
An Introduction to the COLIN Optimization Interface

William E. Hart

Sandia National Laboratories
P. O. Box 5800, MS 1110

Albuquerque, NM 87185-1110
wehart@sandia.gov

Abstract

We describe COLIN, a Common Optimiza-
tion Library INterface for C++. COLIN
provides C++ template classes that define a
generic interface for both optimization prob-
lems and optimization solvers. COLIN is
specifically designed to facilitate the devel-
opment of hybrid optimizers, for which one
optimizer calls another to solve an optimiza-
tion subproblem. We illustrate the capabili-
ties of COLIN with an example of a memetic
genetic programming solver.

1 Introduction

A wide variety of software packages have been devel-
oped to solve various types of optimization applica-
tions (e.g. see More and Wright [14]). Unfortunately,
the large number of optimization codes available can
make it difficult for a novice to apply any particular
optimization solver. Setting up and applying an op-
timizer requires a user to call a particular sequence
of functions, and in some cases the user must create
a subroutine to provide an interface between the op-
timizer and function evaluator. Additionally, it can
be quite difficult to compare optimizers because inter-
faces to different optimization software can be quite
different even if the underlying solvers are similar.

A variety of general-purpose nonlinear optimization
packages have been developed using object-oriented
programming to overcome these obstacles [2, 3, 4, 5,
6, 8, 9, 13, 15], as well as many packages focused on
a particular class of solvers (e.g. evolutionary algo-
rithm libraries like GAlib [18] and EO [11]). These
packages use objects to provide data abstractions for
solvers, objective functions, constraints and other op-
timization components. These objects provide data

abstractions that shield a user from unnecessary de-
tails of a particular code, and they help ensure that
the optimization software is reliable and easier to re-
use in new applications.

In this paper we describe COLIN, a collection of C++
classes that provides a Common Optimization Library
INterface. The goal of COLIN is to provide an object-
oriented mechanism to (1) encapsulate other optimiza-
tion solvers, and (2) specify data transformations be-
tween user data types and solver data types. COLIN
enables the use of optimization solvers provided by dif-
ferent software packages in a more seamless manner.
Additionally, COLIN facilitates the application of hy-
brid optimizers like multi-start methods and memetic
evolutionary algorithms with a wide range of local op-
timizers.

The next section provides additional background and
motivation for the development of COLIN. Subse-
quently, we illustrate the capabilities with a series of
simple examples. In particular, we show how COLIN
can be used to apply traditional, nonlinear optimizers
to perform local search on S-expressions searched by
genetic programming solvers. Finally, we discuss some
outstanding issues with the design and application of
COLIN.

2 Background and Motivation

Object-oriented programming is a modern approach
to support code modularity and reusability. Many
programming languages support object-oriented con-
structs, though C++ is a particularly popular choice
for optimization software. C++ offers powerful object-
oriented abstractions, and it is readily interfaced with
user-application software in languages like C and For-
tran. Further, C++ can be run on virtually all hard-
ware platforms, including parallel architectures like
Sandia’s Cplant machine, which only supports a re-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56745242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


stricted operating system kernel.

Object-oriented languages like C++ provide support
for encapsulation, sharing, and inheritance of code. In
particular, encapsulation allows the external aspects
of an object, which are accessible to other objects and
users, to be separated from its internal implementa-
tion details. This helps ensure that objects are used
in a robust manner. Thus encapsulation facilitates the
development of software components that can be ro-
bustly reused in different contexts.

Object-oriented software design offers many advan-
tages for optimization software (e.g, see Meza [13]).
First, object-oriented design can provide a simpler
and more consistent user interface for optimization li-
braries. Many of the C++ software packages men-
tioned above use objects to distinguish between the
problem and the method used to solve the problem.
This allows users to focus on creating a problem object
that represents their application and then selecting a
solver object that can be used to perform optimization.
Further, the use of a consistent interface for problem
and solver objects allows the user to focus on the spe-
cific application rather than struggling to understand
the requirements of various optimization components.
This has the added advantage that a consistent design
will encourage users to apply a variety of optimization
solvers to their applications.

A second advantage is that object-oriented design pro-
vides a better program interface for the user. The en-
capsulation provided by objects can protect users from
inappropriately applying these tools. More fundamen-
tally, software based on object-oriented designs is to be
preferred to optimization software designs like reverse-
communication, which violates several good program-
ming practices (e.g. single-entry single-exit).

A third advantage is that object-oriented software can
facilitate the rapid development of new optimization
algorithms. The software components used to develop
methods like quasi-Newton solvers and evolutionary
algorithms can often be modularized. This allows al-
gorithmic designers the ability to consider, implement
and compare a wide range of related solvers. The
MOOCHO library is a particularly good example of
how object-oriented programming can be leveraged in
this fashion [1].

A related advantage of object-oriented design is that
software components can be reused within different
solvers. For example, different line search methods are
useful in different contexts. However, by implement-
ing these as objects we can apply any of a number of
nonlinear optimization methods that are based on line

search in a very flexible manner.

These observations have motivated the development
of an increasing number of object-oriented optimiza-
tion software packages (e.g. see [1, 2, 3, 4, 5, 6, 8, 9,
13, 11, 15, 18]). Unfortunately, each of these packages
provides slightly different abstractions for optimiza-
tion components. Consequently, though we can argue
that these advantages exist for any given package, the
reality is that users are still faced with the prospect
of applying solvers from multiple software packages,
each of which potentially has a different programming
interface.

A similar issue arises when you consider the challenge
faced by algorithm designers who are developing hy-
brid optimizers (e.g. simple multi-start local search).
Although object-oriented optimization software pro-
vides valuable encapsulation of optimizers, the inter-
operability promised by object-oriented design is not
achieved in this context because of the different ab-
stractions used by different packages. Thus the appli-
cation of multi-start local search with different local
search methods may require the algorithm designer to
support interfaces to different external software pack-
ages (e.g. the DAKOTA toolkit [6] includes interfaces
to packages like DOT, NPSOL, OPT++, MOOCHO,
SGOPT and PICO).

The software components in COLIN were designed to
address these two issues by providing C++ optimiza-
tion components that can be used to easily provide
wrappers for other optimization solvers. COLIN pro-
vides mechanisms for specifying data transformations
between user data types and solver data types, which
clearly distinguishes the role of COLIN as providing
wrapper mechanisms. Consequently, COLIN facili-
tates the application of hybrid optimizers like multi-
start local search when (a) the global solver applies a
COLIN optimizer and (b) COLIN wrappers have been
developed for a variety local optimizers.

3 COLIN Overview

There are three main C++ classes provided by
COLIN:

• OptSolver: defines the procedure for performing
optimization on a problem

• OptProblem: provides the overall problem def-
inition to a solver object

• OptApplication: an internal class visible to
a problem object that contains the information



about how the objective and constraint functions
are to be computed

Our description of COLIN will focus on the program-
ming interface that these classes provide a user. In
particular, we omit examples of how COLIN can be
used to provide a wrapper for an optimization solver.

3.1 Basic Functionality

Figure 1 illustrates how COLIN solver and problem
classes are used to perform optimization. COLIN sup-
ports the use of a user-defined function func that de-
fines the objective (and possibly constraints). The
COLIN OptProblem class is constructed using a
template argument to specify the typename of a point;
in Figure 1 the type is vector<double>. OptSetup

is an overloaded function that initializes a problem
class with information about how the objective (and
constraint) functions are to be computed. In partic-
ular, OptSetup creates an OptApplication object
for the user.

In addition to initializing a problem with an OptAp-

plication object, a user can set options within a prob-
lem using ClassOptions methods; OptProblem is a
subclass of ClassOptions. The set option method
takes a string argument that specifies the option. The
second arguement to set option is an arbitrary object
that represents the value of the option.

In Figure 1, the sMC class is a subclass of the COLIN
class OptSolver. A COLIN solver class may also be
specified with a template argument to specify the type-
name of a point. The set problem method is used to
tell a solver object the problem to be optimized. Opt-

Solver is also a subclass of ClassOptions, so solver
options can be set with the set option method. After
the solver has been setup, the reset method must be
used to initialize internal data structures and to check
for errors in the solver configuration.

Finally, the minimize method is used to apply a solver
to perform minimization on a problem. After opti-
mization is completed, several methods like min val

can be used to examine the optimal solution.

3.2 Mapping Domains

Figure 2 illustrates how COLIN supports the appli-
cation of solvers with problem classes defined over
different problem domains. When a solver object is
setup with a problem object defined over a different
domain, evaluating trial points generated by the op-
timizer requires that they be mapped into the do-
main type of the problem object. COLIN employs

// A test function

double func(vector<double>& point);

// Create a problem class

OptProblem<vector<double> > prob;

// Call ’OptSetup’ to initialize ’prob’

// with the function pointer

OptSetup(prob, func);

// Set other class options in ’prob’

prob.set_option("domain","[-1.0,1.0]^3");

// Create a solver class

sMC<vector<double> > opt;

// Tell the solver which problem to solve

opt.set_problem(prob);

// Set other class options in ’opt’

opt.set_option("max_neval",100);

// Reset the solver to prepare it for

// minimization

opt.reset();

// Perform minimization

opt.minimize();

// Print the best value after optimization

cout << opt.min_val() << endl;

Figure 1: The basic steps needed to create, initialize
and apply OptSolver and OptProblem classes.

the map domain function to perform this mapping,
which can be specialized using C++ template special-
ization mechanisms.

Although domain mapping may simply appear a con-
venience for users, this capability is essential for the
application of optimization solvers in a generic fashion.
If COLIN is used to wrap optimizers in different pack-
ages, the COLIN wrapper classes may naturally be
defined using different domain types. Thus COLIN’s
facility for domain mapping allows a user to define a
single problem object that can be solved using these
different COLIN wrapper classes.

3.3 Hybrid Solvers

Hybrid optimization solvers combine two or more dif-
ferent optimization methods so as to exploit their com-
plementary capabilities. A classic application of hy-
brid optimizers is for global optimization, where it is
well-known an effective design for randomized global
optimizers is to combine global random search with
local refinement [17]. Effective local search methods
have been developed for many application domains, so
local search can be used to refine the solutions gener-



// Mapping function

template<>

void map_domain(vector<double>& x,

const array<double>& y)

{ for (int i=0; i<y.size(); i++)

x[i] = y[i]; }

// Problem with domain vector<double>

OptProblem<vector<double> > prob;

// Solver with domain array<double>

sMC<array<double> > opt;

// Set a problem with a domain that is

// mapped by the map_domain() template

// function

opt.set_problem(prob);

Figure 2: Interfacing problem and solver objects con-
structed with different domain types.

ated by global random search methods. This algorith-
mic idea is employed in simple multi-start local search,
as well as more sophisticated methods like topological
search and memetic evolutionary algorithms.

COLIN facilitates the development and application of
hybrid solvers by (a) providing a simple, general inter-
face for solvers and (b) providing the domain mapping
functionality that enables solvers from different pack-
ages to communicate with each other. Figure 3 illus-
trates this capability using the sMC solver to perform
global search and the PatternSearch solver to per-
form local search. Note that these solvers are defined
over different domains, so the map domain template
function needs to be implemented. However, mapping
needs to be done in both directions: (a) a global trial
point is mapped into a local solution before it is lo-
cally refined, and (b) the final local solution generated
by the local optimizer is mapped back into the global
solution type.

3.4 Domain Traits

COLIN clearly supports the use of opaque domain
types through the application of the map domain

facility. In addition, COLIN offers the ability to de-
fine features of a user-defined domain type using C++
traits. Figure 4 illustrates how the OptDomain-

Traits class is specialized to indicate that derivatives
can be computed with the UserDomain data type be-
cause there are real-valued parameters available within
UserDomain objects.

This facility is particularly valuable when applying hy-

// Mapping function

template<>

void map_domain(vector<double>& x,

const array<double>& y)

{ for (int i=0; i<y.size(); i++)

x[i] = y[i]; }

// Mapping function

template<>

void map_domain(array<double>& x,

const vector<double>& y)

{ for (int i=0; i<y.size(); i++)

x[i] = y[i]; }

// Local solver with domain

// vector<double>

PatternSearch<vector<double> > local;

// Global solver with domain

// array<double>

sMC<array<double> > global;

// Setup the global solver to use the

// local solver

global.set_solver(local);

Figure 3: Interfacing two solver objects to form a hy-
brid solver.

brid optimizers. In this case, domain traits provide a
mechanism for signaling the features of a problem that
are supported (e.g. linear constraints). Additionally,
domain traits can be used to perform error checks to
verify that particular hybrids are valid (e.g. to verify
that gradients are available for gradient-based optimiz-
ers).

4 An Application Example

We illustrate the utility of COLIN by describing its
application for the design of a memetic evolutionary
algorithm. The evolutionary algorithm we consider
is a genetic program [12], for which the search do-
main is the set of s-expressions defined over some al-
phabet. This alphabet includes constants (typically
floating point values), n-ary operators and variables.
Thus an s-expression defines a computational graph
that can be evaluated given the input values of the
variables. Figure 5 illustrates a simple s-expression
that expresses a simple algebraic expression.

We consider the application of a genetic program to
solve a simple nonlinear least squares problem. Let
{(x1, y1), . . . , (xk, yk)} be a set of input-output pairs
for which we wish to build a model f(x, c1, . . . , cn),



// A user-defined domain type

class UserDomain {

vector<double> x;

vector<int> y;

};

// Define domain traits to show that

// UserDomain contains real parameters

template <>

bool OptDomainTraits<UserDomain>::

reals=true;

// Create a problem class

double func(UserDomain& point);

OptProblem<UserDomain > prob;

OptSetup(prob, func);

// Evaluate the partial derivative of

// a point with respect to real

// parameters.

UserDomain point;

vector<double> gradient;

prob.EvalG(point,gradient);

Figure 4: Evaluate the partial derivative with a user-
defined domain type.

where the values ci are selected to minimize a least
squares criterion:

min
ci∈R

k∑

i=1

(yi − f(xi, c))
2
.

Genetic programming methods can evolve
s-expressions to identify a function f along with the
values for the parameters c.

We consider ω = {+,−, ·, /}, a set of binary operators

*

3 x

+

/

y*

2 x

Figure 5: An s-expression that describes the algebraic
expression 3x + 2x/y.

used to defined s-expressions, and τ = {x, c1, . . . , cn},
a set of terminals used in these s-expressions. Let Sω,τ

be the set of possible s-expressions that can be repre-
sented. Thus our goal is to solve the problem

min
g∈Sω,τ

k∑

i=1

(yi − g(xi))
2
.

Topchy and Punch [16] note that this problem can
be decomposed into a search for the functional form
of the optimal s-expression and a search for the val-
ues ci, which are constants in the s-expression. Fur-
ther, they note that in applications like nonlinear least
squares, the objective function is differentiable with re-
spect to the values ci if suitable operators are chosen in
ω. Topchy and Punch demonstrate that a memetic ge-
netic programming algorithm using a simple gradient-
based local search method is more effective than a
standard genetic programming solver.

An obvious extension of this work is to consider
memetic genetic programming methods using alterna-
tive local search techniques. There are a wide vari-
ety of gradient-based nonlinear optimizers that could
be applied to this application, and in particular the
Gauss-Newton and Levenberg-Marquardt methods are
well suited for nonlinear least squares applications
(particularly when the least squares objective of the
optimal solution is not large [7]). Unfortunately, it
would be an onerous task to couple standard genetic
programming software with numerical optimization
packages that support these types of solvers. COLIN
simplifies the development of this hybrid through the
use of domain mapping and domain traits; the pro-
gramming interface for a user would be a combination
of the examples in Figures 3 and 4.

5 Discussion

The design goal for COLIN has been to provide opti-
mization middleware that can facilitate the use of (a)
hybrid optimizers and (b) conventional optimizers on
subdomains of more generic search spaced (e.g. the
application of nonlinear optimizers to s-expressions).
The class structure of COLIN makes rather sophisti-
cated use of C++ template capabilities to provide this
capability. Thus while the user interface for COLIN is
quite simple, the underlying mechanisms are rather
complex.

Consequently, a limitation of COLIN is that it may
be difficult to extend it to support new solver inter-
faces that are not part of the existing class interfaces.
For example, solvers for specific domains may need in-
formation about the problem structure that might be



difficult to support within COLIN in a generic fash-
ion. Additionally, support for new data about the so-
lution may be difficult to integrate without adapting
several core COLIN classes; the structure of the classes
in COLIN does not facilitate the use of C++ inheri-
tance to achieve this goal.

COLIN current is composed of a collection of about
20 C++ files, which employ STL objects for stan-
dard data types. Additionally, COLIN depends on
the UTILIB utility library [10] for miscellaneous sup-
port of error management, mathematical routines and
parallel communication tools. COLIN is currently be-
ing developed within the Coliny optimization library,
which provides COLINized versions of the optimizers
in SGOPT [9], and we are working on making COLIN
and Coliny available for public distribution and devel-
opment through the Lesser Gnu Public License.

Acknowledgements

We are grateful to Mike Eldred for his many help-
ful discussions. Sandia is a multipurpose laboratory
operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of En-
ergy under contract DE-AC04-94AL85000.

References

[1] R. Bartlet. MOOCHO Multifunctional Object-
Oriented arCHitecture for Optimization: Users
guide. Technical report, Sandia National Labo-
ratories, 2003. in preparation.

[2] S. J. Benson, L. C. McInnes, and J. J. More.
GPCG: A case study in the performance and
scalability of optimization algorithms. ACM
Transactions on Mathematical Software (TOMS),
27(3):361 – 376, 2001.

[3] D. L. Bruhwiler, S. G. Shasharina, J. Cary, and
D. Alexander. Design and implementation of an
object oriented C++ library for nonlinear opti-
mization. In M. E. Henderson, C. R. Anderson,
and S. L. Lyons, editors, Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing,
pages 165–173, 1998.

[4] H. L. Deng, W. Gouveia, and J. Scales. The CWP
object-oriented optimization library. Technical re-
port, Colorado School of Mines, 1994.

[5] H. L. Deng, W. Gouveia, and J. Scales. An object-
oriented toolbox for studying optimization prob-
lems. In Inverse Methods. Springer-Verlag, 1996.

[6] M. S. Eldred, A. A. Giunta, B. V. B. Waan-
ders, J. Wojtkiewicz, Steven F., W. E. Hart, and
M. P. Alleva. DAKOTA, a multilevel parallel
object-oriented framework for design optimiza-
tion, parameter estimation, uncertainty quantifi-
cation, and sensitivity analysis: Version 3.0 users
manual. Technical Report SAND2001-3796, San-
dia National Laboratories, 2001.

[7] P. E. Gill, W. Murray, and M. H. Wright. Prac-
tical Optimization. Academic Press, 1981.

[8] M. S. Gockenbach, M. J. Petro, and W. W.
Symes. C++ classes for linking optimization
with complex simulations. ACM Transactions on
Mathematical Software, 25:191–212, 1999.

[9] W. E. Hart. SGOPT user manual version 2.0.
Technical Report SAND2001-3789, Sandia Na-
tional Laboratories, 2001.

[10] W. E. Hart. UTILIB user manual version 1.0.
Technical Report SAND2001-3788, Sandia Na-
tional Laboratories, 2001.

[11] M. Keijzer, J. J. Merelo, G. Romero, and
M. Schoenauer. Evolving objects: A general pur-
pose evolutionary computation library. In Proc
Evolution Artificielle, 2001.

[12] J. Koza. Genetic Programming. MIT Press, 1993.

[13] J. C. Meza. OPT++: An object-oriented class
library for nonlinear optimization. Technical Re-
port SAND94-8225, Sandia National Laborato-
ries, 1994.

[14] J. J. More and S. J. Wright. Optimization Sofi-
ware Guide. SIAM Press, Philadelphia, PA, 1993.

[15] A. Raggl and W. Slany. A reusable iterative opti-
mization library to solve combinatorial problems
with approximate reasoning. International Jour-
nal of Approximate Reasoning, 19(1-2):161–191,
July/August 1998.

[16] A. Topchy and W. Punch. Faster genetic pro-
gramming based on local gradient search of nu-
meric leaf values. In Proc Genetic and Evolu-
tionary Computation Conf, pages 155–162, San
Francisco, 2001. Morgan Kaufmann.

[17] A. Törn and A. Žilinskas. Global Optimization,
volume 350 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.

[18] M. Wall. GAlib: A C++ library of genetic al-
gorithm components, 1998.
http://lancet.mit.edu/ga/.


