
Intensive Care Med (2021) 47:750–760
https://doi.org/10.1007/s00134-021-06446-7

SYSTEMATIC REVIEW

Moving from bytes to bedside: a systematic 
review on the use of artificial intelligence in the 
intensive care unit
Davy van de Sande1 , Michel E. van Genderen1*, Joost Huiskens2, Diederik Gommers1 
and Jasper van Bommel1

© 2021 The Author(s)

Abstract 

Purpose: Due to the increasing demand for intensive care unit (ICU) treatment, and to improve quality and efficiency 
of care, there is a need for adequate and efficient clinical decision-making. The advancement of artificial intelligence 
(AI) technologies has resulted in the development of prediction models, which might aid clinical decision-making. 
This systematic review seeks to give a contemporary overview of the current maturity of AI in the ICU, the research 
methods behind these studies, and the risk of bias in these studies.

Methods: A systematic search was conducted in Embase, Medline, Web of Science Core Collection and Cochrane 
Central Register of Controlled Trials databases to identify eligible studies. Studies using AI to analyze ICU data were 
considered eligible. Specifically, the study design, study aim, dataset size, level of validation, level of readiness, and the 
outcomes of clinical trials were extracted. Risk of bias in individual studies was evaluated by the Prediction model Risk 
Of Bias ASsessment Tool (PROBAST).

Results: Out of 6455 studies identified through literature search, 494 were included. The most common study design 
was retrospective [476 studies (96.4% of all studies)] followed by prospective observational [8 (1.6%)] and clinical 
[10 (2%)] trials. 378 (80.9%) retrospective studies were classified as high risk of bias. No studies were identified that 
reported on the outcome evaluation of an AI model integrated in routine clinical practice.

Conclusion: The vast majority of developed ICU-AI models remain within the testing and prototyping environment; 
only a handful were actually evaluated in clinical practice. A uniform and structured approach can support the devel-
opment, safe delivery, and implementation of AI to determine clinical benefit in the ICU.
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Background

Intensive care unit (ICU) physicians treat patients with 
complex and severe conditions who often require life-
saving interventions. There is a need for adequate and 
efficient decision-making in the ICU due to the increas-
ing demand for ICU treatment [1, 2]. Clinical decision-
making is impeded by factors such as the increasing 
availability of large amounts of data, the increasing diag-
nostic and therapeutic opportunities and the increasing 
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complexity of care [3–6]. Treatment protocols are devel-
oped to support clinical decision-making but are often 
based on a simplified representation of reality that in 
individual cases may not reflect the complexity of illness.

More data are easily supposed to provide more insight 
but today’s ICU physicians already have difficulties to 
interpret the enormous quantities of conventional clini-
cal data. Often this data do not contain apparently use-
ful information for clinical decision-making [7]. For 
instance, when caring for patients on ventilatory support, 
the number of variables ICU physicians have to consider 
may exceed two hundred [8]. Even though ICU physi-
cians excel at analyzing snapshots of clinical informa-
tion to determine the best treatment options, the ability 
to process all these data on a continuous basis lies well 
beyond the capabilities of the most experienced and 
knowledgeable ICU physicians [7].

In recent years, medicine witnessed the emergence of 
artificial intelligence (AI) and machine learning (ML). 
ML is a domain of AI and engages on the way comput-
ers (‘machines’) learn from data [9]. These technologies 
do not act upon preprogrammed rules but instead, they 
learn and improve from exposure to examples. AI models 
can catalog, classify, and correlate large amounts of data 
on a continuous basis in order to generate patient-spe-
cific predictions [10]. Studies across multiple specialties 
already demonstrated potential benefits of employing AI 
in the detection and classification of diseases [11–14]. In 
the end, the aim is to use AI models to aid clinical deci-
sion-making and to improve quality and efficiency of care 
[15].

In the ICU, AI might aid clinicians on diagnostic, prog-
nostic, and therapeutic levels to improve patient out-
comes. The number of publications on ICU-AI models 
has increased rapidly in the recent years, most commonly 
aimed at predicting complications, predicting mortality, 
and improving prognostic models [16]. A recent system-
atic review demonstrated that ML models can accurately 
predict onset of sepsis in ICU patients [17]. Although this 
analysis mainly comprised retrospective cohorts, it is a 
good example how algorithm performance is able to out-
perform traditional scoring tools.

Such positive studies tend to feed the hype regarding 
AI, although they have heterogeneous designs and meth-
odologies potentially leading to low quality and risk of 
bias in some studies. There is thus a risk that the inter-
est in AI may outpace the development of a uniform 
and structured approach to safely develop and deliver 
AI to patients [18]. Moreover, it remains undetermined 
whether patients already clinically benefit from AI.

The current systematic review seeks to give a contem-
porary overview of the current maturity of AI in the ICU, 
the research methods behind these studies, and the risk 

of bias in these studies. Specifically, we sought to describe 
the study design and aim, the size of used datasets, and 
the level of clinical readiness as part of the maturity 
definition.

Methods
This manuscript has been prepared according to the Pre-
ferred Reporting Items for Systematic reviews and Meta-
analysis (PRISMA) guideline and was registered in the 
online PROSPERO database (Record ID: 199,683; refer-
ence number: CRD42020199863) before initiation of the 
literature search [19, 20].

Inclusion criteria and study identification
Publications were eligible for review inclusion if they only 
included adult patients (≥ 17 years of age), assessed AI or 
ML algorithms, defined as computational models that are 
able to learn from exposure to large amounts of data, for 
clinical impact, used data that was gathered during ICU 
stay, were published as original research, and were avail-
able in English in full text. Publications were excluded 
when they solely used data gathered from a general ward, 
emergency room, operating theatre or post-anesthetic 
care unit. Candidate publications were identified through 
a comprehensive search in Embase, MEDLINE ALL, Web 
of Science Core Collection, Cochrane Central Register 
of Controlled Trials and Google Scholar from March to 
July 28, 2020. Our local librarian helped to further polish 
and update the electronic search strategies. The following 
terms were used as index terms or free-text words: ‘arti-
ficial intelligence’, ‘machine learning’, ‘intensive care unit’ 
and ‘decision support’ to identify eligible studies.

The full search terms used for literature search in 
Embase, MEDLINE ALL, Web of Science Core Collec-
tion, Cochrane Central Register of Controlled Trials and 
Google Scholar are noted in Online Resource 1.

Study selection
After study selection, duplicates were identified and 
removed using EndNote X(9) (Clarivate Analytics, Phila-
delphia, PA, USA). An individual author (DvdS) screened 
all title and abstracts and judged whether a paper met 
inclusion criteria. Two authors (MvG and JvB) indepen-
dently reviewed the included publications by abstract 

Take‑home message 

At this moment, the majority of the published artificial intelligence 
(AI) models designed for use in the intensive care unit (ICU) do not 
reach beyond the prototyping and development environment. 
There are a number of barriers to overcome before AI can aid clini-
cal decision-making in the ICU.
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screening. Disagreement was resolved by consensus of 
a third reviewer (JH). Full-text publications were then 
screened and the final decision on eligibility was made by 
author (DvdS), reasons for exclusion were recorded per 
article. Excluded studies were reviewed using the same 
criteria for consensus.

Data collection and review process
We extracted information on the following study char-
acteristics: (1) design (categorized as retrospective-, 
prospective observational- and clinical [categorized 
as the following study designs: non-randomized clini-
cal trials and randomized clinical trials/randomized 
controlled trials (RCT)] designs); (2) aim (categorized 
as alarm reduction, assessing clinical notes, classifying 
sub-populations, detecting spurious recorded values, 
determining physiological thresholds, improving prog-
nostic models/risk scoring system, improving upon 
previous methods, predicting complications, predicting 
health improvement, predicting length of stay, predict-
ing medication administration, predicting mortality and 
predicting readmissions) (in case studies had more than 
one aim, all aims were recorded); (3) size of the data-
set (the total number of patients used for data analysis); 
(4) level of validation (categorized as internal validation 
[models are validated on patients who are included in 
studies’ own dataset], external validation [models are 
validated on data of patients from other geographical 
locations or times], prospective observational valida-
tion, clinical validation and no reported validation); (5) 
AI level of readiness, which was assessed over time by 
applying the general concept of technology readiness 
levels introduced by National Aeronautics and Space 
Administration (NASA), which previously has been 
translated to the ICU environment [the consecutive lev-
els increase from development to the clinical implemen-
tation of AI: problem identification (level 1), proposal of 
solution (level 2), model prototyping and development 
(level 3 and 4), model validation (level 5), real-time 
testing (level 6), workflow integration (level 7), clini-
cal testing (level 8), and integration in clinical practice 
(level 9)] [21, 22]; (6) clinical study design and effects on 
patient outcome measures were extracted [categorized 
as reduced length of ICU stay, reduced overall mortal-
ity, reduced time on mechanical ventilation, reduced 
rate of complications and other (with details)]. Clinical 
study designs were considered to be either pre–post-
implementation trials, non-randomized clinical trials 
or randomized clinical trials. Retrospective and pro-
spective observational designs were considered to be 
non-clinical study designs, since treatment of patients 
or clinical decision-making was not being influenced by 
the use of AI.

Data analysis
We used the PROBAST method, a tool to assess the risk 
of bias for prediction model studies, to assess the risk of 
bias in retrospective development studies [23]. The risk 
of bias judgement (categorized as high, unclear or low) 
was based on the four PROBAST domains (categorized 
as participants, predictors, outcomes, and analysis), was 
plotted for each individual domain of bias assessment, 
and is reported as percentages. No quantitative synthesis 
was conducted. We did not assess applicability, since no 
specific therapeutic question was defined for this system-
atic review.

Study aims were tabulated according to the corre-
sponding study design. Dataset sizes were plotted against 
the proportion (%) of studies with the correspond-
ing study design, and the level of readiness was plotted 
against the number of studies with the corresponding 
level and year of publication.

Results
Identification of studies
A total of 8645 studies were identified through our elec-
tronic search of which 4978 were identified via Embase, 
1542 via Medline, 1743 via Web of Science Core Collec-
tion, 178 via Cochrane Central Register of Controlled 
Trials, and 204 studies through an additional search 
in Google Scholar, from July 1991 to July 2020. We 
reviewed 860 full-text studies of which 494 studies were 
finally included (Fig. 1). Main reason for ineligibility was 
that studies did not use AI or data was not collected in 
the ICU. A reference list of all included studies and the 
list with collected study items can be found in Online 
Resource 2 and Online Resource 3, respectively.

Study design and purpose of AI
Most studies had a retrospective study design [476 stud-
ies (96.4%)], 8 studies (1.6%) had a prospective observa-
tional design and 10 studies (2%) had a clinical design, 
from which 5 (1%) were non-randomized trials and 5 
(1%) were randomized clinical trials. The most common 
study aims were predicting complications [110 studies 
(22.2%)] and predicting mortality [102 studies (20.6%)] 
followed by improving prognostic models/risk scoring 
systems [86 studies (17.4%)] and classifying sub-popula-
tions [57 studies (11.7%)] (Table 1).

The median sample size across all retrospective studies 
was 1010 patients (IQR 149–7817) [for studies reporting 
on internal validation the median sample size was 968 
(IQR 144–7794) and for external validation 1528 (IQR 
235–7894)]. In addition, the median sample size was 179 
(IQR 94–1411) and 142 (IQR 40–380) across all pro-
spective observational and clinical studies, respectively. 
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Ten studies (2%) analyzed data on more than 100,000 
patients, all of which had a retrospective study design. 
Most studies analyzed data on 100–1000 patients [142 
studies (28.7%)]. Of all studies which reported on exter-
nal validation, most of them analyzed data on 1000–
10,000 patients [13 of 35 studies (37.1%)] (Fig. 2).

Level of readiness
441 studies (89.3%) scored level 4 or below on the ‘level 
of readiness’ scale, 35 (7.1%) studies performed exter-
nal validation (level 5), 8 studies (1.6%) integrated an AI 
model in the clinical setting without exposing the clinical 
staff to the results (level 6) and ten studies (2%) clinically 
evaluated model performance (level 8). Studies report-
ing on the outcome evaluation of an AI model that has 
been integrated in routine clinical practice (that is, not 
in a clinical study setting) were not identified (level 9). 
In recent years, the total number of studies reporting 
on model development and prototyping (level 3 and 4), 
increased rapidly from 30 studies per year in 2017 to 92 
studies per year in 2019. Moreover, the number of studies 
per year reporting on external validation increased from 
two in 2017 to seven in 2019 (Fig. 3).

Risk of bias
Risk of bias assessment was restricted to 467 retrospec-
tive development studies. Using the PROBAST criteria, 
the overall risk of bias (ROB) was classified as high in 378 
of the 467 (80.9%) studies (Fig. 4). High ROB most often 
originated in the domains ‘participants’ (item 1.1 were 
inappropriate data sources used?) and ‘analysis’ (items 4.1 
were enough patients included? and 4.3 were all enrolled 
participants included in the analysis?).

Clinical studies involving AI
A total of ten studies were identified in which the perfor-
mance of AI was clinically evaluated (Table 2). Five stud-
ies were non-randomized clinical trials and the other five 
were randomized clinical trials [24–33]. Eight out of ten 
studies provided complete information regarding study 
characteristics and the effect on patient outcomes. Sig-
nificant improvement of patient outcomes was observed 
in seven studies.

Discussion
The main finding of our systematic review is that the vast 
majority of current AI models in the ICU still remain 

Fig. 1 PRISMA 2009 flow diagram of the study review process and the exclusion of studies; from [19]
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within the testing and prototyping environment. Over 
time, the direction of the maturation of ICU-AI is mainly 
horizontal rather than diagonal, i.e. expansion of retro-
spective models instead of moving towards the clinical 
implementation (Fig. 3).

Considering the modest number of clinical trials 
(ten), AI does not have considerable impact on clinical 
decision-making in the ICU at this moment. Although 
there were only a few, the clinical trials included in this 
review nicely demonstrate how AI might actually benefit 
patient outcomes. A good example is the sepsis predic-
tion model called ‘InSight’, which was tested by McCoy 
et  al. and Shimabukuro et  al. (Table  2), and which suc-
cessfully moved from the testing and prototyping envi-
ronment to the validation stage, and finally, the clinical 
evaluation stage [28, 33]. However, based on the findings 
of our review, we cannot conclude why this model was 
deployed successfully, as opposed to the majority of other 
ICU-AI models.

Generally, a possible explanation for the current direc-
tion of the maturation of AI may be that the development 
of prediction models in retrospective proof-of-concept 
studies is relatively ’easy’ compared to leveraging AI to 
generate actually relevant information in clinical deci-
sion-making. Furthermore, interventions in the ICU are 

in general subject to the extreme complexity of the envi-
ronment and the variation across sub-populations and in 
local practice. The medical AI community has achieved 
a major milestone in 2016, with the first AI model that 
has received legal approval by the United States Food and 
Drug Administration (FDA) [34]. However, the maturity 
of ICU AI has unfortunately not evolved much since then 
(Fig. 3).

The current review focused on the use of AI to ana-
lyze data gathered in the ICU, and thus no other clinical 
prediction models were included. Nonetheless, there are 
more examples of computerized decision support sys-
tems that can analyze such complex data, for example 
systems to improve weaning from mechanical ventila-
tion [35]. However, many were knowledge-based systems 
that act upon preprogrammed rules and therefore did 
not meet the inclusion criteria. Furthermore, when it 
comes to clinical prediction models there is a variety of 
applied statistical methodologies, ranging from classical 
methodologies (e.g. logistic regression) to deep learning 
algorithms (e.g. deep neural networks). However, none 
of the ten clinical studies were based on deep learning 
algorithms. Future studies could delve into the com-
parison between AI models and models using classical 
methodologies.

Table 1 Number and proportion (%) of studies according to the study aim and study design

¥ Where studies had more than one aim, all aims were recorded, thus percentages may exceed 100. *Retrospective studies were stratified according to their level of 
validation (e.g. internal, external and no reported validation)

Aim of study Study design

Number (%) 
of studies 
with this  aim¥

Retrospective* Prospective 
observa-
tional

Non-rand-
omized clini-
cal trial

Randomized 
clinical trial

Internal External Non

Predicting complications 110 (22.2%) 86 (78.2%) 12 (10.9%) 4 (3.6%) 5 (4.5%) 2 (1.8%) 1 (0.9%)

Predicting mortality 102 (20.6%) 92 (90.2%) 9 (8.8%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

Improving prognostic models/risk scoring 
system

91 (18.4%) 80 (87.9%) 7 (7.7%) 3 (3.3%) 1 (1.1%) 0 (0%) 0 (0%)

Classifying sub-populations 58 (11.7%) 53 (91.4%) 1 (1.7%) 4 (6.9%) 0 (0%) 0 (0%) 0 (0%)

Determining physiological thresholds 24 (4.9%) 21 (87.5%) 1 (4.2%) 2 (8.3%) 0 (0%) 0 (0%) 0 (0%)

Predicting length of stay 22 (4.4%) 22 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Alarm reduction 21 (4.3%) 20 (95.2%) 1 (4.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Predicting medication administration 19 (3.8%) 14 (73.7%) 1 (5.3%) 1 (5.3%) 0 (0%) 2 (10.5%) 1 (5.3%)

Improving mechanical ventilation 16 (3.2%) 13 (81.3%) 0 (0%) 0 (0%) 1 (6.3%) 1 (6.3%) 1 (6.3%)

Assessing clinical notes 13 (2.6%) 9 (69.2%) 1 (7.7%) 1 (7.7%) 0 (0%) 0 (0%) 2 (15.4%)

Predicting readmissions 12 (2.4%) 11 (91.7%) 1 (8.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Predicting relevance of clinical informa-
tion

8 (1.6%) 5 (62.5%) 1 (12.5%) 2 (25%) 0 (0%) 0 (0%) 0 (0%)

Assessing videos and images 7 (1.4%) 6 (85.7%) 0 (0%) 0 (0%) 1 (14.3%) 0 (0%) 0 (0%)

Detecting spurious recorded values 6 (1.2%) 6 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Predicting health improvement 5 (1%) 5 (100%) 0 (0%) 0 (0%) 0 (0%) 0(0%) 0 (0%)

Predicting unnecessary lab tests 3 (0.6%) 3 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total (accounting for duplicates) 494 421 (85.2%) 35 (7.1%) 20 (4%) 8 (1.6%) 5 (1%) 5 (1%)
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Implementation of AI is generally associated with bar-
riers concerning data management, the development of 
models or the implementation in the (clinical) workflow. 

For instance, well-known barriers on the level of data and 
model development are: privacy/data sharing, regulation, 
and model generalizability [36–38]. Large amounts of 

Fig. 2 Proportion (%) of studies according to their design and the number of patients analyzed. *Studies with a retrospective design were stratified 
according to their level of validation (e.g. internal, external and no reported validation)

Fig. 3 Number of studies published according to their level of readiness and year of publication. The total number of studies reporting on model 
development and prototyping (level 3 and 4), increased rapidly from 30 studies per year in 2017 to 92 studies per year in 2019. Furthermore, the 
number of studies per year reporting on external validation (level 5) increased from two in 2017 to seven in 2019. The current movement is mainly 
horizontal whereas the desired movement is diagonal, i.e. towards clinical evaluation
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patient data are required to ‘train’ a new AI model. Ide-
ally, ICU data are shared across institutions to construct 
large and diverse datasets. However, when using such 
sensitive information you have to comply with regula-
tions like the General Data Protection and Regulation 
(GDPR) that has been issued by the European Union. 
Herein, the challenge is to balance the privacy and regu-
latory requirements with the desire to collect large and 
diverse datasets. When translating a model to a different 
institution you may encounter technical differences (for 
instance: differences in equipment, frequencies of data 
collection, and EHR systems) variations in local practices 
or variations in patient characteristics and as of a result, 
the model will tend to poorly generalize.

In this review, we have also identified specific barriers 
in the progress of AI in the ICU from model development 
to clinical implementation. First, 80% of the included ret-
rospective studies were overall at high risk of bias. This 
is an indication that many studies may have been of poor 
quality or at least insufficient to serve as a starting point 
for successful maturity. The risk of bias was particu-
larly high in the ‘participants’ PROBAST domain which 
implies that the quality of the used data may be poor. 
Frequently, the analyzed data were extracted directly 
from hospitals’ electronic health record systems without 
proper validation. In general, obtaining high-quality data 
are a known challenge in the development of AI models 

[38]. Especially raw data, collected through continuous 
patient monitoring in the ICU environment, is prone to 
measurement errors [10, 39]. Several methods have been 
proposed to overcome this barrier, for instance using 
moving average models or signal estimators [40, 41]. 
It is not likely that the data will become entirely noise-
free. Nonetheless, it is crucial to keep this in mind when 
developing an AI model.

Second, in most development studies, the size of the 
dataset was too small to exploit the full power of AI tech-
nologies. Deficiencies regarding the ‘analysis’ PROBAST 
domain most commonly related to Sect.  4.1, which 
means that studies did not use a reasonable number of 
patients relative to the number of predictor variables 
included in the AI model (≥ 20 patients with the outcome 
of interest per predictor variable included in the model 
was considered to be reasonable [23]). This is a key issue 
for many uses of AI [42]. It is generally accepted that the 
more data an AI model gets access to, the more it can 
excel at its’ predefined tasks [43]. To overcome this bar-
rier, a solution may be to calculate the required sample 
size following the method proposed by Riley et al. [44].

Third, in 25% of the included studies in our review, it 
was unclear which variables were eventually used by 
the AI model. In addition, researchers in the field of AI 
commonly use terminology that is not familiar to clini-
cians and other researchers. Moreover, AI studies are 

Fig. 4 Percentage risk of bias according to the domain of assessment for all studies with a retrospective study design; assessed using PROBAST [23]
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often published in specific journals that are not famil-
iar to clinicians [42]. The use of reporting standards, as 
used for conventional multivariable prediction models 
(TRIPOD), may enhance transparency and thus promote 
the progress of ICU-AI from development to validation 
studies [45]. Since existing reporting standards are tai-
lored to conventional prediction models, the introduc-
tion of an ML-specific standard has been announced 
lately [46]. The use of reporting standards will enhance 
transparency and completeness when incorporating AI in 
a clinical trial protocol (SPIRIT-AI) and when reporting 
AI related results of a clinical trial (CONSORT-AI) [47, 
48]. These are extensions of the conventional SPIRIT and 
CONSORT guidelines tailored to AI and can help both 
researchers and editors to better grasp the relevance of 
AI models [49, 50].

Finally, the concern for patient safety may impede 
the progress of AI [42]. At the moment, much remains 
unclear in the development and safe delivery of AI to 
patients. For example, if an AI model is inaccurate, poorly 
calibrated, or used in a biased way, and still used for deci-
sion support, this could lead to wrong clinical decisions 
[51, 52]. The FDA has proposed a regulatory framework 
for ‘good machine learning practice’ [53]. More recently, 
they came up with an action plan to update the previ-
ously published regulatory framework and to advance 
real-world clinical trials in order to provide information 
on what a real-world evidence generation program could 
look like [54]. This is an iterative process that will evolve 
as more clinical trials have been conducted. However, 
we believe that establishing a uniform and structured 
approach for the implementation of AI models is para-
mount to enable safe development and delivery of AI to 
patients in the ICU. The current findings and the idea for 
a uniform structured approach are in line with a previous 
position paper by Cosgriff et al. [55].

The last systematic review on the use of AI and ML 
in the ICU was published in 2019 [16]. In particular, it 
concluded that different AI/ML statistical methods (e.g. 
decision trees, neural networks, and random forest) 
were used over time and was restricted to the use of data 
routinely collected in the ICU. A more recent narrative 
review explained the different types of ML (e.g. super-
vised learning and unsupervised learning) in relation to 
specific clinical problems in the ICU (e.g. sepsis, length 
of stay, and mortality) [7]. Our review is the first to assess 
the current level of AI maturity, research methods, and 
the risk of bias in these studies.

Some limitations must be acknowledged. First, in our 
review, we have specifically focused on the development 
of AI models in the ICU. However, there may exist AI 
models which can be translated from other specialties to 
the ICU environment using similar aims and variables. 

Second, the guideline we used to assess the risk of bias 
(PROBAST) was designed for conventional prediction 
models rather than AI-based models, and so our find-
ings should be interpreted in this context. Third, although 
comprehensive, the literature search might have missed 
studies that could have been included. However, to ensure 
that we did not underestimate the level of clinical readi-
ness or missed FDA approved AI models, we addition-
ally searched the online open access database for models 
that have been approved by the FDA, but did not iden-
tify additional AI models for use in the ICU [34]. Fourth, 
the PROBAST method was used to assess the risk of bias 
for prediction model studies. As such, other important 
determinants of model performance such as discrimina-
tion, calibration, and algorithmic bias were not taken into 
account. Last, we did not take racial and minority bias 
into account and did not gather such data. Future studies 
should consider gathering such information.

Conclusion
AI is an innovative and quickly evolving field of research 
with the potential to improve clinical outcomes for ICU 
patients. The vast majority of currently developed ICU-
AI models remain within the testing and prototyping 
environment and are not tested at the bedside. There are 
a number of barriers to overcome to move towards clini-
cal evaluation and eventually implementation of AI to 
aid clinical decision-making. Obviously more research is 
needed to gain more insight into this process. This can be 
supported by a structured approach to develop AI mod-
els and to ensure safe delivery to patients.
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