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1 Introduction 
 

 

1.1 The immune system 

 

Although our body is daily confronted with possible invasions of pathogens, severe 

infections occur only seldom, due to our highly efficient immune system. It is 

responsible for host defense against infectious agents. With the help of a complex 

system of humoral and cellular defense mechanisms it is able to discriminate 

between self and non-self protecting our body against pathogens. The immune 

system consists of all organs, tissues, cells and molecules involved in host 

defense. Immunocompetent organs can be broadly divided into central and 

peripheral. In the central organs immunocompetent white blood cells – leukocytes 

– are generated and major parts of their development take place: the bone 

marrow, where generation of leukocyte progenitors from pluripotent hematopoetic 

stem cells occurs and B lymphocytes mature, and the thymus, the organ of T 

lymphocyte maturation. The most important peripheral organs are the spleen, the 

lymph nodes and the mucosal lymphatic tissues. Here, lymphocytes are 

maintained and meet possible antigens. 

Defense mechanisms of the immune system, the so called immune response, are 

based on two different but interacting principles, innate and adaptive immunity. 

Innate immunity provides a first line of defense against many common pathogens. 

It evolved before adaptive immunity and plays a crucial role in controlling 

infections in the first four to seven days, the time needed before an initial adaptive 

immune response can take effect. Part of an innate immune response are: the 

complement system, inflammatory cells – macrophages and neutrophils –, natural 

killer cells (NK cells), γ:δ T cells and B-1 B cells. The components of innate 

immunity are constitutively present in our body and do not generate an 

immunological memory. 

Adaptive immunity is based on clonal selection of antigen-specific effector 

lymphocytes and on generation of memory cells that are able to prevent re-

infection with the same pathogen. An adaptive immune response, also known as 

acquired immune response, is mainly made up by three different cell types: 
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professional antigen-presenting cells (APC), B lymphocytes and T lymphocytes. 

To raise such a response at least two of the above mentioned cell types have to 

participate. Adaptive immunity distinguishes humoral, or B cell-mediated, and 

cellular, or T cell-mediated, immunity. Humoral immunity is mainly based on 

antibodies (Ab) secreted by B cells which have to get activated by antigen-specific 

T helper cells (TH2), and is directed against extracellular pathogens and toxins. 

Cellular immunity, in general directed against intracellular pathogens or for 

example tumor cells, is based on cytotoxic T lymphocytes (CTL) and inflammatory 

TH1 cells. To become activated, CTL have to interact with APC and TH1 cells. 

Coordination and regulation of a specific immune response are maintained 

through subpopulations of T cells that either activate or inhibit other immune 

competent cells. 

 

 

1.1.1 Major histocompatibility complex molecules and antigen processing 

 

As already mentioned, the immune system is able to distinguish between self and 

non-self through humoral and cellular defense mechanisms, respectively. B cell 

receptors and Ab bind three dimensional, native structures, whereby nearly every 

chemical substance can be recognized by Ab. T cells, on the other hand, are more 

limited. Via their T cell receptor (TCR), they recognize parts of processed proteins, 

peptides, which have to be presented on special receptors, the major 

histocompatibility complex (MHC) molecules, on cell surfaces. The two different 

subsets of T cells, CD8+ and CD4+ T cells, recognize two different types of MHC 

molecules, MHC class I and MHC class II, respectively. The MHC is the most 

polymorphic gene cluster in humans and is located on chromosome six. MHC 

molecules, in humans called human leukocyte antigens (HLA), are a family of 

highly polymorphic glycoproteins. MHC I molecules are heterodimers formed of a 

heavy chain, in humans HLA-A, -B, -C, and of a noncovalently bound light chain, 

β2-microglobulin (β2m). In contrast, MHC II molecules, in humans HLA-DR, -DQ, -

DP, are made of two heavy chains, α and β. 

In the classical view, MHC class I molecules present peptides from endogenously 

synthesized proteins on cell surfaces of the vast majority of cells, allowing 
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circulating CD8+ cytotoxic T cells to survey cells for possible infections or improper 

protein expression, such as might be seen during tumorigenesis. As MHC class I  

genes are highly polymorphic, proteins encoded by each allele will bind only a 

unique set of peptides. Anchor residues of the antigenic peptides determine the 

binding specificity to the peptide binding groove of a specific MHC molecule [1]. 

The MHC class I molecule defines the position of anchor residues which have to 

be occupied by specific amino acids. Most common, peptides of eight to ten amino 

acids in length are generated by normal cellular degradation of proteins and 

presented on the cell surface by class I [2]. The ubiquitin-proteasome system 

generates precursor peptides that have the correct C-terminus but may have N-

terminal extensions of several amino acids [3]. The constitutive 20S proteasome 

consists of 14 non-identical subunits (α1-7 and β1-7) forming four stacked rings of 

seven subunits each (2 outer α rings and 2 inner β rings) and shows three different 

proteolytical activities: a chymotrypsin-like (β1, cleavage after hydrophobic 

residues), a  trypsin-like (β2, cleavage after basic residues) and a caspase-like 

(β5, cleavage after acidic residues) [4]. In the presence of interferon γ (IFNγ) the 

subunits which harbor the active sites are exchanged by so called 

immunosubunits: MECL1, LMP2 and LMP7 [5]. The newly formed immuno-

proteasome is able to enhance the generation of peptides which can be presented 

on class I [6]. The N-termini of the peptides are further trimmed by 

aminopeptidases residing either in the cytosol or in the endoplasmic reticulum 

(ER) [7]. Peptides generated by the proteasome are transported by the transporter 

associated with antigen processing (TAP) into the ER [8] where they are loaded on 

MHC I heavy chain-β2m heterodimers through interactions in the peptide-loading 

complex, consisting additionally of the transmembrane glycoprotein tapasin, the 

chaperone calreticulin and the thiol oxidoreductase ERp57 [9]. Mature MHC I 

complexes consisting of MHC I heavy chain, β2m and peptide are then transported 

on the cell surface where they can interact with CD8+ T cells. 

MHC class II molecules – as polymorphic as class I – typically present peptides 

from exogenous proteins acquired by endocytosis or from internalized plasma 

membrane proteins to CD4+ T cells. Whereas for MHC class I the initial events of 

antigen processing and MHC peptide assembly take place in different cellular 

compartments, processing of exogenous antigens and MHC II peptide loading 

happen in the same [10]. Therefore it is not surprising that MHC II peptide 
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assembly differs substantially from that of MHC I. MHC II α- and β-chains are 

synthesized into the ER where they form nonameric complexes consisting of three 

MHC II dimers and three invariant chain molecules (Ii, CD74) [11], a type II 

membrane protein. Ii serves as both a targeting subunit into the MHC class II 

loading compartment (MIIC) [12;13], part of the endosomal-lysosomal system, and 

a guardian of the peptide binding groove [14]. On the way into the MIIC, Ii is 

removed by an ordered proteolytic reaction, leading to the generation of a 

fragment called class II invariant chain peptide (CLIP), lodged in the peptide 

binding site. Ii processing happens in a C-terminal-to-N-terminal direction and is 

dependent on lysosomal proteases. Cathepsin S, cathepsin L and asparagine 

endopeptidase (AEP) are three proteases involved in Ii processing [15], but further 

proteases may also play a role, as some processing steps are redundant. 

Dissociation of CLIP and loading of antigenic peptides is catalyzed by the 

chaperone DM, whose function is modulated by DO [16]. Antigen processing 

happens as Ii processing in the endosomal-lysosomal system. The principal 

cysteine proteases involved are cathepsin S, L, B, F, H and V and the unrelated 

AEP [17;18]. Compared to MHC I molecules, the binding grooves of MHC II 

molecules are open at their ends. Therefore, MHC II ligands show a much greater 

variety in their length, in general being 11 to 18 amino acids long [19;20]. Often, 

MHC II peptides encompass a core sequence, which is variably extended at both 

termini [21]. In contrast to MHC I molecules, binding of class II molecules and their 

ligands is mainly based on interactions between peptide backbone and MHC II 

binding groove [22]. MHC II molecules have also binding pockets specific for 

defined anchor amino acids, but compared to class I they are degenerated. 

 

 

1.1.2 T lymphocytes and anti-tumor immunotherapy 

 

CD4+ and CD8+ T pocess TCRs which cells recognize MHC-peptide-complexes 

presented by other cells. At the cell surface, the TCR is associated with the CD3 

complex, responsible for signal transduction. To recognize MHC I- and MHC II-

peptide-complexes, in addition the co-receptors CD8 and CD4, respectively, have 

to interact with conserved domains of the MHC molecules. Foreign peptides 



Introduction  7 

 

presented on MHC molecules on surfaces of professional APC can be recognized 

by naive T cells, a process called priming. Primed T cells proliferate and 

differentiate into armed effector T cells, either CTL, in the case of CD8+ T cells, or 

TH1 and TH2, in the case of CD4+ T cells. To get primed, naive T cells have to 

recognize MHC-peptide-complexes on professional APC, as they need an 

additional co-stimulatory signal which is conferred for example by the receptors 

CD80 and CD86 on APC to CD28 on T cells. In general, without this additional co-

stimulatory signal T cells recognizing MHC-peptide-complexes go over into 

anergy. Activated CTL destroy their target cells via the induction of apoptosis, 

either with the help of perforin and granzymes [23] or via Fas-ligand [24;25]. TH1 

cells activate macrophages and CD8+ T cells – a cellular immune reaction – via 

the secretion of interferon γ (IFNγ) and interleukin 2 (IL-2) [26], whereas TH2 cells 

lead to an activation of Ab secreting B cells and the complement system via 

interleukin 4 (IL-4) [27] – a humoral immune reaction. Recently, another 

subpopulation of CD4+ T cells has been described: regulatory T cells (Treg) [28]. 

These cells express constitutively CD25 and inhibit T cell reactions in an, until 

now, not fully understood way. 

In the last 10 years it has been shown in many different clinical trials that the 

immune system can be manipulated to specifically recognize and eliminate tumor 

cells [29;30]. Many different approaches have been used to activate the immune 

system towards the tumor, ranging from immunzations with whole tumor cell 

lysates to the administration of molecularly defined parts of tumor rejection 

antigens, in general peptides of proteins produced by the tumor. Tumor cells may 

differ from their surrounding by the expression of tumor antigens which are either 

tumor specific, meaning they occur exclusively in tumor tissue, as cancer-testis 

antigens, mutated antigens and tumor-virus antigens, or tumor associated which 

means they are highly overexpressed in tumors but can also be found in normal 

tissue, as for example differentiation antigens. Table 1 shows a classification of 

tumor rejection antigens. 

Peptide based immunotherapy studies have shown that CTL are able to recognize 

tumor rejection antigens on tumor cells and are thus able to contribute to tumor 

regression [31;32]. Our knowledge about anti-tumor CD4+ effector T cells and 

their epitopes is far more limited which is in part due to the more difficult 

characterization. Degenerated class II binding motifs inhibit an as efficient class II 
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epitope prediction as for CTL epitopes, a process known as reverse immunology 

[33]. However, in order to elicit a long lasting anti-tumor immune response the 

effector CTL response should be accompanied by effector CD4+ T cells [34-36], 

giving the reason for the need of identification of class II epitopes of tumor 

rejection antigens [37]. In addition, it could be shown that CD4+ T cells are able to 

act tumor repressive without any CTL effector function. Normally, this happens in 

an indirect, cytokine dependent manner [38-40]. Thus, CD4+ T cells are able to 

inhibit tumor angiogenesis via IFNγ [41]. They can also counteract tumor 

development via the induction of an Ab response [42].  

 

 

Table 1: Classes of tumor antigens* 

 

  recognized by 

class examples T cells  antibodies 

    

point mutation of normal gene CDK4 [43] x  - 

frame shift mutation of normal gene TGFβRII [44] x  - 

anti sense transcript of normal gene RU2AS [45] x  - 

expressed intron of normal gene N-acetylglucosaminyltransferase V [46] x  - 

fusion protein caused by translocation BCR-ABL [47] x  - 

fusion protein caused by posttrans. mod. gp100 [48], FGF-5 [49] x  - 

altered posttranslational modifications tyrosinase [50] x   - 

cancer/embryonic antigen CEA [51;52] x  x 

overexpressed antigens - protein Her2/neu, MUC1 [53;54] x  x 

overexpressed antigens – non-protein ganglioside GD3 [55] -  x 

cancer testis antigen NY-ESO-1 [56] 

 MAGE family [57] x  x 

oncogenes ras [58-60] x  x 

tumor suppressor genes p53 [61;62] x  x 

differentiation antigen tyrosinase [63;64] x  x 

 gp100 [65;66] x  x 

viral proteins HPV E7 [67;68] x  x 

* adapted from Rammensee et al. [69] 
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1.2 Mass spectrometry 

 

Mass spectrometry (MS) is an analytical method which is able to determine 

molecular weights of ions in a high vacuum. Ions of inorganic or organic 

compounds are generated by different means, separated by their mass-to-charge 

ratios (m/z) and detected qualitatively and quantitatively by their respective m/z 

[70]. In principle, a mass spectrometer is made up by an ion source, for example 

an electrospray ionization (ESI) or a matrix assisted laser desorption/ionization 

(MALDI) source, by a mass analyzer, for example a quadrupole or a time-of-flight 

analyzer (TOF), and by a detector, for example a multichannel plate. With the 

invention of soft ionization methods such as MALDI [71] and ESI [72;73] MS 

became one of the most versatile tools in modern analysis of biomolecules. With 

these techniques it is possible to determine molecular weights of big biomolecules, 

for example of proteins, and to obtain sequence information, for example from 

peptides. In the remaining part of this chapter MS with respect to the analysis of 

proteins and peptides will be discussed. The different applications of MS in 

inorganic chemistry and in the analysis of small organic compounds will not be 

dealt with. 

 

laser

ion source

target

reflector
linear
detector

reflector detectordata
collection

laser

ion source

target

reflector
linear
detector

reflector detectordata
collection

laser

ion source

target

reflector
linear
detector

reflector detectordata
collection

laser

ion source

target

reflector
linear
detector

reflector detectordata
collection

 
 

Figure 1: Schematic of a reflector-MALDI-TOF mass spectrometer (adapted from 

Bruker Daltonik, Bremen, Germany). 
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1.2.1 MALDI-TOF mass spectrometry 

 

MALDI uses photons to deposit energy into a solid sample layer. The sample is 

co-crystallized with a matrix, usually small organic molecules that absorb at the 

wavelength of a given laser, on a metal target. A common laser in MALDI mass 

spectrometers is a nitrogen laser (337 nm). But not only ultraviolet (UV) lasers are 

in use, wavelengths ranging from UV to infrared (IR) are employed. For the 

analysis of peptides, matrices like α-cyano-4-hydroxycinnamic acid (CCA) [74] and 

2-(4-hydroxyphenylazo)benzoic acid (HABA) [75] are used together with UV 

lasers. The energy uptake of matrix crystals upon laser irradiation causes 

evaporation and ionization of the sample. Once sample molecules have reached 

the gas phase, usually singly charged ions are formed by proton transfer from 

photo-ionized matrix molecules. Opposite of the target an electrode is mounted 

which creates an electric field pulling the ions towards the analyzer (Figure 1). A 

common analyzer used in MALDI mass spectrometers is a TOF analyzer. M/z are 

determined by the time ions take to trespass a high vacuum and to reach a 

detector. TOF analyzers have resolutions of up to 15,000 full width at half 

maximum (FWHM) in a mass range of up to 5000 Da. To reach such high 

resolution two devices are needed, a reflector [76] and an ion source with a 

delayed extraction [77]. A reflector is an ion mirror that is mounted opposite of an 

ion source and reverses flight directions of ions so that they reach the reflector 

detector. With its help ions of different kinetic energies are focused in time. 

Delayed extraction or time-lag focusing, a time delay between ion formation and 

extraction/acceleration, also counteracts the energy spread of emerging ions and 

the time distribution of ion formation. Usually, MALDI-TOF mass spectrometers 

are used to determine molecular weights of peptides and proteins. 
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Figure 2: Disintegration of charged droplets and generation of single ion entities in 

an ESI-MS interface. 

 

 

1.2.2 ESI-quadrupole-TOF mass spectrometry 

 

In ESI MS gas phase ions are generated by the dispersion of a fluid in an electric 

field which is created between a capillary and the entrance of a mass 

spectrometer (Figure 2). In contrast to MALDI, ESI is not a real ionization process. 

Ions are already present in the fluidic phase and are only converted into the gas 

phase. An electric field creates a fine mist consisting of small highly charged 

droplets which follow a potential and pressure gradient into the analyzer of the 

mass spectrometer. Discrete, completely desolvated ions are generated through 

three interacting processes: desolvation of the solvent, Coulomb explosion, and 

escape of single ions out of droplets. A perpendicular gas flow, the so called 

curtain gas as for example heated nitrogen, supports the desolvation process. 

Commonly, multiple charged ions are generated in ESI MS. As the desolvation of 

the solvent is endotherme, it reduces the inherent energy of the ions and causes 

no fragmentation. A special application of ESI is nano-electrospray [78]. 



12  Introduction 

 

Miniaturization of the electrospray produces sample flow rates of 5 to 1000 nl/min 

which causes reduced sample consumption, and thus a higher sensitivity. 
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With the help of tandem mass spectrometers structural information of ions can be 

obtained, in addition to mere mass analysis. In tandem mass spectrometry 

(MS/MS) two mass analyzers (MS1 and MS2) are coupled in a row. Mass selected 

ions (MS1) are subjected to a second mass spectrometric analysis (MS2) [78;79]. 

One possible setup of a tandem mass spectrometer is shown in Figure 3. Ions are 

selected by a quadrupole analyzer (MS1) and subjected to a hexapole collision 

cell, where they collide with argon gas and ion fragments are generated (collision 

induced dissociation, CID). These fragments are then further analyzed by a 

reflector-TOF analyzer (MS2). 

 

Figure 3: Schematic of a Q-Tof-

mass spectrometer (adapted from 

Micromass, Manchester, UK). MCP = 

multi channel plate; RF = radio 

frequency 
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Figure 4: Generation of b- and y-ions during CID in the gas phase [80]. 

 

With a Q-Tof mass spectrometer it is possible to generate sequence information of 

peptides. Peptide ions are selected by the quadrupole and the corresponding 

fragment ions, generated in the hexapole, are analyzed by the TOF analyzer. 

Collision activated peptides preferably break between peptide bonds along the 

peptide backbone (Figure 4) which allows – with the knowledge of the masses of 

the amino acid residues (Table 2) – sequencing. Normally, during fragmentation 

the charge can either stay at the N-terminus or at the C-terminus of a peptide. 

Depending on the exact site of fragmentation, peptide ions are either called a, b, 

and c ions, or y, x, and z ions, respectively [78;81] (Figure 5). 
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Table 2: Masses of the common amino acid residues an their corresponding 

immonium ions. 

 
   mass 

amino acid 
residue 

3-letter 
code 

1-letter 
code 

amino acid 
residue 

immonium 
iona 

  
Alanine Ala A 71 44
Arginine Arg R 156 129
Asparagine Asn N 114 87
Aspartate Asp D 115 88
Cysteine Cys C 103 76
Glutamate Glu E 129 102
Glutamine Gln Q 128 101
Glycine Gly G 57 30
Histidine His H 137 110
Isoleucine Ile I 113 86
Leucine Leu L 113 86
Lysine Lys K 128 101
Methionine Met M 131 104
Phenylalanine Phe F 147 120
Proline Pro P 97 70
Serine Ser S 87 60
Threonine Thr T 101 74
Tryptophan Trp W 186 159
Tyrosine Tyr Y 163 136
Valine Val V 99 72
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Figure 5: A. Nomenclature of peptide fragment ions. B. Simplified structures of b2 

and y2 ions (see Figure 4). C. Structure of an immonium ion. 

 



Introduction  15 

 

To analyze complex sample mixtures via MS, the combination of both separation 

techniques and MS is needed. One of the most important and common 

combinations is the coupling of a reversed-phase high performance liquid 

chromatography (HPLC) to an ESI mass spectrometer (LC-MS). Using small flow 

rates, the HPLC can be directly coupled online to the electrospray source, as is 

done with µ-capillary LC systems. Sample loss through extensive handling is 

reduced, contaminations like salts can be washed away, and the sample is 

concentrated in a sharply eluting peak. Usually, the sample is first loaded onto a 

C18 pre-column, where salts can be washed away and the sample is 

concentrated. In a second step, the sample is eluted in the opposite direction onto 

a fused silica µ-capillary separation column (for example 5 µm C18 material, 75 

µm ID x 250 mm) which is directly coupled to the mass spectrometer via a 

nanoflow interface. Commonly, the selection of peptide ions for tandem MS is 

done automatically by the mass spectrometer. 
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1.3 Aims of the thesis 

 

MHC class I ligands, especially in association with tumor development and 

immunity, have been extensively studied. Anti-tumor immunotherapy using class I 

peptides of tumor associated antigens in different vaccination combinations is also 

a research area which has been heavily explored. On the other hand, our 

knowledge about MHC class II peptides and their impact on anti-tumor immunity is 

far more limited. Thus, the aim of this thesis was to establish a better knowledge of 

the MHC class II peptide repertoire, the ligandome, in general, and to outline a 

procedure which helps in the identification of class II peptides from tumor 

associated antigens, in particular. To achieve these goals, state-of-the-art mass 

spectrometric devices, ranging from a MALDI-Reflector-TOF mass spectrometer to 

a LC-MS system, were used. 

HLA-DR peptides from a tumor-like cell line should be identified by MS and 

analyzed using the rules of proteome analysis. The question to answer was: 

peptides from which source proteins are presented under normal conditions on 

MHC class II molecules on the cell surface? A further question was: has 

autophagy, one of the two major cellular degradation pathways and a process 

which plays a role in tumor development, an impact on the class II ligandome? To 

answer this question, a comparative MS analysis of MHC class II peptides isolated 

from cells undergoing autophagy and control cells had to be perforemd. 

A special field of interest was posttranslational modified MHC peptides. It has 

already been described that T cell recognition of antigenic peptides can depend on 

posttranslational modifications of such peptides, but so far hardly any naturally 

presented posttranslational modified MHC II ligands have been identified. 

Therefore the class II ligandome should be searched for known modifications, 

such as glycosylation and deamidation. 

Finally, as most tumors are class II negative and MHC II ligands cannot be directly 

isolated from solid tumor tissue, a strategy for the identification of naturally 

presented class II ligands from tumor associated antigens should be set up.  
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2 Results and Discussion 
 

 

2.1 Autophagy promotes MHC-II presentation of peptides from intracellular 
source proteins  

 

This manuscript has been composed by Jörn Dengjel, Oliver Schoor, Rainer 

Fischer, Michael Reich, Marianne Kraus, Katharina Kreymborg, Florian 

Altenberend, Hubert Kalbacher, Roland Brock, Christoph Driessen, Hans-Georg 

Rammensee and Stefan Stevanović. The author of this thesis has performed the 

experiments leading to figure 1, 2, 3 and 4. All the mass spectrometric 

experiments and cell culture work were done by him. 

 

 

2.1.1 Summary 

 

MHC-peptide complexes mediate key functions in adaptive immunity. In a classical 

view, MHC I molecules present peptides from intracellular source proteins, 

whereas MHC II molecules present antigenic peptides from exogenous and 

membrane proteins. Nevertheless substantial crosstalk between these two 

pathways has been observed. We investigated the influence of autophagy on the 

MHC II ligandome and show that peptide presentation is strongly altered upon 

induction of autophagy. The presentation of peptides from intracellular and 

lysosomal source proteins was strongly increased on MHC II in contrast to 

peptides from membrane and secreted proteins. In addition, autophagy influenced 

the MHC II antigen processing machinery. Our study illustrates a profound 

influence of autophagy on the class II peptide repertoire and suggests implications 

in the regulation of CD4+ T-cell-mediated processes. 
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2.1.2 Introduction 

 

Peptides of foreign and self proteins are presented on major histocompatibility 

complex class I (MHC I) and class II (MHC II) molecules at the cell surface and 

can be recognized by CD8+ and CD4+ T lymphocytes, respectively [1;2]. By this 

the MHC molecules transfer information about the current stock of proteins within 

a cell and its surroundings to the cell surface allowing the immune system to 

survey the cell’s integrity and to react, if necessary. The definition of pools of 

peptides presented at the cell surface under specific conditions is vital for the 

understanding of the immune system. Especially if the interest lies in the 

manipulation of the immune system, for example in peptide based immunotherapy 

[3], it is absolutely necessary to understand which peptides are presented under 

which condition at the cell surface. 

From a classical point of view, MHC I molecules present antigenic peptides 

derived from intracellular proteins whereas MHC II molecules do so for exogenous 

or membrane proteins [4]. This phenomenon is reflected in the two major cellular 

breakdown pathways for proteins: proteasomal degradation, relevant particular to 

the generation of MHC class I peptides [5], and degradation by the 

endosome/lysosome system, responsible for the processing of MHC class II 

peptides [6]. However, the separation of these distinct pools of source proteins is 

less stringent than originally thought. It is now well-established that MHC class I 

molecules are able to present peptides derived from exogenous antigens (Ag) by a 

process known as cross presentation [7]. On the other hand, intracellular proteins 

can be presented by MHC class II molecules [8] even though the underlying 

processes are less clear. It could be shown that a model protein, artificially 

introduced into cells, is presented on MHC class II molecules via autophagy [9]. 

Autophagy plays a role in the endosomal/lysosomal degradation pathway and is 

responsible for feeding intracellular components into this pathway. It is thought to 

be required for normal turnover of cellular components, particularly in response to 

starvation [10]. Against this background, we hypothesized that autophagy might 

mediate MHC class II presentation of intracellular Ag in general. Therefore, we 

performed a detailed characterization of the MHC class II ligand repertoire 

(ligandome) presented at the cell surface under normal conditions and after 
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increased autophagy, leading to a comprehensive overall picture of changes in 

peptide processing and presentation. 

 

 

2.1.3 Materials and Methods 

 

Cells and antibodies 
The human B-lymphoblastoid cell lines Awells (IHW-No. 9090; HLA-DRB1*0401, 

HLA-DRB4*0101) and Awells-Ii-LGALS2 (Awells transfected with a fusion gene 

encoding the 80 N-terminal amino acids of Ii and LGALS2) were maintained at 

37°C in DMEM (C.C.Pro, Neustadt, Germany) containing 10 % FCS (Pan, 

Aidenbach, Germany) and supplemented with 2 mM L-glutamine (BioWhittaker, 

Verviers, Belgium), 100 U/ml penicillin, and 100 µg/ml streptomycin (BioWhittaker). 

During induction of autophagy, cells were kept in Hank’s Balanced Salt Solution 

(HBSS). For autophagy inhibition, cells were kept in DMEM or HBSS 

supplemented with 10 mM 3-methyladenine (Sigma-Aldrich, Steinheim, Germany). 

The antibody L243 (anti–HLA-DR) [33] was purified from hybridoma culture 

supernatants using protein A-Sepharose beads (Pharmacia, Uppsala, Sweden). 

Antibodies used in flow cytometry analysis were from PharMingen (San Diego, 

CA, USA).  

 

Analysis of monodansylcadaverine (MDC) labeled vacuoles  
Autophagic vacuoles were labeled with MDC and analyzed using either 

fluorescence microspcopy [16;34] or fluorescence spectroscopy in cell lysates 

[16], essentially as described. Briefly, cells were incubated at 37°C for 10 min with 

0.05 mM MDC and subsequently washed four times with PBS. Cells were either 

analyzed by live cell microscopy or lysed in 10 mM Tris-HCl, pH 8 containing 0.1% 

Triton X-100 for fluorescence spectroscopy. After lysis, remaining cellular debris 

was spun down. 

 

Fluorescence Microscopy 
Live cells were immediately analyzed at room temperature by epifluorescence 

microscopy on an inverted microscope (Axiovert 63W; Carl Zeiss, Jena, Germany) 
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fitted with a 63 x 1.2 numerical aperture lens in eight-well chambered cover 

glasses (Nunc, Wiesbaden, Germany). Fluorescence emission and detection was 

performed with a filter system (excitation BP 365 nm, detection LP 397 nm, beam 

splitter FT 395 nm). Images were acquired with a Sensicam cooled 12-bit CCD 

camera (PCO Computer Optics, Kelheim, Germany) and processed using the 

program Axiovision 3.1 (Carl Zeiss).  

 

Fluorescence Spectroscopy  
MDC concentrations in whole cell lysates [16] were determined using an LS50B 

spectrofluorometer (Perkin-Elmer, Norwalk, CT, USA), with excitation at 380 nm 

and detection of emission at 525 nm. The protein content of the lysates was 

determined using a commercially available Bradford protein assay kit (Bio-Rad 

Laboratories, München, Germany). 

 

Gene expression analysis by high-density oligonucleotide microarrays 
Total RNA was isolated from Awells using Trizol (Invitrogen, Karlsruhe, Germany) 

followed by an RNeasy cleanup (QIAGEN, Hilden, Germany) after autophagy 

induction for 6 h and 24 h and from cells cultured in normal medium for the same 

times as controls. High RNA quality was ensured by a 2100 Bioanalyzer (Agilent, 

Waldbronn, Germany) assay using the RNA 6000 Pico LabChip Kit (Agilent). 

Gene expression analysis of the four RNA samples was performed by Affymetrix 

Human Genome U133 Plus 2.0 oligonucleotide microarrays (Affymetrix, Santa 

Clara, CA) according to the Affymetrix manual (http://www.affymetrix. 

com/support/technical/manual/expression_manual.affx). Briefly, double-stranded 

cDNA was synthesized from 8 µg of total RNA using SuperScript RTII (Invitrogen) 

and the oligo-dT-T7 primer (MWG Biotech, Ebersberg, Germany) as described in 

the manual. In vitro transcription was performed with the BioArray™ High Yield™ 

RNA Transcript Labeling Kit (ENZO Diagnostics, Inc., Farmingdale, NY), followed 

by cRNA fragmentation, hybridization, and staining with streptavidin-phycoerythrin 

and biotinylated anti-streptavidin antibody (Molecular Probes, Leiden, The 

Netherlands). Images were scanned with the Affymetrix GeneChip Scanner 3000 

and data were analyzed with the GCOS software (Affymetrix) using default 

settings for all parameters. 
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Normalization was performed by scaling all four arrays based on the overall 

fluorescence intensity of each array. Scaling factors differed by no more than a 

factor of 1.2 and all other quality control parameters provided by the array 

indicated a high data quality. For each of the two time points a pairwise array 

comparison was calculated with the autophagy array as the experiment and the 

respective normal medium control array as the baseline. 

In order to identify functional categories or pathways for which a higher proportion 

of genes were up- or downregulated compared with the overall proportion of 

regulated genes, the following analysis was performed: First of all, genes were 

selected that were reproducibly up- or downregulated after 6 h and 24 h starvation 

according to the GCOS software. In order to be considered upregulated, a gene 

had to fulfill the following requirements: an "increase" in the change call algorithm, 

a "present" in the detection call algorithm for the autophagy array, and a log2 

overexpression (signal log ratio, SLR) of at least 0.5 (approx. 1.4-fold 

overexpression). Downregulated genes had to show a "decrease", a "present" on 

the control array and a SLR equal to or smaller than -0.5. According to this, 1336 

probesets were reproducibly upregulated, 1680 were downregulated. In a second 

step, these genes were analyzed using MAPPFinder [35] and EASE [36]. Both 

programs aim at the identification of overrepresented biological themes within lists 

of genes based on gene ontology (GO) categories. The 8-10% of GO terms with 

the best scores for overrepresentation were selected for each of the programs and 

for both, up- and downregulated genes. GO terms identified in common by both 

programs were further edited manually to avoid too much redundancy among 

overlapping terms and to exclude terms that were too general to draw any 

conclusions from them. The remaining GO categories are shown in supplementary 

tables 3 and 4. 

 

Western blot 
Cells/fractions lysed in NP-40/pH 7 lysis buffer (50 mM sodium acetate, 5 mM 

MgCl2, 0.5% NP-40) were resolved by 12.5 % SDS-PAGE, transferred to PVDF 

membrane (Millipore, Bedford, MA, USA), blocked, and probed with appropriate 

dilutions of the respective primary antibody, followed by a secondary anti-rabbit 

IgG antibody coupled with peroxidase (Southern Biotech, Birmingham, AL, USA).  

An ECL detection Kit (Amersham Pharmacia, Freiburg, Germany) was used to 
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visualize the Ab-reactive proteins. Anti cathepsin polyclonal antisera were 

provided by E. Weber (University of Halle, Germany). 

 

Affinity-labelling of active cysteine proteases 
Crude endocytic fractions were generated by ultracentrifugation of postnuclear 

supernatants as described [37]. 5 µg total endocytic protein were incubated with 

reaction buffer (50 mM citrate/phosphate pH 5.0, 1 mM EDTA, 50 mM DTT) in the 

presence of DCG-0N, a derivative of DCG-04 that shows the same labelling 

characteristics [38] for 1 h at room temperature. Reactions were terminated by 

addition of SDS reducing sample buffer and immediate boiling. Samples were 

resolved by 12.5 % SDS-PAGE, then blotted on a PVDF-membrane and 

visualized using streptavidine HRP and the ECL-detection kit [39]. 

 

Elution of MHC Class II bound Peptides 
Frozen cell pellets (1×109 to 5.7×1010cells) were processed as previously 

described [40] and peptides were isolated according to standard protocols [11] 

using 5 mg to 25 mg HLA-DR specific mAb L243 [33]. 

 

Molecular analysis of HLA-DR-eluted peptides 
Peptides were separated by reversed-phase high performance liquid 

chromatography (HPLC, SMART system, µRPC C2/C18 SC 2.1/10; Amersham 

Pharmacia Biotech, Freiburg, Germany), and fractions were analyzed by MALDI-

TOF mass spectrometry (MS) using a Bruker Reflex III mass spectrometer (Bruker 

Daltonik, Bremen, Germany). Peptides were further analyzed by nano-ESI 

(electrospray ionisation) MS/MS either on a Q-TOF mass spectrometer 

(Micromass, Manchester, United Kingdom) or on a a QStar Pulsar i Qqoa Tof 

mass spectrometer (Applied Biosystems-MDS Sciex, Weiterstadt, Germany) as 

described [40]. 

For comparative peptide analysis between peptides eluted from 1-3×109 control 

cells and 1-2×109 cells undergoing autophagy, peptides were analyzed by a 

reversed phase Ultimate LC system (Dionex, Amsterdam, Netherlands), coupled 

to a Q-TOF. Samples were loaded onto a C18 pre-column for concentration and 

desalting. After loading, the pre-column was placed in line for separation by a 

fused-silica microcapillary column (75 µm i.d. x 250 mm) packed with 5 µm C18 
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reversed-phase material (Dionex). Solvent A was 4 mM ammonium acetate/water. 

Solvent B was 2 mM ammonium acetate in 80% acetonitrile/water. Both solvents 

were adjusted to pH 3.0 with formic acid. A binary gradient of 15% to 40% B within 

120 min was performed, applying a flow rate of 200 µl/min reduced to 

approximately 300 nl/min by the Ultimate split-system. A gold coated glass 

capillary (PicoTip, New Objective, Cambridge, MA, USA) was used for introduction 

into the micro-ESI source. In MS/MS experiments, sequence information was 

obtained by interpretation of fragment spectra using computer-assisted database 

(NCBInr, non-redundant protein database) searching tools (MASCOT, Matrix 

Science, London) [41]. In order to differentially quantify the identified peptides, 

peptide signals in mass chromatograms from serial LC-MS runs (runs performed 

directly one after the other using the same settings) were summed and 

quantification was done from relative peak heights in the corresponding mass 

spectra. 

 

 

2.1.4 Results 

 

Proteomic analysis of the constitutive MHC II ligandome: Source proteins of 
HLA-DR presented peptides are allocated throughout the cell and are largely 
involved in responses to stimuli and normal cellular metabolism 
We analyzed the constitutive human leukocyte antigen (HLA)-DR peptide 

repertoire of Awells human B-lymphoblastoid cell lines. Peptides were separated 

via high performance liquid chromatography (HPLC) as described previously [11] 

and subsequently analyzed by nanoflow electrospray tandem mass spectrometry 

(ESI-MS/MS). We were able to identify 404 peptides with 173 different core 

sequences (Table 1), some of them posttranslationally modified (Table 2). As 

expected many peptides with overlapping sequences were found, but there was 

also a substantial number of peptides (78) found only once. This is the largest 

number of MHC-presented peptides ever reported from a single experiment. In 

order to classify the source proteins according to their cellular localization (Figure 

1) and function (Figure 2), we used the DAVID program [12] and the Gene 

Ontology (GO) classifications [13]. In contrast to the situation observed for MHC 



34  Results and Discussion 

 

class I peptides [14], the majority of MHC II source proteins, namely 41.1%, 

belonged to membrane proteins, which is in concordance with conventional MHC 

class II antigen processing via the endosomal/lysosomal pathway. However, with 

34.9% a rather large proportion of source proteins localized intracellularly – 

meaning the contents of a cell contained within the plasma membrane, excluding 

large vacuoles and secretory or ingested material (GO classifications) –, the site 

where MHC class I peptide processing is expected to take place. Furthermore, we 

could identify peptides from proteins localized in virtually every cell compartment: 

10.1% lysosome, 9.2% nucleus, 4.0% cytoskeleton, 3.0% Golgi apparatus, 2.0% 

ER, 1.2% ribosome, 0.7% peroxisome and 0.2% mitochondrion. 

Regarding their biological function, source proteins were involved to a large extent 

in responses to stimuli (38.1%) and organismal physiological processes (37.6%) 

(Figure 2) indicated by the localization of many source proteins to the plasma 

membrane (26.5%). On the other hand, 33.4% of proteins took part in metabolic 

processes which mainly take place intracellularly. Thus, most peptides presented 

on HLA class II molecules derived from genes involved in normal cellular 

processes which should be commonly expressed. 
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Figure 1: Cellular distribution of source proteins of HLA-DR peptides. 

Peptides were isolated from 5.7×1010 cells, separated via HPLC, and 

subsequently analyzed by nanoflow ESI MS/MS. Displayed are percentages of 

peptides falling in each GO category of source proteins. The 404 identified 

peptides represent 100%. As some of the source proteins could be found in more 

than one compartment, the total is higher than 100%. 
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Figure 2: Biological processes in which HLA class II peptide source proteins take 

part. The major part of proteins was involved in responses to stimuli and in 

organismal physiological processes. Displayed are percentages of peptides falling 

in each GO category of source proteins (404 identified peptides represent 100%). 

As some of the source proteins could be found in more than one compartment, the 

total is higher than 100%. 
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Table 1. Sequences of peptides eluted from HLA-DR. Peptides are arranged according to their HLA-DR4 binding motive 
(http://www.syfpeithi.de), indicated by score and rank. Anchor amino acids are printed bold. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

      -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3             
                                
HLA-A        F V R F D S D A A S Q R          3105 28 1/256 
        F V R F D S D A A S Q R M E        3105   
       Q F V R F D S D A A S Q R M E        3105   
      T Q F V R F D S D A A S Q           3105   
      T Q F V R F D S D A A S Q R          3105   
      T Q F V R F D S D A A S Q R M         3105   
      T Q F V R F D S D A A S Q R M E P       3105   
     D T Q F V R F D S D A A S Q           3105   
     D T Q F V R F D S D A A S Q R          3105   
     D T Q F V R F D S D A A S Q R M         3105   
     D T Q F V R F D S D A A S Q R M E        3105   
     D T E F V R F D S D A A S Q R M E        3105   
     D T Q F V R F D S D A A S Q R M E P       3105   
     D T E F V R F D S D A A S Q R M E P       3105   
     D T E F V R F D S D A A S Q R M o E P      3105   
     D T Q F V R F D S D A A S Q R M E P R      3105   
     D T Q F V R F D S D A A S Q R M E P R A P    3105   
     D D T Q F V R F D S D A A S Q R         3105   
    D D T Q F V R F D S D A A S Q R M E        3105   
    D D T Q F V R F D S D A A S Q R M E P       3105   
    D D T Q F V R F D S D A A S Q R M E P R      3105   
   V D D T Q F V R F D S D A A S Q R          3105   
   V D D T Q F V R F D S D A A S Q R M         3105   
   V D D T Q F V R F D S D A A S Q R M E P       3105   
   V D D T Q F V R F D S D A A S Q R M E P R      3105   
   V D D T Q F V R F D S D A A S Q R M E P R A P    3105   
   V D D T Q F V R F D S D A A S Q R M E P R A P W   3105   
   V D D T Q F V R F D S D A A S Q R M E P R A P W I E 3105   
   V D D T E F V R F D S D A A S Q R          3105   
   T T K H K W E A A H V A E Q L R           3105 22 5/256 
     K H K W E A A H V A E Q L R           3105   
HLA-B      T L F V R F D S D A T S P           3106 28 1/362 
     D T L F V R F D S D A T S P R K E P R A P    3106   
   V D D T L F V R F D S D A T S P R K E P R A P    3106   
     L S S W T A A D T A A Q I T           3106   
     L S S W T A A D T A A Q I T Q          3106   
     L S S W T A A D T A A Q I T Q R         3106   
     L S S W T A A D T A A Q I T Q R K W       3106   
     L S S W T A A D T A A Q I T Q R K W E      3106   
     L S S W T A A D T A A E I T E R K W E      3106   
    D L S S W T A A D T A A Q I T           3106   
    D L S S W T A A D T A A Q I T Q          3106   
    D L S S W T A A D T A A Q I T Q R         3106   
    D L S S W T A A D T A A Q I T Q R K W       3106   
    D L S S W T A A D T A A Q I T Q R K W E      3106   
    D L S S W T A A D T A A Q I T Q R K W E A A    3106   
    D L S S W T A A D T A A Q I T Q R K W E A A R V A 3106   
   E D L S S W T A A D T A A Q I T Q R         3106   
   E D L S S W T A A D T A A Q I T           3106   
   E D L S S W T A A D T A A Q I T Q R K W       3106   
   E D L S S W T A A D T A A Q I T Q R K W E      3106   
   E D L S S W T A A D T A A Q I T Q R K W E A A R V A 3106   
  N E D L S S W T A A D T A A Q I T Q R K W       3106   
 L N E D L S S W T A A D T A A Q I T Q R K W E      3106   
   K D Y I A L N E D L S S W T A            3106 26 4/362 
    G P E Y W D R E T Q I S K T N           3106 28 1/362 
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

      -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3             
                                
HLA-B        L R W E P S S Q S T V P I V G I V A G   3106 26 4/362 
HLA-C        F V Q F D S D A A S P R G E P       3107 28 1/366 
      T Q F V Q F D S D A A S P R          3107   
      T Q F V Q F D S D A A S P R G E P R      3107   
     D T Q F V Q F D S D A A S P R          3107   
     D T Q F V Q F D S D A A S P R G         3107   
     D T Q F V Q F D S D A A S P R G E P R      3107   
     D T Q F V Q F D S D A A S P R G E P R A P    3107   
    D D T Q F V Q F D S D A A S P R          3107   
   V D D T Q F V Q F D S D A A S P R G E P R      3107   
   V D D T Q F V Q F D S D A A S P R G E P R A P    3107   
  Y V D D T Q F V Q F D S D A A S P R G E P R A P    3107   
        D Y I A L N E D L R S W T         3107 18 35/366 
        D Y I A L N E D L R S W T A        3107   
       K D Y I A L N E D L R S W T A        3107   
       K D Y I A L N E D L R S W T         3107   
       K D Y I A L N E D L R S W          3107   
      G K D Y I A L N E D L R S W T         3107   
      G K D Y I A L N E D L R S W T A        3107   
     D G K D Y I A L N E D L R S W T         3107   
     D G K D Y I A L N E D L R S W T A        3107   
     D G K D Y I A L N E D L R S W T A A       3107   
  G R L L R G Y N Q F A Y D G K             3107 22 8/366 
HLA-E     L R S W T A V D T A A Q I S           3133 28 1/358 
     L R S W T A V D T A A Q I S E Q         3133   
    D L R S W T A V D T A A Q I S E Q         3133   
IGHMBP2    E P R R Y G S A A A L P S             3508 22 27/993 
CLN5       G H L K I M H D A I G F R          1203 18 45/407 
      L G H L K I M H D A I G F R          1203   
HLA-DRB1        Y V R F D S D V G E Y           3123 22 6/266 
     Q E E Y V R F D S D V G E Y R          3123   
    H Q E E Y V R F D S D V G E Y R          3123 22 6/266 
    H Q E E Y V R F D S D V G E Y R A         3123   
    H Q E E Y V R F D S D V G E Y R A V        3123   
    G A G L F I Y F R N Q K G H S           3123 22 6/266 
HLA-DRA    A Q G A L A N I A V D K A N L E I         3122 20 13/254 
  I Q A E F Y L N P D Q S G E F             3122 20 13/254 
HLA-DQB1     D V E V Y R A V T P L G P P D          3119 20 9/229 
HLA-DPB1    N R E E F V R F D S D V G E F R          3115 22 1/58 
     R E E F V R F D S D V G E F R          3115   
B2M        Y T E F T P T E K D E Y          567 22 4/119 
       Y Y T E F T P T E K D E Y          567   
     L L Y Y T E F T P T E K             567   
     L L Y Y T E F T P T E K D            567   
     L L Y Y T E F T P T E K D E           567   
     L L Y Y T E F T P T E K D E Y          567   
     L L Y Y T E F T P T E K D E Y A         567   
    Y L L Y Y T E F T P T E K             567   
    Y L L Y Y T E F T P T E K D            567   
    Y L L Y Y T E F T P T E K D E           567   
    Y L L Y Y T E F T P T E K D E Y          567   
    Y L L Y Y T E F T P T E K D E Y A         567   
   F Y L L Y Y T E F T P T E K D            567   
   F Y L L Y Y T E F T P T E K D E Y          567   
   F Y L L Y Y T E F T P T E K D E Y A         567   
HLA-G   V D D T Q F V R F D S D S A C P R M E P       3135 28 1/338 
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

      -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3             
                                
HLA-G  Y V D D T Q F V R F D S D S A C P R M E P R A P    3135   
HLA-DMA    F G P T F V S A V D G L S F Q           3108 22 5/257 
ENO1     K E K Y G K D A T N V G D E G G         2023 22 9/433 
    I K E K Y G K D A T N V G D E G G         2023   
    I K E K Y G K D A T N V G D E G          2023   
   V I K E K Y G K D A T N V G D E G G         2023   
    G V P L Y R H I A D L A G N            2023 16 66/433 
    G V P L Y R H I A D L A G N S E V         2023   
     V P L Y R H I A D L A G N S E V I        2023   
     V P L Y R H I A D L A G N S E V         2023   
     V P L Y R H I A D L A G N S E          2023   
     V P L Y R H I A D L A G N            2023   
GM2A      G N Y R I E S V L S S S G           2760 22 2/193 
      G N Y R I E S V L S S S G K          2760   
     T G N Y R I E S V L S S S G           2760   
     T G N Y R I E S V L S S S G K          2760   
     T G N Y R I E S V L S S S G K R         2760   
    T T G N Y R I E S V L S S S G           2760   
    T T G N Y R I E S V L S S S G K          2760   
        L G C I K I A A S L K G I         2760 20 6/193 
       R L G C I K I A A S L K G I         2760   
SLC2A14     V P M Y I G E I S P T A L R           144195 28 1/497 
MIF S P D R V Y I N Y Y D M N A A N             4282 20 5/114 
    V P D G F L S E L T Q Q L A Q           4282 28 1/114 
    V P D G F L S E L T Q Q L A Q A          4282   
TFRC    C P S D W K T D S T C R M V T           7037 28 1/760 
    C P S D W K T D S T C R M V T S          7037   
    C P S D W K T D S T C R M V T S E         7037   
        F T Y I N L D K A V L G T S N       7037 22 19/760 
     Y V A Y S K A A T V T G K L           7037 22 19/760 
     N S Q L L S F V R D L N Q Y R A D I       7037 26 5/760 
DHX34      I R F V V D S G K V K E M           9704 22 21/576 
RAD23B       L L Q Q I S Q H Q E H F           5887 20 15/409 
TUBB1      A K F W E V I S D E H G I D P T        7280 22 17/444 
TUBB5      E P Y N A T L S V H Q L            10382 22 17/444 
      E P Y N A T L S V H Q L V E          10382   
EEF1A1        I E K F E K E A A E M G K G        1917 20 18/463 
        I E K F E K E A A E M G K G S       1917   
        I E K F E K E A A E M G K G S F      1917   
       T I E K F E K E A A E M G K G S F      1917   
     S K Y Y V T I I D A P G H R D          1917 16 60/462 
HSPA5 V P T K K S Q I F S T A S D N Q P T V T         3309 20 29/654 
     V M R I I N E P T A A A I A Y G         3309 26 5/654 
HSPA6    G E R A M T K D N N L L G R F E          3310 20 23/643 
HSPA1B       R I I N E P T A A A I A           3303 26 5/641 
       R I I N E P T A A A I A Y G         3303   
     V L R I I N E P T A A A I A           3303   
     V L R I I N E P T A A A I A Y          3303   
     V L R I I N E P T A A A I A Y G         3303   
    N V L R I I N E P T A A A I A           3303   
    N V L R I I N E P T A A A I A Y          3303   
    N V L R I I N E P T A A A I A Y G         3303   
HSPA8   E G E R A M T K D N N L L G K F E          3312 20 15/646 
    G E R A M T K D N N L L G K F E          3312   
    G E R A M T K D N N L L G K F E L         3312   
     E R A M T K D N N L L G K F E          3312   
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

        -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3           
                                
HSPA8       E R A M T K D N N L L G K F E L       3312   
        R A M T K D N N L L G K F E        3312   
         G I L N V S A V D K S T G K E      3303 20 21/646 
IL27RA        V P Y R I T V T A V S A S G        9466 22 9/636 
      V G V P Y R I T V T A V S A S G        9466   
AHSG     I S R A Q F V P L P V S V S V E         280988 22 6/359 
SYNGR2     N P K D V L V G A D S V R A A I T F       9144 26 3/224 
MS4A1       S G P K P L F R R M S S L V G P T Q S F   931 18 41/297 
       S G P K P L F R R M S S L V G P T Q S    931   
        G P K P L F R R M S S L V G P T Q S    931   
        G P K P L F R R M S S L V G P T      931   
        G P K P L F R R M S S L V G P       931   
        G P K P L F R R M

ox
S S L V G P       931   

RAB6B      L I P S Y I R D S T V A V V V         51560 28 1/208 
RAB7      F P E P I K L D K N D R A K A S A       7879 26 2/207 
CTSC       D H N F V K A I N A I Q K S W        1075 28 1/463 
      Y D H N F V K A I N A I Q K          1075   
      Y D H N F V K A I N A I Q K S         1075   
      Y D H N F V K A I N A I Q K S W        1075   
      Y D H N F V K A I N A I Q K S W T       1075   
     K Y D H N F V K A I N A I Q K S W T       1075   
      S G M D Y W I V K N S W G T G W G       1075 22 11/463 
        K V V V Y L Q K L D T A Y D        1075 20 30/463 
CTSC       K K V V V Y L Q K L D T A Y D D L G     1075   
TF          F V K D Q T V I Q N T D        7018 28 1/704 
       D V A F V K D Q T V I Q N T D        7018   
       D V A F V K D Q T V I Q           7018   
      G D V A F V K D Q T V I Q           7018   
      G D V A F V K D Q T V I Q N T D        7018   
CNDP2       L A K W V A I Q S V S A W P E        55748 28 1/475 
WBSCR1      D I D A I F K D L S I R S V R         7458 26 1/248 
GEF2    A I F L F V D K T V P Q S S L T          11345 18 17/117 
    A I F L F V D K T V P Q S S L           11345   
    A I F L F V D K T V P Q S S            11345   
        F V D K T V P Q S S L           11345   
  L P S E K A I F L F V D K T V P Q S S         11345 26 2/117 
  L P S E K A I F L F V D K T V P Q S S         11345   
M17S2      S G T Q F V C E T V I R S L          4077  22/966 
      S G T Q F V C E T V I R S L T         4077   
      S G T Q F V C E T V I R S L T L D       4077   
RAP1A       T E Q F T A M R D L Y M K N         5906 16 30/184 
CTSZ       G T E Y W I V R N S W G E P W        1522 22 6/303 
LGMN      V P K D Y T G E D V T P Q N          5641 22 11/433 
     G V P K D Y T G E D V T P Q N          5641   
GAPD       L Q N I I P A S T G A A K A V G       2597 26 4/334 
DKFZp43400
32.1 

        L L Q K L I L W R V L           20 24/415 

HIST1H2BL   V N D I F E R I A S E A S R L A H Y N        8340 26 2/125 
   V N D I F E R I A S E A S R L A           8340   
     D I F E R I A S E A S R L A H Y N        8340   
     D I F E R I A S E A S R L A H Y         8340   
     D I F E R I A S E A S R L A H          8340   
     D I F E R I A S E A S R L A           8340   
     D I F E R I A S E A S R L            8340   
APOB       S A S Y K A D T V A K V Q G            
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

          -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3         
                                
APOB         S A S Y K A D T V A K V Q G T         
         S A S Y K A D T V A K V Q G T E        
SCAMP2        S S R T F H R A A S S A A Q G A F     10066 28 1/329 
        S S R T F H R A A S S A A Q G A      10066   
         S R T F H R A A S S A A Q G A      10066   
          R T F H R A A S S A A Q G A F     10066   
SCAMP3         Y G S Y S T Q A S A A A A T       10067 22 13/347 
         Y G S Y S T Q A S A A A A T A      10067   
         Y G S Y S T Q A S A A A A T A E     10067   
DPP7            L P F G A Q S T Q R G H T E    29952 20 23/492 
IFITM1         D R K M V G D V T G A Q A Y A      8519 26 2/125 
         D R K M V G D V T G A Q A Y       8519   
         L G F I A F A Y S V K S R D       8519 26 2/125 
          V P D H V V W S L F N T L       8519 18 25/125 
SORL1            K P G I Y R S N M D G S A A Y   6653 18 231/2214 
     R H P I N E Y Y I A D A S E D Q V F       6653 28 1/2214 
UBE2L3    N P P Y D K G A F R I E I N F P A E Y P F K P P  7332   
     P P Y D K G A F R I E I N F P A E Y P F K P P  7332   
Unnamed 
protein 

        G P P I G S F T L I D S E V S Q L     20 37/626 

DNPEP            F E L F P S L S H N L L V D    23549 22 12/475 
PON2       S P D D K Y I Y V A D I L A H E I H     5445 22 8/354 
GDI2      E P I E Q K F V S I S D L L V P K       2665 22 14/445 
SLC1A5       V A A V F I A Q L S Q Q S L D F V K     6510 26 4/541 
D4ST1            L P K Y I L D F S L        113189 14 73/376 
          D V L P K Y I L D F S L        113189   
SIAT1           G I L I V W D P S V Y H S D I P   6480 20 18/406 
ABCC4          A P V L F F D R N P I G R I L     10257 26 19/1325 
MMS19L         L V A F R I V H D L I S R D Y S     64210 22 38/1030 
LARGE        N P L H F H L I A D S I A E Q I L     9215 22 18/756 
PPFIBP1            M E L P D Y V L L T A T      8496 14 193/1005 
RNASET2        S L E L Y R E L D L N S V L L       8635 22 3/256 
ITGA4        I D I S F L L D V S S L S R A E      3676 28 1/1038 
        I D I S F L L D V S S L S R A E E     3676   
GNA13         L N I F E T I V N N R V F S       10672 28 1/377 
TIP120A       L E A L D I M

ox
A D M L S R Q G G       55832 20 65/1230 

       L E A L D I M A D M L S R Q G        55832   
ITGB7       L F F F L V E D D A R G T V         3695 26 10/798 
PGK1         R V V M R V D F N V P M K N       5230 26 4/417 
       G P V G V F E W E A F A R G T        5230 16 63/417 
ATIC           L V E F A R N L T A L G L N L V   471 26 6/592 
RPS13        L P P N W K Y E S S T A S A        6207 28 1/150 
RPS10           D R D T Y R R S A V P P G A D    6204 12 31/165 
          A D R D T Y R R S A V P P G A D    6204   
            R D T Y R R S A V P P G A D    6204   
CTSD            L S R D P D A Q P G G E      1509 14 88/412 
         I F S F Y L S R D P D A Q P G      1509 16 75/412 
NAPB          D Y Y K G E E S N S S A N K      63908 28 1/298 
CCT2         S L M V T N D G A T I L K N       10576 20 24/535 
CPD      V P G T Y K I T A S A R G Y N         1362 20 72/1380 
      V P G T Y K I T A S A R G Y N P V       1362   
SLAMF6        D T G S Y R A Q I S T K T S A K      114836 22 6/331 
KIAA1691         G S S Y G S E T S I P A A A H      80727 28 1/558 
CPNE3         V A R F A A A A T Q Q Q T A       8895 28 1/537 
LY6E         K P T I C S D Q D N Y C V T       4061 14 25/131 
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

          -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3         
                                
LY6E        L K P T I C

C 
S D Q D N Y C V T       4061   

PSAP         G P S Y W C Q N T E T A A Q       5660 22 8/524 
C19orf10         T E E F E V T K T A V A H R P G     56005 22 5/173 
NEDD4L        D G R T F Y I D H N S K I T Q       23327 28 1/854 
UBQLN1        N P D T L S A M S N P R A M Q       29979 20 16/589 
ALDOA      A P G K G I L A A D E S T G S I A       226 26 2/363 
TNFAIP3          E I I H K A L I D R N I Q       7128 20 38/790 
IMPA1       Y P S H S F I G E E S V A A G E K      3612 28 1/227 
VDAC2         A A K Y Q L D P T A S I S A       7417 28 1/347 
PPGB         L P G L A K Q P S F R Q Y S G      5476 20 30/480 
COCH          R R F N L Q K N F V G K V A      1690 16 84/550 
        G Q R R F N L Q K N F V G K V A      1690   
       I G Q R R F N L Q K N F V G K V A L     1690   
TAX1BP1        H K G E I R G A S T P F Q F R       8887 26 2/789 
SEMA7A         I S I Y S S E R S V L Q         8482 28 1/666 
STX6        N P R K F N L D A T E L S I R       10228 28 1/255 
        N P R K F N L D A T E L S I R K      10228   
        N P R K F N L D A T E L S I R K A     10228   
PTPRC      S P G E P Q I I F C R S E A A H Q G      5788 20 65/1304 
      S P G E P Q I I F C R S E A A H Q G V I    5788   
IGLC1         K S Y S C Q V T H E G S T        3537 18 9/105 
         K S Y S C Q V T H E G S T V       3537   
       S H K S Y S C Q V T H E G S T        3537   
       S H K S Y S C Q V T H E G S T V       3537   
       S H K S Y S C Q V T H E G S T V E K T    3537   
         K S Y S C Q V T H E G S T V E K     3537   
         K S Y S C Q V T H E G S T V E      3537   
        H K S Y S C Q V T H E G S T V       3537   
        H K S Y S C Q V T H E G S T V E      3537   
       S H K S Y S C Q V T H E G S T V E      3537   
      K S H K S Y S C Q V T H E G S T V E      3537   
 T P E Q W K S H K S Y S C Q V T H E G S T V E      3537   
IGHM         G P T T Y K V T S T L T I K       3507 18 44/454 
         G P T T Y K V T S T L T I K E      3507 18 44/454 
        S G P T T Y K V T S T L T I K       3507   
        S G P T T Y K V T S T L T I K E S D W L  3507   
       E S G P T T Y K V T S T L T I K E S D W L  3507   
IGH@         Y L Q M N S L K T E D T         3492 26 1/33 
       T L Y L Q M N S L K T E D          3492   
       T L Y L Q M N S L K T E D T         3492   
       T L Y L Q M N S L K T E D T A        3492   
      N T L Y L Q M N S L K T E D T         3492   
      N T L Y L Q M N S L K T E D T A        3492   
     K N T L Y L Q M N S L K T E D T A        3492   
UBA52        S D Y N I Q K E S T L H L V        7311 26 1/76 
         D Y N I Q K E S T L H L V L R      7311   
ACLY       Y P E E A Y I A D L D A K S G A S      47 22 24/1001 
HTGN29          R G Y M E I E Q S V K S F K      56951 28 1/265 
WDR1        A P S G F Y I A S G D V S G K L R     9948 22 12/606 
        A P S G F Y I A S G D V S G K L      9948   
ATP1A1         I V V Y T G D R T V M G R I A T     476 22 31/1023 
         I V V Y T G D R T V M G R I A      476   
CTSS         G K E Y W L V K N S W G H N       1520 22 6/331 
        T T A F Q Y I I D N K G I D        1520 18 40/331 
        T T A F Q Y I I D N K G I D S D      1520   
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

          -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3         
                                
CTSS        K N L K F V M L H N L E H S M       1520 22 6/331 
CLTCL1         L E K I V L D N S V F S E H R N     8218 26 17/1640 
RNF13        I P S V F I G E S S A N S L K D      11342 28 1/381 
MTP18        I P I I I H P I D R S V D         51537 20 9/206 
LAPTM5         L P S Y E E A L S L P S K T P      7805 28 1/262 
         L P S Y E E A L S L P S K T P E     7805   
         L P S Y E E A L S L P S K T P E G    7805   
           G Y L R I A D L I S S F       7805 22 12/262 
       V V L P S Y E E A L S L P S K T P E     7805 28 1/262 
TPI1            L K P E F V D I I N A K Q     7167 20 10/248 
YWHAE         R A S W R I I S S I E Q K E E      7531 28 1/255 
GLG1         K V N L L K I K T E L C K K E V     2734 20 36/1179 
          V N L L K I K T E L C K K E V     2734   
     D P E L D Y T L M R V C K Q M I K        2734 20 36/1179 
         L G K W C S E K T E T G Q E       2734 22 20/1179 
PPIA        V S F E L F A D K V P K T A E N      5478 20 6/164 
CCR7            I A Y D V T Y S L A C V R     1236 26 6/378 
           N I A Y D V T Y S L A C V R     1236   
PTGFRN         V P G F A D D P T E L A C R V      5738 28 1/879 
SLC3A2         T G A L Y R I G D L Q A F Q G H G    6520 20 26/529 
ALB         S P D L P K L K P D P N T L C D E F   280717 20 30/607 
RAB4A         G A L L V Y D I T S R E T Y N      5867 20 19/213 
CCT7         A T Q Y F A D R D M F C A G R V P    10574 16 106/543 
        V A T Q Y F A D R D M F C A G R V P    10574   
GPC4        V T R A F V A A R T F A Q G L       2239 28 1/556 
MAP1LC3B          T P I S E V Y E S E K D E D G F L   81631 20 11/124 
          T P I S E V Y E S E K D E D G F L Y  81631   
TNFSF9        G P L S W Y S D P G L A G V S       8744 16 84/254 
VCP      Q L I Y I P L P D E K S R V A         7415 26 5/806 
MAN2B1            V D Y F L N V A T A Q G R Y Y   4125 26 7/1010 
        H P P E L L F S A S L P A L G       4125 20 68/1010 
        H P P E L L F S A S L P A L G F S     4125   
        H P P E L L F S A S L P A L G F S T    4125   
CLSTN3        N P P L F A L D K D A P L R Y       9746 22 21/956 
Dlc2         M E K Y N I E K D I A A Y I K      140735 22 3/89 
LNPEP       D V R K L Y W L M K S S L N G D N      4012 22 28/1025 
ANXA2         V P K W I S I M T E R S V P H      302  28/338 
        D V P K W I S I M T E R S V P H L     302   
        D V P K W I S I M T E R S V P H L Q    302   
C10orf128  T G K T P G A E I D F K Y A L I G T A V G V A     170371 22 3/155 
C6orf211            I P W F V S D T T I H D F N    79624 26 4/441 
IL6ST         I E V W V E A E N A L G K V T      3572 22 24/918 
CD74        M H H W L L F E M S R H S L E       972 26 2/296 
        A T P L L M Q A L P M G A L P Q G P    972 20 14/296 
DDX1           G Y L P N Q L F R T F        1653   
CREG            W G A L A T I S T L E A V R    8804 28 1/220 
VPS35      D P D P E D F A D E Q S L V G R F I      55737 22 31/796 
HPCL2       A I P F V I E K A V R S S I Y        26061 26 2/578 
       A I P F V I E K A V R S S I Y G          
ACAA1        L K P A F K K D G S T T A G N       30 28 1/424 
KIAA0494            F S Q F L G D P V E K A A Q    9813 22 13/495 
APOD          Q E L R A D G T V N Q I E G         
CD38         R D M F T L E D T L L G Y L A D     952 22 7/300 
         R D M F T L E D T L L G         952   
         R D M F T L E D T L           952   
       V Q R D M F T L E D T L           952   
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Table 1, continued. 

Gene 
Symbol Peptide Sequence Entrez 

Gene ID Score Rank 

          -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3         
                                
ACTG1        W I S K Q E Y D E S G P S I V H R K C F  71 18 40/375 
         T D Y L M K I L T E R G Y S       71 20 20/375 
         T D Y L M K I L T E R G Y S F      71   
         T D Y L M K I L T E R G Y S F T     71   
      R D L T D Y L M K I L T E R G Y S       71   
     G R D L T D Y L M K I L T E R G Y S       71   
RAB8           A F F T L A R D I K A K M D     4218 28 1/207 
          N A F F T L A R D I K A K M D     4218   
AGRN         G R S F L A F P T L R A Y H T      375790 28 1/2026 
         G R S F L A F P T L R A Y H T L     375790   
        E G R S F L A F P T L R A Y H T L     375790   
   P V P A F E G R S F L A F P T L R A Y H T L     375790   
  A P V P A F E G R S F L A F P T L R A Y H T L     375790   
IGF2R         L I T F L C D R D A G V G F P E     3482 22 43/2491 
         L I T F L C D R D A G V G F P      3482   
UBE2L3         K G A F R I E I N F P A E Y P F K P P  7332 28 1/154 
        D K G A F R I E I N F P A E Y P F K P P  7332   
                                

 
 

 
 

 
 

Table 2. Sequences of posttranslationally modified peptides eluted from HLA-DR. Peptides are arranged according to their HLA-DR4 
binding motive (http://www.syfpeithi.de), indicated by score and rank. Anchor amino acids are printed in bold. 
Modifications are printed in italics: E = deamidation; C = cysteinylation, Gl = glycosylation  

Gene Symbol Peptide Sequence Entrez 
Gene ID Score Rank 

          -3 -2 -1 1 2 3 4 5 6 7 8 9 +1 +2 +3         
                                
HLA-A         D T E F V R F D S D A A S Q R M E    3105 28 1/256 
         D T E F V R F D S D A A S Q R M E P   3105   
         D T E F V R F D S D A A S Q R M

ox
E P   3105   

LY6E        L K P T I C S D Q D N Y C V T       4061 14 25/131 
             C                   
CD53         I H R Y H S D N S T K A A W D       28 1 

                Gl                
        S I H R Y H S D N S T K A A W D         
                Gl                
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Induction of autophagy by starvation 
Next, we induced macroautophagy in Awells cells by deprivation of serum and 

amino acids [15;16] in order to perform a comparative quantitative ligandome 

analysis between cells undergoing autophagy and control cells by mass 

spectrometry. After 6 h and 24 h starvation, an increase in size and total number 

of autophagic vacuoles became evident compared to non-starved control cells 

(Figure 3a-c). After 6 h starvation, the formation of autophagic vacuoles, assessed 

by the overall incorporation of monodansylcadaverine (MDC), had already reached 

the maximum and could not be increased further by 24 h starvation (Figure 3d). 

We were able to inhibit MDC incorporation by 3-methyladenine, a specific inhibitor 

of autophagy (data not shown). These data indicate that the Awells cell line 

already displayed a constitutive level of autophagy, which could be considerably 

enhanced by starvation, as was already demonstrated for other cell lines [15;16].  

 

 

 
 

Figure 3: Starvation enhances the base level of autophagic vacuoles. 

Autophagic vacuoles were stained with the specific dye monodansylcadaverine 

(MDC) [34] and analyzed by fluorescence microscopy or fluorescence 

spectroscopy. Awells were incubated for (a) 24 h in DMEM (control cells), (b) 6 h 

HBSS or (c) 24 h HBSS (starved cells), subsequently for 10 min with 
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monodansylcadaverine (MDC), and immediately analyzed by fluorescence 

microscopy. Autophagic vacuoles are marked with an arrow. (d) Intracellular MDC 

measurement by fluorescence spectroscopy, unstained cells were used as 

negative control. 

 

A comparative gene expression analysis using oligonucleotide microarrays further 

supported these observations. Genes that were reproducibly up- or downregulated 

at 6 h and 24 h were assigned to functional categories based on the Gene 

Ontology (GO) classification system [13]. Categories showing a significantly 

enhanced proportion of regulated genes compared to the overall proportion of 

regulated genes were filtered out and are shown in tables 3 and 4. Several 

characteristics of autophagy as a process to ensure cell survival in a nutritionally 

deprived environment are reflected in these categories, exhibiting a distinct 

transcriptional signature of starved cells. The formation of autophagic vacuoles is 

illustrated by the GO terms "small GTPase mediated signal transduction" and 

"ARF guanyl-nucleotide exchange factor activity", which comprise upregulated 

genes involved in the control of vesicular transport and membrane trafficking, 

especially in the endosomal/lysosomal pathway, as for example Rab proteins [17]. 

In contrast, genes regulating rather exocytotic transport processes appear 

decreased under the term "Golgi stack". In response to amino acid starvation cells 

seem to upregulate in particular genes involved in amino acid transport. This has 

been described before in yeast [43]. Amino acid-dependent metabolic and 

proliferative activities can be expected to be reduced to a minimum under these 

conditions. This is reflected in the downregulation of various genes implicated in 

protein and nucleic acid synthesis. Gene categories like DNA replication and 

repair, ribosome biogenesis and assembly, or rRNA, tRNA, and mRNA 

transcription and processing among the downregulated biological functions 

demonstrate this phenomenon. Consequently, genes mediating cell cycle arrest 

are upregulated. Enduring starvation may ultimately cause cells to die. Autophagic 

phenotypes have been associated with programmed cell death different from 

apoptosis, suggesting a particular autophagic death pathway independent of 

caspase activation [44;45]. We observed an upregulation of genes related to 

apoptosis during starvation. However, most of them are classified in the context of 

apoptosis inhibition, supporting the model of autophagic death independent of 
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apoptosis. Interestingly, ceramide has been described as an important mediator of 

autophagy and autophagic cell death [46;47] and the GO terms "sphingoid 

metabolism" and "ceramide metabolism" appeared among the upregulated 

categories in our experiment. 

 
 

Table 3. Gene ontology (GO) categories significantly upregulated under starvation. Genes fulfilling the upregulation 
requirements are shown (2 means 200% of mRNA was detected in starved compared with control cells). The first column
indicates the GO category together with the GO ID and the GO system (BP: biological process, CC: cellular component, MF:
molecular function). 
      

x-fold over-
expression 

Gene Category 
(GO ID, GO System) 

Entrez 
Gene ID

Gene 
Symbol 

Gene Title 

6h  24h  
      
Vesicular Transport and Membrane Trafficking 
      

26269 FBXO8 F-box only protein 8 2.1 4.0 
9267 PSCD1 pleckstrin homology, Sec7 and coiled-coil domains 1 2.1 2.5 

ARF guanyl-nucleotide ex-
change factor activity 
(5086, MF) 9265 PSCD3 pleckstrin homology, Sec7 and coiled-coil domains 3 2.6 2.6 
      

399 ARHH ras homolog gene family, member H 1.4 2.1 
23433 ARHQ ras homolog gene family, member Q 2.6 3.7 
221079 ARL8 ADP-ribosylation factor-like 8 2.5 4.3 
55207 FLJ10702 hypothetical protein FLJ10702 2.1 3.0 
2669 GEM GTP binding protein overexpressed in skeletal muscle 3.5 8.0 
2889 GRF2 guanine nucleotide-releasing factor 2 1.6 1.4 
3845 KRAS2 v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog 1.5 2.6 
51762 LOC51762 RAB-8b protein 1.7 2.0 
51735 PDZGEF2 PDZ domain containing guanine nucleotide exchange 

factor (GEF) 2 
4.0 4.0 

5862 RAB2 RAB2, member RAS oncogene family 1.6 2.5 
84932 RAB2B RAB2B, member RAS oncogene family 1.4 2.1 
5868 RAB5A RAB5A, member RAS oncogene family 1.5 2.0 
9367 RAB9A RAB9A, member RAS oncogene family 2.3 2.3 
10890 RAB10 RAB10, member RAS oncogene family 1.4 2.3 
51552 RAB14 RAB14, member RAS oncogene family 1.4 1.7 
23011 RAB21 RAB21, member RAS oncogene family 1.4 2.5 
57403 RAB22A RAB22A, member RAS oncogene family 1.6 2.1 
5898 RALA v-ral simian leukemia viral oncogene homolog A 1.4 2.3 
57826 RAP2C RAP2C, member of RAS oncogene family 1.6 2.1 
6009 RHEB Ras homolog enriched in brain 1.6 1.5 
121268 RHEBL1 Ras homolog enriched in brain like 1 5.3 3.0 
6016 RIT1 Ras-like without CAAX 1 1.5 2.3 
64121 RRAGC Ras-related GTP binding C 2.6 2.8 
22800 RRAS2 related RAS viral (r-ras) oncogene homolog 2 1.5 1.9 
8036 SHOC2 soc-2 suppressor of clear homolog (C. elegans) 1.7 2.1 
6478 SIAH2 seven in absentia homolog 2 (Drosophila) 2.1 3.0 

small GTPase mediated signal 
transduction 
(7264, BP) 

7248 TSC1 tuberous sclerosis 1 1.9 2.1 
      
      
Amino Acid Transport and Metabolism 
      

6558 SLC12A2 solute carrier family 12 (sodium/potassium/chloride 
transporters), member 2 

1.4 3.0 

6509 SLC1A4 solute carrier family 1 (glutamate/neutral amino acid 
transporter), member 4 

2.1 4.0 

6510 SLC1A5 solute carrier family 1 (neutral amino acid transporter), 
member 5 

1.4 3.0 

81539 SLC38A1 solute carrier family 38, member 1 2.0 3.7 
54407 SLC38A2 solute carrier family 38, member 2 4.3 4.9 
6520 SLC3A2 solute carrier family 3 (activators of dibasic and neutral 

amino acid transport), member 2 
2.6 4.6 

6541 SLC7A1 solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 1 

2.8 3.7 

23657 SLC7A11 solute carrier family 7, (cationic amino acid transporter, y+ 
system) member 11 

3.2 4.6 

amino acid transport 
(6865, BP) 
neutral amino acid transporter 
activity 
(15175, MF) 
amino acid permease activity 
(15359, MF) 

8140 SLC7A5 solute carrier family 7 (cationic amino acid transporter, y+ 3.0 4.9 
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system), member 5 

      
1491 CTH cystathionase (cystathionine gamma-lyase) 5.7 18.4 
26227 PHGDH phosphoglycerate dehydrogenase 2.6 6.1 
29968 PSAT1 phosphoserine aminotransferase 1 3.7 9.8 

serine family amino acid 
biosynthesis 
(9070, BP) 

5723 PSPH phosphoserine phosphatase 2.3 6.1 
      
      
Cell Cycle Arrest and Mitosis      
      

1026 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 1.9 2.6 
1027 CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1) 1.5 3.2 
1647 GADD45A growth arrest and DNA-damage-inducible, alpha 2.8 3.5 
8522 GAS7 growth arrest-specific 7 1.6 3.0 
283431 LOC283431 hypothetical protein LOC283431 1.6 4.3 
5325 PLAGL1 pleiomorphic adenoma gene-like 1 1.4 2.0 
23645 PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A 8.0 5.7 

cell cycle arrest 
(7050, BP) 

83667 SESN2 sestrin 2 4.3 12.1 
      

51434 ANAPC7 anaphase-promoting complex subunit 7 1.6 2.5 
701 BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog

beta (yeast) 
1.4 1.6 

983 CDC2 cell division cycle 2, G1 to S and G2 to M 1.4 1.7 
1063 CENPF centromere protein F, 350/400ka (mitosin) 1.5 2.0 
64151 HCAP-G chromosome condensation protein G 1.6 2.6 
10403 HEC highly expressed in cancer, rich in leucine heptad repeats 1.9 4.6 
4750 NEK1 NIMA (never in mitosis gene a)-related kinase 1 1.4 2.1 
5048 PAFAH1B1 platelet-activating factor acetylhydrolase, isoform Ib, alpha 1.6 3.5 
5347 PLK polo-like kinase (Drosophila) 1.6 2.0 
5885 RAD21 RAD21 homolog (S. pombe) 1.5 2.5 
10735 STAG2 stromal antigen 2 1.6 1.9 

mitosis 
(7067, BP) 

6790 STK6 serine/threonine kinase 6 1.6 3.2 
      

51434 ANAPC7 anaphase-promoting complex subunit 7 1.6 2.5 mitotic spindle elongation 
(22, BP) 9055 PRC1 protein regulator of cytokinesis 1 1.7 3.0 
      

1063 CENPF centromere protein F, 350/400ka (mitosin) 1.5 2.0 
6790 STK6 serine/threonine kinase 6 1.6 3.2 

spindle 
(5819, CC) 

7272 TTK TTK protein kinase 2.3 2.3 
      
      
Effects on Cell Cycle and Apoptosis 
      

5494 PPM1A protein phosphatase 1A (formerly 2C), magnesium-
dependent, alpha isoform 

2.3 2.6 protein phosphatase type 2C 
activity 
(15071, MF) 8493 PPM1D protein phosphatase 1D magnesium-dependent, delta 

isoform 
2.1 4.6 

      
      
Apoptosis 
      

64651 AXUD1 AXIN1 up-regulated 1 2.6 4.6 
596 BCL2 B-cell CLL/lymphoma 2 1.6 4.9 
597 BCL2A1 BCL2-related protein A1 1.9 1.9 
598 BCL2L1 BCL2-like 1 1.4 1.9 
329 BIRC2 baculoviral IAP repeat-containing 2 1.6 2.8 
331 BIRC4 baculoviral IAP repeat-containing 4 1.5 1.5 
664 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 1.4 1.7 
665 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like 2.1 2.6 
8837 CFLAR CASP8 and FADD-like apoptosis regulator 1.7 1.5 
8087 FXR1 fragile X mental retardation, autosomal homolog 1 1.5 1.6 
1647 GADD45A growth arrest and DNA-damage-inducible, alpha 2.8 3.5 
4616 GADD45B growth arrest and DNA-damage-inducible, beta 2.6 4.6 
8870 IER3 immediate early response 3 1.4 1.5 
51747 LUC7A cisplatin resistance-associated overexpressed protein 1.4 2.1 
4170 MCL1 myeloid cell leukemia sequence 1 (BCL2-related) 2.1 1.7 
4790 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in

B-cells 1 (p105) 
1.6 2.1 

7262 PHLDA2 pleckstrin homology-like domain, family A, member 2 3.0 2.6 
23645 PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A 8.0 5.7 
5885 RAD21 RAD21 homolog (S. pombe) 1.5 2.5 
8767 RIPK2 receptor-interacting serine-threonine kinase 2 1.7 3.0 
64121 RRAGC Ras-related GTP binding C 2.6 2.8 
6446 SGK serum/glucocorticoid regulated kinase 9.2 1.7 
23411 SIRT1 sirtuin 1 (S. cerevisiae) 3.2 4.3 

apoptosis 
(6915, BP) 

9263 STK17A serine/threonine kinase 17a (apoptosis-inducing) 1.9 2.5 
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9262 STK17B serine/threonine kinase 17b (apoptosis-inducing) 1.6 1.9 
7009 TEGT testis enhanced gene transcript (BAX inhibitor 1) 1.5 2.5 
7124 TNF tumor necrosis factor (TNF superfamily, member 2) 2.0 1.4 
7128 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 2.1 2.6 
8795 TNFRSF10

B 
tumor necrosis factor receptor superfamily, member 10b 2.5 3.0 

8793 TNFRSF10
D 

tumor necrosis factor receptor superfamily, member 10d, 
decoy with truncated death domain 

9.2 13.9 

958 TNFRSF5 tumor necrosis factor receptor superfamily, member 5 1.9 1.4 
355 TNFRSF6 tumor necrosis factor receptor superfamily, member 6 1.9 2.1 
3604 TNFRSF9 tumor necrosis factor receptor superfamily, member 9 2.1 2.1 
970 TNFSF7 tumor necrosis factor (ligand) superfamily, member 7 1.6 2.0 
8626 TP73L tumor protein p73-like 1.4 2.5 
7187 TRAF3 TNF receptor-associated factor 3 1.6 1.6 
8565 YARS tyrosyl-tRNA synthetase 2.1 1.7 

      
596 BCL2 B-cell CLL/lymphoma 2 1.6 4.9 
597 BCL2A1 BCL2-related protein A1 1.9 1.9 
598 BCL2L1 BCL2-like 1 1.4 1.9 
329 BIRC2 baculoviral IAP repeat-containing 2 1.6 2.8 
331 BIRC4 baculoviral IAP repeat-containing 4 1.5 1.5 
664 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 1.4 1.7 
673 BRAF v-raf murine sarcoma viral oncogene homolog B1 1.4 3.7 
8837 CFLAR CASP8 and FADD-like apoptosis regulator 1.7 1.5 
25816 GG2-1 TNF-induced protein 1.9 2.6 
8870 IER3 immediate early response 3 1.4 1.5 
4790 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in 

B-cells 1 (p105) 
1.6 2.1 

5663 PSEN1 presenilin 1 (Alzheimer disease 3) 1.7 2.8 
5055 SERPINB2 serine (or cysteine) proteinase inhibitor, clade B, member 

2 
1.9 3.7 

8887 TAX1BP1 Tax1 binding protein 1 1.4 2.0 
7124 TNF tumor necrosis factor (TNF superfamily, member 2) 2.0 1.4 
7128 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 2.1 2.6 

anti-apoptosis 
(6916, BP) 
apoptosis inhibitor activity 
(8189, MF) 

355 TNFRSF6 tumor necrosis factor receptor superfamily, member 6 1.9 2.1 
      
      
Sphingoid and Ceramide Metabolism 
      

427 ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 1.4 2.6 
8439 NSMAF neutral sphingomyelinase (N-SMase) activation 

associated factor 
2.5 1.7 

5515 PPP2CA protein phosphatase 2 (formerly 2A), catalytic subunit, 
alpha isoform 

1.4 1.5 

sphingoid metabolism 
(46519, BP) 
ceramide metabolism 
(6672, BP) 

7357 UGCG UDP-glucose ceramide glucosyltransferase 3.2 3.2 
      
      
Regulation of Transcription 
      

467 ATF3 activating transcription factor 3 6.5 8.0 
22809 ATF5 activating transcription factor 5 1.4 1.5 
1810 DR1 down-regulator of transcription 1, TBP-binding 1.4 2.3 
3726 JUNB jun B proto-oncogene 1.7 2.0 
11278 KLF12 Kruppel-like factor 12 1.9 2.5 
4601 MXI1 MAX interacting protein 1 1.9 2.5 
23522 MYST4 MYST histone acetyltransferase (monocytic leukemia) 4 1.9 1.7 
8554 PIAS1 protein inhibitor of activated STAT, 1 1.7 1.4 
5971 RELB v-rel reticuloendotheliosis viral oncogene homolog B 1.5 1.4 
6478 SIAH2 seven in absentia homolog 2 (Drosophila) 2.1 3.0 
22797 TFEC transcription factor EC 1.4 5.3 

transcription corepressor 
activity 
(3714, MF) 

7528 YY1 YY1 transcription factor 2.0 2.5 
      

1387 CREBBP CREB binding protein (Rubinstein-Taybi syndrome) 1.6 1.9 
2033 EP300 E1A binding protein p300 1.6 2.0 
23522 MYST4 MYST histone acetyltransferase (monocytic leukemia) 4 1.9 1.7 

histone acetyltransferase 
activity 
(4402, MF) 

8202 NCOA3 nuclear receptor coactivator 3 1.7 2.0 
      
      
Nuclear Membrane 
      

4000 LMNA lamin A/C 3.5 2.3 
23592 MAN1 integral inner nuclear membrane protein 1.6 2.1 

nuclear inner membrane 
(5637, CC) 

5663 PSEN1 presenilin 1 (Alzheimer disease 3) 1.7 2.8 
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Table 4. Gene ontology (GO) categories significantly downregulated under starvation. Genes fulfilling the downregulation 
requirements are shown (-2 means 50% of mRNA was detected in starved compared with control cells). The first column
indicates the GO category together with the GO ID and the GO system (BP: biological process, CC: cellular component, MF:
molecular function). 
      

x-fold over-
expression 

Gene Category 
(GO ID, GO System)  

Entrez 
Gene ID 

Gene 
Symbol 

Gene Title 

6h 24h 
      

Vesicular Transport 
      

23062 GGA2 golgi associated, gamma adaptin ear containing, ARF
binding protein 2 

-1.5 -1.7 

23163 GGA3 golgi associated, gamma adaptin ear containing, ARF
binding protein 3 

-1.6 -3.2 

2778 GNAS GNAS complex locus -1.5 -1.9 
4952 OCRL oculocerebrorenal syndrome of Lowe -1.5 -2.3 

Golgi stack 
(5795, CC) 

10040 TOM1L1 target of myb1-like 1 (chicken) -1.9 -1.6 
      
      
DNA replication and repair 
      

4999 ORC2L origin recognition complex, subunit 2-like (yeast) -1.6 -1.6 
23595 ORC3L origin recognition complex, subunit 3-like (yeast) -1.6 -1.5 

DNA replication origin binding 
(3688, MF) 

5001 ORC5L origin recognition complex, subunit 5-like (yeast) -1.5 -2.0 
      

672 BRCA1 breast cancer 1, early onset -1.5 -2.3 
2237 FEN1 flap structure-specific endonuclease 1 -1.6 -2.6 
2967 GTF2H3 general transcription factor IIH, polypeptide 3, 34kDa -1.4 -1.6 
7965 JTV1 JTV1 gene -1.5 -4.0 
5383 PMS2L5 postmeiotic segregation increased 2-like 5 -1.7 -4.3 
5889 RAD51C RAD51 homolog C (S. cerevisiae) -1.7 -1.5 
5892 RAD51L3 RAD51-like 3 (S. cerevisiae) -1.6 -1.7 
7508 XPC xeroderma pigmentosum, complementation group C -1.4 -1.4 

damaged DNA binding 
(3684, MF) 

7517 XRCC3 X-ray repair complementing defective repair in Chinese 
hamster cells 3 

-1.4 -1.6 

      
      
Ribosome formation 
      

10969 EBNA1BP
2 

EBNA1 binding protein 2 -1.6 -2.5 ribosome biogenesis and 
assembly 
(42254, BP) 23212 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) -2.5 -3.0 
      

1663 DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 
(CHL1-like helicase homolog, S. cerevisiae) 

-1.6 -2.6 

54606 DDX56 DEAD (Asp-Glu-Ala-Asp) box polypeptide 56 -1.4 -4.0 
50628 GEMIN4 gem (nuclear organelle) associated protein 4 -3.2 -10.6 
23567 JAZ double-stranded RNA-binding zinc finger protein JAZ -1.4 -1.9 
84365 MKI67IP MKI67 (FHA domain) interacting nucleolar phosphoprotein -1.7 -1.9 
10514 MYBBP1A MYB binding protein (P160) 1a -1.9 -3.5 
4809 NHP2L1 NHP2 non-histone chromosome protein 2-like 1 (S. 

cerevisiae) 
-1.4 -1.6 

10528 NOL5A nucleolar protein 5A (56kDa with KKE/D repeat) -1.4 -1.7 
9221 NOLC1 nucleolar and coiled-body phosphoprotein 1 -1.4 -1.4 
54512 RRP41 exosome complex exonuclease RRP41 -2.5 -18.4 
6949 TCOF1 Treacher Collins-Franceschetti syndrome 1 -1.6 -1.7 

nucleolus 
(5730, CC) 

7343 UBTF upstream binding transcription factor, RNA polymerase I -2.5 -4.3 
      
      
RNA synthesis and processing 
      

1973 EIF4A1 eukaryotic translation initiation factor 4A, isoform 1 -1.7 -1.7 
9470 EIF4EL3 eukaryotic translation initiation factor 4E-like 3 -4.3 -5.7 
4686 NCBP1 nuclear cap binding protein subunit 1, 80kDa -1.5 -1.7 
22916 NCBP2 nuclear cap binding protein subunit 2, 20kDa -1.4 -1.7 

RNA cap binding 
(339, MF) 

10073 RNUT1 RNA, U transporter 1 -1.4 -2.3 
      

5438 POLR2I polymerase (RNA) II (DNA directed) polypeptide I -1.5 -2.8 
51728 POLR3K polymerase (RNA) III (DNA directed) polypeptide K -1.6 -2.5 

RNA elongation 
(6354, BP) 

30834 ZNRD1 zinc ribbon domain containing, 1 -1.6 -2.1 
      

9416 DDX23 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 -1.9 -1.6 
25929 GEMIN5 gem (nuclear organelle) associated protein 5 -2.1 -6.1 
79833 GEMIN6 gem (nuclear organelle) associated protein 6 -3.0 -4.6 

pre-mRNA splicing factor 
activity 
(8284, MF) 

84967 LSM10 U7 snRNP-specific Sm-like protein LSM10 -1.5 -2.5 
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57819 LSM2 LSM2 homolog, U6 small nuclear RNA associated (S. 

cerevisiae) 
-1.5 -3.2 

23658 LSM5 LSM5 homolog, U6 small nuclear RNA associated (S. 
cerevisiae) 

-1.4 -2.0 

51691 LSM8 LSM8 homolog, U6 small nuclear RNA associated (S. 
cerevisiae) 

-1.7 -1.9 

8559 PRPF18 PRP18 pre-mRNA processing factor 18 homolog (yeast) -3.2 -4.3 
9128 PRPF4 PRP4 pre-mRNA processing factor 4 homolog (yeast) -2.0 -5.3 
6426 SFRS1 splicing factor, arginine/serine-rich 1 (splicing factor 2) -1.6 -3.2 
9169 SFRS2IP splicing factor, arginine/serine-rich 2, interacting protein -1.5 -2.1 
6432 SFRS7 splicing factor, arginine/serine-rich 7, 35kDa -1.4 -3.7 
8487 SIP1 survival of motor neuron protein interacting protein 1 -2.0 -4.3 

      
5433 POLR2D polymerase (RNA) II (DNA directed) polypeptide D -2.1 -3.2 
5438 POLR2I polymerase (RNA) II (DNA directed) polypeptide I -1.5 -2.8 
51728 POLR3K polymerase (RNA) III (DNA directed) polypeptide K -1.6 -2.5 
10622 RPC32 polymerase (RNA) III (DNA directed) (32kD) -1.5 -2.6 
171568 RPC8 RNA polymerase III subunit RPC8 -1.9 -3.5 
9169 SFRS2IP splicing factor, arginine/serine-rich 2, interacting protein -1.5 -2.1 

RNA polymerase complex 
(30880, CC) 

23528 ZNF281 zinc finger protein 281 -1.5 -2.0 
      

2971 GTF3A general transcription factor IIIA -1.7 -2.1 rRNA transcription 
(9303, BP) 84365 MKI67IP MKI67 (FHA domain) interacting nucleolar phosphoprotein -1.7 -1.9 
      

10436 C2F C2f protein -1.5 -3.7 
54606 DDX56 DEAD (Asp-Glu-Ala-Asp) box polypeptide 56 -1.4 -4.0 
29960 FTSJ2 FtsJ homolog 2 (E. coli) -1.7 -2.3 
50628 GEMIN4 gem (nuclear organelle) associated protein 4 -3.2 -10.6 
10528 NOL5A nucleolar protein 5A (56kDa with KKE/D repeat) -1.4 -1.7 
9221 NOLC1 nucleolar and coiled-body phosphoprotein 1 -1.4 -1.4 
22984 PDCD11 programmed cell death 11 -1.5 -2.6 
23404 RRP4 homolog of Yeast RRP4 (ribosomal RNA processing 4), 

3'-5'-exoribonuclease 
-1.9 -3.7 

51010 RRP40 exosome component Rrp40 -2.1 -1.9 

rRNA processing 
(6364, BP) 

54512 RRP41 exosome complex exonuclease RRP41 -2.5 -18.4 
      

672 BRCA1 breast cancer 1, early onset -1.5 -2.3 
2971 GTF3A general transcription factor IIIA -1.7 -2.1 
10625 IVNS1ABPinfluenza virus NS1A binding protein -1.7 -5.7 
51728 POLR3K polymerase (RNA) III (DNA directed) polypeptide K -1.6 -2.5 
10622 RPC32 polymerase (RNA) III (DNA directed) (32kD) -1.5 -2.6 
171568 RPC8 RNA polymerase III subunit RPC8 -1.9 -3.5 
6619 SNAPC3 small nuclear RNA activating complex, polypeptide 3 -1.4 -2.0 

transcription from Pol III 
promoter 
(6383, BP) 

10302 SNAPC5 small nuclear RNA activating complex, polypeptide 5 -1.6 -1.7 
      

81627 C1orf25 chromosome 1 open reading frame 25 -2.1 -3.2 
83480 FKSG32 hypothetical protein FKSG32 -1.4 -2.1 
79042 LENG5 leukocyte receptor cluster (LRC) member 5 -1.4 -2.1 
80746 MGC2776 hypothetical protein MGC2776 -2.0 -3.0 
10940 POP1 processing of precursors 1 -1.7 -3.2 
80324 PUS1 pseudouridylate synthase 1 -1.5 -2.0 
11102 RPP14 ribonuclease P (14kD) -1.6 -1.4 
10248 RPP20 POP7 (processing of precursor, S. cerevisiae) homolog -1.6 -3.2 
10557 RPP38 ribonuclease P (38kD) -1.6 -1.7 
51095 TRNT1 tRNA nucleotidyl transferase, CCA-adding, 1 -1.6 -2.5 

tRNA processing 
(8033, BP) 

10785 WDR4 WD repeat domain 4 -1.6 -2.1 
      

79042 LENG5 leukocyte receptor cluster (LRC) member 5 -1.4 -2.1 
80746 MGC2776 hypothetical protein MGC2776 -2.0 -3.0 
10940 POP1 processing of precursors 1 -1.7 -3.2 
11102 RPP14 ribonuclease P (14kD) -1.6 -1.4 
10248 RPP20 POP7 (processing of precursor, S. cerevisiae) homolog -1.6 -3.2 

tRNA-specific ribonuclease 
activity 
(4549, MF) 

10557 RPP38 ribonuclease P (38kD) -1.6 -1.7 
      
      
Mitochondrial metabolism 
      

26515 FXC1 fracture callus 1 homolog (rat) -1.7 -2.6 
80273 GRPEL1 GrpE-like 1, mitochondrial (E. coli) -1.4 -2.0 
3329 HSPD1 heat shock 60kDa protein 1 (chaperonin) -1.7 -4.0 
1678 TIMM8A translocase of inner mitochondrial membrane 8 homolog A -2.6 -3.7 
26521 TIMM8B translocase of inner mitochondrial membrane 8 homolog B -1.5 -2.0 
26520 TIMM9 translocase of inner mitochondrial membrane 9 homolog -1.4 -1.6 

protein-mitochondrial targeting 
(6626, BP) 

51095 TRNT1 tRNA nucleotidyl transferase, CCA-adding, 1 -1.6 -2.5 
      
protein translocase activity 51300 C3orf1 chromosome 3 open reading frame 1 -1.5 -2.0 
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26515 FXC1 fracture callus 1 homolog (rat) -1.7 -2.6 
55176 SEC61A2 Sec61 alpha 2 subunit (S. cerevisiae) -1.4 -1.5 
1678 TIMM8A translocase of inner mitochondrial membrane 8 homolog A -2.6 -3.7 
26521 TIMM8B translocase of inner mitochondrial membrane 8 homolog B -1.5 -2.0 

(15450, MF) 

26520 TIMM9 translocase of inner mitochondrial membrane 9 homolog -1.4 -1.6 
      

1375 CPT1B carnitine palmitoyltransferase 1B (muscle) -1.7 -1.9 
1376 CPT2 carnitine palmitoyltransferase II -2.0 -7.0 

carnitine O-acyltransferase 
activity 
(16406, MF) 54677 CROT carnitine O-octanoyltransferase -1.7 -1.7 
      

 

 

Autophagy promotes the presentation of peptides from intracellular and 
lysosomal source proteins on MHC class II molecules 
To determine whether autophagy contributes to the endogenous presentation of 

intracellular antigens on HLA class II in general or if this process represents a 

minor event followed by some model antigens [9], the presentation levels of 

peptides from different source proteins were quantified and compared between 

starved cells (6 h and 24 h) undergoing autophagy and non-starved control cells. 

For the quantitation experiments we had to use smaller cell numbers and 

consequently focused on a smaller subset of MHC class II ligands. In order to 

exclude influences caused by altered MHC surface expression on the subsequent 

ligandome analysis, we measured MHC class I and class II levels by flow 

cytometry and observed no significant alterations upon autophagy induction (data 

not shown). 54 HLA-DR-bound peptides from 31 different source proteins were 

sequenced and differentially quantified by liquid chromatography mass 

spectrometry and divided into two groups: peptides from membrane and secreted 

proteins, which should be preferentially presented on MHC class II molecules, and 

peptides from intracellular, especially nuclear, proteins, which should be 

preferentially presented on MHC class I molecules (Table 5). Additionally, we 

analyzed peptides from lysosomal proteins, as lysosomes take part in the 

autophagic turnover of the cell. After 6 h starvation, the presentation of peptides 

from intracellular and lysosomal proteins rose on average by 27%, after 24 h by 

56% (Figure 4) compared to peptides from membrane and secreted proteins, 

which represents a remarkable change in the peptide repertoire. Upon application 

of unpaired two-tail student´s t-tests to the two groups of quantified ligands, the 

means turned out to be significantly different (p<0.001) with non-overlapping 99% 

confidence intervals. Enhancement of presentation seemed to be selective for the 

cellular localization of peptide source proteins. From the 4 source proteins that 
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showed the highest presentation levels of peptides after 24 h starvation, 3 are 

localized in the nucleus and 1 in lysosomes (Table 5, Figure 4). Regarding these 4 

peptides, presentation levels were raised on average by 131% after 24 h 

autophagy.  

Apart from an increased uptake into autophagic vacuoles, several other processes 

might contribute to an enhanced presentation of peptides derived from intracellular 

proteins under starvation. To control for the possibility that a higher mRNA 

expression for specific proteins upon autophagy induction led to an increased 

peptide presentation, gene expression for all 31 source proteins was assessed by 

oligonucleotide microarrays (Table 5). In general, mRNA levels of most genes 

were unchanged under starvation. Among the membrane proteins, only HLA-E 

and carboxypeptidase D displayed an increased expression. For intracellular and 

lysosomal proteins, the same could be observed for TNF alpha induced protein 3, 

heat shock 70 kDa protein 1, and cathepsin S. Peptides from the corresponding 

source proteins were also presented in higher amounts at the cell surface after 

induction of autophagy. Therefore, we cannot exclude that the overexpression of 

these particular proteins during autophagy was the reason for elevated 

presentation levels of the corresponding peptides at the cell surface. However, 

only intracellular source proteins from 7 of 24 analyzed peptides showed elevated 

mRNA expression levels during autophagy. It is therefore highly unlikely that 

altered source gene expression was a major contributor to the observed changes 

in presentation levels. 
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Figure 4: Altered peptide presentation on HLA-DR under starvation.  

Displayed are the relative intensity ratios of peptides from starved cells (6 h and 24 

h) and control cells as assessed by liquid chromatography (LC)-mass 

spectrometry (MS). Peptides were quantified by their relative peak heights in mass 

spectra and grouped according to the cellular localization of their source proteins: 

membrane plus secreted proteins and intracellular plus lysosomal proteins. Data 

of serial LC-MS runs were normalized to the abundant peptide 

LSSWTAADTAAQITQR, which showed only marginal differences in presentation 

levels (Table 5). Horizontal bars indicate the mean intensity ratios for each group. 

Marked in a box are the 4 peptides that showed the highest presentation levels 

after 24 h starvation. Their source proteins are localized in the nucleus and in 

lysosomes. 
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Table 5. Differential Presentation of peptides on HLA-DR molecules and corresponding mRNA data; the given peptide and 
mRNA ratios refer to the comparison of cells grown under starvation with control cells. For peptides, ratios were calculated from the 
signal intensities in LC-MS experiments. mRNA ratios were calculated from the signal log ratios given by the microarray analysis. 
"NC" (= no change) is displayed if no significant change in the expression level was observed according to the change algorithm.  
       

6 h Starvation 24 h Starvation 
Source Protein 

Entrez 
Gene 
ID 

Peptide Sequence Peptide 
Ratio 

mRNA 
Ratio 

Peptide 
Ratio 

mRNA 
Ratio 

       
Membrane Proteins       
HLA-A*0201 3105 FVRFDSDAASQR 0.64 NC 1.53 NC 
 3105 FVRFDSDAASQRME 0.68 NC 1.30 NC 
 3105 DTQFVRFDSDAASQRME 1.58 NC 0.36 NC 
 3105 VDDTQFVRFDSDAASQR 1.15 NC 0.82 NC 
 3105 KHKWEAAHVAEQLR 1.09 NC 1.23 NC 
 3105 DDTQFVRFDSDAASQRME 1.18 NC 0.95 NC 
HLA-B*4402 3106 EDLSSWTAADTAAQITQRKWE 1.18 NC 0.42 NC 
 3106 LSSWTAADTAAQITQR 1.11 NC 1.07 NC 
HLA-Cw*0501 3107 VDDTQFVQFDSDAASPRGEPR 1.20 NC 0.50 NC 
 3107 KDYIALNEDLRSWTA 1.11 NC - NC 
 3107 DGKDYIALNEDLRSWTA 1.01 NC 0.61 NC 
 3107 FVQFDSDAASPRGEPR 0.76 NC 1.12 NC 
HLA-E 3133 DLRSWTAVDTAAQISEQ 0.97 1.87 0.70 2.46 
HLA-DQB1*0301 3119 DVEVYRAVTPLGPPD 1.25 NC - NC 
lymphocyte antigen Ly-6E 4061 KPTICSDQDNYCVT 1.18 NC - 0.54 
 4061 LKPTICCSDQDNYCVT 1.40 NC 0.97 0.54 
immunoglobulin heavy chain 3492 YLQMNSLKTEDT 0.75 - 1.33  
 3492 TLYLQMNSLKTEDT 1.38 - -  
immunoglobulin lambda chain 3537 SHKSYSCQVTHEGSTVE 1.02 - 1.45  
B-lymphocyte antigen CD 20 931 INIYNCEPANPSEK 1.16 NC 1.53 NC 
class I cytokine receptor 9466 VGVPYRITVTAVSASG 1.20 NC - NC 
transferrin receptor protein 1 7037 FTYINLDKAVLGTSN 1.18 NC 0.85 NC 
carboxypeptidase D 1362 VPGTYKITASARGYNPV 1.27 1.23 1.37 1.52 
 1362 VPGTYKITASARGYN 1.13 1.23 - 1.52 
       
Extracellular Proteins       
serotransferrin [bovine]  FVKDQTVIQNTD 0.66 - 1.37 - 
  DVAFVKDQTVIQNTD 1.13 - - - 
  DVAFVKDQTVIQ 1.24 - - - 
serum albumin [bovine]  SPDLPKLKPDPNTLCDEF 1.24 - 1.01 - 
apolipoprot B-100 [bovine]  SASYKADTVAKVQGT 1.08 - 1.02 - 
  SASYKADTVAKVQGTE 0.98 - 0.44 - 
       
Intracellular Proteins       
heat shock 70 kDa protein 1 3303 NVLRIINEPTAAAIAYG 1.50 3.48 1.48 NC 
 3303 VLRIINEPTAAAIAY 1.03 3.48 1.24 NC 
 3303 RIINEPTAAAIA 1.49 3.48 2.25 NC 
 3303 VLRIINEPTAAAIAYG 1.12 3.48 1.30 NC 
heat shock cognate 71 kDa protein 3312 GILNVSAVDKSTGKE 1.67 NC 1.51 NC 
 3312 ERAMTKDNNLLGKFE 1.19 NC 1.50 NC 
 3312 GERAMTKDNNLLGKFE 1.48 NC 1.30 NC 
elongation factor 1-alpha 1 1917 IEKFEKEAAEMGKGSF 1.49 NC 2.87 NC 
TNF, alpha induced protein 3 7128 EIIHKALIDRNIQ 1.32 2.14 - 2.64 
RAD23 homolog B 5887 LLQQISQHQEHF 1.88 NC 1.79 NC 
actin, cytoplasmic 2 71 TDYLMKILTERGYS 1.30 NC 1.09 NC 
NEDD4La 23327 DGRTFYIDHNSKITQ 1.26 NC 1.51 NC 
T-complex protein 1, beta subunit 10576 SLMVTNDGATILKN 1.15 NC - NC 
ubiquitin 7311 SDYNIQKESTLHLV 1.05 - 1.42 - 
alpha enolase 2023 VPLYRHIADLAGNSEV 1.50 NC 1.14 NC 
syntaxin 6 10228 NPRKFNLDATELSIRK 1.60 NC - NC 
tubulin beta-5 chain 10382 EPYNATLSVHQL 1.50 NC 1.23 NC 
       
Lysosomal Proteins       
cathepsin C 1075 YDHNFVKAINAIQKSWT 1.31 NC 1.28 NC 
 1075 YDHNFVKAINAIQKSW 1.28 NC 1.27 NC 
 1075 YDHNFVKAINAIQKS 1.56 NC 1.40 NC 
cathepsin D 1509 LSRDPDAQPGGE 0.83 NC 2.30 NC 
cathepsin S 1520 TTAFQYIIDNKGIDSD 1.61 2.30 - 4.92 
 1520 TTAFQYIIDNKGID 1.90 2.30 1.56 4.92 
lysosomal alpha-mannosidase 4125 VDYFLNVATAQGRYY 1.64 NC - NC 
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Autophagy leads to a time-dependent decrease of lysosomal proteases 
Interestingly, presentation levels of peptides derived from the same source protein 

were differently affected by starvation. This applied to both, proteins processed by 

the classical MHC II pathway, as for example HLA-A*0201, as well as to 

intracellular proteins, as for example heat shock 70 kDa protein 1 (Table 5). This 

led us to hypothesize that activation of the autophagic pathway might 

concomitantly affect the MHC II processing machinery by altering the activity 

levels of lysosomal cysteine proteases. Therefore, we assessed the activity of the 

major cathepsins during autophagy by affinity labelling (Figure 5a). Active 

cathepsins Z, B, H, S and C could be detected in control cells using this method, 

largely in agreement with previous studies in other cells. Starvation of cells led to a 

time-dependent decrease of the activity signals for all cathepsins that occurred in 

a nearly linear fashion without a clear preference for any individual cathepsin. The 

same pattern of cathepsin downregulation was observed when control cells and 

cells undergoing autophagy were probed for cathepsin polypeptides by Western 

blot (Figure 5b). Of note, this effect was not due to non-selective breakdown of 

total cellular protein or lysosomal protein in general, because the amounts of β-

actin as well as of the lysosome-resident protein LAMP-1 remained unaffected by 

autophagy.  

 
 
Figure 5: (a) Affinity labelling of active cathepsins. Endocytic extracts were 

generated from control cells, cells after 6 h and 24 h starvation, and from human 
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peripheral blood monoyctes, respectively, by differential centrifugation as reported 

[37;42]. 5 µg total endocytic protein (1.5 µg in monocytes) were either directly 

incubated with the active site-restricted biotinylated affinity label DCG-0N as 

described (lane 2: control cells; lane 3: 6 h starvation; lane 4: 24 h starvation; and 

lane 10: monocytes), or were subjected to 95°C as negative control (lane 1). In 

addition, control cells were incubated with the CatS-inhibitor LHVS (25 nM), the 

CatB-inhibitor Ca074 (1µM), the pan-cysteine protease inhibitors leupeptin (1 mM) 

and E64 (25µM) (lanes 5-8), for 45 min at 37°C prior to labelling, or for 45 min at 

37°C without addition of protease inhibitors (lane 9) as further controls. Active 

cathepsins were visualized after resolution by SDS-PAGE by streptavidin-HRP 

blot: Cat Z, B, H, and S at 36, 33, 30, and 28 kD, respectively. (b) Cathepsin 

polypeptides probed by Western blot. Identical amounts of total cellular protein 

from control cells (lane 1) and cells undergoing autophagy (6 h and 24 h 

starvation, respectively; lane 2 and lane 3) were probed for CatS, CatC, CatD, 

CatH, β-actin and LAMP-1 by Western blot. 

 

 

2.1.5 Discussion 

 

In order to assess the impact of autophagy on the HLA class II ligandome, a 

proteomic analysis of the HLA-DR peptide repertoire of Awells cells was 

performed. So far no detailed proteomic analysis of the MHC class II self peptide 

repertoire was available. For the understanding of the immune system it is 

important to determine which peptides are presented under normal conditions on 

the cell surface and to know how the presentation pattern changes under different 

environmental conditions, e.g. under nutrient deprivation. 404 peptides with 173 

different core sequences were identified showing that peptides from source 

proteins localized in almost all cell compartments and taking part in general 

cellular processes are presented on MHC class II molecules. Some examples of 

peptides from intracellular proteins presented on class II have been described 

before [18;19]. However in our case the number of such source proteins was 

surprisingly high. Thus, peptides from intracellular antigens are likely to have a 

larger impact on CD4+ helper T cell regulation than originally thought. It has 
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already been shown that CD4+ helper T cells are able to recognize peptides from 

intracellular melanoma [20;21] and viral antigens (EBNA1 [22]), and that under 

inflammatory conditions peptides from intracellular antigens are presented on HLA 

class II molecules on epithelial cells which are target cells in autoimmunity [23]. 

Autophagy is a constitutive process responsible for the turnover of intracellular 

proteins [24]. Basal levels have been observed in most tissues [25] and can be 

particularly enhanced by starvation. In addition, autophagy has implications on 

tumor development [25;26]. Starvation induced autophagy has been observed in 

lymphocytes isolated from patients with chronic lymphocytic leukaemia [27]. This 

might indicate an essential role of this process for tumor survival under nutrient-

limiting conditions. In contrast, autophagy as a form of programmed cell death may 

accelerate tumor development if it is decreased [28]. Several genes are known to 

be required for autophagy [10;29], so far most studies have been done in yeast, 

however. To get a detailed impression of genes involved in autophagy in humans, 

whole-genome expression profiling using oligonucleotide arrays was performed. 

Inter alia, it could be shown that during autophagy genes are upregulated that are 

important for vesicular transport in the endosomal/lysosomal system and anti 

apoptotic genes, stressing the point that autophagy may be part of a programmed 

cell death different from apoptosis [30]. 

We could further show that autophagy constitutes a general pathway promoting 

the processing of intracellular proteins by lysosomes and presentation of the 

resulting peptides on MHC class II molecules. As the increase in presentation 

levels of cells undergoing autophagy was specific for intracellular, especially 

nuclear, peptides and not for peptides from membrane and secreted proteins, it is 

very unlikely that this presentation was due to an enhanced uptake of cellular 

debris by live cells, which would likely affect all proteins similarly, but rather to a 

feeding of intracellular proteins into the lysosomal system via autophagy. 

Autophagy has also been described as a constitutive process under nutrient rich 

conditions for several tissues in vivo, including thymic epithelial cells [31]. 

Therefore, it might play an important role in the presentation of intracellular self-

antigens to CD4+ T cells during negative selection. Furthermore, some anticancer 

drugs potentially act via triggering autophagy [32] and could by this cause an 

enhanced presentation of CD4+ T cell epitopes in MHC class II expressing tumor 

cells. 
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To assess the impact of autophagy on the MHC II antigen processing machinery 

affinity-labelling and Western blot analysis of cysteine proteases was performed. It 

could be shown that autophagy decreases the amount of active cathepsins in the 

endocytic compartment in a time-dependent fashion and that the same pattern of 

cathepsin downregulation was observed on protein level. Decreased cathepsin 

levels might favor the generation of MHC II peptides due to a less efficient 

lysosomal protein digestion. This has been suggested as a mechanism to explain 

the superiority of dendritic cells over macrophages as antigen presenting cells (I. 

Mellman, paper presented at the 7th International Symposium on Dendritic Cells, 

Bamberg, Germany, Sept. 2002). Similarly, autophagy might subject the cell to an 

enhanced immune surveillance by CD4+ T cells under potentially dangerous 

stress conditions. 

Recently, it has been described that a peptide from a cytosolic antigen [9] as well 

as from a cytosolic viral antigen (C. Munz, personal communication) can be 

presented via autophagy on MHC class II molecules. It was, however, so far 

unclear whether this represented a minor event or if autophagy contributes to the 

endogenous presentation of intracellular antigens on HLA class II in general. In 

this study, the analysis of a considerable proportion of the MHC II peptide 

repertoire in starved and control cells revealed a pattern of mechanisms that 

profoundly affect the MHC II ligandome. Autophagy induction leads to several 

changes in cellular metabolism, like altered mRNA expression or decreased 

activities of lysosomal proteases, all potentially contributing to modified MHC II 

presentation. Even though all those influences have to be considered, it is evident 

that autophagy is the key process that explains the overall changes observed in 

the MHC II ligandome. Thus, apart from its various known implications in stress 

responses and cell death, autophagy obviously plays an important role in the 

regulation of CD4+ T cell-mediated processes. 
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2.2 Glycan side chains on naturally presented MHC class II ligands 

 
This article is in press (state: December 2004) in the Journal of Mass 

Spectrometry by the authors Jörn Dengjel, Hans-Georg Rammensee and Stefan 

Stevanović. The author of this thesis performed all experiments. 

 

 

2.2.1 Summary 

 

The molecular characterization of unknown naturally presented MHC class II 

glycopeptides carrying complex glycans has so far not been achieved, reflecting 

the different fragmentation characteristics of sugars and peptides in mass 

spectrometric analysis. HLA-DR-bound peptides were isolated by affinity 

purification, separated via HPLC and analyzed by MALDI and ESI mass 

spectrometry (MS). We were able to identify two naturally processed MHC class II 

ligands, CD53122-136 and CD53121-136, carrying complex N-linked glycan side chains 

by a combination of in-source and collision-induced fragmentation on a Q-TOF 

mass spectrometer. 

 
 

2.2.2 Introduction 

 

Peptides of foreign and self proteins are presented on major histocompatibility 

complex (MHC) class I and class II molecules at the cell surface where they can 

be recognized by T lymphocytes [1;2].  By this mechanism MHC molecules 

transfer information about the current stock of proteins within a cell and its 

surrounding to the cell surface allowing the immune system to survey the cell’s 

integrity and to react, if necessary. The definition of the pools of peptides 

presented at the cell surface is particularly vital for the understanding of the 

immune system, but also for the general understanding of cellular biology. It has 

been shown by direct or indirect evidence that MHC class I and class II molecules 

can present posttranslationally modified peptides, such as deamidated [3;4], 
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cysteinylated [5;6], glycosylated [7] and phosphorylated peptides [8], and that such 

posttranslational modifications can be essential for T cell recognition. However 

until now, the molecular characterization of naturally presented MHC ligands 

carrying glycans has not been achieved. Mass spectrometric approaches have 

been used in different ways to characterize glycosylated peptides [9;10] . 

Frequently, differential peptide mapping of tryptic digest mixtures before and after 

treatment of glycosylated peptides with endoglycosidases has been performed. 

Subsequently the peptide as well as the carbohydrate parts were analyzed [11;12]. 

Glycopeptides have also been dissected by sequential exoglycosidase treatment 

[13]. As peptide and sugar moieties have different fragmentation behaviors, the 

characterization of unknown oligosaccharide and peptide structures in single mass 

spectrometric experiments is very difficult. We used a hybrid quadrupole 

orthogonal acceleration time-of-flight tandem mass spectrometer (Q-TOF) to 

identify glycosylated MHC class II presented peptides by a combination of in-

source and collision-induced fragmentation.  

 

 

2.2.3 Materials and Methods 

 
Elution of MHC Class II bound Peptides 
Frozen Awells cell pellets (IHW-No. 9090, ECACC 94082236, 3.5 to 5.7×1010cells) 

were used to extract HLA-DR bound peptides. Awells is an HLA defined EBV 

transformed human B-lymphoblastoid cell line, homozygous for HLA-DR4 – the 

HLA of interest – presenting a high amount of HLA molecules at the cell surface. 

The cells were processed as previously described [14] and peptides were isolated 

according to standard protocols [15] using the HLA-DR specific mAb L243 [16], 

briefly: cells were lysed by incubation in PBS containing 0.6% 3-[(3-

Cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (CHAPS; Roche, 

Mannheim, Germany) (w/v) and Complete protease inhibitor tablets (Roche), 

followed by exposure to sonic waves. Cellular debris was ultra centrifuged at 

151,000 g and the supernatant was passed over a 0.2 µm filter. The flow-through 

– containing the MHC-peptide-complexes – was run over an affinity column 

consisting of mAb L243 coupled to CNBr-activated sepharose 4B (Amersham 
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Bioscience, Uppsala, Sweden) and peptides were eluted by 0.1% TFA. Finally, 

peptides were passed over a 10 kDa cut-off filter and subjected to HPLC 

separation. 

 

Molecular analysis of DR-eluted peptides 
Peptides were separated by gradient elution from a reversed-phase column 

(HPLC, SMART system, µRP SC C2/C18-column, 100 x 2.1 mm, Amersham 

Pharmacia Biotech, Freiburg, Germany). A binary gradient of 10% to 60% B within 

100 min was performed, applying a flow rate of 150 µl/min. Solvent A was 0.1% 

TFA/water (vol/vol). Solvent B contained 0.08% TFA in 80% acetonitrile/water 

(vol/vol). The peptides were fractionated in 150 µl aliquots. Before MS analysis 

each fraction, was completely dried and resuspended in 50% methanol/water/0.1 

% formic acid (vol/vol). 

MALDI-TOF analysis of the fractions from the matrix α-cyano-4-hydroxycinnamic 

acid/nitrocellulose prepared on target using the fast evaporation method [17] was 

performed on a Bruker Reflex III mass spectrometer (Bruker Daltonik, Bremen, 

Germany) equipped with a N2 337 nm laser, gridless pulsed ion extraction and 

externally calibrated using synthetic peptides with known molecular weights. 

Spectra were recorded in positive ionization mode at acceleration voltages of 20 

kV and 16.9 kV. PSD spectra were recorded using 10 reflector voltage steps from 

23 kV to 0.9 kV. Peptides were further analyzed by nano-electrospray (ES) mass 

spectrometry (MS) on a hybrid quadrupole orthogonal acceleration time-of-flight 

tandem mass spectrometer (Q-TOF; Micromass, Manchester, United Kingdom) as 

described [14]. The ions were produced in a nanoflow electrospray ionization 

source. To the gold-coated glass capillary nanoflow needles (Proxeon, type 

Medium NanoES spray capillaries for the Micromass Q-TOF, Odense, Denmark) a 

potential of 1.2 kV was applied, resulting in sample flow rates of 20 to 50 nl/min. 

The cone voltage was 35 V for MS and tandem MS experiments and 80 to 100 V 

for in-source and collision-induced fragmentation experiments. A quadrupole 

analyzer was used to select precursor ions for fragmentation in a hexapole 

collision cell. The collision gas was argon used at collision energies of 24 to 50 eV. 

Database searches (NCBInr, non-redundant protein database) were done using 

the MASCOT software from Matrix Science [18]. 
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Peptide N-glycosidase F digestion 
Deglycosylation was performed using Peptide N-glycosidase F (PNGase F; New 

England Biolabs, Frankfurt, Germany) from flavobacterium meningosepticum 

essentially as described [19], briefly: Peptides were dissolved in 0.5 M sodium 

phosphate buffer (pH 7.5) and 0.1 µl PNGase F (50 U) was added. After 

incubation for 5 h at 37°C, samples were desalted on the target and analyzed by 

MALDI-MS as already described. 

 

 

 

 
Figure 1: MALDI TOF mass spectrum of the HPLC fraction 10 containing several 

HLA-DR peptides as indicated by the annotated masses. The spectrum was 

recorded at a Bruker Reflex III mass spectrometer equipped with a N2 337 nm 

laser. The ions at m/z 2838.57 and m/z 2925.55 (marked by arrows) were the only 

signals corresponding to glycopeptides. 

 

 

2.2.4 Results and Discussion 

 

HLA-DR-bound peptides isolated from Awells cells (IHW-No. 9090) were 

separated via HPLC. All HPLC fractions were analyzed by MALDI-TOF MS in 

order to identify peptide signals suitable for further investigation by ESMS (Figure 
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1). In positive ESI mass spectra doubly, triply and quadruply charged signals of 

the corresponding peptides could be observed and were chosen as precursors for 

MS/MS analysis to identify so far unknown HLA ligands (data not shown). The 

MS/MS spectra of the triply charged ions at m/z 947.05 and m/z 976.05, 

respectively, corresponding to the ions at m/z 2838.57 and m/z 2925.55 in the 

MALDI mass spectrum indicated the presence of N-acetylhexosamine residues 

(HexNAc) by the abundant ion at m/z 204.13 ([HexNAc]+), further the loss of 

hexose residues (Hex, m/z 162) could be observed (Figure 2A). A detailed 

analysis revealed that the two peptides seemed to be modified by the same 

glycan, consisting of two HexNAc residues, three Hex residues and one deoxy 

hexose residue (DeoxyHex, m/z 146). The positive CID spectrum showed several 

overlying ions series yielding a complex picture. The ion at m/z 1177.69 

represents loss of all three Hex residues from the parent ion. The ion at m/z 

1075.72 corresponds to further loss of a HexNAc residue, leaving one HexNAc 

residue and the DeoxyHex residue still coupled to the peptide moiety. Therefore, 

the most abundant fragment ion at m/z 1002.64 is either generated through loss of 

a HexNAc residue from the ion at m/z 1104.72, or through loss of the DeoxyHex 

residue from the ion at m/z 1075.72. Loss of the last HexNAc residue can be 

observed from the ion at m/z 1002.64. In MS/MS experiments hardly any product 

ions corresponding to peptide parts of the glycopeptides could be observed, which 

has already been described for complex N-linked glycopeptides [10]. The major 

product ions corresponded to glycosidic cleavages from the nonreducing termini of 

the glycan. Mammalian glycopeptides commonly contain three types of glycans: 

asparagine bound N-linked and serine or threonine bound O-linked glycans. Both, 

N- and O-linked glycans are commonly linked via one N-acetylhexosamine residue 

to the peptide moiety. Nevertheless, as shown later, the peptides were 

unambiguously identified as carrying N-linked glycans. According to the three 

major subgroups of N-linked glycans and as it is a human sample, we propose that 

it is a complex-type oligosaccharide consisting of the pentasaccharide core of N-

linked glycans, modified with one fucose residue [20-22] (Figure 2B). 
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Figure 2:  Molecular characterization of the glycopeptide CD53122-136. (A) ESI 

MS/MS spectrum of the glycopeptide at m/z 947.05 corresponding to [M+3H]3+ 

recorded at a Q-TOF mass spectrometer. The major product ions are doubly 

charged, corresponding to glycosidic cleavages. The corresponding 3+ series is 

marked by asterisks (*). Overlying ion series are annotated. The according MS/MS 

spectrum of the glycopeptide at m/z 976.05 is not shown. (B) Proposed glycan 

structure showing the core of human N-linked oligosaccharides with an additional 

fucose residue. 
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To elucidate the structure of the peptides we performed a combination of in-source 

and collision-induced fragmentation. The most abundant product ions at m/z 

1002.6 and m/z 1045.9, respectively, corresponding to [M+2H]2+ were selected for 

fragmentation. As expected, ions contained one N-acetylhexosamine residue 

(Figure 3) [23]. Further, b ion series with and without the glycosylation were 

identified, glycosylated bm fragment ions appearing primarily as doubly charged 

species. Finally, the peptide sequences could be assigned to CD53122-136 and 

CD53121-136 (SwProt: P19397). The panleukocyte marker CD53 is known to be 

glycosylated, the two peptides belonging to the extracellular domain and 

containing one of the two potential glycosylation sites at Asn129 [24]. Unmodified 

peptides from the same antigen were not observed. The two peptides fit perfectly 

to the HLA-DR4 motif (www.syfpeithi.de), with Asn129 in position 5, which is usually 

exposed and available for T cell receptor interaction [25]. 

 
 

Figure 3: ESI fragment spectrum of the product ion 

IHRYHSDN(HexNAc)STKAAWD at m/z 1002.6 corresponding to [M+2H]2+ 
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recorded  at a Q-TOF mass spectrometer using a combination of in-source and 

collision-induced fragmentation (G = HexNAc). In order to obtain enough 

information in the “MS3” scans, rather large precursor selection windows (∆ m/z = 

2) had to be chosen. Therefore, unassigned signals could be due to contaminating 

substances. The according MS spectrum of the peptide 

SIHRYHSDN(HexNAc)STKAAWD2+ at m/z 1045.9 is not shown. 

 

To verify our results we performed a PNGase F digestion of the HLA peptides. As 

anticipated, the carbohydrate trees were cleaved giving rise to two peptides with a 

mass increase of 1 Da each (Figure 4). This proves that the peptides were indeed 

N-glycosylated, and further fixes the DeoxyHex residue as α1,6 linked. In addition, 

a PSD-MALDI spectrum of the peptide at m/z 1801.80 was recorded confirming 

the identity and the glycosylation site (data not shown). 

 

 
 

Figure 4: MALDI TOF mass spectrum of the HPLC fraction 10 after PNGase F 

treatment. The ions at m/z 2838.57 and m/z 2925.55 (Figure 1), corresponding to 

the two described glycopeptides, were deglycosylated yielding the two ions at m/z 

1801.80 and m/z 1888.83 (marked by arrows). The glycosylated asparagine 

residues have been converted into aspartic acid residues, resulting in a mass 

increase of 1 Da. 
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Taken together all the information we propose that the MHC class II peptides 

CD53122-136 and CD53121-136 are glycosylated at Asn129 with the hexasaccharide 

shown in Figure 2B. It has been shown that MHC class II peptides can carry one 

monosaccharide [26], yielding the point of glycan attachment at the peptide 

moiety. But to our knowledge this is the first report of a molecular characterization 

of naturally presented MHC class II peptides carrying a glycan, the core structure 

of N-linked oligosaccharides. It has been shown that CD4+ and CD8+ T cells can 

recognize glycopeptides and that recognition can be carbohydrate specific. 

Knowing that MHC class II molecules present peptides modified by complex 

glycans amplifies the potential number of T cell epitopes drastically. 
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2.3 Identification of a naturally processed cyclin D1 T-helper epitope by a 
novel combination of HLA class II targeting and differential mass 
spectrometry 

 

This article is published in the European Journal of Immunology, 2004 December, 

34(12):3644-51, by the authors Jörn Dengjel, Patrice Decker, Oliver Schoor, 

Florian Altenberend, Toni Weinschenk, Hans-Georg Rammensee and Stefan 

Stevanović. 

The author of this thesis generated the fusion protein expressing cell clones and 

examined the endosomal/lysosomal targeting of the corresponding fusion proteins. 

In addition, he performed the differential mass spectrometric screenings and 

characterized the two HLA peptides from cyclin D1 and keratin 18. 

 

 

2.3.1 Summary 

 

T-helper cells play an important role in orchestrating the effector function of CTLs 

in anti-tumor immunity. However, only a limited number of T-helper cell epitopes 

has been characterized. Here we describe a novel approach allowing to identify 

naturally processed and presented peptides derived from chosen antigens. This 

method combines a transfection step of antigen presenting cells with a vector 

encoding a fusion protein between the Ii chain and the antigen of interest, elution 

of the HLA-bound peptides and identification of the antigen-derived peptides by 

mass spectrometric comparison to the non-transfected cells. In vitro stimulated T-

helper cells against the identified peptide of interest specifically recognize 

transfectants overexpressing the cognate antigen. Using this approach, we could 

identify the HLA-DR4-restricted T-helper cell epitope NPPSMVAAGSVVAAV 

derived from cyclin D1, which is frequently overexpressed in tumors. This method 

will help in identifying peptide candidates for vaccination studies for tumor 

immunotherapy. 
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2.3.2 Introduction 

 

The identification of CD4+ T-cell epitopes of tumor associated antigens has 

experienced much attention lately [1-8], as CD4+T helper cells play an important 

role in orchestrating the effector function of anti-tumor T cells [1;3;9], even in the 

absence of CTL effector cells, by acting in an indirect, cytokine dependent manner 

[10-12]. They can inhibit tumor angiogenesis via IFNγ [13] and counteract tumor 

progression via the induction of an Ab response [14]. In addition, tumor-specific 

CD4+ T cells, and particularly T-helper 1 (Th1) T cells, have also been shown to 

display cytotoxic activity [15;16]. 

In contrast to HLA class I ligands, only few class II ligands of tumor associated 

antigens are described. One reason for this might be their more difficult 

identification. Potential MHC class I ligands are often first predicted using peptide 

motifs [17;18] before primary T cell cultures are stimulated with the synthetic 

peptides, in order to define an actual T cell epitope. The prediction of HLA class II 

restricted peptides does not work as efficiently: firstly class II ligands show a 

greater variance in their length [19] and secondly the peptide motifs of most class 

II molecules are more degenerated as compared to MHC class I motifs [20]. As 

most tumors are HLA class II negative it is also not possible to isolate class II 

ligands directly from primary tumors in the search for ligands of tumor associated 

antigens, as can be done for class I ligands [21]. 

Until now numerous strategies to target antigens into the class II processing 

pathway have been described. It is possible to incubate antigen presenting cells 

(APCs) with the antigen of interest in order to be taken up and processed [2]. 

Other strategies use fusion proteins which contain lysosomal target sequences. 

Expressed in APCs, such fusion proteins direct the antigens into the class II 

processing compartment [22;23]. 

Here we describe a new and generally applicable combined approach for the 

identification of unknown naturally processed HLA class II ligands of defined – e.g. 

tumor associated – antigens in order to define new candidates for peptide-based 

immunotherapy. It has been shown that the 80 N-terminal amino acids of Ii are 

sufficient to direct proteins into the class II processing pathway [24;25]. We thus 

generated fusion proteins consisting of the 80 N-terminal amino acids of Ii and our 

antigen of interest, cyclin D1 (CCND1). Cyclin D1 is a cell cycle regulator involved 
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in the G1-S transition through interactions with cyclin-dependent kinases. 

Moreover, cyclin D1 is a proto-oncogene and has been shown to be 

overexpressed in several tumor types [26-28] whereas it is expressed at low level 

in a large panel of healthy organs and tissues without any particular distribution 

with the exception of liver and high aortic smooth muscle cells [21](WEINSCHENK 

unpublished data). In a differential mass spectrometric approach we compared 

mass spectra of purified HLA peptides from transfected and non transfected cells 

and used the resulting peptides of interest in in vitro priming experiments.  

 

 

2.3.3 Materials and Methods 

 
Cells and antibodies 
The human B-lymphoblastoid cell line Awells (IHW-No. 9090; HLA-DRB1*0401, 

HLA-DRB4*0101) was maintained in RPMI 1640 (C.C.Pro, Neustadt, Germany) 

medium containing 10 % FCS (Pan, Aidenbach, Germany) and supplemented with 

2 mM L-glutamine (BioWhittaker, Verviers, Belgium), 100 U/ml penicillin and 100 

µg/ml streptomycin (BioWhittaker). In the case of the transfected cell clones 0.8 

mg/ml G418 (PAA Laboratories, Linz, Austria) was added. Stable transfectants 

were generated by electroporation of Awells (280 V, 975 µF; Gene Pulser II, 

Biorad, München, Germany) cells, followed by cloning using the limiting dilution 

method. The antibodies L243 (anti–HLA-DR) [29] and W6/32 (anti HLA class I) 

[30] were purified from hybridoma culture supernatants using protein A-Sepharose 

beads (Pharmacia, Uppsala, Sweden). The Th-cell line was induced and cultured 

in IMDM (BioWhittaker) containing 10 % human AB serum (Pel-Freez Clinical 

Systems, LLC, Milwaukee, WI, USA) and supplemented with 100 U/ml penicillin 

and 100 µg/ml streptomycin, 2 mM L-glutamine and 50 µM β-mercaptoethanol. 

Antibodies used in flow cytometry analysis were from PharMingen (SanDiego, CA, 

USA).  

 

Plasmid DNA constructs 

The cDNA encoding the 80 N-terminal amino acids of Ii (NCBI, GenBank X00497) 

was amplified in a PCR reaction out of the vector pBluescript II KS(+) 41-1 
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(Stratagen, Heidelberg, Germany) obtained from A. Melms [31] and subcloned into 

the Hind III and BamH I sites of pcDNA3 (pcDNA3-Ii; Invitrogen, Karlsruhe, 

Germany) using the 5` primer ATCGAAGCTTCCAAGATGCACAGGAG 

GAGAAGC and the 3` primer ATCGGGATCCTTTG TCCAGCCGGCCCTGCTG. 

The genes of interest were amplified in a PCR reaction from cDNA from malignant 

renal tissue using the 5` primer ATCGGAATTCTGAGCTTCACCACTCGCTCC 

and the 3` primer ATCGGCGGCCGCTTAATGCCTCAGAACTTTGGT for Keratin 

18 (NCBI, GenBank X12881) and the 5` primer ATCGGAATTCTGGAACACCA 

GCTCCTGTGC and the 3` primer ATCGGCGGCCGCTCAGATGTCCACG 

TCCCGCAC for Cyclin D1 (NCBI, GenBank X59798), respectively. The obtained 

cDNA was subcloned using TOPO TA cloning (Invitrogen, Karlsruhe, Germany) 

and finally inserted into the EcoR I and Not I sites of pcDNA3-Ii, in frame with the Ii 

sequence. 

 

Real-time quantitative PCR 

RNA from cells was isolated using TRIzol reagent (Invitrogen, Karlsruhe, 

Germany) according to the manufacturer’s recommendations. cDNA was 

synthesized from 1 µg of total RNA. Real-time quantitative PCR (qPCR) was 

performed using the ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems, Darmstadt, Germany). SYBR Green PCR Master Mix (Applied 

Biosystems) was used for PCR amplification and real-time detection of PCR 

products. Primer sequences are as follows: 18S rRNA, 5` primer 

CGGCTACCACATCCAAGGAA and 3` primer GCTGGAATTACCGCGGCT; 

Keratin 18, 5` primer GAGCCTGGAGACCGAGAAC and 3` primer 

TTGCGAAGATCTGAGCCC; Cyclin D1, 5` primer CACGATTTCATTGAACA 

CTTCC and 3` primer TGAACTTCACATCTGTGGCAC. PCR reactions were 

carried out in 20 µl with 300 nM of each primer (18S reverse primer: only 50 nM). 

All samples were amplified in duplicate. Expression differences between 

transfected and wildtype cells for different genes were calculated from PCR 

amplification curves by relative quantification using the comparative threshold 

cycle (CT) method (http://docs.appliedbiosystems.com/pebiodocs/04303859.pdf). 

18S ribosomal RNA was chosen as reference gene for normalizations. 
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Detection of fusion proteins  
Fusion proteins were detected by Western blot analysis using the mAb PIN.1 

(Stressgen, Biomol, Hamburg, Germany) which binds to amino acid residues 12-

28 of Ii. Briefly, cells were lysed as described [32], lysates were boiled in Laemmli 

loading buffer, separated on a 12 % SDS-PAGE and transferred onto 

nitrocellulose membranes. After a saturation step with BSA, membranes were 

incubated for 1 h at room temperature with the mAb PIN.1 (1 µg/ml). Proteins were 

visualized using a peroxidase-coupled sheep anti-mouse IgG (Amersham 

Pharmacia, Freiburg, Germany). In some cases, transfected cells were cultured in 

the presence of 10-100 µM chloroquin (Sigma, Steinheim, Germany) in order to 

investigate the endosomal/lysosomal targeting of the fusion proteins. Cells were 

then lysed and proteins were detected by Western blot as described above. 

 

Elution of MHC Class II bound Peptides 

Frozen cell pellets (3.5 to 5×1010cells) were processed as previously described 

[33] and peptides were isolated according to standard protocols [34] using the 

HLA-DR specific mAb L243 [29]. 

 

Molecular analysis of DR-eluted peptides 

Peptides were separated by reversed-phase high performance liquid 

chromatoraphy (HPLC, SMART system, µRPC C2/C18 SC 2.1/10; Amersham 

Pharmacia Biotech, Freiburg, Germany), and fractions were analyzed by MALDI-

TOF mass spectrometry (MS) using a Bruker Reflex III mass spectrometer (Bruker 

Daltonik). Differentially presented peptides were further analyzed by nano-ESI 

(electrospray ionisation) tandem MS on a hybrid quadrupole orthogonal 

acceleration time-of-flight tandem mass spectrometer (Q-TOF; Micromass, 

Manchester, United Kingdom) as described [33]. 

 

Peptide synthesis and analysis 
Peptides were synthesized in an automated peptide synthesizer EPS221 (Abimed, 

Langenfeld, Germany) following the Fmoc/tBu strategy. After removal from the 

resin by treatment with TFA/phenol/ethanedithiol/thioanisole/water 

(90/3.75/1.25/2.5/2.5 by vol.) for 1 h or 3 h (arginine-containing peptides) peptides 

were precipitated from methyl-tert. butyl ether, washed once with methyl-tert. butyl 
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ether and twice with diethyl ether and resuspended in water prior to lyophilization. 

Synthesis products were analyzed by HPLC (Varian star, Zinsser analytics, 

München, Germany) and MALDI-TOF mass spectrometry (future, GSG, Bruchsal, 

Germany). Peptides of less than 80 % purity were purified by preparative HPLC. 

 

Monocyte-derived dendritic cells 
Peripheral blood mononuclear cells (PBMC) were prepared according to classical 

procedures from an HLA-DRB1*0408-, HLA-DRB1*1101-, HLA-DRB3*0202-, HLA-

DRB4*01-positive donor. Dendritic cells (DC) were obtained from plastic-adherent 

PBMC cultured in the presence of GM-CSF and IL-4 for 6 days as described 

previously [35], except that the medium used was X-VIVO 15 (BioWhittaker) 

without serum. At day 6, immature DC were analyzed by flow cytometry for CD1a, 

CD11c, CD14, CD40, CD83, CD86 as well as HLA-DR cell surface expression on 

a FACScalibur apparatus with CELLQuest software (Becton Dickinson, Mountain 

View, CA). DC were then matured in the presence of 50 µg/ml polyinosinic-

polycytidylic acid (Poly I/C, Amersham Pharmacia, Uppsala, Sweden) and 10 

ng/ml TNF-α (PharMingen) for two additional days and analyzed again by flow 

cytometry for CD14, CD80, CD83 and CD86 cell surface expression. Mature DC 

showed a clear up-regulation of CD80, CD83 and CD86 molecules. 

 

Generation of peptide-specific T-helper cells 
3x105 matured DC were loaded for two hours with 10 µM of peptide 

NPPSMVAAGSVVAAV in a 24-well plate and extensively washed. Then 4x106 

fresh autologous PBMC were added onto DC in the presence of 10 ng/ml IL-12p70 

in order to favour Th-1 development. PBMC were weekly restimulated with 

peptide-loaded irradiated autologous PBMC in the presence of 10 U/ml IL-2 and 5 

ng/ml IL-7. After 3 and 5 restimulations, T cells were pooled and tested against 

autologous PBMC in the presence of peptide. The T-helper cell line was then 

amplified every 1-2 weeks with irradiated allogenic PBMC in the presence of 1 

µg/ml PHA, 25-50 U/ml IL-2 and 5 ng/ml IL-7 and then tested for the recognition of 

the transfected cell lines. Every three to four weeks, the T-helper cell line was 

restimulated with irradiated autologous PBMC in the presence of 10 µM peptide, 

10 U/ml IL-2 and 5 ng/ml IL-7. 
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Functional assays and characterization of the T-helper cell line 
T-helper cell activation was tested by cell proliferation as estimated by thymidine 

incorporation as well as cytokine secretion. Briefly, 2x105 cells were incubated in 

triplicates in a 96-well plate with 2x105 irradiated autologous PBMC in the 

presence or absence of 10 µM peptide or 3 µg/ml PHA. After 24 hours, two 

portions of 50 µl supernatant were harvested and frozen and 50 µl fresh medium 

was added to the cells. After 54 hours, 50 µl of tritiated thymidine-containing 

medium (0.074 MBq/well, Hartmann Analytic, Braunschweig, Germany) was 

added and thymidine incorporation measured at 72 hours using a scintillation 

counter (Microbeta, Wallac, Freiburg, Germany). Cell proliferation is expressed as 

a stimulation index (S.I.), which corresponds to the ratio: (mean cpm of stimulated 

T cells)/(mean cpm of unstimulated T cells). IL-2 secretion was measured using 

the IL-2 dependent CTLL-2 cell line. Briefly, 104 cells were incubated in the 

presence of supernatants for 20-24 hours. Then, thymidine-containing-medium 

(0.055 MBq/well) was added for 7-8 additional hours and thymidine incorporation 

was measured as described above. Results are also expressed as a S.I. 

IFN-γ, IL-4 and IL-6 secretion was measured by sandwich ELISA using antibody 

pairs and peroxidase-conjugated streptavidin from PharMingen and according to 

Manufacturer’s recommendations. We used the Supersensitive TMB (Sigma, 

Deisenhofen, Germany) as a substrate and the reaction was stopped using a 2 M 

H2SO4 solution. OD450 was then measured and results expressed in pg/ml 

according to the standards. 

 

Recognition of cyclin D1-transfected cells by the peptide-specific T-helper 
cell line 
Absence of detectable alloreaction of T cells against the transfectants was 

demonstrated by co-culturing fresh PBMC from the donor used to generate the T-

helper line in the presence of different cell numbers of irradiated transfectants. Cell 

proliferation as well as IL-2, IL-4, IL-6 and IFN-γ secretion was measured as 

described above and the Effector/Target ratio to be used in further experiments 

was thus determined. 

Recognition of the naturally processed peptide derived from cyclin D1 was tested 

by co-culturing the peptide-specific T-helper cell line (2x105 cells) in the presence 

of irradiated Awells (4x104 cells) transfected with a plasmid coding for either cyclin 
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D1 or keratin 18 as a negative control and according to the cell ratio determined 

above. Irradiated autologous PBMC in the presence of 10 µM peptide or 3 µg/ml 

PHA served as positive controls. Cell proliferation as well as IL-2 and IFN-γ 

secretion was measured as described above. In some experiments, cells were 

cultured in the presence of 20 µg/ml of purified L243 antibody. 

 

 

2.3.4 Results 

 
Expression and endosomal/lysosomal targeting of fusion proteins by cell 
clones 
We cloned the cDNA encoding the 80 N-terminal amino acids of Ii in the vector 

pcDNA3 in such a way that the 3` end of the insert was followed by a general 

cloning site (GCS). This gave us a versatile vector to express fusion proteins of Ii 

and the genes of interest. In frame with Ii we cloned the cDNA of cyclin D1, as well 

as keratin 18 as a control.  

 
Figure 1: HPLC chromatograms of HLA-DR peptides purified using the mAb L243 

and recorded at 214 nm. (A) shows the HLA-DR peptides purified from 

approximately 5×1010 Awells cells and (B) the HLA-DR peptides purified from 

approximately 3.5×1010 Awells-Ii-cyclin D1 cells. 
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The Awells cell line was stably transfected with vectors encoding the two fusion 

proteins using electroporation. Subsequently, single-cell-clones were generated 

and tested on their antigen expression on mRNA and protein level. Compared to 

the wildtype, the best Ii-keratin 18 clone expressed 5,700 times more keratin 18 

and the best Ii-cyclin D1 clone expressed 1,200 times more cyclin D1 (data not 

shown), as determined by real-time quantitative PCR analysis. The data were 

normalized on 18S ribosomal RNA.  

The Ii-fusion proteins were also detected by Western blot analysis, to test whether 

the constructs were targeted into the MHC class II pathway [24;25;31]. The bands, 

with the expected molecular weights, representing the Ii-keratin 18 and Ii-cyclin D1 

fusion proteins, respectively, got more and more intense with increasing amounts 

of chloroquin, a cytotoxic drug which inhibits lysosomal degradation of proteins by 

raising the lysosomal pH [36-38] (data not shown). This indicated that fusion 

protein amounts increase with chloroquin concentrations and thus proved that the 

fusion proteins follow the MHC class II pathway of protein degradation.  

 

 
Figure 2: MALDI MS spectra of the HPLC fractions 44 (54 min) of purified HLA-

DR peptides from (A) Awells-Ii-keratin 18 and (B) Awells. The peak at 1732.96 m/z 

in (A) represents the only significant differentially expressed HLA-DR ligand of Ii-

KRT18.  

 

The clones were also tested for their HLA class I and class II cell surface 

expression levels by flow cytometry, in order to determine whether the transfection 
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and cloning procedure interfered with it. Both clones showed normal expression 

levels of HLA class I and class II molecules, as compared to the untransfected cell 

line (data not shown). 

 
Figure 3: MALDI MS spectra of the HPLC fractions 26 (36 min) of purified HLA-

DR peptides from (A) Awells-Ii-cyclin D1 and (B) Awells. The peak at 1370.01 m/z 

in (A) is differentially expressed. 

 

Differential mass spectrometric analysis of HLA-DR-bound peptides 
3.5 to 5×1010 cells from each clone and from the untransfected cell line were 

grown and the HLA-DR-bound peptides isolated and separated via HPLC as 

described previously [34]. The chromatograms of the untransfected cell line and 

the Awells-Ii-cyclin D1 clone were compared. Minor, mostly quantitative 

differences in the HLA-DR-presented peptide repertoire summed up to slightly 

different UV traces as shown in Figure 1. As expected from our experience, no 

distinct UV signals could be assigned to peptides exclusively presented by the 

transfectants. The only subtle differences in HLA-DR-restricted peptide 

presentation between Awells and the transfected lines became also visible by 

MALDI-TOF analysis where most of the HPLC fractions contained identical 
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patterns. Figure 2 shows the only fraction with a striking individual signal only 

occurring in the peptide mixture eluted from the keratin 18-transfected clone. In 

Figure 3, the m/z signal at 1370.1 indicates an exclusively presented peptide from 

the cyclin D1-transfectant. Both peptides were analysed in greater detail by 

nanoflow ESI MS/MS. We were able to identify the peptides 

NPPSMVAAGSVVAAV (cyclin D1198-212) (Figure 4) and SHYFKIIEDLRAQI (keratin 

18126-139, data not shown) derived from the two transfected fusion proteins, 

respectively. The sequences were verified by mass spectra of the corresponding 

synthetic peptides (data not shown). 

 

 
Figure 4: MS/MS spectrum of the HLA-DR ligand NPPSMVAAGSVVAAV from Ii-

CCND1. This peptide is equivalent to the peptide 198-212 of Cyclin D1. 

 

Generation and characterization of a peptide-specific T-helper cell line 
T cells specific for the identified cyclin D1 peptide were induced by in vitro 

stimulation with the corresponding synthetic peptide loaded onto DR4+ dendritic 

cells. After the third and the fifth stimulation, respectively, the specificity of the T-

helper cell line was tested. T cells were specifically stimulated by the cyclin D1 

peptide, as shown in Figure 5A. T cells proliferated in response to autologous 

PBMC loaded with the cyclin D1 peptide (S.I. = 5.4). As a positive control, PHA 

induced a strong T-cell proliferation (S.I. = 330). We next analyzed which type of 

T-helper cells (Th1 versus Th2) was stimulated in response to the peptide by 

examining the cytokine profile. As shown in Figure 5B, the T cells produced IL-2 in 

response to the peptide, although to a low extent, whereas they were still sensitive 

to PHA stimulation. On the contrary, peptide-induced T-cell stimulation resulted in 
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a strong IFN-γ secretion (3250 pg/ml, Figure 5C) but no IL-4 or IL-6 secretion, 

although T-cells were still highly and moderately sensitive to PHA-induced 

cytokine secretion, respectively. Stimulation with an unrelated peptide as a 

negative control for unspecific activation is presented in Figure 6. In conclusion, 

the T-helper cell line is specific for the cyclin D1 peptide and is of the Th1 type. 

This type is particularly important in helping specific CTLs for tumor cell 

elimination.  

 

 
 
Figure 5: Characterization of the T-helper cell line. The specificity of the T-cell 

line was tested after the fifth restimulation in the presence of irradiated autologous 

PBMC and 10 µM cyclin D1 peptide. Unstimulated T cells were used as a negative 

control whereas 3 µg/ml PHA was used as a positive control. A. T-cell proliferation 

determined by incorporation of tritiated thymidine. Results are expressed as mean 

cpm of triplicates (left axis) or stimulation index (S.I., right axis). S.I. corresponds 

to the (stimulated T-cell cpm)/(unstimulated T-cell cpm) ratios. Standard deviations 

are included. B. IL-2 secretion was measured using the CTLL-2 cell line, the 

proliferation of which was determined as in A. C. IFN-γ, as well as IL-4 and IL-6 

secretion were measured by ELISA. Results are expressed in pg/ml and standard 

deviations are included. 

 

The peptide-specific T-helper cell line recognizes cyclin D1-transfected cells 
Because Awells cells and the T-cell line are not perfectly HLA-matched, we first 

tested whether any alloreaction could arise by co-culturing both. Briefly, different 

cell numbers of irradiated Awells-Ii-keratin 18 or Awells-Ii-cyclin D1 transfectants 

were co-cultured in the presence of a fixed number of PBMC from the T cell donor, 

and cell proliferation as well as IL-2, IL-4, IL-6 and IFN-γ secretion were measured. 
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A moderate T-cell proliferation was induced by both transfectants at high cell 

numbers but no cytokine secretion was observed (data not shown). We thus 

decided to use an (effector T cells)/(target cells) ratio of 5/1, at which only a slight 

T-cell proliferation was observed in the absence of cytokine secretion. As a 

consequence, T-cell activation resulting in cytokine secretion could only be 

induced specifically by the cognate antigen presented by the transfectant. 

The T-helper cell line specific for the cyclin D1 peptide was able to recognize the 

transfected cells over-expressing the cyclin D1 protein and naturally processing 

and presenting the cyclin D1 peptide in association with HLA-DR molecules. As 

shown in Figure 6, irradiated Awells-Ii-cyclin D1 tranfectants were able to 

specifically activate the T-helper cell line as observed by IL-2 secretion (S.I. = 4.0). 

On the contrary, Awells-Ii-keratin 18 transfectants (used as negative control for T-

cell stimulation and known to present the unrelated keratin 18 peptide126-139 in 

association with HLA-DR) did not induce T-cell activation, indicating that the 

peptide-specific T-helper cell line specifically recognizes the cognate antigen. 

Moreover, these results prove that the cyclin D1 peptide used in this study is a 

naturally processed peptide containing a T-cell epitope. This activation could be 

inhibited (by 71.2%) by the presence of the HLA-DR-specific blocking L243 Ab 

(data not shown). 

 
Figure 6: The T-cell line specifically recognizes the Ii-cyclin D1 transfected cells. T 

cells were cultured alone or in the presence of irradiated Ii-keratin 18-transfectants 

(KRT18), Ii-cyclin D1 transfectants (CCND1) or in the presence of PHA. IL-2 

secretion was measured using the CTLL-2 cell line, the proliferation of which was 

determined as in Figure 7. Mean cpm as well as stimulation index (S.I.) are shown. 

Standard deviations are indicated. 
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2.3.5 Discussion 

 

The identification of T-helper cell epitopes of tumor associated antigens remains 

an important task in anti-tumor immunotherapy. Here we report a new and 

generally applicable method based on differential peptide analysis by MS to 

identify naturally processed and presented MHC class II ligands of tumor 

associated antigens. This approach combines for the first time a transfection step 

of APC with a vector encoding for a fusion protein between the Ii chain and the Ag 

of interest, elution of the HLA-bound peptides and MS identification of the Ag-

derived peptides presented by the transfectant by comparison to the non-

transfected cells. Moreover, we could validate the method by showing that T cells 

induced against the identified peptide specifically recognize transfectants 

overexpressing the cognate Ag. Although the identified peptides still have to be 

tested for their immunogenicity in vivo, our approach leads to the exact 

characterization of naturally processed MHC class II ligands. Thus we avoid 

testing either synthetic overlapping peptides of tumor associated antigens, or a 

broad range of peptides selected by epitope prediction, which is less accurate as 

compared to class I epitope prediction. In contrast to laborious T-cell assays, 

which might lead to the identification of cryptic T-cell epitopes unable to induce T-

cell activation in vivo [39], the work can be focused on the few peptides which are 

found to be presented. Moreover, using this method it is not necessary to produce 

the recombinant Ag or to possess Ag-expressing tumor cell lines in order to prove 

that the peptides are naturally processed. 

We used the N-terminus of Ii to direct tumor associated antigens into the class II 

processing compartment of EBV-transformed B cells. In order to achieve this we 

constructed a versatile vector with which we can express any antigen as a fusion 

protein with Ii and which helps us to determine the expression level of the protein 

in transfected cells by Western blot analysis. It has already been shown that the N-

terminus of Ii is sufficient to target proteins into the class II processing 

compartment. But until now this has only been described in a model using 

ovalbumin [24], in order to identify unknown Ag using fusion protein-encoding 

cDNA libraries [25] or to confirm the specificity of known T-cell clones [2]. To our 

knowledge this method has never been used before to identify naturally presented 

MHC class II bound peptides of known tumor associated antigens. The differential 
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analysis of class II ligands of transfected and non transfected cells by MALDI-MS 

and the further characterization of the differentially expressed peptides by ESI-MS 

results in a straightforward method for identifying class II ligands of antigens of 

interest. Transfection of cells with keratin 18 fusion proteins proved that our 

method is generally applicable for antigens of interest: We were also able to 

describe an HLA-DR-presented peptide of keratin 18. 

We used our approach to identify an HLA-DR4-presented cyclin D1 peptide. We 

cannot exclude, however, that NPPSMVAAGSVVAAV is DRB4*0101-restricted, 

since this “second DR” is in linkage disequilibrium with DRB1*0401and shares a 

similar peptide motif. We were particularly interested in cyclin D1, because it has 

been described as a proto-oncogen [26] and because we found it overexpressed 

in renal cell carcinomas [21]. Thus, peptides from this antigen are possible 

candidates in vaccination studies using peptide based immunotherapies [21]. 

We think our new method will be helpful to identify new peptide candidates from 

tumor antigens to be used in clinical vaccination protocols. 
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3 Summary 
 

The aim of this thesis was to establish a better knowledge of the human MHC 

class II peptide repertoire, the HLA ligandome, in general, and to outline a 

procedure which helps in the identification of class II-presented peptides from 

tumor associated antigens, in particular. To achieve these goals, biochemical and 

biomolecular methods as well as state-of-the-art mass spectrometric devices were 

used. 

To characterize the class II ligandome, HLA-DR peptides from the tumor-like cell 

line Awells, a human EBV transformed B lymphoblastoid cell line homozygous for 

HLA-DR4 – the HLA of interest –, were isolated and analyzed by MS using the 

rules of proteome analysis. 404 peptides with 173 different core sequences could 

be identified – the highest number of HLA ligands identified in a single experiment 

so far. Peptides from source proteins localized in virtually every cell compartment 

and participating in general cellular processes were presented under normal 

conditions on HLA class II molecules on the cell surface. In further experiments it 

could be shown that autophagy, a process involved in endosomal/lysosomal 

degradation and playing a role in tumor development, had a substantial impact on 

the class II ligandome. Cells undergoing autophagy over-presented class II 

peptides from intracellular source proteins by up to 131% in average as quantified 

by LC-MS. Thus, intracellular source proteins reach via autophagy the 

endosomal/lysosomal system and are there processed, corresponding peptides 

are loaded on class II molecules and presented on the cell surface. 

Posttranslationally modified naturally presented class II ligands could also be 

identified. Deamidated, cysteinylated and glycosylated HLA-DR peptides were 

characterized showing for the first time that naturally presented class II peptides 

can carry complex N-linked glycans. 

Finally, a strategy for the identification of naturally presented class II ligands from 

tumor associated antigens was set up. Fusion proteins targeting antigens of 

interest into the class II processing compartment were expressed in cells and the 

corresponding HLA-DR peptides isolated. By a differential mass spectrometric 

approach an HLA-DR4 ligand from cyclin D1 containing a CD4+ T cell epitope 

could be identified. 
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Zusammenfassung 
Ziel dieser Arbeit war es ein besseres Verständnis des HLA Klasse II Peptid-

repertoires, dem so genannten Klasse II Ligandom, herzustellen. Insbesondere 

sollte eine Methode entwickelt werden, die die Charakterisierung von HLA Klasse 

II-Liganden Tumor-assoziierter Antigene ermöglicht. Um diese Vorgaben zu 

erfüllen, wurden neben molekularbiologischen und biochemischen Methoden 

moderne massenspektrometrische Technologien eingesetzt. 

Zur Charakterisierung des Klasse II-Ligandoms wurden HLA-DR-Liganden von der 

Tumor-Zelllinie Awells, einer EBV-transformierten humanen B-lymphoblastoiden 

Zelllinie, die homozygot für HLA-DR4 ist, isoliert. Es konnten 404 unterschiedliche 

Peptide mit 173 Kernsequenzen, die bisher höchste Anzahl an identifizierten HLA-

Liganden in einem einzigen Experiment, beschrieben werden. Eine Proteom-

Analyse ergab, dass Peptide von Quellproteinen aus nahezu allen subzellulären 

Kompartimenten auf HLA-DR präsentiert werden. Des Weiteren nehmen die 

Quellproteine an generellen zellulären Mechanismen teil. In weiteren 

Experimenten konnte gezeigt werden, dass Autophagie, eine spezielle Form des 

endosomalen/lysosomalen Abbauweges, unter anderem involviert in der 

Tumorentwicklung, einen großen Einfluss auf das Klasse II-Peptidrepertoire hat. 

Autophagische Zellen überpräsentierten Peptide aus intrazellulären Quellproteinen 

durchschnittlich um 131%. Dies konnte mittels LC-MS gezeigt werden. Über 

Autophagie werden intrazelluläre Quellproteine in das endosomale/lysosomale 

System geschleust und dort abgebaut. Entsprechende Peptide werden dann auf 

Klasse II-Molekülen auf der Zelloberfläche präsentiert. 

Zusätzlich konnten auch posttranslational modifizierte Peptide identifiziert werden. 

So wurden deamidierte, cysteinylierte und glycosylierte Peptide charakterisiert. 

Unter anderem gelang es zum ersten Mal die Struktur eines natürlich 

präsentierten Klasse II-Peptids, modifiziert mit einem N-gebundenen 

Hexasaccharid, aufzuklären. 

Zur Identifizierung Klasse II-präsentierter Peptide aus Tumor-assoziierten 

Antigenen wurden in Zellen Fusionsproteine exprimiert, die Tumor-assoziierte 

Antigene in den Klasse II-Prozessierungsweg leiten, um anschließend HLA-DR 

Liganden der entsprechenden Antigene zu isolieren. Mit Hilfe einer differenziellen 

massenspektrometrischen Analyse konnte so ein HLA-DR4-Ligand aus Cyclin D1, 

der ein T-Helferepitop enthält, identifiziert werden. 
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4 Abbreviations 
 
APC Antigen presenting cell  RP-HPLC Reversed Phase-High  

Aa Amino acid   Performance Liquid 

β2m Beta-2-microglobulin   Chromatography 

BCR B cell receptor  SDS Sodium Dodecyl Sulfate 

BPI Base peak ion  TAP Transporter Associated with  

CD Cluster of differentiation   Antigen Processing 

CID Collision induced decay  TCR T cell receptor 

CLIP class II invariant chain   TFA Trifluoroacetic Acid 

 peptide  TIC Total Ion Current 

CTL Cytotoxic T lymphocyte  TIL Tumor Infiltrating Lymphocyte 

EBV Epstein-Barr-Virus  TOF   Time of Flight 

ER Endoplasmic reticulum    

ESI Electrospray ionization    

EST Expressed sequence tag  One letter code for amino acids: 
FACS Fluorescence activated cell     

 sorter  A Alanine 

HLA Human leukocyte antigen  C Cysteine 

HSP Heat shock protein  D Aspartic acid 

IFN Interferon  E Glutamic acid 

Ig Immunoglobulin  F Phenylalanine 

Ii Invariant chain (CD74)  G Glycine 

IL Interleukin  H Histidine 

mAb Monoclonal antibody  I Isoleucine 

MALDI Matrix assisted laser desorption  K Lysine 

 ionization  L Leucine 

MHC Major histocompatibility complex  M Methionine 

MS Mass spectrometry  N Asparagine 

MS/MS Tandem mass spectrometry  P Proline 

MW Molecular weight  Q Glutamine 

NK-cell Natural killer cell  R Arginine 

PAGE Polyacrylamide gel   S Serine 

 electrophoresis  T Threonine 

PCR Polymerase chain reaction  V Valine 

pH Potentia hydrogenii  W Tryptophan 

RT Room temperature  Y Tyrosine 

     

     



Acknowledgement  101 

 

5 Acknowledgement 
 

Mein besonderer Dank gilt PD Dr. Stefan Stevanović. Er hatte stets ein offenes 

Ohr, stand mir immer mit Rat und Tat zur Seite und ließ mich frei arbeiten. Ohne 

ihn hätte ich meinen Weg sicher nicht so gut gefunden. 

 

Prof. Dr. Hans-Georg Rammensee danke ich vor allem für die gute 

Zusammenarbeit in seinem Labor. Dank ihm herrscht ein kollegiales Klima, das 

man sich besser nicht vorstellen kann. 

 

Vielen Dank an Claudia Lemmel, Margret Müller, Toni Weinschenk und Markus 

Schirle für die netten Stunden im Kuhdoof Raum. Bei guter Musik ließ es sich 

immer gut arbeiten. 

 

Patricia Hrstić, Nina Hillen, Florian Altenberend und Andi Weinzierl waren immer 

da wenn es was zu besprechen gab, persönlich oder beruflich. 

 

Ohne Thea Nastke, Nina Kreymborg und Oli Schoor wären die drei Uhr Pausen 

und so manches Paper nicht möglich gewesen, danke. 

 

Thanks to Patrice Decker for his wonderful T cells. 

 

Gitsios Gitsioudis danke ich für die vielen Tumoraufarbeitungen. 

 

Lynne Yakes und Valerie Bahr waren immer da und immer bereit zu helfen, vielen 

Dank. 

 

Ohne Claudia Falkenburger, Franziska Löwenstein, Beate Pömmerl und Gerhard 

Hörr würde das Labor sicherlich nicht so reibungslos laufen. Vielen Dank dafür. 

 

Prof. Dr. Alfred Nordheim danke ich für die Nutzung eines MALDI-Massen-

spektrometers und Martin Priemer für die kompetente Hilfe bei allen damit 

verbundenen Fragen. 

 



102  Acknowledgement  

 

Mark Trautwein, Rainer Fischer und Söhnke Voss danke ich für viel Spaß im 

Labor, für kompetente Hilfe und für eine gute Zusammenarbeit. 

 

Meiner Lerngruppe, Astrid Proksch, Ingo Ammermann und Andreas Uttenweiler, 

gilt auch dieses mal wieder mein Dank. Seit dem Diplom sind wir ein super Team. 

 

 

 

Besonders möchte ich meinen Eltern, meinem Bruder und meinen Großeltern 

danken. Sie haben mich immer unterstützt und waren immer für mich da. 

 

 

 

 

 

Ohne Miriam wäre nichts so wie es ist! Sie gab mir Kraft und schenkte uns 

Katharina. 

 

 

 

 

 

 

 

 

 

 

 

 



Academic Teachers  103 

 

6 Academic Teachers 
 

Prof. Baumann, Prof. Bisswanger, Prof. Bock, Prof. Bohley, Dr. Friedrich, Prof. 

Fröhlich, Prof. Fürst, Prof. Hamprecht, Prof. Hanack, Dr. Hudl, Prof. Jung, Prof. 

Kempter, Prof. Kleinpeter, Dr. Lehnhardt, Prof. Martin, Prof. Mecke, Prof. 

Nitschmann, Prof. Poralla, Prof. Probst, Prof. Rammensee, Prof. Reutter, Prof. 

Scheel, Prof. Scheller, Prof. Schild, Dr. Schmidt, Prof. Steup, PD Dr. Stevanović, 

PD Dr. Stoeva, Prof. Uhlemann, Prof. Voelter, Prof. Wallschläger, Prof. Walz, Prof. 

Weser, Prof. Willmitzer, Prof. Wohlleben 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104  Publications  

 

7 Publications 
 
Dengjel,J., Rammensee,H.G., and Stevanovic,S., Glycan side chains on naturally 
presented MHC class II ligands. J.Mass Spectrom. in press 
 
Dengjel,J., Decker,P., Schoor,O., Altenberend,F., Weinschenk,T., 
Rammensee,H.G., and Stevanovic,S., Identification of a naturally processed cyclin 
D1 T-helper epitope by a novel combination of HLA class II targeting and 
differential mass spectrometry. Eur.J.Immunol. 2004, 34: 3644-51 
 
Duyar,H., Dengjel,J., de Graaf,K.L., Wiesmüller,K.H., Stevanovic,S., and 
Weissert,R. Peptide motif for the rat MHC class II molecule RT1.Da: similarities to 
the multiple sclerosis associated HLA- DRB1*1501 molecule. Immunogenetics, in 
press 
 
Krüger,T., Schoor,O., Lemmel,C., Krämer,B., Reichle,C., Dengjel,J., 
Weinschenk,T., Müller,M., Hennenlotter,J., Stenzl,A., Rammensee,H.G., 
Stevanovic,S. Lessons to be learned from primary renal cell carcinomas: Novel 
tumor antigens and HLA ligands for immunotherapy. Cancer Immunol. 
Immunother. in press 
 
Lemmel,C., Weik,S., Eberle,U., Dengjel,J., Kratt,T., Becker,H.D., 
Rammensee,H.G., and Stevanovic,S., Differential quantitative analysis of MHC 
ligands by mass spectrometry using stable isotope labeling. Nat.Biotechnol. 2004. 
22: 450-454. 
 
Sandmann,T., Herrmann,J.M., Dengjel,J., Schwarz,H., and Spang,A., 
Suppression of coatomer mutants by a new protein family with COPI and COPII 
binding motifs in Saccharomyces cerevisiae. Mol.Biol.Cell 2003. 14: 3097-3113. 
 
Stoll,H., Dengjel,J., Nerz,C., and Götz, F., Staphylococcus aureus deficient in 
lipidation of pre-lipoproteins is attenuated in growth and immune activation. Infect. 
Immun. in press 
 
Tenzer,S., Stoltze,L., Schonfisch,B., Dengjel,J., Muller,M., Stevanovic,S., 
Rammensee,H.G., and Schild,H., Quantitative analysis of prion-protein 
degradation by constitutive and immuno-20S proteasomes indicates differences 
correlated with disease susceptibility. J.Immunol. 2004. 172: 1083-1091. 
 
Trautwein,M., Dengjel,J., Schirle,M., and Spang,A., Arf1p Provides an 
Unexpected Link between COPI Vesicles and mRNA in Saccharomyces 
cerevisiae. Mol.Biol.Cell 2004. 
 



Scholarships  105 

 

8 Scholarships 
 
04/2002 – 06/2002 DFG PhD scholarship of the 

doctoral program "Cellular 
mechanisms of immune-associated 
processes” (GRK784) 

06/2002 – 10/2004 associated member of the doctoral 
program "Cellular mechanisms of 
immune-associated processes”; 
speaker from 10/2003 – 10/2004 

07/2002 – 09/2004 PhD scholarship of the 
Studienstiftung des Deutschen 
Volkes 

09/2004 scholarship of efellows.net 
 



106  Curriculum Vitae 

 

9 Curriculum Vitae  
 

Name:  Jörn Dengjel 
Date of Birth: 29/07/1975 
Place of Birth: Kirchheim unter Teck 
 
Timeframe: Activity: 
 
10/2001 – 12/2004 PhD thesis at the Institute for Cell Biology, 

Dept. of Immunology, University of 
Tübingen supervised by Prof. Dr. S. 
Stevanović, title: The MHC II Ligandome 

 
08/2001 – 09/2001 Practical training at the old people’s home 

Dr. Carl Wolff, Sibiu, Romania 
 
08/2001 Diploma in Biochemistry 
 
12/2000 – 07/2001 Diploma thesis at the Institute for Cell 

biology, Dept. of Immunology, University of 
Tübingen supervised by Prof. Dr. S. 
Stevanović, title: Identification of naturally 
presented HLA-DRB1*1501 ligands and 
characterization of the corresponding 
peptide motif 

 
10/1997 – 08/2001 Studies in Biochemistry at the University of 

Tübingen (advanced studies, graduate) 
 
03/2000 – 05/2000 Practical training at Bayer AG Wuppertal, 

Pharma Research Department Antiinfektiva 
III 

 
09/1998 – 04/1999 Studies at the University of Manchester 

Institute of Science and Technology 
(UMIST), Manchester, England 

 
03/1998 – 05/1998  Studies at the H.E.J. Research Institute of 

Chemistry, University of Karachi, Karachi, 
Pakistan 

 
10/1995 – 09/1997 Studies in Biochemistry at the University 

Potsdam (basic studies, undergraduate) 
 
07/1994 – 09/1995 Community Service 
 
1985 – 1994  Konrad-Adenauer-Gymnasium, Langenfeld 

(Grammar School) 
   
08/1991 – 02/1992  High School of Burlington, Washington, 

USA 
 
1981 – 1985  Grundschule Fröbelstraße, Langenfeld 

(Primary school) 



Curriculum Vitae  107 

 

Lebenslauf 
 
Name:   Jörn Dengjel 
Geburtsdatum: 29.07.1975 
Geburtsort:  Kirchheim unter Teck 
 
Zeitraum: Tätigkeit 

 
10.2001 – 12.2004 Doktorarbeit am Institut für Zellbiologie, 

Abt. Immunologie, Universität Tübingen, 
beaufsichtigt von Prof. Dr. S. Stevanović, 
Titel: Das MHC II Ligandom 

 
08.2001 – 09.2001 Praktikum im Altersheim Dr. Carl Wolff, 

Sibiu (Hermannstadt), Romania 
 
08.2001 Diplom in Biochemie 
 
12.2000 – 07.2001 Diplomarbeit  am Institut für Zellbiologie, 

Abt. Immunologie, Universität Tübingen, 
beaufsichtigt von Prof. Dr. S. Stevanović, 
Titel: Identifizierung natürlicher HLA-
DRB1*1501-Liganden und Charakter-
isierung des zugehörigen Peptidmotivs 

 
10.1997 – 08.2001 Biochemie-Hauptstudium an der Universität 

Tübingen  
 
03.2000 – 05.2000 Praktikum bei der Bayer AG Wuppertal, 

Pharma Research Department Antiinfektiva 
III 

 
09.1998 – 04.1999 Auslandssemester an der University of 

Manchester Institute of Science and 
Technology (UMIST), Manchester, England 

 
03.1998 – 05.1998  Praktikum am H.E.J. Research Institute of 

Chemistry, University of Karachi, Karachi, 
Pakistan 

 
10.1995 – 09.1997 Biochemie-Grundstudium an der 

Universität Potsdam 
 
07.1994 – 09.1995 Zivildienst 
 
1985 – 1994  Konrad-Adenauer-Gymnasium, Langenfeld  
   
08.1991 – 02.1992  High School of Burlington, Washington, 

USA 
 
1981 – 1985  Grundschule Fröbelstraße, Langenfeld  
 


