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with the state of the art. The main ideas of this paper are not TWAVRP specific and can be
applied to other vehicle routing problems with consistency considerations or synchro-
nization requirements.

History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—Continuous.
Supplemental Material: The online supplement is available at https://doi.org/10.1287 /ijoc.2020.0974.

Keywords: vehicle routing * time window assignment < symmetry  synchronization * consistency « branch-price-and-cut

1. Introduction hours of the stores. In retail, stores are often assigned a
We consider the time window assignment vehicle  time window that does not change for a longer period
routing problem (TWAVRP), the problem of assign-  of time (e.g., one year). The TWAVRP was introduced
ing time windows to clients in a distribution network ~ to assign time windows in this setting, taking the
before the demand of the clients is revealed. It is  uncertainty of the future demand into account.

assumed, however, that a list of possible demand Spliet and Gabor (2015) present a branch-price-
scenarios and corresponding probabilities is given.  and-cut (BPC) algorithm to solve TWAVRP instances
The TWAVRP asks for an assignment of time win- ~ with up to 25 clients and three demand scenarios

dows to the clients and, for each scenario, a set of ~ within one hour of computation time. Spliet and
feasible routes that adhere to the assigned time win- ~ Desaulniers (2015) present a BPC algorithm for the
dows and the scenario-specific demand such that the =~ DTWAVRP, a variant of the TWAVRP in which each
expected cost of distribution is minimized. That is, each ~ endogenous time window is chosen from a discrete
client is assigned a single time window, which should  set of options. With their exact method, the authors
be respected regardless of which scenario occurs. Each  are able to solve instances of similar size as the in-
assigned time window or endogenous time windowisof ~ stances by Spliet and Gabor (2015), and they present
fixed width. Furthermore, the endogenous time win-  a heuristic for larger instances. Another variant of
dows must fall within given exogenous time windows. ~ the TWAVRP is the TWAVRP with time-dependent
The TWAVRP was first introduced by Spliet and  travel times for which a BPC algorithm is presented in
Gabor (2015) and was inspired by distribution net-  Spliet et al. (2018).
works of retail chains. In this setting, the clients are Dalmeijer and Spliet (2018) introduce a branch-
retail stores that are supplied from a central depotand ~ and-cut (BC) algorithm for the TWAVRP, which
the exogenous time windows represent the opening  makes use of a new class of valid inequalities: the
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precedence inequalities. This algorithm solves the
benchmark instances introduced by Spliet and Gabor
(2015) on average 193.9 times faster than the original
BPC algorithm and allows for instances with up to 35
clients and three demand scenarios to be solved.

Subramanyam et al. (2018) present a scenario de-
composition algorithm to solve strategic time win-
dow assignment vehicle routing problems, including
the TWAVRP and the DTWAVRP. The decomposi-
tion results in multiple vehicle routing problems that
can be solved in a “black box” fashion. When applied
to the TWAVRP, their algorithm outperforms the BC
algorithm by Dalmeijer and Spliet (2018), and in-
stances with up to 50 clients and three demand sce-
narios are solved to optimality. Additionally, in-
stances with 25 clients are solved to optimality for up
to 15 demand scenarios.

For an increasing number of companies, client
satisfaction has become a priority as satisfied clients
provide a better lifetime value. As client satisfaction is
often the result of consistent service, various types of
consistency have been considered in the literature
(see Kovacs et al. 2014 for a recent survey). In the case
of the TWAVRP, clients are always visited within
the assigned time window, which can be classified as
time consistency.

A problem closely related to the TWAVRP is the
consistent vehicle routing problem (ConVRP) intro-
duced by Groér etal. (2009). Where the TWAVRP only
imposes time consistency, the ConVRP is more re-
strictive and imposes both time and driver consis-
tency, that is, each client should always be visited by
the same driver. Lian (2017) presents a branch-and-
price algorithm for the ConVRP in which driver
consistency is enforced in the pricing subproblem.
Subramanyam and Gounaris (2018) focus on the single-
vehicle variant of the ConVRP and present a decom-
position algorithm.

The TWAVRP can also be seen as a vehicle routing
problem with operation synchronization constraints
(Drexl 2012). That is, the routes in the different sce-
narios have to be synchronized such that the visits to a
client (the operations) in different scenarios are at
approximately the same time.

It is well known that symmetry has a negative
impact on branch-and-bound algorithms as it can
lead to multiple branches for which symmetric op-
timal solutions are computed. In this paper, we in-
troduce the concept of orientation symmetry, and we
show that orientation symmetry has a big impact on
the algorithms by both Spliet and Gabor (2015) and
Dalmeijer and Spliet (2018).

We then propose an edge-based branching method
combined with additional components to eliminate
orientation symmetry from the search tree. The first
additional component is an algorithm to find the best

solution to the TWAVRP out of a set of orientation-
symmetric solutions. We make use of the precedence
inequalities to speed up this algorithm and make it
efficient in practice. The second additional compo-
nent is a novel constraint that is used to cut off groups
of orientation-symmetric solutions.

For the TWAVRP, branching only on the edge flows
is not sufficient to explore the whole search tree as
opposed to several other vehicle routing problems in
which this is the case (e.g., the symmetric capacitated
vehicle routing problem). By combining edge-based
branching with the additional components, we are
able to solve the TWAVRP while addressing orien-
tation symmetry.

Based on our method to address orientation sym-
metry, we construct a BPC algorithm to solve the
TWAVRP to optimality. Our computational experi-
ments show that addressing orientation symmetry
significantly improves our algorithm: the number of
nodes in the search tree is reduced by 92.6% on av-
erage (from 145.0 to 10.7), and 25 additional bench-
mark instances are solved to optimality. Furthermore,
the resulting algorithm is competitive with the sce-
nario decomposition algorithm by Subramanyam
et al. (2018).

Our experiments also show that addressing ori-
entation symmetry improves the BC algorithm by
Dalmeijer and Spliet (2018). Finally, we conduct ex-
periments on instances with additional clients and
instances with additional demand scenarios.

This paper is structured as follows. In Section 2,
we present the set-partitioning formulation for the
TWAVRP. We also state the precedence inequalities
as they are used in a later section of the paper. In
Section 3, we define orientation symmetry and present
an edge-based branching method combined with ad-
ditional components to eliminate orientation sym-
metry from the search tree. Section 4 presents the BPC
algorithm, and Section 5 details our computational
experiments. In the final section, we give a conclusion
and present some directions for further research.

2. Mathematical Formulation and

Precedence Inequalities
In this section, we present the set-partitioning for-
mulation for the TWAVRP introduced by Spliet and
Gabor (2015) and the precedence inequalities pro-
posed by Dalmeijer and Spliet (2018).

2.1. Set-Partitioning Formulation

The TWAVRP is defined on a graph G = (V,A) with
V={0,1,...,n+1}. VerticesOand n + 1 correspond to
the depot and are referred to as the starting depot
and the ending depot, respectively. The other verti-
ces correspond to the n clients. For convenience,



Dalmeijer and Desaulniers: Addressing Orientation Symmetry in the TWAVRP

INFORMS Journal on Computing, 2021, vol. 33, no. 2, pp. 495-510, © 2021 INFORMS

497

let V/ ={1,...,n}. The set A consists of all arcs from
the starting depot to the clients, all arcs between cli-
ents, and all arcs from the clients to the ending depot.
Each arcin (i,j) € A is associated with a cost ¢;; and a
travel time 7;;. Both the costs and the travel times are
nonnegative and satisfy the triangle inequality. Ser-
vice times at the clients are included in the travel times
by adding the service time at client i to the travel time
of all outgoing arcs.

The demand uncertainty is modeled through Q, a
finite set of demand scenarios. Each demand sce-
nario w € Q) occurs with probability p,. Naturally,
SweaPo =1.Forclientie€ V', demand in scenario w € QO
is given by d¢ > 0. This is a slight generalization of
the assumption by Spliet and Gabor (2015), who as-
sume that demand is strictly positive. Let V! C V' be
the set of clients with nonzero demand, that is, the
clients that have to be visited in scenario w. We have
access to an unlimited number of identical vehicles
with capacity Q. For all i € V’ and w € (), we assume
that df’ < Q.

Each vertex i € V is associated with an exogenous
time window with starting time s; > 0 and ending
timee; > s;. Vertices 0 and n + 1 both refer to the depot,
and thus, sy = s,+1 and ey = ¢,41. Each client i € V' has
to be assigned a time window of given nonnegative
width u;, which has to be within the exogenous
time window. Service must start, but not necessarily
complete, within the assigned time window.

In this paper, a route refers to a pair (P, f) with P an
elementary path in G from the starting depot to the
ending depot and t a vector of times at which service
starts at the clients. We define . to be the time at which
service starts at client i if route r is used. To allow for a
concise formulation, . is defined to be equal to zero
forall clients i that are not in the path P corresponding
to route r. For each w € Q), R(w) is the set of all feasible
routes in scenario w. Route r is feasible in scenario w if
the exogenous time windows and the vehicle capacity
are respected, and only clients with nonzero demand
are visited (i.e., clients in V). For all routes r and
clients i, we define 4! to be equal to one if client i is
served by route r and zero otherwise. Similarly, let bl
be equal to one if arc (i, /) is contained in route r and
zero otherwise. The cost of route r is given by c;.

For each client i € V’, the variable y; indicates the
start of the endogenous time window. As the en-
dogenous time window is of fixed width u;, it follows
that the time window ends at y; + ;. Recall that each
endogenous time window should be contained in the
exogenous time window, and hence, y; € [s;, ¢; — u;].

The route variables 0 give the contribution of
route 7 € R(w) to the solution in scenario w. The flow
onarc (i, j) in scenario w is given by the flow variables x;.
We obtain a feasible solution to the TWAVRP if all
flow variables are integral even if the route variables

are fractional. This follows from the fact that a con-
vex combination of routes corresponding to the same
path is feasible.

Given this notation, the TWAVRP can be expressed
as the following set-partitioning model:

min > p, >, 0, (1)

weQ) reR(w)

st. > a0v =1 YoeQ,ieV,, (2

rER(w)

> B0V >y YoeQ,ieV,,  (3)
reR(w)

Z tie:’ Syit+u; YwoeQ,ie V;), (4)
reR(w)
Yi € [Si/ e — l/li] Vie V,, (5)
0y >0 Yo eQ, reR(w), (6)
= >, 060 VoeQ (ijjed, (7)

rER(w)

x €{0,1} YweQ, (ij)eA.  (8)

The objective Function (1) is to minimize the expected
cost of distribution. Constraints (2) ensure that, in
each scenario, every client with nonzero demand is
visited exactly once. Note that clients with zero de-
mand are never visited because of our definition of R(w),
the set of feasible routes in scenario w. Constraints (3)
and (4) guarantee that, in each scenario, the time
of service for each visited client is within the en-
dogenous time window. Constraints (5) define the
continuous variables that indicate the starting times
of the endogenous time windows. The route variables
are defined by Constraints (6) and are linked to the
flow variables by Constraints (7). Finally, Constraints (8)
state that the flow variables are subject to binary
requirements.

Recall that each route r consists of a pair (P, f). As
waiting is allowed and t is a continuous vector of
times of service, it follows that the number of routes
and, thus, the number of variables in this formulation
are typically infinite.

2.2. Precedence Inequalities

The precedence inequalities are inequalities based on
the following fact. Consider an integral solution to the
TWAVRP that contains route r = (P, t) € R(w) in sce-
nario w and route 7 = (P’,t') € R(w’) in scenario «’.
Assume that there exist two client vertices i,j € V'
such that P contains a subpath p from i to j and P’
contains a subpath p’ from j to i. Let A, and A, be the
arc sets of p and p’, respectively. It then holds that

Z Tk + Z Tk,SuH—uj. (9)

(k)eA, (k)eA,

This fact follows from the following observation. For
route r to visit both 7 and j within their endogenous
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time windows, client i should be served after time y;
and client j should be served before time y;+ u;.
Hence, an upper bound on the time between the visits
to iand jis given by y; + u; — y;. That is, Xk nea, T <
Yj + uj — y;. Analogously, route 1 implies that X pea,
T <y;+u;—y;. By adding up these two inequalities,
y; and y; cancel, and Inequality (9) follows.

Though not presented in Dalmeijer and Spliet (2018),
it is straightforward to extend this idea to the case in
which the depot is involved. Define an endogenous
time window for the depot that has the same width as
the exogenous time window. That is, define 1y =¢y —sp.
Now, for a subpath p of P fromi=0toje€ V' and a
subpath p’ of P’ from j€ V' to n + 1, Inequality (9)
holds by the same argument as before.

Dalmeijer and Spliet (2018) use inequalities of the
form (9) to derive the precedence inequalities. In this
paper, we only state the path-precedence inequalities, a
subclass of the precedence inequalities.

Consider a pair of elementary paths p and p’ as
described earlier such that Inequality (9) does not
hold. Furthermore, consider a pair of distinct sce-
narios w,w’ € Q. The path-precedence inequalities
can then be stated as

P xy <A+ 1Ay -1,
(kDeA, (kl)eA,

(10)

As p and p’ are chosen such that Inequality (9) does
not hold, it must be that ¥ yea, xj;<|Ap| or Xnea,
x¢ <|Ay|. By integrality of the x-variables, Inequal-
ity (10) follows.

3. Orientation Symmetry

Given a feasible solution to the TWAVRP, it is often
possible to find another feasible solution by first
changing the orientation of one or more routes and
then reassigning the endogenous time windows.
Changing the orientation of a route here means that the
clients are visited in the reverse order. For example, if
we change the orientation of a route in scenario w that
starts at the depot; visits clients 1, 2, and 3; and then

Figure 1. (Color online) Example Solution 1
y,=3

Y= 2

depot

Scenario 1

returns to the depot, we obtain a route in scenario w
that starts at the depot; visits clients 3, 2, and 1; and
then returns to the depot.

If one feasible solution can be turned into another
feasible solution by changing route orientations and
reassigning the endogenous time windows, then we
say that these solutions are orientation symmetric.
Reassigning the endogenous time windows may in-
deed be necessary: By changing the orientation of one
or more routes, the current endogenous time windows
can become infeasible. If the arc costs are symmetric, then
orientation-symmetric solutions have the same objec-
tive value.

We now present an example of two orientation-
symmetric solutions. Consider an instance of the
TWAVRP with four clients and two demand sce-
narios. Every arc has a travel time of one, and all
endogenous time window widths are set to zero.
Recall that the start of the endogenous time window
of client i € V' is given by y;.

It can be seen that solution 1 (Figure 1) and solu-
tion 2 (Figure 2) are orientation-symmetric solutions.
Solution 1 can be turned into solution 2 by reversing
the route visiting clients 3 and 4 in scenario 1; re-
versing the route visiting clients 3, 4, and 2 in scenario 2;
and by reassigning the endogenous time windows.

Out of the 40 benchmark instances introduced by
Spliet and Gabor (2015), instances 12, 36, and 37 are
among the most difficult to solve with both the al-
gorithm by Spliet and Gabor (2015) and the algorithm
by Dalmeijer and Spliet (2018). Interestingly, these
instances all contain a number of orientation-symmetric
optimal solutions: 11, 112, and 40, respectively.

It is well known that the presence of symmetric
solutions has a negative impact on the performance of
branch-and-bound methods, which may in part ex-
plain why instances 12, 36, and 37 are difficult to
solve. In the remainder of Section 3, we propose an
edge-based branching method, combined with ad-
ditional components, that ensures that orientation-
symmetric solutions are always in the same branch,
thereby eliminating orientation symmetry in the

¥,=3 Y= 2

depot

Scenario 2
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search tree. In Section 5, we show computationally
that addressing orientation symmetry improves algo-
rithmic performance.

3.1. Eliminating Orientation Symmetry

We make the distinction between (directed) arcs
and (undirected) edges. An edge between i and j with
i<jandi,j€ {0} UV’ is denoted by [, ]]. Note that we
use square brackets for edges and parentheses for arcs.

Each edge [, j] corresponds to at most two arcs in A.
When i and j are client vertices (i,j € V'), edge [i,7]
corresponds to the arcs (i,7) and (j,7) if they exist.
When iis the depot vertex (i = 0) and jis a client vertex
(je V'), edge [0,]] corresponds to the arcs (0,j) and
(j,n +1) if they exist. We use E to denote the set of
all edges.

Let the variable z{/ represent the total flow on edge
[7,7] € E in scenario w € Q. The flow on an edge in a
given scenario is obtained by summing the flows on
the corresponding arcs in the same scenario. For ex-
ample, for edge [1,3] € E in scenario w, we have
z{y = x{5 + x%;, assuming that both arcs (1,3) and
(3,1) exist.

Observation 1. The edge flows of any feasible solu-
tion to the TWAVRP are integral and correspond, per
scenario, to disjoint undirected elementary paths that
start and end at the depot.

If branching decisions are based on zg}-’, then
orientation-symmetric solutions always end up in
the same branch. This follows from the fact that, by
definition, orientation-symmetric solutions have the
same edge flows. In Spliet and Gabor (2015) and
Dalmeijer and Spliet (2018), branching decisions are
based on xj; instead of zi;.

To solve the TWAVRP, it is insufficient to branch on
fractional zjf variables only. Recall that a solution with
integral arc flows corresponds to a feasible solution to
the TWAVRP. However, if the edge flows are integral,
the arc flows may be fractional. In general, we do not
obtain a feasible solution to the TWAVRP if the arc

Figure 2. (Color online) Example Solution 2
y,=2

y,=3

depot

Scenario 1

flows are fractional even if the edge flows are integral
and correspond to disjoint undirected elementary
paths. Undirected paths do not properly represent the
passing of time. As a result, we cannot guarantee that
the endogenous time windows are satisfied.

Consider a node in the search tree for which we
compute a solution to the linear programming (LP)
relaxation of (1)—(8). If the edge flows are not integral,
we branch on the variable zjj that corresponds to the
nondepot edge that has flow closest to 0.5. It can be
shown that, if thenondepot edges have integral flows,
then the depot edges also have integral flows. If the
edge flows and the arc flows are both integral, we
have obtained a feasible solution to the TWAVRP,
and the current node can be pruned by integrality.
Finally, if the edge flows are integral and the arc
flows are fractional, we use procedure 1 to continue
the search.

Procedure 1. Processing a Node with Integral Edge
Flows and Fractional Arc Flows

1: Solve a restricted TWAVRP in which the edge
flows are fixed to their current values.

2: if restricted TWAVRP is feasible and has cost
lower than the incumbent solution, then

3: Make the optimal solution to the restricted
TWAVRP the incumbent solution.

4: end if

5: Add a constraint to forbid the current integral
edge flows.

In step 1, we solve a restricted TWAVRP in which
the edge flows are fixed. By definition, solutions that
have the same edge flows are orientation symmetric.
Hence, solving the restricted TWAVRP amounts to
finding the best solution among a set of orientation-
symmetric solutions. In Section 3.2, we present an
algorithm for solving the restricted TWAVRP.

In step 5, a constraint is added to forbid the current
integral edge flows. This constraint forces at least one
of the zjj variables to take a different value. On the
other hand, solutions to the TWAVRP with different

Y= 2 Y4= 3

depot

Scenario 2
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integral edge flows should not be cut off. In Sec-
tion 3.3, we present this nontrivial constraint.

Note that we do not assume that the arc costs are
symmetric. If they are symmetric, however, then the
objective value can be obtained directly from the edge
flows. It follows that, if the restricted TWAVRP is
feasible, we obtain an incumbent solution with cost
equal to the lower bound of the current node. As a
result, the current node can immediately be pruned
by optimality.

3.2. Solving the Restricted TWAVRP with
Fixed Edge Flows

In this section, we present an algorithm for solving
the TWAVRP with fixed edge flows. We refer to this
problem as the restricted TWAVRP. From Observa-
tion 1, it follows directly that, if the edge flows do not
correspond to disjoint undirected elementary paths,
then there does not exist a solution to the TWAVRP
that is consistent with the fixed edge flows. We,
therefore, assume without loss of generality that the
integral edge flows can be represented by m disjoint
undirected elementary paths.

It follows that the restricted TWAVRP can be seen
as a TWAVRP on a restricted arc set and can, thus, be
solved by any algorithm for the TWAVRP. In this
section, however, we exploit the fact that all solutions
to the restricted TWAVRP are orientation symmet-
ric to construct an algorithm that is more efficient
in practice.

To obtain arc flows consistent with the fixed edge
flows, all m undirected paths must be given an ori-
entation. First, arbitrarily assign a default orienta-
tion to each of the undirected paths. Then, for all
ke{1,...,m}, let the variable o; be equal to 1 if the
orientation of path k is equal to the default orientation
or —1 otherwise. For single client paths, we set o, =1
without loss of generality. Note that the edge flows
zjj and the path orientations o, together define the
arc flows x{;. For example, if edge [1,3] in scenario
w is on path k, then the value of o determines whether
x{3=1orxg, =1

We can now enumerate all possible assignments
of the o variables. Each assignment (01,02,...,0,) €
{=1,1}" defines the arc flows of a potential solution.
When the arc flows are fixed, the MIP formulation of
Dalmeijer and Spliet (2018) reduces to a linear pro-
gram, which can be solved to find a feasible solu-
tion to the TWAVRP if one exists. In Online Sup-
plement A, we propose an alternative method to solve
the TWAVRP for fixed arc flows that does not rely on
linear programming.

When all possible assignments of the o variables
have been enumerated, we have either found the
minimum cost solution to the restricted TWAVRP or

we have proven that no solution exists. Hence, we
have solved the restricted TWAVRP as required.
Recall that, for instances with symmetric costs, all
orientation-symmetric solutions yield the same ob-
jective value. In that case, the enumeration can be
stopped after the first feasible solution has been found.

3.2.1. More Efficient Enumeration. The enumeration
algorithm presented enumerates all 2" route orien-
tations. Some assignments of the oy variables, how-
ever, lead to violated path-precedence inequalities.
As the path-precedence inequalities are valid, these
assignments cannot lead to a feasible solution to
the TWAVRP, and can thus be ignored. In this sec-
tion, we use this observation to significantly reduce the
number of route orientations that has to be enumerated.

We introduce a conflict graph to represent conflicts
between the oy variables resulting from violated path-
precedence inequalities. The vertex set of the conflict
graph is given by {1,...,m}, in which vertex k cor-
responds to o.

The edges of the conflict graph correspond to vi-
olations of the path-precedence inequalities. Recall
that o and o; define the arc flows on paths k and |,
respectively. This implies that, for given values of ok
and o;, we can test for a violation of inequality (10).
If or # 0y results in a violated path-precedence in-
equality (i.e., both (o, 0;) = (1,—1) and (ot 0;) = (=1,1)
result in a violation), then k and [ are connected by a
positive edge: an edge with value one. If oy = 0; results
in a violated path-precedence inequality (i.e., both
(0k,0)) = (1,1) and (0g,0;) = (—1,—1) result in a viola-
tion), then k and / are connected by a negative edge: an
edge with value —1. If neither case is applicable, then
edge [k, [] does not exist.

An assignment of the o, variables is said to be
conflict-free if, for every edge [k, ], the value of ox0; is
equal to the edge value. If the conflict graph contains a
positive edge [k, I], we require o = 0; in a conflict-free
assignment. Similarly, for a negative edge [k, [], we
require oy # o; for the assignment to be conflict-free.

Figure 3 presents an example of a conflict graph that
allows for different conflict-free assignments. Posi-
tive edges are shown as dotted lines, and negative
edges are shown as solid lines. One of the conflict-
free assignments is given by 01 =0 =0s=05=1
and 03 = 0 = -1.

Figure 3. Example of a Conflict Graph
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Observation 2. Only a conflict-free assignment of
the o variables can lead to a feasible solution to
the TWAVRP.

Observation 2 follows directly from the definition
of a conflict-free assignment: If an assignment is not
conflict-free, then at least one path-precedence in-
equality is violated. As the path-precedence inequal-
ities are valid, it follows that the current assignment of
the o, variables cannot lead to a feasible solution to
the TWAVRP.

The conflict graph contains a positive edge if both
(or,0/) = (1,-1)and (0k,0;) = (—1,1) result in a violated
path-precedence inequality. Note that, if the travel
times are symmetric, it follows from (9) and (10) that
(0r,01) = (1,-1) leads to a violation if and only if
(0x,0;) = (=1,1) leads to a violation. A similar result is
true for the negative edges. When solving asymmetric
instances, it can be beneficial to use a directed conflict
graph that considers the pairs (o, 0;) = (1,-1) and
(0, 01) = (=1,1) separately. However, as we focus on
instances that are difficult because of symmetry, we
do not present this extension here.

The conflict graph can be constructed in polynomial
time. This follows from the fact that a feasible solution
contains at most |Q|n paths. Hence, there are 0(|Q[*n?)
vertex pairs, and for each pair, at most four possible
assignments of (o, 0;) have to be tested for violated
path-precedence inequalities. As path-precedence in-
equalities can be separated in polynomial time (Dalmeijer
and Spliet 2018), the conflict graph can be constructed
in polynomial time.

By Observation 2, only a conflict-free assignment
of the o, variables can lead to a feasible solution to
the TWAVRP. Hence, after constructing the con-
flict graph, the next step is to enumerate all conflict-
free assignments.

First, we modify the conflict graph by replacing
each positive edge [k, I] by a dummy vertex that is
connected to both k and I by negative edges. Note that
this forces oy = oy, just like the original positive edge.
Figure 4 shows the result of modifying the conflict
graph presented in Figure 3. Clearly, there is a bi-
jection between the conflict-free assignments of the
original graph and those of the modified graph. It
follows that it is sufficient to find all conflict-free
assignments in the modified conflict graph.

Figure 4. Example of a Modified Conflict Graph

2
6

In the modified conflict graph, adjacent vertices are
connected by a negative edge and must, thus, be
assigned different values. If we associate the value 1
with the color red and the value —1 with the color blue,
then every conflict-free assignment in the modified
conflict graph corresponds to a vertex coloring using
at most two colors.

Itis well known that we can use breadth-first search
to either find a two-coloring or to find an odd cycle
which proves that no two-coloring exists (e.g., see
Kleinberg and Tardos 2006, chapter 3.4). This algo-
rithm takes polynomial time.

When a single two-coloring is known, we can easily
find additional two-colorings by switching the roles
of red and blue in any of the connected components.
In fact, all two-colorings can be obtained in this way.
This follows from the fact that any connected graph
allows for at most two distinct two-colorings.

In conclusion, we can now enumerate all two-
colorings of the modified conflict graph or, equiva-
lently, enumerate all conflict-free assignments of the
original conflict graph. The number of conflict-free
assignments is equal to two to the power of the number
of connected components of the conflict graph. Note
that this can be significantly smaller than the total
number of possible assignments, which is equal to 2.

If no conflict-free assignment can be found, we
obtain an odd cycle in the modified conflict graph.
This cycle indicates which undirected paths cause the
TWAVRP to be infeasible. In Section 3.3, we use this
information to strengthen the constraint that forbids
the current integral edge flows, which is added in
step 5 of procedure 1.

3.3. Cutting off Integral Edge Flows

In this section, we present constraints that cut off the
current integral edge flows. A constraint of this type s
needed in step 5 of procedure 1. As in the previous
section, we assume that integral edge flows are rep-
resented by disjoint undirected elementary paths.

Figure 5. (Color online) Example Current Edge Flows Z
for a Given Scenario @
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Let the current edge flows be given by z/
[i,j1 € Eand w € Q.

Figure 5 gives an example of the edge flows in a
single scenario. Vertices 1 up to 7 correspond to the
clients, and vertex 0 corresponds to the depot. This
example contains three disjoint undirected elemen-
tary paths. Note that client 1 is contained in a single
client path. By definition z§; = x¢; + x{,,,, and hence,
in the example, we have z§; = 2. The other undirected
paths contain multiple clients. As these paths are
elementary, it follows that the corresponding edge
flows are equal to one.

To obtain a constraint that cuts off the current in-
tegral edge flows, we make use of the more general
Proposition 1. For a given subset of edges with
nonzero flow, Proposition 1 provides an inequality
that can only be satisfied by changing at least one of
the flows on the selected edges. For technical reasons,
we impose that, if a depot edge is selected that is part
of a path with multiple clients, then the adjacent
nondepot edge is also selected.

7’ for all

Let E C E be a set of edges. Given a pair of clients
i,je V' (i #]), we define )\E to be the number of depot
edgesin E thatare 1nc1dent toiorj. Thatis, /\E [{[0, 1],
[0,/1} N E|. Given this notation, Prop051t10n 1 can be
stated as follows.

Proposition 1. Let the current integral edge flows be given
by z§j for all [i,j] € E and w € Q). For each scenario w € Q),
let E“’ C E be any subset of edges with nonzero flow in
scenario w, satisfying the following technical condition: If
[0,/] € E and zZg = 1, then E® contains an edge adjacent
to [0,]. Then, the constraint

2| 2 g > A

e [ij]eE® [if]€Elijev’
- E(A’_
<> >+ > Az|-1 ()
W€\ [if]eE® [ij]eElijev’

is violated by an integral edge flow if and only if zj = Zj; for
all [i,f] € EY and w € Q.

Proof. See Online Supplement B.

To illustrate Proposition 1, we construct an in-
equality for the example in Figure 5. Note that A} can
be seen as an additional weight that is assigned to
nondepot edges that are adjacent to depot edges. To
forbid the current flow on E“ = {[0, 2], [2,3], [0, 3]}, we
obtain the constraint (z§, +z3; + z(j3) + 2255 < 4. The
edge [2,3] gets additional weight (AL; = 2) because it
is adjacent to two depot edges in E“. This additional
weight is necessary: The constraint zf, +z5; + zfj; < 2
(obtained by setting /\1] = 0) would cut off the current
solution but is not valid as it would also cut off the
solution z§, = zfj, = 2.

To obtain a constraint that cuts off the current in-
tegral edge flows, we can now apply Proposition 1.
For each scenario w € QQ, choose E¥ to be the set of all
edges with nonzero flow in scenario w. Proposition 1
then provides a constraint that can be used in step 5 of
procedure 1. For example, the scenario shown in
Figure 5 contributes z§; + (z02 +255 +25) + 2255 + (25, +
Zis + 28 + 2, +2(,) + 245 + 28, to the left-hand side of
this constraint and 14 to the right-hand side. The
technical condition in Proposition 1 is satisfied be-
cause the edges with nonzero flow make disjoint
undirected elementary paths.

It is often possible to add a constraint that is
stronger than the one proposed in the previous par-
agraph. Recall from Section 3.2.1 that, if there is no
conflict-free assignment, we obtain a cycle of con-
flicting undirected paths. These paths conflict because
of the path-precedence inequalities.

Let a conflict edge be an edge that is contained in at
least one of these path-precedence inequalities. It can
be seen that, if we replace each path in the conflict by
its smallest subpath containing all conflict edges, then
the conflict remains.

It follows that, for each scenario w € QJ, we may
choose E“ to represent these smallest subpaths. For
example, if [2,3], [4,5], and [6,7] are conflict edges
in Figure 5, then we can choose E¥={[2,3],[4,5],
[5,6],[6,7]}. If necessary, additional edges may be
added to E“ to ensure that the technical condition is
satisfied. As the selected edge flows lead to a conflict,
Proposition 1 provides a valid inequality.

The constraint that we construct based on the
conflict is stronger than the constraint we obtain in
the case that no conflict is found. This follows from the
fact that the latter only cuts off the current integral
edge flows although the former can also cut off other
integral edge flows that would generate the same
conflict in the conflict graph.

4. Branch-Price-and-Cut Algorithm

In this section, we present the proposed BPC algo-
rithm to solve the TWAVRP. First, we detail how we
solve the LP relaxation of (1)-(8) with column gen-
eration. Next, we discuss the route relaxations that we
use and the valid inequalities that we apply. We end
this section with an overview of the BPC algorithm.

4.1. Column Generation

The name branch-and-price is due to Barnhart et al.
(1998), who introduce the term for branch-and-bound
algorithms that make use of column generation to
solve the LP relaxations. In our case, Models (1)—(8)
can be seen as the integer master problem, which con-
tains a huge number of variables. Its LP relaxation,
given by (1)-(6), is referred to as the master problem.
The master problem is solved by column generation.
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Column generationisiterative. In eachiteration, we
first solve a restricted master problem (RMP), which is
obtained by restricting the master problem to a subset
of the variables. Next, we solve a subproblem, the
pricing problem, to obtain variables with negative re-
duced costs that can be added to the RMP. If no
variable with negative reduced cost can be found, the
solution to the RMP is an optimal solution to the
master problem.

ForallweQ and i€ V), let ¢, y¥ > 0, and 6 <0 be
the dual variables corresponding to constraints (2)—(4),
respectively. For convenience, let {’ = ¢ + 6. Note
thatboth 8’ and 7{’ are unrestricted. The reduced cost
¢’ corresponding to the route variable 0% can now be
expressed as

& = pucr = D e, — > mit. (12)
i€V, i€V},
Recall that 2’ = 0 and # = 0 if client i is not visited by
route r. Hence, in Equation (12), we can sum over all
clients in V/. The pricing problem is to find a route
variable 6% for which ¢ is negative.

Note that the pricing problem decomposes into a
separate problem for each scenario. For a given sce-
nario w € ), we model the pricing problem as an el-
ementary shortest path problem with resource con-
straints and linear node costs.

Let G, = (V, Aw) be the subgraph of G that is ob-
tained by removing all clients with zero demand and
all adjacent arcs. The goal is to find a minimum cost
elementary path in G, from the starting depot to the
ending depot such that both vehicle capacity and the
exogenous time windows are respected. Note that we
may reduce the size of the arc set A, by removing arcs
that are infeasible because of capacity or time con-
straints without affecting any of the feasible paths
in G,.

To each arc (i,j) € A,, we assign the cost E,-]-(tf) =
PuCij = ﬁ]“’ - n}”tf if je V. and ¢;(t) = pyc;j otherwise
with # the time at which vertex j is visited. It follows
that a path with negative costs corresponds to a route
with negative reduced cost. Note that Eij(tf ) depends
linearly on #, which is a decision variable in the
pricing problem.

Liberatore et al. (2011) encounter a similar pricing
problem in the context of the vehicle routing problem
with soft time windows, and they present a bidirec-
tional labeling algorithm for solving it. To solve the
pricing problem of the TWAVRP, we implement a
monodirectional variant of their algorithm with a
simplified dominance rule.

Labeling algorithms maintain a set of labels, each
of which corresponds to a path starting at the de-
pot. These paths are extended along all arcs, which
results in new labels being generated according to
the extension functions. Labels that are infeasible are

eliminated. Furthermore, a dominance rule is applied to
eliminate labels that are non Pareto-optimal. Even-
tually, we obtain a set of feasible elementary paths
from the starting depot to the ending depot that in-
cludes the shortest elementary path.

Next, we present the definition of the labels, the
extension functions and the dominance rule. Our
notation is consistent with Contardo et al. (2015), to
which we refer for more information on labeling al-
gorithms for vehicle routing problems.

A label is given by a tuple L = (i,¢(T),d,t,U,p),
where i € V,, is the end vertex of the path associated
with L, ¢(T) is the cost function that returns the
minimum possible cost of the path if i is visited at or
before time T, d is the cumulative vehicle load, 7 is
the earliest arrival time in i, U C V’ is the set of clients
that are visited by the path or that are unreachable
because of capacity or time constraints, and p is the
predecessor label of L—that is, the label that has
been extended to obtain L. The components of la-
bel L are denoted by #(L), ¢(L, T), d(L), ©(L), U(L), and
p(L), respectively.

The function ¢(L,T) is defined on the domain T e
[7(L), ejr)], where ¢;;) is the ending time of the ex-
ogenous time window of vertex i(L), the end vertex of
the path associated with L. It is shown by Ioachim
et al. (1998) that ¢(L, T) is convex, nonincreasing, and
piece-wise linear in T. Hence, ¢(L, T) can be repre-
sented by a list of coordinates.

The initial label is given by L =(0,0,0,s0,0,0). A
label for which i(L) = i can be extended to a label L’
over the arc (i,j) € A, if j¢ U(L). For the extended
label, i(L"), d(L"), (L"), U(L"), and p(L’) are given by the
following straightforward extension functions:

iL’) =j, (13)
d(L') = d(L) +d°, (14)
7(L) = max{s;, ©(L) + 14}, (15)

UL) =ur)uijtufke vy
dL')+d¢ >QV (L) + T > e}
p(L’) = L. (17)

The label L’ is feasible if d(L") < Q and 7(L’) <ee;.
Next, we give the extension function for ¢(L’, T). Let
T* € [1(L'),¢] be the time at which vertex j must be
visited to minimize the cost of the path corresponding
toL’. If vertexjis visited at time # then vertex i must be
visited at or before time # — 7;;. Furthermore, vertex i
must be visited at or before time ¢;. It follows that

(16)

T* = argmin{¢(L, min{t — 7y, ¢;}) +¢5(¥)}.  (18)
te[(L)e]
Hence, T* can be determined by minimizing a one-

dimensional, convex, and piece-wise linear function.
This is straightforward as there is always a minimum
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at one of the breakpoints of the function or at one of
the two boundaries of the domain.

If vertex j must be visited at or before some time T,
Ioachim et al. (1998) show that it is optimal to visit
vertex j at time # = min{T, T*}. It follows that the
extension function for ¢(L’, T) is given by

¢(L, min{T — 747, ¢}) + ¢;(T)
ift(L)<T<T"

o(L, min{T™ — 7y, }) + ¢(T™)
if T8 <T<e.

&L, T) = (19)

To reduce the number of labels, we apply a domi-
nance rule to remove non Pareto-optimal labels. We
say that label L; dominates label L, if all of the fol-
lowing conditions are met:

i. i(Ly) = i(Ly).

ii. E(Ll, T) < E(Lz, T)VT [S [’((Ll), ei(Ll)] N [T(Lz), ei(Lz)].

iii. d(Ly) <d(Ly).

iv. ©(L1) < 7(Lo).

v. U(L1) € U(Ly).

Conditions (i)=(v) imply that L, is not Pareto-
optimal for any T € [7(L1), ejr,)] N [T(L2), €ir,)] (Lib-
eratore et al. 2011). By condition (i), we have that
ei,) = €i(L,) and by condition (iv), we have that 7(L;) <
7(Ly). Hence, conditions (i) and (iv) together imply
that [7(L1), e,y N[T(L2), €i1,)] = [T(L2),€i,)]- It follows
that L, is not Pareto-optimal for any T € [1(L2), e;1,)],
which is the complete domain of ¢(L,, T). As such,
label L, can be eliminated.

With our dominance rule, label L; can only domi-
nate label L, if ¢(L1,T) < ¢(L,, T) for all T in the in-
tersection of the two domains. The dominance rule
presented by Liberatore et al. (2011) also allows L; to
dominate L, on a subinterval of [7(L;),e;,)], which
results in more labels being eliminated. The advan-
tage of our dominance rule is that comparing labels
is easier as no subintervals have to be determined.
Furthermore, if the exogenous time windows and
the travel times are all integers, it can be shown
that the breakpoints of ¢(L,T) are integer (Ioachim
et al. 1998). This improves the numerical stability of
the algorithm.

4.2. Route Relaxations

Enforcing elementarity in the pricing problem can
result in a large amount of Pareto-optimal labels
because there are 2" possible subsets of the clients. To
reduce the number of labels, elementarity is often
(partially) relaxed, and cyclic routes are allowed to be
added to the RMP. For a cyclic route r = (P, t), qi is the
number of times that client i € V” is visited, b/ is the
number of times that arc (i,j) € A is used, and £ is
the sum of all the times at which client i € V” is visited.

Adding cyclic routes to the RMP may decrease the
value of the lower bound provided by (1)—(8). In an
integral solution to the TWAVRP, however, cyclic
routes cannot be selected because of constraints (2). It
follows that the branch-price-and-cut algorithm re-
mains exact.

We incorporate the ng-route relaxation introduced
by Baldacci et al. (2011) and the strong degree con-
straints (SDCs) introduced by Contardo et al. (2014).
Both have been used to solve various vehicle routing
problems. For example, the ng-route relaxation has
been applied to the TWAVRP with time-dependent
travel times by Spliet et al. (2018), and the combi-
nation of ng-route relaxation and SDCs has been
shown to be effective for the vehicle routing problem
with time windows by Contardo et al. (2015).

We initialize the ng-route relaxation with neigh-
borhoods of size 10. As proposed by Roberti and
Mingozzi (2014), we allow for dynamically adding
clients to these neighborhoods to further eliminate
cycles. The number of times that a client can be added
to a neighborhood is limited to five per scenario. If
cycles remain after increasing the neighborhoods, we
add at most 30 SDCs per scenario as long as they are
violated by at least 0.05.

To use the ng-route relaxation and the SDCs, both
the RMP and the labeling algorithm have to be modified.
These modifications are not TWAVRP specific and are
detailed in Contardo et al. (2015).

4.3. Heuristic Pricing

To speed up the column-generation algorithm, we
make use of heuristic dynamic programming as de-
scribed by Desaulniers et al. (2008) among others.

At first, we ignore arcs that do not seem promising
according to their reduced cost. The reduced costof an
arc(i,j) € A, inscenariow € Qis givenby ¢;(#/) = pycij —
By —mi't ifj € V{, and ;(¥) = pucij otherwise. For each
vertex, we sort the incoming and outgoing arcs by
reduced cost, ignoring the time-dependent term. Then,
we keep for each vertex the £ incoming arcs with the
least reduced cost and the & outgoing arcs with the
least reduced cost, where ¢ is a preset parameter equal
to 10 and increased to 15 if no negative reduced-cost
columns can be found.

Second, we ignore some of the resources when
using the dominance rule. This simplifies the pricing
problem, which can now be solved quickly by our
labeling algorithm. If the labeling algorithm identifies a
route with negative reduced cost, it can be added to
the RMP.

If no more routes with negative reduced cost can be
found, we take back into account some of the arcs
and some of the resources that we previously ignored.
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Eventually, we solve the full pricing problem, and as a
result, our column-generation algorithm remains exact.

4.4. Valid Inequalities

In this section, we introduce the valid inequalities that
we use as cutting planes to strengthen the lower
bound of (1)—(8).

The first class of valid inequalities that we use is the
rounded capacity inequalities or the capacity cuts for
short, which are known to be effective for vehicle
routing problems (Baldacci et al. 2012). The capacity
cuts are given by

YoeQ,5CV!

[

LISI=2. (20)

xia]‘) > "Zies dfu“

Q

(i)eAalieS jeV,\S

The left-hand side of Inequality (20) is the total arc
flow from the clients in a given subset S to the other
vertices, which is an upper bound on the number of
vehicles visiting the clients in S. This follows from the
fact that the same vehicle can enter and exit S multiple
times. The right-hand side of Inequality (20) is a lower
bound on the number of vehicles that is required to
satisfy the demand of the clients in S.

We use the heuristic separation algorithm by Lysgaard
(2003) to find violated capacity cuts. The details of this
algorithm are presented in Lysgaard et al. (2004). Any
inequality defined on the x-variables can be included
in the master problem without complicating the pricing
problem; see Desaulniers et al. (2011) for details.

Next to the capacity cuts, we make use of the three
client subset-row inequalities (3SR-inequalities), which
is a subclass of the more general class introduced
by Jepsen et al. (2008). The 3SR-inequalities can be
expressed as follows:
2lies a;

6°<1 VoeQScV

w’

IS|=3, (21)

reR(w)

that is, for each subset of three clients, there can be at
most one route that visits at least two of them.

The 3SR-inequalities can readily be added to the
master problem, but they do complicate the pricing
problem as their duals cannot be incorporated in the
modified arc costs. Such inequalities are said to be
non-robust (Pessoa et al. 2008). Jepsen et al. (2008)
detail how the labeling algorithm can be modified to
allow for 3SR-inequalities in the master problem. This
involves introducing additional resources to correctly
model the reduced cost.

Each time that the master problem is solved to
optimality, we first add all capacity cuts with a vio-
lation of at least 0.05. After adding the capacity cuts,
the master problem is resolved. If no capacity cuts can

be added, we try increasing the ng-route relaxation
neighborhoods and adding SDCs as discussed in
Section 4.2. If neither can be done, we add per iter-
ation at most 10 3SR-inequalities with a minimum
violation of 0.1.

We do not add precedence inequalities as valid
inequalities. The precedence inequalities are used in
Section 3.2.1 to create a conflict graph for the restricted
TWAVRP and, in Section 3.3, to derive stronger con-
straints to cut off integral edge flows. Preliminary
experiments showed that if we already address ori-
entation symmetry, then adding precedence inequalities
as cutting planes does not have a significant effect on the
performance of our algorithm.

4.5. Branching
We explore the nodes of the search tree using best-first
search. We first try to branch on the number of ve-
hicles used in a given scenario. Next, we use our edge-
based branching method combined with additional
components as introduced in Section 3.1 to address
orientation symmetry. Note that branching on the
number of vehicles does not introduce orientation
symmetry into the search tree because orientation-
symmetric solutions use the same number of vehicles.
To address orientation symmetry as in Section 3.1,
we either branch on a fractional edge or we add a
constraint to forbid the current integral edge flow.
Enforcing that the edge [7,j] € Eis not used in scenario
w € Q) is achieved by removing the edge from the
pricing problem. To force flow on edge [i,j] € E in
scenario w € O, we use the constraint z; = 1. The
constraints that are used to cut off the integral edge
flows are also stated in terms of zj. By definition,
constraints in terms of the z-variables can be rewritten
in terms of the x-variables and can, thus, be added to
the master problem without complicating the pric-
ing problem.

5. Computational Experiments
The BPC algorithm is implemented in GENCOL,
which is a general-purpose solver for solving routing
and scheduling problems through decomposition and
column generation. GENCOL is coded in C and C++.
All experiments are run on a server with an Intel
Xeon E3-1226 v3 3.30 GHz processor and 16 GB of
RAM. For a fair comparison with earlier work, we use
only a single thread, and we set a time limit of one
hour per instance for all experiments. All linear programs
are solved with the commercial solver CPLEX version
12.6.3. To prevent problems with numerical stability of
the simplex method, we enable the numerical empha-
sis setting.
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5.1. Test Instances

We make use of the benchmark instances for the
TWAVRP as introduced by Spliet and Gabor (2015)
and extended by Dalmeijer and Spliet (2018). These
instances are available in the vehicle routing problem
repository VRP-REP (Mendoza et al. 2014).

In total there are 90 benchmark instances, con-
sisting of 10 instances with 10 clients, 10 instances
with 15 clients, etc., up to 50 clients. These clients are
uniformly distributed over a square with sides of five
hours. The starting and ending depots are both lo-
cated at the center of the square. The travel costs and
times are given by the Euclidean distances between
the locations.

Each instance contains three demand scenarios
with the same probability of occurrence. The de-
mands of different clients are uncorrelated, and the
average demand is about one sixth of the vehicle
capacity. The exogenous time windows have a width
of 10.8 hours on average, and the endogenous time
windows have a width of two hours.

To also be able to test our algorithm on larger in-
stances, we extend the instance set by Dalmeijer and
Spliet (2018). The new instances are generated in the
same way but contain more clients and demand
scenarios. The extended instance set is available on
VRP-REP.

5.2. Comparison with Other Algorithms

We first test our BPC algorithm on the benchmark
instances used by Dalmeijer and Spliet (2018) and
we compare with their results. Dalmeijer and Spliet
(2018) perform their computational experiments on
an Intel i7 3.5 GHz processor.

The results are summarized in Table 1, and the full
table is available as Online Supplement C. The al-
gorithm by Dalmeijer and Spliet (2018) is denoted
by BC. The BPC algorithm presented in this paper is

denoted by BPC+OS to stress the fact that this algo-
rithm addresses orientation symmetry.

The columns labeled “Seconds” state the average
times in seconds to (attempt to) solve the benchmark
instances to optimality with a maximum time of 3,600
seconds allowed per instance. The number of nodes in
the search tree that have been explored during this
time is given by the “Nodes” columns.

The “Optimality gap” columns present the per-
centage gap between the optimal objective value and
the lower bound after the algorithm terminates. Simi-
larly, “Root gap” presents the percentage gap between
the optimal objective value and the lower bound after
processing the root node. If the optimal objective
value is unavailable, we use the best-known upper
bound from either BC or BPC+OS to calculate the
gaps. Finally, the columns labeled “Solved” state the
total number of instances that could be solved within
one hour of computation time.

Table 1 shows that, for the given benchmark in-
stances, BPC+OS outperforms BC. By using BPC+OS
instead of BC, the average solution time is decreased
by 78%. All instances that can be solved by BC can also
be solved by BPC+OS (Online Supplement C). Ad-
ditionally, 29 instances that could not be solved by
Dalmeijer and Spliet (2018) are now solved to opti-
mality. Only four of the benchmark instances re-
main unsolved.

BC and BPC+OS use different strategies to solve the
TWAVRP. BC has arelatively weak LP relaxation that
is easy to calculate; BPC+OS relies on a strong bound
that takes more computational effort to determine. It
is, thus, no surprise that BPC+OS explores fewer
nodes and has smaller root gaps than BC. What is
interesting to observe, however, is how big these
differences are. The average root gap for BPC+OS is
only 0.10%, and on average, only 10.7 nodes have to
be explored to close this gap. This is in stark contrast

Table 1. Comparison Between BC and BPC+OS on the Dalmeijer and Spliet (2018)

Benchmark Instances

Seconds Nodes Optimality gap Root gap Solved

Clients BC  BPC+OS BC BPC+OS BC BPC+OS BC BPC+OS BC  BPC+OS
10 0.1 0.2 9.3 1.2 0 0 0.17 0.04 10 10
15 4.6 2.3 1,498.4 10.8 0 0 0.59 0.10 10 10
20 2.2 2.5 116.9 2.6 0 0 0.35 0.05 10 10
25 124 11.6 524.3 54 0 0 0.69 0.03 10 10
30 544.0 70.6 9,336.6 12.5 0.15 0 1.67 0.13 9 10
35 1,531.7 4214  16,846.9 23.3 0.33 0.02 1.47 0.12 6 9
40 3,252.0 542.6  22,903.4 15.3 0.82 0.03 2.18 0.12 2 9
45 3,600.0 705.8  10,089.7 9.3 1.72 0.03 253 0.09 0 9
50 3,600.0 1,028.7 4,904.6 16.0 2.35 0.14 2.90 0.23 0 9
Average 1,394.1 309.5  7,358.9 10.7 0.60 0.02 1.39 0.10 57/90  86/90
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with the 1.39% average root gap for BC, which re-
quires 7,358.9 nodes on average to close the gap.

While this paper was under review, Subramanyam
et al. (2018) published a scenario decomposition al-
gorithm for the TWAVRP that outperforms the al-
gorithm by Dalmeijer and Spliet (2018). We briefly
compare the results for BPC+OS with the results for
the scenario decomposition algorithm, which we refer
to as SD. The computational experiments reported by
Subramanyam et al. (2018) are based on the same
benchmark instances and are performed on an Intel
Xeon E5-2687W 3.1 GHz processor using a single
thread. For convenience, we have included the re-
ported solution times in Online Supplement D.

For SD, it takes 207.2 seconds on average to solve
the benchmark instances to optimality. In total, 89 out
of the 90 instances are solved to optimality within one
hour of computation time. For BPC+OS, the average
solution time is 309.5 seconds, and 86 instances can be
solved to optimality. SD has the best solution time for
69 instances, and BPC+OS has the best solution time
for 24 instances. Note that the numbers do not sum to
90 because of draws.

Following Subramanyam et al. (2018), we also
compare BPC+OS, BC, and SD using performance
profiles (Dolan and Moré 2002). Figure 6 presents
performance profiles for the benchmark instances
with at least 30 clients. The performance profile of an
algorithm gives the percentage of problems for which
this algorithm would be the fastest given that it were
2! times faster than it currently is. The instances with
less than 30 clients are left out to prevent that short
solution times obscure the figure.

Itis important to note that, even if one performance
profile is completely above another, this does not
imply that the corresponding algorithm is strictly

Figure 6. (Color online) Performance Profiles Comparing
BPC+OS, BC, and SD on the Dalmeijer and Spliet (2018)
Benchmark Instances with at Least 30 Clients

BPC+0S

Fraction of problems solved within
a factor 2! of the best time

0 2 4 6 8 10 12 14
Time factor (t)

better on all instances. For t = 0, we observe that SD is
currently the fastest algorithm for 62% of the in-
stances, and BPC+OS is the fastest algorithm for 28%
of the instances. For t — oo, the curves converge to
the percentage of instances that could be solved
within one hour of computation time. Here we see a
major difference in performance between BC (34%) on
one hand and BPC+OS (92%) and SD (98%) on the
other hand.

We conclude that our BPC algorithm is competitive
with the state of the art when orientation symmetry is
properly addressed. Combining BPC+OS and SD to
get the best of both worlds is not trivial and may be an
interesting topic for future research.

Finally, note that there are still opportunities to
improve the performance of BPC+OS. Subramanyam
et al. (2018) use a branch-price-and-cut algorithm to
solve the scenario-specific VRPTW subproblems. To
speed up this part of the algorithm, several elements
as described in Pecin et al. (2017) are introduced,
including bidirectional labeling, variable fixing, route
enumeration, and limited-memory subset row cuts. The
same elements can be included in BPC+OS, which
may improve performance. Other recent enhance-
ments are discussed by Pessoa et al. (2019).

5.3. Effect of Addressing Orientation Symmetry

In this section, we consider the isolated effect of
addressing orientation symmetry. To this end, we also
adapt BC to address orientation symmetry (denoted by
BC+0S), and we test BPC+OS without addressing
orientation symmetry (denoted by BPC).

For BPC, we add precedence inequalities in the
same way as for BC (see Dalmeijer and Spliet 2018).
For BC+OS, we do not add precedence inequalities;
preliminary experiments suggest that adding prece-
dence inequalities does not improve performance
when addressing orientation symmetry. The four
algorithms are compared in Table 2, which is a
summary of Online Supplement D.

Table 2 shows that, for the given instances, addressing
orientation symmetry has a positive effect on the per-
formance of both BC and BPC. For BC, the average so-
lution time decreases from 1,394.1 seconds to 1,327.1
seconds. Note, however, that the average is heavily
influenced by the instances that cannot be solved before
the time limit. If we only consider the instances that can
be solved by both BC and BC+OS, we actually see a
decrease of 37.5% in average solution time (Online
Supplement D).

For BPC, addressing orientation symmetry clearly
has a bigger effect: The average solution time de-
creases from 1,366.8 seconds to 309.5 seconds. Fur-
thermore, we see that the number of instances that can
be solved to optimality increases from 61 to 86.
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Table 2. Comparison Between BC, BC+OS, BPC, and BPC+OS on the Dalmeijer and

Spliet (2018) Benchmark Instances

Seconds Solved

Clients BC BC+0S BPC BPC+0OS BC BC+0OS BPC BPC+OS
10 0.1 0.0 0.3 0.2 10 10 10 10
15 4.6 1.1 22.5 2.3 10 10 10 10
20 2.2 0.4 364.4 2.5 10 10 9 10
25 124 34 751.5 11.6 10 10 8 10
30 544.0 461.6 1,894.7 70.6 9 9 5 10
35 1,531.7 1,208.3 1,514.3 421.4 6 7 6 9
40 3,252.0 3,069.3 2,548.0 542.6 2 2 4 9
45 3,600.0 3,600.0 2,203.2 705.8 0 0 6 9
50 3,600.0 3,600.0 3,002.8 1,028.7 0 0 3 9
Average 1,394.1 1,327.1 1,366.8 309.5 57/90 58/90 61/90 86/90

If we compare BC with BPC, we observe that BC
outperforms BPC if the number of clients is at most 30.
For 35 clients or more, BPC has a better performance
on average. If we compare BC+OS with BPC+OS, we
see that instances with up to 25 clients only take a
short time to solve, and for instances with 30 clients or
more, BPC+OS outperforms BC+OS.

One of the reasons that BPC+OS is so effective is
because addressing orientation symmetry significantly
reduces the amount of nodes that have to be processed.
For BPC+OS, the average number of nodes that is
processed for each benchmark instance is only 10.7,
and for BPC, the average is 145.0. This shows that
orientation symmetry is indeed prominent and that
properly addressing orientation symmetry reduces
the required computational effort.

5.4. Instances with Additional Clients

We have shown that the BPC algorithm that ad-
dresses orientation symmetry can solve 86 out of
the 90 benchmark instances by Dalmeijer and Spliet
(2018). To test the limits of our algorithm, we also
perform computational experiments with the ex-
tended instance set. In this section, we first increase
the number of clients while keeping the number of
demand scenarios constant at three. In the next sec-
tion, we increase the number of scenarios.

The results for instances with 55 clients up to 65 clients
are presented in Table 3. We have chosen to only report
the optimality gap and the root gap for instances that
are solved to optimality; as we do not put effort into
generating good upper bounds, the optimality gap
and the root gap are otherwise uninformative.

Based on Table 3, we conclude that our algorithm
cannot consistently solve the benchmark instances
with more than 50 clients. We manage to solve 4 out
of the 10 instances with 55 clients, 2 out of the 10
instances with 60 clients, and a single instance with
65 clients.

Only a small number of nodes can be processed
within the one-hour time limit. The long time per
node is due to the more complicated pricing problems
and also because of the many valid inequalities that
areadded. In Section 5.3, we have seen that addressing
orientation symmetry reduces the number of nodes
that have to be processed. This becomes even more
important as the time spent per node increases.

Table 3. Computational Results for BPC+OS on Instances
with 55 up to 65 Clients and Three Demand Scenarios

Instance Clients Seconds Nodes Optimality gap Root gap
91 55 3,600.0 17 — —
92 55 3,600.0 17 — —
93 55 3,600.0 38 — —
94 55 3,600.0 7 — —
95 55 306.0 10 0 0.01
96 55 2,082.7 9 0 0.06
97 55 1,938.0 21 0 0.09
98 55 3,600.0 5 — —
99 55 3,216.5 25 0 0.14

100 55 3,600.0 8 — —

101 60 3,600.0 16 — —

102 60 2,042.6 7 0 0.04

103 60 3,600.0 5 — —

104 60 3,600.0 15 — —

105 60 3,600.0 19 — —

106 60 358.4 1 0 0

107 60 3,600.0 5 — —

108 60 3,600.0 16 — —

109 60 3,600.0 5 — —

110 60 3,600.0 14 — —

111 65 3,600.0 2 — —

112 65 3,600.0 13 — —

113 65 3,600.0 3 — —

114 65 3,600.0 7 — —

115 65 2,742.1 7 0 0.02

116 65 3,600.0 7 — —

117 65 3,600.0 12 — —

118 65 3,600.0 3 — —

119 65 3,600.0 13 — —

120 65 3,600.0 7 — —
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Table 4. Computational Results for BPC+OS on Instances with 10 up to 50 Clients and

Three up to Seven Demand Scenarios

Seconds Solved

Three Five Seven Three Five Seven
Clients scenarios scenarios scenarios scenarios scenarios scenarios
10 0.2 0.5 0.9 10 10 10
15 2.3 364.2 1,033.4 10 9 8
20 2.5 14.7 56.0 10 10 10
25 11.6 398.2 1,294.7 10 9 7
30 70.6 514.5 1,281.1 10 9 8
35 421.4 899.5 2,531.8 9 9 5
40 542.6 1,547.0 2,926.9 9 7 5
45 705.8 2,507.2 3,308.5 9 5 1
50 1,028.7 3,427.2 3,600.0 9 1 0
Average 309.5 1,074.8 1,781.5 86/90 69/90 54/90

5.5. Instances with Additional Scenarios

In this section, we test the performance of our algo-
rithm when the number of demand scenarios in-
creases. We consider instances from the extended
instance set with 10 clients up to 50 clients and with
either three, five, or seven demand scenarios.

The results of this computational experiment are
summarized in Table 4, and the full table is available
as Online Supplement E. For two of the instances with
five scenarios, CPLEX reported that one of the linear
programs could not be solved because of numerical
issues. These instances have been reported as un-
solved with a solution time of 3,600 seconds.

As expected, Table 4 shows that the complexity of
the TWAVRP increases with the number of scenarios.
Out of the 90 instances with three scenarios, 86 in-
stances can be solved to optimality in one hour of
computation time. For five and seven scenarios, the
number of solved instances is 69 and 54, respectively.

Our algorithm can solve almost all instances with
five scenarios and up to 35 clients in one hour of com-
putation time. Out of the instances with seven scenarios,
more than half of the instances up to 30 clients can be
solved to optimality.

6. Conclusion
In this paper, we define orientation symmetry for the
TWAVRP and we observe that orientation symmetry
is common, especially for instances that are difficult to
solve by exact methods. To overcome the problem of
orientation symmetry, we introduce an edge-based
branching method combined with additional com-
ponents that eliminates orientation symmetry from
the search tree. We then present a branch-price-and-
cutalgorithm to solve the TWAVRP while addressing
orientation symmetry.

Our computational experiments suggest that ad-
dressing orientation symmetry significantly improves
the BPC algorithm. On the benchmark set, the average

solution time decreases from 1,366.8 seconds to 309.5
per instance, and 25 additional instances are solved
to optimality. Addressing orientation symmetry also
greatly reduces the number of nodes in the search tree:
The average number of nodes per instance decreases
from 145.0 to 10.7 or by 92.6%. The resulting algorithm
is competitive with the scenario decomposition algo-
rithm by Subramanyam et al. (2018).

Our experiments also show that addressing ori-
entation symmetry improves the BC algorithm by
Dalmeijer and Spliet (2018). Finally, we report com-
putational results on instances with additional clients
and instances with additional demand scenarios.

For future work, it can be interesting to consider
heuristics based on the current algorithm. Another
direction for further research is to analyze how many
demand scenarios are sufficient to obtain a good time
window assignment under various assumptions about
the demand distribution and the structure of the network.

Finally, we remark that the main ideas in this paper
arenot TWAVRP-specificand may be applied to other
vehicle routing problems with consistency consid-
erations or synchronization requirements. The algo-
rithm that we propose for the restricted TWAVRP
(Section 3.2) is based on a conflict graph. By rede-
fining the conflict graph, the same algorithm can be
used to solve the restricted version of other problems.
Proposition 1 provides a general constraint to cut off
integer edge flows, which is not unique to the TWAVRP.
Given the benefit of addressing orientation symmetry in
the TWAVRP, applying our method to other problems is
an interesting direction for further research.
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