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Protein crystals derived from innate immune cells have been

synonymous with a Type-2 immune response in both mouse

and man for over 150 years. Eosinophilic Galectin-10 (Charcot–

Leyden) crystals in humans, and Ym1/Ym2 crystals in mice are

frequently found in the context of parasitic infections, but also

in diseases such as asthma and chronic rhinosinusitis. Despite

their notable presence, these crystals are often overlooked as

trivial markers of Type-2 inflammation. Here, we discuss the

source, context, and role of protein crystallization. We focus on

similarities observed between Galectin-10 and Ym1/2 crystals

in driving immune responses; the subsequent benefit to the

host during worm infection, and conversely the detrimental

exacerbation of inflammation and mucus production during

asthma.
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Introduction
Most proteins can only function properly in the soluble

state and the occurrence of spontaneous protein aggrega-

tion or crystallization in vivo remains an unsolved scien-

tific enigma. Although protein aggregation is generally

seen as detrimental, the in vivo formation of protein
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crystals can offer selective advantages for the organism.

The specific properties of the closely packed crystalline

state allow space-efficient storage or sequestration of

proteins for later usage, protection from proteolytic deg-

radation and prevention of toxicity [1]. Conversely,

through their physicochemical properties and triggering

of specific pathways, crystalline protein deposits can also

damage cells and tissues, compromise cell viability, and

cause deleterious structural and functional tissue damage

[1], a pathogenic phenotype often seen in type 2 inflam-

mation associated with parasitic infections and asthma.

How crystal deposits can be tolerated under physiological

conditions in particular tissues, yet contribute to disease

progression in others is poorly understood. In most cases,

the impact of a phase transition to the crystalline state on

the protein bioactivity is unknown and it is not clear

whether crystals are disease-drivers, harmful side-effects,

or harmless bystanders reporting high local protein con-

centration [2]. Here, we will discuss two proteins which

form highly abundant crystals in humans and mice during

pathological type 2 immunity such as asthma and chronic

rhinosinusitis with nasal polyps (CRSwNP). We will

highlight the impact of the crystal structure on protein

immunogenicity as well as the potential pathophysiologi-

cal effect of a phase transition to the crystalline state.

Charcot–Leyden crystals (CLCs)
Many human diseases driven by type 2 immune

responses such as asthma and CRSwNP are characterized

by accumulation of Charcot–Leyden Crystals (CLC) in

the tissues. CLCs were first described in the late 1800s by

Charcot [3] and Leyden [4], who identified needle-

shaped bipyramidal crystals in a leukemic patient and

asthmatic sputum, respectively. Since their identification

over 150 years ago, many descriptions of CLCs, ranging in

sizes from <10 to >70 mm, have been published in

various organs ranging from the sputum to the lymph

nodes and spleen [5]. Since their first description, a

unifying feature of CLC deposition has been the coloca-

lization with excessive tissue eosinophil infiltration, a

finding eventually also leading to the purification and

biochemical characterization of CLCs from purified

eosinophils and eosinophilic leukemic cells [6,7]. CLCs

are comprised solely of galectin-10, a highly abundant

protein in the cytoplasm of eosinophils, which is involved

in granule biogenesis [8]. Galectin-10 represents 7–10%

of the cytoplasmic content of these cells [7], making it the
www.sciencedirect.com
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fifth most abundant protein in peripheral blood eosino-

phils [9]. Galectin-10 mRNA and protein expression, as

well as the presence of extracellular CLCs have thus

become markers of tissue eosinophilia and/or activation

across a number of diseases. Importantly, in respiratory

diseases such as asthma, CRSwNP and allergic bronch-

opulmonary aspergilliosis (ABPA), which can present with

multiple endotypes, galectin-10 protein and CLCs are

more frequently associated with a type 2 signature, and

potentially a sign of intense eosinophil activation [10–14].

Even in COVID-19, where eosinophil activation seems to

be linked to disease severity, high levels of Gal-10 were

measured in critically ill compared to patients with mild

disease, but so far CLCs have not been reported [15].

While galectin-10 has proven to be a useful biomarker of

eosinophilic and type 2 inflammation, the extracellular

crystallization of this protein is far more enigmatic and our

understanding of the role of CLCs in inflammation is

woefully lacking. Since galectin-10 expression is limited

to humans and a small number of non-human primates,

with no equivalents found by protein sequence compari-

son in rodents, mechanistic research on CLCs in disease

pathogenesis has been lagging behind [16]. CLCs form

when eosinophils undergo intense activation, often

releasing their nuclear DNA in a process called eosinophil

extracellular trap (EET) formation [17��,18]. Also hypoxia

and alterations in extracellular pH seem to favor CLC

formation, at least in in vitro experiments [17��,19]. The

formation of CLC crystals is by no means an immunolog-

ically inert process. The administration of recombinant

CLCs to mice revealed several important contributions of

these crystals to inflammation and type 2 immunity [17��].
Firstly, the administration of crystalline, but not soluble

galectin-10 to the airways of mice proved to be a potent

immune stimulus, inducing a swift local production of

inflammatory cytokines (IL-1b, IL-6, TNFa) as well as

the recruitment of neutrophils, Ly6C+ monocytes and

dendritic cells. These results are paralleled in human

studies, where CLCs induced IL-1b induction from

human macrophages, in a process involving crystal phago-

cytosis and triggering the NLRP3 inflammasome [20].

The recruitment of neutrophils and accompanying cyto-

kine production was also seen following stimulation of

nasal polyp tissue from CRS patients with CLCs, but not

soluble protein [21�]. Furthermore, it has been demon-

strated that, once recruited, GM-CSF-primed neutrophils

undergo NETosis following stimulation with CLCs [21�].
NETosis, in which neutrophils release their internal

contents, including long DNA fibers to form webs which

trap and combat pathogens [18], itself can act as an

immune stimulus and propagate inflammation. Both

human macrophages and murine lung dendritic cells

(DCs) are capable of phagocytosing CLCs, the latter of

which traffic to the lymph node to initiate T cell

responses [17��,20]. The administration of CLCs together

with innocuous antigen, that is, ovalbumin, was able to
www.sciencedirect.com 
boost the antigen-specific T cell response in mice which

was associated with increased antigen-specific antibody

responses [17��]. High levels of galectin-10 coming from a

subset of CD16+ human eosinophils may also have a role

in suppression of proliferating T cells [22].

Apart from recruiting and activating immune cells, CLCs

can induce mucus production by epithelial cells. Over-

production of mucus is an important clinical manifesta-

tion of many CLC-associated pathologies including

asthma, CRS and ABPA; in which the crystals are often

found impacted in the characteristically sticky and eosin-

ophil-rich ‘allergic mucin’ of these diseases. As well as

their ability to induce Muc5ac and mucus production in

mouse lungs [17��], CLCs may additionally interact with

the mucus via a carbohydrate recognition domain (CRD)

to provide a physical scaffold, similar to barbed wire,

which can make the mucus more tenacious and difficult

to expectorate. The further induction of eosinophil and

neutrophil extracellular traps has also been shown to

contribute to the increased elasticity and viscosity of

allergic mucin, and extracellular DNA can be found in

the sputum of a subset of severe asthmatics [23,24�].
Ligands capable of interacting with the CRD of galec-

tin-10 remain elusive, and so far only ribose and mannose

have been demonstrated as binding partners [17��,25],
while many glycan arrays using galectin-10 have proved

disappointing [8]. However, many of these studies used

galectin-10 as a dimeric protein. We speculate that the

organization of galectin-10 protein molecules in a crystal-

line lattice may afford multiple binding sites with carbo-

hydrate ligands, and thereby increase the avidity of what

may be a low-affinity interaction, potentially not identi-

fied using soluble protein alone.

Inflammatory crystalline proteins in mice
In mice, ‘type 2-high’ responses also trigger the formation

of protein crystals. These murine crystals have been

documented in mouse tissues since 1905 and are fre-

quently observed in aged mice, genetically altered mice

particularly those generated on a C57BL/6 or Sv/129

background [26], but also in the context of asthma and

parasitic and fungal infections [27,28], or mice subjected

to inhalation toxicity studies for particulates and tobacco

[29]. The lung appears to be the main site of crystal

accumulation, associated with increased mucus produc-

tion [26,30,31] with manifestations generally known as

eosinophilic crystalline pneumonia, or alternatively

referred to as acidophilic macrophage pneumonia or

crystalline pneumonitis [31–33]. It was not until the

2000s that these murine crystals could be purified from

the bronchoalveolar lavage fluid of viable motheaten mice

[26] and hyaline gastric lesions of aged 129S4/SvJae and

B6,129 CYP1A2 null mice [34]. These pseudo-CLCs are

made up of the two closely related proteins, Ym1 (Chil3)
and Ym2 (Chil4); members of the family of chitinase-like

proteins (CLPs), thus called due to their chitin binding
Current Opinion in Immunology 2021, 72:72–78
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domain, yet absence of chitinolytic activity. The main

cellular sources of Ym1 and Ym2 are macrophages and

neutrophils, but expression can also be induced in den-

dritic cells, monocytes, mast cells and airway epithelial

cells [35,36�]. In the lung, Ym1 is the most prominently

expressed CLP under steady state conditions and can be

detected from embryonic day 18.5 on [37]. Decreased

lung Chil3 transcript levels in late embryonic and adoles-

cent lung are a genetic determinant of pulmonary func-

tion associated with lower basal lung capacity [38]. Ym2,

in contrast, is barely detectable in the lung, but high in the

stomach [39–41]. A dramatic induction of Ym2 is seen

during Th2-high pathologies, in which Ym2 replaces Ym1

as the major lung CLP. In this context, Ym proteins are

best known as IL-4/IL-13-inducible and highly expressed

markers of alternatively activated macrophages (AAMs)

that are involved in wound healing, tissue repair and

initiation of fibrosis [28,42–44], type 2-dependent pro-

cesses that contribute to normal lung development but

also pathologic airway remodeling [45,46]. Whether this is

mediated through the binding of Ym1 to components of

the extracellular matrix such as heparin and heparan

sulfate is still debated [47,48]. In addition, neutrophil-

derived Ym1 was suggested to be taken up by wound-

healing macrophages [44] and impaired wound healing in

diabetic mice was associated with reduced Ym1 levels

[49]. Ym1-deficient macrophages showed an enhanced

AAM phenotype, suggesting that Ym1 might act as a

brake to control or limit the induction of AAM polariza-

tion [50��].

There is a high similarity between Ym1 and Ym2, and

currently there is a lack of specific tools capable of

distinguishing these two proteins. Therefore, the distinct

roles of Ym1 versus Ym2 is difficult to address, and we

refer to these as Ym1/2 where they cannot be reliably

discriminated in the literature. During parasite infection,

Ym1/2 protein has been suggested to be directly chemo-

tactic for eosinophils [51]. However, no or only weak

eosinophil chemotactic activity could be detected either

in in vitro or in vivo assays with purified Ym1/2 [28,47] and

Ym1/2 expression was actually found to be dispensable for

eosinophil recruitment during allergic peritonitis or Try-
panosoma brucei brucei infection [42,43]. More recently, an

anti-parasite effector mechanism of Ym1/2 was

highlighted, not by recruiting eosinophils, but by induc-

ing neutrophil accumulation through the IL-1 dependent

expansion of IL-17A-producing gd T cells. The Ym-

dependent regulation of anti-helminth type 2 immune

responses was found to be bi-phasic, showing opposing

effects in early versus late phases of infection. While

innate IL-4Ra-independent Ym1/2 promoted the devel-

opment of an early reparative type 2 response, adaptive

IL-4Ra-dependent Ym1/2 was important for limiting the

magnitude of type 2 response, by reducing type 2 cytokine

production from both ILCs and CD4+ T cells in the lung

at later stages of infection [52�]. Adaptive Ym1/2 also
Current Opinion in Immunology 2021, 72:72–78 
triggered lung repair via enhanced RELMa expression by

epithelial cells, which regulated the collagen cross-link-

ing enzyme lysyl hydroxylase 2, a pathway partly respon-

sible for the pro-repair effects of Ym1/2 [52�].

Apart from parasitic infection, Ym1 and Ym2 are among

the most strongly induced proteins in the airways after

allergen exposure [53–56]. Ym1/2, expressed by DCs in

response to IL-13, primed DCs to stimulate Th2 cytokine

production by CD4+ T cells and promoted the develop-

ment of allergic airway inflammation by inhibiting the

production of 12-hydroxyeicosatetraenoic acid by 12/15

(S)-lipoxygenase. Blocking Ym1/2 has been shown to

attenuate mediastinal lymph node production of IL-5

and IL-13 [57] and to significantly reduce ovalbumin-

induced allergic airway inflammation [50��,58,59].

Outlook and conclusion
Type 2 immunity is thought to have evolved as a parasite

defense mechanism and as an innate tissue repair process

to mitigate the damage caused by the infection. These

processes, however, are also associated with more

‘modern’ diseases such as asthma and allergies as a

consequence of an exaggerated immune response to

innocuous environmental antigens (Figure 1). Although

found in different animal species and produced by dis-

tinct cell types, both galectin-10 and Ym1/2 crystals are

prominent components of these prototypic type 2-driven

pathologies. The convergent evolution of CLCs and

Ym1/2 crystals in type 2 immunity strongly suggests a

selective advantage of these protein crystals in the

enhancement of type 2-driven immune responses. The

phase transition from a soluble state to a crystalline lattice

in type 2-polarized environments might provide struc-

tural support and initiate remodeling processes and repair

after tissue damage. Alternatively, these proteins exert

their function in the soluble state, and phase transition to

the crystal form is a rapid, potentially reversible way to

contain their bioactivity in an anatomically restricted

manner, as seen within and around plugged airways.

While such enhancement proves beneficial during normal

organ development or after parasite infections, mecha-

nisms that transform these tissue-regenerative type

2 responses into progressive fibrotic disorders, as in the

case of asthma, remain unclear. Studies into the biology of

CLCs and pseudo-CLCs in vivo have been hampered

since mice do not express the gene encoding for galectin-

10 and no Ym1/Ym2 (Chil3/Chil4) knock out strains have

been described to date. The potential cell-surface recep-

tors for galectin-10 and Ym1/Ym2 that mediate their pro-

type 2 effects are still unknown, as are the natural ligands

associating with the crystal structure. In addition, due to

the high amino acid sequence identity of Ym1/2 proteins

and the lack of specific tools to discriminate between the

two homologues, it has so far proved problematic to define

their unique functional characteristics and individual

contribution to steady state and disease conditions.
www.sciencedirect.com
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Figure 1
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WORM EXPULSION

Overview of the role of CLCs in type 2 immune responses in humans. Many of these responses are postulated for the murine protein crystals

Ym1/2 in type 2 immunity.
The temporal, context and cell-specific expression pro-

files of Ym1/Ym2 proteins, however, strongly suggest that

these proteins might exhibit essential non-redundant

roles in periods of maximal tissue remodeling.

Eosinophils are well established to be one of the most

important effector immune cells in parasitic infections

and eosinophil-derived CLCs have been identified in the

presence of parasitic infections [60]. CLCs were present

in 20% of over 10 000 stool samples of patients with

Entamoeba histolytica [61], particularly in the vicinity of

mucus of an amoebic ulcer. Although the role of CLCs has

not been directly studied in these contexts, there are

many functions of CLCs which could be easily conceived

as beneficial to combat worm infection. Firstly, the pro-

duction of CLCs is a result of EETosis, in which eosin-

ophils undergo a programmed form of cell death to exude

significant chromatin fibers as well as granular proteins

with anti-helminth properties [18]. The webs formed by

eosinophil cell death could assist worm trapping and the

needle-shaped protein crystals may themselves induce

significant damage to the parasite. Additional NETs can

be induced by neutrophils, recruited after CLC produc-

tion, that further trap the parasite and contribute to

tenacious mucus. It is apparent that CLCs have a more

potent effect than soluble protein in terms of immune cell
www.sciencedirect.com 
activation. However, in its soluble form, galectin-10 plays

important roles in eosinophil development [8] and it is

conceivable that extracellular soluble protein may have as

yet undescribed roles. One report demonstrated the pre-

sentation of galectin-10 on EETs to suppress Th2 cells

[22] and galectin-10 bound to secreted vesicles may be

taken up by other cells to initiate cell activation.

Understanding the requirements for CLC and pseudo-

CLC formation and their function during Th2-high pathol-

ogies might help identify pathways associated with exces-

sive crystal-driven type 2 inflammation. Therefore, much

more work is needed to characterize the concentration and

crystallization state of these proteins, together with their

role in diseases such as asthma and CRSwNP. Recently, a

series of antibodies were developed that could rapidly

dissolve existing CLCs by binding to a key amino acid

residue in the crystal-packing interface. These antibodies

not only helped to dissolve in vitro generated CLCs, but

also CLCs obtained from the mucus of CRSwNP patients

[17��]. It is an exciting prospect that further clinical devel-

opment of these antibodies could address the real contri-

bution of CLC protein crystals in chronic airway diseases

characterized by intense eosinophil activation. Like for

most biologicals, the challenge will be to define the correct

patient that could benefit from this type of therapy, and
Current Opinion in Immunology 2021, 72:72–78
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finding out what this biological might offer over other type

2 and eosinophil-targeting therapies.
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