dedicated robots assignment policy and the
WOA policy considering both random and class-
based storage policies and dual and single commands
for the whole system (see Figure 5).

In the dedicated robot assignment policy, the aisles
are divided into ns FR aisles and nr regular aisles (ns +
nr�na). We use b1 robots, which are assigned to serve
FR aisles, and b2 robots are assigned to serve regular
aisle (b1 + b2�N). The FR aisles are closer to the work-
station, so even when ns=b1 � nr=b2, the performance
of the FR aisles will be better than that of the regular
aisles. After the synchronization of a robot and an
order, the robot dedicated to the regular aisles moves
to the entrance of the designated regular aisle ri with
probability pari (i � 1, 2, ⋯ nr, par1 + par2 + : : : + parnr � 1).
The robot dedicated to the FR aisles moves to the
entrance of the designated regular aisle si with proba-
bility pasi (i � 1, 2, ⋯ ns, pas1 +pas2 + : : : + pasns � 1). The
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processes in the FR aisles and regular aisles are similar
to those of the shared robot assignment policy.

4.1.3. Shared Robot Assignment Policy with the
Block-and-Recirculate Policy. Figure 6 presents an
SOQN for a CRSR system with the BAR policy and
the shared robot assignment policy. After the synchro-
nization of a robot and an order, the robot moves
from the workstation to the entrance of designated
aisle i with probability pai (i � 1, 2, ⋯ na). We use µa

i to

model the movement from the workstation to the
entrance of the designated aisle i. When the robot
arrives at the entrance of the designated aisle, it exam-
ines the number of robots in it. If the number of robots
in the designated aisle is less than Ob, the robot goes
into the aisle and works in the designated rack sec-
tion. We use µb to present the operation in the aisle. It
is defined as in Section 4.1.1. Because the aisle can
allow a maximum Ob robots working in it, the station
µb has Ob servers. If the number of robots in the

Figure 3. Robot Blocking Policies (withOb � 3)

X

Recirculating robot with destination Aisle X

Robot route

Robot in the destination Aisle X

Aisle 1

Aisle 2

Aisle 3
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Figure 4. Semiopen Queueing Network with the Shared Robot Assignment Policy and theWait-Outside-Aisle Policy with
Waiting Buffers
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designated aisle reaches Ob, the robot recirculates in
the system. We use µh

i to denote that the robot recircu-
lates around the perimeter of the system from the
entrance of the aisle i to the workstation (see the
single-directional recirculating path in Figure 3).
Nodes µh

i and µa
i form the total recirculation path. If

the robot finishes the operation in the aisle, the robot
moves from the exit of the aisle i to the workstation
(service node µc

i ) and is then processed of the worksta-
tion (service node µw).

4.1.4. Dedicated Robot Assignment Policy with the
Block-and-Recirculate Policy. We establish an SOQN
with the dedicated robot assignment policy and the
block-and-recirculate policy considering both random
and class-based storage policies and dual and single
commands for the whole system (see Figure 7). After
the synchronization of a robot and an order, the robot
dedicated to the FR aisles moves to the entrance of
the FR aisles or regular aisles. We use b1 to denote
robots dedicated to the FR aisles, and b2 robots are de-
dicated to the regular aisles (b1 + b2�N). The following

processes are similar to the model for the shared robot
assignment policy.

4.2. Service Time Expressions
Based on Section 3.1, the main operational steps are as
follows.

Step a. The robot moves from the workstation to the
entrance of aisle i (service node µa

i ).
Step b. The robot works in the designated aisle (service

node µb) in single-command or dual-commandmodel.
Step c. The robot moves from the exit of the aisle i to

the workstation (service node µc
i ).

Step d. The worker loads/unloads the tote at the
workstation (service node µw).

The origin point (0, 0, 0) is the left bottom corner of
the system. The coordinates of the workstation are
(xw,yw,zw). Because the workstation is located in the
bottom center of the system (see Figure 1), the coordi-
nates of workstation are given by Equation (4):

xw � nll
2
+wc, yw � 0, zw � 0: (4)

Figure 5. Semiopen Queueing Network with the Dedicated Robot Assignment Policy and theWait-Outside-Aisle Policy
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4.2.1. Service Time Expressions Under the Wait-Out-
side-Aisle Policy.

Step a. Denote the coordinates of the entrance of the
aisle i as (xai ,yai ,zai), which are given by Equation (5):

xai � wc,
yai � wc −w−wa

2
+ (wa + 2w)i, i � 1, 2, ⋯ na,

zai � 0: (5)

Let Dai be the travel distance between the worksta-
tion and the entrance of the aisle i. We have

Dai � |xai + xw| + |yai − yw| + |zai − zw|
� nll

2
+ 6wc −wa − 2w

2
+ (wa + 2w)i, i � 1, 2, ⋯ na:

(6)

Let Tai be the travel time from the workstation to the
entrance of the aisle i. We have

Tai �Dai

vh

� nll
2vh

+ 6wc −wa − 2w
2vh

+ (wa + 2w)i
vh

, i � 1, 2, ⋯ na:

(7)
The expectation and squared coefficient of variation
(SCV) of service time Tai are

µa−1
i � E[Tai] � nll

2vh
+ 6wc −wa − 2w

2vh
+ (wa + 2w)i

vh
,

i � 1, 2, ⋯ na (8)

cva
2

i � E[T2
ai] −E[Tai]2
E[Tai]2

� 0: (9)

Step b. We denote the coordinates of the retrieval
position as (xs,ys,zs), which are given by Equation (10):

xs � wc + lj, j � 1, 2, ⋯ nl,

ys � wc −w−wa

2
+ (wa + 2w)i, i � 1, 2, ⋯ na,

zs � kh, k � 1, 2, ⋯ nh: (10)

Denote the coordinates of the bottom of the desig-
nated rack section as (xb,yb,zb), which are given by
Equation (11):

xb � wc + lj, j � 1, 2, ⋯ nl,

yb � wc −w−wa

2
+ (wa + 2w)i, i � 1, 2, ⋯ na,

zb � 0: (11)

We use Ts to denote the service time of the robot in
the designated rack section, including climbing to the
designated position, retrieving the tote, and descend-
ing to the aisle. We can obtain Ts by Equation (12):

Ts � 2 × |xs − xb| + |ys − ys| + |zs − zb|
vv

+ t

� 2hk
vv

+ t, k � 1, 2, ⋯ nh: (12)

Note that node µl and µe are ISs and that the sum of
µl and µe is constant, nll=vh. We use Tb to denote the

Figure 6. Semiopen Queueing Network in the Shared Robot Assignment Policy with the Block-and-Recirculate Policy
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service time in the designated aisle. For the random
storage policies, the first and second moments of Tb

can be calculated as the following equations:

E[Tb] �∑nh
k�1

2hk
vv

+ t+ nll
vh

( )
× 1
nh

� hnh + h
vv

+ nll
vh

+ t (13)

E[T2
b] �

∑nh
k�1

2hk
vv

+t+nll
vh

( )2
× 1
nh

�2(nh+1)(2nh+1)h
2

3v2v
+ t+nll

vh

( )2
+2h(tvh+nll)(nh+1)

vvvh
:

(14)
The SCV of Tb can be calculated by

cv2b �
E[T2

b]−E[Tb]2
E[Tb]2

� v2hh
2(n2h−1)

3(lnlvv+vh(h+hnh+ tvv))2
: (15)

Under the class-based storage policy, the probability

that the tote belongs to a specific class can be calcu-
lated by the following equations:

PA � NA
spFA

NA
spFA+NB

spFB+NC
spFC

,

PB �
NB

spFB
NA

spFA+NB
spFB+NC

spFC
,

PC �
NC

spFC
NA

spFA+NB
spFB+NC

spFC
: (16)

We use Pk to denote the probability that the retrieval
position belongs to tier k. We can get Pk as follows:

Pk �

PA

nA
, if 1≤ k≤nA,

PB

nB
, if nA+1≤ k≤ nA+nB,

PC

nC
, if nA+nB+1≤ k≤ nh: (17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Figure 7. Semiopen Queueing Network in the Dedicated Robot Assignment Policy with the Block-and-Recirculate Policy
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The first and second moments of the service time µb

under the class-based storage policy are given:

E[Tb] �
∑nh
k�1

2hk
vv

+ t+nll
vh

( )
× Pk (18)

E[T2
b] �

∑nh
k�1

2hk
vv

+ t+nll
vh

( )2
× Pk: (19)

Then, the SCV of process µb under the class-based
policy can be calculated by

cv2b �
E[T2

b] −E[Tb]2
E[Tb]2

: (20)

In dual-command node, the robot first moves to the
rack section of the designated storage position and
after finishing the storage, then moves to the rack
section of the designated retrieval position. We
denote the coordinates of the designated retrieval
position as (xd,yd,zd). The travel time, Tm, from the
bottom of the designated storage rack section to the
bottom of the designated retrieval rack section is as
follows:

Tm � |xd − xb|
vh

, where xd,xb � lj, j � 1, : : : ,nl: (21)

The expectation and SCV of µm are shown in Equa-
tions (22) and (23):

µ−1
m � E[Tm] � 2l

vh

∑nl
i�1

∑i

j�1
(i− j) 1

n2l
� (nl + 1)(nl − 1)l

3nlvh
(22)

cv2m � E[T2
m] −E[Tm]2
E[Tm]2

: (23)

Then, we can use equations similar to Equations (18)
and (19) to get the expectation and SCV of µb under
the dual-command mode and random storage policy:

µ−1
b � E[Tb] � ∑nh

k1�1

∑nh
k2�1

∑nl
i�1

∑i

j�1
nll
vh

+ 2t+ 2hk1
vv

+ 2hk2
vv

+ (i− j) 2l
vh

( )
× 1
n2hn

2
l

(24)

cv2b �
E[T2

b] −E[Tb]2
E[Tb]2

, (25)

where

E[T2
b]�

∑nh
k1�1

∑nh
k2�1

∑nl
i�1

∑i

j�1

nll
vh

+ 2t + 2hk1
vv

+ 2hk2
vv

+ (i− j) 2l
vh

( )2
× 1
n2hn

2
l
:

(26)

The expectation and SCV of µb under the dual-
command mode and class-based storage policy can be
calculated and are given in Equations (27) and (28):

E[Tb]�
∑nh
k1�1

∑nh
k2�1

∑i

j�1

∑nl
i�1

nll
vh

+2t+2hk1
vv

+2hk2
vv

+(i− j)2l
vh

( )

×P2
k1
n2l

(27)

cv2b�
E[T2

b]−E[Tb]2
E[Tb]2

, (28)

where

E[T2
b]�

∑nh
k1�1

∑nh
k2�1

∑i

j�1

∑nl
i�1

nll
vh

+2t+2hk1
vv

+2hk2
vv

+(i−j)2l
vh

( )2

×P2
k1
n2l

: (29)

Step c. The travel time from the exit of the aisle i to
the workstation can be calculated as follows:

Tci � |xei + xw| + |yei − yw| + |zei − zw|
vh

� nll
2vh

+ 6wc − wa − 2w
2vh

+ (wa + 2w)i
vh

, i � 1, 2, ⋯ na:

(30)

The expectation and SCV of service time of Tci are

µc−1
i � E[Tei] � 6wc −wa − 2w

2vh
+ (wa + 2w)i

vh
+ nll
2vh

,

i � 1, 2, ⋯ na
(31)

cvc
2

i � E[T2
ci] −E[Tci]2
E[Tci]2

� 0: (32)

Step d. The service time at the workstation is a short
duration. Therefore, the expectation and SCV of the
service time at the workstation are as follows:

µ−1
w � tw, cv2w � 0: (33)

4.2.2. Service Time Expressions Under the Block-and-
Recirculate Policy. The expected value and SCV of
the service time at the workstation (µw, cv2w), the robot
moving time from the workstation to the entrance of
the designated aisle (µa

i , cv
2
ai ), the robot moving time

from the exit of the aisle to the workstation (µc
i , cv

2
ci ),

and the main time in the aisle (µb, cv2b) have the same
value as under the WOA policy.

Based on the recirculating policy, the expectation
and SCV of µh

i can be calculated by
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µh−1
i � 3wc + nll

vh
+ 4wna + 2wana +wa + 2w

vh
− (wa + 2w)i

vh
,

i � 1, 2, ⋯ na
(34)

cvh
2

i � 0: (35)

5. Solution Approach
Section 5 provides the solution approaches to solve
the SOQNs proposed in Section 4. Section 5.1 shows
the solution approach to solve the SOQN with the
BAR policy. The solution approach for the system
under the WOA policy can be found in Online Appen-
dix C, and the solution approach for the system under
the BAR policy can be found in Online Appendix D.
Section 5.1 presents an algorithm to solve the SOQN
with the BAR policy. Section 5.2 presents simulation
validation.

5.1. Solution Approach of the SOQN with the
Block-and-Recirculate Policy

The semiopen queueing network under the BAR pro-
tocol in Figure 6 does not have a product form solu-
tion. Therefore, we approximate the network by
another one with the jump-over blocking protocol
(Van Dijk 1988). As shown by Van der Gaast et al.
(2020), the jump-over blocking protocol admits a
product-form stationary queue length distribution for
a network with jump-over nodes and allows an accu-
rate estimation of the performance measures.

We use µb
i to denote the operation in aisle i all with

the same service time (µb
1 � µb

2 � : : :µb
na � µb). A robot

can be tagged as “visited µb
i ” if the robot visits node

aisle i or “left µb
i ” if the robot does not visit aisle i. For

example, a robot is tagged “left µb
i ” if the number of

the robots in the designated aisle i reaches Ob and the
robot should recirculate instead of entering the desig-
nated aisle. Otherwise, the robot can be tagged as
“visited µb

i .” However, the robot can be tagged as
“visited µb

i ” with zero incurred service time if the
number of the robots in the aisle i reaches Ob. There-
fore, the robots can be tagged randomly without the
consideration that the robot actually visits or leaves
µb
i . We use pbi to denote the blocking probability of

aisle i in the original network. In the jump-over net-
work, the probability of a robot tagged as “left µb

i ”
equals the block probability, pbi , and so, the probability
of a robot tagged as “visited µb

i ” equals 1− pbi . Although
the value of pbi is unknown at the beginning, it can be
estimated by an initial value between zero and one, fol-
lowed by successive updates in an iteration algorithm
until the convergence (see Section 5.2). For example, we
initialize pbi as zero. With the current parameters (see
Table 3) for the system with a single command and a
random storage policy, 22 iterations are needed for

obtaining a value of pbi , accurate in seven decimal places.
Hence, we can assume that pbi is known beforehand in
the jump-over network. Therefore, with probability
1− pbi , the robot from µa

i is tagged as “visited µb
i ” and

then, visits node µc
i . With probability pbi , the robot from

µa
i is tagged as “left µb

i ” and then, visits node µh
i . The

corresponding jump-over approximation of the SOQN
is presented in Figure 8.

5.2. Simulation Validation
We build simulation models to validate the accuracy
and effectiveness of our analytical models. Instead of
simulating the queueing networks, we simulate a real-
istic implementation of an actual system. We use
Flexsim software v19.0.0 (Flexsim 2019) to establish
the simulation models. The simulation models can
capture the physical three-dimensional movement of
the robots for the different policies. The system parame-
ters are presented in Table 3 and are obtained by estima-
tions based on the Exotec Solutions video (Exotec Solu-
tions 2019; Exotec 2020a, b). The arrival rate equals 400=h.
We assume the value ofOb�3. For the class-based storage
policy, we have (PA,PB,PC) � (0:65, 0:25, 0:1). The sys-
tem throughput time (To), the order waiting time (Wr),
and the robot utilization (ρ) obtained by simulation and
the analytical model are compared. For each scenario, 20
replications are run with a warm-up period of 10 hours
and a run time of 100 hours per replication. A detailed
description of the simulation model is provided in Online
Appendix E. We calculate the accuracy of the analytical
models by δ% � |A− S|=S × 100%, where δ% is the rela-
tive error. A and S are the analytical and simulation
results, respectively. The error range for δ can be found in
Online Appendix E. Because in the most cases, the wait-
ing buffers always exit outside the system, except with the
special instruction, WOA means the waiting policy with
enoughwaiting buffers.

6. Numerical Analysis
Choosing the right operating policies impacts the sys-
tem performance. In Section 6.1, we investigate the
effect of the blocking policies. In Section 6.2, we study
the performance of the different robot assignment pol-
icies. In addition, the layout configuration may impact
the system performance. Therefore, we investigate the
effect of different rack dimensions in Section 6.3.

6.1. Analyzing the Effect of the Blocking Policies
In this section, we compare the impact of the WOA and
BAR policies on the order throughput under single
command and a random storage policy (see Figure 9).
The system parameters with five aisles are the same as
in Table 3. We vary the number of robots in the system
from three to nine and the maximum number of robots
that can simultaneously work in an aisle (Ob) from one
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to five, respectively, and we observe the order through-
put obtained by different scenarios. We also set Ob�∞
to evaluate the system without blocking.

Based on Figure 9, the WOA policy with sufficient
waiting space in the aisle buffers outperforms the
BAR policy because the recirculation in the BAR pol-
icy takes a lot of time. With an increase in Ob, the sys-
tem throughput under the WOA policy is close to that
of the system without any blocking. For Ob� 5, they
almost coincide (see Figure 9(c)).

The WOA policy without robot waiting buffers
only outperforms BAR when the number of robots is
small. With an increase in the number of robots, the
system throughput of WOA without waiting buffers
decreases sharply. This is because of blocked robots,
which may block other robots outside the aisles.
When Ob is small, this throughput decrease is more
obvious. When the number of robots is large, BAR
outperforms WOA without waiting buffers because
blocked robots can still recirculate without blocking
other robots.

We conclude that for the system with unlimited
waiting buffer space, the WOA performs better than
the BAR policy. For a system with limited waiting
space, the choice of WOA and BAR depends on the
number of robots in the system and the throughput
requirement. BAR may be a better choice for systems
with limited waiting space for robots.

6.2. Analyzing the Effect of the Different Robot
Assignment Policies

In this section, we first compare the throughput time
under the SAP and the DAP. Then, we optimize the
assignment of robots under DAP considering a fair-
ness constraint between the FR aisles and the regular
aisles and the priority of the FR aisles.

6.2.1. Comparison of the Different Robot Assignment
Policies. We vary the number of robots dedicated to
FR and regular aisles (b1 robots dedicated to FR aisles
and b2 robots dedicated to regular aisles) to investi-
gate the system throughput time (in seconds). We set
the number of FR and regular aisles as four (ns � nr � 4),
with equal order arrival rates (240=h). Under dual com-
mands, the minimum number of robots needed to make
the system stable equals 12, which is larger than the min-
imum number of robots under single commands, 10.
Other system parameters are the same as shown in Table
3. Because the WOA policy performs best in most cases,
we only consider the WOA policy in the comparison.
Figure 10 shows the throughput time for the FR and reg-
ular aisles for single- and dual-command policies, differ-
ent robot-to-aisle distributions, and different levels ofOb.
Also, the throughput time is shown for the case of only
regular aisles under SAP (see the horizontal dotted line
with star in Figure 10). Based on Figure 10, (a)–(c), we
find that under single commands, the throughput time

Table 3. System Parameters

w wc wa l h na ns nr nh nl t tw vh vv N b1 b2

0.8 m 2.45 m 0.96 m 0.66 m 0.33 m 5 2 3 11 16 1.4 seconds 3.6 seconds 1.5 m/s 1 m/s 7 3 4

Figure 8. Jump-Over Approximation of the Semiopen Queueing Network in the Shared Robot Assignment Policy with the
Block-and-Recirculate Policy
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for FR aisles is always less than regular aisles even when
the robot-to-aisle ratio of regular aisles is larger than that
ratio of the FR aisles (i.e., four robots dedicated to FR
aisles and six robots dedicated to regular aisles). This is
because the FR aisles are closer to the workstation and
the mean horizontal travel time of the robots dedicated
to the FR aisles is less than that of the regular aisles. For
the same reason, under the dual-command mode, when
the robot-to-aisle ratios of FR and regular aisles are iden-
tical, the FR aisles have a shorter mean throughput time
than that of regular aisles (i.e., six robots dedicated to FR
aisles and six robots dedicated to regular aisles). When
the robot-to-aisle ratio for the regular aisles doubles
that of the FR aisles (i.e., four robots dedicated to FR
aisles and eight robots dedicated to regular aisles),
the regular aisles have a shorter throughput time than
the FR aisle. Figure 10 also shows that the system is
more sensitive to the robot-to-aisle ratio than to the
value of Ob. It is because the robot-to-aisle ratio
impacts not only the mean service time in the aisle
but also, the mean horizontal travel time from the
workstation to the aisle. Also, for the farthest aisle,
the horizontal travel time takes a larger fraction of the
total travel time for other aisles.

To sum up, when the ratio of the number of robots to
the number of FR aisles is the same as that of the regu-
lar aisles, the mean order throughput time in the FR
aisles is shorter because FR aisles are closer to the work-
station. Therefore, the robots dedicated to the FR aisles
have a shorter expected travel time. For the system
parameters investigated, the regular aisles have a
shorter mean order throughput time than the FR aisles
when the ratio of robots to aisles doubles that of the FR
aisles. These results show that the DAP can be attrac-
tive for a warehouse where fast delivery for certain
products is required (i.e., with few “fast-response”
aisles). The SAP can be an attractive policy for a ware-
house when no particular delivery priority is required
because this policy is fair for all orders.

We also combine robot assignment policies and
storage policies in a full factorial manner to investi-
gate how these policies impact the throughput time.
We set the value of the maximum allowed number of
robots entering an aisle as 1 and investigate the sys-
tem with 10 aisles and 14 robots under single com-
mand. In Figure 11, the x axis shows the results for
two storage policies, class based and random, with
10% FR orders and 10% FR aisles (Figure 11(a)) and
with 20% FR orders and 20% FR aisles (Figure 11(b)).
Note that we assume x% of the orders to be FR, with
x% of the aisles to be allocated to FR storage. How-
ever, with x% FR orders and x% of the aisles allocated
to FR storage, the graphs of the FR policy with ran-
dom robot assignment and those of SAP are identical.
The legend in Figure 11 is the same as in Figure 10.
The class-based storage policy is always better than
the random storage policy. However, the lines for the
different robot assignment policies are not parallel.
This suggests an interaction between the storage pol-
icy and the robot assignment policy. Figure 11 shows
that the mean throughput time of fast-response aisles
under the DAP is always shorter than that under the
SAP, whereas the throughout time of regular aisles
under the DAP hardly suffers, assuming a class-based
storage strategy. The DAP can, therefore, realize a fast
delivery of the priority orders.

6.2.2. Optimization of Robot Assignment Under Dedi-
cated Policy. Our model can help to determine the
number of robots b∗1 that should be assigned to the FR
aisles to satisfy a maximum allowed throughput time
with the smallest impact on regular aisles. Under the
single- and dual-command modes, the maximum
allowed throughput times for FR aisles are Ts and Td ,
respectively. We use Ts(b1) and Ts(b2) to denote the
throughput time for FR with b1 robots and regular
aisles with b2 robots under the single-command mode,

Figure 9. Comparison Results of theWOA and BAR Policy

Notes. (a)Ob � 1. (b)Ob � 3. (c)Ob � 5.
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respectively. We use Td(b1) and Td(b2) to denote the
throughput time for FR with b1 robots and regular
aisles with b2 robots under the dual-command mode,
respectively. The objective is to minimize |Ts(b1) −
Ts(b2)| for the fairness between FR and regular aisles
and Ts(b1) ≤ Ts(b1) for the fast response of the FR
aisles. Thereby, the decision system to calculate deci-
sion variables on b1 can be formulated as, under single
command,

min : |Ts(b1) −Ts(b2)|
subject to (s:t:) Ts(b1) ≤ Ts:

Under dual command,

min : |Td(b1) − Td(b2)|
s:t: Td(b1) ≤ Td:

For example, under single commands, let the maxi-
mum allowed throughput time for an FR aisle be Ts �

Figure 10. Comparison Results of the SAP and DAP Policies

Notes. (a) Single,Ob � 2. (b) Single,Ob � 3. (c) Single, Ob � 4. (d) Dual,Ob � 2. (e) Dual, Ob � 3. (f) Dual,Ob � 4. Single indicates single command.
Dual indicates dual command. RA, regular aisles.

Figure 11. The Impact of the Different Policies on the System Throughput Time

Notes. (a) 10% priority orders. (b) 20% priority orders. RA, regular aisles.
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45 seconds in the examined warehouse (with eight
aisles and other parameters as in Table 3). Based on
Figure 10, the warehouse manager can assign five or
six robots to meet the time bound of the FR aisles.
Considering both the fairness between FR and regular
aisles and the priority measured by the maximum
allowed throughput time of FR aisles, the optimal
number of robots assigned to FR aisles, b∗1, is four.

6.3. Optimal Rack Dimensions
We study the optimal rack shape ratio (expected max-
imum horizontal travel time, nll=vh, compared with
the expected maximum vertical travel time, nh × h=vv)
for a CRSR system with one aisle in the single-
command mode and random storage policy with the
objective to maximize the system throughput capacity
under different blocking policies (THCBAR, THCWOA).
The number of storage positions (C0) and the number
of robots (N) are given. Other system parameters are
the same as shown in Table 3. We estimate the system
throughput capacity through the closed queuing net-
works built by removing the synchronization node of
the SOQNs. In each scenario, the system throughput
capacity is calculated while changing the number of
tiers (nh) and rack (nl) sections from their lower
bounds (Lh and Ll denote the lower bounds for the
number of tiers and rack sections, respectively) to
their upper bounds (Uh and Ul, respectively) such that

the total number of storage positions (C0 � 108)
remains the same. The decision model to calculate the
optimal rack dimension can be formulated as

max THCBAR

max THCWOA

s:t:

Lh ≤ nh ≤Uh

Ll ≤ nl ≤Ul

C0 � nhnl
C0,Lh,Uh,Ll,Ul are given:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Under both blocking policies, we study two levels of
the number of robots in the system with n� 4, 8
and four levels of the maximum allowed number of
robots working in the aisle at the same time with
Ob � 1, 2, 3, 4. Because nl and nh only take integer val-
ues, only certain optimal rack shape ratios can be
investigated. Figure 12 illustrates the system through-
put for different scenarios. Based on Figure 12, we
find that under both WOA and BAR policies, the
system can reach the maximum throughput when
the optimal rack shape ratio satisfies nhh=vv � nll=vh
(� 3:96 with current parameters), corresponding to an
optimal height-to-length ratio of 0.67. This optimal
rack shape ratio of height to length is insensitive to
the number of robots and the value of the maximum

Figure 12. System Throughput in Different Scenarios

Notes. (a)N � 4,WOA. (b)N � 8,WOA. (c)N � 4, BAR. (d)N � 8, BAR.
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allowed number of robots working in the aisle at the
same time.

7. Conclusions and Future Work
We investigate a new robotic material-handling sys-
tem: the CRSR system. The system has not been
studied before and is modeled using SOQNs, with dif-
ferent operating policies. We contribute by formulat-
ing these models and design insights. The analytical
models are validated using simulation. We investigate
two robot blocking policies: the WOA policy and the
BAR policy. With our scenario, if the system has wait-
ing buffers outside the aisle, the WOA policy achieves
a larger order throughput than the BAR policy. If the
system does not have waiting buffers, the WOA has a
larger order throughput than the BAR when the num-
ber of robots is small. With an increase in the number
of robots, the WOA has a smaller order throughput
than the BAR. We also compare the SAP and the
DAP. Even the DAP has longer throughput time for
regular aisles; it can shorten the throughput time for
fast-response aisles. Therefore, DAP can be an attrac-
tive policy, especially for a large system in which the
travel time from the farthest aisle to the workstation is
much longer than other aisles. The system is more
sensitive to the number of robots and the robot-to-
aisle ratio than to the value of the maximum allowed
number of robots working in the aisle at the same
time (Ob). The optimal height-to-length ratio of the
rack is around two for both blocking policies.

With the development of technology, it is possible to
track the position of robots at all times. Our policies to
handle blocking may be improved by taking these exact
robot positions into account. The handling of robot
blocking and congestion by considering robot positions
and outstanding jobs is a still largely unexplored area.
Also, the robots in the CRSR system have the ability to
choose different routing trajectories. Therefore, in the
future, it will be interesting to study robot routing
trajectories, as this may impact the system design and
performance. Furthermore, it may be interesting to
investigate different dwell points of the robots.
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