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Abstract

The caudal type homeobox 2 (CDX2) gene encodes a developmental regulator involved

in caudal body patterning. Only three pathogenic variants in human CDX2 have been

described, in patients with persistent cloaca, sirenomelia and/or renal and anogenital

malformations. We identified five patients with de novo or inherited pathogenic vari-

ants in CDX2 with clinical phenotypes that partially overlap with previous cases, that is,

imperforate anus and renal, urogenital and limb abnormalities. However, additional clin-

ical features were seen including vertebral agenesis and we describe considerable phe-

notypic variability, even in unrelated patients with the same recurrent p.(Arg237His)

variant. We propose CDX2 variants as rare genetic cause for a multiple congenital

anomaly syndrome that can include features of caudal regression syndrome and VAC-

TERL. A causative role is further substantiated by the relationship between CDX2 and

other proteins encoded by genes that were previously linked to caudal abnormalities in

humans, for example, TBXT (sacral agenesis and other vertebral segmentation defects)

and CDX1 (anorectal malformations). Our findings confirm the essential role of CDX2 in

caudal morphogenesis and formation of cloacal derivatives in humans, which to date

has only been well characterized in animals.
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1 | INTRODUCTION

Caudal type homeobox (cdx) genes encode transcriptional regulators

that have a broad role in early mesodermal fate decisions and devel-

opment of the body plan.1–3 For example, they regulate axial exten-

sion, as well as anteroposterior patterning in embryogenesis.4 The

human genome contains three known cdx genes, that is, CDX1, CDX2

(also known as CDX3), and CDX4, which are ParaHox genes of the

HOXL subclass.5,6 The developmental role of CDX2 has been exten-

sively studied in animal model systems. Its role in human development

and disease remains less understood, although ectopic activation of

the gene is involved in the development of some cancers.7 Further-

more the gene is involved in human caudal morphogenesis.

Only three pathogenic germline CDX2 variants have been described

in humans.8,9 De novo CDX2 variants have been reported in two indi-

viduals with persistent cloaca. Inherited CDX2 variants were identified

in two families with extremely variable phenotypes that ranged from

imperforate anus, renal agenesis and urogenital malformations to the

most severe form of caudal abnormality sirenomelia, a malformation

sequence characterized by fused legs and visceral abnormalities.9

Here, we describe five additional patients with pathogenic variants

in the CDX2 gene. We show that the associated phenotypic spectrum is

broad and occasionally extends beyond caudal abnormalities. These

findings highlight the pivotal role of the CDX2 gene in the development

of the uro-recto-genital tract, vertebrae, and the limbs in humans.

2 | MATERIALS AND METHODS

Whole exome sequencing was performed as described previously10

using DNA isolated according to standard procedures from blood,

chorion villi or skin biopsies. Exome capture was done using the

Agilent SureSelect XT Human All Exon kit (Agilent, Santa Clara, CA;

patient 1 and 4), the Agilent Sureselect Clinical Research Exome

(CRE) Capture kit (patient 2) or the Nimblegen SeqCap_

EZ_Exome_v3 kit (Roche Nimblegen, Pleasanton, CA; patient 3).

Exome libraries were sequenced on an Illumina HiSeq instrument

(Illumina, San Diego, CA). Sequence reads were aligned to the hg19

reference genome using BWA version 0.5.9-r16 or Novoalign ver-

sion 3. A mean coverage was obtained of 111x (patient 1), 56.5x

(patient 2), 174x (patient 3) and 121x (patient 4), with at least

99.3%, 96.5%, 98.6%, and 96% of exome nucleotides covered by at

least 10 sequence reads respectively. Variants were subsequently

called by the GATK unified genotyper, version 3.2-2 or higher ver-

sion and annotated using custom diagnostic annotation pipelines as

described previously10,11 or by Cartagenia software (Agilent Tech-

nologies). Variants were filtered using a frequency of <1% in dbSNP

and the Genome Aggregation Database (gnomAD). Data were sub-

sequently filtered for homozygous, compound heterozygous vari-

ants or X-linked inheritance modes, and for the de novo inheritance

in parent-offspring trio data. CDX2 gene variants were reported by

our laboratories in the routine diagnostic genetic work-up of the

patients involved in this study.

Variants in the CDX2 gene are described for reference sequence

NM_001265.5, which encodes for the CDX2 reference protein

NP_001256.4, using HGVS nomenclature (www.hgvs.org). Population

frequencies for variants were obtained from gnomAD (gnomad.

broadinstitute.org). In silico predictions of pathogenicity for amino

acid substitutions was done using Provean (provean.jcvi.org).

The patients in this study were recruited via matching submis-

sions for the CDX2 gene to the Genematcher website.12 Description

of the patients' clinical phenotype was done by the consulting Clinical

Geneticists as part of the routine genetic work-up according to stan-

dard procedures for this medical profession. Parents were investi-

gated either in a whole exome sequencing trio analysis,10 or via

standard Sanger sequencing for the reported variant. This study was

approved by the local institutes under the realm of routine diagnostic

genetic testing. Patients' parents were counseled by a clinical geneti-

cist and gave informed consent for the diagnostic procedure. Written

informed consent was obtained from the patients' parents for inclu-

sion of genotypic and phenotypic data in this study. The study con-

formed to principles outlined in the Helsinki Declaration.

3 | RESULTS

Patient 1 is a 6-year-old girl who presented with absence of the coc-

cygeal vertebra, anal atresia, ectopic position of a kidney and a l atrial

septal defect. Whole exome sequencing of proband and parents iden-

tified a heterozygous de novo c.684G>C; p.(Arg228Ser) variant in the

CDX2 gene, which was confirmed by Sanger sequencing. The variant

affects a highly conserved amino acid residue (conserved in evolution

as far as Caenorhabditis elegans), that is located in the homeobox

(HOX) domain of the CDX2 protein. A paralogous arginine residue is

present in the HOX domain of most other proteins from the HOXL

subclass. In CDX2, this Arg228 residue is directly involved in binding

to methylated CpG islands of its target DNA.13,14

Postpartum inspection by X-ray of patient 2 (a foetus) showed

abnormalities of the radial bones and bilateral bowed ulnae Autopsy

showed bilateral cheilognathopalatoschisis, oligodactyly and abnormal

position of the wrist. Whole exome sequencing of the foetus and par-

ents identified a de novo c.348C>A; p.(His116Gln) variant in CDX2,

which affects an evolutionarily conserved amino acid residue in the

caudal-like transcriptional activation domain of the protein. According

to local policy, no Sanger confirmation was necessary as the coverage

(41x) and mapping quality were sufficient for the variant.

Patient 3 is a foetus with absence or anomalies of the lower

extremities, absence of one of the distal long bones, at foot and the

bladder, a single umbilical artery, mild lateral curvature of the spine

and a cystic mass in pelvis. Whole exome sequencing of the foetus

and parents showed a de novo variant in CDX2, that is, c.68delG; p.

(Gly23Alafs*159), which was confirmed by Sanger sequencing. This

variant is located in exon one and leads to a frameshift and premature

termination codon in the CDX2 transcript. The premature termination

codon is predicted to result in nonsense-mediated decay (NMD) of

the transcript, which results in haploinsufficiency, although the in vivo
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effect of this variant cannot be assessed with certainty. If NMD is

bypassed, the premature termination codon would probably yield a

non-functional protein.

Patient 4 is a 13-month-old girl with a history of preterm delivery

(at 30 weeks of gestation), left sided pyelectasis (resolved), umbilical

cyst (resolved), and possible bladder septation/duplication. Pregnancy

was complicated by maternal cystic fibrosis and well controlled Type

1 diabetes. Whole exome sequencing data for the CFTR gene did not

confirm a genetic diagnosis of cystic fibrosis in the proband. Her post-

natal work-up revealed hydrometrocolpos with uterine didelphys,

duplicate ovaries, septate vagina, bilateral hydroureteronephrosis and

suspected clitoromegaly. Whole exome sequencing identified a vari-

ant of unknown significance in the CHD1L gene (NM_004284.5:

c.11C>T; p.(Ala4Val) and a heterozygous c.710G>A; p.(Arg237His)

variant in the CDX2 gene, which were confirmed by Sanger sequenc-

ing. Parental testing revealed that CHD1L variant was inherited from

the unaffected mother and it was therefore considered not to be

causative for the proband's clinical phenotype,. The CDX2 variant

however was inherited from the affected father (patient 5) who pre-

sents with a solitary kidney. A younger sibling of patient 4 passed

away following notice of bilateral renal agenesis, but no genetic test-

ing was performed. The p.(Arg237)His variant found in this family is

located within the HOX domain of the CDX2 protein and affects a

highly evolutionarily conserved amino acid residue located between

two residues that establish contact with the target DNA sequence

bound by the HOX domain. Notably, this variant has a direct effect on

CDX2 target gene expression in vitro.8

Table 1 gives details of the genotypic and phenotypic findings in

the five patients compared with patients described in the literature.8,9

Figure 1 is a schematic presentation of the CDX2 variants described

here and previously.

4 | DISCUSSION

Our findings indicate that variants in CDX2 are a rare genetic cause

for congenital abnormalities affecting the development of the anus,

the renal and urogenital system, the vertebrae and/or the limbs in

varying sequences and severity. We postulate that CDX2 abnormali-

ties cause a highly diverse and variable clinical phenotype, which

shows overlap with VACTERL, that is, renal, vertebral and limb mal-

formations and cardiac features (see Table 1). A consistent feature is

uro-recto-genital malformation, with imperforate anus being the most

frequent. The CDX2-associated clinical phenotype overlaps with cau-

dal regression syndrome, which encompasses a range of congenital

defects.15 We propose that caudal regression syndrome, sirenomelia

and persistent cloaca are part of a variable phenotypic spectrum that

may also include VACTERL-like features. A common pathogenesis for

these malformations has been proposed16–18 and our findings may

link these conditions genetically, although larger cohort studies are

needed to further substantiate this.

Animal models have defined the role for CDX2 orthologues in

caudal morphogenesis. The Drosophila caudal protein for example, is

required for formation of posterior structures19–21 and in other

arthropods the CDX2 orthologue is also required for posterior axis

elongation22 . In Amphioxus the cdx gene is essential for gut, anus

and tail patterning.23 In the mouse cdx2 is essential for

anteroposterior patterning of embryonal axis and morphogenesis of

cloacal structures.24–27 Strikingly, Cdx2 heterozygous conditional

mutant mice show a variable phenotype that can include an imperfo-

rate anus, sirenomelia, posterior vertebral truncations, and bladder

anomalies,25,26,28 which is similar to the human clinical phenotype

(Table 1).

CDX2 together with transcription factor T Brachyury (TBXT) co-

activates a regulatory network of target genes during posterior axial

elongation and both proteins instruct the “trunk to tail” transition in

mice.29 Strikingly, TBXT gene mutations in humans cause sacral agene-

sis and other vertebral segmentation defects,30,31 which overlaps with

the CDX2-associated clinical phenotype. The clinical features also

show overlap with syndromes caused by mutations in other genes of

the HOXL subclass. For example, variants in the MNX1 gene cause

Currarino syndrome,32 which is characterized by sacral agenesis and

imperforate anus. Variants in the HOXL gene CDX1 are associated

with anorectal malformations.33 CDX1 and CDX2 have overlapping
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domain

13-171 190-242 250-256 3131
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F IGURE 1 Schematic representation of the functional domains of the CDX2 proteins and the variants described in literature8,9 and in this
study (underlined). The Figure is based on CDX2 protein reference sequence NP_001256. Amino acid positions are indicated as numbers below
the protein domains. The poly-alanine (“Poly A"), poly-glutamine (“Poly Q"), and poly-proline (“Poly P”) stretches in the protein are indicated
above the domains [Colour figure can be viewed at wileyonlinelibrary.com]

STEVENS ET AL. 187

http://wileyonlinelibrary.com


functions in posterior axis elongation in mice27 and have strong co-

expression during anorectal morphogenesis in human embryos.34 A

mutation in the HOXL gene HOXD13 has been linked to VACTERL.35

We are unable to link the type of CDX2 variant to the severity or

diversity of the phenotype. The recurrent pathogenic missense variant

in the HOX domain of the protein, p.(Arg237His), that was found in

three unrelated families exhibits remarkable variability in phenotypic

expression. This ranges from persistent cloaca,8 sirenomelia and renal/

urogenital anomalies in offspring of mildly affected mothers with imper-

forate anus9 and Müllerian abnormalities in patient 4, with a solitary kid-

ney in her mildly affected father. Patient 2 has a missense variant in the

activation domain, while the other variants either concern nonsense or

frameshift variants or missense variants in the HOX domain. Remark-

ably, patient 2 only had radial abnormalities, which are often seen in

VACTERL-like phenotypes, but caudal morphogenesis defects were

absent. It remains unclear however whether this is due to location of

the CDX2 variant because the number of CDX2 patients currently is

too small for a thorough genotype–phenotype analysis. Another limita-

tion of our study is the fact that we did not perform functional or animal

studies that may further define the pathogenic mechanisms causing the

phenotype and may explain its variability.

The reason for the observed phenotypic diversity therefore remains

unclear but may be related to (epi)genetic modifiers of the phenotype or,

teratogenic environmental or maternal factors, as postulated.18,36,37 Dif-

ferences in control of homeostasis of retinoic acid (RA) may possibly be

involved as well. CDX2 indirectly inhibits RA by upregulating CYP26A1, a

cytochrome that catabolizes RA. Loss of CDX2 function therefore leads

to prolonged RA bioactivity which impairs axial mesoderm ontogenesis.25

Interestingly, RA exposure of heterozygous conditional mutant mice

resulted in the development of sirenomelia, underscoring the molecular

interplay between CDX2 and RA signaling.25

In conclusion, our findings confirm that CDX2 gene variants

should be considered as a rare cause of vertebral, urogenital, limb,

and/or anal anomalies.
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