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1. What is breast cancer

Cancer is the uncontrolled growth of cells into a malignant tumor. Breast cancer usually 

begins in the lobules, ducts, or connective tissue of the breast. The lobules are the glands 

that produce milk in nursing women. The ducts are thin tubes that drain milk from the 

lobules to the nipple. The connective tissue, consisting of fibrous and fatty tissue holds 

everything together. Most breast cancers begin in the ducts called ductal carcinoma in 

situ (DCIS) or, less common, in the lobules (lobular carcinoma in situ). Non-invasive can-

cers are confined to the milk ducts or lobules in the breast and do not evade into normal 

tissues. The non-invasive cancers may be pre-cancer and are sometimes called stage-0 

breast cancer. Breast cancers become invasive when they grow into healthy tissue and 

can eventually spread outside the breast (metastasize) to other parts in the body through 

blood vessels and lymph vessels. Breast cancer diagnosed at an early stage when it has 

not spread, is more likely to be treated successfully. Vice versa, women’s chances of 

surviving breast cancer are much lower when the cancer has spread throughout the body 

and effective treatment becomes increasingly difficult.(1)

Breast cancer staging

Breast cancer staging is used by doctors, hospitals, and others to characterize breast 

cancer upon diagnosis. Staging describes where the cancer is present in the body in 

relation to the primary tumor and in particular whether, and to what extent the cancer has 

spread. Staging is useful for guiding the treatment strategy and assessing the prognosis 

of the cancer. A widely used staging system for cancer is the tumor, node, metastasis 

(TNM) system.(2) The T refers to the size of the primary tumor from which the cancer 

Figure 1 Anatomy of the female breast
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originates. The number of nearby lymph nodes involved is indicated with N. The M refers 

to metastasis of cancer and indicates whether the cancer has spread from the primary 

tumor to other parts in the body.

A similar staging system used by the Surveillance, Epidemiology, and End Results 

(SEER) program is the local-regional-distant system. In situ; abnormal cells, which may 

be a precursor of cancer, are present but have not spread to nearby tissue. Localized; 

cancer is present, but only in the organ where it started. Regional; the cancer has spread 

to nearby lymph nodes or organs. Distant; the cancer has spread from the place of the 

primary tumor to distant parts of the body.

2. Etiology and risk-factors of breast cancer

Research has identified hormonal, lifestyle, environmental and genetic factors that may 

increase the risk of developing breast cancer. (3) Breast cancer is likely caused by a 

complex interaction of genetic makeup and environment. While there are known risk 

factors, many women who develop breast cancer have no evident risk factors other than 

being women and in the age range of 50-74 when breast cancer incidence is the highest. 

As women get older, there are more opportunities for genetic damage in the breast and 

Figure 2 Ductal Carcinoma in Situ (DCIS) – non-invaiseve or pre-invasive breast cancer.
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the entire body. At the same time, the human body becomes less capable of repairing 

genetic damage that may cause cancer.

A previous breast biopsy, dense breasts, and a positive family history of breast cancer 

are strong risk factors for breast cancer. Inherited cases of breast cancer are often associ-

ated with mutations in genes BRCA1, BRCA2, ATM, CHEK2, and PALB2 which are known 

to increase breast cancer risk by a large factor.(4) Minor risk factors include reproductive 

factors such as low parity, and young age at first menarche which expose women to 

female hormones estrogen and progesterone that are linked to breast cancer onset and 

growth.(3) Breast cancer single nucleotide polymorphisms (SNPs) are common variations 

in the DNA sequence associated with small increases or decreases in breast cancer risk.

(5) Polygenic risk combines information from multiple SNPs and could potentially achieve 

a degree of risk discrimination useful for population screening and be suitable to stratify 

risk in women of all ages.(6) Several other risk factors are related to personal behaviors, 

such as lack of exercise, alcohol consumption, smoking, and an unhealthy diet. While 

Table 1 Overview of major and minor risk-factors of breast cancer.(3)

Breast cancer risk factors Relative risk Reference population

Personal information

Age 20-30 Breast cancer at age 20 vs. at age 70

Body Mass Index 2 Obesity (BMI>30) vs. no obesity

Alcohol consumption 1.28 4 glasses containing alcohol vs. none

Breast density 4-6 Extremely dense vs. fatty breast

Hormonal / reproductive risk factors

Age of first menarche 1.5 Before age 10 vs. after age 16

Age of menopause 2 After age 55 vs. before age 40

Age of first live birth 3 After age 35 vs. before age 19

Breast feeding 0.8 More than 4 years vs. No breast feeding

Use of hormonal replacement therapy 2 10 years usage vs. never

Family history of breast cancer

First degree family history of breast cancer 3.6 2 first degree with breast cancer vs. none

Second degree family history of breast cancer 1.5 Second degree with breast cancer vs. none

Age of breast cancer onset 3 Onset before age 50 in sister vs. none

Ovarian cancer 1.5 Ovarian cancer in family vs. none

Personal history with breast cancer

Atypical ductal hyperplasia 4 Ductal hyperplasia vs. no hyperplasia

Previous breast biopsy 2 No previous breast biopsy

Lobular carcinoma in situ (LCIS) 4 LCIS vs. no LCIS

Genetic breast cancer risk

Single Nucleotide Polymorphisms 10 Top 1% vs. bottom 1% based on 77 SNPs

Mutations in BRCA 1/2 15 Mutation in BRCA genes vs. no mutation
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Figure 3 Worldwilde female breast cancer incidence in 2012. All incidence rates are age-standard-
ized to the 1960 world population. Source: Ferlay J. Soerjomataram I, Ervik M, et al. GLOBOCAN 
2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No 11.

Figure 4 Worldwilde female breast cancer mortality in 2012. All mortality rates are age-standardized 
to the 1960 world population. Source: Ferlay J. Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 
v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No 11.
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many known factors increase the risk of developing breast cancer, a large part of breast 

cancers are due to random, unpredictable, mistakes in DNA copying which is essential 

for cell division and life itself.

3. Breast cancer epidemiology

Breast cancer incidence worldwide

Breast cancer is a major health problem with an estimated 2.1 million new cases and 

0.63 million breast cancer deaths worldwide in 2018. (Figure 1, 2) In many developed 

countries around 1 in 8 (13%) women are diagnosed with breast cancer in their lifetime. 

(7)

Age-specific breast cancer incidence

Breast cancer correlates strongly with age regardless of race or ethnicity. At age 50 

around which most women start screening, 200 cases per 100,000 women are observed 

in the United States. The peak in incidence lies between ages 70 and 80. This age-

specific pattern is seen in most western countries.

Breast cancer incidence over time

Invasive breast cancer incidence has seen a sharp increase in the United States up to the 

year 2000. (Figure 5) After 2000, there was a drop in incidence up to 2003 which was 

followed by a period of relatively stable incidence levels. These changes over time have 

been attributed to the increase in use- and performance of mammography, changes in 

hormone use after 2000, risk factor prevalence, and differential birth cohort effects. The 

use of Hormone Replacement Therapy (HRT) was reduced in 2000-2003 as it became 

apparent at the time that it was associated with increased risk of breast cancer.(8, 9) This 

led to a decrease in breast cancer incidence up to 2003.

Breast cancer mortality

Breast cancer mortality was relatively stable up to the mid-nineties of the 20th century 

and gradually declined thereafter. The decrease in breast cancer mortality has been at-

tributed to the increase in screening, better access to healthcare, and advances in breast 

cancer.(10, 11)

Breast cancer survival

Survival rates are an estimate of the percentage of patients who survive for a given 

period of time after a cancer diagnosis. Relative breast cancer survival compares survival 

among women with breast cancer to women of the same age without breast cancer. 
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Based on data over a 14-year period from 2000 to 2014, the 10-year survival rate for 

U.S. women diagnosed with breast cancer was 83.3% and varied strongly by stage at 

diagnosis. (Figure 8)

4. primary prevention of breast cancer

Primary prevention aims to prevent disease before it begins. This is typically done by 

changing unhealthy behavior or prevent exposure to hazardous chemicals or situations. 

In breast cancer, the modifi able risk factors include postmenopausal obesity, alcohol 

consumption, physical inactivity, and exposure to radiation. A healthy bodyweight, bal-

anced diet and regular physical activity reduce breast cancer risk and improve general 

health as well. A balanced diet is one that consists of suffi cient fruit, fi bers, vegetables, 

healthy fats, proteins and preferably no or little red or processed meat and added salt. 

In a proper diet the total caloric intake should maintain a healthy body mass index to 

prevent obesity. Physical activity should ideally be at least 30 minutes of walking, biking 

Figure 5 U.S. BC incidence by age, 2011-2015. Figure 6 U.S. BC incidence - age-adjusted

Figure 7 U.S. BC mortality, age-standardized ‘75-’13 Figure 8 U.S. age-specifi c BC mortality ’11-‘15
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or other sports according to the world cancer research fund. Further, primary preven-

tion among high risk women may entail the use of medications that modulate estrogen 

receptors such as tamoxifen and raloxifene.

5. Secondary prevention of breast cancer

Screening aims at finding breast cancer in early stages of the disease when tumors 

are less likely to have spread in the body. Screening can find in healthy, asymptomatic 

women in multiple different ways. For example, breast self-examination is a screening 

technique which allows women to examine their breast tissue at home for any physical or 

visual changes. More modern screening techniques include the use of digital mammog-

raphy, ultrasound, magnetic resonance imaging (MRI), or Tomosynthesis. Mammography 

is an X-ray image taken of the breasts called a mammogram which has relatively high 

sensitivity and specificity. (12) Mammograms and other medical imaging techniques, 

allow radiologists to look for changes in breast tissue that could be pre-cursor, or early 

stage breast cancer.

Benefits of screening

True positives screening outcomes correctly identify abnormalities in the breast as cancer. 

True negatives correctly provide reassurance when no cancer is present in the breast. 

Chances of successful treatment and survival are higher for breast cancer diagnosed at 

Figure 9 U.S. Survival Rates by Time Since Breast Cancer Diagnosis, 2000-2014.
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an early (localized) stage. Screening increases the number of early stage breast cancer 

and thereby improves breast cancer survival of the majority of screen-detected cancers. 

Next to life years gained, averting breast cancer deaths is an important goal of screening. 

In the absence of screening, more cancers are diagnosed at a more advanced stage of 

breast cancer. Consequently, more advanced treatment is necessary and if the cancer is 

lethal, life years are lost or quality of life is significantly reduced. Overall, regular screening 

at the population level provides large benefits for a small number of women, and harms 

among the majority of women who undergo screening but never develop breast cancer.

Figure 10 Three possible life-history scenarios. A: women without breast cancer, B:women with 
breast cancer who are not screened, C: women with breast cancer who are screened. In scenario 
C, the pre-clinical phase is the period of time between tumor inception and clinical diagnosis in the 
absence of screening. The sojourn time for a screening test, e.g., mammography, is the period of 
time within the pre-clinical phase that a cancer can be screen-detectable; this period can also be 
termed the pre-clinical screen-detectable phase. The point when the cancer is detected by screen-
ing depends on when the screening test is performed and the sensitivity of the screening test. The 
period before the sojourn time represents a period in which the tumor is present but undetectable 
by mammography. Should the sensitivity of mammography improve, or new types of screening tests 
evolve, the point of screen-detectability would be closer to tumor inception.
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harms of screening

On mammograms, tissue may show up that looks like breast cancer, but may in fact be 

benign (non-cancerous) tissue. If the abnormalities are flagged as breast cancer and 

additional imaging shows that there is no cancer, this is called a false positive screening 

that may cause unnecessary anxiety and distress. One other important harm of breast 

cancer screening is over diagnosis. Overdiagnosis is the diagnosis of breast cancer by 

screening that would never have caused symptoms and be diagnosed in the absence of 

screening in a woman’s lifetime. Besides false positives and overdiagnoses, false nega-

tive screening outcomes can also be harmful. False negatives may provide a sense of 

false reassurance while in fact cancer is growing in the breast. Lastly, regular screening 

increased the overall exposure to ionizing radiation and could lead to radiation-induced 

breast cancer in some cases.

Quality of life

Through screening, cancer diagnoses are advanced in time and in the majority of 

cases treatment can be less invasive and still be curative. In general, this results in a 

better quality of life for women who are diagnosed with breast cancer. For the majority 

of women who will never be diagnosed with breast cancer, mammography screening 

involves planning, travel, and waiting time. Before the actual mammogram, women may 

feel anxious or worry about the possible abnormal outcomes of the screening. Undergo-

ing screening means that women have to undress from the waist up and may feel pain, 

pressure and discomfort in their breasts from the mammogram. After the examination, it 

takes some time before women are notified about the outcomes of the screening. This 

waiting period could be experienced as uncertain and stressful, but may be worth the 

reassurance, be it early diagnosis of breast cancer. Because women differ in their willing-

ness to accept the harms of screening for potential benefits, a personal consideration is 

advised before attending screening.

6. Breast cancer treatment

The majority of breast cancers will eventually metastasize without treatment. To prevent 

breast cancer death after diagnosis, the tumor is surgically removed and the patient 

usually receives adjuvant treatment to help decrease the risk of breast cancer recurring. 

Effective adjuvant treatments are commonly called systemic treatment and include: ra-

diation, chemotherapy, and hormone therapy. There are additional supplemental treat-

ments which might increase the effectiveness of these three treatments, but chemical, 

radiation, and hormonal treatments are the first ones considered to successfully treat 

breast cancer.(13)
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If breast cancer is contained in the breast regions, localized treatment is considered. 

To help prevent local recurrence, a surgeon will try to remove the tumor, possibly with 

surrounding tissue, and treat the patient with radiation. The molecular nature of the 

tumor may also determine whether chemo- and/or hormonal therapy is used. Systemic 

treatment comes into play when breast cancer has spread or metastasized to the lymph 

nodes. In this stage of breast cancer, surgery alone is not curative anymore and systemic 

therapies are considered. Neoadjuvant breast cancer treatment is applied before surgical 

intervention aiming to stop the cancer growth and shrink the tumor size before surgical 

intervention.(14)

In the past, radical mastectomy of the breast was much more common. This involved 

surgery to remove the entire breast including the axillary lymph nodes and chest wall. 

Today, this medical procedure is less common and lumpectomy, i.e., breast conserving 

surgery, is more common. Lumpectomy aims to remove the cancer while preserving as 

much of the normal breast as possible.

7. Evidence on breast cancer screening

Large randomized trials have been introduced in 1960’s and ‘70’s and conducted 

throughout to the early 2000’s. These include the New York Health Insurance Plan (HIP) 

(15), Malmö I and II (16), Swedish two county trial(17), Canada I and II (18), Göteborg (19), 

Stockholm(20), and the UK age trial(21). These trials compared breast cancer incidence 

and mortality among women invited to screening to women not invited to screening. 

While most studies found a reduction in breast cancer mortality from screening, contro-

versy about the harms of breast cancer screening remains. In 2013, an independent panel 

extensively reviewed published work about the evidence on breast cancer screening to 

reach conclusions about the benefits and harms.(22) They found that 43 breast cancer 

deaths are prevented and 129 cases are overdiagnosed per 10,000 women screened 

triennially for 20 years from age 50 onwards in the UK.

In 2014, the International Agency for Research on Cancer (IARC) convened 29 inde-

pendent experts from 16 countries to review the scientific evidence of various methods 

of screening for breast cancer.(23) The IARC concludes that women in the age range of 

50 to 69 invited to mammography screening have a 23% breast cancer mortality reduc-

tion. Older women, in age ranges 70-74 also observed a substantial reduction in risk 

of breast cancer death. The reduction in risk of breast cancer death in studies among 

women aged 40 to 49 was less pronounced. Estimates of the cumulative risk of false 

positive results differ between organized programs and opportunistic screening. The 

cumulative risk of having at least one false-positive is about 20% for a woman who had 

10 screens between the ages of 50 and 70 years. Overdiagnosis was estimated to be in 
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the range of %1 to 10% of all breast cancer diagnoses, with point estimate of 6.5% based 

on data from European studies that adjusted for both lead time and trends in incidence 

between screened and unscreened women.

8. Current breast cancer screening guidelines

Breast cancer screening guidelines recommending who should undergo screening, how 

often and at what ages vary within and among developed countries. The United States 

Preventive Services Task Force (USPSTF) 2016 guidelines recommend that women aged 

50 to 74 years of age be screened with digital mammography every two years. According 

to the USPSTF, screening before age 50 is an individual decision women should make 

including their values about the (possible) harms and benefits of screening and attitude 

towards breast cancer risk.(24)

The American Cancer Society (ACS) recommends that women between ages 40 and 

45 should have the choice to be screened based on their own considerations. Women 

between ages 45 and 54 are recommended to undergo annual mammography, followed 

by biennial screening between ages 55 and 74.(25) The International Agency for Research 

on Cancer (IARC), part of the World Health Organization (WHO), recommends women 

aged 50 to 69 to be screened and is next to the USPSTF one of the least intensive 

screening guidelines.(23) Overall, these guidelines agree that women aged 50 to 69 

should be screened and vary to some extent in screening initiation and stopping age 

and screening interval.

9. Moving towards risk-based breast cancer screening

Historically, breast cancer screening guidelines have been age-based even though we 

know that at any given age there is variability in breast cancer risk due to earlier men-

tioned risk factors. By better understanding which women are at increased or decreased 

breast cancer risk, risk stratification can target screening to those who are most likely 

to benefit from different screening strategies than currently recommended. This could 

individualize breast cancer care and potentially reduce the population-level harms of 

screening and increase the benefits. Projections for groups of women differing in risk due 

to family history, breast density, polygenic risk, and other risk factors have been made 

under various screening and treatment interventions by breast cancer simulation models 

in the chapters of this thesis.
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10. The use of models next to randomized controlled trials

Randomized clinical trials (RCT) are considered the gold standard to assess the effec-

tiveness of breast cancer screening and treatment interventions. However, there are 

several reasons why modeling is essential to complement and extend the evidence from 

randomized trials. First, RCTs to assess screening and treatment interventions with cause 

of death as primary outcome are time consuming and relatively expensive to set up. Sec-

ond, lifetime follow-up is difficult logistically as participants may move abroad, are lost 

to follow-up, or decide to stop their participation. Consequently, the long-term benefits 

and harms of medical interventions such as screening are difficult to assess. Third, trials 

are usually set up to evaluate a limited number of interventions. In screening this would 

be different starting ages, intervals, and treatment regimens. Fourth, in RCTs ethical 

concerns have to be taken into account. If routine screening of healthy women is part 

of usual practice, it could be unethical to include a non-screening (control) group in the 

trial that is at increased risk of late stage cancer. Finally, trials usually provide outcomes 

in a specific setting, for a specific group of people in a certain region with screening and 

treatment methods available at that time. We know screening and treatments methods 

have improved since the large mammography trials and are likely to have a different 

impact on breast cancer detection and breast cancer mortality. Simulation models can 

synthesize data on breast cancer epidemiology, population demographics, screening 

accuracy, and treatment effectiveness from different sources and produce outcomes for 

multiple screening and treatment strategies among varying risk groups.

Microsimulation model MISCAN-Fadia

In this thesis, MISCAN-Fadia which is an acronym for Microsimulation Screening Analysis 

– Fatal Diameter is used to make predictions about breast cancer incidence and mortality 

following from varying screening and treatment strategies, Chapter 2 of this thesis (26). 

The model simulates individual life histories from birth to death, with and without breast 

cancer, in the presence and in the absence of screening and treatment. Life histories are 

simulated according to discrete events such as birth, tumor inception, metastasis, and 

death from breast cancer or death from other causes. The model consists of four main 

components: demography, natural history of breast cancer, screening, and treatment. 

The impact of screening on the natural history of breast cancer is assessed by simulating 

continuous tumor growth and the “fatal diameter” concept. This concept implies that 

tumors diagnosed at a size that is between the screen detection threshold and the fatal 

diameter are cured, while tumors diagnosed at a diameter larger than the fatal tumor 

diameter metastasize and lead to breast cancer death.
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Collaborative modeling

Erasmus Medical Center part of a collaborative modeling initiative called the cancer 

intervention and surveillance modeling network (CISNET). We use statistical modeling 

to improve understanding of cancer control interventions in prevention, screening, and 

treatment and their effects on population trends in incidence and mortality. Models are 

used to guide public health research and priorities, and they can aid in the development 

of optimal cancer control strategies. Collaborative modeling can enhance the rigor of 

modeling research using multiple independent models to answer the same research 

question. Conclusions supported by multiple independently developed models provide 

greater credibility than conclusions obtained from a single model.

11. Research questions and thesis outline

This thesis consists of three main parts: 1. Breast cancer micro-simulation modeling, 

2.Quantification of current breast cancer screening practice among average-risk women 

in the United States. 3. Outcome projections of risk-based screening strategies. This 

thesis concludes with a discussion of the work in this thesis in relation to the field of 

breast cancer screening.

Part 1: Breast cancer microsimulation: model, methods, 
comparison, and validation

Research question 1: How can model description, comparison, and validation con-

tribute to a better understanding of model predictions?

Chapter 2 provides an overview of the past, current and future applications of breast 

cancer simulation model MISCAN-FADIA. In chapter 3, different approaches to model-

ing the natural history ductal carcinoma in situ are compared. Chapter 4 presents an 

external validation and comparison of CISNET models´ breast cancer incidence and 

mortality predictions to the observed clinical trial outcomes. Chapter 5 investigates the 

impact of model structure and model assumptions about tumor onset and progression 

on predictions of breast cancer incidence and mortality.
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Part 2: Quantifying the harms and benefits of age-based 
breast cancer screening in the United States.

Research question 2: What are the benefits and harms of current age-based breast 

cancer screening in the United States?

In chapter 6, the contributions associated with screening and treatment to breast can-

cer mortality reductions by molecular subtype-specific breast cancer are evaluated. In 

chapter 7, six simulation models use U.S. national data on incidence, digital mammog-

raphy performance, treatment effects, and other-cause mortality to evaluate screening 

outcomes among average risk women. In chapter 8, we estimated the distributions of 

radiation-induced breast cancer incidence and mortality from digital mammography 

screening while considering exposure from screening and diagnostic mammography and 

dose variation among women.

Part 3: Projecting the harms and benefits of risk-based 
breast cancer screening in the United States

Research question 3: To what extent can risk-based breast cancer screening improve 

the harm-benefit ratio of current age-based screening guidelines?

In chapter 9, we estimated the outcomes for various screening strategies in the U.S. 

tailored to women aged 50 years or older with various combinations of breast density 

and relative risk. Chapter 10 assessed screening approaches using first-degree family 

history (FH) and polygenic risk scores (PRS) to identify women for risk-based screening.
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Abstract

The MISCAN-Fadia microsimulation model uses continuous tumor growth to simulate 

the natural history of breast cancer and has been used extensively to estimate the impact 

of screening and adjuvant treatment on breast cancer incidence and mortality trends. 

The model simulates individual life histories from birth to death, with and without breast 

cancer, in the presence and in the absence of screening and treatment. Life histories are 

simulated according to discrete events such as birth, tumor inception, the tumor’s clinical 

diagnosis diameter in the absence of screening, and death from breast cancer or death 

from other causes. MISCAN-Fadia consists of four main components: demography, natu-

ral history of breast cancer, screening, and treatment. Screening impact on the natural 

history of breast cancer is assessed by simulating continuous tumor growth and the “fatal 

diameter” concept. This concept implies that tumors diagnosed at a size that is between 

the screen detection threshold and the fatal diameter are cured, while tumors diagnosed 

at a diameter larger than the fatal tumor diameter metastasize and lead to breast cancer 

death. MISCAN-Fadia has been extended by including a different natural history for mo-

lecular subtypes based on a tumor’s estrogen receptor (ER) status and human epidermal 

growth factor receptor 2 (HER-2) status. In addition, personalized screening strategies 

that target women based on their risk such as breast density have been incorporated into 

the model. This personalized approach to screening will continue to develop in light of 

potential polygenic risk stratification possibilities and new screening modalities.
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Introduction

Randomized trials are considered the gold standard to assess the efficacy of cancer 

screening interventions. However, ethical concerns, participants lost to follow-up, 

feasibility issues regarding the number of evaluated screening strategies, and limited 

quantification abilities of the harms of screening such as overdiagnosis, emphasize the 

need for ways to complement randomized trials. The breast cancer models of the Cancer 

Intervention and Surveillance Modeling Network (CISNET) simulate the effects of screen-

ing and treatment for lifetime follow up, with varying compliance rates, for an unlimited 

number of screening strategies, and thereby extrapolate the findings from randomized 

trials.

MISCAN-Fadia, acronym for Micro Simulation Screening Analysis – Fatal Diameter, 

has been part of CISNET since its start in 2000, usually referred to as Model E (i.e., 

Erasmus Medical Center). Before the development of MISCAN-Fadia, a microsimula-

tion model with discrete tumor progression was developed at Erasmus already in the 

1980’s to evaluate the effects of breast cancer screening in the Netherlands [1]. However, 

compared to observed stage distribution data, the model over-estimated the number of 

early-stage cancers diagnosed at subsequent screens. Sensitivity analysis of screening 

sensitivity did not lead to better estimates [2]. Moreover, it was difficult to explore differ-

ent natural history assumptions because tumor progression was directly linked to discrete 

stages. MISCAN-Fadia, with continuous tumor growth, was initiated to overcome this 

rigid property. This model was developed with the intent of creating a more biologically 

oriented breast cancer model to evaluate the impact of screening and treatment on 

breast cancer incidence and mortality. Since tumor size is measurable and tumor growth 

is continuous, these properties form the biological approach to modeling the natural 

history of breast cancer. In the model, a distinction is made between tumor biology 

(growth function) and other model variables that are more likely to vary by calendar year 

and possibly differ between geographical areas such as access to screening facilities, 

screening equipment and consequently screening test sensitivity, clinical diagnosis in the 

absence of screening due to fewer breast self-examinations and less public awareness of 

breast cancer risk. Sensitivity of a screening test is translated into a diameter size at which 

tumors become screen detectable. In MISCAN-Fadia, ductal carcinoma in situ (DCIS) as 

well as invasive tumors are simulated. Tumor properties like exponential growth rate, 

clinical diagnosis diameter, minimal diameter for screen detection and fatal diameter are 

drawn from probability distributions to account for variability between tumors. The fatal 

diameter concept implies that available treatment only cures tumors that are diagnosed 

at a smaller diameter than the tumor’s fatal diameter. Available treatment options are 

not sufficient for tumors diagnosed past their fatal diameter and these tumors will cause 

breast cancer death.
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Disease processes such as the moment of onset of breast cancer and progression or 

regression of DCIS and breast cancer are unobservable in reality. These are nonetheless 

important determinants that influence the balance of harms and benefits of screening 

and treatment. Modeling allows us to explore the effect of changing one of these unob-

servable factors on modelled outcomes such as breast cancer incidence and mortality. 

Likewise, it is possible to study the effect of changing tumor onset and tumor growth 

while keeping all other parameters unchanged to gain insight into the natural history 

of breast cancer and its interaction with cancer control interventions. To quantify the 

harms and benefits of different screening and treatment strategies, the model simulates 

the same female population twice. First, a population is simulated in the absence of 

screening, and second, in the presence of screening. Key outcomes such as the number 

of breast cancers, the number breast cancer deaths and over diagnosed breast cancers 

can be calculated for lifetime follow-up for any possible screening strategy.

Population demography, natural history of breast cancer, screening and treatment are 

the four main parts of the model. All model inputs and model parameters belong to 

one of these components and are either calibrated to data from trials or are based on 

empirical research [3-5]. This paper presents the current model status and in particular 

the progress and extensions with respect to the first model paper [6], as well as the latest 

model applications that explore the possibilities of risk-based breast cancer screening.

Methods

Discrete event-driven microsimulation

Discrete event simulation implies that the model moves from the time of one event (e.g., 

birth) to the next event (e.g., tumor onset). The events in a woman’s lifetime are discrete 

and mutually exclusive. Microsimulation modeling entails simulation of independent life 

histories that can be aggregated to estimate the effects of screening and treatment at 

the population level. Life histories are simulated according to discrete events such as 

birth, a possible tumor inception, the diameter of the tumor when it would be clinically 

diagnosed in the absence of screening, a date of death from other causes, or, for woman 

with breast cancer, a date of breast cancer death. Events that affect the natural history 

of breast cancer, such as screening and treatment, are tied to the tumor’s continually 

growing diameter (i.e., screen detection of the tumor may take place from a certain 

tumor size and treatment may treat tumors successfully up to a certain tumor size). Each 

woman is simulated from birth and followed until death and time plays an essential role 

in the order of events in a woman’s life.
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Parallel universe approach

In randomized controlled trials, randomization of participants is a key step to reduce the 

chance of systematic differences between study participants in the intervention and con-

trol group. In MISCAN-Fadia, this is imitated by simulating the same female population 

twice. First, the population is simulated in a no screening world, then, the identical popu-

lation is simulated again and subjected to screening to evaluate the effects of screening 

and treatment on incidence and mortality. In microsimulation modeling this approach is 

often referred to as a parallel universe structure. Usually, populations of tens of millions 

of women are simulated with a model runtime of approximately fifteen minutes.

Breast cancer onset

The risk of developing breast cancer increases as women get older, while at the same 

time breast cancer risk may differ by birth cohort [7, 8]. Therefore, breast cancer onset 

in Model E is mainly driven by an age risk factor combined with a birth cohort risk factor 

to account for variations in the prevalence of risk factors that are related to birth cohort. 

The model uses as input breast cancer incidence (invasive and DCIS) in the absence 

of screening to derive breast cancer onset probabilities that vary by age and cohort. 

Considering breast cancer incidence in the absence of screening has not been available 

at the population level in the U.S. since routine mammography screening started in the 

1980’s, most CISNET breast models used the breast cancer incidence in the absence of 

screening derived by Holford et al. [9]. Currently in Model E, the breast cancer onset 

parameters are calibrated to the U.S. incidence in the absence of screening that was 

derived and estimated by Gangnon et al. who extended the work by Holford by disen-

tangling breast cancer incidence by cohort- and age-related factors, and the impact of 

mammography screening dissemination in the U.S.. [10].

The continuous tumor growth natural history model

Among women who develop breast cancer, the natural history of the disease is simulated 

as a continuously growing tumor. At tumor inception, the tumor’s diameter is 0.1 millime-

ter and based on the time it takes for the tumor to double in size, (i.e., the tumor volume 

doubling time) it grows exponentially. The DCIS model was originally based on the DCIS 

model of the Erasmus MISCAN breast model [11]. Once a breast lesion emerges from 

normal breast tissue, a woman is in the pre-clinical undetectable DCIS phase (Figure 

1). The two possible transitions from there are either: pre-clinical screen-detectable 

DCIS, the state that all CISNET breast models that include DCIS have in common [12], 

or pre-clinical invasive breast cancer. From the pre-clinical screen-detectable state three 

different transitions are possible; regression to a breast cancer-free life, progression to 

pre-clinical invasive breast cancer, or progression to the clinical DCIS state. The duration 

(years) in each DCIS state is assumed to be exponentially distributed and transitions 
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between DCIS states happen at exponential rates. These transition rates were estimated 

using SEER American Joint Committee on Cancer (AJCC) data on stage distributions and 

age-specific DCIS and invasive incidence rates between 1975 and 1999 [3].

The tumor diameter at which available treatment options no longer result in cure is the 

fatal disease diameter and reflects the spread of breast cancer, i.e., distant metastasis. If 

the disease is fatal at the moment of diagnosis (i.e., the tumor diameter at diagnosis is 

larger than the tumor’s fatal diameter), the time until death from breast cancer is deter-

mined by a draw from the survival distribution at the moment the disease became fatal 

(Figure 2). Tumors that are diagnosed at a smaller diameter than their fatal diameter are 

surgically removed, possibly radiated and adjuvant treatment ensures the woman will not 

die of breast cancer. Each tumor is unique and has different diameter sizes for: clinical 

diagnosis, screen detectability and metastasis (fatal diameter). As listed under ‘the life 

course of a tumor’, these tumor properties are governed by probability distributions to 

bring about variation between tumors.

Figure 1 The Ductal Carcinoma in Situ sub-model in MISCAN-Fadia.
Once a breast lesion emerges from normal breast tissue, a woman is in the pre-clinical undetectable 
DCIS phase. The two possible transitions from there are either: pre-clinical screen detectable DCIS 
or pre-clinical invasive breast cancer. From the pre-clinical screen detectable DCIS phase the tumor 
may regress and the woman will end up in the ‘No Breast Cancer’ pool. However, from the pre-clini-
cal screen detectable DCIS phase the tumor may also progress to pre-clinical invasive breast cancer 
or the tumor may cause clinical symptoms and a DCIS case will be diagnosed as a result of clinical 
symptoms. If a tumor is in the pre-clinical invasive breast cancer state, the cancer may be screen 
detected or cause clinical symptoms that lead to a clinical breast cancer diagnosis. Depending on 
the moment of diagnosis and the type of treatment a women may cure or die from breast cancer.
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Our natural history approach makes a distinction between tumor biology (i.e., growth 

rate of the tumor) and variables that are more likely to change over time, by age, or differ 

by geographical region. The advantage of this approach is that it readily lends itself to 

define separate distributions for different parameters based on risk groups and molecular 

tumor subtypes for example [13, 14]. As such, adapting the model to simulate subgroups 

Figure 2 The MISCAN-Fadia breast cancer natural history model.
When a breast tumor is initiated in a simulated woman, values of six tumor characteristics are gener-
ated: growth rate of the tumor, the tumor’s fatal diameter that represents distant metastasis, survival 
time after reaching the fatal diameter, screen detectability diameter (threshold), and the clinical di-
agnosis diameter. The distribution curves on the y-axis demonstrate the probabilistic nature of the 
simulations and the variation between the screen-detection, fatal and clinical diagnosis diameter 
of tumors. The growth rate of the tumor determines the times since its initiation at which the tumor 
reaches the screen detectability diameter, the clinical diagnosis diameter, and the fatal diameter. If in 
the absence of screening the clinical diagnosis diameter is larger than the fatal diameter, the woman 
will die of breast cancer and the observed survival time is given as depicted in Figure 2. A woman 
will be cured if the breast cancer is detected, either clinically or through screening, before the fatal 
diameter is reached. Treatment (not shown in Figure 2) is modeled as a shift in fatal diameter and 
may affect survival and in the best scenario cause of death.
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of more aggressive and faster growing tumors (e.g., ER/HER2 molecular subtypes of 

breast cancer) was done by changing the growth rate of tumors while keeping other 

tumor aspects such as the clinical diagnosis diameter and tumor diameter threshold for 

screen detectability unchanged.

The life course of a tumor is described by

1.	 Tumor growth rate ~ Log Normal (μ1,σ1)

2.	 Fatal diameter of the tumor ~ Weibull (λ1,κ1)

3.	 Survival time after reaching fatal diameter ~ Log Normal (μ2,σ2)

4.	 Screen detectable (threshold) tumor diameter ~ Weibull (λ2,κ2)

5.	 Clinical diagnosis diameter of the tumor ~ Log Normal (μ3,σ3)

6.	 Clinical diagnosis of the tumor caused by distant metastasis. This is modeled as a 

constant fraction of the survival after reaching the tumor’s fatal diameter.

7.	 Correlation between tumor growth rate and the tumor’s clinical diagnosis diameter: 

ρ1

8.	 e.g., fast growing tumors are diagnosed at larger diameters.

9.	 Correlation between tumor growth rate and survival time after reaching the tumor’s 

fatal diameter: ρ2 e.g., fast growing tumors have a shorter survival.

10.	Correlation between tumor diameter at clinical diagnoses and survival time after 

reaching the tumor’s fatal diameter: ρ3

11.	e.g., tumors with a large size at clinical diagnosis have a shorter survival.

12.	The tumor diameter at which N1 lymph node disease becomes detectable ~ Weibull 

(λ3,κ3)

13.	Difference in tumor size at which N1 and N2 lymph node disease become detectable.

When a breast tumor is initiated in a simulated woman, values of the six (1-6) tumor 

variables are generated. For each simulated tumor, the clinical diagnosis diameter is 

determined by the smallest tumor diameter of either the diameter at clinical diagnosis or 

the diameter at clinical diagnosis because of fatal metastases. After tumor initiation, the 

growth rate of the tumor determines the times at which the tumor reaches the threshold 

diameter for detectability by screening, the clinical diagnosis diameter, and the fatal 

diameter. If the tumor diameter at diagnosis is larger than the fatal diameter, then the 

survival time after reaching the fatal diameter will give the time at which a woman will die 

of breast cancer. On the other hand, if a tumor is detected, either clinically or through 

screening, before the fatal diameter is reached, the woman will be cured of cancer and 

die of other causes. A graphical representation of how the natural history of breast cancer 

is modeled in MISCAN-Fadia is provided in Figure 2. In MISCAN-Fadia, initially, Weibull 

distributions were assumed for all variables. However, when it became apparent that 

correlations had to be assumed, the more convenient multivariate lognormal distribution 
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was used for three correlated variables. The main reason was to get a better fit on the 

data of the base-case analysis.

For the CISNET breast “Base Case” analysis [15, 16], the maximum likelihood estimates 

of MISCAN-Fadia for the natural history parameters were initially based on detailed data 

from the Swedish Two County Study [4, 5]. These included estimates for tumor growth, 

tumor fatal diameter, survival duration since fatal diameter, clinical diagnosis diameter, 

and screen detectability diameter. The tumor size distribution and number of screen de-

tected cancers and interval cancers per screening round were simulated and compared 

to the findings of the trial. A detailed description and estimation of these natural history 

parameters can be found elsewhere [6]. Since the base case analysis, the natural history 

parameters such as tumor growth rate, tumor fatal diameter, survival duration after reach-

ing the fatal diameter, and the threshold for screen detection have been re-estimated 

for the simulation of various breast cancer molecular subtype combinations of ER and 

HER2. [13, 14]

Population Demographics

MISCAN-Fadia can simulate one specific birth cohort, or, to account for varying demo-

graphic characteristics, a dynamic population consisting of multiple birth cohorts can be 

simulated. Certain birth cohorts may be assigned a different relative risk of developing 

breast cancer when cohort effects are present in the population. Nevertheless, each birth 

cohort is assigned an all-cause mortality table from which breast cancer as cause of death 

is removed. These mortality tables determine the date of non-breast cancer related 

death. A woman dies either from breast cancer or from other causes, whichever comes 

first. MISCAN-Fadia uses population parameters such as the number of birth cohorts and 

the proportion of each birth cohort in the overall U.S. population. These model inputs, as 

well as the other cause mortality tables are common CISNET model inputs [3].

Screening and screen detection

Characteristics of organized screening programs, such as screening ages, intervals, 

screening modality, and attendance by first and subsequent screens can be inserted 

directly into the model. The mammography screening dissemination that reflects the 

historic opportunistic screening patterns observed in the U.S. can also be simulated [17, 

18]. Parameters to simulate screen detection, such as the sensitivity of the screening test, 

are translated into a diameter size at which tumors become screen detectable. By means 

of model calibration of tumor size distributions to observed tumor size distributions, 

the model estimates the screen detection (threshold) parameter. By varying of only the 

screen detection parameters, the model finds the parameter values that resemble the 

best match between the simulated data and observed data.



38 Chapter 2

If a woman is screened after a tumor onset, but before the threshold tumor diameter 

of screen-detectability, the result of the screening test is false negative. If that woman 

would be screened when the tumor diameter is larger than the tumor’s screen-detect-

ability diameter, the result of the screening test is true positive. This structure for screen 

detection implies that no false positives are registered as direct output from the model. 

The number of false positive mammograms is calculated based on the total number of 

mammograms performed in the model and the observed false positive rates. Screening 

sensitivity differences between screening modalities, as well as improvements in screen-

ing performance are modeled as a shift in the threshold diameter for screen-detectability. 

The advent of digital mammography between 2000 and 2010 has been incorporated 

into the model by calibrating the threshold to digital mammography data [19].

Overdiagnosis is defined as screen-detected DCIS or invasive breast cancer that would 

not have been diagnosed in a woman’s life in the absence of screening. The parallel 

universe approach; simulating the same population of women twice, implies that the 

women in the screened population are exactly the same women as in the unscreened 

population. This allows for exact quantification of overdiagnosis due to screening be-

cause of the lifetime follow-up of all women.

Breast cancer staging

In MISCAN-Fadia, the severity of breast cancer is described by the diameter of the 

primary tumor and the extent to which the cancer has spread to lymph nodes or distant 

organs. This corresponds to the Tumor Node Metastasis (TNM) staging system that was 

developed and is maintained by the AJCC union that classifies tumors based on the size 

of the primary tumor (T), the nearby lymph nodes that are involved (N), and the spread 

of cancer as distant metastasis (M). To get to a stage at diagnosis, MISCAN-Fadia links 

tumor diameter to staging by including 3 parameters. First, continuous growth of the 

tumor diameter; the main concept of the natural history model, covers the T part of 

the staging system by the unique size of the tumor at diagnosis. Second, the lymph 

node status of tumors is covered by the inclusion of two parameters; N1: the size of the 

tumor that reflects the spread to 1-3 nearby lymph nodes, N2: the size of the tumor that 

corresponds to the diameter at which breast cancer has spread to 4 to 9 lymph nodes. 

This is modeled as a fixed diameter size larger than N1. Third, metastasis of the primary 

tumor is modeled and covered by the unique fatal diameter of each tumor. The values 

of N1 and N2 were calibrated to SEER data on stage at diagnosis of cancers diagnosed 

between 1975 and 2000 as part of the base-case analysis[6]. The definition of the AJCC 

staging system determines how cancers are staged at diagnosis; all DCIS diagnoses are 

staged as 0. Tumors smaller than 2 cm that have not spread to any nearby lymph nodes 

are staged as 1, tumors that are between 2 and 5 cm at diagnosis that have not spread 

to nearby lymph nodes are staged as 2a, and so on.
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Adjuvant treatment

The benefit of adjuvant treatment is modeled as a shift in the fatal diameter. For each 

adjuvant treatment an age-specific cure proportion is estimated using the common 

CISNET model inputs [3] based on treatment effectiveness data from the meta-analyses 

by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) [20, 21]. The cure 

proportions are translated into tumor diameters so that more effective treatment can 

cure a larger tumor. Women diagnosed at a tumor diameter greater than the tumor’s fatal 

diameter, benefit from adjuvant treatment by a shift to a larger fatal disease diameter. If 

the new fatal diameter is larger than the diameter at diagnosis, the treatment results in 

cure and ultimately death from other causes. However, if the new fatal diameter is still 

smaller than the diameter at diagnosis, surgery and radiation combined with adjuvant 

treatment will not results in cure and the tumor will eventually cause breast cancer death. 

The dissemination of adjuvant treatment is modeled as the probability of being treated 

with a certain type of treatment (e.g. chemotherapy, tamoxifen) given stage at diagnosis, 

calendar year, age at diagnosis, ER and HER2 status.

Parameter estimation

Parameter estimates are obtained by optimizing the goodness of fit between simulated 

data and observed data. The stochastic nature of the model output and duration of the 

model runs make the process of finding solid parameter estimates time-consuming. For 

selected starting values of the parameters, one microsimulation run will produce, for 

instance, age-specific breast cancer incidence trends over time, and compare it to the 

observed breast cancer incidence levels. Maximum likelihood estimates of the model 

parameters are obtained by repeated evaluation of the simulated breast cancer inci-

dence for different sets of parameter values. Parameters are estimated by minimizing the 

sum of squared differences between observed and simulated data. This weighted sum 

measures the goodness of fit of the simulation results and is defined as a chi-squared 

distributed statistic. [22]. Minimization of the goodness of fit statistic leads to the optimal 

parameters, but requires frequent, and time-consuming evaluations of the objective 

function. We used the Nelder and Mead Simplex (NMSM) algorithm [23], which has the 

advantage that it only uses the value of the objective function, i.e., the goodness of fit of 

the model, to find the minimum. In the NMSM approach, each step in the optimization 

algorithms is based on output from previous simulation runs in which large numbers of 

life histories have been simulated, and it performs quite well in locating the optimum.

Extensive model calibration for the CISNET base case analysis provided parameter 

estimates that resulted in a close match between the simulated U.S. incidence and mor-

tality over time and the observed trends in incidence and mortality from 1975 to 2000 

[16]. These parameter estimates from the base case analysis were only re-calibrated for a 

limited number of parameters at a time and within logical parameter bounds (e.g., new 
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screening modalities with higher sensitivity of screening correspond to, and resulted in, 

a smaller threshold diameter for screen-detectability).

Validation

Establishing the degree to which MISCAN-Fadia is an accurate representation of the 

real world, is validation. Five types of validation [24] are addressed: face validity, internal 

validity, cross validity, external validity, and predictive validity. Face validity means the 

model makes sense at face value. MISCAN-Fadia’s structure with a biological entry of 

continuous tumor growth makes sense at face value. The model structure and data 

sources used as input lead to credible results that show no logical contradictions such 

as screening resulting in the diagnosis of more late stage tumors, or decreasing risk 

of developing breast cancer as women get older. Internal consistency, or verification, 

examines the mathematical calculations performed and its consistency with what could 

be expected based on the model’s specification. MISCAN-Fadia, programmed in Del-

phi, is a microsimulation model in which disease processes are mainly driven by clearly 

specified probability distributions that are widely used in modern programming software 

packages. Results of mathematical calculations for published parameter values can easily 

be verified when using these probability distributions.

Cross-validity covers the aspect of comparing model results to the results of other 

modeling groups. As MISCAN-Fadia has been part of CISNET since the start of its col-

laboration, this form of validation of the model has been done extensively [15, 25, 26]. 

External validity is the comparison of model outcomes to observed data that was not 

used for calibration and development of the model. MISCAN-Fadia is currently part of 

an independent external validation exercise wherefore we validated the results of five 

CISNET breast cancer models against the UK Age trial [27]. In the past, we conducted 

a dependent model validation against the UK Breast Screening Frequency trial [28]. UK 

specific breast cancer incidence and life tables were used, and the threshold diameter as 

well as the diameter of clinical diagnosis were re-estimated based on the trial’s data. The 

model accurately reproduced the cumulative incidence in the intervention and control 

groups. Also, the percentage of screen detected and clinically diagnosed breast cancers 

were similar to the observed percentages in both groups, as were the number of breast 

cancer deaths [29]. Predictive validation is done by making model predictions for future 

outcomes of, for example, patterns in incidence and mortality. MISCAN-Fadia has made 

predictions about future trends in incidence and mortality [30], but it still remains to be 

seen how these predictions unfold.

Model input and output of MISCAN-Fadia

Differences in patterns of breast cancer incidence and mortality can often be traced 

back to different screening and treatment regimens, adherence patterns, and different 
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underlying risks. To simulate the harms and benefits of screening and treatment at the 

population level, the model requires data for the four major model components: popula-

tion demographics, natural history of breast cancer, screening and treatment. A list of 

inputs of MISCAN-Fadia is provided and described as common CISNET model inputs [3].

The outcomes listed in Table 1 can be produced for any screening scenario with dif-

ferent start and stop ages of screening, screening frequency and screening modality. In 

addition to different screening strategies, the model output can also be broken down 

by: calendar year, age group, and by tumor size or breast cancer stage such as AJCC. 

By assigning health utilities to specific health states and unit costs to specific events, 

total costs and Quality Adjusted Life Years (QALYs) can be calculated. Consequently 

cost-effectiveness analyses can be performed [31]. In addition, radiation-induced breast 

cancers and breast cancer deaths can be calculated using model output together with 

radiation dose [32].

Extensions and applications of the model

Targeting screening to women with the highest potential benefit and lowest potential 

harm can improve the overall balance between benefits and harms in the population. In 

recent years, we explored the effects of obesity and race on U.S. breast cancer mortality 

Table 1 Model output MISCAN-Fadia model

Output description

1 Invasive Breast cancer cases diagnosed clinically

2 Invasive Breast cancer cases diagnosed by screening

3 DCIS cases diagnosed clinically

4 DCIS cases diagnosed by screening

5 Life years in the absence of screening

6 Life years in the presence of screening

7 DCIS over diagnosed cases (in the presence of screening)

8 Invasive over diagnosed cases (in the presence of screening)

9 Breast cancer deaths in the absence of screening

10 Breast cancer deaths in the presence of screening

11 Deaths from other causes in the absence of screening

12 Deaths from other causes in the presence of screening

13 Number of mammograms

14 Number of cancers diagnosed in AJCC stage I, II, III, IV

15 Number of cancers diagnosed in SEER stage local, regional, distant

16 Number of cancers diagnosed by tumor size 0-20mm, 20-50mm, 50+ mm

17 Number of cancers treated with adjuvant treatment

18 Intervals between events, e.g., lead time (time between screen detection and diagnosis in the absence of 
screening), survival (time between diagnosis and death)
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[30, 33] as well as the cost effectiveness of ultrasonography screening [31]. In the past 

years, we also examined the contributions of screening and treatment to reduction in 

molecular subtype specific breast cancer mortality by evaluating different screening 

scenarios, including risk-based screening strategies. We present some examples of the 

model adaptations that formed the basis of these collaborative modeling studies.

Personalizing screening

To evaluate screening outcomes while taking into account advances in mammography 

and treatment of breast cancer, several screening strategies were modeled differing by 

age at which screening starts and screening interval. Biennial screening from age 50 

to 74 years avoided a median of 7 breast cancer deaths per 1,000 women screened 

compared to no screening and is generally considered to have a favorable balance 

between benefits and harms. More intensive screening leads to more benefits (breast 

cancer deaths averted), but also to more harms (false-positives and over diagnosis). For 

example, annual screening from age 40 to 74 years avoided an additional 3 deaths, but 

yielded 1988 more false-positive results and 11 more over diagnosed cases per 1000 

women screened [26]. Women aged 40 with a two-fold risk (compared to average risk) 

can expect the same balance of benefits and harms as average-risk women who receive 

biennial screening starting from age 50 [25].

Breast density and breast cancer

Breast density has been proposed to personalize mammography screening. Dense 

breast tissue is prevalent and associated with a higher risk of developing breast cancer 

[34]. Moreover, since breast density is relatively easy to measure on a mammogram, it 

can be used for risk stratification. Some studies have found that tumors in dense breasts 

(categorized as BI-RADS 3 and 4) may progress more rapidly than those in fatty breasts, 

categorized as BI-RADS 1 and 2 [35]. Based on this, breast density could be taken into 

account when personalizing a woman’s screening frequency. Breast density does not 

only affect risk of developing breast cancer, it also affects screening test sensitivity as 

dense breast tissue is comprised of less fat and more connective breast tissue which 

appears white on a mammogram. Moreover, cancer appears white on a mammogram 

and is therefore easier overlooked by radiologists, resulting in a lower screening test 

sensitivity.

Breast density in MISCAN-Fadia

Breast density has been incorporated into MISCAN-Fadia to assess the effects of person-

alized screening; breast density was assumed to influence the sensitivity of the screening 

test (threshold diameter) as well as the onset of breast cancer. We also incorporated the 

decrease in breast density as women age because mammographic density decreases 
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after the menopause when ovarian function declines. When modeling both risk and 

density, we found that average-risk women (low breast density) undergoing triennial 

screening and higher-risk women (high breast density) receiving annual screening will 

maintain a similar or better balance of benefits and harms compared to biennially screen-

ing average-risk women [36].

Simulating molecular subtypes of breast cancer

It has been widely acknowledged that breast cancer is a heterogeneous disease and 

more knowledge is emerging on distinct molecular subtypes. Combinations of Estrogen 

Receptor (ER) and Human Epidermal Growth Factor Receptor 2 (HER-2) status have dif-

ferent tumor growth and are associated with different treatment responses that have 

been found to be important in targeting the treatment of breast cancer. To understand 

the relative contributions of screening and treatment to U.S. breast cancer mortality, first 

the major subtype combinations of ER positive and ER negative have been included 

in MISCAN-Fadia. Across CISNET models we found greater absolute breast cancer 

mortality declines in ER-positive cancers than among ER-negative cancers. The relative 

contribution of adjuvant treatment vs screening to breast cancer mortality reductions was 

higher for ER-positive cases; for ER-negative cases, the relative contributions were similar 

[13]. We have recently also included HER-2 in the model [14], as well as the treatment 

Trastuzumab (Herceptin) that is an antibody that interferes with the HER2 receptor.

Future directions of MISCAN-Fadia

Risk based screening based on genetic risk profile

Genomic discoveries of genes associated with breast cancer risk may have the potential 

to personalize screening based on a woman’s genetic risk profile. It is one of our primary 

goals in the upcoming years to continue our research on estimating the population 

impact of using polygenic risk to tailor screening strategies. A growing group of single 

nucleotide polymorphisms (SNPs) are discovered that are associated with an elevated 

risk for breast cancer [37]. Individual SNPs identify a small increase in risk, however, 

multiple SNPs combined together can be translated into a polygenic risk score to stratify 

women based on their polygenic risk. We divide the population into risk groups based 

on observed polygenic risk score distributions. For each risk group, the models simulate 

routine digital mammography screening strategies by varying starting and stopping ages 

of screening and screening frequency. To warrant a more intense screening scenario for 

high risk groups and a less intense screening strategy for low risk groups, we compare 

the benefits and harms of the different screening strategies. The polygenic risk distribu-

tion in the U.S. female population determines how many women are eligible for each 

selected screening strategy and what the overall harms and benefits of polygenic risk-

based screening will be.
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A simplified analysis of using polygenic risk to inform screening strategies, can be 

performed by dividing the population into three (low, median, high) risk groups with 

varying prevalence (Figure 3). Targeted screening based on polygenic risk leads to a 

redistribution of benefits and harms. A more in-depth analysis will be performed in the 

near future within CISNET. MISCAN-Fadia will be used to quantify the benefits such as 

the breast cancer deaths averted, quality-adjusted life years saved, breast cancer mortal-

ity reduction, costs, and harms such as the false positive mammograms, over diagnosed 

cases, unnecessary biopsies, false negatives.

Strategies to reduce overtreatment of DCIS

While early detection of breast cancer and consequently less invasive treatment are often 

mentioned as benefits of screening, overtreatment of DCIS lesions that otherwise would 

not have clinically surfaced without screening is an increasing harm of screening since 

DCIS rates have increased dramatically over the last 30 years. Studies have shown that an 

increase in breast cancer mortality reduction due to screening comes with a substantial 

increased number of over diagnosed DCIS cases [11, 38]. MISCAN-Fadia will be ex-

tended to investigate if, how, and to what extent the harms of screening and treatment 

Figure 3 Simulating a personalized approach to 
breast cancer screening based on genetic risk 
profile.
Genetic variants for breast cancer have different 
risk alleles. Multiple single nucleotide polymor-
phisms (SNPs) combined together can be trans-
lated into a polygenic risk score to stratify wom-
en based on their polygenic risk. In Figure 3, a 
simplified analysis of the potential population 
impact of using polygenic risk to inform screen-
ing strategies is demonstrated by dividing the 
population into three (low, median, high) risk 
groups with varying prevalence. In this simplified 
example 10% of the population has a low risk of 
developing breast cancer, 80% an average risk, 
and 10% a high risk. More frequent screening 
could be offered to the high risk group and less 
frequent screening (compared to average risk 
group) could be offered to the low risk group. 
With more risk groups, or even a continuous risk 
distribution we could potentially optimize the 
tailoring of screening strategies based on poly-
genic risk which would lead to a redistribution of 
benefits and harms compared to current prac-
tice. A more in depth analysis will be performed 
in the near future within CISNET.
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of DCIS can be reduced. By simulating ‘watchful waiting’ strategies and exploring risk 

factors for progression to invasive breast cancer such as cytological grade, ER status, age 

at diagnosis and ethnicity, MISCAN-Fadia will be used to assess how different screening 

strategies and treatment routines may affect incidence and mortality for varying progres-

sion and regression rates of DCIS.

Conclusion

Trends in breast cancer incidence and mortality depend on many factors related to the 

biology and natural history of breast cancer. As tumor size is observable at diagnosis 

and tumors are considered to grow in continuous time rather than discrete time, these 

two aspects form MISCAN-Fadia’s biological entry to modeling the effects of screening 

and treatment on breast cancer incidence and mortality. The advantage of this biologi-

cally oriented approach is that it allows for simple hypothesis testing because the core 

biological mechanisms are separated from cancer control interventions. Changes or 

improvements in screening and treatment that may vary by age, or over time, can be 

implemented directly and be dealt with without changing breast cancer onset or tumor 

growth parameters. On the other hand, simulating less or even more aggressive tumor 

subtypes with a different growth function is also possible. Moreover, correlations that 

were added to the base case model in order to get a good overall fit with observed data, 

were plausible, and with a biological reasoning, intuitive to understand. In particular, one 

may expect faster growing tumors to be diagnosed at larger tumor diameters, and faster 

growing tumors to have a shorter survival as well as a larger clinical diagnosis diameter.

However, MISCAN-Fadia also has limitations and makes use of simplifying assump-

tions. We model only one tumor per woman while it may be possible that breast cancer 

develops in both breasts independently or at the same time, although such cancer devel-

opment is not prevalent. Also, recurrence of breast cancer is not simulated in our model. 

We do not model specific factors associated with an elevated risk for breast cancer such 

as reproductive history, alcohol use, hormone therapy use or familial risk. These different 

risk groups are assumed to be captured by the distribution we simulate tumors from. The 

spread between slower and faster growing tumors with unique tumor characteristics is 

assumed to capture the entire population risk profile.

Future development of the model will focus on evaluating the impact of using poly-

genic risk to inform screening strategies, evaluating the clinical management of screen-

detected DCIS, and incorporating alternative and emerging screening modalities such 

as breast MRI and tomosynthesis.
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Abstract

Ductal carcinoma in situ (DCIS) can be a precursor of invasive breast cancer. Since the 

advent of screening mammography in the 1980’s, the incidence of DCIS has increased 

dramatically. The value of screen detection and treatment of DCIS is a matter of con-

troversy, since it is unclear to what extent detection and treatment of DCIS prevents 

invasive disease and reduces breast cancer mortality. The aim of this paper is to provide 

an overview of existing Cancer Intervention and Surveillance Modelling Network (CIS-

NET) modeling approaches for the natural history of DCIS, and to compare these to 

other modeling approaches reported in the literature. Five of the six CISNET models 

currently include DCIS. Most models assume that some, but not all, lesions progress to 

invasive cancer. The natural history of DCIS cannot be directly observed and the CISNET 

models differ in their assumptions and in the data sources used to estimate the DCIS 

model parameters. These model differences translate into variation in outcomes such as 

the amount of overdiagnosis of DCIS with estimates ranging from 34%-72% for biennial 

screening from age 50-74 years. The other models described in the literature also report 

a large range in outcomes with progression rates varying from 20%-91%. In the future, 

DCIS data by grade from active surveillance trials, development of predictive markers of 

progression probability, and evidence from other screening modalities, such as tomo-

synthesis, may be utilized to inform and improve the models’ representation of DCIS and 

might lead to convergence of the model estimates. Until then, the CISNET model results 

consistently show a considerable amount of overdiagnosis of DCIS, supporting the safety 

and value of observational trials for low-risk DCIS.

Key Words: Cancer simulation, breast cancer epidemiology, simulation models, ductal 

carcinoma in situ
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Introduction

Ductal carcinoma in situ (DCIS) represents a spectrum of abnormal cells confined to 

the breast duct and is a risk factor for invasive breast cancer development [1]. Before 

the introduction of mammography screening, DCIS was not often diagnosed. Since the 

advent of screening mammography in the 1980s, the incidence of DCIS has increased 

dramatically. In the United States, the incidence of DCIS increased from 5.8 per 100,000 

women in 1975 to 68.9 per 100,000 women in 2010 [2-4]. By the year 2020, more than 

one million US women are expected to be living with and have been treated for a DCIS 

diagnosis [1].

The etiology of DCIS is presumably heterogeneous and its natural history is poorly 

understood as onset, progression and regression rates are not directly observable. Some 

DCIS lesions likely represent a precursor to subsequent invasive breast cancer, but DCIS 

may also remain indolent for sufficiently long that a woman dies of other causes [5-7]. 

The proportion of untreated DCIS that will progress to invasive breast cancer is unknown 

[1], and therefore, the impact of detecting and treating DCIS, particularly for any given 

woman, is unclear. Treating some DCIS lesions will probably prevent invasive disease, 

and consequently might reduce breast cancer mortality, thus can be considered a ben-

efit. Other lesions might remain indolent in the absence of treatment with only harms 

related to their treatment (representing overdiagnosis and overtreatment). Since we do 

not know which and how many DCIS lesions will progress, the value of screen detection 

and treatment of DCIS remains unknown and is a matter of considerable controversy.

Despite the uncertainty around the natural history of DCIS, some predictors for progres-

sion have been identified. For example, younger age at diagnosis and black ethnicity are 

associated with higher breast cancer-specific mortality among patients with DCIS [8, 9]. 

Other identified factors for progression include estrogen receptor (ER) negative status, 

larger DCIS tumor size, and comedonecrosis [9]. In addition, DCIS progression to inva-

sive breast cancer can be predicted by cytologic grade [5, 7, 9]. Pathologists use three 

grading categories: corresponding to well (grade 1), moderately (grade 2), and poorly 

(grade 3) differentiated DCIS [10], also referred to as “low grade”, “intermediate grade”, 

and “high grade”, respectively. Grade has been found to be associated with recurrence 

[11, 12] and the survival benefit of surgical treatment has been found to be lower for 

low-grade DCIS than that for intermediate or high-grade DCIS [13]. Furthermore, the 

DCIS Score, based on Oncotype DX, has been found to be associated with recurrence of 

DCIS (either as DCIS or invasive breast cancer) [14].

These identified prognostic factors for recurrence may enable physicians to tailor treat-

ment strategies. Specifically, recommending treatment that is less aggressive would be 

appropriate for DCIS that has a low risk for future recurrence, and predictors such as age, 

ER status, and/or grade might be used to identify low-risk lesions. Thus, understanding the 
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natural history of DCIS and its recurrence and progression predictors to guide treatment 

strategies is important for both clinical and public health decisions. However, investigat-

ing the natural history of DCIS is difficult as ideal high-quality data is lacking, given that 

progression paths are not directly observable. In addition, data are also limited because 

survival for women diagnosed with DCIS is very high and a trial would need to enroll very 

large numbers of women and follow them for a lifetime to be adequately powered to 

detect an impact of screening and treatment on mortality or other endpoints. Moreover, 

the natural history of DCIS is difficult to study because the standard of care is immediate 

treatment following diagnosis. In these instances (comparative) modeling can be useful, 

for example to provide a range of plausible DCIS progression and regression rates by 

evaluating what set of assumptions about these rates best fit the existing observable 

data. In addition, in natural history models, the difference in risk of progression based on 

age, grade and ER status can be included by allowing varying transition rates for these 

factors, which has already been done in a well-established microsimulation model to 

include grade [15].

Furthermore, within the Cancer Intervention and Surveillance Modelling Network 

(CISNET) comparative modeling work has been done. Previously, three CISNET models 

estimated the amount of DCIS overdiagnosis in women age 74 and older. The results 

indicated that at older ages harms began to outweigh benefits, largely as a consequence 

of the increasing amount of overdiagnosis of DCIS at older ages [16], which is partly due 

to the higher death rate from competing causes with aging. Together, these modeling 

papers, on one hand highlight the uncertainty regarding the natural history of DCIS, but 

also show the potential value of modeling in providing information where results are 

consistent.

The aim of this paper is to provide an overview of the ways CISNET models simulate 

the natural history of DCIS, illustrate how different assumptions affect results, to compare 

the CISNET models to other models described in the literature, and to highlight devel-

opments that might lead to model improvements or refinements.

CISNET models

CISNET DCIS models – model overview

CISNET is a consortium of National Cancer Institute (NCI)-sponsored investigators who 

use statistical modeling to improve our understanding of cancer control interventions in 

prevention, screening, and treatment and their effects on population trends in incidence 

and mortality. The CISNET breast models have been described in detail previously and 

recently updated descriptions have been given [17-22]. Briefly, the models are designed 

to match breast cancer incidence and mortality rates observed in the US. Four models 

are micro-simulation models (models developed by Erasmus MC, University Medical 

Center Rotterdam, model E; Georgetown University Medical Center, and Albert Einstein 
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College of Medicine, model G-E; MD Anderson Cancer Center, model M; and University 

of Wisconsin, Madison and Harvard Medical School, model W), one model uses an 

analytic approach (model developed by Dana-Farber Cancer Institute, model D), and 

the remaining model is a hybrid Monte Carlo simulation (model developed by Stanford 

University, model S). The micro-simulation models include natural history components 

that approximate tumor progression in size and stage (https://resources.cisnet.cancer.

gov/registry/site-summary/breast/). Five of the six CISNET models currently include DCIS 

(all except model S). Most models assume that some, but not all, lesions progress to 

invasive cancer, for example by including three different types of preclinical DCIS: DCIS 

that progresses to invasive disease during the preclinical phase, progressive DCIS that 

is diagnosed clinically, and DCIS that does not progress (and might regress). However, 

the models differ in natural history of DCIS (Table 1) and model structure (see Figure 1), 

with different pathways for the progression and regression of DCIS and breast cancer. 

For example, invasive cancer can either develop through pre-clinical screen-detectable 

DCIS (Figure 1C), or also develop directly from pre-clinical DCIS that is not detectable at 

screening (Figure 1A and 1B). In the models, DCIS can regress from pre-clinical screen-

detectable DCIS to pre-clinical undetectable DCIS (Figure 1A) or to an absorbing ‘no 

breast cancer’ state and disappear (“cease to exist”) (Figure 1B and 1C). One model 

(model W) allows regression of pre-clinical DCIS as well as invasive disease (Figure 1D). 

Although the regression of breast cancer, especially invasive disease, is controversial, 

there is some evidence supporting the possibility of regressing tumors, including epide-

miologic evidence [23] and a case report on regression of breast on imaging [24].

Most of the CISNET models have used data from the Surveillance, Epidemiology, and 

End Results (SEER) Program [25], typically age-specific incidence over time, combined 

with data from other sources (Wisconsin cancer registry for model W, Dutch data for 

model E) to estimate DCIS parameters, although one model used data from another 

source to develop their model (Norwegian data for model D) [26]. All CISNET models 

include a certain probability for mammography to detect DCIS at screening (Table 2). 

Specifically models D and GE use the same detection mechanism for DCIS as for invasive 

disease by including a sensitivity of screening. Model W uses the detection probability 

as a function of tumor size and because in situ lesions are small the likelihood of detect-

ing DCIS is lower than that for detecting invasive breast cancer. Model E includes two 

separate detection mechanisms; DCIS detection is modeled by including a sensitivity, 

whereas screen-detection of invasive disease is modeled by a threshold diameter. Thus, 

in some models the sensitivity of a screening test differs for DCIS and invasive cancer.

CISNET models – analysis

The CISNET models were recently applied to evaluate screening outcomes of various 

screening strategies differing by age at which screening starts (40, 45, or 50 years) and 
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screening interval (annual, biennial) for the US female population [27]. We assessed the 

results of those prior analyses by focusing on the (as yet unpublished) model-specific 

rates of DCIS detection and overdiagnosis of the five CISNET models that include DCIS 

[28]. Overdiagnosis was defined as the detection of tumors that would not have been 

detected in a woman’s lifetime in the absence of screening. We estimated the detection 

and overdiagnosis rate per 1000 women screened followed from age 40 over their life-

times. In addition, the percentage overdiagnosis was calculated by dividing the rate of 

overdiagnosed DCIS by the rate of detected DCIS. We focus on four screening scenarios: 

biennial screening from 50-74 years (base), more frequent screening (annual screening 

from age 50-74 years; A50-74), an earlier starting age (biennial screening from age 40-74 

years; B40-74), and later stopping age (biennial screening from age 50-84 years; B50-84).

Table 1 Natural history of DCIS in the CISNET models.

Model in situ or 
DCIS?*

Do all tumors start as 
in situ?

Progression/regression Model
structure

D DCIS only Yes, but some DCIS is 
not screen-detectable 
and assumed to progress 
to invasive directly

DCIS progress to clinical DCIS or invasive 
breast cancer at exponential rates with mean 
sojourn time of 1.5-3 years; DCIS may also go 
back to a state in which it is undetectable [19]

Figure 1A

E All in situ Yes DCIS progress to clinical or invasive breast 
cancer at an exponential rate with age and 
calendar year dependent sojourn times; DCIS 
may also regress [22]

Figure 1B

GE DCIS only Yes DCIS progress to clinical or invasive breast 
cancer at an exponential rate with mean 
sojourn time of 2.97 years; DCIS may also 
regress [21]

Figure 1C

M Model M is not a natural history model. It does not specify how tumors grow. It is an empirical model 
to describe screening, incidence, treatment and mortality. Under different screening scenarios, 
different stage distribution tables obtained from observed data [28] are used to assign tumor stages: 
DCIS, stages I, II, III or IV. DCIS patients are assumed to have the same survival as normal population, 
given age and birth year, no matter what treatments they receive.[18]

W All in situ. 
Model W also 
separated in 
situ into DCIS 
and non-DCIS 
in situ

Yes All tumors, including DCIS, progress 
according to a Gompertz-type growth 
function, where the growth parameter is a 
random variable distributed with Gamma. 
Small size defines in situ. All tumors grow 
until they reach a maximum size. All tumors 
progress although a subset with “limited 
malignant potential” (LMP) stop at early 
invasive. LMPs comprise approximately 30-
50% of all onset tumors [17]

Figure 1D

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University 
Medical Center Rotterdam, Rotterdam, the Netherlands. Model GE: Georgetown University Medical 
Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. Model M: MD 
Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin, Madison, Wisconsin, 
and Harvard Medical School, Boston, Massachusetts.
* in situ: DCIS and lobular carcinoma in situ (LCIS)



Approaches to modeling DCIS 57

Normal Tissue Pre-clinical 
undetectable DCIS

Pre-clinical Screen-
detectable DCIS

Clinical DCIS with 
symptoms

Clinical IBC With 
Symptoms

Breast Cancer Death

Pre-clinical Screen-
detectable IBC

 
Figure 1A Model D
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Figure 1B Model E

Figure 1 Schematic overview of models for the natural history of DCIS and invasive breast cancer. In-
vasive cancer can either develop through pre-clinical screening detectable DCIS (Figure 1C), or also 
develop directly from pre-clinical DCIS not detectable at screening (Figure 1A, 1B and 1D). Models 
include progression from preclinical screen-detectable DCIS to either clinical DCIS or preclinical 
invasive disease (Figure 1A, 1B, 1C, 1D), regression from preclinical DCIS to normal tissue (Figure 
1D), to pre-clinical undetectable DCIS (Figure 1A), or to a ‘no breast cancer’ (absorbing) state in 
which women are no longer at risk for developing DCIS or invasive breast cancer (Figure 1B and 1C). 
Regression from invasive disease is also possible (Figure 1D).
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Figure 1C Model GE
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Figure 1D Model W

Figure 1 Schematic overview of models for the natural history of DCIS and invasive breast cancer. In-
vasive cancer can either develop through pre-clinical screening detectable DCIS (Figure 1C), or also 
develop directly from pre-clinical DCIS not detectable at screening (Figure 1A, 1B and 1D). Models 
include progression from preclinical screen-detectable DCIS to either clinical DCIS or preclinical 
invasive disease (Figure 1A, 1B, 1C, 1D), regression from preclinical DCIS to normal tissue (Figure 
1D), to pre-clinical undetectable DCIS (Figure 1A), or to a ‘no breast cancer’ (absorbing) state in 
which women are no longer at risk for developing DCIS or invasive breast cancer (Figure 1B and 1C). 
Regression from invasive disease is also possible (Figure 1D).
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CISNET models – results and implications

For biennial screening between age 50 and 74 years, the five models that include DCIS 

predict that 154.4 women (median; range across five models 137.4 – 158.5; Table 3) are 

diagnosed with breast cancer per 1000 women followed from age 40 over their lifetimes. 

Of these women, 26.7 (25.8 – 32.3) are diagnosed with DCIS and 128.2 (110.7 – 131.8) 

with invasive disease. Of the women diagnosed with DCIS, 15.6 (9.0-18.8) are overdiag-

nosed, representing 51.3% (33.7%-71.8%) of the detected DCIS (Table 3). In contrast, for 

invasive disease, the models estimate that of the 128.2 (110.7-131.8) breast cancers de-

tected, 3.3 (1.8-15.4) are overdiagnosed, corresponding to 2.6% (1.5%-12.0%; Table 3). 

This means that 2.6% (1.5-12.0%) of the invasive breast cancers that are detected would 

not have been detected in the absence of screening and are overdiagnosed. There is no 

direct connection between the amount of overdiagnosis of DCIS and overdiagnosis of 

invasive disease in the models. For example, one model predicts relatively low overdiag-

nosis percentages for DCIS as well as invasive breast cancer (model GE), whereas another 

model predicts relatively high percentages for both (model M). In contrast, there are also 

models that have modest estimates of DCIS overdiagnosis combined with relatively high 

estimates of invasive disease overdiagnosis (model W) or the other way around (model E).

Table 2 Detection mechanism of DCIS in the CISNET models.

Model Clinical detection mechanism Screen detection 
mechanism

Detection mechanism DCIS vs. 
invasive cancer

D Some DCIS progress to clinical DCIS with 
symptoms - this rate matches age-specific 
incidence rate of DCIS in pre-screening era

Sensitivity varying by 
screening modality, 
age, calendar year

Same mechanism for DCIS and 
invasive cancer by test sensitivity

E Some DCIS progress to clinical DCIS with 
symptoms - this rate matches age-specific 
incidence rate of DCIS in pre-screening era

Sensitivity varying by 
calendar year

DCIS is detected by test sensitivity; 
invasive disease is detected using a 
threshold diameter

GE Progressive DCIS are clinically detected 
the same as more advanced lesions. Non-
progressive DCIS are NEVER clinically 
detected.

Sensitivity varying by 
screening modality, 
age, calendar year

Same mechanism for DCIS and 
invasive cancer by test sensitivity

M  Model M makes no explicit mechanism assumptions regarding DCIS detection.

W Some DCIS are clinically diagnosed similarly 
as more advanced lesions. Clinical detection 
probability is an increasing function of tumor 
size and varies by age and calendar year. 
Clinical detection probabilities are in general 
smaller than screen detection probabilities; 
therefore a tumor is less likely to be detected 
via clinical surfacing than by screening.

Sensitivity varying by 
is tumor size, age, 
calendar year

Detection probability is an 
increasing function of tumor size, 
thus because in situ are small by 
definition, likelihood of detection 
of DCIS is less than that for invasive 
cancer

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University 
Medical Center Rotterdam, Rotterdam, the Netherlands. Model GE: Georgetown University Medi-
cal Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. Model M: 
MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin-Madison, Madison, 
Wisconsin, and Harvard Medical School, Boston, Massachusetts.
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When annual screening from age 50-74 years is simulated, the models estimate 0.1-

14.0 additional cases of DCIS being detected of which 0.1-13.7 are overdiagnosed (Table 

4). Also, the models differ for the source for additional DCIS cases. For Models D, M, the 

increase in detection of DCIS is entirely overdiagnosis, whereas in models E, GE, W it is 

combination of overdiagnosis and earlier detection of lesions with progressive potential.

In addition, the order of scenarios that have the largest increase in overdiagnosis of 

DCIS varies across models, as well as the magnitude of the increase. For example, for an-

nual screening the increase in overdiagnosis varies between 0.1 and 13.7 overdiagnosed 

DCIS cases across models. Some models estimate the largest change in detection and 

overdiagnosis when annual screening is considered (models E, M, W), whereas other 

models predict the largest increase when upper age of screening is extended to age 84 

(models D and GE).

For the biennial screening scenario from age 50-74 years, the highest percentage of 

overdiagnosis of DCIS and invasive breast cancer was estimated by model M followed by 

W. This can be explained by the modeling choice of model M to assume a rather stable 

trend in breast cancer incidence (background trend) over time and, therefore, assign 

more of the increase to overdiagnosis than other CISNET models. Model W assumes that 

some invasive disease is non-progressive, and consequently, has a higher estimate for 

overdiagnosis than the other three models, especially for invasive disease.

For the other scenarios, annual screening from age 50-74 years, biennial screening 

from age 40-74 years, and biennial screening from age 50-84 years, there are two clus-

ters of models: models D and M assign the increase in detection of DCIS when screening 

more intensively entirely to overdiagnosis. For model M that is again related to the stable 

background trend and for model D, the screen detectable period for DCIS is relatively 

Table 3 Detection and overdiagnosis of DCIS and invasive disease across the CISNET models for 
biennial screening from age 50-74 years.

Model DCIS 
dx per 
1000

DCIS 
overdx 
per 1000

%overdx 
DCIS

invasive 
dx per 
1000

invasive 
overdx per 
1000

%overdx 
invasive

total 
dx per 
1000

overdx 
per 1000

%overdx 
(DCIS + 
invasive)

D 30.2 15.5 51.3% 128.3 3.3 2.6% 158.5 18.8 11.9%

E 25.8 16.1 62.4% 131.8 2.0 1.5% 157.6 18.1 11.5%

GE 26.7 9.0 33.7% 110.7 1.8 1.6% 137.4 10.8 7.9%

M 26.2 18.8 71.8% 128.2 15.4 12.0% 154.4 34.2 22.2%

W 32.3 15.6 48.3% 114.8 9.9 8.6% 147.1 25.5 17.3%

Median 26.7 15.6 51.3% 128.2 3.3 2.6% 154.4 18.8 11.9%

Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University 
Medical Center Rotterdam, Rotterdam, the Netherlands. Model GE: Georgetown University Medi-
cal Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. Model M: 
MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin-Madison, Madison, 
Wisconsin, and Harvard Medical School, Boston, Massachusetts.
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short. The other three models (models E, GE, and W) only assign a proportion of the 

increase to overdiagnosis and a proportion to earlier diagnosis. Models E and GE assign 

most of the increase to overdiagnosis when moving to older ages and a smaller percent-

age when moving to younger ages.

Literature

Description of other DCIS models in the literature

To improve the understanding of the natural history of DCIS, we conducted a literature 

search to identify DCIS models that have been described in the literature. We searched 

PubMed and JSTOR for “DCIS natural history modeling” and “DCIS progression”, and 

selected the articles that focus on the estimation of key DCIS natural history parameters, 

such as mean sojourn time for screen-detectable pre-clinical DCIS, and percent of DCIS 

cases that progress to either invasive cancer, clinical DCIS, or potentially regress. We 

identified 10 relevant studies, of which nine include DCIS natural history modeling (Table 

5). Among them, four studies use Markov models [29-32] and five use simulation models 

[15, 33-36], with parameters estimated with either maximum likelihood, Bayesian Gibbs 

sampling or least square methods, and varying assumptions about DCIS natural history 

pathways. Seven studies assumed that all invasive breast cancers progress through a 

pre-clinical in situ or DCIS state that can be detected at screening [15, 29, 32-34, 36], 

whereas the other two studies assumed that some DCIS or in situ lesions first become 

visible on mammograms as small invasive tumors [30, 35]. DCIS or in situ is assumed to 

have both progressive and non-progressive paths in eight studies [15, 29-34, 36], with 

one study also including non-progressive invasive cancers [36].

Table 4 Changes in DCIS detection and overdiagnosis of DCIS when moving from biennial 50-74 
years to other screening scenarios.

Model change in DCIS detection change in DCIS overdiagnosis change in DCIS overdx
change in DCIS detection

A50-74 B40-74 B50-84 A50-74 B40-74 B50-84 A50-74 B40-74 B50-84

D 0.1 0.0 2.8 0.1 0.1 2.8 100% N/A 100%

E 8.5 4.8 5.6 6.7 3.3 5.2 79% 69% 93%

GE 3.2 3.6 6.3 0.4 1.2 3.0 13% 33% 48%

M 13.6 5.0 5.5 13.7 5.1 5.6 101% 102% 102%

W 14.0 2.4 9.7 7.1 1.5 -1.1 51% 63% -11%

A50-74: annual screening from age 50-74 years.
B40-74: biennial screening from age 40-74 years.
B50-84: biennial screening from age 50-84 years.
Model D: Dana-Farber Cancer Institute, Boston, Massachusetts. Model E: Erasmus MC, University 
Medical Center Rotterdam, Rotterdam, the Netherlands. Model GE: Georgetown University Medi-
cal Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, New York. Model M: 
MD Anderson Cancer Center, Houston, Texas. Model W: University of Wisconsin-Madison, Madison, 
Wisconsin, and Harvard Medical School, Boston, Massachusetts.
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These 10 studies used various data sources including different combinations of: i) data 

aggregated from population registries [15, 30, 35, 36], ii) observed national screening 

service program data [32, 33, 37], iii) detailed data from randomized screening trials [29, 

31, 32, 34] and iv) estimates made from previously reported studies including studies 

of DCIS first overlooked at mammography [30, 36]. Generally, more detailed screening 

data makes it possible to deduce more realistic natural history models, fitting the model 

using data from different screening rounds and screening histories [29, 32]. In addition to 

the different data sources, three studies include all in situ lesions [29, 31, 36], while seven 

others only include DCIS [15, 30, 32-35, 37].

Table 5 Overview of studies on modeling DCIS.

1st Author (Year), 
Journal

Paper title Approaches/Models for DCIS natural 
history

Data sources Natural History assumptions

Yen (2003), Eur J 
Cancer. [32]

Quantifying the potential problem of 
overdiagnosis of ductal carcinoma in situ in 
breast cancer screening

Markov model Swedish two county trial, service 
screening programs from UK, US 
Netherlands, and Australia

Healthy cases can progress to pre-clinical screen detectable progressive 
or non-progressive DCIS; progressive DCIS progress to invasive breast 
cancer; non-progressive DCIS regress to a separate state where no tumor 
is apparent.

Ozanne (2011), 
Breast Cancer Res 
Treat. [35]

Characterizing the impact of 25 years of DCIS 
treatment

Simulation model US SEER (1975-2005) incidence The percentage of the DCIS lesions that are assumed to progress to 
invasive breast cancer varies between 0% and 100%. The initial assumption 
that DCIS is a short-term obligate precursor of invasive cancer must be 
reevaluated based on the results.

de Gelder (2011), 
Epi Rev. [33]

Interpreting overdiagnosis estimates in 
population-based mammography screening

Simulation model Dutch population data from public 
screening program

Healthy cases can progress to pre-clinical screen detectable DCIS or 
invasive breast cancers; pre-clinical screen detectable DCIS can regress, 
progress to clinical DCIS, or progress to invasive breast cancer.

Gunsoy (2012), 
Breast Cancer Res. 
[29]

Modeling the overdiagnosis of breast cancer 
due to mammography screening in women aged 
40-49 in the United Kingdom

Markov model UK Age trial Healthy cases can progress to pre-clinical screen detectable progressive 
in-situ or non-progressive in-situ; progressive in situ progress to invasive 
breast cancers

Tan (2013), Br J 
Cancer. [31]

Quantifying the natural history of breast cancer Markov model (Bayesian) Swedish randomized trials Healthy cases can progress to pre-clinical screen detectable progressive 
DCIS or non-progressive DCIS; progressive DCIS progress to invasive 
breast cancer.

Ryser (2016), J 
Natl Cancer Inst. 
[30]

Outcomes of Active Surveillance for DCIS: A 
Computational Risk Analysis

Markov model US SEER (1999-2011) for 
cumulative mortality estimates and 
natural history model summarized 
from a variety of studies

Healthy cases can progress to the pre-clinical screen detectable 
progressive DCIS or non-progressive DCIS; progressive DCIS progress to 
localized invasive breast cancer.

Duffy (2016), 
Lancet Oncol. [37]

Screen detection of ductal carcinoma in situ and 
subsequent incidence of invasive interval breast 
cancers: a retrospective population-based study

Poisson regression UK National Health Service Breast 
Screening Program (NHSBSP)

Not specified.

de Koning (2006), 
Breast Cancer Res. 
[34]

Overdiagnosis and overtreatment of breast 
cancer: microsimulation modelling estimates 
based on observed screen and clinical data

Simulation model Dutch pilot studies in Utrecht & 
Nijmegen; EORTC

Healthy cases can progress to pre-clinical screen detectable DCIS; pre-
clinical screen detectable DCIS cases can progress to clinical DCIS or 
invasive breast cancer.

Seigneurin (2011), 
BMJ. [36]

Overdiagnosis from non-progressive cancer 
detected by screening mammography: 
stochastic simulation study with calibration to 
population based registry data

Simulation model (Bayesian) Isere, France incidence rates 
of breast cancer and DCIS 
(1991-2006) with some screening 
information

Healthy cases can progress to in situ; in situ cases can be non-progressive, 
progressive to clinical, and progressive to invasive; invasive cancer can also 
be non-progressive or progressive.

van Luijt (2016), 
Breast Cancer Res. 
[15]

The distribution of ductal carcinoma in situ 
(DCIS) grade in 4232 women and its impact on 
overdiagnosis in breast cancer screening

Simulation model Nationwide network and 
registry of histopathology and 
cytopathology in the Netherlands 
(PALGA) data

Healthy cases can progress to different grades of DCIS; lower grade DCIS 
can progress to higher grade DCIS and vice versa; each grade of DCIS can 
progress to invasive cancer that are charaterized by tumor stage.
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Parameters in the literature useful for DCIS modeling

The estimated proportion of DCIS progressing to invasive cancer varies widely in the 

literature (Table 5), mainly due to the available data, study-specific model assumptions, 

and different model structures. When all invasive breast cancer is assumed to go through 

a pre-clinical screen detectable DCIS state, the estimated progression rate of DCIS to 

invasive varies from 61% to 91% [15, 29, 31-34, 36]. When this assumption is not made, 

the estimated progression rate from DCIS to invasive varies from 20% to 24.4% [30, 35]. 

Some studies report a large proportion of progressive DCIS [31, 33, 34, 36], while other 

studies report that most DCIS cases do not progress to invasive cancer [30, 35]. When the 

Table 5 Overview of studies on modeling DCIS.

1st Author (Year), 
Journal

Paper title Approaches/Models for DCIS natural 
history

Data sources Natural History assumptions

Yen (2003), Eur J 
Cancer. [32]

Quantifying the potential problem of 
overdiagnosis of ductal carcinoma in situ in 
breast cancer screening

Markov model Swedish two county trial, service 
screening programs from UK, US 
Netherlands, and Australia

Healthy cases can progress to pre-clinical screen detectable progressive 
or non-progressive DCIS; progressive DCIS progress to invasive breast 
cancer; non-progressive DCIS regress to a separate state where no tumor 
is apparent.

Ozanne (2011), 
Breast Cancer Res 
Treat. [35]

Characterizing the impact of 25 years of DCIS 
treatment

Simulation model US SEER (1975-2005) incidence The percentage of the DCIS lesions that are assumed to progress to 
invasive breast cancer varies between 0% and 100%. The initial assumption 
that DCIS is a short-term obligate precursor of invasive cancer must be 
reevaluated based on the results.

de Gelder (2011), 
Epi Rev. [33]

Interpreting overdiagnosis estimates in 
population-based mammography screening

Simulation model Dutch population data from public 
screening program

Healthy cases can progress to pre-clinical screen detectable DCIS or 
invasive breast cancers; pre-clinical screen detectable DCIS can regress, 
progress to clinical DCIS, or progress to invasive breast cancer.

Gunsoy (2012), 
Breast Cancer Res. 
[29]

Modeling the overdiagnosis of breast cancer 
due to mammography screening in women aged 
40-49 in the United Kingdom

Markov model UK Age trial Healthy cases can progress to pre-clinical screen detectable progressive 
in-situ or non-progressive in-situ; progressive in situ progress to invasive 
breast cancers

Tan (2013), Br J 
Cancer. [31]

Quantifying the natural history of breast cancer Markov model (Bayesian) Swedish randomized trials Healthy cases can progress to pre-clinical screen detectable progressive 
DCIS or non-progressive DCIS; progressive DCIS progress to invasive 
breast cancer.

Ryser (2016), J 
Natl Cancer Inst. 
[30]

Outcomes of Active Surveillance for DCIS: A 
Computational Risk Analysis

Markov model US SEER (1999-2011) for 
cumulative mortality estimates and 
natural history model summarized 
from a variety of studies

Healthy cases can progress to the pre-clinical screen detectable 
progressive DCIS or non-progressive DCIS; progressive DCIS progress to 
localized invasive breast cancer.

Duffy (2016), 
Lancet Oncol. [37]

Screen detection of ductal carcinoma in situ and 
subsequent incidence of invasive interval breast 
cancers: a retrospective population-based study

Poisson regression UK National Health Service Breast 
Screening Program (NHSBSP)

Not specified.

de Koning (2006), 
Breast Cancer Res. 
[34]

Overdiagnosis and overtreatment of breast 
cancer: microsimulation modelling estimates 
based on observed screen and clinical data

Simulation model Dutch pilot studies in Utrecht & 
Nijmegen; EORTC

Healthy cases can progress to pre-clinical screen detectable DCIS; pre-
clinical screen detectable DCIS cases can progress to clinical DCIS or 
invasive breast cancer.

Seigneurin (2011), 
BMJ. [36]

Overdiagnosis from non-progressive cancer 
detected by screening mammography: 
stochastic simulation study with calibration to 
population based registry data

Simulation model (Bayesian) Isere, France incidence rates 
of breast cancer and DCIS 
(1991-2006) with some screening 
information

Healthy cases can progress to in situ; in situ cases can be non-progressive, 
progressive to clinical, and progressive to invasive; invasive cancer can also 
be non-progressive or progressive.

van Luijt (2016), 
Breast Cancer Res. 
[15]

The distribution of ductal carcinoma in situ 
(DCIS) grade in 4232 women and its impact on 
overdiagnosis in breast cancer screening

Simulation model Nationwide network and 
registry of histopathology and 
cytopathology in the Netherlands 
(PALGA) data

Healthy cases can progress to different grades of DCIS; lower grade DCIS 
can progress to higher grade DCIS and vice versa; each grade of DCIS can 
progress to invasive cancer that are charaterized by tumor stage.
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proportion of progressive DCIS is reported by screening round, the subsequent screen-

ing rounds often reported smaller proportions of progressive DCIS [29, 32] compared to 

initial screening, as cases with a long sojourn time were diagnosed in earlier screening 

exams. High-grade DCIS cases have a larger proportion progressing to invasive than 

low-grade DCIS cases [15].

As for the mean sojourn time, when all invasive cancer are assumed to be screen 

detectable at a pre-clinical DCIS stage, the estimated mean sojourn time for progressive 

DCIS cases in the pre-clinical screen-detectable DCIS state are usually short varying from 

1 month to 5 years [29, 31, 32, 34, 35]. On the other hand, the sojourn time estimates 

are much longer if it is assumed that only a small fraction of invasive cancers comes from 

pre-clinical screen-detectable DCIS [30]. The estimated mean sojourn time in pre-clinical 

screen-detectable DCIS state for DCIS cases that progress to clinical DCIS or regress is 

in typically longer than the mean sojourn time of DCIS cases that progress to invasive 

cancer [29, 32].

1st Author (Year), Journal All invasive 
cancers progress 
through screening 
detectable DCIS?

Screening detectable 
DCIS might regress 
to a non-detectable 
stage

Regression Progression Mean sojourn time Mammography 
sensitivities to detect 
DCIS/in situ

Yen (2003), Eur J Cancer. 
[32]

Yes Yes 37% (19%-46%) at 1st screening; 
4% (3%-21%) at 2nd screening

To invasive: 100-%non-
progression

for non-progression: 30y (6y-37y), for 
progression to invasive: 3mo (2mo-5mo)

Not specified

Ozanne (2011), Breast 
Cancer Res Treat. [35]

No Not specified Not specified To invasive: 20% of progression 
rate matches SEER data best

Not specified Not specified

de Gelder (2011), Epi Rev. 
[33]

Yes Yes 11% of DCIS regress To clinical DCIS: 28% ;
To invasive: 61%

2.6y for DCIS: 72%

Gunsoy (2012), Breast 
Cancer Res. [29]

Yes No  Not specified To invasive: 45% (95%CI: 23%-
75%) at 1st screen, 60% (95%CI: 
40%-78%) at incidence screen

for pre-clinical non-progressive DCIS to clinical 
DCIS: 1.3y (95%CI: 0.4y-3.4y), for pre-clinical 
progressive DCIS: 0.11y (95%CI: 0.05y-0.19y).

for in situ: 82% (95%CI: 
43%-99%)

Tan (2013), Br J Cancer. [31] Yes Yes Not specified 91%(95%CI: 85%-97%) 
aggressive

for aggressive DCIS to invasive 0.5mo (95%CI: 
0-1mo)

for DCIS: 88% (95%CI: 
83%-92%)

Ryser (2016), J Natl Cancer 
Inst. [30]

No Yes Not specified 24.4% (11.3%-67%) for progressive DCIS to localized invasive (did 
not specify whether to pre-clinical or clinical 
invasive): 9.8y (6.4y-13.5y)

for MRI: 84% (77%-100%); 
for mammography: 40% 
(33%-50%)

Duffy (2016), Lancet Oncol. 
[37]

Not specified Not specified Not specified 1 invasive interval cancer case is 
estimated to be avoided per 5 
DCIS cases

Not quantified, but short Not specified

de Koning (2006), Breast 
Cancer Res. [34]

No Yes Not specified To either invasive or clinical : 
90%

Dutch pilot study suggests 2.8y with 99% sensitivity. Nijmegen data suggests 
2.5y. EORTC trial suggests 5y with 40% sensitivity.

Seigneurin (2011), BMJ. [36] Yes Yes 6% non-progressive in situ 
(95%CI 0%--17%)

To invasive: 91% (95%CI: 84%-
97%)

Not specified Not specified

van Luijt (2016), Breast 
Cancer Res. [15]

Yes Yes 4% low, 2% intermediate, and 
1% for high grade DCIS

To invasive: 16% low, 31% 
intermediate, 53% for high 
grade DCIS

Not specified Not specified

Note: ranges present values estimated from different studies or data sources unless otherwise speci-
fied.
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The mammography sensitivity for DCIS varies from 40% to 99% [29, 31, 33, 34]. The 

mean sojourn time for progressive DCIS in the pre-clinical screen detectable DCIS state 

tends to be smaller when mammography sensitivity is high. These variations reveal the 

uncertainty regarding the natural history of DCIS, highlighting the need and potential 

directions of CISNET modeling.

Discussion

While the CISNET models have generated relatively similar results and conclusions in 

most other respects, DCIS detection rates and overdiagnosis reveal more variation in 

results, with predicted DCIS incidence ranging from 25.8 – 32.3 per 1000 women age 

40 followed over their lifetimes, and estimates of DCIS overdiagnosis ranging from 

34%-72% for biennial screening from age 50 to 74 years. The large difference in the 

1st Author (Year), Journal All invasive 
cancers progress 
through screening 
detectable DCIS?

Screening detectable 
DCIS might regress 
to a non-detectable 
stage

Regression Progression Mean sojourn time Mammography 
sensitivities to detect 
DCIS/in situ

Yen (2003), Eur J Cancer. 
[32]

Yes Yes 37% (19%-46%) at 1st screening; 
4% (3%-21%) at 2nd screening

To invasive: 100-%non-
progression

for non-progression: 30y (6y-37y), for 
progression to invasive: 3mo (2mo-5mo)

Not specified

Ozanne (2011), Breast 
Cancer Res Treat. [35]

No Not specified Not specified To invasive: 20% of progression 
rate matches SEER data best

Not specified Not specified

de Gelder (2011), Epi Rev. 
[33]

Yes Yes 11% of DCIS regress To clinical DCIS: 28% ;
To invasive: 61%

2.6y for DCIS: 72%

Gunsoy (2012), Breast 
Cancer Res. [29]

Yes No  Not specified To invasive: 45% (95%CI: 23%-
75%) at 1st screen, 60% (95%CI: 
40%-78%) at incidence screen

for pre-clinical non-progressive DCIS to clinical 
DCIS: 1.3y (95%CI: 0.4y-3.4y), for pre-clinical 
progressive DCIS: 0.11y (95%CI: 0.05y-0.19y).

for in situ: 82% (95%CI: 
43%-99%)

Tan (2013), Br J Cancer. [31] Yes Yes Not specified 91%(95%CI: 85%-97%) 
aggressive

for aggressive DCIS to invasive 0.5mo (95%CI: 
0-1mo)

for DCIS: 88% (95%CI: 
83%-92%)

Ryser (2016), J Natl Cancer 
Inst. [30]

No Yes Not specified 24.4% (11.3%-67%) for progressive DCIS to localized invasive (did 
not specify whether to pre-clinical or clinical 
invasive): 9.8y (6.4y-13.5y)

for MRI: 84% (77%-100%); 
for mammography: 40% 
(33%-50%)

Duffy (2016), Lancet Oncol. 
[37]

Not specified Not specified Not specified 1 invasive interval cancer case is 
estimated to be avoided per 5 
DCIS cases

Not quantified, but short Not specified

de Koning (2006), Breast 
Cancer Res. [34]

No Yes Not specified To either invasive or clinical : 
90%

Dutch pilot study suggests 2.8y with 99% sensitivity. Nijmegen data suggests 
2.5y. EORTC trial suggests 5y with 40% sensitivity.

Seigneurin (2011), BMJ. [36] Yes Yes 6% non-progressive in situ 
(95%CI 0%--17%)

To invasive: 91% (95%CI: 84%-
97%)

Not specified Not specified

van Luijt (2016), Breast 
Cancer Res. [15]

Yes Yes 4% low, 2% intermediate, and 
1% for high grade DCIS

To invasive: 16% low, 31% 
intermediate, 53% for high 
grade DCIS

Not specified Not specified

Note: ranges present values estimated from different studies or data sources unless otherwise speci-
fied.



66 Chapter 3

predicted amount of overdiagnosis of DCIS between models likely reflects the continued 

uncertainty about DCIS natural history, in particular the progression rates, which is also 

reflected in the results from other models described in the literature with reported pro-

gression rates varying from 20% to 91%.

In the literature outside of CISNET, several approaches have been proposed to model 

DCIS. The variations in model structure, assumptions and results make it challenging to 

deduce good overall estimates of key natural history parameters. Given the uncertainties 

in the DCIS models, a realistic approach to DCIS modeling is to adopt several plausible 

sets of model parameters and to evaluate a range of outcomes generated from the 

models. The CISNET models are well-suited for this type of analysis. CISNET models 

have the ability to project long-term implications for DCIS assumptions in terms of breast 

cancer outcomes such as life expectancy and overdiagnosis, and can thus assess how 

much early detection impacts breast cancer mortality. Also, moving forward, CISNET 

models are capable of utilizing multiple models and vary model parameters, to explore 

the impact of different DCIS assumptions on outcomes more systematically. In addi-

tion, both the impact of screening and treatment on DCIS-related outcomes can be 

systematically reviewed and compared. Although it remains to be seen to what extent 

these analyses will provide sufficiently accurate and consistent findings to inform clinical 

practice, the comparative modeling effort of the CISNET models will likely contribute to 

a greater understanding of DCIS.

Despite the large difference in the predicted amount of overdiagnosis of DCIS between 

models, all models indicated that the amount of overdiagnosis of DCIS is substantial 

(i.e., 34%-72% for biennial screening from age 50-74 years), indicating that per 1000 

women followed over their lifetimes 9-19 are overdiagnosed with DCIS and the majority 

of those women will undergo treatment for their non-invasive disease. Almost all women 

(98%) diagnosed with DCIS undergo a surgical procedure [13, 38] and recent work found 

an increase in the utilization of mastectomy with reconstruction and contralateral risk-

reducing mastectomy over time [39]. There was also an increase in the proportion of 

women undergoing adjuvant radiation therapy after surgery from 58.5% in 1998-1999 to 

70% during 2006-2011 [39].

Modeling estimates might improve and results might converge when new data 

becomes available. A unique opportunity to improve DCIS natural history modeling 

comes from trials on active surveillance. Several trials are currently underway to evaluate 

active surveillance approaches for DCIS. In the UK, the Low Risk DCIS Trial (LORIS), is 

comparing surgical excision to active surveillance without excision [40, 41]. Similarly, 

the European Organisation for Research and Treatment of Cancer (EORTC) has started 

a trial on the management of low-risk DCIS (LORD), which is a randomized, multicenter, 

non-inferiority trial, between standard therapy approach versus active surveillance [42]. 

In the US a prospective, randomized trial, Comparing Operative to Medical Endocrine 
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Therapy for low-risk DCIS (COMET), has recently been funded. Women diagnosed with 

low-risk DCIS will be randomized to receive either guideline-concordant care of surgical 

intervention, with or without radiation, or active surveillance of a mammogram every 6 

months for 5 years. Patients in both trial arms are free to choose endocrine therapy. Also, 

in the US, several research networks, called cooperative groups, that conduct cancer 

clinical research primarily under the sponsorship of the NCI, are presently testing the 

use of neo-adjuvant hormonal therapy in postmenopausal women with ER-positive DCIS 

prior to surgery; those with a complete response based on magnetic resonance imaging 

(MRI) will not receive additional therapy. However, it will take a long time before results 

are available, e.g., for LORIS initial results are expected in 2020 and for LORD the results 

are not expected before 2029. When they do become available these data present a 

unique opportunity to validate models by comparing the model projections to the final 

trial data.

In the meantime, thus, before final results from these trials become available, the mod-

els can be used to evaluate which assumptions affect outcomes most. Also, data from 

several different sources might be used and combined to compare model outcomes 

and see what model structure and progression rates fit the data best. For example, data 

from different screening modalities can inform models, as the ability to detect DCIS 

varies across modalities. Screening ultrasound is less likely to detect DCIS compared to 

mammography in the small number of controlled experiments available that make this 

comparison, because ultrasound is unlikely to detect micro-calcifications. MRI may be 

more sensitive than mammography [43, 44] by detecting the pathophysiologic proper-

ties like basement membrane permeability in DCIS [45] perhaps explaining the tendency 

of MRI to detect intermediate and high grade DCIS more readily than mammography. 

By using a particular set of parameters and modelling different screening modalities, it 

might become possible to narrow down the range of plausible progression parameters. 

Furthermore, data by ER and grade might be used to refine the models. Subsequently, 

the updated and refined models can be used to simulate active surveillance strategies 

and quantify the predicted outcomes for subgroups of women varying by age and with 

DCIS varying by grade and ER status.

Until then, the model results consistently show a considerable amount of over-

diagnosis of DCIS, which increases with more frequent screening. This indicates that 

women undergoing regular screening with a screen-detected DCIS are quite likely to be 

overdiagnosed. Thus, given the substantial amount of overdiagnosis estimated by the 

CISNET models for DCIS in general, the model results support the safety and value of 

observational trials for low-risk DCIS.
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Abstract

Background

The U.K. Age trial compared annual mammography screening of women ages 40 to 49 

to no screening and found a statistically significant breast cancer mortality reduction at 

10-year follow-up, but not at 17-year follow-up. The objective of this study was to com-

pare the observed Age trial results to the Cancer Intervention and Surveillance Modeling 

Network (CISNET) breast cancer model predicted results.

Methods

Five established CISNET breast cancer models used data on population demographics, 

screening attendance, and mammography performance from the Age trial together with 

extant natural history parameters to project breast cancer incidence and mortality in the 

control and intervention arm of the trial.

Results

The models closely reproduced the effect of annual screening from ages 40 to 49 on 

breast cancer incidence. Restricted to breast cancer deaths originating from cancers 

diagnosed during the intervention phase, the models estimated an average 15% (range 

across models 13% to 17%) breast cancer mortality reduction at 10-year follow-up com-

pared to 25% (95% CI 3% to 42%) observed in the trial. At 17-year follow-up, the models 

predicted 13% (range 10% to 17%) reduction in breast cancer mortality compared to the 

non-significant 12% (95% CI -4% to 26%) in the trial.

Conclusions

Overall, the models captured the observed effect of screening from age 40 to 49 on 

breast cancer incidence and mortality in the U.K. Age trial, suggesting that the model 

structures, input parameters, and assumptions about breast cancer natural history are 

reasonable for estimating the impact of screening on mortality in this age group.
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Introduction

The breast cancer models of the Cancer Intervention and Surveillance Modeling Network 

(CISNET) synthesize data on breast cancer epidemiology, population demographics, 

screening accuracy, and treatment to simulate the impact of screening and treatment 

interventions on breast cancer incidence and mortality. Prior comparative modeling 

studies, i.e., cross-validations [1], by the CISNET models have illustrated the ability of the 

models to reproduce the trends in breast cancer incidence and mortality in the United 

States. [2-4] The models generated similar rankings of the effects of different screening 

scenarios and the relative impact of screening and treatment on breast cancer mortality. 

Moreover, the simulation results provided quantitative information about the harms and 

benefits of various screening strategies not examined in randomized clinical trials, and 

have been used by policy makers to inform decisions about breast cancer screening 

guidelines. [3, 5]

The consistency of previous collaborative modeling research provides a level of 

evidence for cross-validation. However, none of the prior collaborative CISNET research 

by the Breast Working Group has included external model validation. The International 

Society for Pharmacoeconomics and Outcomes Research in collaboration with the Soci-

ety for Medical Decision Making (ISPOR-SMDM) recommends external model validation 

as part of good modeling practices, where external model validation is defined as, “the 

comparison of model predictions to observed event data not used in model develop-

ment”[1]. The purpose of this paper is to conduct an external validation and compare 

CISNET breast cancer incidence and mortality predictions to observed clinical trial results 

of mammography screening from ages 40 to 49.

To date, the model parameters were primarily developed based on U.S. data on breast 

cancer epidemiology, screening, treatment, and population demographics.[6] Outcomes 

of our simulations indicated that offering screening to women in their fifties results in a 

more favorable ratio of benefits and harms than offering screening to women in their 

forties. [3, 7] This difference between the benefits and harms between these age groups, 

corresponds to the available evidence of screening women aged 50 and older [8] and 

the uncertainty about screening women in their forties, considering the inconclusive evi-

dence from fewer studies, and the different guidelines for this age group [5, 9, 10]. Given 

the high prevalence of dense breast tissue, faster growing tumors, and inferior sensitivity 

of mammography in these younger women [11-13], it is important to validate the models 

for the effectiveness of screening in the forties. The U.K. ‘Age’ trial is a well-documented 

[14-20] trial, investigating the effect of annually screening women from ages 40 to 49 

compared to no screening, and provided a unique opportunity to externally validate the 

CISNET breast cancer models for screening in the forties.
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In this study, we present the first external validation performed by the CISNET breast 

cancer models that use different structures and assumptions about breast cancer natural 

history to project the impact of screening. We compare breast cancer incidence and 

mortality predictions to the observed results from the U.K. Age trial. The findings from 

this study are intended to inform CISNET model users as they can account for this infor-

mation when considering and interpreting future model outcomes.

Methods

The U.K. Age trial was the only randomized controlled trial designed specifically to inves-

tigate the effect of annual mammography screening from ages 40 to 49. Between Octo-

ber 1990 and September 1997, 160,836 women aged 40-41 were randomly assigned in 

a ratio of 1 : 2 to either the intervention group or the control group. The 53,883 women in 

the intervention arm were offered annual screening by mammography, and the 106,953 

women in the control arm received usual care (no screening). We collaborated with the 

Age trial investigators to obtain the observed de-identified data from the trial.

Simulation models

Five CISNET breast cancer models were included in this analysis: Model D (Dana-

Farber), Model E (Erasmus), Model M (MD Anderson), Model S (Stanford), and Model W 

(Wisconsin-Harvard). These models have been developed independently within CISNET 

over the past 15 years and are described in detail elsewhere [21-25]. Briefly, women are 

born in a breast cancer-free stage, some women develop a tumor that may progress to 

a pre-clinical stage where it could be screen-detected in its pre-clinical sojourn time, 

or be diagnosed with breast cancer due to clinical symptoms. Once diagnosed with 

breast cancer, women receive age-, stage-, and biomarker-specific treatment. Breast 

cancer incidence and mortality projections depend on age, start and stopping ages of 

screening, screening frequency, mammography screening performance, stage at diag-

nosis, estrogen receptor (ER) and Human Epidermal growth factor Receptor 2 (HER2) 

status of the tumor, breast cancer treatment, and factors related to the natural history 

of breast cancer (Tables 1 & 2). However, since the Age trial did not collect HER2 status, 

the models did not simulate HER2 specific molecular subtypes of breast cancer. The 

models adopt a ‘parallel universe’ approach; the same population of women is simulated 

twice: in one scenario women were invited to annual screening in the forties (intervention 

group), and in the second scenario women did not receive any screening in the forties 

(control group).
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Table 1 Key differences and similarities between the CISNET breast models.

Model D E M S W

Model type Analytic, Parallel 
universe

Simulation, 
Parallel universe

Bayesian, Parallel 
universe

Simulation,
Parallel universe

Simulation, 
Parallel universe

Natural history 
modeled as

State-transition Continuous tumor 
growth

Bayesian model Continuous tumor 
growth

Continuous tumor 
growth

Tumor inception Start of the 
sojourn time

Prior to start of 
sojourn time

N/A Prior to start of 
sojourn time

Start of the 
sojourn time

DCIS included Since 2014 Yes Yes No Yes

Tumor ER status Yes Yes Yes Yes Yes

Screen detection 
depends on

Modality,
age, density, 
frequency

Tumor size, 
modality, age, 
density, frequency

Modality, age, 
frequency

Tumor size, ER 
status, age, 
hormone repl., 
frequency

Tumor size, 
modality, age, 
density, frequency

Screening 
benefit

Stage shift Detection at 
smaller tumor size

Stage shift, 
beyond stage shift

Stage shift, 
smaller tumor size

Younger age, 
smaller tumor size

Estimation of 
over diagnosis

Difference 
screen &
no-screen

Difference screen 
&
no-screen

Difference screen 
&
no-screen

Difference screen 
&
no-screen

Difference screen 
&
no-screen

Treatment 
benefit

Hazard reduction Cure fraction, 
larger fatal 
diameter

Cure fraction, 
hazard reduction,

Hazard reduction, 
non-proportional

Cure fraction

Death from 
breast cancer 
determined by

Survival from BC 
< survival other 
cause mortality

Fatal diameter, 
survival from BC 
< survival other 
cause mortality

Survival from BC 
< survival other 
cause mortality

Survival from BC 
< survival other 
cause mortality

Survival from BC 
< survival other 
cause mortality

Model type
Analytic: Analytical approach to estimate the impact of mammography screening and treatment on 
incidence and mortality of breast cancer.
Simulation: Stochastic simulation is based on the Monte Carlo method and use of random numbers.
Bayesian: The model does not include a natural history and estimates prior probability distributions 
for all unknown parameters.
Parallel universe: Screening and treatment is modeled in a parallel universe, implying that the same 
population is simulated twice: once to determine the impact of breast cancer without screening, and 
once to determine the impact of breast cancer with screening.
Breast cancer natural history and breast cancer death
ER: Onset and progression of breast cancer is different for Estrogen Receptor positive and negative 
tumors.
Tumor stage transition: Tumor progression is modeled as transitions between different stages of 
breast cancer.
Continuous tumor growth: Tumors grow continuously after tumor onset.
Death from breast cancer: Once diagnosed with breast cancer, a survival until breast cancer death 
is competing with the other cause mortality survival. That is, breast cancer death occurs only if the 
patient does not die from other causes.
Screening & Treatment
Sensitivity: Sensitivity can be used directly or indirectly (e.g., when translated to tumor size).
Over diagnosis: The detection and diagnosis of a condition that would not go on to cause symptoms 
or breast cancer death in a woman’s lifetime.
Hazard reduction: Reduction in breast cancer mortality hazard, calculated by 1 minus the hazard ratio 
for the different treatment regimes.
Cure fraction: If hazard rate reduction is not a model input, it is translated into a cure fraction.
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As summarized in Table 1, the models differ in the ways they approximate unobservable 

events in the natural history of breast cancer. In model D, tumors progress via discrete 

state transitions [23], models E, S and W have continuous tumor growth [21, 22, 25], and 

model M uses Bayesian simulation [24] and does not have a natural history component. 

In models D and W, tumors are technically screen-detectable from the moment at tumor 

inception. Models E and S start simulating tumors at small tumor sizes, prior to the start 

of the sojourn time, when tumors are not yet screen-detectable by film or digital mam-

Table 2 Model inputs used for the Age trial simulation:

Model Input Description Source

Population demographics

Birth cohort Birth years of women participating in the Age trial Age trial

Life years Number of life years by trial arm by age Age trial

Natural history of breast cancer

Incidence Control arm incidence (incidence in the absence of screening) Age trial

Tumor onset The moment tumors start to grow (tumor inception) CISNET1

Sojourn time Time between when a cancer is first screen-detectable and 
cancer diagnosis in the absence of screening.

CISNET2

Tumor progression Tumor growth, tumor progression and regression affect tumor 
sojourn times and breast cancer survival.

CISNET3

Estrogen receptor distribution Age-specific ER positive and ER negative distributions U.K.4

Breast cancer screening

Attendance Adherence to annual screening in the intervention arm Age trial

Sensitivity Probability that the screen will be positive among women with 
breast cancer by age, screening round (first vs. subsequent)

Age trial

Mammography Two-view mammography for first screens, for all subsequent 
screens one-view mammography

Age trial

Breast cancer treatment

Treatment dissemination Breast cancer treatment by age, stage and ER-status BASO5

Effectiveness Hazard reduction breast cancer mortality by age and ER-status EBCTCG6

Breast cancer survival

Survival Breast cancer survival by age, stage and ER-status CISNET7

Other-cause mortality Probability of dying from causes other than breast cancer U.K.8

1-3 Tumor onset, sojourn time and tumor progression are model-specific parameters. These, and 
other model-specific assumptions about breast cancer natural history are described elsewhere [6, 
21-25].
4 Estrogen receptor status comes from observed U.K. data [26].
5 The treatment dissemination was derived from BASO reports [26] published by the NHSBSP.
6 Treatment effectiveness / hazard reduction for breast cancer death was published by the Early 
Breast Cancer Trialists Collaborative Group (EBCTCG) that included the U.K. trials [27]
7 Breast cancer survival by age and ER status from the UK is not available for the time period of the 
trial, the existing survival in the models which is based on U.S. data was used.
8 Other cause mortality was taken from the Human Mortality Database [30] with breast cancer deaths 
removed.
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mography. Screening benefit in models D and M is modeled as a stage shift to earlier 

stage breast cancer, with the latter model including an additional benefit of screening 

beyond stage shift. The benefits of screening in models E, S and W are simulated by the 

detection of tumors at smaller sizes than at clinical diagnosis in the absence of screening. 

(Table 1)

Model inputs

The Age trial data that the CISNET models obtained included control arm incidence in 

the absence of screening, mammography screening performance, screening attendance 

patterns, and demographic data such as life years and the distribution of birth years 

of women participating in the trial (Table 2). In the Age trial, data were not collected 

for breast cancer treatment. To fill this gap we modeled the breast cancer treatment 

dissemination between 1991 and 2006, the intervention period of the trial, based on 

reports from the British Association of Surgical Oncology [26]. The effectiveness of breast 

cancer treatment was taken from analyses by the Early Breast Cancer Trialists’ Collabora-

tive Group (EBCTCG) that included trials conducted in the U.K. [27]. Model parameters 

related to the natural history of breast cancer such as tumor onset and tumor growth 

were based on the original CISNET parameters and no calibration was performed to the 

results from the Age trial.

Simulation of the Age trial

The women who participated in the Age trial were born between 1950 and 1957, there-

fore, we simulated the 1950-1957 birth cohort. In the trial, two thirds of women aged 

40 to 41 were randomized to the control group and were not invited to any screening in 

their forties. The models simulated 2 to 10 million women in each arm of the trial as they 

were not limited by practical issues concerning invitations and the number of women 

who can be included in the simulation of the trial. (Table 3) Any unscheduled screening 

in the control group was primarily a consequence of clinical symptoms and not because 

of routine screening [17], so we did not model screening contamination in the control 

group explicitly.

We used the control arm incidence as model input for a baseline projection of breast 

cancer incidence in the absence of screening. The models then overlaid the screening 

parameters according to the observed screening attendance patterns of the 53,883 

women in the intervention group of the Age trial [18]. The percent uptake of invita-

tions increased by screening round while the absolute number of invitations sent to the 

women in the trial decreased by almost 50% near the end of the intervention period and 

consequently the absolute number of women who were screened decreased as well. [18] 

The models accounted for this by simulating the decrease in the number of women who 

were screened by age. The first analog mammogram in the trial included two views, and 
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all subsequent mammograms were single-view, similar to the standard practice in the 

U.K. at the time of the trial. Screen detection of pre-clinical breast cancer was modeled 

on the basis of observed sensitivity data published by the trial investigators [16].

The U.K. treatment dissemination developed for this project indicated whether 

a breast cancer is treated with hormone therapy and/or chemotherapy after surgical 

removal of the tumor. Overall, ER-positive breast cancers were primarily treated with 

hormone therapy and ER-negative breast cancers with chemotherapy. Since, the trial did 

not collect HER2 status, and Trastuzumab (Herceptin) was not yet disseminated in the 

U.K. at the time of the trial, it was not included in the treatment regimens.

Analysis

Model predictions were compared to breast cancer incidence and mortality observations 

from the Age trial by arm without calibrating the natural history parameters of the models 

to the trial. In addition, we compared the number of mammograms in the intervention 

group to that of the Age trial to investigate whether any differences in model predictions 

were related to variations in the number of mammograms.

We compared model outcomes to those from the trial at 10-year and 17-year follow-

up, corresponding to the most recent analysis by the Age trial investigators [15]. The 

trial used ‘incidence based mortality’ to measure the effect of screening and treatment 

on breast cancer mortality. This implies, only counting cancer deaths that originated 

from cancers diagnosed during the intervention phase of the trial (ages 40 to 49). This is 

necessary because all women from both the intervention and control group ‘rolled’ into 

the national U.K. breast cancer screening program at age 50 and were invited to screen-

ing once every three years. For example, if at age 54 there would be fewer breast cancer 

deaths among women randomized to the intervention group than among the women 

Table 3 Number of women included in the control and intervention group

Nr. of women in the control arm Nr. of women in the intervention arm

Age trial 106,953 53,883

Model D N/A* N/A

Model E 10,000,000 10,000,000

Model M 4,000,000 4,000,000

Model S 5,000,000 5,000,000

Model W 2,000,000 2,000,000

All models simulated at least about 20 times as many women in the control group and 40 times as 
many women as in the intervention group. The number of women simulated was selected by each 
model to balance feasibility of simulation time with model output that yields relatively smooth inci-
dence and mortality curves.
*Model D uses entirely analytical formulations to evaluate the impact of screening and treatment 
on breast cancer incidence and mortality, i.e., the number of women simulated does not apply to 
Model D.
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in the control group, one could conclude that the intervention of annual screening in 

the forties effectively reduced breast cancer mortality at age 54. However, because all 

women ‘rolled’ into the national screening program at age 50, it may be the case that the 

breast cancer deaths prevented at age 54 were actually from breast cancers diagnosed 

by screening at age 50 as part of the national program and not by the trial’s annual 

screening intervention in the forties. Therefore, the trial and the models only used breast 

cancer deaths from cancers diagnosed during the intervention phase to measure the 

effect of annual screening in the forties on breast cancer mortality.

The confidence intervals associated with the mortality reduction observed in the Age 

trial at 10-and 17-year follow-up are useful as these are mainly influenced by the finite 

number of women included in the trial. The CISNET models have not included confi-

dence intervals on their results given the millions of women simulated per trial arm. The 

model estimates will have a negligible range, given that the model outcomes are based 

on simulations of millions of women, each with varying combinations of variables consti-

tuting the life history, and sampled across the distribution of each variable. However, the 

model results do have uncertainty due to assumptions about unobservable parameters 

and structural uncertainties that are addressed. The use of multiple models provides 

a range of results that captures this structural uncertainty and could be considered to 

provide information comparable conceptually to a confidence interval.

Results

Breast cancer incidence

The average simulated invasive breast cancer incidence among women aged 40 to 49 in 

the control arm was 131 per 100,000 women (range across models 124 - 138) compared 

to 132 observed in the Age trial (Figure 1). The modeled ductal carcinoma in situ (DCIS) 

incidence was 11 per 100,000 women on average (range across models 7 - 17), and 

equivalent to the 11 per 100,000 observed in the Age trial.

The average number of mammograms per woman in the intervention arm of the 

simulated trial was 5.2 (range across models 4.9 – 5.4) compared to 4.84 in the Age trial. 

Modeled invasive breast cancer incidence in the intervention arm increased by age and 

was an average of 135 per 100,000 among women aged 40 to 49 (range across models 

131 - 141). This is consistent with the pattern for the 139 invasive breast cancers diag-

nosed per 100,000 women in the trial (Figure 2). DCIS intervention arm incidence varied 

more across the models (range 18 - 38) and with 27 diagnoses on average, higher than 

the 21 DCIS diagnoses per 100,000 women in the trial. Models with continuous tumor 

growth (Models E and W) and models with tumor inception prior to the start of the tumor’s 

sojourn time (Model E) tend to have the highest incidence of screen-detected DCIS.
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Both the model results and the observed Age trial data included a small peak (Figure 

3) at age 40 in screen-detected breast cancers due to the detection of (prevalent) cases 

on the first mammogram, the only two-view mammogram in the trial with better sensitiv-

ity than subsequent screens (Table 4). This was the only age during the trial at which the 

rate of screen detected cancers was higher than the rate of clinically diagnosed cancers 

in the intervention group. The average rate of screen-detected DCIS and invasive breast 

cancers in the intervention arm in the age range 40 - 49 was 69 per 100,000 women in 

the Age trial, compared to the models’ average of 75 (range 63 - 89). The rate of clinically 

diagnosed cases (DCIS and invasive breast cancers) in the intervention arm was 97 in 

the trial and 93 in the models (range 82 - 99). Regardless of mode of detection, the rate 

of breast cancers diagnosed in the intervention arm between ages 40 - 49 was 161 per 

100,000 women on average (range across models 154 - 169) and similar to 162 in the 

Age trial.

Figure 1 Control group breast cancer incidence (DCIS and invasive separately) per 100,000 women, 
compared to the Age trial.
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Breast cancer mortality

Among breast cancers diagnosed between ages 40 to 49, the Age trial found a total 

of 83 breast cancer deaths in the first 10 years of follow-up in the intervention arm (16 

breast cancer deaths per 100,000 women) and 219 breast cancer deaths in the control 

arm (21 per 100,000 women). At 10-year follow-up, the rate of breast cancer deaths 

per 100,000 women predicted by the models was 20 on average (range across models 

17 to 22) in the intervention arm, and 23 (range across models 20 to 25) in the control 

arm (Table 5). The number of breast cancer deaths predicted by the different models 

consistently somewhat higher in both arms than in the trial.

On average, the modeled breast cancer mortality reduction due to screening was 15% 

(range across models 13% to 17%) at 10-year follow-up vs. 25% (95% CI 3% to 42%) 

observed in the Age trial. At 17-year follow-up, the models predicted 13% (range across 

models 10 – 17%) breast cancer mortality reduction when restricted to breast cancer 

deaths that originated from breast cancers diagnosed during the intervention phase 

(incidence-based mortality) vs. 12% (95% CI -4% to 26%) observed in the trial (Table 6). 

Figure 2 Intervention group breast cancer incidence (DCIS and invasive separate) per 100,000 wom-
en, compared to the Age trial.
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Table 4 Sensitivity of screening in the Age trial and in the models.

First screen
(two view mammography)

Subsequent screens
(single view mammography)

Age trial 73.6 55.2

Model D 73.6 55.3

Model E 72.5 55.7

Model M* - -

Model S 75.5 59.0

Model W 67.7 59.6

*Model M is a Bayesian without a natural history part and a woman’s disease status is unknown. As 
a result sensitivity is not applicable. Model M simulates screen- and clinically-detected incidences 
without knowing the true disease status.
Sensitivity of screening and screen detection is modeled differently in various models. In the con-
tinuous tumor growth models E, S, and W screen detection of tumors is simulated by transforming 
sensitivity to a threshold tumor size at which tumors can be screen detected. On the other hand, 
model D uses sensitivity of screening by simulating a shift to a less-advanced stage of breast cancer.

Table 6 Breast cancer mortality outcomes at 17-years follow-up, restricted to breast cancer deaths 
that stem from cancers diagnosed during the intervention phase.

Mammograms 
per woman

Breast cancer deaths per 100,000 
women

Rate ratio 
BC deaths

Breast cancer ** 
mortality reduction

intervention group control group

Age trial 4.84 19 22 0.88 12% (-4 to 26%) *

Model average 5.23 20 23 0.87 13.2% [range 10 -17%]

Model D 5.30 20 22 0.90 9.7%

Model E 4.90 18 22 0.83 17.1%

Model M 5.43 20 24 0.85 15.2%

Model S 5.29 21 24 0.89 11.0%

Model W 5.23 18 21 0.86 13.7%

* 95% confidence interval in parentheses

Table 5 Breast cancer mortality outcomes at 10-years follow-up.

Mammograms 
per woman

Breast cancer deaths per 100,000 
women

Rate ratio 
BC deaths

Breast cancer ** 
mortality reduction

intervention group control group

Age trial 4.84 16 21 0.75 25% (3 to 42%) *

Model average 5.23 19 23 0.85 15.3% [range 13-17%]

Model D 5.30 17 20 0.83 17.0%

Model E 4.90 20 25 0.83 16.9%

Model M 5.43 20 23 0.86 13.6%

Model S 5.29 22 25 0.87 13.2%

Model W 5.23 19 22 0.84 16.0%

* 95% confidence interval in parentheses
** The Age trial measured the effect of annual screening of women aged 40 to 49 on breast cancer 
mortality. Therefore, the trial and the simulation models excluded breast cancer deaths that oc-
curred in women diagnosed with breast cancer before age 40 and after age 49.
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Figure 3 Intervention group (screen detected) breast cancer incidence per 100,000 women. Screen-
ing ceased at age 48 in the Age trial. 

Figure 4 Intervention group (clinically diagnosed) breast cancer incidence per 100,000 women.
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The models with either tumor onset at tiny tumor sizes prior to the start of the sojourn 

time and on average slow tumor progression (Model E), or with tumor cure fractions for 

treatment benefit (Models E, M and W) maintained their 10-year follow-up breast cancer 

mortality reduction prediction at 17-year follow-up, whereas mortality reduction in the 

trial decreased. Similar to the Age trial, the models showed a turning point around age 

50 where the increase in the cumulative number of breast cancer deaths averted started 

to diminish (Figure 5).

Discussion

This is the first collaborative CISNET breast cancer study comparing model predictions 

to observed clinical trial results not used in the development of any model parameters. 

The results indicate that all five models estimate the long-term effect of annual screen-

ing between the ages of 40 to 49 well within the observed confidence intervals of the 

U.K. Age trial. The impact of screening on breast cancer mortality was also internally 

consistent with individual model structures regarding the natural history of breast cancer.

The ISPOR-SMDM Modeling Good Research Practices TaskForce-7 [1] states that pre-

dictive and external validation are the strongest forms of model validation as decision-

Figure 5 Cumulative breast cancer deaths averted per 100,000 women*. *Cumulative breast cancer 
deaths averted only using breast cancer deaths from cancers diagnosed in the intervention period 
per 100.000 women. Calculated by the rate of breast cancer deaths in the control group minus the 
rate of breast cancer deaths in the intervention group.
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makers can account for this information when considering model outcomes. In the past, 

the breast CISNET models have illustrated accurate predictions of molecular-subtype-

specific and overall U.S. breast cancer incidence and mortality trends. [3, 4, 28] This study 

extends these prior cross-validations by independently estimating the observed results 

from a U.K. randomized controlled trial.

All models reproduced the trend in control group breast cancer incidence from ages 

40 to 49, implying that the extant model structures and assumptions about the natural 

history of breast cancer in the absence of screening are reliable. Despite the intensive 

(annual) screening intervention, the models predicted more clinically diagnosed than 

screen-detected breast cancers in the intervention group. This was likely to be explained 

by the relatively low sensitivity of all subsequent single-view mammograms that followed 

after the more sensitive prevalent two-view mammogram, and the decrease in the num-

ber of women screened by screening round in the trial [18]. Although the models utilized 

different mechanisms such as a threshold tumor size (Models E, S, and W) or stage shift 

(Models D and M) to simulate screen detection of pre-clinical breast cancer, they were 

all able to accurately estimate the impact of screening from ages 40 to 49 on invasive 

breast cancer incidence.

The effect of screening and treatment on breast cancer mortality was underestimated 

by all models at 10-year follow-up compared to the reduction observed in the Age trial. 

Since all models accurately predicted breast cancer incidence, and the fact that the 

underestimation of the mortality reduction was present across all models, it might be 

explained by a common model input not related to screening. Specifically, the derived 

U.K. treatment dissemination may not represent the actual treatment received by women 

diagnosed with breast cancer in the trial. This is in line with the higher rate of breast 

cancer deaths predicted by the models in the control arm in the absence of screening.

After 10 years of follow-up, breast cancer mortality reduction observed in the trial 

decreased and lost significance, whereas most models predicted a fairly constant mor-

tality reduction between 10- and 17-year follow-ups. Previous analysis of the CISNET 

models [29] illustrated that Model D, with tumor inception at the start of the sojourn 

time, has fast tumor progression on average, and Model E, with tumor inception prior 

to the start of the sojourn time, has the slowest tumor progression on average. These 

individual model structures affect the pattern in breast cancer deaths averted after age 

49 when screening ceased, because cancers diagnosed in the control arm caused breast 

cancer death at a younger age in Model D and at a later age in Model E. Consequently, 

mortality reduction due to screening was greater at later ages (between 10- and 17-year 

follow-up) in Model E than in Model D. While the model structure of Model S is similar 

to that of Model E, Model S does not include DCIS, which implies no possible benefit 

in terms of mortality reduction from screen-detected DCIS. However, these otherwise 

screen-detected DCIS cases will likely be diagnosed as local stage small invasive tumors 



86 Chapter 4

(size <1 cm.) in Model S with relatively high, and similar survival as DCIS cases. Model W 

is unique in that it simulates tumors with a limited malignant potential [25]. This may have 

resulted in a substantial amount of screen-detected tumors that did not cause breast 

cancer death during the 17-year follow-up. Consequently, Model W’s mortality reduction 

decreased slightly after age 49 despite their high rate of screen-detected cancers in the 

forties.

In summary, at 10- and 17-year follow-up, the models reproduced the effects of annual 

screening in the forties on breast cancer mortality well within the trial’s confidence inter-

vals [15]. In terms of model validation, it can be questioned what these model outcomes 

imply, as it is quite common to have relatively wide confidence intervals in randomized 

trials on cancer screening. The wide confidence intervals in the trial are partly due to the 

limited number of women included and breast cancer deaths observed in the trial. The 

models’ outcomes may be less sensitive to the number of women that are simulated 

because they simulated at least 2 million women in each arm of the trial, notwithstanding 

the fact that the models are ultimately based on observed data as well.

The CISNET breast models used Age trial-specific model inputs and data sources ap-

plicable to the U.K., but we can still draw a comparison between the outcomes of this 

study and published results from a recent collaborative modeling study on screening in 

the United States [3]. In the U.S. study, we simulated annual screening from age 40 to 74 

and compared it to annual screening from age 50 to 74. This implies that the difference 

in breast cancer deaths averted between these two scenarios over the women’s lifetime, 

is due to the effect of annual screening in the forties. Similar to the results of this analysis, 

the outcomes indicated that Model M and E avert the most breast cancer deaths from 

annual screening in the forties followed by Models W, S and D. In other words, the 

ranking of the models is fairly consistent when applied in another country with different 

model inputs.

This study presented the first external comparison performed by multiple breast cancer 

simulation models applied in a different country and setting. A strength of this analysis 

is that we used detailed observed de-identified trial data as model inputs. Another im-

portant strength is that we performed an independent external validation [1] in which no 

model calibration was performed to ensure credibility of the model outcomes.

Although the CISNET breast models used Age trial-specific model inputs and data 

sources applicable to the U.K., there were several limitations in this analysis. The trial 

did not collect data on breast cancer molecular sub-type and treatment, these were 

estimated based on U.K. data. It is possible that these data underestimated the actual 

treatment patterns of trial participants. That this is the case is suggested by the fact 

that all models had estimates for mortality reduction that were consistently lower than 

the point estimate from the trial. Moreover, when the models simulated the Age trial 

assuming all women received the most effective therapy available, the average model 
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estimate was very close to trial result. [3] The lack of precision in being able to model the 

treatment of women in the Age trial is likely to have contributed more to the differences 

between model and trial results than the screening and natural history components of the 

models. Other limits include the fact that the models did not explicitly simulate screening 

in the control arm because the reported amount of unscheduled screening was low, and 

primarily due to symptomatic reasons. [17] While this may not affect conclusions of the 

simulations, it is a limitation.

The quantitative information in this study demonstrated how well the models repro-

duced the effects of annual screening from ages 40 to 49 on breast cancer incidence 

and mortality. In the future, the CISNET models could simulate the impact of what 

would have happened if two-view digital mammography had been used for all screen-

ing examinations in the Age trial, simulate the impact of different patterns of screening 

attendance, provide estimates on overdiagnosis, and estimate the lifetime effects of 

different screening programs offered to women in their forties. The demonstration that 

the models can reproduce observed external trial results should increase confidence in 

models results to inform policy decisions about breast cancer screening.
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Abstract

Background

Collaborative modeling has been used to estimate the impact of potential cancer screen-

ing strategies worldwide. A necessary step in the interpretation of collaborative cancer 

screening model results is to understand how model structure and model assumptions 

influence cancer incidence and mortality predictions. In this study we examined the rela-

tive contributions of the pre-clinical duration of breast cancer, the sensitivity of screening, 

and the improvement in prognosis associated with treatment of screen-detected cases 

to the breast cancer incidence and mortality predictions of five Cancer Intervention and 

Surveillance Modeling Network (CISNET) models.

Methods

To tease out the impact of model structure and assumptions on model predictions, the 

Maximum Clinical Incidence Reduction (MCLIR) method compares changes in the number of 

breast cancers diagnosed due to clinical symptoms and cancer mortality between 4 simpli-

fied scenarios: 1) no-screening; 2) one-time perfect screening exam that detects all existing 

cancers and perfect treatment (i.e., cure) of all screen-detected cancers; 3) one-time digital 

mammogram and perfect treatment of all screen-detected cancers; and 4) one-time digital 

mammogram and current guideline-concordant treatment of all screen-detected cancers.

Results

The five models predicted a large range in maximum clinical incidence (19%-71%) and in 

breast cancer mortality reduction (33%-67%) from a one-time perfect screening test and 

perfect treatment. In this perfect scenario, the models with assumptions of tumor incep-

tion prior to when it is first detectable by mammography predicted substantially higher 

incidence and mortality reductions than models with assumptions of tumor onset at the 

start of a cancer’s screen-detectable phase. The range across models in breast cancer 

clinical incidence (11%-24%) and mortality reduction (8%-18%) from a one-time digital 

mammogram at age 62 with observed sensitivity and current guideline-concordant treat-

ment was considerably smaller than achievable under perfect conditions.

Conclusions

The timing of tumor inception and its effect on the length of the pre-clinical phase of breast 

cancer had substantial impact on the grouping of the models based on their predictions for 

clinical incidence and breast cancer mortality reduction. This key finding about the timing of 

tumor inception will be included in future CISNET breast analyses to enhance model trans-

parency. The MCLIR approach should aid in the interpretation of variations in model results 

and could be adopted in other disease screening settings to enhance model transparency.
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Introduction

Collaborative modeling can enhance the rigor of modeling research through the use of 

multiple independent models to answer the same research question. The National Can-

cer Institute-funded Cancer Intervention and Surveillance Modeling Network (CISNET) 

was established in 2000 to use collaborative modeling to improve our understanding of 

the impact of cancer prevention, screening, and treatment dissemination on population 

trends in cancer incidence and mortality. The CISNET Breast Cancer Working Group 

includes six modeling teams: Dana-Farber (Model D) [1], Erasmus (Model E) [2], George-

town-Einstein (Model GE) [3], MD Anderson (Model M) [4], Stanford (Model S) [5], and 

Wisconsin-Harvard (Model W) [6]. The modeling groups have collaborated to estimate 

the effects of breast cancer prevention [7], mammography screening [8-11], and systemic 

adjuvant treatment on trends in breast cancer incidence and mortality [12, 13]. Prior 

research has also investigated the impact of different screening scenarios on the balance 

of population-level benefits and harms, and the results have been used by policymakers 

to inform breast cancer screening guidelines [9, 14, 15].

Each of the models is unique in its structure, assumptions, and methods of synthesiz-

ing data. Consequently, they are unique in how they project the impact of screening 

and treatment on breast cancer incidence and mortality. Results that are similar across 

multiple models despite differences in assumptions and modeling approach, enhance 

the credibility of the findings and are more likely to be robust than conclusions obtained 

from a single model. For instance, in prior analyses, the models all closely estimated 

observed trends in US breast cancer incidence and mortality and consistently agreed on 

the ranking of screening scenarios based on several metrics, including mortality reduc-

tions. [9, 15]

Despite the consistency of prior conclusions about the effects of screening across the 

models, there are variations in the magnitude of the effects. [9, 15] For the interpreta-

tion of collaborative modeling results, it is important to understand how different model 

structures and combinations of assumptions contribute to this variation. Detailed model 

descriptions (Table 1) are informative and contribute to model transparency. However, 

conveying between-model differences is not always straightforward for reasons related 

to the nature of modeling disease processes and their interaction with cancer control 

interventions. In particular, breast cancer modeling involves the representation of un-

observable aspects of natural history such as tumor onset and tumor progression upon 

which interventions (e.g., screening and treatment) are overlaid. To do so, models make 

assumptions about the timing of tumor inception, tumor progression (e.g., discrete or 

continuous tumor growth), and progression variability among tumors. These assump-

tions in conjunction with model structure impact the three key determinants of screening 

effectiveness: 1) pre-clinical duration of breast cancer, i.e., the time period during which 
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prevalent undiagnosed cancers could be detected by screening; 2) sensitivity of the 

screening test, i.e., the likelihood that cancers are detected at screening; and 3) improve-

ment in prognosis from treatment, e.g., whether (earlier) treatment reduces (more) breast 

cancer mortality.

Given the complexity of interpreting outcomes from multiple models in a collaborative 

setting, it can be useful to isolate portions of the models to gain greater insight into 

how model structure and natural history assumptions systematically affect model results. 

The maximum clinical incidence reduction (MCLIR) method can be used to isolate the 

effects of tumor onset, tumor progression, screening test sensitivity, and treatment by 

comparing model results before and after imposing a one-time screening intervention 

under varying assumptions about screening performance and treatment effectiveness.

In the absence of screening, breast cancers will only be diagnosed as a result of clinical 

symptoms, i.e., clinical incidence, which is defined as breast cancers diagnosed due to 

symptoms. Screening is assumed to detect some of these cancers prior to symptomatic 

diagnosis, thereby reducing clinical incidence, and possibly cancer mortality. The MCLIR 

method measures this reduction in breast cancer clinical incidence and mortality. While 

all models use the same data on screening sensitivity and breast cancer treatment, the 

implementation of screening and treatment in the models varies as model structures 

are different. Therefore, differences in clinical incidence reduction should reflect model-

specific choices in their portrayal of the pre-clinical detectable phase of breast cancer 

(tumor onset and progression) and mechanisms of screen detection (e.g., how they 

incorporate sensitivity). Differences in breast cancer mortality are expected to capture 

model-specific assumptions about tumor onset and progression and how the implemen-

tation of treatment affects the natural history.

To date, the MCLIR method has been applied to three CISNET colorectal cancer mod-

els to clarify the effect of natural history assumptions and model structure on colorectal 

cancer incidence predictions. [16] In this study, we extended the MCLIR method to 

understand how differences among the CISNET breast cancer models affect predictions 

for screening effectiveness by projecting the clinical incidence and mortality reductions 

after a one-time screening exam at age 62 among women without prior screening or 

a past breast cancer diagnosis. The results are intended to provide a greater under-

standing of how the CISNET breast models depict unobservable processes, and how 

those representations may systematically affect conclusions about screening effects on 

incidence and mortality.
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Methods

This research was approved as exempt by the Georgetown Institutional Review Board 

based on use of de-identified, publically available data. Five of the six CISNET breast 

models (those with natural history components) participated in this analysis.

Model Overview

The general model structure of the five models involves the simulation of women who 

may develop breast cancer in the absence or presence of screening. In all models, the 

majority of women live a breast cancer-free life and eventually die of causes other than 

breast cancer (Figure 1, panel A). For women who develop breast cancer, tumor inception 

is simulated either prior to (models E and S) or at the start of (models D, GE, and W) the 

tumor’s sojourn time. We define the sojourn time as the portion of time in the pre-clinical 

phase between when a cancer can be first screen-detectable (e.g., by mammography) 

and when clinical cancer diagnosis would occur due to symptoms in the absence of 

screening.[17] Tumor sojourn time is also termed ‘pre-clinical screen-detectable phase‘ 

(Figure 1).

The point when a tumor becomes screen-detectable may depend on the sensitivity of 

the screening test, such that more sensitive tests can detect tumors closer to inception, 

and hence in earlier stages or at smaller tumor sizes. Tumor growth is simulated either 

continuously (models E, S, and W) or as movement through discrete stages (models D 

and GE). All models except model S include ductal carcinoma in situ (DCIS). Nonethe-

less, model S simulates the progression of breast cancers prior to clinical symptoms 

based on continuous tumor growth of invasive cancer (Table 1). [5]

In the absence of screening, the models assume that some cancers will eventually 

cause symptoms and be clinically diagnosed (Figure 1, panel B). If a woman participates 

in screening during the cancer’s sojourn time, the cancer may be screen-detected in an 

earlier stage or at a smaller size than would have occurred with clinical diagnosis in the 

absence of screening.

The time period between when a cancer is screen-detected and when it would have 

been clinically diagnosed in the absence of screening is referred to as the lead-time (Fig-

ure 1, panel C). The lead time is part of the sojourn time, and the duration of the sojourn 

time is an important unobservable determinant of screening effectiveness because a 

longer sojourn time implies a longer period during which a screening test can potentially 

detect cancer. The sojourn time is based on assumptions about tumor inception and 

tumor growth, and the start of the sojourn time is determined by the sensitivity of the 

screening test (Figure 1, panel C).
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Table 1 Overview of Key Differences and Similarities Between The CISNET Breast Models Structures 
and Key Model Components

Model D E GE S W

Model type Analytic, Parallel universe Simulation, Parallel universe Simulation, Parallel universe Simulation,
Parallel universe

Simulation, Parallel universe

Tumor progression modeled as State-transition Continuous tumor growth Stage-transition Continuous tumor growth Continuous tumor growth

Incidence in the absence of screening Age Period Cohort model Age Period Cohort model Age Period Cohort model Age Period Cohort model* Age Period Cohort model

DCIS included Yes Yes Yes No Yes

ER/HER2 Included Yes Yes Yes Yes Yes

Individual risk factors for breast cancer Breast density Breast density, obesity Breast density Hormone replacement Breast density

Screen detection conditioned on Modality, age, density, frequency Tumor size, modality, age, 
density, frequency

Modality, age, density, frequency Tumor size, ER status, age, 
hormone repl., frequency

Tumor size, modality, age, density, 
frequency

Implementation of
screen benefit

Stage shift Detection at smaller tumor size Younger age, earlier stage Stage shift, detect at smaller tumor 
size

Younger age, detect at smaller 
tumor size

Estimation of
over diagnosis

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Implementation treatment benefit Hazard reduction Cure fraction, larger fatal 
diameter

Hazard reduction, cure fraction Hazard reduction, non-proportional Cure fraction

Death from breast cancer determined by Survival from BC < survival other 
cause mortality

Fatal diameter, survival from BC 
< survival OC mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

SEER data used for calibration No Incidence, mortality, stage 
distribution

Incidence, stage distribution Incidence, stage distribution Incidence, mortality

Addition based on MCLIR analyses

Tumor inception point At the start of pre-clinical screen-
detectable phase

Prior to start of pre-clinical 
screen-detectable phase

At the start of the pre-clinical 
screen-detectable phase

Prior to start of the pre-clinical 
screen-detectable

At the start of the pre-clinical 
screen-detectable phase

* Model S uses background breast cancer incidence derived from the APC framework that explicitly 
considers the effects of screening and menopausal hormone replacement therapy. [5] Among the 
other modeling groups breast cancer incidence in the absence of screening is estimated starting 
from a common APC model. [19, 24]

Explanation of Terms Used in Table 1

Model type
Analytic: Analytical approach to estimate the impact of mammography screening and breast cancer 
treatment on incidence and mortality of breast cancer.
Simulation: Stochastic simulation is based on the Monte Carlo method and use of random numbers 
to evaluate the impact of screening on life histories, cancer incidence and mortality.
Parallel universe: Screening and treatment is modeled in a parallel universe, implying that the same 
population is simulated twice: once to determine the impact of breast cancer without screening, and 
once to determine the impact of breast cancer with screening.

Natural history and factors affecting breast cancer onset
APC model: Breast cancer onset and breast cancer in the absence of screening was derived by Gan-
gnon et al. [23] and is driven by an age-period-cohort model:
Age: As women age, their risk of developing breast cancer increases.
Period: Onset of breast cancer is different in certain calendar time periods.
Cohort: Year of birth influences the risk of developing breast cancer.
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and Key Model Components
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ER/HER2 Included Yes Yes Yes Yes Yes

Individual risk factors for breast cancer Breast density Breast density, obesity Breast density Hormone replacement Breast density

Screen detection conditioned on Modality, age, density, frequency Tumor size, modality, age, 
density, frequency

Modality, age, density, frequency Tumor size, ER status, age, 
hormone repl., frequency

Tumor size, modality, age, density, 
frequency

Implementation of
screen benefit

Stage shift Detection at smaller tumor size Younger age, earlier stage Stage shift, detect at smaller tumor 
size

Younger age, detect at smaller 
tumor size

Estimation of
over diagnosis

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Difference screen &
no-screen

Implementation treatment benefit Hazard reduction Cure fraction, larger fatal 
diameter

Hazard reduction, cure fraction Hazard reduction, non-proportional Cure fraction

Death from breast cancer determined by Survival from BC < survival other 
cause mortality

Fatal diameter, survival from BC 
< survival OC mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

Survival from BC < survival other 
cause mortality

SEER data used for calibration No Incidence, mortality, stage 
distribution

Incidence, stage distribution Incidence, stage distribution Incidence, mortality

Addition based on MCLIR analyses

Tumor inception point At the start of pre-clinical screen-
detectable phase

Prior to start of pre-clinical 
screen-detectable phase

At the start of the pre-clinical 
screen-detectable phase

Prior to start of the pre-clinical 
screen-detectable

At the start of the pre-clinical 
screen-detectable phase

* Model S uses background breast cancer incidence derived from the APC framework that explicitly 
considers the effects of screening and menopausal hormone replacement therapy. [5] Among the 
other modeling groups breast cancer incidence in the absence of screening is estimated starting 
from a common APC model. [19, 24]

Explanation of Terms Used in Table 1

Model type
Analytic: Analytical approach to estimate the impact of mammography screening and breast cancer 
treatment on incidence and mortality of breast cancer.
Simulation: Stochastic simulation is based on the Monte Carlo method and use of random numbers 
to evaluate the impact of screening on life histories, cancer incidence and mortality.
Parallel universe: Screening and treatment is modeled in a parallel universe, implying that the same 
population is simulated twice: once to determine the impact of breast cancer without screening, and 
once to determine the impact of breast cancer with screening.

Natural history and factors affecting breast cancer onset
APC model: Breast cancer onset and breast cancer in the absence of screening was derived by Gan-
gnon et al. [23] and is driven by an age-period-cohort model:
Age: As women age, their risk of developing breast cancer increases.
Period: Onset of breast cancer is different in certain calendar time periods.
Cohort: Year of birth influences the risk of developing breast cancer.

Breast density: Breast density is associated with different levels of risk for developing breast cancer 
and modifies the operating characteristics of breast cancer screening.
ER/HER2: Onset of breast cancer is different for molecular subtypes ER and HER2.
Tumor stage transition: Tumor progression is modeled as transitions between discrete stages.
Continuous tumor growth: Tumors grow continuously after tumor inception.

Screening mechanism
Sensitivity: Sensitivity can be used directly or indirectly (e.g., when translated to tumor size).
Overdiagnosis: The detection and diagnosis of a condition that would not go on to cause symptoms 
or breast cancer death in a woman’s lifetime in the absence of screening.
Duration of preclinical detectable phase: The period between tumor onset and the start of a cancer’s 
screen-detectable phase.

Treatment effect
Hazard reduction: Reduction in breast cancer mortality hazard, derived from the hazard ratio re-
ported for the different treatment regimens [19].
Cure fraction: If hazard rate reduction is not a direct model input, it can be translated into a cure 
fraction to implement breast cancer treatment.
Death from breast cancer: Once diagnosed with breast cancer, a survival until breast cancer death 
is competing with the other cause mortality survival. That is, breast cancer death occurs only if the 
patient does not die from other causes.
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Mortality reductions from screening may occur via improvements in survival related to 

the earlier stage or smaller tumor size at diagnosis of screened vs. unscreened women, 

given receipt of breast cancer treatment.

MCLIR Analysis

To illustrate the effects of model structure and assumptions about tumor inception, tu-

mor progression, screening test ability to detect tumors, and treatment on breast cancer 

incidence and mortality predictions, the MCLIR analysis consists of comparisons between 

four scenarios. Three scenarios involve a one-time screening test at age 62 and the 

Figure 1 Three versions of a woman’s life history. A: without breast cancer, B: with breast cancer and 
without screening, C: with breast cancer and mammography screening.
In scenario C, the pre-clinical phase is the period of time between tumor inception and clinical diag-
nosis in the absence of screening. The sojourn time for a screening test, e.g., mammography is the 
period of time within the pre-clinical phase that a cancer can be screen detectable; this period can 
also be termed the pre-clinical screen-detectable phase. The point when the cancer is detected by 
screening depends on when the screening test is performed and the sensitivity of the screening test. 
The period before the sojourn time represents a period in which the tumor is present but undetect-
able by mammography. Should the sensitivity of mammography improve, or new types of screening 
tests evolve, the point of screen-detectability would shift to the left and tumors could be detected 
closer to tumor inception.
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remaining no-screening scenario serves as a comparator (Table 2). The study popula-

tion for each scenario is a cohort of average risk women born in 1965, that have never 

been screened or diagnosed with breast cancer prior to age 62. Age 62 was chosen to 

illustrate model differences because it is in the middle of the start and stop ages of the 

generally recommended mammography screening guidelines [14, 18] and there is suf-

ficiently high prevalence of breast cancer at this age to illustrate model differences. While 

all models have the capacity to include risk factors, to isolate model differences these 

analyses focused on the average risk population. Women were followed for 15 years (i.e., 

up to age 77) to capture the immediate and long-term effects of the intervention. Model 

outcomes were breast cancer clinical incidence and breast cancer mortality by age.

Table 2 Description of Maximum Clinical Incidence Reduction (MCLIR) Method

Scenarios Scenario Description Implication Analyses

No Screening

(Scenario 1)

No screening: no screening 
during a woman’s lifetime. 
Diagnosed breast cancers 
will be treated with current 
treatment*

All cancers diagnosed in 
this scenario are diagnosed 
due to clinical symptoms 
and will be treated with 
guideline-concordant 
treatment.

Comparator to calculate 
the screening effect in 
scenarios 2, 3, and 4.

Perfect screening
Perfect treatment

(Scenario 2)

A one-time perfect screen 
with 100% sensitivityᶲ at 
age 62, all screen-detected 
cancers are treated with 
perfect treatment ͌

All existing cancers at age 
62 will be screen-detected 
and cured by perfect 
treatment and will not lead 
to breast cancer death.

Comparison of Scenario 2 
to 1 isolates the effect of 
the pre-clinical detectable 
duration of breast cancer 
and provides the tumor 
progression distribution.

Current sensitivity
Perfect treatment

(Scenario 3)

One-time digital 
mammogram with current 
sensitivity^ at age 62, all 
screen-detected cancers 
are treated with perfect 
treatment

Some of the existing 
cancers at age 62 are 
screen-detected. All 
screen-detected cancers 
are cured and will not lead 
to breast cancer death.

The comparison of 
scenario 3 to 2 isolates 
the effect of digital 
mammography (non-
perfect) sensitivity on 
reductions in clinical 
incidence and breast 
cancer mortality.

Current sensitivity 
Current Treatment

(Scenario 4)

One-time digital 
mammogram with current 
sensitivity at age 62, all 
screen-detected cancers 
are treated with current 
treatment

Some of the existing 
cancers at age 62 are 
screen-detected. All 
screen-detected cancers 
are treated with guideline-
concordant treatment 
and some will not lead to 
breast cancer death.

Comparison of scenario 
4 to 3 isolates the effect 
of guideline-concordant 
(imperfect) treatment 
effectiveness on breast 
cancer mortality reduction.

* Current treatment: All diagnosed breast cancers receive guideline-concordant breast cancer treat-
ment with observed treatment effectiveness. [19]
ᶲ Perfect sensitivity: All existing breast cancers are screen-detected at screening (e.g., Sensitivity is 
100%).
 ͌ Perfect treatment: All diagnosed breast cancers are “cured” and women will not die of breast 
cancer.
^ Current sensitivity: Screening is performed with the observed sensitivity of digital mammography. 
[19]
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MCLIR Scenarios

Scenario 1 is the baseline scenario without screening where all breast cancers will be 

diagnosed due to clinical symptoms. Upon diagnosis, cancers are treated according to 

current guideline recommended treatment. [19] Guideline concordant treatment roughly 

implies that, after surgical removal of the tumor, estrogen receptor (ER)-positive breast 

cancers are primarily treated with hormone therapy and advanced stage ER positive 

tumors may also receive chemotherapy. ER-negative breast cancers are treated with 

chemotherapy only. Tumors that are Human epidermal growth factor Receptor 2 (HER2) 

positive are also treated with Trastuzumab (Herceptin). The effectiveness of breast cancer 

Figure 2 The MCLIR Metrics Explained For Breast Cancer Incidence
Overall Reductions in Breast Cancer Incidence at 15-Year Follow-Up
The light gray area denoted by A is the overall clinical incidence reduction over the 15 years after the 
digital mammogram at age 62. The area B alone represents the proportion of clinical incidence that 
could not be reduced because of the non-perfect sensitivity of the digital mammogram. As a digital 
mammogram does not detect all tumors in existence, the area B provides a measure of the room 
to further reduce breast cancer clinical incidence if better (more sensitive) screening would become 
available. The 2 light gray areas combined (A and B) are the maximum clinical incidence reduction 
from perfect screening. The dark gray area denoted by C, is the proportion of clinical incidence that 
is not reducible by a perfect screen at age 62 because these clinical cancers had a tumor onset after 
age 62.
Age-Specific Reductions in Breast Cancer Incidence
Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as measured 
on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent reduction in clinical 
incidence from one perfect screening test at age 62 with perfect sensitivity relative to the clinical 
incidence in the no-screening scenario. Scenario 4 (solid line) is the age-specific percent clinical inci-
dence reduction from one digital mammogram at age 62 relative to the no-screening scenario. Sce-
nario 3 (also solid line) uses sensitivity of current digital mammography and in contrast to scenario 4 
has perfect treatment effectiveness which only affects breast cancer mortality, and thus, scenario 3 
has the same impact on breast cancer incidence as scenario 4.
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treatment was based on the most recent meta-analyses of randomized clinical trials re-

ported by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). [20] Scenario 

1 provides baseline information about the number of cancers that will lead to symptoms 

and be clinically diagnosed as well as the number of breast cancer deaths occurring in 

the 15-year follow-up period.

Scenario 2 involves a one-time perfect screening test at age 62 and perfect treat-

ment. The hypothetical perfect screening test assumes that all tumors in existence are 

screen-detected, including those that may not be detectable by digital mammography. 

Perfect treatment means treatment is curative and that all women will be cured and 

will die from other causes than breast cancer. Comparing results from this scenario with 

the baseline (no-screening) scenario provides the maximum achievable clinical incidence 

and mortality reduction. It is a measure of the pool of cancers that technically could be 

screen-detected at age 62 and thus avoid clinical diagnoses of these cancers at a later 

age when they would cause symptoms. The change in the maximum achievable clinical 

incidence reduction over time as women age provides insight into the distribution of 

sojourn times of the existing tumors at age 62, i.e., key determinant 1 of screening ef-

fectiveness. The mortality results from this scenario provide information on how many of 

the breast cancer deaths between ages 62 and 77 stem from cancers that were present 

at age 62. Relative to the no-screening scenario, it is the maximum achievable mortal-

ity reduction from screening and treatment, and the converse (1 minus the maximum 

mortality reduction) is the portion of unavoidable breast cancer deaths because these 

cancers had tumor onset after age 62 when the screening test was done (Figure 3). The 

age-specific maximum achievable mortality reduction after the screen test at age 62 also 

provides insight into the survival time of pre-clinical cancers in existence at age 62.

Scenario 3 involves a one-time digital mammogram at age 62 with sensitivity based 

on observed mammography performance in the Breast Cancer Screening Consortium [9, 

19] and perfect treatment (i.e., cure) of screen-detected cancers. In this scenario, some 

of the cancers in existence at age 62 will be missed by screening and this will affect 

clinical incidence and mortality at later ages. Because scenarios 2 and 3 vary screening 

performance while holding the treatment effects constant, the comparison of these two 

scenarios isolates the impact of perfect vs. observed sensitivity of screening on reduc-

tions in clinical incidence and breast cancer mortality, i.e., key determinant 2 of screening 

effectiveness. This comparison also illustrates the room for improvement in terms of 

fewer clinically diagnosed cases and cancer deaths should the sensitivity of screening 

would improve (e.g., new radiology technology or circulating tumor DNA detection).

Scenario 4, the realistic scenario, involves a one-time digital mammogram at age 62 

and treatment according to current guidelines [19]. Because scenarios 3 and 4 vary treat-

ment effectiveness while holding the sensitivity of screening constant, the comparison of 

these scenarios isolates the impact of perfect vs. actual treatment effectiveness on breast 
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cancer mortality, i.e., key determinant 3 of screening effectiveness. This comparison 

isolates the portion of cancers that, despite earlier detection by screening, will not be 

cured with current guideline recommended treatment. Also, this provides insight into 

the room for improvement should breast cancer treatment improve in the future, given 

current performance of digital mammography.

For ease of comparison and interpretation of outcomes across the four scenarios for 

five different models, results are reported as percent reductions in clinical incidence and 

breast cancer mortality relative to each model’s clinically diagnosed breast cancers and 

breast cancer deaths in the absence of screening (Figure 2 & 3).

Results

The results for each scenario for the impact of a one-time screen at age 62 among women 

with no prior screening or past diagnosis of breast cancer are presented separately for 

incidence and mortality.

Breast Cancer Incidence

Tumor Onset and Progression

The maximum achievable clinical incidence reduction from a perfect screening test at 

age 62 (scenario 2) relative to the no-screening scenario (scenario 1) illustrates the impact 

of natural history assumptions such as tumor onset and tumor progression on screening 

effectiveness. The maximum clinical incidence reduction ranged from 19% to 71% across 

the five models with models D, GE, and W grouping towards the lower end of the range 

and models E and S towards the top of the range (Table 3). This wide variation was the 

result of differences in the modeling of the timing of tumor inception relative to the start 

of the sojourn time. For example, Model E’s assumption of tumor onset long before 

the start of the sojourn time led to a large screening effect when the perfect screening 

test was applied that detects all tumors from their inception even before the pre-clinical 

screen-detectable phase begins. The majority (71%) of the cancers in this model had an 

onset prior to age 62 and were therefore screen-detected by a perfect screening test 

at age 62, avoiding clinical diagnoses at a later age. The remaining (29%) of cancers 

had an onset after age 62. Model S makes similar assumptions about tumor onset and 

growth as Model E, and has fairly similar patterns in their results as Model E. In contrast, 

in Models D, GE, and W, which simulate tumor inception at the start of the pre-clinical 

screen-detectable phase, only 19% to 27% of cancers were in existence at age 62, lead-

ing to a lower maximum clinical incidence reduction from a perfect screening test than 

Models E and S.
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Figure 3 The MCLIR Metrics Explained For Breast Cancer Mortality
Overall Reductions in Breast Cancer Mortality at 15-Year Follow-Up
The light gray area denoted by A is the overall breast cancer mortality reduction over the 15 years 
after one digital mammogram at age 62 and guideline recommended treatment with observed 
treatment effectiveness. The area B alone represents the proportion of breast cancer mortality that 
could not be reduced because of the non-perfect treatment effectiveness of current guideline rec-
ommended treatment. Since guideline recommended treatment does not cure all screen-detected 
cancers, B provides a measure of the room to further reduce breast cancer mortality if better (more 
effective) treatment would become available.
The area C alone represents the proportion of breast cancer mortality that could not be reduced 
because of the non-perfect sensitivity of currently available digital mammography. As a digital mam-
mogram does not detect all tumors in existence, B provides a measure of the room to further reduce 
breast cancer mortality if better (more sensitive) screening would become available. The 3 areas 
combined (A, B and C) are the maximum mortality reduction from perfect screening and perfect 
treatment where B + C represent the maximum room to further reduce breast cancer mortality if 
screening sensitivity and treatment effectiveness would become improve. The dark gray area, de-
noted by D, is the proportion of breast cancer deaths that is not reducible by a perfect screen at age 
62 and perfect treatment because these breast cancer deaths had tumor onset after age 62.
Age-Specific Reductions in Breast Cancer Mortality
Scenario 1, the no-screening scenario, serves as comparator from which the reductions, as mea-
sured on the y-axis, are calculated. Scenario 2 (dashed line) is the age-specific percent breast cancer 
mortality reduction from one perfect screening test with perfect sensitivity and perfect treatment 
relative to the breast cancer mortality in the no-screening scenario. Scenario 3 (dotted line) is the 
age-specific percent breast cancer mortality reduction from one digital mammogram at age 62 and 
perfect treatment relative to the no-screening scenario. Scenario 4 (solid line) is the age-specific 
percent mortality reduction from one digital mammogram at age 62 and guideline-concordant treat-
ment with observed treatment effectiveness in screen-detected cases relative to the no-screening 
scenario.
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The shape of the maximum clinical incidence reduction curve provides insight into 

the variability of tumor growth and disease progression of tumors in existence at age 62 

(Figure 4). In models D, GE and W, the age-specific clinical reductions from the perfect 

screen declined more rapidly in the first five years than in the other two models, indi-

cating the presence of more quickly progressing tumors relative to the other models. 

The non-steep and slower linear decline of the age-specific maximum clinical incidence 

reduction in Models E and S is the consequence of greater variability in tumor progres-

sion and overall slower tumor growth among the tumors in existence at age 62 than seen 

in the other models.

The models have structural differences in the timing of tumor inception relative to the 

sojourn time and they had the same calibration targets (observed trends in U.S. breast 

cancer incidence and mortality) in their development phase. This explains why Models E 

and S with tumor inception long before the start of the sojourn time have slower overall 

tumor progression and Models D, GE, and W with tumor inception at the start of the 

sojourn time have faster progressing tumors.

Screening Sensitivity

Reductions in clinical incidence based on the observed sensitivity of digital mammogra-

phy varied less across models than when assuming perfect sensitivity, with ranges of 11% 

to 24%. Since assumptions about tumor onset and progression differ, how the models ar-

rive at this result differs and is illustrated by comparison to their predictions for maximum 

reductions achievable (Scenario 3 vs 2). In models D, GE, and W, the differences in clini-

cal incidence reduction were 2%, 3%, and 8%, respectively, and in models E and S these 

were 56% and 27%. While models E and S have more tumors in existence at age 62, the 

majority of tumors were in their pre-sojourn period and not yet screen-detectable with 

Table 3 Percent Reductions in Breast Cancer Incidence after One Mammography Screen at Age 62 
over a 15-Year Follow-Up, %

Scenario Intervention D E GE S W

2 100% screening
sensitivity and 100% treatment 
effectiveness
(vs. no screening)

23 71 27 43 19

4 Current screening
sensitivity and current treatment 
effectiveness
(vs. no screening)

21 15 24 16 11

4 vs. 2 Breast cancer clinical incidence 
not reduced because of imperfect 
(current) screening sensitivity

2 56 3 27 8

Scenario 3 is not shown because this scenario has the same screening sensitivity (digital mammogra-
phy) as scenario 4 and hence has the same clinical incidence reduction as scenario 4.
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a digital mammogram having actual observed sensitivity. On the other hand, in models 

D, GE, and W, the majority of tumors in existence at age 62 were in their sojourn period 

and could be detected by the digital mammogram. Thus, the variations between model 

clusters E and S vs. D, GE, and W indicate that modeling assumptions about the timing 

of tumor inception in relation to the implementation of digital mammography can have 

substantial impact on screen detection and reductions in clinical breast cancer incidence.

Breast Cancer Mortality

Tumor Onset and Progression

Based on one perfect screening test at age 62 and perfect treatment for screen-detected 

cancers, the maximum reductions in breast cancer mortality relative to the no-screening 

scenario ranged from 33% to 67% over 15 years of follow-up (Table 4). Similar to the 

impact of tumor onset on clinical incidence reductions, Models D, GE and W had a 

higher percent (55% to 67%) of breast cancer deaths stemming from cancers with onset 

after age 62 than Models E and S (33% to 38%). These variations reflect interactions 

between assumptions about tumor onset and survival times.

Table 4 Percent Reduction in Breast Cancer Mortality after One Digital Mammography Screen at 
Age 62 with 15-Year Follow-Up, %

Scenario Intervention D E GE S W

2 100% screening sensitivity and 100% 
treatment effectiveness (vs. no 
screening)

40 67 45 62 33

% Breast cancer deaths with onset 
after age 62.*

60 33 55 38 67

3 Current screening sensitivity and 
100% treatment effectiveness (vs. no 
screening)

37 23 40 31 23

3 vs. 2 Breast cancer mortality not reduced 
because of imperfect (current) 
screening sensitivity

3 44 5 31 10

4 Current screening sensitivity and 
current treatment effectiveness (vs. 
no screening)

17 8 17 18 8

4 vs. 3 Breast cancer mortality not reduced 
because of imperfect (current) 
treatment effectiveness

20 15 23 13 15

4 vs. 2 Breast cancer mortality not reduced 
because of imperfect screening 
sensitivity and imperfect treatment 
effectiveness

23 59 23 44 25

* The percent breast cancer deaths that stem from cancers with onset after age 62 is given by 100% 
minus the cancer deaths from cancers with onset before age 62 (Scenario 2).
Scenarios 3 vs. 2, 4 vs. 3, and 4 vs. 2, show the percentage point breast cancer mortality that is not 
reduced due to imperfect screening sensitivity and/or imperfect treatment effectiveness.
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The steep declines of the maximum mortality reduction curves (Figure 4, right panels) 

of models D, GE and W reveal that, on average breast cancers in these models have 

shorter survival times and less variability in survival times relative to models E and S. 

These results for average survival times correspond to the findings about tumor progres-

sion in the models: the relatively slow tumor progression, based on earlier inception of 

tumors, in models E and S relate to longer survival times, and the faster tumor progres-

sion in Models D, GE and W arising from tumor inception at the beginning of the sojourn 

period ultimately lead to shorter survival times on average.

Figure 4 Age-Specific Reductions In Breast Cancer Clinical Incidence And Mortality Over 15 Years 
After A One-Time Screening Test At Age 62 By Model 
The percent marks in the panels of Figure 4 represent the cumulative outcomes for the 15-year 
follow-up period from age 62 to age 77.
The line at the top in the breast cancer incidence panels on the left of Figure 4 is the maximum clini-
cal incidence reduction from a screening test at age 62 with 100% sensitivity and perfect treatment of 
screen-detected cancers (Scenario 2). Just after the screening test, the reduction in clinical incidence 
(panels on the left) is highest and decreases by age as it becomes less likely that clinical cancers at 
later ages were already in existence at age 62 and could have been prevented by a screening test 
at that age.
The percentages in the left-panel figures represent, for example for Model S: 57% of the cancers that 
are clinically diagnosed in the absence of screening between ages 62 and 77 have an onset after age 
62, this implies that 100-57=43% (Scenario 2, Table 3) of the cancers diagnosed in the absence of 
screening could be prevented from becoming clinical diagnosis at later ages by a perfect screening 
test at age 62. The solid line below the dashed line is the clinical incidence reduction from a digital 
mammography screening test: 16% of clinical diagnoses could be prevented by a one-time digital 
mammogram at age 62 (Scenario 3, Table 3). This implies that 27% of clinical incidence between ages 
62 and 77 was not reduced by the one-time digital mammogram at age 62 (Scenario 3 vs 2).
The dashed line at the top in the breast cancer mortality panels on the right of Figure 4 is the maxi-
mum achievable mortality reduction from a screening test with 100% sensitivity combined with per-
fect treatment in screen-detected cases (Scenario 2). The dotted line below the top line represents 
the breast cancer mortality reduction over the 15-years after a current digital mammogram at age 62 
and perfect treatment in the screen-detected cases (Scenario 3). The solid line at the bottom is the 
reduction in breast cancer mortality from a current screening test combined with current treatment 
(Scenario 4).
The percentages in these figures are, for example for Model S: 38% of breast cancer deaths observed 
in the scenario without screening stem from cancers with onset after age 62 and could therefore not 
be screen-detected and prevented from breast cancer death by screening at age 62. This implies that 
100-38=42% of breast cancer deaths could be reduced by perfect screening and perfect treatment of 
screen-detected cases (Scenario 2, Table 4). However, 31% of breast cancer deaths are not prevented 
due to lack of screen-detection if screening is performed with a digital mammogram (Scenario 3 vs 
2, Table 4), and 13% of breast cancer deaths is not prevented because current guideline-concordant 
treatment lacks the effectiveness to cure those screen-detected breast cancers (Scenario 4 vs 3). The 
18% mortality reduction follows from current screening and current treatment (Scenario 4).
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Screening sensitivity

Compared to the maximum achievable mortality reduction, a one-time digital mammo-

gram having actual observed sensitivity missed between 3% (Model D) to 44% (Model E) 

of the avoidable cancer deaths. Overall, the mortality reduction from a one-time digital 

mammogram at age 62 and perfect treatment relative to no-screening (scenario 3 vs. 1) 

was 23% to 40% across models (Table 4, Figure 4). The ability to detect lethal tumors by 

mammography screening was higher among the models (D, GE, and W) with assump-

tions of tumor onset at the start of the sojourn time than the models (E and S) with tumor 

onset prior to the start of the sojourn time.

Treatment effectiveness

Assuming observed guideline-concordant treatment effectiveness in screen-detected 

cancers (scenario 4), the percent breast cancer mortality that was not reduced compared 

to Scenario 3 with perfect treatment was 13% to 23% (Table 4, Figure 4). The difference 

between scenario 3 and 4 show that Models E and GE, have a relatively high percentage 

of cancer deaths that were not averted in the first 3 years after the screen at age 62. This 

illustrates the substantial portion of cancers screen-detected at a relatively advanced 

stage that was not curable with current treatment effectiveness. These findings showed 

that the lethality of the cancers found at screening impacts breast cancer mortality differ-

ently over time and in magnitude by model.

Sensitivity and Treatment

The combination of screening with a digital mammogram at age 62 and guideline-

concordant treatment with current treatment effectiveness (Scenario 4 vs. Scenario 1) 

provides insight into how assumptions about currently available screening and treatment 

interact with breast cancer natural history to affect breast cancer mortality. Models E, W 

and S grouped towards the lower end and models D and GE towards the higher end of 

the clinical incidence reductions (Table 3). But for breast cancer mortality slightly differ-

ent groupings of models were seen: Models D, GE and S predicted 17 to 18% breast 

cancer mortality reduction relative to the no-screening scenario, whereas models E and 

W predicted 8% breast cancer mortality reduction (Table 4).

The lower breast cancer mortality reductions predicted by models E and W were pri-

marily the result of a low screen-detection rate of lethal cancers and the lack of improving 

prognosis with treatment of screen-detected cases: in both models 23% of the cancers 

destined to cause breast cancer death were screen-detected (Scenario 3), and of those 

detected only one-third (8 out of 23; Scenario 4 vs. Scenario 3, Table 4) were cured.

Models D and S predicted a similar 17 and 18% mortality reduction as model GE, 

also due to a combination of relatively high screen-detection and high improvement 

of prognosis from treatment. However, the shape of the mortality reduction curve of 
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Model GE, relative to other models, was distinct. The inverted shape of model GE can be 

explained by the presence of more advanced-stage cancers at screen detection, where 

breast cancer death could not be avoided.

Discussion

This study is the first to apply the maximum clinical incidence reduction (MCLIR) method 

to illustrate how model structure and assumptions impact both clinical incidence and 

cancer mortality predictions. To understand variations in model estimates of screening 

effects, the analysis decomposed the relative contributions of model-specific structures 

and assumptions regarding the pre-clinical duration of breast cancer, the ability of a 

screening test to detect cancers, and breast cancer treatment to breast cancer incidence 

and mortality predictions. The results illustrated that models with similar predictions 

for screening effectiveness may use differing assumptions about screening, treatment, 

tumor onset, and tumor progression. Altogether, the key finding was that assumptions 

about the timing of tumor inception and its effect on the pre-clinical duration of breast 

cancer had the greatest impact on the model groupings on predicted clinical breast 

cancer incidence and mortality reductions. As a result of this finding, we now include this 

model-specific tumor attribute in our CISNET model comparison table (Table1).

The MCLIR scenarios showed that models E and S simulate the longest pre-clinical 

duration of breast cancer. While this implies a longer period to detect cancers by screen-

ing and possibly avert cancer deaths, these models showed the greatest difference in 

breast cancer mortality reduction between the scenarios with perfect detection to those 

with (realistic) digital mammography . Again, this was related to those models’ assump-

tions about early tumor onset prior to the start of a cancer’s sojourn time. The loss in 

breast cancer mortality reduction due to digital mammography (imperfect) screening 

provides information about the further reductions in breast cancer mortality should 

screening sensitivity improve in the future, given the current state of the models. On 

the other hand, models D, GE and W had similar and relatively short pre-clinical dura-

tions due to their assumptions of tumor inception at the start of the sojourn time and 

therefore ultimately predicted smaller losses in breast cancer mortality reduction due 

to digital mammography screening. The effect of guideline-concordant treatment with 

actual observed treatment effectiveness on breast cancer mortality reduction differed by 

model structure. In general, greater breast cancer mortality reductions were predicted 

by models that use a hazard-reduction treatment structure than the models with cure 

fractions to implement breast cancer treatment. These types of insights from the MCLIR 

results provide further clarity on the differences and similarities across models and can be 

used to interpret variations in model outcomes.
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The MCLIR analyses also illustrated model variation in the distributions for tumor 

progression assumed in the models, with models D, GE, and W tending to have faster 

progressing tumors than models E and S. This knowledge about the models can help 

interpret model differences in predictions of screening effectiveness by screening 

frequency. For example, one would expect more cancers to be diagnosed with more 

frequent screening in models that have relatively faster tumor progression on average 

and vice versa. This was confirmed in a recent analysis of the impact of screening in-

tervals on breast cancer mortality, with Models D, GE, and W showing greater benefits 

(breast cancer deaths averted preceded by more cancer diagnoses) from more frequent 

screening than models E and S. [9]

The MCLIR methodology was first used to evaluate differences in the CISNET colorectal 

cancer screening models. [16] The colorectal cancer findings indicated that assumptions 

about the duration between adenoma onset and clinical diagnosis were an important 

factor in explaining colorectal cancer model differences. The results of this study were 

similar in demonstrating that models with long pre-clinical durations of breast cancer and 

relatively low screen detection rates project similar screening effects as models with a 

shorter pre-clinical durations and higher screen detection rates.

Usually, models are characterized by describing modeling approach, model inputs and 

assumptions. [19,21,22] In this research, we examined model outcomes to drill down 

to the mechanics of incidence and mortality predictions. There are several caveats that 

should be considered in evaluating this method. First, the effect of a single screen on 

breast cancer incidence and mortality is not the same as the effect of routine screening 

from age 50 to 74. The results in this study are therefore not directly translatable to pro-

jections of the effects of a periodic screening program on overall breast cancer incidence 

and mortality. Second, it was beyond the scope of this paper to perform and evaluate 

the MCLIR scenarios at different ages or at multiple ages across five different models. 

Evaluating the MCLIR scenarios at different ages would provide insight into age-specific 

and between-model differences in tumor inception, progression, and test-characteristics 

and the impact of these on breast cancer incidence and mortality. Third, the MCLIR 

methodology employed did not explicitly allow for formal assessments of the factors 

that account for differences in rates of over-diagnosis. This will be an interesting area for 

future research and extended use of the MCLIR method.

CISNET collaborative modeling predictions are increasingly used by policy makers to 

inform screening guidelines [9, 14], evaluate screening and treatment programs [12, 13], 

and can be used by clinicians to assist in decision-making about breast cancer screening. 

[23] How different models arrive at their predictions of harms and benefits of screening 

and treatment may be perceived as opaque due to the complexity of the models. This 

study complements model descriptions [1-6] by using MCLIR analyses to illustrate and 

compare which structural differences and natural history assumptions may be important 
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to consider by policy makers when using collaborative modeling outcomes. The MCLIR 

approach could be adopted in other comparative modeling research to improve model 

transparency.
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ABSTRACT

Importance

Given recent advances in screening mammography and adjuvant therapy, quantifying 

their separate and combined effects on US breast cancer mortality reductions by molecu-

lar subtype could guide future decisions to reduce disease burden.

Objective

To evaluate the contributions associated with screening and treatment to breast cancer 

mortality reductions by molecular subtype based on estrogen-receptor (ER) and human 

epidermal growth factor receptor 2 (ERBB2, formerly HER2 or HER2/neu).

Design, Setting and Participants

Six Cancer Intervention and Surveillance Network (CISNET) models simulated US breast 

cancer mortality from 2000 to 2012 using national data on plain-film and digital mam-

mography patterns and performance, dissemination and efficacy of ER/ERBB2-specific 

treatment, and competing mortality. Multiple US birth cohorts were simulated.

Exposures

Screening mammography and treatment.

Main Outcomes and Measures

The models compared age-adjusted, overall, and ER/ERBB2-specific breast cancer 

mortality rates between 2000 and 2012 for women aged 30 to 79 years relative to the 

estimated mortality rate in the absence of screening and treatment (baseline rate); mor-

tality reductions were apportioned to screening and treatment.

Results

In 2000, the estimated reduction in overall breast cancer mortality rate was 37% (model 

range, 27%-42%) relative to the estimated baseline rate in 2000 of 64 deaths (model 

range, 56-73) per 100 000 women: 44% (model range, 35%-60%) of this reduction was 

associated with screening and 56% (model range, 40%-65%) with treatment. In 2012, 

the estimated reduction in overall breast cancer mortality rate was 49% (model range, 

39%-58%) relative to the estimated baseline rate in 2012 of 63 deaths (model range, 54-

73) per 100 000 women: 37% (model range, 26%-51%) of this reduction was associated 

with screening and 63% (model range, 49%-74%) with treatment. Of the 63% associated 

with treatment, 31% (model range, 22%-37%) was associated with chemotherapy, 27% 

(model range, 18%-36%) with hormone therapy, and 4% (model range, 1%-6%) with 

trastuzumab. The estimated relative contributions associated with screening vs treatment 
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varied by molecular subtype: for ER+/ERBB2−, 36% (model range, 24%-50%) vs 64% 

(model range, 50%-76%); for ER+/ERBB2+, 31% (model range, 23%-41%) vs 69% (model 

range, 59%-77%); for ER−/ERBB2+, 40% (model range, 34%-47%) vs 60% (model range, 

53%-66%); and for ER−/ERBB2−, 48% (model range, 38%-57%) vs 52% (model range, 

44%-62%).

Conclusions and Relevance

In this simulation modeling study that projected trends in breast cancer mortality rates 

among US women, decreases in overall breast cancer mortality from 2000 to 2012 were 

associated with advances in screening and in adjuvant therapy, although the associations 

varied by breast cancer molecular subtype.
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INTRODUCTION

Breast cancer mortality rates have been steadily declining over time in the United States 

(US).1 Simulation models developed within the Cancer Intervention and Surveillance Net-

work (CISNET) estimated that screening mammography and adjuvant therapy (treatment) 

contributed approximately equally to the reduction in breast cancer mortality from 1975 

to 2000.2 Since then, mammography has transitioned from plain-film to digital technol-

ogy optimized for tumor detection.3,4 At the same time, there have been advances in 

molecularly-targeted treatments based on expression of estrogen-receptor (ER) and hu-

man epidermal growth factor receptor 2 (ERBB2, formerly HER2 or HER2/neu), including 

aromatase inhibitors for ER+, and trastuzumab for ERBB2+ cancers. In addition, there 

have been advances in chemotherapy, particularly increasing use of taxanes.5,6

It is not known how screening and treatment advances have contributed to recent 

population-level, molecular subtype-specific breast cancer mortality rates. No single 

national registry contains sufficient information to assess this progress. Moreover, 

most clinical trials do not consider both screening and treatment effects, and do not 

readily translate to population effect. Given these circumstances, simulation modeling 

can be useful to integrate high-quality data from randomized-controlled trials, large 

observational studies, and population registries to estimate the relative contributions of 

advances on population-level mortality.2

In this report, six CISNET models compared the separate and combined contribution 

associated with screening and treatment on US breast cancer mortality rates by molecu-

lar subtype from 2000 and 2012.

METHODS

The Institutional Review Board at Georgetown University, the site of the CISNET Breast 

Cancer Coordinating Center, approved the study as exempt based on the use of de-

identified data. The 6 CISNET models were Dana-Farber Cancer Institute (model D)7, E 

Erasmus Medical Center (model E)8, Georgetown University-Albert Einstein College of 

Medicine (model G-E)9, MD Anderson Cancer Center (model M),10 Stanford University 

(model S),11,12 and University of Wisconsin-Harvard (model W-H).13 Compared to earlier 

analyses2,14,15 the models portray ER/ERBB2-specific subtypes,11 include digital screen-

ing3,4 and recent treatment advances,16 and have updated incidence17 and competing 

non-breast cancer mortality.18 The modeling approach is summarized below; additional 

details are available in the Supplement and online.19

The models incorporated updated estimates of breast cancer incidence17 and ER/

ERBB2-specific survival trends in the absence of screening or treatment and then incorpo-
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rated information on screening use and molecular subtype-specific treatment patterns to 

reproduce observed US incidence and mortality trends.1,20,21 Screen-detection during the 

preclinical screen-detectable period could result in diagnosis of earlier-stage or smaller 

tumors than diagnosed via symptomatic detection. This could translate into lower breast 

cancer mortality. Molecular subtype, age-specific, and stage-specific treatment could 

reduce the hazards of breast cancer death (models D, GE, M, and S) or result in cure for 

some cases (models E and W-H).

Model Input Parameters

Each group used a common set of inputs 22 based on their specific model structure, 

prior research,15 and assumptions to best reproduce US breast cancer incidence and 

mortality trends (Supplemental Table 1).5,6,10-17,22-27 Five models used age-period-cohort 

(APC) analyses to estimate 1975-2012 breast cancer incidence rates in the absence of 

screening (baseline incidence rate)17,25; model M applied a Bayesian approach to extend 

1975-1979 Surveillance Epidemiology and End Results (SEER) rates forward in time with 

a 4% (SD 0.2%) annual increase. Plain-film and digital mammography sensitivity data 

from the Breast Cancer Surveillance Consortium (BCSC) for 1994-2012 were used to 

estimate sensitivity for detection of invasive and DCIS cancers by age group, first vs 

subsequent screen, and time since last mammogram.

Screening dissemination was derived from national survey data for age at first screen 

and subsequent screening frequency by birth cohort.23,24 Plain-film mammography was 

assumed before 2000. Digital mammography was phased-in starting in 2001 based on 

data from the BCSC (unpublished data) and the US Food and Drug Administration Mam-

mography Quality Standards Act and Program.28

Molecular subtype-specific treatment dissemination was based on SEER patterns-of-

care special studies for 1975-199626,27 and the National Comprehensive Cancer Network 

data for 1997 onwards14,19. Tamoxifen was used in the 1980s; aromatase inhibitor use 

began in 1997; taxanes in 1998; and trastuzumab in 2006. Treatment effectiveness was 

conditioned on stage and ER/ERBB2 status (and age, if applicable), based on clinical 

trials; all estimates assumed local therapy.16

Analyses

Each model simulated mortality rates under four intervention scenarios: 1) no screen-

ing or treatment (the baseline mortality rate); 2) screening alone; 3) treatment alone; 

and 4) combined screening and treatment. Rates were age-adjusted using the 2000 US 

Standard Population29 and outcomes were reported for women ages 30-79.

The absolute mortality reductions associated with screening alone, treatment alone, 

or the combination in a given calendar year were calculated as the difference between 

the age-adjusted mortality rates predicted with intervention (scenarios 2, 3, or 4) and 
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the baseline mortality rate in that year (scenario 1). The percent mortality reduction 

(hereafter referred to as mortality reduction) in a given calendar year was calculated as 

this difference divided by the baseline mortality rate in that calendar year (scenario 1; 

Supplemental Table 2).

ER/ERBB2-specific mortality rates were computed by dividing the number of women 

who died of breast cancer with that subtype by the total breast cancer population at 

risk. In this manner, rates of all subtypes sum to the overall age-adjusted breast cancer 

mortality rate.

To estimate the separate contributions associated with screening and treatment to 

mortality reductions, we considered the modeled effects of screening alone and of treat-

ment alone as a fraction of the combined modeled effect in each calendar year.

The relative contribution associated with screening versus treatment to the combina-

tion of both was computed as the ratio of the screening alone effect to the sum of 

the screening alone effect and the treatment alone effect; the relative contribution of 

treatment was calculated similarly. Alternative approaches for computing these relative 

contributions were considered, and the main conclusions were unchanged (Supplemen-

tal Methods and Supplemental Table 3).

When considering the mortality reductions associated with each treatment interven-

tion (eg, chemotherapy, hormonal therapy, and trastuzumab) to their combination, the 

relative contribution associated with the various treatments were decomposed by first 

considering the chemotherapy contribution; then the hormonal therapy contribution for 

ER+ cases, given chemotherapy contributions; and lastly, the contribution associated 

with trastuzumab for ERBB2+ cases, given the other therapies.

To estimate relative contributions associated with the most recent advancements, we 

compared the mortality reduction from 2000 and 2012. We focused on this difference to 

remove the modeled effect of changes in the baseline rate during this period.

Uncertainty Analysis

All results were reported by model and summarized as the mean and range across 

models. The range provided a measure of uncertainty because each model has different 

assumptions and structures to represent unobservable factors such as baseline incidence 

rate and breast cancer natural history. Results consistent across models were considered 

robust.

RESULTS

Rates of mammography increased over time (Figure 1A), and plain-film was rapidly 

replaced by digital mammography starting in 2001 (Figure 1B). Treatment use varied by 
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Figure 1 Dissemination of Screening Mammography, Type of Mammography, and Adjuvant Therapy 
1975-2012
Panel A shows use of screening among US women ages 30-79 by calendar year based on data from 
multiple rounds of the National Health Interview Survey over time and Breast Cancer Surveillance 
Consortium (BCSC) data from 1994-2012. These observed data were used a targets in modeling 
dissemination of screening and intervals between screens. Note that the rate of never screened 
includes women ages 30-39.
Panel B illustrates the transition to use of digital vs. plain-film mammography over time using MQSA 
data on digital mammography facilities from the FDA and the BCSC, which includes over 2.3 million 
women, aged 30-79, with over 9.5 million mammograms, 95,000 breast cancer cases and 180,000 
breast biopsies.
Panel C depicts use of adjuvant systemic treatment dissemination from 1975-2012 for an exemplar 
stage and set of molecular markers (node positive AJCC 6 stage 2b, ER+/ERBB2-) among women 
50 to 69 years of age at diagnosis based on data from SEER special patterns of care studies and the 
National Comprehenisve Cancer Network. These data were used for all other combinations of ages, 
stages, and molecular subtypes.
Models used 2010 treatment dissemination data for subsequent years (indicated by dashed seg-
ments).
In general, in the 1980’s and early 1990’s multi-agent chemotherapy included primarily cytoxan, 
methotrexate, and 5-flourouricil (CMF) regimens; starting in the mid-1990’s anthracycline-based regi-
mens were included and increased in use, and in 1997 taxanes could be added to those regimens. 
Hormonal therapy began with tamoxifen in the 1980’s and starting in 1997 also included aromatase 
inhibitors. Hormonal therapy could be used alone or in combination with multi-agent chemotherapy. 
Over time, there was an increasing use of both multi-agent chemotherapy and hormonal therapy. 
For women diagnosed with ERBB2+ tumors (not shown in this example), trastuzumab was dissemi-
nated independently of other treatments and, based on its immediate rapid uptake, all ERBB2+ 
patients were modeled as receiving trastuzumab beginning in year 2006.
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molecular subtype, age, and stage, with high rates of dissemination of recent advances 

(Figure 1C). Incorporating these observed screening and treatment patterns, the models 

reproduced observed age-adjusted incidence (Supplemental Figure 1) and breast cancer 

mortality trends from 1975 to 2012 (Figure 2A). Predicted mortality trends for a represen-

tative model (Model G-E) illustrate that the mortality reduction associated with treatment 

alone increased faster than that associated with screening alone over time (Figure 2B).

Overall Breast Cancer Mortality in 2012

With the observed changes in screening technology and treatment regimens, we es-

timated a 49% (model range: 39%-58%) decrease in overall breast cancer mortality in 

2012 relative to the estimated baseline rate in 2012 of 63 deaths (model range, 54-73) 

per 100,000 women (Table 1, Column 4; Supplemental Table 2). The estimated screening 

contribution to this mortality reduction was 37% (model range, 26%-51%), while treat-

ment was 63% (model range, 49%-74%). The larger contribution associated with treat-

ment vs. screening in 2012 was predicted in five of six models (Table 1, Columns 7-8).

The estimated 63% (model range, 49%-74%) relative contribution associated with 

treatment in 2012 consisted of 31% (model range, 23%-37%) from chemotherapy, 27% 

(model range, 18%-36%) from hormone therapy, and 4% (model range, 1%-6%) from 

trastuzumab (Table 2).

Molecular Subtype-Specific Breast Cancer Mortality in 2012

The ER+/ERBB2- subtype was estimated to be associated with 64% (model range, 61%-

70%) of the overall mortality reduction in 2012 because it was the most common subtype 

(Supplemental Table 7).

Within-subtype analyses demonstrated significant variations in breast cancer mortality 

reduction in 2012 (vs estimated subtype-specific baseline rates; Table 1, Column 4). The 

estimated mortality reduction was largest for the ER+/ERBB2+ subtype at 58% (model 

range, 46%-71%), followed by the ER+/ERBB2- subtype at 51% (model range, 42%-55%), 

and the ER-/ERBB2+ subtype at 44% (model range, 33%-55%). The lowest mortality 

reduction was estimated for the ER-/ERBB2- subtype at 37% (model range, 27%-46%).

The estimated relative contributions associated with screening vs treatment also 

varied by molecular subtype, ranging from 31% (model range, 23%-41%) versus 69% 

(model range, 59%-77%) for the ER+/ERBB2+ subtype to 48% (model range, 38%-57%) 

versus 52% (model range, 43%-62%) for the ER-/ERBB2- subtypes, respectively (Table 1, 

Columns 7-8). The estimated relative contributions associated with specific treatments 

varied by subtype (Table 2). For example, for the ER+/ERBB2+ subtype, of the 69% 

(model range, 59%-77%) relative contribution associated with treatment, 26% (model 

range, 15%-32%) was associated with chemotherapy, 29% (model range, 23%-36%) with 

hormone therapy, and 14% (model range, 9%-18%) with trastuzumab (Table 2). For the 
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ER-/ERBB2- subtype, the 52% (model range, 43%-62%) relative contribution associated 

with treatment was associated with chemotherapy alone.

Figure 2 Age-Adjusted Breast Cancer Mortality From 1975-2012 by Model
Panel A compares the predictions the six models for rates of overall breast cancer mortality (all 
molecular subtypes) to actual US breast cancer mortality among the US population ages 30-79 from 
1975 to 2012.
Panel B illustrates predicted breast cancer mortality rates in the US population ages 30-79 from 1975 
to 2012 in the absence of screening and adjuvant treatment, presence of screening alone, presence 
of adjuvant treatment alone, and combination of screening and adjuvant treatment for a representa-
tive model (Model Georgetown-Einstein).
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Contribution of Screening and Treatment Advances Between 2000 and 
2012

The estimated overall breast cancer mortality reduction in 2000 was 37% (model range, 

27%-42%) relative to the estimated baseline rate in 2000 of 64 deaths (model range, 

56-73) per 100,000 women (Table 3, Column 2; Supplemental Table 2). The estimated 

overall breast cancer mortality reduction in 2000 was 49% (model range, 39%-58%) rela-

tive to the estimated baseline rate in 2012 of 63 deaths (model range, 54-73) per 100,000 

women (Table 3, Column 3; Supplemental Table 2). Hence, the estimated difference in 

the overall breast cancer mortality reduction in 2012 vs. 2000 was 12% (model range, 

10%-16%) (Table 3, Column 4; Supplemental Table 5). The estimated relative contribu-

tion associated with screening advances to this difference was 17% (2%-31%) (Table 2, 

Column 5); treatment advances were 83% (69%-98%) (Table 3, sum of Columns 6-8). 

Of the 83% (69%-98%) treatment-related advances, 38% (model range, 21%-54%) was 

associated with advances in chemotherapy, largely taxanes; 29% (model range, 9%-44%) 

was associated with advances in hormone therapy, largely the addition of aromatase 

inhibitors, and 15% (model range, 4%-25%) with the introduction of trastuzumab (Table 

3, Columns 6-8).

Within each molecular subtype, the estimated difference in the breast cancer mortality 

reductions between 2012 and 2000 was largest for the ER+/ERBB2+ subtype at 19% 

(model range, 17%-25%) and the smallest for the ER-/ERBB2- subtype at 8% (model 

range, 5%-11%) (Table 3, Column 4). The estimated relative contribution of screening 

and treatment to these differences also varied by subtype: the relative contribution of 

trastuzumab was 41% (model range, 27%-58%) in the ER+/ERBB2+ subtype and 57% 

(model range, 35%-78%) in the ER-/ERBB2+ subtype (Table 3, Column 8).

To complement the above analysis, we decomposed the overall mortality reduction in 

2012 in terms of the contributions associated with advances before 2000 and after 2000 

(Supplemental Table 6). Of the 37% (model range, 27%-42%) mortality reduction associ-

ated with screening in 2012, 33% (model range, 29%-48%) was associated with screening 

advances before 2000 and 4% (model range, 1%-8%) after 2000, largely digital mam-

mography. The introduction of trastuzumab was associated with 15% of overall mortality 

reduction between 2000 and 2012. Of the 31% (model range, 23%-37%) associated 

with chemotherapy, 22% (model range, 15%-30%) was associated with chemotherapy 

advances before 2000 and 9% (model range, 7%-14%) after 2000, largely taxanes. Of 

the 27% mortality reduction (model range, 18%-36%) associated with hormone therapy, 

20% (model range, 15%-27%) was associated with advances in hormone therapy before 

2000 and 7% (model range, 2%-12%) after 2000, largely from aromatase inhibitors. 

Supplemental Table 6 provides subtype-specific results.
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Table 1 Overall And Subtype-Specific Breast Cancer Mortality Reductions in 2012 Associated with 
Screening, Treatment, Or Both by Model*
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Operation** A B C A/C B/C A/(A+B) B/(A+B)

Model Overall

Dana-Farber 29 28 49 59 57 51 49

Erasmus 18 30 43 41 70 37 63

Georgetown-Einstein 25 37 53 47 69 40 60

MD Anderson 17 29 39 44 73 38 62

Stanford 18 37 50 36 74 33 67

Wisconsin-Harvard 17 49 58 30 84 26 74

Mean 21 35 49 43 71 37 63

ER+, ERBB2- Subtype

Dana-Farber 30 30 52 59 58 50 50

Erasmus 18 34 46 39 73 35 65

Georgetown-Einstein 26 39 54 48 71 40 60

MD Anderson 17 31 42 42 75 36 64

Stanford 19 41 53 35 77 31 69

Wisconsin-Harvard 16 51 59 27 86 24 76

Mean 21 38 51 42 73 36 64

ER+, ERBB2+ Subtype

Dana-Farber 27 38 57 46 67 41 59

Erasmus 20 42 52 39 82 32 68

Georgetown-Einstein 24 43 58 41 74 36 64

MD Anderson 18 38 46 38 82 32 68

Stanford 17 58 66 26 88 23 77

Wisconsin-Harvard 19 62 71 26 87 23 77

Mean 21 47 58 36 80 31 69
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Table 1 Overall And Subtype-Specific Breast Cancer Mortality Reductions in 2012 Associated with 
Screening, Treatment, Or Both by Model* (continued)
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ER-, ERBB2+ Subtype

Dana-Farber 25 28 49 52 58 47 53

Erasmus 17 28 41 40 68 37 63

Georgetown-Einstein 25 32 52 48 62 43 57

MD Anderson 15 23 33 45 70 39 61

Stanford 17 25 40 42 63 40 60

Wisconsin-Harvard 23 43 55 41 79 34 66

Mean 20 30 45 45 67 40 60

ER-, ERBB2- Subtype

Dana-Farber 26 20 40 66 50 57 43

Erasmus 17 22 35 47 64 43 57

Georgetown-Einstein 24 29 46 53 63 45 55

MD Anderson 18 14 27 65 52 56 44

Stanford 18 17 33 53 50 52 48

Wisconsin-Harvard 18 30 42 43 70 38 62

Mean 20 22 37 55 58 48 52

* The column labels are defined as follows: (A) mortality reduction associated with screening alone, 
relative to the estimated baseline mortality in 2012; (B) mortality reduction associated with treatment 
alone relative to the estimated baseline mortality in 2012; (C) mortality reduction associated with 
combined screening and treatment alone, relative to the estimated baseline mortality in 2012 (“com-
bined mortality reduction”); (D) percentage of combined mortality reduced captured by screen-
ing alone; (E) percentage of combined mortality reduction captured by treatment alone; (F) relative 
contribution of screening to combined mortality reduction; (G) relative contribution of treatment to 
combined mortality reduction. Note: Columns F and G sum to 100%.
** Operation refers to the calculation of the result in the table. For example, column D (Percentage 
of Mortality Reduction Captured by Screening Alone) is calculated as the result in column A for 
screening alone divided by the result in column C for the combined mortality reduction with both 
screening and treatment.
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Table 2 Relative Contributions of Treatments to Mortality Reduction in 2012

  Relative Contribution 
Associated with 

Chemotherapy, %

Relative Contribution 
Associated with Hormone 

Therapy, %

Relative Contribution 
Associated with 
Trastuzumab, %

Model Overall

Dana-Farber 23 24 2

Erasmus 37 25 1

Georgetown-Einstein 37 18 4

MD Anderson 22 34 6

Stanford 34 28 5

Wisconsin-Harvard 33 36 5

Mean 31 27 4

ER+, ERBB2- Subtype

Dana-Farber 25 25 0

Erasmus 30 35 0

Georgetown-Einstein 34 24 0

MD Anderson 21 42 0

Stanford 33 36 0

Wisconsin-Harvard 29 47 0

Mean 29 35 0

ER+, ERBB2+ Subtype

Dana-Farber 24 23 12

Erasmus 28 30 10

Georgetown-Einstein 32 23 9

MD Anderson 15 36 18

Stanford 30 30 17

Wisconsin-Harvard 25 34 18

Mean 26 29 14

ER-, ERBB2+ Subtype

Dana-Farber 36 0 16

Erasmus 45 0 18

Georgetown-Einstein 43 0 11

MD Anderson 24 0 29

Stanford 35 0 25

Wisconsin-Harvard 42 0 23

Mean 37 0 21

ER-, ERBB2- Subtype

Dana-Farber 43 0 0

Erasmus 57 0 0

Georgetown-Einstein 53 0 0

MD Anderson 42 0 0

Stanford 48 0 0

Wisconsin-Harvard 62 0 0

Mean 51 0 0
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Table 3 Relative Contributions Associated with Advances In Screening and Treatment to The Differ-
ence In The Mortality Reduction Between 2000 and 2012
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Operation* B-A D+E+F+G = 100%

Model Overall

Dana-Farber 39 49 10 13 34 44 10

Erasmus 32 43 10 31 32 33 4

Georgetown-Einstein 39 53 14 21 54 9 15

MD Anderson 27 39 13 23 21 37 18

Stanford 40 50 10 14 41 20 25

Wisconsin-Harvard 42 58 16 2 48 31 18

Mean 37 49 12 17 38 29 15

ER+, ERBB2- Subtype

Dana-Farber 43 52 9 14 39 47 0

Erasmus 34 46 13 21 14 64 0

Georgetown-Einstein 41 54 13 29 62 9 0

MD Anderson 29 42 13 24 25 50 0

Stanford 45 53 8 19 46 35 0

Wisconsin-Harvard 45 59 14 3 49 48 0

Mean 39 51 12 19 39 42 0

ER+, ERBB2+ Subtype

Dana-Farber 41 57 17 10 19 29 42

Erasmus 33 52 19 24 8 41 27

Georgetown-Einstein 41 58 17 14 46 16 24

MD Anderson 28 46 18 17 6 32 45

Stanford 47 66 19 4 23 14 58

Wisconsin-Harvard 46 71 25 0 29 20 51

Mean 39 58 19 12 22 25 41

ER-, ERBB2+ Subtype

Dana-Farber 33 49 16 11 37 0 52

Erasmus 26 41 15 13 37 0 50

Georgetown-Einstein 33 52 19 21 44 0 35

MD Anderson 20 33 13 20 3 0 78

Stanford 26 40 14 0 30 0 70
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Table 3 Relative Contributions Associated with Advances In Screening and Treatment to The Differ-
ence In The Mortality Reduction Between 2000 and 2012 (continued)
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Wisconsin-Harvard 33 55 22 0 42 0 58

Mean 29 45 15 11 32 0 57

ER-, ERBB2- Subtype

Dana-Farber 34 40 6 13 87 0 0

Erasmus 26 35 10 34 66 0 0

Georgetown-Einstein 35 46 11 14 86 0 0

MD Anderson 22 27 5 41 59 0 0

Stanford 27 33 7 23 77 0 0

Wisconsin-Harvard 32 42 10 9 91 0 0

Mean 29 37 8 22 78 0 0

* Operation refers to the calculation of the results in the table for each column. The column labels (A 
through G) are included with each column title.
Details on the computations are included in the Supplemental methods. Briefly, the estimated mean 
overall mortality reduction associated with combined screening and treatment in 2012 relative to the 
estimated baseline mortality rate in 2012 (Table 3, Column B) was 49% and in 2000 (Table 3, Column 
A) it was 37%. Thus, there was an additional 12% mortality reduction in 2012 compared to 2000 (Table 
3, Column C).
In 2000, the estimated relative contribution of screening to the mortality reduction associated with 
combined screening and treatment was 44% (Supplemental Table 4, Row D), hence the mortality 
reduction associated with screening is 44% of 37% = 16%.
In 2012, the estimated relative contribution of screening to the mortality reduction associated with 
combined screening and treatment was 37% (Table 1 and Supplemental Table 4, Row M), hence the 
mortality reduction associated with screening is 37% of 49% = 18%.
The difference in the mortality reduction associated with screening between 2012 and 2000 is 18%-
16% = 2%. Hence, the relative contribution of screening advances to the difference in the mortal-
ity reduction associated with combined screening and treatment was 2% divided by 12% (Table 3, 
Column C), giving 17% (Column D). The remainder (83%) is associated with treatment advances. This 
83% is distributed by treatment type in columns E-G. Columns D to G total 100%.
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DISCUSSION

This model-based analysis provides clinically relevant insights about the separate and 

combined population contributions associated with screening and treatment advances 

on reducing breast cancer mortality by molecular subtype. Six independent models 

found that both screening and treatment were associated with overall and subtype-

specific breast cancer mortality declines over time. Between 2000 and 2012, advances 

in treatment were associated with a larger contribution than screening to overall US 

breast cancer mortality decreases and for all molecular subtypes except ER-/ERBB2-, the 

subtype that also had the lowest modeled mortality reduction.

These results build upon past CISNET analyses and other studies that have examined 

the period before 20002,30-32 or considered the role of ER-status.15,33 The current analysis 

considered the study period from 2000 to 2012. In this period, digital mammography 

increased screening sensitivity compared with plain-film mammography, especially for 

women younger than 50 years and women with dense breasts,34 and has increased 

somewhat the number of breast cancer deaths averted with screening.35 The current 

results support findings that advances in mammography continue to contribute to reduc-

ing breast cancer mortality. It will be important to update the analysis when there is 

sufficient evidence about the benefits of tomosynthesis or other emerging screening 

approaches.36,37

Even with the recent screening advances, findings from this model-based analysis 

demonstrate a shift in the relative contributions associated with screening and treatment 

to breast cancer mortality, with greater contributions associated with treatment in 2012. 

Recent observational analyses have also found stage-specific survival improvements 

related to current treatment.33 The results from this model analysis confirm the benefits 

at the population level from the discovery and rapid dissemination over this past decade 

of several new classes of molecularly-targeted therapies, improvements in delivery of 

standard regimens, and refinements in therapy based on molecular subtype based by 

ER and ERBB2 status.

A unique contribution of this population-level analysis is how the relative contributions 

associated with screening and treatment varied by molecular subtype. In 2012, when 

gains from treatment alone were estimated, treatment alone could have provided roughly 

70% of the predicted mortality reduction achieved with both screening and treatment for 

the all the subtypes expressing the ER and/or ERBB2 receptors. However, screening is 

likely to remain important even if future treatments could cure all breast cancers, because 

screening can detect disease at earlier stages where there is less surgical and treatment-

related morbidity compared to that with therapy for more advanced stages.

Among the advances in recent adjuvant treatments, advances in chemotherapy with 

the addition of taxanes were associated with roughly 37% of the difference in overall 
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breast cancer mortality reduction from 2000 to 2012. Advances in hormone therapy 

with the addition of aromatase inhibitors had comparable contribution associated with 

mortality reduction. The contribution associated with trastuzumab was smaller on overall 

breast cancer mortality (13%), because ERBB2+ cases only account for approximately 

20% of all newly diagnosed breast cancers.38 However, trastuzumab was associated with 

more than 40% of the difference in mortality reduction between 2000 and 2012 among 

the ERBB2+ subtypes.

All of the models concluded that the ER-/ERBB2- subtype had the lowest overall mod-

eled mortality reduction over time, although the relative contributions associated with 

screening and treatment varied somewhat by model, with three of the six models esti-

mating a modestly higher contribution associated with treatment compared to screening 

in 2012. Prior analysis of SEER data have similar results, with greater mortality declines 

for those with ER+ vs. ER-tumors.15,39 Given that treatment advancements are lagging for 

ER-/ERBB2- cancers, more intensive screening approaches, or screening with different 

modalities, might be considered for groups at highest risk for this subtype, including 

African American women. Continued investments to discover molecularly-targeted treat-

ments for the ER-/ERBB2- subgroup remain important to continue to lower breast cancer 

death rates.

Overall, the models projected that screening and treatment each were associated with 

continued reductions in breast cancer mortality, but in 2012 treatment was associated 

with a larger relative proportion than screening of the mortality reductions overall and 

for all subtypes, except the ER-/ERBB2-. Because ER+ cancers are most prevalent and 

this group is expected to increase with time,40 additional advances for this subtype could 

have the largest impact on reducing the overall population burden of breast cancer. 

Looking ahead, model-based approaches may continue to be important to evaluate 

continued population-level progress in reducing the burden of breast cancer through a 

combination of continued discovery and dissemination of effective molecularly-targeted 

therapies, invention of novel screening technologies to optimize early detection of 

aggressive cancer subtypes, and greater ability to identify risk of developing specific 

molecular subtypes to permit tailored prevention and early detection.

This study has several strengths. First, by synthesizing national and clinical trial data, 

the results fill an important knowledge gap, especially because current surveillance 

data systems do not contain information on both screening and treatment. Second, the 

main findings were robust across six independent models, despite differences in model 

structures and assumptions. Third, the validity of this comparative modeling approach 

is supported by the consistency of conclusions across models, and the ability of each 

model to closely replicate the patterns of observed trends in incidence and mortality.

This research also has several limitations. First, the accuracy of model results depends 

on the availability of good quality data for input parameters and reasonable assumptions 
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about unobservable events. For instance, because there are limited long-term clinical 

trial or registry data on survival by ERBB2 status, the models extrapolated long-term 

survival. Second, modeled treatment effects were based on efficacy in trials included in 

the Oxford Overview,16 so could have slightly over-estimated actual population treat-

ment effects, and the relative contribution of treatment to mortality reductions. Third, 

each model also made different assumptions about the baseline incidence and natural 

history of breast cancer, leading to variability in the magnitude of results. Fourth, the 

models considered only five years of hormonal therapy since recommendations to 

consider 10-years among women at high-risk of late recurrence were just recently in-

troduced and have not yet been uniformly applied. Future modeling could incorporate 

the population-level dissemination and effectiveness of longer-term hormonal therapy. 

Fifth, progesterone-receptor status was not explicitly modeled since it is missing from 

many data sources. Sixth, subtype results for various racial/ethnic subgroups were not 

modeled. Understanding interactions between race, ethnicity, and subtype-specific 

outcomes represents an important future direction.41 Seventh, the effect of screening 

and subtype-specific treatment on morbidity and all-cause mortality was not evaluated. 

Eighth, modeling was based on estimates until 2012, and it is uncertain whether or how 

well these estimates reflect current breast cancer screening, treatment, or outcomes after 

2012. 

CONCLUSIONS

In this simulation modeling study that projected trends in breast cancer mortality rates 

among US women, decreases in overall breast cancer mortality from 2000 to 2012 were 

associated with advances in screening and in adjuvant therapy, although the associations 

varied by breast cancer molecular subtypes.
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eMethods 
 
Computing the Relative Contributions Associated with Screening and Treatment  

     In the main text, the relative contribution associated with screening versus treatment to 

the combination was computed as the ratio of the screening alone mortality reduction 

divided by the sum of the screening alone mortality reduction and treatment alone 

mortality reduction; similarly for the relative contribution associated with treatment. 

Herein, we refer to this approach as “Method A.” Two alternative approaches for 

computing the relative contributions associated with screening and treatment were also 

considered.  In “Method B,” we evaluated the relative contributions associated with 

screening and treatment by first quantifying the contributions associated with screening 

alone and assigning the remainder of the combined effect to treatment.  In “Method C”, 

we evaluated the relative contributions associated with screening and treatment by first 

quantifying the contributions associated with treatment alone and assigning the remainder 

of the combined effect to screening.  A comparison of all three approaches to compute 

the relative contributions associated with screening and treatment on overall breast cancer 

mortality is provided in Supplemental eTable 3.  All three approaches provide the same 

ranking of relative contributions, but results differ because the combination associated 

with  screening and treatment is less than the sum of the contributions associated with 

screening alone and treatment alone.  If the combination was equal to the sum of 

screening alone and treatment alone, all three methods would give the same result.  

Because Method A provided a result that was “in-between” Methods B and C, we choose 

it for the primary analysis.  
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Computing the Relative Contributions Associated with Screening and Treatment to the 

Difference in the Reduction Between 2000 and 2012  

In Table 3 of the main text, the relative contribution associated with screening and 

treatment advances to the different in the mortality reduction between 2000 and 2012 are 

provided.  The results in Table 3 are based on the difference in breast cancer mortality 

reduction in 2012 and breast cancer mortality reduction 2000.  Note that the mortality 

reduction in 2012 is computed relative to the estimated baseline breast cancer mortality in 

2012, where the estimate baseline mortality rate in a given calendar year is defined as the 

estimate mortality rate in that calendar year had there never been screening or adjuvant 

therapy. Similarly, the mortality reduction in 2000 is computed relative to the estimated 

baseline breast cancer mortality in 2000. By computing the difference between 2000 and 

2012, the baseline effect is removed and the difference estimates the effect of screening 

and treatment only (not the baseline effect) over this time period.  If we did not 

remove the effect of baseline then the difference in the mortality rate between 2012 and 

2000 could be associated with changes in the baseline as well as changes in screening and 

treatment.  Removing the estimated baseline trend provides more robust results for the 

relative contributions associated with screening and treatment.  

To understand how the relative contributions associated with screening and 

treatment to the difference in the mortality reduction between 2000 and 2012 is 

computed, we describe the calculations based on overall mortality using the mean results 

in Table 3. The overall mortality reduction associated with combined screening and 

treatment was estimated as 37% in 2000 and 49% in 2012, yielding a difference of 12% 

between 2000 and 2012. In 2000, the relative contribution associated with screening to 
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the overall mortality reduction was 44% (based on Method A in Supplemental eTable 3), 

so the mortality reduction associated with screening (vs. baseline) was 44% of 37% = 

16% in 2000.  In 2012, the relative contribution associated with screening to the overall 

mortality reduction was 37% (based on Method A in Supplemental Table 3), so the 

mortality reduction associated with screening (vs. baseline) was 37% of 49% = 18%.  The 

difference in the mortality reduction associated with screening between 2012 and 2000 

was 18%- 16% = 2%.  This was associated with screening advances (in this case the 

conversion to digital mammography because the dissemination of screening had not 

significantly changed). Hence the relative contribution of screening advances to the 

difference in the mortality reduction associated with combined screening and treatment 

was estimated as 2% divided by 12%, giving 17%. This leaves 83% associated with 

treatment advances. Supplemental eTable 5 provides the results of these calculations for 

each model, and the mean across the models.  
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eTable 1. Model Parameters 
Parameters Data Data Source* 
Common Model Parameters 
Incidence in the 
absence of screening 

An age-period-cohort model is used as a 
starting point for most models (except 
Model M) 

Ref. 1,2 

Mammography 
dissemination 

Screening dissemination is based on the age 
at first screening and frequency by birth 
cohort derived from BCSC and NHIS data 
through 2012 

Ref.3,4  

Proportion of plain 
film vs. digital 
mammograms by year 

Estimated percent of mammograms in the 
US that are digital by year from 
FDA MQSA and BCSC data 

Ref.5,6  
BCSC 
(unpublished 
data) 

Mammography 
performance 

By age, type of screen (initial vs. 
subsequent), screen interval, and plain film 
vs. digital  

BCSC 
(unpublished 
data) 

Distribution of 
ER/ERBB2-status by 
age and stage  

The probability of ER/ERBB2 conditional 
on age and stage at diagnosis 

BCSC 
(unpublished 
data) 

Survival in the 
absence of screening 
and treatment, Overall 
and by ER/ERBB2 

26-year breast cancer survival before 
adjuvant treatment by joint ER/ERBB2 
status, age group, and AJCC/SEER stage or 
tumor size 

Ref.18 

ER/ERBB2 specific 
treatment 
dissemination by year 

Based on observed dissemination in the 
population over time from SEER and the 
NCCN Outcomes Database (1997-2012)  

Ref. 5,7,8 
NCCN 
Outcomes 
Database 
(unpublished 
data) 

ER/ERBB2-specific 
treatment efficacy 

Meta-analyses of clinical trial results Ref.9  

Non-cancer competing 
causes of death 

Age- and cohort-specific all-cause mortality 
rates by year 

Ref. 10  

Model-specific Parameters 
Tumor sojourn time 
(or mean tumor 
doubling time)  

Sojourn time by joint ER/ERBB2 status and 
age group 

Ref.18  

Proportion of DCIS 
that progresses to 
invasive cancer 

Varies by model Ref.5,11-16  

Mean stage dwell 
time** or tumor 
growth rates or both 

Varies by models based on model structure; 
can vary by age and/or ER/ERBB2 status 

Ref.11-17  

Screening effects Stage-shift or change in tumor size between 
screened and unscreened populations 

Ref.11-16  
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* All reference citations refer to those in the main text. 
** The mean stage well time is defined as the average time a tumor spends in each stage 
before progressing to the next. 
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eTable 5. Relative contributions associated with screening and treatment advances on the difference 
in the breast cancer mortality reduction between 2000 and 2012* 

       Model**  
Year Metric Row 

ID 
Operation D E G-E M S W-H Mean 

2000 Mortality Reduction in 2000 Relative to 
Baseline in 2000, Screening Alone, % 

A A 27 14 21 13 17 17 17 

Mortality Reduction in 2000 Relative to 
Baseline in 2000, Treatment Alone, % 

B B 18 22 23 17 28 30 23 

Mortality Reduction in 2000 Relative to 
Baseline in 2000, Combined Screening and 
Treatment, % 

C C 39 32 39 27 40 42 37 

Relative Contribution Associated with 
Screening, % 

D A/(A+B) 60 39 48 44 38 35 44 

Relative Contribution Associated with 
Treatment, % 

E B/(A+B) 40 61 52 56 62 65 56 

Mortality Reduction Associated with 
Screening given Combination, % 

F D*C 24 13 19 12 15 15 16 

Mortality Reduction Associated with 
treatment given combination, % 

G E*C 16 20 21 15 25 27 21 

2012 Mortality Reduction Relative to Baseline, 
Screening Alone, % 

H H 29 18 25 17 18 17 21 

Mortality Reduction Relative to Baseline, 
Treatment Alone, % 

I I 28 30 37 29 37 49 35 

Mortality Reduction Baseline, Combined 
Screening and Treatment, % 

J J 49 43 53 39 50 58 49 

Relative Contribution Associated with 
Screening, % 

K H/(H+I) 51 37 40 38 33 26 37 

Relative Contribution Associated 
Treatment, % 

L I/(H+I) 49 63 60 62 67 74 63 

Mortality Reduction Associated with 
Screening given Combination, % 

M K*J 25 16 22 15 16 15 18 

Mortality Reduction associated with 
Treatment given Combination, % 

N L*J 24 27 32 24 34 43 31 

2000 
vs 
2012 

Difference in Mortality Reduction Between 
2000 and 2012, % 

Q J-C 10 10 14 13 10 16 12 

Difference in the Mortality Reduction 
Associated with Screening Advances 
Between 2000 and 2012, % 

O M-F 1 3 3 3 1 0 2 

Difference in the Mortality Reduction 
Associated with Treatment Advances 
Between 2000 and 2012, % 

P N-G 9 7 11 10 9 15 10 

Relative Contribution Associated with 
Screening Advances Between 2000 and 
2012, % 

R O/Q 13 31 21 24 14 2 17 

Relative Contribution Associated with  
Treatment Advances Between 2000 and 
2012, % 

S P/Q 87 69 79 76 86 98 83 

© 2018 American Medical Association. All rights reserved. 

* See Supplemental Methods subsection “Computing the Relative Contributions of Screening and 
Treatment to the Difference in the Reduction Between Two Calendar Years” for description of these 
calculations.  
** Abbreviations: Model D is Dana Farber; Model E is Erasmus; Model G-E is Georgetown-
Einstein; Model M is MD Anderson; Model S is Stanford; Model W-H is Wisconsin-Harvard.  
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eTable 6. Relative contributions associated with screening, chemotherapy, hormone therapy and 
trastuzumab to breast cancer mortality reduction in 2012, broken down by advances before and after 
2000*  

Relative Contributions Associated with Mortality Reduction in 2012, Percent 
  Screening  

Advances 
before 
2000 

Screening 
Advances 

after 
2000 

Chemo-
therapy 

Advances 
before 
2000 

Chemo-
therapy 

Advances 
after 
2000 

Hormone 
Therapy 

Advances 
before 
2000 

Hormone 
Therapy  

Advances 
after 2000 

Trast-
uzumab 

Model Overall 
Dana-Farber 48 3 16 7 15 9 2 
Erasmus 29 8 30 8 17 8 1 
Georgetown-
Einstein 

35 5 23 14 16 2 4 

MD Anderson 30 8 15 7 22 12 6 
Stanford 30 3 26 8 24 4 5 
Wisconsin-Harvard 26 1 20 13 27 9 5 
Mean 33 4 22 9 20 7 4 
 ER+, ERBB2- Subtype 
Dana-Farber 48 2 19 6 17 8 0 
Erasmus 29 6 26 4 17 18 0 
Georgetown-
Einstein 

35 6 21 13 22 2 0 

MD Anderson 29 8 13 8 27 16 0 
Stanford 28 3 26 7 30 5 0 
Wisconsin-Harvard 23 1 17 12 35 11 0 
Mean 32 4 20 8 25 10 0 
 ER+, ERBB2+ Subtype 
Dana-Farber 38 3 18 6 15 8 12 
Erasmus 23 9 25 3 15 15 10 
Georgetown-
Einstein 

32 4 19 14 19 5 7 

MD Anderson 25 7 12 2 23 13 18 
Stanford 22 1 24 7 26 4 17 
Wisconsin-Harvard 23 0 14 10 27 7 18 
Mean 27 4 19 7 21 9 14 
 ER-, ERBB2+ Subtype 
Dana-Farber 44 4 25 12 0 0 16 
Erasmus 32 5 31 13 0 0 18 
Georgetown-
Einstein 

38 7 30 14 0 0 11 

MD Anderson 34 8 25 1 0 0 32 
Stanford 40 0 24 11 0 0 25 
Wisconsin-Harvard 34 0 25 17 0 0 24 
Mean 37 4 27 11 0 0 21 
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eTable 6 (Continued). Relative contributions associated with screening, chemotherapy, hormone 
therapy and trastuzumab to breast cancer mortality reduction in 2012, broken down by advances 
before and after 2000*  
 

Relative Contributions Associated with Mortality Reduction in 2012, Percent 
 Screening  

Advances 
before 
2000 

Screening 
Advances 

after 
2000 

Chemo-
therapy 

Advances 
before 
2000 

Chemo-
therapy 

Advances 
after 
2000 

Hormone 
Therapy 

Advances 
before 
2000 

Hormone 
Therapy  

Advances 
after 2000 

Trast-
uzumab 

 ER-, ERBB2- Subtype 
Dana-Farber 55 2 30 13 0 0 0 
Erasmus 34 9 40 18 0 0 0 
Georgetown-
Einstein 

43 3 35 19 0 0 0 

MD Anderson 46 10 28 15 0 0 0 
Stanford 47 5 33 15 0 0 0 
Wisconsin-Harvard 36 2 39 23 0 0 0 
Mean 44 5 34 17 0 0 0 
*Row sum is 100%, within rounding error.  
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eTable 7. Breakdown of overall breast cancer mortality reduction in 2012 by molecular subtype* 

   
Model 

ER+/ERBB2- 
Subtype 

ER+/ERBB2+ 
Subtype 

ER-/ERBB2+ 
Subtype 

ER-/ERBB2- 
Subtype 

Dana-Farber 70 13 6 11 
Erasmus 62 17 10 12 
Georgetown-Einstein 62 15 9 14 
MD Anderson 61 17 9 13 
Stanford 65 16 8 11 
Wisconsin-Harvard 66 15 8 11 

Mean 64 16 8 12 
*Row sum is 100%.  
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eFigure 1. Comparison of model projections to actual US breast cancer incidence, for women ages 30-79, 
invasive cancer only 
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eFigure 2. Comparison of model projections for ER-/ ERBB2-specific breast cancer mortality trends between 
1975-2012, for women ages 30-79,  by molecular subtype.  (Upper left) ER+/ERBB2-, (upper right) 
ER+/ERBB2+, (lower left) ER-/ERBB2+, (lower right) ER-/ERBB2- subtypes.  
 

 

 
  

0
10

20
30

40

M
or

ta
lit

y 
(p

er
 1

00
,0

00
 w

om
en

)

19
76

19
80

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

ER+, HER2− Subtype

0
10

20
30

40

M
or

ta
lit

y 
(p

er
 1

00
,0

00
 w

om
en

)

19
76

19
80

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

ER+, HER2+ Subtype

0
10

20
30

40

M
or

ta
lit

y 
(p

er
 1

00
,0

00
 w

om
en

)

19
76

19
80

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

ER−, HER+ Subtype

0
10

20
30

40

M
or

ta
lit

y 
(p

er
 1

00
,0

00
 w

om
en

)

19
76

19
80

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

ER−,HER2− Subtype

Model D Model E Model G−E Model M Model S Model W



Breast cancer mortality by molecular subtype 157

© 2018 American Medical Association. All rights reserved. 

eFigure 3. Individual model projections for overall US breast cancer incidence and mortality (vs. SEER) and 
ER/ERBB2-subtype-specific mortality from 1975-2012, for women ages 30-79* 
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Model Wisconsin-Harvard 

 
* Legend for Supplemental Figure 3: (upper two panels) Individual model projections of breast cancer 
incidence and mortality rates vs. SEER rates to 2012, with modeled incidence reported in the presence and 
absence of screening; (lower four panels) Individual model projections by ER/ERBB2 under 4 scenarios: (i) no 
screening and treatment, (ii) screening alone, (iii) treatment alone, (iv) screening and treatment combined. 
Subtype-specific comparison to SEER is not possible because ER and ERBB2 status were not jointly reported 
over this period. 
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Abstract

Background

Controversy persists about optimal mammography screening strategies.

Objective

To evaluate screening outcomes, taking into account advances in mammography and 

treatment of breast cancer.

Design

Collaboration of six simulation models using national data on incidence, digital mam-

mography performance, treatment effects, and other-cause mortality.

Setting and Patients

The average-risk US female population and sub-groups with varying risk, breast density, 

or comorbidity.

Setting

Unites States

Patients

Average-risk U.S. female population and subgroups with varying risk, breast density, or 

comorbidity

Interventions

Eight strategies differing by age at which screening starts (40, 45, 50 years) and screen-

ing interval (annual, biennial, and hybrid [annual in the 40s and biennial thereafter]); all 

strategies assumed 100% adherence and stopped at age 74.

Measurements

Benefits (breast cancer-specific mortality reduction, breast cancer deaths averted, 

life-years and quality-adjusted life years); number of mammograms used; harms (false-

positive results, benign biopsies, and overdiagnosis); and ratios of harms (or use) and 

benefits (efficiency) per 1000 screens.

Results

Biennial strategies were consistently the most efficient for average-risk women. Biennial 

screening from ages 50-74 avoided a median of 7 breast cancer deaths vs. no screening; 

annual screening from ages 40-74 years avoided an additional 3 deaths, but yielded 
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1988 more false-positives and 7 more overdiagnoses per 1,000 women screened. Annual 

screening from ages 50-74 was inefficient (similar benefits but more harms than other 

strategies). For groups with a 2- to 4-fold increased risk, annual screening from age 40 

had similar harms and benefits as screening average-risk women biennially from 50-74. 

For groups with moderate or severe comorbidity, screening could stop at age 66 to 68 

years.

Limitations

Other imaging technologies, polygenic risk, and nonadherence were not considered.

Conclusion

Biennial screening for breast cancer is efficient for average-risk populations. Decisions 

regarding starting ages and intervals will ultimately depend on population characteristics 

and the decision-makers’ weight given to the harms and benefits of screening.

Primary Funding Source

National Institutes of Health
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Introduction

Despite decades of mammography screening for early breast cancer detection, there 

is no consensus on optimal strategies, target populations, or the magnitude of harms 

and benefits.(1-11) The 2009 US Preventive Services Task Force recommended biennial 

film mammography from ages 50-74, and suggested shared decision-making about 

screening in the 40’s.(12) Since that recommendation was formulated, there have been 

some new data regarding screening benefits,(2,6,8,9,11,13,14) digital mammography 

has essentially replaced plain film,(15) and increasingly effective breast cancer systemic 

treatment regimens have become standard.(16) There has also been growing interest 

in consumer preferences and personalized screening approaches.(17-20). These factors 

could each affect the outcomes of breast cancer screening programs and/or alter policy 

decisions about population screening strategies.(17)

Modeling can inform screening policy decisions since it uses the best available evi-

dence to evaluate a wide range of strategies, while holding selected conditions (e.g., 

treatment effects) constant, facilitating strategy comparisons.(21,22) Modeling also 

provides a quantitative summary of outcomes in different groups and assesses how 

preferences affect results. Collaboration of several models provides a range of plausible 

effects and illustrates the impact of differences in model assumptions on results.(1,7,23)

We used six well-established simulation models to synthesize current data to examine 

the outcomes of digital mammography screening at various starting ages and intervals 

among average-risk women. We also examined how breast density, risk, or comorbidity 

levels affect results, and whether preferences for health states related to screening and 

its downstream consequences affected conclusions.

Methods

Strategies

We evaluated eight strategies that varied by starting age (40, 45, 50) and interval (an-

nual, biennial, and hybrid [annual in the 40’s and biennial thereafter]); all strategies stop 

screening at age 74. We included “no screening” as a baseline.

Model Descriptions

The models used to evaluate the screening strategies were developed within the Cancer 

Intervention and Surveillance Modeling Network (CISNET) (24-30) and the research was 

institutional review board approved. The models included model D (Dana-Farber Cancer 

Institute, Boston, Massachusetts), model E (Erasmus Medical Center, Rotterdam, the 

Netherlands), model GE (Georgetown University Medical Center, Washington, DC and 
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Albert Einstein College of Medicine, Bronx, New York), model M (MD Anderson Cancer 

Center, Houston, Texas), model S (Stanford University, Stanford, California), and model 

W (University of Wisconsin, Madison, Wisconsin and Harvard Medical School, Boston, 

Massachusetts).

Since earlier analyses,(1) the models have undergone substantial revision to reflect 

advances in breast cancer control, including portrayal of molecular subtypes based on 

estrogen receptor (ER) and human epidermal growth factor-2 receptor (HER2) status;(23) 

current population incidence (31) and competing non-breast cancer mortality; digital 

screening; and the most current therapies.(32) All models except model S include ductal 

carcinoma in-situ (DCIS).

The general modeling approach is summarized below; full details including approach, 

construction, data sources, assumptions, and implementation are available at: https://

resources.cisnet.cancer.gov/registry and at (33). Additional information is available on 

request and the models are available for use via collaboration.

The models begin with estimates of breast cancer incidence (31) and ER/HER2-specific 

survival trends without screening or adjuvant treatment and then overlay data on screen-

ing and molecular subtype-specific adjuvant treatment to generate observed US popula-

tion incidence and breast cancer-specific mortality trends.(1,7,17,23,34) Breast cancers 

have a distribution of preclinical screen-detectable periods (sojourn time) and clinical 

detection points. Digital mammography performance characteristics depend on age, first 

vs. subsequent screen, time since last mammogram, and breast density. ER/HER2 status 

is assigned at diagnosis based on stage and age. Molecular subtype- and stage-specific 

treatment reduces the hazard of breast cancer death (models D, GE, M, and S) or results 

in a cure for some cases (models E and W). Women can die of breast cancer or other 

causes. Screen detection of cancer during the preclinical screen-detectable period can 

result in the identification (and treatment) of earlier-stage or smaller tumors than might 

occur via clinical detection, with a corresponding reduction in breast cancer mortality.

We used a cohort of women born in 1970 with average-risk and average breast density 

and follow them from age 25 (since breast cancer is rare before this age [0.08% of cases]) 

until death or age 100.

Model Input Parameters

The models used a common set of age-specific variables for breast cancer incidence, 

digital mammography performance, treatment effects, and average and comorbidity-

level specific-non-breast cancer causes of death.(20,33,35) The parameter values are 

available at: http://www.uspreventiveservicestaskforce.org/Page/Document/modeling-

report-collaborative-modeling-of-us-breast-cancer-1/breast-cancer-screening1.(33) 

In addition, each group included model-specific inputs (or intermediate outputs) to 

represent preclinical detectable times, lead-time, and age- and ER/HER2-specific stage 



170 Chapter 7

distribution in screen- vs. non-screen-detected women on the basis of their specific 

model structure.(1,7,23-30) These model-specific parameters were based on assump-

tions about combinations of values that reproduced US trends in incidence and breast 

cancer-specific mortality, including proportions of DCIS that were nonprogressive and 

would not be detected without screening. Models M and W also assumed some small 

nonprogressive invasive cancers. The models adopted an age-period-cohort modeling 

approach to project breast cancer incidence rates in the absence of screening;(31,36) 

Model M used 1975-79 SEER rates. The models assumed 100% adherence to screening 

and receipt of the most effective treatment to isolate the effect of varying screening 

strategies.

Four models used age-specific digital mammography sensitivity values observed in 

the Breast Cancer Surveillance Consortium (BCSC) for detection of invasive and DCIS 

cancers combined (model S only uses data for invasive cancers). Separate values were 

used for initial and subsequent mammography by screening interval using standard 

BCSC definitions: annual includes data from screens occurring within 9-18 months of the 

prior screen and biennial includes data on screens within 19-30 months.(37,38) Model 

D used these data as input variables (28) and models GE, S, and W used the data for 

calibration.(24,25,27) Models E and M fit estimates from the BCSC and other data.(26,29)

Women with ER-positive tumors received five years of hormonal therapy and an an-

thracycline-based regimen accompanied by a taxane. Women with ER-negative invasive 

tumors received anthracycline-based regimens with a taxane. Those with HER2-positive 

tumors also received trastuzumab. Women with ER-positive DCIS received hormonal 

therapy.(16) Treatment effectiveness was based on clinical trials and was modeled as 

a reduction in breast cancer-specific mortality risk or increase in the proportion cured 

compared to ER/HER2-specific survival in the absence of adjuvant treatment.(32)

Benefits

Screening benefits (vs. no screening or incremental to other strategies) included percent 

breast cancer mortality reduction, breast cancer deaths averted, and life-years (LYs) and 

quality-adjusted life-years (QALYs) gained because of averted or delayed breast cancer 

death. Benefits (and harms) were accumulated from ages 40-100 years to capture the 

lifetime impact of screening.

We considered preferences, or utilities to account for morbidity from screening and 

treatment. A disutility for age- and gender-specific general population health was first 

applied to quality-adjust life years.(39) These were further adjusted to account for ad-

ditional decrements in life years related to undergoing screening (-0.006 for one week), 

evaluation of a positive screen (-0.105 for five weeks), undergoing initial treatment by 

stage (for the first 2 years after diagnosis), and experiencing distant disease (for the last 

year of life for all women who die of breast cancer) (see Supplement Table 1).(33,40,41)
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Use and Harms

Use of services focused on the number of mammograms required for the screening strat-

egy. Harms included false-positive mammograms, benign biopsies, and overdiagnosis. 

False-positive mammogram rates were calculated as mammograms read as abnormal 

or needing further work-up in women without cancer divided by the total number of 

screening mammograms. Benign biopsies were defined as biopsies among women with 

false-positive screening results; we assume 100% compliance with biopsy recommenda-

tions.(42) Overdiagnosis was defined as all cases that would not have been clinically 

detected in the absence of screening because of lack of progressive potential or death 

from competing non-breast cancer mortality. The impact of overdiagnosis on QALYs was 

captured by the disutility of being treated for cancer but dying of other causes.

Statistical Analysis

For each model, strategies were ranked by the number of mammograms performed. 

We report the median use, benefits, and harms and range across models. We also 

obtained an efficiency frontier by plotting the sequence of points that represent the 

largest incremental percent breast cancer mortality reduction (or LYs or QALYs) per mam-

mogram performed or harm entailed. Screening strategies that fell on this frontier were 

considered the most efficient (i.e., have the steepest slope such that no alternative exists 

that provides more benefit with less use/fewer harms).

Three models (E, GE, and W) also evaluated results based on combinations of breast 

cancer risk and density. Risk levels included: 1.3 (e.g., nulliparity or age at first live birth 

>30); (18,43) 2.0 (e.g., family history of one first degree relative); (18) or 4.0 times higher 

than average-risk (e.g., 2 or more first degree relatives).(18,44) Greater risk levels, such 

as seen with BRCA 1/2 mutations, were not considered since such groups have specific 

screening guidelines. We made the simplifying assumption that risk affected incidence, 

but not other aspects of disease.

Breast density was modeled as entirely fatty (“a”), scattered density (“b”), heteroge-

neously dense (“c”) and extremely dense (“d”). Based on observed age-specific preva-

lence rates, density was assigned at age 40, and remained the same or decreased by 

one level at age 50 and again at age 65.(45) Density modified mammography sensitivity 

and specificity based on age, interval, and first vs. subsequent screening.(33) Density 

also modified the age-group specific (40-49, 50-64, and 65+) risk of developing breast 

cancer compared to average population density in the age-group (BCSC unpublished 

data).(44,46) Density was assumed to not affect molecular subtype or disease natural 

history. Density results were grouped into low (“a and b”) and high density (“c and d”) 

for presentation. The risk- and density-specific results were also compared to those for 

screening average-risk and density groups biennially from 50-74, since many guideline 

groups accept the latter.
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In other analyses, two models (model E and GE) examined the impact of comorbidity 

on screening cessation using comorbidity-specific life expectancy. Examples of condi-

tions that placed women in severe and moderate comorbidity groups included conges-

tive heart failure and diabetes, respectively; the specific conditions and their associated 

life expectancies have been previously reported.(20,35,47) We compared results for 

continuing to screen biennially past age 74 among women with no or low comorbidity 

or stopping earlier than 74 for those with moderate or high comorbidity. These analyses 

included women who survived and were breast cancer-free up until the point where 

screening was to be extended or stopped.

Four models evaluated whether high disutility values would eliminate screening ben-

efits. Finally, we evaluated the ability of the models to independently predict external 

trends and results (Supplement Figure 1 and Supplement Table 2).

Role of the Funding Source

We worked with US Preventive Services Task Force and Agency for Healthcare Research 

and Quality to develop the research questions. NCI investigators (KC, EF) collaborated 

in their role as scientific project officers. The agencies had no role in the study conduct 

or decision to submit the manuscript for publication.

Results

Benefits in the Average-risk Population

The models produced consistent rankings of the screening strategies (Table 1). For 

instance, biennial screening from ages 50 to 74 yielded a median 25.8% reduction in 

breast cancer mortality compared to no screening (range: 24.1%-31.8). Annual screening 

led to slightly greater reductions in mortality than biennial strategies. However, biennial 

strategies maintained a median of 79.8%-81.3% of the breast cancer-specific mortality 

reduction of annual screening (range 68.3-98.9%) (Supplement Table 3).

Biennial screening also maintained the majority of annual benefits for LYS and QALYs 

and quality-adjustment did not change the ranking of strategies. Across all strategies, 

the largest decrement from quality-adjustment to life years was related to declines in 

general health as women aged; smaller decrements occurred due to the disutility of 

undergoing diagnostic evaluation of an abnormal screening exam and for having cancer. 

The disutility associated with screening itself had minimal impact on QALYs. (see 33)

The incremental benefits of initiating screening at age 40 were slightly greater than 

starting at age 50 in terms of breast cancer deaths averted with both annual and bien-

nial screening (median 1.3 [range: 1.1-1.7] and 1.0 [0.8-1.7] per 1000 women screened, 

respectively) (Table 3). Initiating screening at age 45 yielded benefits intermediate be-
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Table 1 Ranking of Benefits (Percent Breast Cancer Mortality Reduction, LYs, QALYs) by Model and 
Screening Strategy Per 1000 Women Screened

Strategies Results per 1000 Women Screened

# of 
screens*

Percent breast cancer mortality reduction (vs. no 
screening) by model1

Median
(range across 
models)D E G-E M S W

B 50-74 11,127 25.6% 26.0% 31.8% 26.8% 24.1% 25.4% 25.8% (24.1-31.8)

B 45-74 13,212 26.6% 27.6% 33.9% 28.4% 25.9% 26.7% 27.2% (25.9-33.9)

H 45-74 15,966 27.7% 29.7% 35.9% 29.2% 27.3% 30.1% 29.5% (27.3-35.9)

B 40-74 16,013 28.3% 30.3% 35.9% 31.9% 28.2% 30.5% 30.4% (28.2-35.9)

H 40-74 20,884 29.0% 32.3% 37.9% 31.7% 29.3% 32.8% 32.0% (29.0-37.9)

A 50-74 21,318 32.1% 33.9% 37.6% 27.1% 29.1% 35.3% 33.0% (27.1-37.6)

A 45-74 26,136 34.2% 37.6% 41.6% 29.4% 32.3% 39.1% 35.9% (29.4-41.6)

A 40-74 31,038 35.5% 40.1% 43.6% 32.5% 34.4% 42.6% 37.8% (32.5-43.6)

1Without screening, the median probability of dying of breast cancer is 2.50% (range 1.50-3.20%). 
Thus, if a particular screening strategy leads to a 30% reduction in breast cancer mortality, this means 
that the probability of breast cancer mortality was reduced from 2.50% to 1.75%. This translates into 
7.5 deaths averted per 1000 women screened. The absolute reduction in breast cancer deaths (i.e., 
deaths averted) vs. no screening for each strategy is included in Table 2.

Strategies Results per 1000 Women Screened

# of 
screens*

Years of Life Gained (vs. no screening) by model Median
(range across 
models)

D E G-E M S W

B 50-74 11,127 153.8 94.0 140.5 146.5 104.2 74.6 122.4 (74.6-153.8)

B 45-74 13,212 168.4 107.7 161.2 171.3 115.2 84.0 138.2 (84.0-171.3)

H 45-74 15,966 175.3 117.9 170.2 171.4 125.1 95.7 147.7 (95.7-175.3)

B 40-74 16,013 183.7 123.7 172.4 194.8 131.6 98.8 152.0 (98.8-194.8)

H 40-74 20,884 191.1 137.6 187.2 211.5 141.0 110.9 164.1 (110.9-211.5)

A 50-74 21,318 180.0 125.9 167.3 156.3 133.3 104.3 144.8 (104.3-180.0)

A 45-74 26,136 201.3 149.3 196.7 177.8 154.2 123.0 166.0 (123.0-201.3)

A 40-74 31,038 217.1 168.8 213.5 218.1 170.1 140.5 191.8 (140.5-218.1)

Strategies Results per 1000 Women Screened

# of 
screens*

QALYs Gained (vs. no screening) by model Median
(range across 
models)

D E G-E M S W

B 50-74 11,127 114.5 67.3 100.1 109.6 71.9 47.1 86.0 (47.1-114.5)

B 45-74 13,212 123.8 75.6 114.4 129.4 78.8 51.9 96.6 (51.9-129.4)

H 45-74 15,966 126.6 80.9 118.3 128.5 84.5 58.3 101.4 (58.3-128.5)

B 40-74 16,013 133.7 85.4 120.1 148.1 89.1 60.4 104.6 (60.4-148.1)

H 40-74 20,884 134.2 91.0 126.1 159.4 92.5 64.8 109.3 (64.8-159.4)

A 50-74 21,318 127.0 84.1 111.4 113.2 87.5 62.4 99.5 (62.4-127.0)

A 45-74 26,136 138.9 97.3 129.5 129.4 99.5 71.7 114.5 (71.7-138.9)

A 40-74 31,038 146.6 107.3 137.2 160.6 107.6 80.0 122.4 (80.0-160.6)
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tween beginning at 40 and 50, although there were slightly greater incremental benefits 

when starting at age 45 (vs. 50) than starting at age 40 (vs. 45) (e.g., 10.6 vs. 8.0 and 15.4 

vs. 7.9 QALYs for biennial and annual strategies, respectively) (Table 1).

Harms in the Average-risk Population

All models projected more false-positive results, benign biopsies, and overdiagnosed 

cases under annual vs. biennial schedules and starting earlier than age 50 (Table 2). For 

instance, if biennial screening began at age 40 instead of age 50, for every 1000 women 

screened there would be a median of 1 more death averted, but 576 more false-positive 

results, 58 benign biopsies, and 2 additional overdiagnosed cases. Compared to screen-

ing initiation at age 45, starting screening at age 40 had 1 or fewer added deaths averted 

depending on interval, but more incremental harms.

Efficiency Frontiers for Average-risk Populations

Efficiency frontier plots were used to graphically depict the balance between the number 

of mammograms and benefits (life years gained) of screening strategies. Biennial strate-

gies starting at either age 40, 45, and 50 were all efficient (Figure 1, Supplemental Figure 

2). Points that were close to, but fell below the frontier were less efficient than those on 

the frontier line. For example, compared to the point on the efficient frontier for biennial 

screening at age 45, the hybrid strategy of annual screening at 45 was less efficient 

than biennial screening starting at 40. This is because the hybrid strategy at 45 would 

require 405.8 more mammograms to gain an additional life year for every 1000 women 

screened compared to biennial screening at 45, while biennial screening starting at 40 

only requires 189.5 extra mammograms to gain an additional life year.

Finally, annual screening from ages 50 to 74 was consistently inferior to other strate-

gies (i.e., was inefficient, or dominated) since it yielded the same or fewer benefits than 

the next least intensive strategy depending on the measure of benefits, but required 

A=Annual B=Biennial H=Hybrid
*Strategies are ranked from the least to the most mammograms, where the number of mammo-
grams is the median across models. Not all possible mammograms in the age interval are obtained 
since some women die from other causes before screening would occur.
†Model Group Abbreviations: D (Dana Farber Cancer Center), E (Erasmus Medical Center), G-E 
(Georgetown U. –Einstein COM.), M (M.D. Anderson Cancer Center), S (Stanford U.), W (University 
of Wisconsin/Harvard)
‡Grey shaded areas in the table show strategies that are inferior or inefficient (“dominated”) within a 
specific model; a strategy is classified as inferior or inefficient if there is another strategy that results 
in an equal or higher benefit (either percent mortality decline; LYG; or QALYs) with fewer harms (e.g., 
average screening exams).
§QALYs are adjusted for general health, diagnosis, screening and treatment.
||100% of women receive adjuvant systemic therapy based on recommended stage, ER/HER2-specif-
ic adjuvant therapy for pre- and post-menopausal women.
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Table 2 Lifetime Benefits and Harms of Screening Strategies based on Starting Ages and Screening 
Intervals

Strategy Median number (range across models) per 1000 women screened (vs. no screening)*

Screens Breast cancer 
deaths 
averted

False-positive 
screens

Benign breast 
biopsies

Over-diagnosed 
cases (invasive 
and DCIS) † ‡

Percent of all 
cases over-
diagnosed † ‡

Biennial          

50-74 11,127 7 (4-9) 953 (830-1325) 146 (120-205) 19 (11-34) 12% (8–22)

45-74 13,212 8 (4-9) 1220 (930-1599) 168 (120-221) 19 (11-34) 12% (8–22)

40-74 16,013 8 (5-10) 1529 (1100-1976) 204 (140-264) 21 (12-38) 13% (9–24)

Hybrid

45-74 15,966 8 (5-9) 1520 (1160-1968) 190 (140-250) 21 (12-40) 13% (8–25)

40-74 20,884 9 (5-10) 2106 (1480-2623) 245 (170-309) 23 (12-44) 14% (9–27)

Annual

50-74 21,318 9 (5-10) 1798 (1706-2445) 228 (219-317) 25 (12-68) 15% (8–36)

45-74 26,136 9 (6-11) 2355 (2185-3087) 247 (230-329) 28 (12-74) 17% (9–38)

40-74 31,038 10 (6-11) 2941 (2550-3742) 303 (260-388) 30 (13-77) 18% (9–39)

*In all scenarios, 100% of women receive adjuvant systemic therapy based on recommended stage, 
ER/HER2-specific adjuvant therapy for pre- and post-menopausal women.
†Over-diagnosed cases are defined as cases that would not have been clinically detected in the 
absence of screening
(i.e., cases that do not die from breast cancer because of lack of progressive potential or death from 
competing non-breast cancer mortality). The result includes DCIS and invasive overdiagnosis. Over-
diagnosis is calculated by comparing cases detected in the screening scenario to those detected 
in the non-screened scenario. Model S is excluded since it does not include DCIS. The percent 
overdiagnosis is calculated as the percent of all cases detected in the screening strategy that are 
overdiagnosis.
‡The upper range for all over diagnosis estimates is based on model M results. Model M gener-
ates very high overdiagnosis based on the assumption that incidence in the absence of screening 
has essentially remained flat since 1975-79, with virtually all of the increases over time attributable 
to screening. The other models use some form of an age-period-cohort model for incidence in the 
absence of screening, where some of the increases in incidence are due to screening and some to 
changes in risk factors (e.g., use of hormone replacement therapy), generating lower rates of overdi-
agnosis. Other sources of variation across models are related to assumptions about the proportions 
of DCIS cases that never progress to invasive cancer or the number of early invasive cancers that 
might be nonprogressive. Generally, models that assume higher proportions of DCIS and/or invasive 
cancer to be nonprogressive generate higher estimates of overdiagnosis than models that assume 
less nonprogressive disease. Unfortunately, the underlying incidence in the absence of screening 
and the proportion and types of tumors that are nonprogressive are unknown and unobservable. 
Therefore, the different results across models based on their respective assumptions provide a range 
of possible overdiagnosis.
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more mammograms or entailed more harms. These above patterns were generally seen 

with other harm and benefit metrics (see Supplement Figure 2).

Sensitivity Analyses for Average-Risk Populations

Varying the disutilities for usual health, screening, diagnosis, and treatment did not af-

fect strategy rankings for average-risk populations and QALY gains persisted under all 

screening strategies, although their magnitude decreased.

Figure 1 Efficiency frontier for life-years gained versus mammograms performed per 1000 women in 
model D (Dana-Farber Cancer Institute).
Legend for Figure 1. Efficiency Frontier
Efficiency frontier graphs for all models are shown in Appendix Figure 2 (available at ww.annals.
org). This graph plots the average gain in life-years per additional mammogram performed per 1000 
women for each screening strategy (vs. no screening) in model D. Biennial strategies are indicated 
with a square; hybrid strategies (annual in the 40s followed by biennial from 50 to 74 years of age) 
with a triangle; and annual strategies with a circle. Efficient strategies were plotted (i.e., those in 
which increases in mammography use resulted in greater life-years gained than the next less inten-
sive strategy). The line represents the “efficiency frontier” by joining efficient strategies in which 
increases in mammography use resulted in greater life-years gained than the next less intensive 
efficient strategy. Strategies on this line would be considered efficient because they achieve the 
greatest gain in benefit (life-years gained) per harm or use of mammograms. Strategies that use 
more mammograms but still have small benefits (i.e., a shallower slope than the next best strategy) 
are considered to be less efficient (i.e., weakly dominated). When and if the slope in the efficiency 
frontier plot levels off, it means that the additional life-years gained per increase in mammography 
are small relative to the previous strategies and could indicate a point at which additional screening 
might be considered as having a low return (or additional benefit). There is no definitive inflection 
point across the models for the strategies or metrics evaluated. Black strategies are efficient; gray 
strategies close to the efficiency frontier are less efficient; and open gray strategies are inefficient (in-
ferior, or dominated). Reference (33) provides efficiency frontiers for other harm and benefit metrics.
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Harms and Benefits by Risk Level

The balance of harms and benefits differed by risk group, with women who had higher-

risk having lower rates of false-positives and higher gains from screening than lower-risk 

groups. Screening higher-risk women also yielded a lower proportion of overdiagnosed 

cases per breast cancer death averted than screening average-risk women. However, 

annual screening from ages 50 to 74 had the same or less benefit and more harms than 

other strategies at all risk levels.(33)

For women with a 2- to 4-fold increase in risk, annual screening starting at age 40 

or 45 had similar or more favorable harm-to-benefit ratios (based on false-positives) 

as biennial screening of average-risk women from 50-74. For instance, for every 1000 

average-risk women screened biennially from 50-74, there would be 226.5 (range: 169.9-

267.0) false-positives per death averted. If women with a two-fold increase in risk began 

annual screening at age 40, their corresponding ratio would be slightly more favorable at 

200.7 (range: 177.5-232.2). For women with a 1.3-fold increase in risk, biennial screening 

starting at age 40 had similar harm-to-benefit ratios as biennial screening of average-risk 

women from ages 50-74.

Benefits and Harms by Breast Density Group

Breast density (low vs. high) changed absolute benefits, but annual screening from 50-74 

remained inefficient across breast density groups. Women in the low-density group had 

a greater proportion of their cancers detected due to greater digital mammography 

sensitivity, and therefore a greater breast cancer-specific mortality reduction than the 

high-density group. However, women in the high-density group had a greater absolute 

Table 3 Incremental Changes in Breast Cancer Deaths Averted by Interval, Age of Screening Initia-
tion, and Model

  Annual Biennial

Number of breast cancer deaths averted/1000 women (% breast cancer mortality reduction)

Model Start at 40 vs. 50 Start at 45 vs. 50 Start at 40 vs. 50 Start at 45 vs. 50

D 1.1 (3.4%) 0.6 (2.1%) 0.9 (2.7%) 0.3 (1.0%)

E 1.5 (6.2%) 0.9 (3.6%) 1.0 (4.3%) 0.4 (1.6%)

G-E 1.5 (6.0%) 1.0 (4.0%) 1.0 (4.1%) 0.5 (2.2%)

M 1.7 (5.3%) 0.7 (2.3%) 1.7 (5.1%) 0.5 (1.6%)

S 1.1 (5.2%) 0.7 (3.1%) 0.9 (4.1%) 0.4 (1.7%)

W 1.1 (7.3%) 0.6 (3.8%) 0.8 (5.1%) 0.2 (1.3%)

Median 1.3 (5.7%) 0.7 (3.4%) 1.0 (4.2%) 0.4 (1.6%)

*Incremental difference between starting at age 40 or 45 vs. 50. Annual is comparing A40-74
(or 45-74) to A50-74; biennial is comparing B40-74 (or 45-74) to B50-74. Hybrid strategies are com-
pared to B50-74, therefore for those incremental comparisons the hybrid results are the same as the 
annual results
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number of cancers detected because their risk of cancer was higher, leading to more life 

years saved among women in the high-density than the low-density group (33)).

Benefits and Harms by Comorbidity

For women with no comorbidity, biennial screening could continue to age 78 or 80 and 

still have similar harm-to-benefit ratios as screening women with average non-breast 

cancer mortality biennially from 50-74. However, for women with moderate to severe 

comorbidity, the comparable ratios were equivalent at about age 68 (33).

Discussion

This study used six established models to estimate the potential efficacy of different US 

breast cancer screening strategies. All six models demonstrated that screening initiation 

at age 40 has some benefits for average-risk populations, but also higher levels of harms 

than strategies starting at age 50. The findings also suggest that comorbidity levels could 

be used to tailor the age of screening cessation. Biennial screening strategies were the 

most efficient, but annual screening could be considered from ages 40-74 in groups with 

a two to four-fold higher than average-risk.

Results from all models indicated that digital mammography screening of average-

risk women in their 40’s modestly lowers breast cancer-specific mortality and extends 

the length and quality of life, even after considering disutilities related to the screen-

ing process. The absolute benefits of starting screening in the 40’s varied somewhat 

based on model structure and assumptions, but were consistent with observations from 

randomized trials.(6) However, starting at age 40 vs. 45 was associated with increasing 

incremental harms relative to the increase in benefits. Thus, decisions about initiating 

screening before age 50 may depend on the weight attached to screening benefits and 

harms.

Consistent with other analyses of screening upper age limits,(20,48-50) and other 

recommendations,(12,51) our results suggested that the balance of harms and benefits 

of screening was affected by competing non-breast cancer mortality, so that age of 

screening cessation could be tailored by comorbidity levels.

Similar to our 2009 analysis,(1) biennial strategies are most consistently efficient. 

Screening annually from ages 50-74 had the same or fewer benefits for any given harm 

for all population groups in virtually all models, and would be considered inefficient. 

However, annual screening in the 40’s followed by biennial screening at age 50, or the 

most intensive schedule evaluated (annual screening 40-74) were also efficient or close 

to being efficient. Additionally, annual screening of women with a two- to four-fold 

increased risk (e.g., due to non-BRCA related family history) from ages 40-74 had com-
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parable harm-to-benefit ratios as did biennial screening from age 50 to 74 in average-risk 

populations.

The results also suggest that benefits of screening vary by breast density, at least 

when grouped into low/high categories. Women with dense breasts have a higher risk 

of developing cancer and absolute detection rate, but lower relative detection. (19,52) 

This is because digital sensitivity, while optimized for density, is still lower in women 

with dense than non-dense breasts.(53-56) Improving outcomes for women with dense 

breasts (55) may require new innovations in imaging (57-60) or identification of risk 

biomarkers.(61,62)

This analysis extends our prior work by explicitly considering overdiagnosis as a 

screening harm. Depending on screening strategy, the models estimated that 2-12% of 

invasive and 30% to 50% of DCIS cases might represent overdiagnosis. While the models 

differed in absolute estimates, they agreed on how overdiagnosis affected the ranking 

of strategies and the finding that the majority of overdiagnosed cases were DCIS. The 

model results for overdiagnosis are not directly comparable to other published estimates 

(8,63) since the models followed women for their entire lives. The models also made as-

sumptions about unobservable input parameters related to natural history. While there is 

no agreement on methods to estimate overdiagnosis (64) or on its true rate,(65,66) there 

is agreement that it is an important harm. Active surveillance for DCIS with a low risk of 

progression is one potential future approach to reduce harms from DCIS overdiagnosis. 

More information is also needed on consumer knowledge of and willingness to risk 

overdiagnosis.(67)

Overall, this study has several important strengths including collaboration of six 

long-established, independent modeling groups, use of well-calibrated models that 

reproduce temporal epidemiological trends and a screening trial result, inclusion of 

digital technology, incorporation of increasingly effective treatments, and consideration 

of quality of life, risk factors, breast density, and comorbidity.(68) The conclusions about 

the ranking of screening strategies are robust and should provide greater credibility than 

inferences based on one model alone.

Our study also had limitations. First, to evaluate program efficacy we assumed 100% 

adherence to screening, prompt evaluation of abnormal results, and full use of opti-

mal treatment. Actual benefits will fall short of our projected results since adherence 

is not perfect. Second, we only focused on hybrid strategies for women in their 40’s. 

Alternative hybrid strategies may be important to examine in future research. Third, the 

analysis also did not consider other imaging technologies for average-risk populations 

or for groups with high breast density, such as ultrasound, (69) computer-aided detec-

tion,(70) tomosynthesis, or magnetic resonance imaging (MRI). Data on tomosynthesis 

performance and needs for radiologist re-training are still emerging.(58) Fourth, we did 

not model any radiation-induced breast cancers due to more intensive mammography 
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schedules.(71) Fifth, we assumed that risk factors influenced the incidence of disease, but 

not its natural history. Sixth, certain risk factors, such as family history, are age-dependent 

in their effects.(18,72) Since we held relative risk levels constant over age, our benefit 

estimates could be over- or under-estimated for specific risk factors.(17) Seventh, we 

did not consider polygenic risk,(73,74) or explicitly model menopausal status; we used 

age 50 as a proxy for the average age of menopause. Additionally, the analysis did 

not include screening program costs or utility estimates specific to some of the newest 

treatments. Finally, compared to our earlier research,(1) the models all estimated similar, 

but somewhat greater breast cancer-specific mortality reductions (for example, a median 

22% vs. 25.8% reduction with biennial screening from 50-74 in 2009 vs. current models, 

respectively). The primary reasons for this modeled improvement relate to the increased 

sensitivity of digital vs. film mammography, advances in molecular-targeted therapies, 

and changes in underlying breast cancer trends.

Overall, the six models conclude that biennial screening strategies are the most ef-

ficient. Choices about optimal ages of initiation (and cessation) and screening intervals 

will ultimately depend on program goals, the weight attached by the decision-maker to 

screening harms and benefits,(75) and considerations of efficiency.
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Appendix Model validation

Each model has a different structure and assumptions and some varying input variables, 

so no single method can be used to validate results against an external standard. 

Therefore, we used several approaches. First, considering actual screening and treat-

ment patterns instead of the efficacy strategies simulated in the base case, we compared 

model projections of incidence, breast cancer–specific mortality, and stage distribution 

with those reported by the Surveillance, Epidemiology, and End Results program for 

1975 to 2010. In our previous work, results of each model accurately projected trends for 

incidence and breast cancer–specific mortality by ER status for 1975 to 2000 (23). Next, 

we approximated the Age screening trial (6), assuming perfect adherence to invitations 

for annual screening with 13-year follow-up of women aged 40 to 49 years (6). Finally, we 

examined the consistency of results across models. Using inputs for actual dissemination 

of screening and treatment in the United States, the models captured the major trends in 

incidence and the general shape of breast cancer–specific mortality decreases over time 

(Appendix Figure 1). They also closely matched current stage distribution (not shown) 

and the Age trial results (Appendix Table 2) (6, 33). Thus, the models replicated patterns 

of observed US incidence and breast cancer–specific mortality over time. The models 

also estimated similar breast cancer–specific mortality reduction as that observed among 

women aged 40 to 49 years who actually attended screening in the Age trial, although 

the model results are slightly more optimistic than the trial because the models assume 

100% screening and use of the most effective systemic regimens (6). Overall, use of 

6 models to project a range of plausible screening outcomes provides implicit cross-

validation, with the range of results from the models as a measure of uncertainty.
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D = Dana-Farber Cancer Institute; E = Erasmus Medical Center; GE = Georgetown University Medi-
cal Center and Albert Einstein College of Medicine; M = MD Anderson Cancer Center; S = Stanford 
University; W = University of Wisconsin and Harvard Medical School. * Projection of relative risk of 
breast cancer death with annual screening from age 40 to 49 y; biennial at age 50 and 52 y versus a 
control group with biennial screening at age 50 and 52 y. Because the models are estimating mortal-
ity reduction with actual screening, model estimates are most comparable to the Age trial results (6) 
among women who actually attended screening. Model results show more benefit than observed in 
the trial because the models assume that 100% of women complied with the trial-specified screening 
schedule. In reality, not all women who were invited attended screening, and among those who at-
tended, many did not attend all scheduled screening rounds. In addition, the models assumed 100% 
receipt of the most effective treatments. † Age trial invitation results (intention to treat): relative risk, 
0.83 (95% CI, 0.66–1.04). Age trial results for women who actually were screened: relative risk, 0.76 
(CI, 0.51–1.01).
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The models closely estimate observed U.S. trends in incidence of invasive disease (top), incidence 
of invasive disease and DCIS (middle)*, and breast cancer–specific mortality (bottom). Using inputs 
for actual dissemination of screening and treatment in the United States, the models all captured 
the major trends in incidence over time. Early increases with the advent of mammography in the 
mid-1980s are seen, followed by a downturn in the 2000s and then a leveling off. The models also 
captured the general shape of decreases in breast cancer–specific mortality over time. All models 
show an increase in incidence with the introduction of mammography screening. Model GE has a 
steep peak in incidence in 2005 owing to the specific method for capturing the transition from plain 
film to digital mammography, because digital mammography has higher sensitivity and detection of 
ductal carcinoma in situ than plain film mammography; other models include a more gradual transi-
tion surrounding this period. D = Dana- Farber Cancer Institute; DCIS = ductal carcinoma in situ; E 
= Erasmus Medical Center; GE = Georgetown University Medical Center and Albert Einstein Col-
lege of Medicine; M = MD Anderson Cancer Center; QALY = quality-adjusted life-year; S = Stanford 
University; SEER = Surveillance, Epidemiology, and End Results; W = University of Wisconsin and 
Harvard Medical School. * Model S does not include DCIS.
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D = Dana-Farber Cancer Institute; E = Erasmus Medical Center; GE = Georgetown University Medi-
cal Center and Albert Einstein College of Medicine; M = MD Anderson Cancer Center; S = Stanford 
University; W = University of Wisconsin and Harvard Medical School. * Model M does not include 
a natural history component. On the basis of a combination of assumptions about underlying inci-
dence trends in the absence of screening, it essentially yields a long lead time for invasive cancer; 
thus, all cancers found with annual screening can also be detected with biennial screening. † Per-
centage of reduction with annual screening in women aged 50-74 y that is maintained by bien-
nial screening in women aged 50-74 y is calculated as the percent mortality reduction with biennial 
screening in women aged 50-74 y divided by the percent mortality reduction with annual screening 
in women aged 50-74 y. § Percentage of reduction with annual screening in women aged 45-74 y 
that is maintained by biennial screening in women aged 45-74 y is calculated as the percent mortality 
reduction with biennial screening in women aged 45-74 y divided by the percent mortality reduction 
with annual screening in women aged 45-74 y. § Percentage of reduction with annual screening in 
women aged 40-74 y that is maintained by biennial screening in women aged 40-74 y is calculated 
as the percent mortality reduction with biennial screening in women aged 40-74 y divided by the 
percent mortality reduction with annual screening in women aged 40-74 y.
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The average gain in life-years per additional mammogram performed per 1000 women for each 
screening strategy (vs. no screening). Biennial strategies are indicated with a square; hybrid strate-
gies (annual in the 40s followed by biennial from 50 to 74 years of age) with a triangle; and annual 
strategies with a circle. Efficient strategies were plotted (those in which increases in mammogra-
phy use resulted in greater life-years gained than the next least-intensive strategy). The line rep-
resents the “efficiency frontier” by joining efficient strategies in which increases in mammography 
use resulted in greater life-years gained than the next less intensive efficient strategy. Strategies on 
this line would be considered efficient because they achieve the greatest gain in benefit (life years 
gained) per harm or use of mammograms. Strategies that use more mammograms but still have 
small benefits (i.e., a shallower slope than the next best strategy) are considered to be less efficient 
(i.e., weakly dominated). When and if the slope in the efficiency frontier plot levels off, it means that 
the additional life-years gained per increase in mammography are small relative to the previous 
strategies and could indicate a point at which additional screening might be considered as having 
a low return (or additional benefit). There is no definitive inflection point across the models for the 
strategies or metrics evaluated. Black strategies are efficient; gray strategies close to the efficiency 
frontier are less efficient; and open gray strategies are inefficient (inferior, or dominated). Reference 
33 provides efficiency frontiers for other harm and benefit metrics. D = Dana-Farber Cancer Institute; 
E = Erasmus Medical Center; GE = Georgetown University Medical Center and Albert Einstein Col-
lege of Medicine; M = MD Anderson Cancer Center; QALY = quality-adjusted life-year; S = Stanford 
University; W = University of Wisconsin and Harvard Medical School.
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ABSTRACT

Background

Estimates of risk for radiation-induced breast cancer from mammography screening have 

not considered variation in dose exposure or diagnostic work-up after abnormal screen-

ing results.

Objective

To estimate distributions of radiation-induced breast cancer incidence and mortality from 

digital mammography screening, considering exposure from screening and diagnostic 

mammography and dose variation across women.

Design

Two simulation-modeling approaches.

Setting

U.S. population.

Patients

Women aged 40-74 years.

Interventions

Annual or biennial digital mammography screening from age 40, 45, or 50 years until 

age 74 years.

Measurements

Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer 

incidence and mortality (harms) per 100,000 women screened.

Results

Annual screening of 100,000 women aged 40 to 74 years was projected to induce 

125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% 

CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. 

Women exposed at the 95th percentile were projected to develop 246 radiation-induced 

breast cancers leading to 32 deaths per 100,000 women. Women with large breasts 

requiring extra views for complete breast examination (8% of population) were projected 

to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 

deaths per 100,000 women), compared to women with small or average breasts (113 



Radiation-induced breast cancer incidence and mortality 193

cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced 

risk of radiation-induced cancers 5-fold.

Limitations

Life-years lost from radiation-induced breast cancer could not be estimated.

Conclusions

Radiation-induced breast cancer incidence and mortality from digital mammography 

screening are affected by dose variability from screening, resultant diagnostic work-up, 

initiation age, and screening frequency. Women with large breasts may have a greater 

risk for radiation-induced breast cancer. 

Funding source

Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, Na-

tional Cancer Institute.

Primary research and data collection for the American College of Radiology Imaging 

Network (ACRIN) Digital Mammographic Imaging Screening Trial (DMIST) were sup-

ported by the National Cancer Institute (U01 CA80098, U01 CA80098-S1, U01 CA79778, 

and U01 79778-S1).
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INTRODUCTION

Exposure to ionizing radiation from repeated mammography examinations may increase 

breast cancer risk (1, 2). Radiation-induced breast cancer incidence and mortality associ-

ated with recommended screening strategies are suggested to be low relative to breast 

cancer deaths prevented (3-5). However, prior projected population risks were based on 

exposure from screening only and assumed only four standard views per screen at the 

mean radiation dose. Evaluations of screening programs should consider full episodes of 

care including diagnostic work-up prompted by an abnormal screening result (6). False-

positive recalls, breast biopsies, and short-interval follow-up examinations are relatively 

common in the United States and add radiation exposure from diagnostic mammog-

raphy (7). Some subgroups of women, such as obese women and women with dense 

breasts, are more likely to have additional evaluations (7-9), which may increase their risk 

for radiation-induced cancer.

When risk for radiation-induced breast cancer is being evaluated, it may also be impor-

tant to consider variation in radiation dose from a single examination. Examinations vary 

in the number of views performed and dose per view; therefore, some women receive 

more than the mean dose. The American College of Radiology Imaging Network DMIST 

(Digital Mammographic Imaging Screening Trial) found an average radiation dose to the 

breast of 1.86 mGy to the breast from a single digital mammography screening view 

(10), but dose per view varied widely from 0.15 to 13.4 mGy (Supplemental Content) 

and 21% of digital screening examinations used more than four views (10). Radiation 

dose is strongly correlated with compressed breast thickness; thus, women with large 

breasts women tend to receive higher doses per view and may require more than four 

views for complete examination (10, 11). Women with breast augmentation receive 

implant-displacement views in addition to standard screening views, which doubles their 

radiation dose (12). Woman may have repeated views because of movement artifacts or 

improper breast positioning.

We estimated the distribution of cumulative radiation dose and associated breast 

cancer risk from full screening episodes to identify subgroups of women who may have 

a greater risk for radiation-induced cancer because they have factors contributing to 

greater doses per examination or frequent false-positive screening results that lead to 

additional radiation exposure from subsequent diagnostic work-up. Using population-

based data from the Breast Cancer Surveillance Consortium (BCSC) (13), we estimated 

the probability of a false-positive screening result followed by additional imaging evalua-

tion, short-interval follow-up, or biopsy. We used data from the BCSC, DMIST, and other 

sources in 2 simulation models to estimate radiation exposure and radiation-induced 

breast cancer incidence and mortality associated with 8 potential screening strategies 
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with different starting ages (40, 45, or 50 years) and screening intervals (annual, biennial, 

or a hybrid strategy).

METHODS

Screening Strategies

We used 2 complementary stochastic modeling approaches to evaluate the following 8 

strategies for screening with digital mammography:

1.	 Annual screening from ages 40-74, 45-74, and 50-74 years.

2.	 Biennial screening from ages 40-74, 45-74, and 50-74 years.

3.	 Hybrid strategy of annual screening from ages 40-49 or 45-49 and biennial screening 

from ages 50-74 years.

We included the hybrid strategies because more frequent screening has been advocated 

for younger and premenopausal women due to their greater prevalence of dense breasts 

and more aggressive tumors, resulting in a greater risk for interval cancer, than older 

women (14-17). Outcomes were breast cancer deaths averted (benefits) and radiation-

induced breast cancer incidence and mortality (harms) associated with a lifetime of 

mammography screening relative to no screening.

Simulation Modeling Approaches

Figure 1 summarizes our approach. We used 2 complementary stochastic modeling 

approaches to simulate mammography events associated with radiation exposure and 

outcomes for a population adherent with each of the 8 screening strategies. The first ap-

proach used the Microsimulation of Screening Analysis–Fatal Diameter (MISCAN-Fadia) 

model (18), which is a detailed natural history model of breast cancer. This approach 

provided estimates of breast cancer incidence and mortality with and without screening 

to contextualize estimates of radiation-induced breast cancer cases. Although MISCAN-

Fadia models the average effects of screening on a population level, it does not model 

correlation among repeated mammography results in individual women or the specific 

types of work-up after an abnormal screening result; thus, it cannot be used to estimate 

the distribution of cumulative radiation exposure from both screening mammography 

and subsequent diagnostic work-up among women. Therefore, we developed a new 

simulation model that provides woman-level exposure histories that were not available 

from the MISCAN-Fadia model. This new model captures exposure heterogeneity by 

simulating mammography results and subsequent work-up in each woman and allowing 

for variability in radiation exposure and breast size.
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MISCAN-Fadia Simulation Model

The MISCAN-Fadia microsimulation model simulates individual life histories of women with 

and without breast cancer in the presence and absence of screening from birth to death 

from breast cancer or other causes. The model has been described in detail elsewhere 

(18) and information about the model can be found online (http://cisnet.cancer.gov/); in-

puts and assumptions are described in our report for the draft USPSTF recommendations 

(19). In brief, on the basis of BCSC data on sensitivity of digital mammography screen-

ing, cancer detection rates, and cancer stage at detection, we estimated thresholds at 

which tumors become screen-detectable. Screening sensitivity and specificity depended 

on age, breast density, and screening interval. Breast cancer risk depended on age and 

breast density. The effect of screening on breast cancer natural history was assessed by 

modeling continuous tumor growth, in which tumors detected before they reached their 

fatal diameter were cured and those detected past their fatal diameter led to breast cancer 

death. We assumed that all women received the mean dose per screening examination 

and, if recalled, the mean dose associated with diagnostic work-up after a false-positive 

screening result, both of which were estimated from the radiation exposure model. We 

also projected breast cancer incidence and mortality with and without screening.

Radiation Exposure Simulation Model

Full details including approach, data sources, and assumptions are available in the 

Supplemental Content. In brief, for each of the 8 screening strategies, we simulated 

woman-level factors and screening-related events for 100 000 women.

Woman-level factors: Each woman was assigned a compressed breast thickness from 

the DMIST distribution (Supplemental Table 2). Women with a compressed breast 

thickness of 7.5 cm or greater (8% of DMIST population) were assumed to have large 

breasts that required extra views for complete examination. On the basis of distributions 

seen in the BCSC, each woman was assigned a baseline Breast Imaging Reporting and 

Data System (12) density at the start of screening, which could potentially decrease by 1 

category at ages 50 and 65 years (20) (Supplemental Table 4).

Evaluation of a positive screening exam: For each screening strategy, we simulated 

events after a positive screening result that did not lead to a diagnosis of breast cancer 

(Figure 2) to focus on risk for first breast cancer induced by radiation. We modeled the 

probability of each event by using data from digital mammography done at BCSC facili-

ties from 2003 to 2011 on women aged 40 to 74 years without a history of breast cancer 

or cancer diagnosed within 1 year after the examination. At each screening, a woman’s 

probability of recall for additional imaging was based on age, breast density, screening 

interval, prior screening results, and a woman-specific random effect. If recalled, the 

probability of referral to biopsy, short-interval follow-up, or return to routine screening 

was based on age, breast density, and screening interval.
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Radiation dose: For each screening and diagnostic event, we sampled the number of 

screening mammography views from the DMIST distribution (Supplemental Table 1) 

and number of views for diagnostic work-up on the basis of expert opinion, conditional 

on compressed breast thickness (Supplemental Table 3). assumed different distributions 

of views for women with and without large breasts. We randomly sampled the radia-

tion dose per view on the basis of the DMIST distribution conditional on the woman’s 

compressed breast thickness (Supplemental figure 1). For each age, we calculated total 

breast-level dose by multiplying half the number of views of both breasts by the dose 

per view. We report the mean and the 5th, 25th, 75th, and 95th percentiles (to quantify 

exposure leading to increased risk for radiation induced breast cancer) for the number 

of mammography views and associated dose from each screening examination and all 

follow-up mammograms within 1 year of a screening examination Supplemental Table 9.

Radiation-induced breast cancer incidence and mortality

We estimated radiation-induced breast cancer incidence using the excess absolute risk 

model from pooled analysis of four cohorts by Preston and colleagues (1), the preferred 

model for estimating radiation-induced breast cancer incidence (2, 21). Details are 

provided in the Supplemental Content. Women in these cohorts received cumulative 

radiation doses of 20 mGy or greater. This level of cumulative radiation exposure is 

reached after 2 to 4 years of mammography screening and diagnostic work-up (Supple-

mental Table 9). This model assumes that excess risk of radiation-induced breast cancer 

increases linearly with increasing radiation dose within the exposure ranges from mam-

mography. In addition, risk decreases with increasing age at exposure, especially after 

Figure 2 Screening mammography process.
Short-interval follow-up (SIFU) examinations included unilateral diagnostic views on the recalled 
breast at 6 mo after the initial SIFU recommendation. The examinations included unilateral diag-
nostic views on the recalled breast plus bilateral routine screening views at 12 and 24 mo after the 
initial SIFU recommendation for women who received annual screening and 24 mo after the initial 
SIFU recommendation for those who received biennial screening. The routine screening views could 
result in recall for additional imaging to work up a new finding, followed by a recommendation for 
another SIFU examination or tissue biopsy.
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age 50 (a surrogate for menopause) and increases with age, the highest incidence of ra-

diation-induced breast cancer late in life. We modeled the latency period for developing 

radiation-induced breast cancer using a logistic function that phases in increased breast 

cancer risk between 4 and 11 years after exposure (21). We estimated radiation-induced 

breast cancer mortality by multiplying radiation-induced breast cancer incidence by the 

age-specific case-fatality rates derived from MISCAN-Fadia and assuming 100% adher-

ence to screening and available treatment. We assumed that breast cancers induced by 

radiation is screen-detected at the same rate as non-induced cancer. We approximated 

Confidence Intervals (CI) by re-estimating risk using the upper and lower 95% CIs for the 

risk coefficient, β, because this uncertainty dominates the uncertainty in estimated risk 

(2, 21).

The MISCAN-Fadia model was programmed in Delphi (Borland). All other analyses 

were done in R, version 3.1.0 (R Foundation for Statistical Computing) and SAS version 

9.4 (SAS Institute).

Role of the Funding Source

This study was funded by the Agency for Healthcare Research and Quality under a con-

tract to support the work of the U.S. Preventive Services Task Force and by the National 

Cancer Institute. Investigators worked with Task Force members and Agency staff to 

develop the scope, analytic framework, and key questions. The funding source had no 

role in model input selection, data synthesis, or data analysis. Agency staff provided proj-

ect oversight and reviewed the report to ensure that the analysis met methodological 

standards. The authors are solely responsible for the content and the decision to submit 

the manuscript for publication.

RESULTS

Radiation exposure

Most radiation exposure from screening and subsequent diagnostic work-up was due 

to the screening examination (Supplemental Table 9). Diagnostic work-up accounted 

for only 10% of the mean annual radiation dose but 24% of the dose for women with 

exposure at the 95th percentile. On average, women with large breasts were exposed to 

2.3 times more radiation than those with small or average-sized breasts.

Radiation-induced breast cancer incidence and breast cancer death

Risk estimates corresponding to mean exposures were similar for the 2 modeling ap-

proaches (Table 1); therefore, we focus on results from the radiation exposure model. 

We projected that annual screening and diagnostic work-up of 100 000 women aged 
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40 to 74 years (35 screening examinations per woman) would induce an average of 125 

breast cancer cases (95% CI, 88 to 178), resulting in 16 deaths (CI, 11 to 23) (Table 1). Risk 

projections varied widely, with 100 000 women exposed at the 5th percentile projected 

to develop 64 radiation-induced cancer cases (CI, 44 to 90), resulting in 8 deaths (CI, 6 

to 12), and 100 000 women exposed at the 95th percentile projected to develop 246 

radiation-induced cases of cancer (CI, 171 to 349), resulting in 32 deaths (CI, 22 to 45). 

Women with large breasts requiring extra views for complete examination had more 

than twice as many cases of radiationinduced breast cancer (mean, 266 cases [CI, 186 to 

380]) and breast cancer deaths (mean, 35 deaths [CI, 24 to 50]) than women with small 

or average-sized breasts (113 breast cancer cases [CI, 79 to 161] and 15 breast cancer 

deaths [CI, 10 to 21]) (Table 2). Starting screening at age 50 years and following a biennial 

Table 1 Comparison of lifetime attributable risks of radiation-induced breast cancer and breast can-
cer death (per 100,000 women) from two modeling approaches.

Screening 
Strategy

MISCAN-Fadia Model   Radiation-Exposure Model

Mean
(95% CI)

Mean
(95% CI)

5th percentile
(95% CI)

95th percentile 
(95% CI)

  Lifetime Attributable Risk of Radiation-Induced Breast Cancer (Per 100,000 Women)

Biennial screening

Ages 50-74 y 28 (20, 40) 27 (19, 38) 13 (9, 19) 55 (39, 78)

Ages 45-74 y 44 (31, 62) 45 (31, 64) 21 (15, 30) 92 (65, 130)

Ages 40-74 y 67 (47, 96) 68 (48, 97) 33 (23, 47) 138 (97, 196)

Hybrid strategy

A45-49 y, B50-74 y 57 (40, 81) 59 (41, 84) 29 (20, 41) 118 (82, 168)

A40-49 y, B50-74 y 101 (71, 143) 89 (62, 126) 44 (31, 62) 177 (125, 251)

Annual screening

Ages 50-74 y 54 (39, 75) 49 (34, 69) 25 (17, 35) 97 (68, 139)

Ages 45-74 y 85 (59, 121) 81 (57, 115) 41 (29, 58) 159 (111, 226)

Ages 40-74 y 129 (90, 183) 125 (88, 178) 64 (44, 90) 246 (171, 349)

Lifetime Attributable Risk of Radiation-Induced Breast Cancer Death (Per 100,000 Women)

Biennial screening

Ages 50-74 y 5 (3, 7) 4 (3, 6) 2 (2, 3) 9 (6, 13)

Ages 45-74 y 8 (5, 11) 8 (5, 11) 4 (3, 5) 16 (11, 22)

Ages 40-74 y 12 (8, 17) 12 (8, 17) 6 (4, 8) 24 (17, 34)

Hybrid strategy

A45-49 y, B50-74 y 10 (7, 14) 10 (7, 14) 5 (3, 7) 20 (14, 29)

A40-49 y, B50-74 y 18 (13, 25) 15 (11, 22) 8 (5, 11) 31 (22, 44)

Annual screening

Ages 50-74 y 7 (5, 10) 7 (5, 9) 3 (2, 5) 13 (9, 19)

Ages 45-74 y 11 (8, 16) 11 (8, 15) 5 (4, 8) 21 (15, 30)

Ages 40-74 y 16 (12, 23)   16 (11, 23) 8 (6, 12) 32 (22, 45)
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strategy (13 screening examinations) greatly reduced risk for radiation-induced breast 

cancer and breast cancer death (Table 1). Compared with annual screening from age 

40 to 74 years, biennial screening from age 50 to 74 years was projected to cause ap-

proximately one fifth of the radiation-induced breast cancer cases (mean, 125 cases [CI, 

88 to 178] vs. 27 cases [CI, 19 to 38] per 100 000 women, respectively, and 266 cases [CI, 

186 to 380] vs. 57 cases [CI, 40 to 82] per 100 000 women with large breasts) (Table 2).

Breast cancer deaths averted per radiation-induced cancer:

From the MISCAN-Fadia model, we projected that 16 947 breast cancer cases would 

be diagnosed from age 40 years through death per 100 000 women screened annually 

Table 2 Mean, 5th percentile, and 95th percentile (95% confidence intervals) of lifetime attributable 
risks (per 100,000 women) of radiation-induced breast cancer and breast cancer death, by breast size, 
for different screening strategies.

Screening Strategy Small or average breasts Large breasts

Mean
(95% CI)

5th 
percentile 
(95% CI)

95th 
percentile 
(95% CI)

Mean
(95% CI)

5th 
percentile 
(95% CI)

95th 
percentile 
(95% CI)

  Lifetime Attributable Risk of Radiation-Induced Breast Cancer (Per 100,000 Women)

Biennial screening

Ages 50-74 y 24 (17, 35) 13 (9, 18) 43 (30, 61) 57 (40, 82) 28 (19, 40) 108 (77, 154)

Ages 45-74 y 40 (28, 57) 21 (15, 30) 72 (50, 102) 95 (67, 135) 46 (32, 65) 181 (128, 259)

Ages 40-74 y 61 (43, 87) 33 (23, 46) 107 (76, 152) 144 (100, 205) 71 (49, 101) 266 (188, 384)

Hybrid strategy

A45-49 y, B50-74 y 53 (37, 75) 29 (20, 41) 91 (64, 130) 125 (87, 178) 60 (43, 88) 233 (162, 335)

A40-49 y, B50-74 y 80 (56, 114) 43 (31, 62) 137 (96, 195) 189 (132, 269) 95 (65, 134) 351 (244, 495)

Annual screening

Ages 50-74 y 44 (31, 62) 25 (17, 35) 74 (52, 105) 104 (73, 149) 53 (37, 76) 187 (131, 267)

Ages 45-74 y 73 (51, 103) 40 (28, 57) 122 (85, 174) 173 (121, 245) 88 (62, 126) 315 (221, 445)

Ages 40-74 y 113 (79, 161) 63 (44, 89) 189 (133, 268) 266 (186, 380) 136 (95, 193) 487 (339, 700)

Lifetime Attributable Risk of Radiation-Induced Breast Cancer Death (Per 100,000 Women) 

Biennial screening

Ages 50-74 y 4 (3, 6) 2 (1, 3) 7 (5, 10) 10 (7, 14) 5 (3, 7) 18 (13, 26)

Ages 45-74 y 7 (5, 10) 4 (3, 5) 12 (9, 17) 16 (11, 23) 8 (5, 11) 31 (22, 44)

Ages 40-74 y 11 (7, 15) 6 (4, 8) 19 (13, 26) 25 (17, 35) 12 (8, 17) 46 (33, 67)

Hybrid strategy

A45-49 y, B50-74 y 9 (6, 13) 5 (3, 7) 16 (11, 22) 21 (15, 31) 10 (7, 15) 40 (28, 57)

A40-49 y, B50-74 y 14 (10, 20) 8 (5, 11) 24 (17, 34) 33 (23, 47) 16 (11, 23) 61 (42, 86)

Annual screening

Ages 50-74 y 6 (4, 9) 3 (2, 5) 10 (7, 14) 14 (10, 20) 7 (5, 10) 25 (18, 36)

Ages 45-74 y 10 (7, 14) 5 (4, 8) 16 (11, 23) 23 (16, 33) 12 (8, 17) 42 (29, 59)

Ages 40-74 y 15 (10, 21) 8 (6, 12) 25 (17, 35)   35 (24, 50) 18 (12, 25) 63 (44, 91)
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from age 40 to 74 years (data not shown). The number of breast cancer deaths averted 

ranged from 627 per 100 000 women screened biennially from age 50 to 74 years to 968 

per 100 000 women screened annually from age 40 to 74 years (Table 3). For biennial 

screening from age 50 to 74 years, we projected a mean of 23 breast cancer deaths 

averted for each radiation-induced case of breast cancer (CI, 16 to 33) (5th percentile, 

48; 95th percentile, 11) and 140 breast cancer deaths averted for each radiation induced 

breast cancer death (CI, 98 to 199) (5th percentile, 289; 95th percentile, 68). For annual 

screening from age 40 to 74 years, these ratios were lower, at 8 breast cancer deaths 

Table 2 Mean, 5th percentile, and 95th percentile (95% confidence intervals) of lifetime attributable 
risks (per 100,000 women) of radiation-induced breast cancer and breast cancer death, by breast size, 
for different screening strategies.

Screening 
Strategy

Small or average breasts  
 

Large breasts

Mean
(95% CI)

5th 
percentile 
(95% CI)

95th 
percentile 
(95% CI)

Mean
(95% CI)

5th 
percentile 
(95% CI)

95th 
percentile 
(95% CI)

  Lifetime Attributable Risk of Radiation-Induced Breast Cancer (Per 100,000 Women)

Biennial screening

Ages 50-74 y 24 (17, 35) 13 (9, 18) 43 (30, 61) 57 (40, 82) 28 (19, 40) 108 (77, 154)

Ages 45-74 y 40 (28, 57) 21 (15, 30) 72 (50, 102) 95 (67, 135) 46 (32, 65) 181 (128, 259)

Ages 40-74 y 61 (43, 87) 33 (23, 46) 107 (76, 152) 144 (100, 205) 71 (49, 101) 266 (188, 384)

Hybrid strategy

A45-49 y, B50-74 y 53 (37, 75) 29 (20, 41) 91 (64, 130) 125 (87, 178) 60 (43, 88) 233 (162, 335)

A40-49 y, B50-74 y 80 (56, 114) 43 (31, 62) 137 (96, 195) 189 (132, 269) 95 (65, 134) 351 (244, 495)

Annual screening

Ages 50-74 y 44 (31, 62) 25 (17, 35) 74 (52, 105) 104 (73, 149) 53 (37, 76) 187 (131, 267)

Ages 45-74 y 73 (51, 103) 40 (28, 57) 122 (85, 174) 173 (121, 245) 88 (62, 126) 315 (221, 445)

Ages 40-74 y 113 (79, 161) 63 (44, 89) 189 (133, 268) 266 (186, 380) 136 (95, 193) 487 (339, 700)

Lifetime Attributable Risk of Radiation-Induced Breast Cancer Death (Per 100,000 Women) 

Biennial screening

Ages 50-74 y 4 (3, 6) 2 (1, 3) 7 (5, 10) 10 (7, 14) 5 (3, 7) 18 (13, 26)

Ages 45-74 y 7 (5, 10) 4 (3, 5) 12 (9, 17) 16 (11, 23) 8 (5, 11) 31 (22, 44)

Ages 40-74 y 11 (7, 15) 6 (4, 8) 19 (13, 26) 25 (17, 35) 12 (8, 17) 46 (33, 67)

Hybrid strategy

A45-49 y, B50-74 y 9 (6, 13) 5 (3, 7) 16 (11, 22) 21 (15, 31) 10 (7, 15) 40 (28, 57)

A40-49 y, B50-74 y 14 (10, 20) 8 (5, 11) 24 (17, 34) 33 (23, 47) 16 (11, 23) 61 (42, 86)

Annual screening

Ages 50-74 y 6 (4, 9) 3 (2, 5) 10 (7, 14) 14 (10, 20) 7 (5, 10) 25 (18, 36)

Ages 45-74 y 10 (7, 14) 5 (4, 8) 16 (11, 23) 23 (16, 33) 12 (8, 17) 42 (29, 59)

Ages 40-74 y 15 (10, 21) 8 (6, 12) 25 (17, 35)   35 (24, 50) 18 (12, 25) 63 (44, 91)

CI, confidence interval; y, years; A, annual screening at ages 40-50 or 45-50 and B, biennial screening 
at 50-74 years.
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averted per radiation-induced case of breast cancer (CI, 5 to 11) (5th percentile, 15; 95th 

percentile, 4) and 59 breast cancer deaths averted per radiation-induced breast cancer 

death among all women (CI, 42 to 85) (5th percentile, 117; 95th percentile, 30). For 

annual screening from age 40 to 74 years of women with large breasts, ratios were even 

lower, at 4 breast cancer deaths averted per radiation-induced case of breast cancer (CI, 

3 to 5) and 28 per radiation induced breast cancer death (CI, 20 to 40).

Table 3 Number of breast cancer deaths averted by screening 100,000 women and ratio of number 
of breast cancer deaths averted per number (mean, 5th percentile, and 95th percentile) of radiation-
induced breast cancers and of radiation-induced breast cancer deaths.

Strategy Number 
of breast 
cancer deaths 
averted by 
screening

Overall Small or 
average 
breasts

Large 
breasts

Mean
(95% CI)

5th
Percentile
(95% CI)

95th 
Percentile
(95% CI)

Mean
(95% CI)

Mean
(95% CI)

   Ratio of Breast Cancer Deaths Averted per Radiation-Induced Breast Cancer

Biennial screening

Ages 50-74 y 627 23 (16, 33) 48 (34, 69) 11 (8, 16) 26 (18, 37) 11 (8, 16)

Ages 45-74 y 666 15 (10, 21) 31 (22, 45) 7 (5, 10) 17 (12, 24) 7 (5, 10)

Ages 40-74 y 732 11 (8, 15) 22 (16, 32) 5 (4, 8) 12 (8, 17) 5 (4, 7)

Hybrid strategy

A45-49 y, B50-74 y 717 12 (9, 17) 25 (17, 35) 6 (4, 9) 14 (10, 19) 6 (4, 8)

A40-49 y, B50-74 y 780 9 (6, 13) 18 (12, 25) 4 (3, 6) 10 (7, 14) 4 (3, 6)

Annual screening

Ages 50-74 y 819 17 (12, 24) 33 (23, 47) 8 (6, 12) 19 (13, 27) 8 (6, 11)

Ages 45-74 y 907 11 (8, 16) 22 (16, 32) 6 (4, 8) 12 (9, 18) 5 (4, 8)

Ages 40-74 y 968 8 (5, 11) 15 (11, 22) 4 (3, 6) 9 (6, 12) 4 (3, 5)

  Ratio of Breast Cancer Deaths Averted per Radiation-Induced Breast Cancer Death

Biennial screening

Ages 50-74 y 627 140 (98, 199) 289 (203, 415) 68 (48, 97) 155 (109, 221) 66 (46, 93)

Ages 45-74 y 666 87 (61, 125) 184 (130, 263) 43 (30, 60) 97 (68, 139) 41 (29, 59)

Ages 40-74 y 732 62 (44, 89) 128 (90, 183) 31 (22, 44) 69 (48, 98) 29 (21, 42)

Hybrid strategy

A45-49 y, B50-74 y 717 71 (50, 102) 145 (102, 207) 35 (25, 51) 79 (56, 113) 33 (23, 48)

A40-49 y, B50-74 y 780 51 (36, 72) 102 (72, 146) 25 (18, 36) 56 (40, 80) 24 (17, 34)

Annual screening

Ages 50-74 y 819 123 (86, 176) 242 (171, 346) 62 (43, 89) 136 (96, 195) 58 (40, 83)

Ages 45-74 y 907 84 (60, 121) 167 (118, 239) 43 (30, 61) 94 (66, 134) 39 (28, 57)

Ages 40-74 y 968 59 (42, 85) 117 (82, 167) 30 (21, 43)   66 (46, 94) 28 (20, 40)

CI, confidence interval; y, years; A, annual screening at ages 40-50 or 45-50 and B, biennial screening 
at 50-74 years.
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DISCUSSION

We improved previous estimates of the potential harms from radiation exposure of 

screening strategies for breast cancer by using methods that more fully represent the 

experience of women who have routine digital screening mammography. Our models in-

cluded radiation exposure from diagnostic evaluations prompted by abnormal screening 

results and incorporated variation in dose at each screening and diagnostic examination. 

In addition to the mean, we reported the 5th and 95th percentiles of the population 

distribution to highlight that some women have risk that is substantially lower or higher 

than average because of variation in radiation exposure. Most of the increased risk was 

due to screening examinations with more than 4 views and higher-than-average doses 

per view. We used DMIST data to model the number of views per screening examination 

and to incorporate the increased radiation dose per view for thicker compressed breasts. 

However, even for a given compressed breast thickness, some women received greater 

doses than others, which was probably due to greater breast density that required more 

radiation for penetration. Because women with large breasts may require more views per 

examination and tend to receive a greater dose per view, breast size was an important 

factor in determining radiation exposure and associated risk. Another reason for greater 

radiation exposure is false-positive results; additional imaging performed to work up 

false-positive results accounted for one fourth of the radiation dose received by women 

at the 95th percentile compared with only one tenth of the radiation dose received by 

women at the mean.

Relative to a projected 16 947 breast cancer cases diagnosed per 100 000 women 

aged 40 years or older with annual screening, we estimate that the number of breast 

cancer cases induced by screening is probably very small, even for women with the 

greatest radiation exposures. However, relative to the number of breast cancer deaths 

averted with screening, radiation induced breast cancer incidence is not trivial. Most 

concerning are numbers projected for annual screening and screening before age 50 

years of women with large breasts requiring extra views for complete examination, who 

have more than twice the risk for radiation induced breast cancer as women with small 

or average-sized breasts. Although we did not model this explicitly, women with breast 

augmentation should also have twice the risk for radiation-induced breast cancer be-

cause they receive implant-displacement views in addition to standard screening views, 

resulting in a minimum of 8 views per examination compared with the standard 4 views 

(12).

The benefit–harm ratio in terms of breast cancer deaths averted per radiation-induced 

case of breast cancer could be improved by initiating screening at age 50 years instead 

of 40 years, thereby reducing risk for radiation-induced breast cancer by 60%, or by using 

biennial screening, which would cut the risk in half compared with annual screening. 



Radiation-induced breast cancer incidence and mortality 205

Doing both (screening biennially from age 50 to 74 years) would reduce the risk almost 

5-fold compared with annual screening from age 40 to 74 years. Several steps should be 

taken to further improve the benefit–harm ratio. Current efforts to reduce the radiation 

dose per view should continue. Radiology staff should strive to minimize the number of 

additional views performed and to reduce false-positive rates, which are much higher in 

the United States than many other countries, suggesting room for improvement (22-25). 

Radiation doses from diagnostic mammography could be avoided for certain screen-

detected masses amenable to ultrasonography work-up alone. In addition, facilities 

should ensure that large breasts are imaged using larger detector sizes to minimize the 

need for extra views for complete examination.

Hendrick (3) also estimated incidence and mortality of radiation-induced breast cancer 

using DMIST data but used the mean dose for 4 views without accounting for additional 

radiation exposure from additional screening views received by 21% of women or from 

diagnostic follow-up imaging. He projected that annual screening of 100 000 women 

from age 40 to 80 years with an examination-level dose of 3.7 mGy would induce 72 

breast cancer cases leading to 20 deaths. For women screened annually from age 40 

to 74 years, we estimated fewer breast cancer deaths (16 deaths per 100 000 women), 

despite more radiation-induced breast cancer cases (125 cases per 100 000 women), 

because we optimistically assumed 100% adherence to the screening regimen and use 

of available treatments. In particular, we assumed that 10% to 19% of women diagnosed 

with breast cancer between ages 40 and 74 years would die of the disease (depending 

on the screening scenario) compared with recent estimates of more than 23% (26). Thus, 

we may have underestimated the number of radiation-induced breast cancer deaths. 

Yaffe and Mainprize (4) projected that screening 100 000 women annually from age 40 to 

55 years and biennially thereafter to age 74 years with a dose of 3.7 mGy would induce 

86 breast cancer cases and 11 deaths. In comparison, we projected that screening 100 

000 women annually from age 40 to 49 years and biennially thereafter to age 74 years 

would induce 89 breast cancer cases and 15 deaths. Our estimates are probably greater 

because we accounted for some screening examinations having more than 4 views and 

for radiation exposure from diagnostic work-up.

Doses from current digital mammography systems may be lower than doses from 

older DMIST units. Nevertheless, DMIST doses may still be conservative because, similar 

to most prior studies, dose estimates assumed breast compositions of 50% glandular 

tissue, which probably underestimates dose by 8% to 18% (27, 28). Although Mammog-

raphy Quality Standards Act inspections suggest that doses for a digital mammography 

view decreased 2.5% between 2007 and 2009 (29), these doses were measured with 

phantoms simulating breasts with a compressed breast thickness at the 30th percentile in 

DMIST. Radiation dose is highly correlated with compressed breast thickness, which may 

increase over time with increasing population body mass index (BMI) (30).
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The use of digital breast tomosynthesis for screening is increasing in the United States 

(31). Doses from breast tomosynthesis vary by the strategy; however, the 3-dimen-

sional acquisition results in a radiation dose similar to or slightly greater than standard 

digital mammography (28, 32, 33). Most U.S. practices offering screening tomosynthesis 

combine it with digital mammography, which at least doubles doses and the risk for 

radiation-induced breast cancer. Software approved by the U.S. Food and Drug Admin-

istration to generate synthetic 2-dimensional views from tomosynthesis acquisitions will 

probably eliminate the need for standard digital mammography views and their associ-

ated radiation exposure (34); however, the rate at which this software will diffuse into 

clinical practice is unknown. Estimating radiation-induced cancer risks associated with 

tomosynthesis screening is further complicated by the expectation that this method will 

decrease recall rates and potentially eliminate the need for diagnostic mammography to 

work up some imaging findings (35-41).

Our study had several limitations. We had inadequate information on the percentage 

of women requiring more than 4 views for complete breast examination. In DMIST, 21% 

of women required more than 4 screening views (10), although most received only 1 or 

2 extra views, probably because of patient movement or poor positioning. On the basis 

of the observed distribution of compressed breast thickness and number of views, we 

assumed that 8% of women received extra views because they had large breasts. Of 

note, the early generation mammography systems used in DMIST had smaller image 

detectors (10). Most modern units have larger detectors; therefore, the percentage of 

women requiring extra views because of large breast size is probably less than 8%.

We could not calculate life-years lost due to radiation-induced breast cancer, which 

may occur later in life than deaths prevented from screening. Because of lack of data, we 

did not model the association between breast size and the probability of a false-positive 

result; thus, we may have underestimated exposure from additional work-up in women 

with large breasts because obese women may be 20% more likely than normal-weight 

women to have false-positive results (9). We also assumed that the number of breast 

cancer deaths averted with screening did not vary by breast size; however, screening 

may prevent more deaths among postmenopausal obese women (who tend to have 

large breasts) because they have a greater risk for advanced disease (42). In addition, 

we did not model the association between breast density and radiation dose per view 

because of lack of representative data. Probabilities for events after screening mam-

mography were based on point estimates from models that used the best available data 

and did not account for uncertainty due to model misspecification or inherent variability 

in parameter estimates. We could not estimate 95% CIs for deaths averted with screen-

ing because of the computational complexity of the MISCAN-Fadia model and because 

many input parameters of the model (such as tumor growth rate) are unobservable and 
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therefore have unknown distributions. We also made several simplifying assumptions 

(supplementary material).

In conclusion, population projections of radiation induced breast cancer incidence and 

mortality from mammography screening are affected by variability in doses from screen-

ing and resultant diagnostic examinations, age at screening initiation, and screening 

frequency. Our study suggests that women with large breasts or breast augmentation 

receive greater radiation doses and may have a greater risk for radiation induced breast 

cancer and breast cancer death. Radiology practices should strive to ensure that large 

breasts are imaged with large detectors with the fewest number of views possible.
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Supplemental Table 1 Comparison of lifetime attributable risks of radiation-induced breast cancer 
and breast cancer death (per 100,000 women) from two modeling approaches

Strategy MISCAN-Fadia Radiation Exposure Model

Mean
(95% CI)

Mean
(95% CI)

  Lifetime Attributable Risk of Breast Cancer (Per 100,000 Women)

Biennial screening

Ages 50-74 y 28 (20, 40) 27 (19, 38)

Ages 45-74 y 44 (31, 62) 45 (31, 64)

Ages 40-74 y 67 (47, 96) 68 (48, 97)

Hybrid strategy

A45-49 y, B50-74 y 57 (40, 81) 59 (41, 84)

A40-49 y, B50-74 y 101 (71, 143) 89 (62, 126)

Annual screening

Ages 50-74 y 54 (39, 75) 49 (34, 69)

Ages 45-74 y 85 (59, 121) 81 (57, 115)

Ages 40-74 y 129 (90, 183) 125 (88, 178)

  Lifetime Attributable Risk of Breast Cancer Death (Per 100,000 Women)

Biennial screening

Ages 50-74 y 5 (3, 7) 4 (3, 6)

Ages 45-74 y 8 (5, 11) 8 (5, 11)

Ages 40-74 y 12 (8, 17) 12 (8, 17)

Hybrid strategy

A45-49 y, B50-74 y 10 (7, 14) 10 (7, 14)

A40-49 y, B50-74 y 18 (13, 25) 15 (11, 22)

Annual screening

Ages 50-74 y 7 (5, 10) 7 (5, 9)

Ages 45-74 y 11 (8, 16) 11 (8, 15)

Ages 40-74 y 16 (12, 23) 16 (11, 23)

CI, confidence interval; y, years; A, annual screening at ages 40-50 or 45-50 and B, biennial screening 
at 50-74 years.
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Supplement. Supplemental Material 

Radiation Exposure Model 

For each screening strategy, we simulated screening-related events for 100,000 women from starting age through 74. For each woman, we: 

1. Randomly sampled breast density, compressed breast thickness, and a woman-specific random effect for false-positive mammogram 

probabilities. Determined breast size from compressed breast thickness. 

2. Randomly sampled screening results and resulting diagnostic events, conditional on age, breast density, current screening interval, prior 

screening results, and the woman-specific random effect. 

3. Randomly sampled number of views per screening examination and, if recalled, diagnostic events, conditional on breast size, and randomly 

sampled breast dose per view conditional on compressed breast thickness. 

4. Summed the number of mammographic views across events and calculated total dose based on sampled dose per view for each year of age. 

5. Estimated radiation-induced breast cancer incidence and mortality through age 100 or death based on total dose at each age. 

Data sources 

Data were from the Breast Cancer Surveillance Consortium (BCSC) and the American College of Radiology Imaging Network (ACRIN) digital 

mammographic imaging screening trial (DMIST). The BCSC (13) (http://breastscreening.cancer.gov) has prospectively collected data including 

patient characteristics and radiology information from community-based facilities since 1994. Characteristics of women are comparable to the 

US population (43). Breast cancer diagnoses and tumor characteristics are obtained by linking to pathology databases; regional Surveillance, 

Epidemiology, and End Results (SEER) programs; and state tumor registries. 

ACRIN DMIST was powered to compare the screening accuracy of digital and screen-film mammography (44, 45). For this paired trial, 

49,528 women provided informed consent to receive both modalities between October 2001 and November 2003. For quality assurance, 

compressed breast thickness, breast dose, and number of additional views performed were recorded on a subset of examinations at 33 sites. 

The ACRIN coordinating center provided the distribution for number of views for 5,021 digital examinations and the joint distribution between 

dose and compressed breast thickness for 19,205 digital mammography views from 4,876 digital examinations. 



214 Chapter 8

Breast Size, Compressed Breast Thickness, And Number Of Views Per Examination 

We estimated the percentage of women with large breasts based on the number of views and compressed breast thickness observed in DMIST 

(Appendix Tables 1 and 3). Based on expert opinion, we assumed all women with 5 views and a portion of women with 6 views received these 

extra views due to issues with positioning or movement. In contrast, we assumed a portion of women with 6 views and all women with 7 or 

more views received extra views because they had large breasts. To estimate the percentage of women with large breasts, we chose a threshold 

of compressed breast thickness 7.5 cm or larger, consistent with the percentage of women having 6 or more views. This resulted in 8.1% of 

women having large breasts and 35% of examinations with 6 views being performed in women with large breasts. 

DMIST has information only on number of views for screening examinations. For diagnostic examinations and procedure types, we 

obtained the typical number of views from expert opinion of a radiologist who specializes in breast imaging and scaled the distribution for 

screening examinations from DMIST based on the typical number of views for that diagnostic exam or procedure type relative to the typical 

number of screening views. For numbers of rescaled views that were not integers (e.g., 5 views /4 views = 1.3 views), we reassigned women into 

adjacent groups so the resultant mean number of views was unchanged (e.g., for 1.3 views, we assumed 70% received 1 view and 30% received 

2 views). For example, the typical number of screening views is 4 (2 per breast). From DMIST, we estimated that 86% of women without large 

breasts received 4 views, 9% received 5 views, and 5% received 6 views. Typically, two magnification views are used for an additional evaluation 

of a positive screening mammogram. Thus, to calculate the distribution of diagnostic views, we halved the number of views from the screening 

distribution. This resulted in 86% of women receiving 2 views, 9% receiving 2.5 views, and 5% receiving 3 views. We reassigned the 9% of women 

with 2.5 views to half receiving 2 and half receiving 3. This gave a final distribution for number of magnification views of 91% receiving 2 views 

and 9% receiving 3 views. Distributions are in Appendix Table 4. 

Breast density 

We assigned a baseline Breast Imaging-Reporting and Data System (BI-RADS) (12) density at the start of screening according to distributions 

observed in the BCSC (20) (Appendix Table 2). At age 50 and 65 years, we allowed breast density to potentially decrease by one category based 

on transition probabilities that maintain the marginal distributions of density by age (Appendix Table 2). We did not account for the inverse 

relationship between breast density and breast size due to lack of information on the association between event probabilities (i.e., short interval 

follow-up (SIFU) examinations) and breast size. 
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Radiation Dose 

Radiation dose depends on compressed breast thickness, which depends on breast size. For each woman, we sampled a dose per view based on 

the distribution observed in DMIST given her compressed breast thickness (Appendix Figure). Magnification views have higher radiation dose 

than standard mammography views (46, 47); however, only part of the breast is typically irradiated (48). Therefore, we assumed the same dose 

for all views. This assumption is supported by data from Boone, Nosratieh, and Seibert in the 2013 Society for Breast Imaging newsletter 

(http://www.sbi-online.org/NEWS.aspx). For women with large breasts who receive extra views, most glandular tissue is irradiated on all views; 

therefore, summing the doses per view for an exam-specific dose for each breast was reasonable (10, 11). We assumed the total bilateral dose 

per view was half the dose per single breast, as in Law and Faulkner (48). Thus, to calculate the total bilateral dose at each year of age, we 

summed the total number of views on both breasts from screening and associated diagnostic work-up within the following year, and divided in 

half. 

Events following A Positive Screening exam 

Figure 2 in manuscript summarizes possible events following a screening mammogram (12). At each screening mammogram, a woman’s 

probability of recall for additional imaging was based on age, breast density, screening interval, prior screening mammogram results, and a 

woman-specific random effect. If recalled, the probability of referral to biopsy, short interval follow-up (SIFU), or return to routine screening was 

based on age, breast density, and screening interval. Following BI-RADS guidelines (12), women recommended for SIFU received diagnostic 

views at 6, 12, and 24 months after screening mammogram, regardless of screening interval. At each SIFU exam, the probability of a biopsy 

recommendation was based on age and breast density. Women with a SIFU recommendation also continued to receive bilateral screening views 

according to their screening schedule with recall and subsequent follow-up recommendations assigned using the probabilities for all BCSC 

screening exams. A woman assigned to SIFU following recall from screening views restarted the SIFU sequence; otherwise, she continued 

according to her assigned SIFU schedule. Biopsy type was randomly assigned based on BCSC distributions to be fine needle aspiration, core 

biopsy, excisional biopsy, or core and excisional biopsy, based on age and breast density. Fine needle aspirations resulted in no additional 

mammography. For core and excisional biopsies, we randomly assigned ultrasound or stereotactic guidance based on proportions observed in 

BCSC. Women returned to routine screening following a benign biopsy based on suggestions that 6-month follow-up imaging after biopsy has no 

benefit (49). 

We modeled the probability of events following a screening mammogram using BCSC data. We included digital mammograms of women 
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aged 40-74 without a history of breast cancer or cancer diagnosed within 1 year after the exam and without breast augmentation. Most analyses 

included mammograms conducted from 2003 to 2011 with at least one year of complete cancer capture available following the screening exam. 

Mammograms were classified as screening or SIFU based on the indication given by the radiologist or technologist. For screening mammograms, 

we excluded unilateral exams and exams performed less than 9 months after a prior mammogram or breast ultrasound exam to avoid 

misclassifying diagnostic exams as screens. Screening mammograms were classified as annual exams if the previous mammogram was 9–18 

months prior and as biennial if 19–30 months prior. We excluded screening mammograms conducted more than 30 months after a prior 

mammogram because we were interested in estimating events in annual and biennial screeners. 

To estimate the recall rates for additional imaging, we included 613,797 digital screening mammograms with sufficient information on 

prior false-positive results. We defined a recall based on a positive initial BI-RADS assessment (12, 50). We estimated the probability of being 

recalled for additional views on a screening mammogram using logistic regression including age at exam; BI-RADS breast density; mammogram 

number (first, second, or third or more); and screening interval for subsequent screens (annual vs. biennial). For second exams, we also included 

the prior screening result and for third or subsequent exams, we included the prior two screening results. We included a woman-specific random 

effect to allow for additional correlation of recall across a woman’s entire screening regimen and report results for a random effect of 0, 

corresponding to median rates. Results are in Supplement Table 1. To evaluate the model fit, we compared results to prior estimates of 

cumulative false-positive rates after 10 rounds of screening using a different method (51) and got similar results. 

To estimate the probability of events following an abnormal mammogram, we included 725,433 digital mammograms with information 

on the specific type of recommendation at the end of all imaging work-up. We estimated the probability of recommended follow-up (either 

return to routine screening, SIFU, or biopsy) after recalled screening mammogram using multinomial logistic regression including age at exam, 

BI-RADS breast density, and screening interval as predictors. Results are in Supplement Table 2. 

We estimated the probability of a biopsy recommendation following a SIFU exam using 21,124 SIFU exams. We classified exams as 

having a biopsy recommendation based on the final BI-RADS assessment and recommendations at the end of all imaging work-up. We fit a 

logistic regression model including BI-RADS density and age at exam as predictors. Results are in Supplement Table 3. 

To estimate the distribution for type of biopsy following a positive screening mammogram or SIFU exam, we included 2,284 women with 

biopsies within 100 days following a positive screening or SIFU conducted in the most recent years available (2010 and 2011), because use of 

core biopsy instead of excisional biopsy has increased over time. We grouped biopsy events as core biopsy (no excisional, may also include fine 
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needle aspirations), excisional biopsy (no core biopsy, may also include fine needle aspirations), core and excisional (may also include fine needle 

aspirations), and fine needle aspiration only. We modeled biopsy type using multinomial logistic regression, including BI-RADS density and age at 

mammogram as predictors. To estimate the type of biopsy guidance distributions, we selected all biopsies within 100 days of a positive final 

assessment of a screening or SIFU mammogram. Given inconsistencies in excisional biopsy guidance records, we limited our data to core 

biopsies only and calculated the proportion of ultrasound and stereotactic biopsies in this sample. Results are in Supplement Table 4. 

Simplifying Assumptions 

Radiation dose depends on the mammography machine used (10), but we could not include this factor in our modeling due to lack of data. 

Estimates of the U.S. distribution of manufacturers are protected market share information. However, the majority of digital machines used by 

BCSC facilities are Hologic, which had the highest dose per view but the fewest exams with more than 4 views in DMIST (10). The majority of 

machines used in DMIST were not Hologic. Thus, if the BCSC is reflective of the U.S., we would likely have underestimated dose for women with 

small or average breasts but may have overestimated dose for women with large breasts because they would be less likely to need extra views 

for complete breast examination. We may have slightly underestimated dose due to diagnostic imaging for several reasons. Our estimates of the 

number of views used for diagnostic evaluations may be conservative, because we assumed that every abnormal screening examination 

identified only one finding needing diagnostic views and we did not include repeat whole breast views. Also, the chance of repeat images is likely 

higher for diagnostic spot magnification views for subtle calcifications or masses, and for large-breasted women. In these instances, the 

technologist may require several images to position small or subtle findings within the field of view. Moreover, magnification spot views require 

greater exposure time for optimal image resolution, making patient movement more likely. 

Radiation-Induced Breast Cancer Incidence And Mortality 

The incidence of radiation-induced breast cancer was modeled using the excess absolute risk model from pooled analysis of four cohorts by 

Preston et al.(1), the preferred model for estimating radiation-induced breast cancers (2, 21). The model formula from page 234 of Preston et al. 

(1) is 

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽exp(𝑎𝑎𝑎𝑎/50)𝜂𝜂𝜂𝜂 

where β is the risk coefficient per 10,000 person years-Gy, estimated as 10 with 95% confidence interval (CI) 7.0–14.2. D is dose in Gy, e is age at 

exposure; a is attained age; and η is 3.5 for a ≤ 50 and 1.0 otherwise. Similar to Berrington et al. (21), we modeled the latency period for 
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developing radiation-induced breast cancer using a logistic function with shape parameter 0.75, which phases in increased breast cancer risk 

between 4 and 11 years after exposure. We did not apply a dose and dose-rate effectiveness factor (2) because the Preston 2002 model (1) 

included data from two cohorts with radiation exposures from high-dose-rate X-rays similar to those used for mammography screening. Also, 

Preston et al. (1) found no evidence that fractionated exposures result in lower breast cancer risk than acute exposures. We adjusted for 

competing causes of death using US general population life tables for women (52). Radiation-induced breast cancer mortality was estimated by 

multiplying radiation-induced breast cancer incidence by the non-radiation induced breast cancer age-specific case-fatality rates derived from 

MISCAN-Fadia assuming 100% adherence to screening and current treatment. We assumed that breast cancers induced by radiation are screen 

detected at the same rate as non-induced cancers. Uncertainty ranges were estimated by re-estimating radiation-induced breast cancer risk 

using the upper and lower 95% CIs for the risk coefficient, β, given this uncertainty dominates the uncertainty in estimated risk (2, 21). 

Supplemental Results 

From the radiation exposure model simulation results, women who obtained screening annually from ages 40-74 years received an average of 

5.0 mammography views (5th percentile=4 views, 95th percentile=9 views) and a dose of 4.8 mGy (5th percentile=2.3 views, 95th 

percentile=10.7 mGy) from each screening exam and all diagnostic work-up prompted by that screen within a 1-year period (Appendix Table 5). 

The mean dose from screening views was 4.3 mGy (5th percentile=2.2 views, 95th percentile=8.3 mGy), and the mean dose from all diagnostic 

work-up among women with a false-positive screen was 4.5 mGy (5th percentile=1.7 views, 95th percentile=10.7 mGy). Women with large 

breasts undergoing annual screening received a mean of 8.4 views (5th percentile=6.0 views, 95th percentile=14.0) and mean dose of 10.0 mGy 

(5th percentile=4.6 views, 95th percentile=20.8 mGy) from each screening exam plus all diagnostic work-up prompted by that screen, compared 

to 4.7 views (5th percentile=4 views, 95th percentile=8 views) and 4.3 mGy (5th percentile=2.2 mGy, 95th percentile=8.4 mGy) for women 

without large breasts. 
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Supplement Table 1. Probability of a false-positive recall (median and interquartile range) by age, BI-RADS breast density, screening round, and prior 
screening results among women aged 40-74 years with digital mammography from 2003-2011 and no cancer diagnosis within 1-year follow-up period, 
estimated from the Breast Cancer Surveillance Consortium. 

   Screening Schedule = Annual Screening Schedule = Biennial 

Screening round and prior 
screening results 

Age, 
years 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

  Probability of False-Positive Screening Mammogram, Median (Interquartile Range) 
Round 1 40-44 13 (8,20)% 19 (12,29)% 23 (15,35)% 19 (12,28)% 13 (8,20)% 19 (12,29)% 23 (15,35)% 19 (12,28)% 

 
45-49 18 (11,28)% 27 (18,39)% 32 (21,45)% 26 (17,38)% 18 (11,28)% 27 (18,39)% 32 (21,45)% 26 (17,38)% 

 
50-54 15 (9,23)% 22 (14,33)% 27 (17,39)% 21 (14,32)% 15 (9,23)% 22 (14,33)% 27 (17,39)% 21 (14,32)% 

Round 2  
           No prior FP 40-49 7 (4,11)% 11 (6,17)% 13 (8,21)% 10 (6,16)% 7 (4,12)% 12 (7,18)% 14 (9,22)% 11 (7,18)% 

 
50-59 5 (3,9)% 9 (5,14)% 11 (7,17)% 8 (5,14)% 6 (3,10)% 9 (6,15)% 12 (7,19)% 9 (5,15)% 

 
60-74 5 (3,8)% 8 (5,13)% 10 (6,16)% 7 (4,12)% 5 (3,9)% 8 (5,14)% 10 (6,17)% 8 (5,13)% 

  Prior FP 40-49 6 (4,10)% 10 (6,16)% 12 (7,19)% 9 (6,15)% 7 (4,11)% 11 (6,17)% 13 (8,21)% 10 (6,16)% 

 
50-59 5 (3,8)% 8 (5,13)% 10 (6,16)% 8 (5,12)% 5 (3,9)% 9 (5,14)% 11 (6,17)% 8 (5,13)% 

 
60-74 4 (3,7)% 7 (4,11)% 9 (5,14)% 7 (4,11)% 5 (3,8)% 8 (4,12)% 9 (6,15)% 7 (4,12)% 

Round 3+ 
           Past two results TNs 40-49 5 (3,8)% 8 (5,13)% 10 (6,16)% 7 (4,12)% 5 (3,9)% 8 (5,14)% 10 (6,17)% 8 (5,13)% 

 
50-59 4 (2,6)% 6 (4,10)% 8 (5,13)% 6 (3,10)% 4 (2,7)% 7 (4,11)% 8 (5,14)% 6 (4,11)% 

 
60-74 3 (2,6)% 5 (3,9)% 7 (4,11)% 5 (3,9)% 4 (2,6)% 6 (3,10)% 7 (4,12)% 6 (3,9)% 

  Past two results TN then FP 40-49 6 (4,10)% 10 (6,16)% 12 (7,20)% 9 (6,15)% 7 (4,11)% 11 (6,17)% 13 (8,21)% 10 (6,16)% 

 
50-59 5 (3,8)% 8 (5,13)% 10 (6,16)% 8 (5,13)% 5 (3,9)% 9 (5,14)% 11 (7,17)% 8 (5,14)% 

 
60-74 4 (3,7)% 7 (4,12)% 9 (5,14)% 7 (4,11)% 5 (3,8)% 8 (5,13)% 10 (6,16)% 7 (4,12)% 

  Past two results FP then TN 40-49 6 (4,10)% 10 (6,16)% 12 (7,20)% 9 (6,15)% 7 (4,11)% 11 (6,17)% 13 (8,21)% 10 (6,16)% 

 
50-59 5 (3,8)% 8 (5,13)% 10 (6,16)% 8 (5,13)% 5 (3,9)% 9 (5,14)% 11 (7,17)% 8 (5,13)% 

 
60-74 4 (3,7)% 7 (4,12)% 9 (5,14)% 7 (4,11)% 5 (3,8)% 8 (5,12)% 10 (6,15)% 7 (4,12)% 

  Past two results FPs 40-49 18 (11,27)% 26 (17,38)% 31 (21,44)% 25 (16,37)% 19 (12,29)% 28 (18,40)% 33 (22,46)% 27 (18,39)% 

 
50-59 14 (9,23)% 22 (14,33)% 27 (17,39)% 21 (13,32)% 16 (10,24)% 24 (15,35)% 28 (19,41)% 23 (14,34)% 

  60-74 13 (8,20)% 20 (12,30)% 24 (15,35)% 19 (12,29)% 14 (8,22)% 21 (13,32)% 26 (17,37)% 20 (13,31)% 

BI-RADS = Breast Imaging Reporting and Data Systems; FP, false positive; Fibro = fibroglandular; Hetero = heterogeneously 
Estimates are based on a mixed effects logistic regression model, and the interquartile range reflects heterogeneity among women based on quartiles of the 
woman-specific random effect distribution. 
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Supplement Table 2. Probability of subsequent events given a false-positive recall, by age and BI-RADS breast density, among 
women aged 40-74 years with digital mammography from 2003-2011 and no cancer diagnosis within 1-year follow-up period, 
estimated from the Breast Cancer Surveillance Consortium. 

   Screening Schedule = Annual Screening Schedule = Biennial 

 
Age, 
years 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

Recommendation after false-positive screening mammogram  
  Return to normal interval follow-up 
    Round 1 40-44 52% 56% 55% 50% 52% 56% 55% 50% 

 
45-49 43% 47% 46% 41% 43% 47% 46% 41% 

 
50-54 46% 50% 49% 43% 46% 50% 49% 43% 

    Round 2+ 40-49 69% 72% 72% 67% 64% 68% 67% 62% 

 
50-59 66% 70% 69% 64% 61% 65% 64% 58% 

 
60-74 66% 70% 69% 64% 61% 65% 64% 59% 

Short interval follow-up 
     Round 1 40-44 32% 30% 29% 29% 32% 30% 29% 29% 

 
45-49 38% 36% 34% 34% 38% 36% 34% 34% 

 
50-54 29% 28% 26% 26% 29% 28% 26% 26% 

    Round 2+ 40-49 20% 19% 18% 19% 23% 21% 20% 21% 

 
50-59 21% 20% 19% 20% 24% 22% 21% 22% 

 
60-74 22% 20% 19% 20% 24% 22% 21% 22% 

  Biopsy 
             Round 1 40-49 16% 14% 16% 21% 16% 14% 16% 21% 

 
50-59 19% 17% 20% 25% 19% 17% 20% 25% 

 
60-74 25% 22% 25% 31% 25% 22% 25% 31% 

    Round 2+ 40-49 11% 9% 10% 14% 13% 11% 13% 17% 

 
50-59 12% 11% 12% 16% 15% 13% 15% 20% 

  60-74 12% 10% 12% 16% 15% 13% 15% 19% 
BI-RADS = Breast Imaging Reporting and Data Systems; FP = false positive; Fibro = fibroglandular; Hetero = heterogeneously 
Due to rounding, some percentages may not add to 100%. 
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Supplement Table 2. Probability of subsequent events given a false-positive recall, by age and BI-RADS breast density, among 
women aged 40-74 years with digital mammography from 2003-2011 and no cancer diagnosis within 1-year follow-up period, 
estimated from the Breast Cancer Surveillance Consortium. 

   Screening Schedule = Annual Screening Schedule = Biennial 

 
Age, 
years 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

Almost 
entirely fat 

Scattered 
fibro. 

densities 
Hetero. 
dense 

Extremely 
dense 

Recommendation after false-positive screening mammogram  
  Return to normal interval follow-up 
    Round 1 40-44 52% 56% 55% 50% 52% 56% 55% 50% 

 
45-49 43% 47% 46% 41% 43% 47% 46% 41% 

 
50-54 46% 50% 49% 43% 46% 50% 49% 43% 

    Round 2+ 40-49 69% 72% 72% 67% 64% 68% 67% 62% 

 
50-59 66% 70% 69% 64% 61% 65% 64% 58% 

 
60-74 66% 70% 69% 64% 61% 65% 64% 59% 

Short interval follow-up 
     Round 1 40-44 32% 30% 29% 29% 32% 30% 29% 29% 

 
45-49 38% 36% 34% 34% 38% 36% 34% 34% 

 
50-54 29% 28% 26% 26% 29% 28% 26% 26% 

    Round 2+ 40-49 20% 19% 18% 19% 23% 21% 20% 21% 

 
50-59 21% 20% 19% 20% 24% 22% 21% 22% 

 
60-74 22% 20% 19% 20% 24% 22% 21% 22% 

  Biopsy 
             Round 1 40-49 16% 14% 16% 21% 16% 14% 16% 21% 

 
50-59 19% 17% 20% 25% 19% 17% 20% 25% 

 
60-74 25% 22% 25% 31% 25% 22% 25% 31% 

    Round 2+ 40-49 11% 9% 10% 14% 13% 11% 13% 17% 

 
50-59 12% 11% 12% 16% 15% 13% 15% 20% 

  60-74 12% 10% 12% 16% 15% 13% 15% 19% 
BI-RADS = Breast Imaging Reporting and Data Systems; FP = false positive; Fibro = fibroglandular; Hetero = heterogeneously 
Due to rounding, some percentages may not add to 100%. 

 
 

Supplement Table 3. Probability of a biopsy at a short-
interval follow-up (SIFU) exam among women aged 40-74 
years with SIFU exam from 2003-2011 and no cancer 
diagnosis within 1-year follow-up period, estimated from 
the Breast Cancer Surveillance Consortium. 

BI-RADS breast density 
Age, 
years 

Probability 
of biopsy at 
SIFU exam 

Almost entirely fat 40-49 2.8% 

 50-59 2.9% 

 60-74 2.9% 
Scattered fibro. densities 40-49 3.3% 

 50-59 3.5% 

 60-74 3.4% 
Heterogeneously dense 40-49 5.0% 

 50-59 5.2% 

 60-74 5.2% 
Extremely dense 40-49 6.2% 

 50-59 6.6% 
  60-74 6.5% 

BI-RADS = Breast Imaging Reporting and Data Systems;  
SIFU = short interval follow-up; Fibro = fibroglandular   
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Supplement Table 4. Distribution of type of biopsy, by BI-RADS breast density and age, among 
women aged 40-74 years with a biopsy recommendation from a digital mammography 
examination from 2003-2011 and no cancer diagnosis within 1-year follow-up period, 
estimated from the Breast Cancer Surveillance Consortium. 

  
Type of biopsy (row %) 

BI-RADS Density 
Age, 
years Core Excisional 

Core + 
excisional 

Fine needle 
aspiration only 

Almost entirely fat 40-49 71% 3% 3% 23% 

 50-59 70% 3% 3% 24% 

 60-74 71% 3% 5% 21% 
Scattered fibro. densities 40-49 73% 9% 5% 13% 

 50-59 74% 7% 5% 14% 

 60-74 73% 8% 7% 13% 
Heterogeneously dense 40-49 74% 10% 6% 10% 

 50-59 75% 8% 6% 11% 

 60-74 73% 8% 9% 9% 
Extremely dense 40-49 72% 13% 6% 9% 

 50-59 73% 11% 6% 9% 
  60-74 71% 12% 9% 8% 

BI-RADS = Breast Imaging Reporting and Data Systems; Fibro = fibroglandular  
Due to rounding, some percentages may not add to 100%. 
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Abstract

Background

Biennial screening is generally recommended for average-risk women aged 50 to 74 

years, but tailored screening may provide greater benefits.

Objective

To estimate outcomes for various screening intervals after age 50 based on breast density 

and risk for breast cancer.

Design

Collaborative simulation modeling using national incidence, breast density, and screen-

ing performance data.

Setting

United States

Patients

Women aged 50 years or older with various combinations of breast density and relative 

risk (RR) of 1.0, 1.3, 2.0, or 4.0.

Interventions

Annual, biennial, or triennial digital mammography screening from ages 50 to 74 years 

(vs. no screening) and ages 65 to 74 years (vs. biennial digital mammography from ages 

50 to 64 years)

Measurements

Lifetime breast cancer deaths, life expectancy and quality-adjusted life-years (QALYs), 

false-positive mammograms, benign biopsy results, overdiagnosis, cost-effectiveness, 

and ratio of false-positive results to breast cancer deaths averted

Results

Screening benefits and overdiagnosis increase with breast density and RR. False-positive 

mammograms and benign results on biopsy decrease with increasing risk. Among 

women with fatty breasts or scattered fibroglandular density and an RR of 1.0 or 1.3, 

breast cancer deaths averted were similar for triennial versus biennial screening for both 

age groups (50 to 74 years, median of 3.4 to 5.1 vs. 4.1 to 6.5 deaths averted; 65 to 74 

years, median of 1.5 to 2.1 vs. 1.8 to 2.6 deaths averted). Breast cancer deaths averted 

increased with annual versus biennial screening for women aged 50 to 74 years at all 
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levels of breast density and an RR of 4.0, and those aged 65 to 74 years with heteroge-

neously or extremely dense breasts and an RR of 4.0. However, harms were almost 2-fold 

higher. Triennial screening for the average-risk subgroup and annual screening for the 

highest-risk subgroup cost less than $100 000 per QALY gained

Limitations

Models did not consider women younger than 50 years, those with an RR less than 1, or 

other imaging methods.

Conclusions

Average-risk women with low breast density undergoing triennial screening and higher-

risk women with high breast density receiving annual screening will maintain a similar 

or better balance of benefits and harms than average-risk women receiving biennial 

screening.

Primary Funding Source

National Cancer Institute
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Introduction

Debate surrounding breast cancer screening for women in their 40s continues; however, 

there is a greater consensus about U.S. guidelines for average-risk women 50 or older 

(1, 2), with groups now recommending biennial mammography from ages 50 or 55 to 74 

years (3, 4). Biennial screening is supported by clinical trials (5, 6), observational studies 

(5, 7), and modeling results (8). Present recommendations also acknowledge that imple-

menting screening in clinical practice should involve shared decision making to consider 

preferences, risk levels, and breast density (3, 4). However, data to guide clinicians and 

women in making personalized decisions about screening intervals based on such factors 

are limited.

Observational data (7, 9) and modeling studies (10, 11) suggest that annual screening 

may be more effective than biennial screening for women at high risk for breast cancer 

due to dense breasts and other risk factors, further, triennial screening may retain most 

of the benefit of biennial screening but may be less harmful and more cost-effective for 

low-risk women with low density. However, past empirical research on alternative screen-

ing intervals did not include mortality outcomes (12). Moreover, most prior modeling 

studies have relied on single models (10, 11), data on film-screen mammography and 

older treatment regimens (10, 11, 13), and did not consider changes in breast density as 

women age (10), or triennial intervals (8).

To fill this gap, the Cancer Intervention and Surveillance Modeling Network (14) 

collaborating with the Breast Cancer Surveillance Consortium (BCSC) (a longstanding 

network of 6 U.S. breast imaging registries with links to tumor and pathology registries 

(15)), used 3 well-established models to evaluate various screening intervals for digital 

mammography among subgroups of women based on age, risk, and breast density. 

Outcomes were projected for women aged 50 (or 65) years who were deciding whether 

to initiate (or continue) biennial screening until age 74 years or to have annual or triennial 

screening. Study results are intended to inform discussions about implementing tailored 

breast cancer screening intervals to maximize screening benefits while minimizing harms.

Methods

Overview of Breast Cancer Screening Strategies

The study included the following 3 microsimulation models: Model E (Erasmus Medical 

Center, Rotterdam, Netherlands), Model GE (Georgetown University Medical Center, 

Washington, DC; and Albert Einstein College of Medicine, Bronx, New York), and Model 

W (University of Wisconsin–Madison, Madison, Wisconsin; and Harvard Medical School, 
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Boston, Massachusetts). These models were either exempt from human subjects review 

or approved by review boards at each institution.

The models used a lifetime horizon to evaluate screening strategies for 2 populations, 

women aged 50 years who were starting screening for the first time and those aged 65 

years who had received biennial screening from ages 50 to 64 years. We selected these 

populations because there is a consensus on screening women in their 50s and because 

at age 65 years, increases in competing mortality risks and decreases in breast density 

might alter the balance of benefits and harms.

Strategies for each age group varied by screening interval (annual, biennial, and trien-

nial) and were compared with no screening. These intervals were applied to population 

subgroups based on combinations of the following 4 breast density levels, as defined by 

the American College of Radiology’s Breast Imaging Reporting and Data System: almost 

entirely fat (“a”), scattered fibroglandular density (“b”), heterogeneously dense (“c”), or 

extremely dense (“d”) (16)], and 4 exemplar relative risk (RR) levels, which incorporated 

risk factors other than breast density. These levels represent common risk factors consid-

ered alone or in combination: 1.0 (average), 1.3 (for example, postmenopausal obesity) 

(17-27), 2.0 (for example, history of benign breast biopsy results), and 4.0 (history of 

lobular carcinoma in situ) (25-29) (Appendix Table 1). Populations with risk suggestive 

of mutations in breast cancer susceptibility genes 1 and 2 were not included in these 

analyses.

Model Overview

The models shared common inputs but used different structures and underlying assump-

tions (Appendix Table 2) (8, 14). They started with estimates of age-specific breast can-

cer incidence (31) and survival trends specific to breast cancer stage, estrogen receptor 

(ER) status, and human epidermal growth factor receptor 2 (HER2) status (30) all without 

screening or adjuvant treatment. Incidence in the absence of screening was calibrated 

from an age–period–cohort model that accounted for changes in underlying risk (for 

example, secular patterns in postmenopausal hormone use) (31). Tumors had a range 

of preclinical periods during which they could be detected by screening (that is, sojourn 

times). Data on screening and ER/HER2-specific adjuvant treatment were added to gen-

erate breast cancer–specific incidence and mortality (14). Models have been validated 

using data from the U.K. Age trial During the preclinical detectable period, screening 

could result in the identification and treatment of earlier-stage or smaller tumors and 

lead to a reduction in breast cancer mortality reduction (Appendix Figure 1). All models 

assumed that a portion of ductal carcinoma in situ lesions was non-progressive and 

nonlethal; model W also considered that some types of small invasive cancer would not 

progress.
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Model Input Parameters

The models used a common set of age-specific variables for population demographics 

(32), breast cancer natural history and risk (30, 31, 33-36), digital mammography (37, 38), 

breast density, treatment (39-41), mortality (30), costs (42, 43), and quality of life (Table 1 

and Appendix Table 2) (14, 44-46). Each model also included parameters to represent 

preclinical detectable times, lead time, and age- and ER/HER2-specific stage distribution 

in screen- versus non–screendetected cancer based on each model’s specific structure. 

These model-specific parameters were based on assumptions about combinations of 

values that reproduced U.S. trends in breast cancer incidence and breast cancer–specific 

mortality from 1975 to 2010 in the SEER (Surveillance, Epidemiology, and End Results) 

program (47). To isolate the effect of various screening strategies, all models assumed 

100% adherence to screening and receipt of the most effective treatment. The population 

included women born in 1970 and followed until death. This birth cohort was chosen be-

cause these women experience modern conditions (for example, digital mammography 

performance, treatment effectiveness, and competing mortality) and for consistency with 

recent collaborative modeling reports (8). In each simulation, subgroups of women were 

followed from age 25 years until death or age 100 years. Subgroups were defined on the 

basis of combinations of 4 RR levels (1.0, 1.3, 2.0, and 4.0) and 4 breast density levels, 

with the combination of breast density levels and other factors treated multiplicatively. 

The risk level modified the underlying breast cancer incidence in the absence of screen-

ing. We assumed that risk level was constant over age and did not affect other model 

parameters. Women were assigned to either the same breast density category or the 

next lower category at ages 50 and 65 years based on observed age-specific prevalence 

in the BCSC(27, 48). Density also affected mammography performance (Table 1 and 

Appendix Table 3).

Digital mammography sensitivity and specificity were based on age, initial or subse-

quent screening, screening interval, and breast density using BCSC data (Table 1 and 

Appendix Table 3). Models GE and W used these data for calibration, and model E 

fit estimates from the BCSC and other sources Specificity data were used to estimate 

rates of false-positive mammograms. The BCSC rates of biopsy recommendations were 

applied to these estimates to calculate the number of benign biopsy results. Treatment 

effectiveness was based on clinical trials and modeled as a reduction in mortality risk 

(model GE) or an increase in the proportion cured (models E and W) compared with age-, 

stage-, and ER/HER2- specific survival in the absence of therapy (39). Women died of 

either breast cancer or other causes.

Screening Outcomes

Primary outcomes were lifetime benefits and harms; secondary outcomes were use of 

services and costs. Benefits included breast cancer deaths averted and life-years and 
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Table 1 Model Input Parameters

Parameter Description Data Source

Population Demographics

Birth cohorts 1970 birth cohort (32)

Natural History of Breast Cancer

Incidence in the 
absence of screening

An age-period-cohort model is used as a starting point for 
calibration to observed SEER Program rates.

(31)

Stage distribution Stage distribution among clinically-detected and digital screen-
detected women by age group (<50, 50–64, ≥65 years), screening 
round (first, subsequent), and screening interval (annual, biennial, 
triennial).

BCSC data from 
1994–2013 (digital 
from 2003–2013)

ER/HER2 joint 
distribution

Probability of ER/HER2 conditional on age and stage at 
diagnosis.

BCSC

Sojourn time Sojourn time by joint ER/HER2 status and age. (30)

Mean stage dwell 
time/tumor growth 
rates

Varies by models; can vary by age and/or ER/HER2 status. (33-35)

Breast Cancer Screening

Mammography use Assume all women are screened by digital mammography. (37, 38)

Sensitivity/
detection rates of 
digital screening

Sensitivity of initial and subsequent digital mammography by age 
group, screening interval (annual, biennial, triennial), and breast 
density. See Appendix Table 3.

BCSC

Specificity False-positive mammograms are calculated as the difference 
between the overall number of positive mammograms in a 
screening scenario minus the number of positive mammograms 
among breast cancer cases.

BCSC

Prevalence of breast 
density

Prevalence of breast density (BI-RADS a, b, c, d) by age group. 
Density is assigned at age 40 years and can decrease by one level 
or remain the same at age 50 years and again at age 65 years.

BCSC

Risk levels for density Risk of breast cancer based on BI-RADS relative to average 
density by age group.

BCSC

Risk levels for factors 
other than density

RR=1 is used at the referent for average population. RR=1.3, 2.0, 
and 4.0 are used as levels associated with common risk factors.

(36)

Breast Cancer Treatment

Treatment use Assume receipt of and adherence to the most effective available 
treatment specific to age, stage and ER/HER2 status.

1997–2010 (40, 41)

Treatment effects Meta-analyses of clinical trial results. (39)

Survival

Breast cancer survival 26-year breast cancer survival before adjuvant treatment by joint 
ER/HER2 status, age group, and AJCC/SEER stage or tumor size

(30)

Non-breast cancer 
mortality

Age- and cohort-specific all-cause mortality rates by year. Vanness D, Personal 
communication, 2015

Costs

Screening 
mammogram

$138.28 Medicare 
reimbursement

Work-up after false-
positive mammogram

Imaging costs: $141.42 (all ages). Biopsy costs by age: $1,354.05 
for ages 50-64; $1,361.39 for ages 65-74; and $1,442.19 for ages 
75-100. Biopsies applied to 10.6% of women screened within each 
age group.

(42)
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quality-adjusted life-years (QALYs) gained. The QALYs were based on utilities for the 

general U.S. population estimated both with and without adjustments for having a 

screening examination (0.006 for 1 week per examination = –1 hour per examination) 

and having a positive screening result and undergoing diagnostic evaluation (0.0105 for 

5 weeks = –8.8 hours). We also adjusted for breast cancer treatment (Table 1).

Harms included false-positive mammograms, benign biopsies, and overdiagnosis. The 

rate of false-positive mammograms was the number read as abnormal in women without 

cancer divided by the total. Benign biopsies were defined as a biopsy recommendation 

among women with false-positive screening results (49). Overdiagnosis was defined as 

screen-detected cancer that would not have been diagnosed in a woman’s lifetime in the 

absence of mammography (14, 50).

Costs (reported in 2014 U.S. dollars) were estimated based on the number of mam-

mograms; evaluation of positive mammograms, including additional imaging or biopsy 

among women with cancer and those with false-positive mammograms; and stage-

specific cancer treatments based on Medicare reimbursement schedules and published 

studies (Table 1).

Table 1 Model Input Parameters (continued)

Parameter Description Data Source

Work-up after true 
positive mammogram

By age: $2,154.58 for ages 50-64; $2,166.52 for ages 65-74; and 
$1,826.80 for ages 75-100.

(42)

Breast cancer 
treatment

By stage during initial treatment: $13,695.67 for DCIS and local 
stage; $25,893.77 for regional stage; and $39,990.86 for distant 
stage. During the last year of life among women with cancers that 
were not cured/progressed, depending on stage at diagnosis: 
$37,070.10 for DCIS and local stage; $43,878.64 for regional 
stage; and $61,544.91 for distant stage.

(43)

Utilities

Healthy women Age-specific quality of life utilities among women without breast 
cancer.

(45)

Screening 
mammogram

0.994 for 1 week (44)

Diagnostics after 
positive mammogram

0.895 for 5 weeks (44)

Cancer treatment By stage: 0.9 for 2 years for DCIS and local stage; 0.75 for 2 years 
for regional stage; and 0.6 until death for distant stage.

(46)

Abbreviations: AJCC, American Joint Committee on Cancer; BCSC, Breast Cancer Surveillance Con-
sortium; BI-RADS, Breast Imaging Reporting and Data System; DCIS, ductal carcinoma in situ; ER, 
estrogen receptor; HER2, human epidermal growth factor 2; RR, relative risk; SEER, Surveillance, 
Epidemiology, and End Results.
Note: Not all models use all parameters; some models use parameters as direct inputs and others 
use them as a target for calibration or other estimation (See Appendix Table 2).
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Table 2 Lifetime benefits of screening annually, biennially or triennially per 1000 women screened by 
relative risk, breast density, and age group across 3 models.

Density

Breast cancer deaths averted vs. no 
screening, median (range across models)

Life years gained vs. no screening, 
median (range across models) *

RR Triennial Biennial Annual Triennial Biennial Annual

Ages 50-74†

A
lm

o
st

 
en

tir
el

y 
fa

tt
y 1 3.4 (1.8-3.6) 4.1 (2.4-4.3) 4.7 (3.2-5.6) 50 (35-64) 64 (47-73) 84 (62-85)

1.3 4.4 (2.4-4.6) 5.3 (3.1-5.5) 6.0 (4.1-7.1) 64 (46-82) 82 (60-94) 108 (80-109)

2 6.4 (3.6-7.0) 8.0 (4.8-8.0) 9.1 (6.2-10.3) 94 (69-124) 120 (92-142) 159 (122-163)

4 11.0 (7.2-13.1) 13.8 (9.2-15.0) 17.2 (12.0-17.7) 164 (136-235) 209 (177-269) 277 (233-309)

Sc
at

te
re

d
 

fib
ro

g
la

nd
ul

ar 1 4.0 (2.9-5.9) 5.2 (3.8-6.8) 6.9 (5.1-7.9) 59 (56-107) 77 (74-123) 106 (101-143)

1.3 5.1 (3.7-7.5) 6.5 (4.9-8.7) 8.7 (6.6-10.1) 75 (72-137) 97 (95-158) 134 (129-184)

2 7.2 (5.6-11.2) 9.2 (7.4-12.9) 12.3 (9.9-15.0) 109 (107-204) 144 (139-236) 194 (191-275)

4 11.5 (10.8-20.2) 14.7 (13.9-23.3) 19.4 (18.4-27.0) 207 (175-372) 269 (227-430) 360 (308-502)

H
et

er
o

-
g

en
eo

us
ly

 
d

en
se

1 4.8 (3.3-8.4) 6.3 (4.4-9.8) 8.4 (6.1-11.7) 72 (64-149) 94 (86-175) 130 (122-210)

1.3 6.0 (4.2-10.7) 7.7 (5.6-12.4) 10.4 (7.8-14.8) 90 (82-190) 117 (110-223) 161 (155-267)

2 8.3 (6.3-15.5) 10.6 (8.3-18.1) 14.3 (11.6-21.6) 124 (122-278) 162 (162-326) 230 (224-392)

4 12.4 (11.4-26.5) 15.8 (15.1-31.0) 21.0 (20.8-37.1) 221 (192-485) 294 (248-568) 411 (338-685)

Ex
tr

em
el

y 
d

en
se

1 5.1 (3.1-9.9) 6.5 (4.2-11.7) 8.9 (6.0-14.4) 75 (61-174) 98 (82-206) 138 (121-255)

1.3 6.2 (4.0-12.5) 8.0 (5.4-14.7) 10.9 (7.7-18.1) 93 (79-219) 122 (106-261) 170 (155-323)

2 8.4 (5.9-17.9) 10.8 (7.9-21.1) 14.7 (11.4-26.0) 127 (115-317) 166 (155-376) 231 (226-468)

4 12.0 (10.4-29.3) 15.4 (14.0-34.7) 20.5 (20.2-42.9) 204 (187-534) 277 (242-634) 402 (332-789)

Ages 65-74‡

A
lm

o
st

 
en

tir
el

y 
fa

tt
y 1 1.5 (0.8-1.6) 1.8 (1.0-2.0) 2.3 (1.4-2.4) 16 (11-21) 19 (15-26) 26 (21-31)

1.3 1.9 (1.0-2.0) 2.3 (1.4-2.6) 3.0 (1.9-3.1) 20 (14-27) 24 (19-34) 34 (27-40)

2 2.7 (1.5-3.0) 3.2 (2.1-3.9) 4.3 (2.8-4.4) 28 (20-40) 33 (29-50) 47 (41-59)

4 4.2 (2.6-5.4) 5.1 (3.8-7.0) 6.8 (5.0-8.0) 44 (37-71) 54 (52-92) 73 (73-107)

Sc
at

te
re

d
 

fib
ro

g
la

nd
ul

ar 1 1.7 (1.1-2.3) 2.1 (1.6-2.9) 3.0 (2.2-3.4) 18 (17-30) 23 (22-39) 33 (32-45)

1.3 2.1 (1.5-2.9) 2.6 (2.1-3.7) 3.6 (2.9-4.3) 22 (21-38) 30 (27-49) 42 (39-58)

2 2.9 (2.1-4.2) 3.5 (3.0-5.4) 4.9 (4.1-6.3) 30 (29-55) 43 (36-71) 60 (53-84)

4 4.0 (3.6-7.2) 5.3 (4.9-9.4) 7.2 (6.8-10.9) 50 (41-96) 74 (50-124) 102 (73-146)

H
et

er
o

-
g

en
eo

us
ly

 
d

en
se

1 2.0 (1.2-3.6) 2.5 (1.8-4.7) 3.6 (2.5-5.7) 21 (17-47) 26 (25-62) 38 (37-75)

1.3 2.5 (1.5-4.5) 3.0 (2.2-5.9) 4.3 (3.2-7.1) 26 (21-59) 32 (31-77) 47 (47-95)

2 3.2 (2.2-6.4) 3.9 (3.2-8.4) 5.5 (4.6-10.1) 33 (31-84) 46 (40-111) 66 (60-135)

4 4.0 (3.6-10.1) 5.4 (4.8-13.3) 7.6 (6.7-16.1) 50 (40-134) 76 (49-176) 109 (72-216)

Ex
tr

em
el

y 
d

en
se

1 2.0 (1.1-4.3) 2.5 (1.7-5.9) 3.6 (2.4-7.3) 21 (16-57) 26 (24-77) 39 (36-97)

1.3 2.4 (1.4-5.4) 3.0 (2.1-7.3) 4.3 (3.1-9.1) 25 (20-72) 31 (30-96) 46 (45-122)

2 3.0 (2.0-7.5) 3.7 (3.0-10.1) 5.3 (4.4-12.6) 31 (29-99) 43 (38-134) 64 (57-170)

4 3.5 (3.3-11.2) 4.9 (4.3-15.1) 7.3 (6.0-18.9) 46 (36-149) 70 (43-202) 105 (64-257)

Abbreviations: RR, relative risk.
* Life years gained are undiscounted.
† Screening is initiated at age 50.
‡ Women who are currently 65 and have been screened biennially from 50-64.
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Statistical Analysis

For each age group modeled (≥50 and ≥65 years), there were 16 possible population 

subgroups based on combinations of breast cancer risk and density. Benefits and harms 

for each strategy were compared with no screening for every 1000 women screened. No 

screening was assumed to occur before age 50 years in all analyses. Screening strategies 

for women aged 65 to 74 years assumed that they received biennial mammography dur-

ing ages 50 to 64 years. We report the median benefits and harms and the range across 

models as a measure of uncertainty. In secondary analyses, the ratio of false-positive 

mammograms to breast cancer deaths averted was calculated as a metric of the tradeoffs 

of harms to benefits. We also estimated the incremental costs per QALY for each strategy 

and population risk–density subgroup. For this estimate, the change in cost was divided 

by the change in benefit (for example, QALYs) when each more costly screening strategy 

was compared with the strategy with the next lowest cost within the subgroup. Costs and 

QALYs were discounted at 3% per year, and QALYs included screening and work-up ad-

justments. Screening strategies were considered cost-effective with a common threshold 

of $100 000 per QALY gained (51).

Role of the Funding Source

The National Cancer Institute funded this research but had no role in the design or 

conduct of the study; collection, management, analysis, or interpretation of the data; 

preparation, review, or approval of the manuscript; or the decision to submit the manu-

script for publication.

Results

The results of all 3 models illustrate that across intervals and age groups, screening (vs. 

no screening) (Appendix Table 4, available at www.annals.org) had a greater absolute 

benefit in terms of breast cancer deaths averted, life-years gained, and QALYs gained 

among 2 groups of women: those with dense breasts and those at higher RR within each 

breast density group (Tables 2 and 3). Adjustments for screening harms did not affect the 

ordering of screening strategies by QALY.

Women Starting Screening at Age 50

For all screening intervals, as risk and breast density increased, the benefits (breast 

cancer deaths averted, life-years gained, and QALYs gained) of screening increased and 

the harms (false-positive mammograms and benign biopsy results but not overdiagnosis) 

decreased with greater risk (Tables 2 to 4).Among average-risk women with fatty breasts 

(RR, 1.0 or 1.3), biennial screening, compared with no screening, in women aged 50 to 74 
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Table 3 Lifetime QALY benefits of screening annually, biennially or triennially per 1000 women 
screened by relative risk, breast density, and age group with and without screening and work-up 
adjustments.

Density RR

QALYs gained with screening and work-up 
adjustments vs. no screening, median 
(range across models) *

QALYs gained without screening and work-
up adjustments vs. no screening, median 
(range across models)*

Triennial Biennial Annual Triennial Biennial Annual

Ages 50-74†

A
lm

o
st

 
en

tir
el

y 
fa

tt
y 1 32 (21-44) 41 (29-49) 51 (36-51) 37 (26-50) 48 (35-58) 63 (47-66)

1.3 43 (29-59) 54 (39-66) 69 (50-71) 47 (34-65) 61 (45-75) 80 (61-86)

2 65 (46-93) 82 (63-105) 106 (81-116) 70 (52-99) 89 (69-114) 118 (93-131)

4 118 (98-183) 150 (128-209) 194 (168-234) 123 (103-190) 157 (135-217) 206 (180-249)

Sc
at

te
re

d
 

fib
ro

g
la

nd
ul

ar 1 36 (35-76) 47 (47-86) 60 (60-92) 43 (43-85) 57 (56-99) 78 (78-115)

1.3 48 (47-101) 63 (62-114) 82 (81-126) 55 (55-110) 73 (72-127) 99 (98-148)

2 75 (71-155) 100 (92-178) 132 (123-200) 83 (78-164) 110 (102-190) 149 (140-222)

4 153 (122-292) 199 (158-336) 264 (212-386) 160 (129-301) 209 (168-349) 280 (228-407)

H
et

er
o

-
g

en
eo

us
ly

 
d

en
se

1 44 (40-110) 57 (55-126) 75 (73-143) 52 (49-120) 69 (66-141) 95 (94-169)

1.3 57 (54-143) 74 (74-165) 100 (98-190) 65 (63-153) 85 (85-180) 120 (119-216)

2 86 (83-215) 114 (108-249) 159 (145-292) 94 (91-225) 125 (119-263) 178 (165-317)

4 164 (133-384) 220 (173-448) 305 (233-533) 172 (141-394) 230 (184-461) 322 (251-556)

Ex
tr

em
el

y 
d

en
se

1 47 (40-131) 62 (54-154) 84 (77-185) 54 (47-140) 71 (64-166) 100 (94-206)

1.3 60 (54-169) 79 (73-199) 108 (104-240) 67 (61-177) 88 (82-211) 124 (120-261)

2 85 (83-248) 112 (112-293) 161 (153-358) 92 (90-257) 121 (121-305) 176 (169-379)

4 154 (129-425) 210 (169-503) 302 (231-622) 161 (136-433) 218 (178-514) 317 (246-641)

Ages 65-74‡

A
lm

o
st

 
en

tir
el

y 
fa

tt
y 1 9 (6-15) 11 (8-18) 15 (11-20) 11 (8-16) 13 (10-21) 19 (15-24)

1.3 12 (8-19) 15 (11-24) 20 (16-27) 14 (10-21) 17 (14-27) 24 (20-31)

2 18 (13-30) 22 (19-38) 29 (26-42) 20 (15-31) 24 (21-40) 34 (30-47)

4 30 (25-55) 37 (36-71) 50 (49-81) 32 (27-57) 39 (38-73) 54 (53-85)

Sc
at

te
re

d
 

fib
ro

g
la

nd
ul

ar 1 10 (10-21) 13 (12-27) 18 (17-29) 13 (13-23) 17 (16-30) 24 (23-36)

1.3 13 (13-28) 18 (16-35) 25 (22-39) 16 (15-30) 22 (19-39) 31 (28-46)

2 19 (19-42) 28 (23-53) 38 (32-60) 21 (21-44) 31 (26-57) 44 (38-67)

4 35 (28-75) 52 (33-96) 71 (47-111) 37 (30-77) 55 (37-99) 77 (53-117)

H
et

er
o

-
g

en
eo

us
ly

 
d

en
se

1 12 (10-35) 15 (14-45) 20 (20-52) 15 (13-38) 19 (18-49) 27 (27-60)

1.3 15 (13-45) 20 (18-58) 27 (26-68) 18 (16-47) 24 (22-62) 35 (33-76)

2 21 (20-65) 30 (25-85) 43 (36-100) 24 (23-67) 34 (29-89) 50 (43-108)

4 35 (27-105) 54 (33-138) 76 (46-167) 38 (30-107) 57 (36-142) 82 (52-174)

Ex
tr

em
el

y 
d

en
se

1 12 (10-44) 15 (15-58) 21 (21-72) 15 (12-46) 18 (18-62) 27 (27-78)

1.3 15 (13-55) 20 (18-74) 28 (27-91) 18 (15-57) 23 (21-77) 34 (32-98)

2 20 (20-78) 29 (24-104) 43 (35-130) 22 (22-80) 32 (27-107) 48 (41-136)

4 33 (24-118) 51 (29-159) 76 (43-201) 35 (26-120) 53 (32-162) 80 (47-206)

Abbreviations: QALY, quality-adjusted life year; RR, relative risk.
* QALYs gained are undiscounted.
† Screening is initiated at age 50.
‡ Women who are currently 65 and have been screened biennially from 50-64.
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Table 4 Lifetime harms of screening annually, biennially or triennially per 1000 women screened by 
relative risk, breast density, and age group

Density 
and RR

False-positives vs. no screening,
median (range across models)

Benign biopsies vs. no screening,
median (range across models)

Over-diagnosis vs. no screening, median (range 
across models)*

Triennial Biennial Annual Triennial Biennial Annual Triennial Biennial Annual

Ages 50-74†

Almost entirely fatty

1 489 (424-616) 618 (613-858) 1101 (1094-1548) 79 (68-106) 91 (91-136) 127 (127-191) 11 (9-17) 12 (11-20) 17 (12-24)

1.3 484 (420-611) 612 (606-851) 1089 (1081-1536) 78 (67-106) 91 (90-135) 126 (125-190) 12 (11-21) 15 (11-26) 21 (12-31)

2 471 (412-600) 598 (590-836) 1062 (1051-1507) 76 (66-104) 89 (88-133) 123 (122-187) 17 (11-31) 22 (11-37) 30 (12-44)

4 438 (390-571) 564 (547-794) 996 (972-1429) 71 (63-99) 84 (81-126) 116 (113-177) 27 (11-53) 35 (11-63) 49 (12-75)

Scattered areas of fibroglandular density

1 781 (693-935) 1009 (991-1326) 1806 (1776-2440) 126 (111-158) 150 (147-206) 209 (206-296) 13 (11-22) 17 (11-27) 23 (12-35)

1.3 767 (683-922) 994 (972-1309) 1776 (1740-2406) 123 (110-156) 148 (144-203) 206 (202-292) 16 (11-28) 20 (11-34) 29 (12-44)

2 734 (662-894) 963 (929-1267) 1714 (1659-2329) 118 (107-152) 143 (138-197) 199 (193-283) 21 (10-39) 28 (11-48) 39 (12-62)

4 649 (613-818) 888 (818-1158) 1568 (1452-2123) 105 (99-140) 132 (122-181) 183 (169-259) 31 (11-60) 40 (12-74) 56 (13-95)

Heterogeneously dense

1 917 (822-1064) 1197 (1171-1524) 2123 (2080-2829) 163 (146-195) 178 (174-235) 266 (261-365) 16 (10-20) 20 (11-26) 28 (12-38)

1.3 894 (807-1043) 1174 (1141-1493) 2078 (2023-2771) 159 (144-191) 174 (169-230) 261 (254-358) 19 (10-25) 24 (11-32) 34 (12-46)

2 842 (775-995) 1125 (1073-1424) 1984 (1896-2642) 150 (138-183) 167 (160-220) 249 (238-342) 25 (10-34) 32 (11-44) 45 (13-63)

4 715 (703-875) 1016 (906-1248) 1778 (1585-2308) 128 (126-162) 152 (136-194) 224 (200-301) 32 (11-49) 41 (12-63) 57 (14-89)

Extremely dense

1 732 (652-849) 939 (925-1200) 1668 (1647-2225) 130 (116-156) 139 (137-185) 209 (206-288) 16 (10-17) 21 (11-22) 31 (12-32)

1.3 712 (638-827) 917 (898-1169) 1626 (1597-2167) 127 (113-152) 136 (133-181) 204 (200-281) 19 (10-21) 26 (11-27) 37 (12-39)

2 666 (608-780) 872 (839-1102) 1540 (1487-2039) 119 (108-144) 129 (125-171) 193 (186-265) 26 (10-26) 34 (11-35) 47 (13-53)

4 555 (543-663) 776 (697-933) 1359 (1223-1719) 99 (97-123) 116 (104-146) 171 (154-225) 32 (10-37) 41 (12-49) 56 (15-74)

Ages 65-74‡

Almost entirely fatty

1 145 (137-169) 209 (206-227) 413 (395-459) 22 (20-25) 29 (29-32) 45 (43-51) 5 (4-8) 6 (5-11) 9 (5-13)

1.3 142 (135-166) 206 (202-224) 405 (388-453) 21 (20-25) 29 (28-31) 45 (43-50) 7 (4-10) 8 (5-14) 11 (5-17)

2 135 (130-160) 198 (193-217) 387 (373-438) 20 (20-24) 28 (27-30) 43 (41-48) 9 (4-15) 11 (5-20) 15 (6-25)

4 119 (118-145) 178 (169-197) 340 (335-399) 18 (18-22) 25 (24-28) 37 (37-44) 14 (5-25) 16 (6-34) 22 (7-41)

Scattered areas of fibroglandular density

1 230 (225-278) 343 (333-375) 667 (648-757) 34 (34-42) 48 (47-52) 73 (71-83) 7 (4-10) 8 (5-15) 12 (5-20)

1.3 223 (220-271) 335 (322-366) 645 (632-741) 33 (33-41) 47 (45-51) 71 (69-81) 8 (4-13) 10 (5-19) 14 (6-24)

2 209 (206-257) 317 (298-348) 597 (597-704) 31 (31-39) 44 (42-49) 66 (66-77) 11 (5-18) 13 (6-26) 18 (6-34)

4 180 (166-225) 276 (239-299) 520 (480-607) 27 (25-34) 39 (33-42) 57 (53-67) 14 (5-27) 17 (7-38) 23 (8-50)

Heterogeneously dense

1 273 (260-329) 407 (397-432) 794 (760-875) 46 (44-56) 57 (56-61) 95 (91-105) 8 (4-10) 10 (5-14) 14 (6-20)

1.3 262 (250-319) 394 (381-417) 762 (735-845) 45 (43-54) 55 (53-58) 91 (88-101) 10 (5-12) 12 (6-17) 17 (7-25)

2 238 (230-298) 367 (346-384) 693 (684-779) 41 (39-51) 51 (48-54) 83 (82-93) 12 (5-16) 15 (7-23) 21 (8-33)

4 182 (181-254) 302 (264-311) 580 (528-617) 31 (31-43) 42 (37-44) 70 (63-74) 13 (6-22) 16 (8-32) 22 (10-46)
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Table 4 Lifetime harms of screening annually, biennially or triennially per 1000 women screened by 
relative risk, breast density, and age group

Density 
and RR

False-positives vs. no screening,
median (range across models)

Benign biopsies vs. no screening,
median (range across models)

Over-diagnosis vs. no screening, median (range 
across models)*

Triennial Biennial Annual Triennial Biennial Annual Triennial Biennial Annual

Ages 50-74†

Almost entirely fatty

1 489 (424-616) 618 (613-858) 1101 (1094-1548) 79 (68-106) 91 (91-136) 127 (127-191) 11 (9-17) 12 (11-20) 17 (12-24)

1.3 484 (420-611) 612 (606-851) 1089 (1081-1536) 78 (67-106) 91 (90-135) 126 (125-190) 12 (11-21) 15 (11-26) 21 (12-31)

2 471 (412-600) 598 (590-836) 1062 (1051-1507) 76 (66-104) 89 (88-133) 123 (122-187) 17 (11-31) 22 (11-37) 30 (12-44)

4 438 (390-571) 564 (547-794) 996 (972-1429) 71 (63-99) 84 (81-126) 116 (113-177) 27 (11-53) 35 (11-63) 49 (12-75)

Scattered areas of fibroglandular density

1 781 (693-935) 1009 (991-1326) 1806 (1776-2440) 126 (111-158) 150 (147-206) 209 (206-296) 13 (11-22) 17 (11-27) 23 (12-35)

1.3 767 (683-922) 994 (972-1309) 1776 (1740-2406) 123 (110-156) 148 (144-203) 206 (202-292) 16 (11-28) 20 (11-34) 29 (12-44)

2 734 (662-894) 963 (929-1267) 1714 (1659-2329) 118 (107-152) 143 (138-197) 199 (193-283) 21 (10-39) 28 (11-48) 39 (12-62)

4 649 (613-818) 888 (818-1158) 1568 (1452-2123) 105 (99-140) 132 (122-181) 183 (169-259) 31 (11-60) 40 (12-74) 56 (13-95)

Heterogeneously dense

1 917 (822-1064) 1197 (1171-1524) 2123 (2080-2829) 163 (146-195) 178 (174-235) 266 (261-365) 16 (10-20) 20 (11-26) 28 (12-38)

1.3 894 (807-1043) 1174 (1141-1493) 2078 (2023-2771) 159 (144-191) 174 (169-230) 261 (254-358) 19 (10-25) 24 (11-32) 34 (12-46)

2 842 (775-995) 1125 (1073-1424) 1984 (1896-2642) 150 (138-183) 167 (160-220) 249 (238-342) 25 (10-34) 32 (11-44) 45 (13-63)

4 715 (703-875) 1016 (906-1248) 1778 (1585-2308) 128 (126-162) 152 (136-194) 224 (200-301) 32 (11-49) 41 (12-63) 57 (14-89)

Extremely dense

1 732 (652-849) 939 (925-1200) 1668 (1647-2225) 130 (116-156) 139 (137-185) 209 (206-288) 16 (10-17) 21 (11-22) 31 (12-32)

1.3 712 (638-827) 917 (898-1169) 1626 (1597-2167) 127 (113-152) 136 (133-181) 204 (200-281) 19 (10-21) 26 (11-27) 37 (12-39)

2 666 (608-780) 872 (839-1102) 1540 (1487-2039) 119 (108-144) 129 (125-171) 193 (186-265) 26 (10-26) 34 (11-35) 47 (13-53)

4 555 (543-663) 776 (697-933) 1359 (1223-1719) 99 (97-123) 116 (104-146) 171 (154-225) 32 (10-37) 41 (12-49) 56 (15-74)

Ages 65-74‡

Almost entirely fatty

1 145 (137-169) 209 (206-227) 413 (395-459) 22 (20-25) 29 (29-32) 45 (43-51) 5 (4-8) 6 (5-11) 9 (5-13)

1.3 142 (135-166) 206 (202-224) 405 (388-453) 21 (20-25) 29 (28-31) 45 (43-50) 7 (4-10) 8 (5-14) 11 (5-17)

2 135 (130-160) 198 (193-217) 387 (373-438) 20 (20-24) 28 (27-30) 43 (41-48) 9 (4-15) 11 (5-20) 15 (6-25)

4 119 (118-145) 178 (169-197) 340 (335-399) 18 (18-22) 25 (24-28) 37 (37-44) 14 (5-25) 16 (6-34) 22 (7-41)

Scattered areas of fibroglandular density

1 230 (225-278) 343 (333-375) 667 (648-757) 34 (34-42) 48 (47-52) 73 (71-83) 7 (4-10) 8 (5-15) 12 (5-20)

1.3 223 (220-271) 335 (322-366) 645 (632-741) 33 (33-41) 47 (45-51) 71 (69-81) 8 (4-13) 10 (5-19) 14 (6-24)

2 209 (206-257) 317 (298-348) 597 (597-704) 31 (31-39) 44 (42-49) 66 (66-77) 11 (5-18) 13 (6-26) 18 (6-34)

4 180 (166-225) 276 (239-299) 520 (480-607) 27 (25-34) 39 (33-42) 57 (53-67) 14 (5-27) 17 (7-38) 23 (8-50)

Heterogeneously dense

1 273 (260-329) 407 (397-432) 794 (760-875) 46 (44-56) 57 (56-61) 95 (91-105) 8 (4-10) 10 (5-14) 14 (6-20)

1.3 262 (250-319) 394 (381-417) 762 (735-845) 45 (43-54) 55 (53-58) 91 (88-101) 10 (5-12) 12 (6-17) 17 (7-25)

2 238 (230-298) 367 (346-384) 693 (684-779) 41 (39-51) 51 (48-54) 83 (82-93) 12 (5-16) 15 (7-23) 21 (8-33)

4 182 (181-254) 302 (264-311) 580 (528-617) 31 (31-43) 42 (37-44) 70 (63-74) 13 (6-22) 16 (8-32) 22 (10-46)
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years averted a median of 4.1 and 5.3 breast cancer deaths per 1000 women screened, 

respectively. In average-risk women with scattered fibroglandular density (RR, 1.0 or 1.3), 

biennial screening compared with no screening averted a median of 5.2 and 6.5 breast 

cancer deaths, respectively (Table 2). Screening outcomes were similar for triennial screen-

ing compared with no screening in average-risk women with low-breast density; for every 

1000 women screened, the median number of breast cancer deaths averted ranged from 

3.4 to 5.1. Screening triennially compared with biennially for average-risk women with 

low breast density resulted in a median ranging from 21% to 23% fewer false-positive 

mammograms, 13% to 17% fewer benign biopsies, and 8% to 20% fewer overdiagnosed 

cases (Table 4). Among women with fatty breasts (RR, 2.0), triennial screening, compared 

with biennial screening, averted a median of 1.6 breast cancer deaths per 1000 screened. 

In women with scattered fibroglandular density (RR, 2.0), triennial screening, compared 

with biennial screening, averted 2 breast cancer deaths per 1000 women screened. Thus, 

1000 women with fatty breasts (RR, 2.0) and 1000 women with scattered fibroglandular 

density (RR, 2.0) would have 9 rounds of triennial screening resulting in 6.4 and 7.2 breast 

cancer deaths averted, 471 and 734 false-positive mammograms, and 76 and 118 biopsy 

results, respectively; for 13 rounds of biennial screening, we noted 8.0 and 9.2 breast 

cancer deaths averted, 598 and 963 false-positive mammograms, and 89 and 143 biopsy 

results, respectively.

The benefits of more frequent screening increased as density increased and RR in-

creased to 2 or greater. For example, biennial screening, compared with no screening, 

among women aged 50 to 74 years in subgroups with an RR of 2 and heterogeneously 

dense breasts resulted in a median of 10.6 breast cancer deaths averted and 1125 

Table 4 Lifetime harms of screening annually, biennially or triennially per 1000 women screened by 
relative risk, breast density, and age group (continued)

Density 
and RR

False-positives vs. no screening,
median (range across models)

Benign biopsies vs. no screening,
median (range across models)

Over-diagnosis vs. no screening, median (range 
across models)*

Triennial Biennial Annual Triennial Biennial Annual Triennial Biennial Annual

Extremely dense

1 202 (187-239) 295 (291-312) 583 (553-631) 34 (32-41) 41 (41-44) 70 (66-76) 7 (4-9) 10 (6-11) 15 (7-17)

1.3 193 (179-231) 284 (279-298) 559 (532-604) 33 (30-39) 40 (39-42) 67 (64-72) 9 (5-10) 12 (6-13) 18 (7-20)

2 175 (161-214) 263 (253-268) 507 (491-544) 30 (27-36) 37 (35-37) 61 (59-65) 12 (5-12) 15 (7-17) 21 (9-27)

4 133 (118-180) 197 (191-221) 404 (383-412) 23 (20-31) 28 (27-31) 49 (46-49) 12 (6-16) 14 (9-24) 20 (11-38)

Abbreviations: RR, relative risk.
* Over-diagnosed cases are defined as cases that would not have been clinically detected in the 
absence of screening. The value includes DCIS and invasive over-diagnosis. Over-diagnosis is calcu-
lated by comparing cases detected in the screening scenario to those detected in the unscreened 
scenario.
† Per 1000 women compared to no screening at any age.
‡ Per 1000 women compared to biennial mammograms 50-64 with no subsequent screening.
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false-positive mammograms per 1000 women screened. If these women received annual 

rather than biennial screening, a median of 3.7 more deaths could have been averted; 

however, false-positive mammograms would increase almost 2-fold (1984 vs. 1125 false-

positive mammograms per 1000 women screened). Breast cancer deaths averted per

1000 women screened were highest with annual screening for women ages 50 to 74 

years with all levels of breast density and an RR of 4.0; averted deaths ranged from 17.2 

in women with fatty breasts to 20.5 in women with extremely dense breasts.

The Figure (top) is an exemplar model showing the ratio of harms and benefits for 

subgroups of women with different levels of risk and density screened from ages 50 to 74 

years. Compared with the ratios projected for biennial screening of average-risk women 

from ages 50 to 74 years regardless of breast density, annual screening has a similar or 

better ratio when the RR is 2 or greater across all density groups. Triennial screening has 

similar or better ratios of harms and benefits than biennial screening for average-risk 

women regardless of breast density in nearly all of the RR and density subgroups because 

false-positive mammograms are reduced with triennial screening, and the magnitude of 

breast cancer deaths averted is similar or slightly lower than with biennial screening.

Women at Age 65

The different intervals among women aged 65 to 74 years had similar patterns of benefits 

and harms across subgroups as observed for screening during ages 50 to 74 years but 

with lower absolute magnitudes (Tables 2 to 4 and Figure, bottom). If women changed 

from biennial to triennial screening at age 65 years, fewer than a median of 1 less death 

per 1000 women screened was averted for all RRs and density subgroups. The exception 

was women with an RR of 4 and heterogeneously or extremely dense breasts; a median 

of 1.4 fewer breast cancer deaths were averted in this group (Table 2). For example, 

continuing biennial screening among average-risk women (RR, 1.0 or 1.3) and women 

with fatty breasts or scattered fibroglandular density averted a median of 1.8 to 2.3 

deaths for women with fatty breasts and 2.1 to 2.6 deaths for women with scattered 

fibroglandular density for every 1000 women screened (Table 2); switching to triennial 

Table 4 Lifetime harms of screening annually, biennially or triennially per 1000 women screened by 
relative risk, breast density, and age group (continued)

Density 
and RR

False-positives vs. no screening,
median (range across models)

Benign biopsies vs. no screening,
median (range across models)

Over-diagnosis vs. no screening, median (range 
across models)*

Triennial Biennial Annual Triennial Biennial Annual Triennial Biennial Annual

Extremely dense

1 202 (187-239) 295 (291-312) 583 (553-631) 34 (32-41) 41 (41-44) 70 (66-76) 7 (4-9) 10 (6-11) 15 (7-17)

1.3 193 (179-231) 284 (279-298) 559 (532-604) 33 (30-39) 40 (39-42) 67 (64-72) 9 (5-10) 12 (6-13) 18 (7-20)

2 175 (161-214) 263 (253-268) 507 (491-544) 30 (27-36) 37 (35-37) 61 (59-65) 12 (5-12) 15 (7-17) 21 (9-27)

4 133 (118-180) 197 (191-221) 404 (383-412) 23 (20-31) 28 (27-31) 49 (46-49) 12 (6-16) 14 (9-24) 20 (11-38)

Abbreviations: RR, relative risk.
* Over-diagnosed cases are defined as cases that would not have been clinically detected in the 
absence of screening. The value includes DCIS and invasive over-diagnosis. Over-diagnosis is calcu-
lated by comparing cases detected in the screening scenario to those detected in the unscreened 
scenario.
† Per 1000 women compared to no screening at any age.
‡ Per 1000 women compared to biennial mammograms 50-64 with no subsequent screening.
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Table 5 Incremental costs per quality-adjusted life year gained* by breast density, risk level, screen-
ing interval, and age for 3 models.

Density RR Screening
Frequency

Age 50-74 Age 65-74

Model E Model W Model GE Model E Model W Model GE

Fatty 1.0 Triennial 68,777 117,753 43,098 100,058 131,294 27,639

Biennial 122,007 123,132 232,710 109,587 212,665 104,235

Annual 389,195 586,116 Dom 435,881 516,979 >1,000,000

1.3 Triennial 50,231 83,220 27,022 70,716 92,938 15,785

Biennial 83,577 86,426 133,826 75,433 135,221 67,152

Annual 231,495 309,654 >1,000,000 258,193 286,643 799,501

2.0 Triennial 30,910 W Dom 10,364 42,229 58,276 3,004

Biennial 50,526 50,084† 65,297 46,300 70,911 32,912

Annual 122,540 148,375 392,745 141,183 146,961 263,493

4.0 Triennial 14,969 22,663 † 19,130 W Dom †

Biennial 22,802 23,295 19,932 21,242 30,054 5,331

Annual 54,906 56,451 95,362 69,089 62,251 76,840

Scat-tered 1.0 Triennial 69,714 72,156 18,509 W Dom 55,051 14,112

Biennial 111,605 75,673 104,454 101,612 Dom 61,723

Annual 317,991 288,199 Dom 382,578 612,349 >1,000,000

1.3 Triennial 50,010 51,493 9,683 W Dom 60,785 5,449

Biennial 75,416 53,967 63,057 72,488 73,479 39,636

Annual 186,322 171,038 488,376 224,322 201,088 450,818

2.0 Triennial 31,053 29,757 641 W Dom 38,299 †

Biennial 43,721 31,198 28,182 42,160 42,347 15,956

Annual 96,584 85,607 144,723 120,188 104,553 159,293

4.0 Triennial 15,414 12,179 † W Dom 17,507 Dom

Biennial 19,733 13,116 5,116 20,076 17,977 ‡

Annual 44,019 32,452 39,105 61,818 39,362 42,660

Het. dense 1.0 Triennial 57,924 W Dom 8,016 W Dom 75,197 611

Biennial 85,241 60,333† 50,421 85,145 96,863 23,104

Annual 222,789 185,805 268,798 279,586 290,534 179,689

1.3 Triennial 42,324 41,815 2,179 60,235 54,355 †

Biennial 61,309 42,551 31,442 61,760 60,225 11,809

Annual 137,983 116,700 134,915 169,196 174,243 97,850

2.0 Triennial 26,726 23,375 † W Dom 31,637 †

Biennial 35,235 26,574 12,543 36,446 36,762 478

Annual 75,747 57,557 56,331 99,035 85,503 44,784

4.0 Triennial 13,432 8,534 Dom W Dom 13,298 Dom

Biennial 16,745 9,256 ‡ 18,673 13,814 ‡

Annual 36,845 22,339 14,716 57,264 32,355 8,752

Dense 1.0 Triennial 50,563 52,953 3,017 W Dom 63,918 †

Biennial 68,216 55,420 27,942 75,917 77,061 8,555
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screening averted a median of 1.5 to 1.9 deaths for women with fatty breasts and 1.7 to 

2.1 deaths for women with scattered fibroglandular density. Switching from biennial to 

annual screening increased the median number of breast cancer deaths averted to 2 or 

more for women with heterogeneously or extremely dense breasts and an RR of 4.

As was the case for screening in women aged 50 to 74 years, the ratio of harms (mea-

sured as false-positive mammograms) and benefits (breast cancer deaths averted) for 

annual screening in women aged 65 to 74 years was similar to or better (lower) than 

that seen in biennial screening of average-risk women with an RR of 2 or greater in all 

density subgroups; exceptions were rare (Figure, bottom). Triennial screening also had 

a lower or more favorable ratio than biennial screening because it reduces false-positive 

mammograms, and the magnitude of breast cancer deaths averted is the same or slightly 

lower. Continuing biennial screening has a similar balance as triennial screening for most 

subgroups as seen for average-risk groups, regardless of breast density

Table 5 Incremental costs per quality-adjusted life year gained* by breast density, risk level, screen-
ing interval, and age for 3 models. (continued)

Density RR Screening
Frequency

Age 50-74 Age 65-74

Model E Model W Model GE Model E Model W Model GE

Annual 148,014 129,536 89,425 187,329 203,860 60,177

1.3 Triennial 37,937 36,486 † W Dom 45,929 †

Biennial 49,172 40,051 16,293 55,033 52,754 2,547

Annual 101,399 87,230 56,264 130,774 130,339 36,740

2.0 Triennial 24,715 20,626 † W Dom 26,367 Dom

Biennial 30,291 23,683 4,631 35,097 32,766 ‡

Annual 60,577 47,687 25,753 82,794 71,187 15,070

4.0 Triennial 13,169 7,130 Dom W Dom 10,180 Dom

Biennial 14,856 7,823 ‡ 19,207 11,669 Dom

Annual 31,433 18,224 4,407 52,645 26,834 §

Note: Incremental ratios bold if values are <$100,000, a common threshold for least costly and most 
effective strategies (dominant). Unless otherwise indicated, triennial strategies are compared to no 
screening. Breast density categories shown as: fatty, almost entirely fat; scattered, scattered fibro-
glandular density; het. dense, heterogeneously dense; and dense, extremely dense.
Abbreviations: RR, relative risk; Dom, more expensive and less effective (strongly dominated); W 
Dom, more expensive and more effective but less efficient (weakly dominated).
*Costs and quality-adjusted life years discounted at 3% per year. Quality-adjusted life years include 
disutility from participation in screening mammography.
†Strategy with no screening is strongly dominated. Triennial is the least costly strategy for compari-
son.
‡Strategy with biennial screening is the least costly.
§Strategy with annual screening is the least costly
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Cost-Effectiveness

When we used a common threshold of $100 000 per QALY, triennial strategies were 

the only costeffective strategies for subgroups with average risk and low breast density 

(fatty breasts or scattered fibroglandular density) in both age groups (Table 5). Biennial 

strategies were cost-effective for most density subgroups at average or intermediate risk 

(RR, 1.3 or 2.0). Annual strategies were only consistently cost-effective across models for 

subgroups with an RR of 4, regardless of density, or an RR of 2 or greater and heteroge-

neously or extremely dense breasts.

DISCUSSION

This collaborative modeling study shows that risk and density level can be useful for 

guiding tailored screening recommendations. For average-risk women in low-density 

subgroups, which comprise a large proportion of the population, triennial screening pro-

vides a reasonable balance of benefits and harms and is costeffective. Annual screening 

has a favorable balance of benefits and harms and would be considered costeffective 

for subgroups of women aged 50 years with risk levels that are 2 to 4 times the aver-

age and that have heterogeneously or extremely dense breasts. Benefits of screening 

women with heterogeneously dense breasts (at any interval) were greater than screening 

those with extremely dense breasts at each risk level, reflecting increased risk but fewer 

missed cases of cancer than screening women with extremely dense breasts. The same 

patterns are seen for women aged 65 years such that subgroups at average risk with low 

breast density can consider triennial screening. In contrast, the few women who remain 

at higher risk might benefit from annual screening. Of note, biennial screening maintains 

an acceptable balance of outcomes and is also cost-effective for women with an RR of 1.3 

or 2 as long as they are not in the highest-density groups. Screening benefits and harms 

exist on a continuum across age, risk, and density, with the optimal screening interval 

depending on women’s values and preferences for benefits and harms.

Current U.S. screening guidelines focus on the average-risk population and generally 

recommend biennial screening for women in their 50s or older (3, 4). These new model-

ing results support this recommendation for women who do not have either higher-than 

average risk and high breast density or average to low risk and low breast density. Annual 

screening has been suggested for high-risk women (4). The current results provide further 

guidance on the specific combinations of RRs and breast density after age 50 years that 

identify the subgroups in which annual screening should be considered; these subgroups 

are estimated to constitute fewer than 1% of the population at both ages 50 and 65 years 

(BCSC; Miglioretti DL. Personal communication. 2016).
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Although triennial screening is routinely used in several countries (52, 53), this interval 

has not been considered in the United States. Our modeling suggests that triennial 

screening has a similar balance of benefits and harms compared with biennial screening 

in some groups. Decisions about using triennial versus biennial screening for average-

risk women in the lowdensity subgroups result in fewer false-positive mammograms, 

Figure 1 False-positives mammograms per breast cancer death averted for women (A) aged 50-
74 and (B) aged 65-74 according to screening frequency and risk level (relative risk group, breast 
density) using an exemplar model (Model E). Values for all screening frequencies compared to the 
scenario with no mammography screening. Values for ages 65-74 assume all women received bien-
nial screening during ages 50-64. Dashed lines show this value for women with average density and 
average risk receiving biennial screening (147.7 for ages 50-74 and 105.8 for ages 65-74). Having 
fewer false-positives per death averted than this level, i.e., a value below the dashed line, would be 
more favorable.
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biopsies, and overdiagnosis with minimal effect on breast cancer deaths averted. Others 

have noted that triennial screening can be cost-effective for average-risk women or those 

with an RR of 2 or less aged 60 to 79 years with fatty breasts or scattered fibroglandular 

density(10, 11). We found that 12% of women aged 50 years and 20% of those aged 65 

years have low breast density (fatty breasts and scattered fibroglandular density) and an 

RR of 1.0 or 1.3 (BCSC; Miglioretti DL. Personal communication. 2016).

Breast cancer screening guidelines include an upper limit based on age or life expec-

tancy (3, 4, 54). Although we did not evaluate comorbidity, our study results suggest that 

screening intervals for older women should be based on competing causes of mortal-

ity, breast cancer risk, and changes in breast density associated with aging. The ability 

to tailor screening based on density may become increasingly feasible with the trend 

toward mandated standard reporting of breast density to women after a mammogram. 

Because our results show that the RR of breast cancer in combination with breast density 

has a strong influence on the net benefit of mammography at all screening intervals, 

evaluation of different risk assessment tools will be important in this context.

Although the models provide new data and have consistent conclusions, several caveats 

should be considered. First, the 3 models used common inputs but varied in how these 

data were implemented based on model structure. These variations led to differences 

in the absolute values for outcome metrics. For example, based on assumptions about 

temporal trends in underlying incidence, models with the lowest projected incidence 

estimate fewer breast cancer deaths averted than those with higher incidence. This 

analysis includes 3 of 6 Cancer Intervention and Surveillance Modeling Network breast 

models and is an extension of work conducted by all 6 groups(8). Second, because the 

analytic goal was to determine screening efficacy, the models assumed 100% adherence 

to screening and use of the most effective modern treatments. Actual benefits will fall 

short of those projected under these assumptions. Third, we did not explicitly consider 

lower-than-average risk (that is, RR <1). It will be important to extend our analyses to 

lower-risk groups because most U.S. women have an RR less than 1 across all density 

subgroups (70% of women aged 50 years and 66% aged 65 years) (BCSC; Miglioretti DL. 

Personal communication. 2016). By extension, our current findings suggest that trien-

nial screening would be a reasonable option for lower-than-average risk women with 

fatty breasts or scattered fibroglandular density. Fourth, we did not model the effect of 

screening from ages 40 to 49 years, other combinations of ages and intervals, or carriers 

of breast cancer susceptibility genes 1 and 2. Whether the lack of strategies incorporat-

ing screening women in their 40s would affect the balance of benefits and harms against 

longer (or shorter) screening intervals after age 50 years is unclear. Fifth, although 2 age 

groups and change in density between age groups were considered, our results do not 

provide guidance for women whose risk changes over time; modeling change in risk with 

aging is an important area for future research. Sixth, we used RR rather than absolute risk 
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level because our simulation models were better suited for this approach. Absolute risk 

calculators are commonly available (27, 55-57), and the suitability of these calculators to 

assign risk to personalize screening intervals should continue to be evaluated. Finally, we 

did not evaluate alternative or supplemental imaging.

Overall, this comparative modeling study illustrates consistent patterns in benefits and 

harms that could be useful for guiding shared decision making and tailoring screening 

intervals. The results show that for all screening intervals, benefits and harms change 

with risk and breast density. Further, the threshold to decide on the screening interval 

will depend on individual preference(1). Assessing breast density and breast cancer risk 

can identify subgroups of average-risk women with low breast density who can consider 

triennial screening and higher-risk women with high breast density who may benefit from 

annual screening.

Reproducible Research Statement: Study protocol: Not available. Statistical code: De-

tailed information about the models is available online at http://cisnet.cancer.gov/breast/

profiles.html and in reference (14). Data set: Input and output data from the models are 

available at reference (14) and by contacting Dr. Trentham-Dietz at trentham@wisc.edu.
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* Risk estimates were based on the comparison group consisting of the largest proportion of women, 
i.e., “average risk.” Women with reduced risk were not modeled, including women who engaged in 
regular moderate–vigorous physical activity with age at menarche >13 y or age at menopause <50 
y with almost entirely fat breast density (Breast Imaging Reporting and Data System category = “a”) 
or who breastfed for ≥1 y. Relative risks associated with breast density categories are shown in Ap-
pendix Table 3. 

DCIS = ductal carcinoma in situ; E = Erasmus Medical Center; ER = estrogen receptor; GE = George-
town University Medical Center and Albert Einstein College of Medicine; HER2 = human epidermal 
growth factor receptor 2; SEER = Surveillance, Epidemiology, and End Results; W = University of 
Wisconsin–Madison and Harvard Medical School. * Adapted from reference 14. Additional infor-
mation is available at https://resources.cisnet.cancer.gov/registry/site-summary/breast. † Combined 
output from all 3 models was analyzed using SAS software, version 9.4 (SAS Institute). 
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Sojourn time is the duration of the preclinical, screen-detectable phase of the tumor. Lead time is 
the interval from screen detection to the time of clinical diagnosis, which is when the tumor would 
have surfaced without screening. See Appendix Table 2 for the description of the implementation of 
screening benefit in the 3 simulation models. 

DCIS = ductal carcinoma in situ. * Annual mammography was defined as 9- to 18-mo intervals; bien-
nial mammography was defined as 19- to 30-mo intervals; triennial mammography was defined as 
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31- to 42-mo intervals. Data were obtained from the Breast Cancer Surveillance Consortium. † Age-
specific relative risk for breast cancer associated with breast density; reference group is women with 
average density. ‡ Corrected for missing data. 

QALY = quality-adjusted life-year.
* Values are median numbers (range across models).
† Screening was initiated at age 50 y.
‡ Women who were currently age 65 y and have been screened previously biennially from ages 50-
64 y.
§ Undiscounted.
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Abstract

Background

Current breast cancer screening guidelines are age-based. However, at any given age 

there is variability in breast cancer risk. This study assessed screening approaches using 

first-degree family history (FH) and polygenic risk scores (PRS) to identify women for 

risk-based screening.

Method

Two established breast cancer models assessed the impact of risk-based screening on 

breast cancer deaths, life years gained, false-positive mammograms, and overdiagnoses 

for the 1985 U.S. female birth cohort. Digital mammography screening strategies varying 

in initiation age (30, 35, 40, 45, 50) and interval (annual, hybrid, biennial, triennial) were 

evaluated for women differing in risk due to their family history and European-ancestry 

PRS. The benefits and harms of risk-based screening were compared to current age-

based guidelines for biennial screening from 50-74.

Results

Under the most effective screening strategies, the estimated increase in life years gained 

and reduction in breast cancer mortality due to risk-based screening were 6% and 3% 

(FH), 19% and 11% (PRS), and 24% and 14% (PRS+FH). The predicted rate of false-

positives and overdiagnoses of 917 and 14.5 per 1.000 women screened over their 

lifetimes for age-based screening increased to 997 and 14.9 (FH), 1154 and 15.9 (PRS), 

1157 and 16.3 (PRS+FH).

Conclusion

European-ancestry women at increased risk due to family history or polygenic risk could 

consider risk-based screening strategies starting before age 50 depending on their at-

titude towards the harms and benefits of breast cancer screening.
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Introduction

Regular mammography screening has been shown to reduce breast cancer mortality.

(1) However, it is uncertain whether current age-based screening recommendations (2, 

3) are optimal, as there is variability in breast cancer risk at any given age. The risk of 

developing breast cancer approximately doubles for women with a first-degree family 

member with breast cancer.(4) Approximately 20% of the familial risk is attributable to 

high- or moderate penetrance mutations in genes including BRCA1, BRCA2, PALB2, 

ATM, and CHEK2.(5, 6) The majority of the remaining 80% is due to a combination of 

more common variations in the DNA sequence, e.g., single nucleotide polymorphisms 

(SNPs). Currently, about 170 common breast cancer risk SNPs have been identified.(7) 

While these individual variants are associated with small to modest risks, their combined 

effects considered as a polygenic risk score (PRS) can be substantial and could achieve a 

level useful for population screening.(8, 9)

The U.S. Preventive Services Task Force recommends that women discuss their indi-

vidual risk and screening options with their healthcare providers, yet there are limited 

data to inform such discussions. Two ongoing trials, My-PEBS and the WISDOM trial are 

presently testing age-based vs. risk-based screening approaches that include genetic 

markers and family history information, but results are not expected until 2024-2025.

(10) A recent study modeled the use of polygenic risk scores to determine the cost-

effectiveness of screening women triennially above a certain risk threshold in the UK.(11) 

However, there are no studies that have estimated the impact of screening strategies 

tailored to risk from family history of breast cancer, polygenic risk, or both. To fill this 

gap, two established Cancer Intervention and Surveillance Modeling Network (CISNET) 

models which were used to inform current breast cancer screening guidelines(12, 13), 

estimated the lifetime effects of screening based on family history status and polygenic 

risk.(2) The projections in this study are intended to inform screening policy and provide 

background for clinical discussions about risk-based breast cancer screening.

Methods

Model overview

Breast cancer simulation models developed by the Erasmus University Medical Center 

(14) and the Georgetown University-Albert Einstein College of Medicine (15) evaluated 

the lifetime effects of different screening strategies among the 1985 U.S. female birth 

cohort. Model descriptions and detailed information on model inputs and validation 

have been described.(12, 16-18) (Appendix 1)
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Briefly, both models used incidence from four breast cancer molecular subtypes based 

on estrogen receptor (ER) and human epidermal growth factor receptor (HER)2 status.

(17) Screen-detection of breast cancer was modeled using digital mammography sensi-

tivity and stage distributions reported by the Breast Cancer Surveillance Consortium.(19) 

Treatment impact was derived from systematically reviewed treatment effectiveness (20) 

and reduced the probability of death from breast cancer. At any time, women diagnosed 

with breast cancer could die of the disease or competing other cause mortality. To evalu-

ate the potential efficacy of different screening strategies, the models assumed that all 

women received genetic testing and were screened according to the selected strategy, 

and, if diagnosed with cancer, received sub-type specific adjuvant therapy.

Screening strategies

Nineteen digital mammography screening strategies that varied by age at initiation of 

screening (30, 35, 40, 45, 50) and screening interval (annual, biennial, triennial, hybrid) 

were evaluated. Hybrid strategies screen annually before age 50 and biennially starting 

at age 50. All strategies stopped screening at age 74. The primary comparator was bien-

nial screening from ages 50 to 74 as this strategy is supported in the screening guidelines 

in many developed countries. (2, 21, 22)

Risk stratification

Family history

We defined five family history groups: women who learned in age ranges 30-39, 40-49, 

50-64, 65-100 that they had a first-degree relative with breast cancer; and women with 

no family history of breast cancer in their lifetimes. Using the age-specific distribution of 

family history in the National Health Interview Survey and associated risk levels observed 

in the Collaborative Breast Cancer Study (CBCS)(23), breast cancer risk was adjusted 

accordingly in the models.(Table 1)

Polygenic risk

Stratification based on polygenic risk used a polygenic risk score based on 77 SNPs, as 

defined by Mavaddat et al.(24) As a sensitivity analysis, we considered a PRS that included 

a larger number of common genetic variants (167 SNPs).(7) The polygenic risk scores are 

based on a multiplicative relative risk model for the joint effects of the SNPs, and are hence 

defined as the sum of risk alleles weighted by their effect size as estimated in the combined 

European ancestry Genome Wide Association Studies (GWAS) data.(7, 24) We established 

seven PRS groups spanning risk levels from 0 to 10 times the U.S. population average.

(Table 1) Risk group prevalence was calculated by simulating the distribution of risk as a 

function of the PRS to match that of Mavaddat et al. Using the cut-off risk levels of the seven 

groups, we calculated the number of women in each group, for details see Appendix 2.
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Analysis

In total we examined 47 potential risk-groups; five family history, seven polygenic risk, and 

35 combinations of both. We first used model projections on the harms (overdiagnoses 

and false-positives), and benefits (life-years gained and breast cancer deaths averted) of 

biennial screening average-risk women aged 50-74 as the benchmark for the outcomes 

of current screening guidelines. Overdiagnosis was defined as screen-detected cases 

(invasive + in situ) that would not have been diagnosed in the absence of screening. 

Next, we estimated the harms and benefits of the 19 screening strategies (described 

above) in each risk group. Among these comparisons, we selected the set of strategies 

that maximized the overall number of life-years gained, while maintaining a similar, or 

better, ratio of screens to life-years gained as seen with the baseline approach of biennial 

screening all women from 50-74. This methodology insured that risk-based screening 

would only increase the number of screens if the associated life-years gained increased 

at least proportionally. The overall population impact was quantified by accumulating 

the harms and benefits of the individual risk groups.

Sensitivity Analyses

To test the impact of improved polygenic risk scores on the harms and benefits of risk-

based screening, we conducted sensitivity analyses of a PRS derived from 167 indepen-

dent SNPs from the largest breast cancer GWAS to date.(7) In addition, since part of 

Table 1 Prevalence and relative risk (RR) according to polygenic risk score and family history of breast 
cancer.

Family history (FH) age groups ** Risk relative to population average % of all women

FH positive between 30 and 39 2.19 4.7%

FH positive between 40 and 49 1.73 4.2%

FH positive between 50 and 64 1.39 5.9%

FH positive at age 65 or older 1.34 2.3%

No positive FH in life 0.79 82.9%

Polygenic risk groups * Risk relative to population average % of all women

Polygenic risk group 1 0.0 < RR ≤ 0.5 9.5%

Polygenic risk group 2 0.5 < RR ≤ 1.0 49.4%

Polygenic risk group 3 1.0 < RR ≤ 1.5 27.7%

Polygenic risk group 4 1.5 < RR ≤ 2.0 9.4%

Polygenic risk group 5 2.0 < RR ≤ 3.0 3.5%

Polygenic risk group 6 3.0 < RR ≤ 5.0 0.4%

Polygenic risk group 7 5.0 < RR ≤ 10.0 0.0 % *

* Based on the 77-SNP polygenic risk score (23), very few women would have 5 to 10-fold increased 
breast cancer risk.
**A positive first-degree family history was modeled as an increase in risk at the first age-year of each 
age-group.
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the additional benefits of risk-based screening may accrue from an increased number of 

screens, we analyzed what the impact of polygenic risk-based screening could be if the 

total number of screens was fixed to the number performed with guideline screening (13 

screens per woman with biennial 50-74).

Results

Age-based guidelines

If all women among the 1985 US birth cohort undergo age-based biennial screening 

from ages 50 to 74, the models project an average of 11,157 screens and 124 life-years 

gained (range across models: (103 – 146) and 7 (6.4 – 7.6) breast cancer deaths averted 

for 1.000 women screened over their lifetimes vs. no-screening. These results provide 

a benchmark of 90 screens per life year gained of current screening guidelines. This 

threshold was used to select risk-based strategies with equal or better trade-off between 

screens and life-years gained.

Risk-based screening: family history

Women with a known family history of breast cancer before they reach age 50 (8.9% of 

all women) were screened biennially starting at either age 30 or at 40, depending on the 

age at which they first learned about breast cancer in a first-degree relative.(Table 2) This 

was estimated to lead to 44% more life-years gained and 24% reduction in breast cancer 

deaths relative to current screening guidelines. However, overdiagnoses increased by 

26% and the number of false-positives doubled. The overall impact of a family history-

based screening approach was modest due to the low prevalence of breast cancer family 

history in the population: 0.2 fewer cancer deaths and 7 additional life-years per 1,000 

women screened over a lifetime.

Risk-based screening: polygenic risk

Next, we considered screening strategies targeted to polygenic risk. The optimal strat-

egy that was selected for each polygenic risk group is given in Table 3 and Figure 1. 

Overall, polygenic risk-based screening was estimated to increase the number of screens 

by 17%, life-years gained by 19% and reduced breast cancer deaths by 11% compared 

to screening all women biennially from ages 50 to 74. The harms of screening such as 

overdiagnoses and false positives increased by 10% and 26%. In absolute numbers, us-

ing polygenic risk to personalize screening strategies was estimated to lead to 0.7 fewer 

cancer deaths and 24 additional life-years per 1,000 women screened.(Table 3)
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Risk-based screening: polygenic risk and family history

Finally, we considered risk stratification by polygenic risk and family history simultane-

ously, defining 35 risk groups. (Table 4, optimal strategies given in Appendix 3) At 

the population level, risk-based screening using polygenic risk and family history was 

estimated to lead to 31 additional life years gained, 1 fewer breast cancer death and 1.8 

additional overdiagnoses per 1,000 women screened.

Sensitivity Analyses

We also considered the effect of using an enhanced polygenic risk score of 167 SNPs 

instead of 77 SNPs. The percentage of women undergoing a different screening strategy 

based on the 167-SNP PRS distribution was small: 7.6%.(Appendix 2) The estimated 

number of mammograms decreased by approximately 1%, the number of overdiagnoses, 

Table 2 Benefits and harms of mammography screening based on breast cancer family history. Out-
comes presented as average of two models per 1,000 women screened.
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1 Average risk population Biennial 50-74 11157 124 7.0 14.5 917 90 8.6

2 Positive FH ages 30-39� Guideline Biennial 50-74 10815 168 9.3 16.5 892 64 10.2

3 � Risk-based strategy Biennial 30-74 20528 254 11.9 21.7 2079 81 11.7

4 � % change (3) vs. (2) 90% 51% 28% 31% 133% 25% 16%

5 Positive FH ages 40-49� Guideline Biennial 50-74 10904 168 9.3 16.7 901 65 10.1

6 � Risk-based strategy Biennial 40-74 15713 228 11.3 20.3 1468 69 11.3

7 �  % change (6) vs. (5) 44% 36% 20% 21% 63% 6% 12%

8 Positive FH < age 50� Guideline Biennial 50-74 10857 168 9.3 16.6 896 65 10.1

9 � Risk-based strategies (rows 3,6) Biennial 30/40-74 18256 242 11.6 21.0 1791 75 11.5

10 � change (9) vs. (8) 68% 44% 24% 26% 100% 17% 14%

11 Positive FH 50-64� Guideline/risk-based Biennial 50-74 11054 162 9.0 16.8 908 68 9.6

12 Positive FH 65+� Guideline/risk-based Biennial 50-74 11185 129 7.5 16.8 915 87 7.7

13 No FH during life� Guideline/risk-based Biennial 50-74 11236 105 5.8 15.7 919 107 6.7

14 FH groups aggregated (rows 3,6,11,12,13) 11813 131 7.2 14.9 997 90 8.8

15 � % change (14) vs. (1) 6% 6% 3% 3% 9% 0% 3%

*The life-years gained and breast cancer deaths averted are relative to the life-years and breast can-
cer deaths of women at the same level of risk who are not screened.



262 Chapter 10

false positives, breast cancer deaths and life years gained remained virtually unchanged.

(Table 4) Without increasing the number of mammograms of guideline (biennial 50-74) 

screening, a PRS screening approach based on 77 SNPs still gained 9% additional life 

years and 3% more breast cancer deaths averted.

Table 3 Benefits and harms of mammography screening based on polygenic risk. Outcomes pre-
sented as average of two models per 1,000 women screened.
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1 Average risk population Biennial 50-74 11157 124 7.0 14.5 917 90 8.6

2 PRS7 (5.0 < RR < 10.0)� Guideline Biennial 50-74 8886 512 27.5 28.0 726 17 18.3

3 Risk-based strategy Annual 30-74 35214 959 42.8 53.3 3648 37 18.0

4 �  % change (3) vs. (2) 296% 87% 56% 90% 403% 112% -2%

5 PRS6 (3.0 < RR < 5.0)� Guideline Biennial 50-74 9897 352 19.3 24.8 811 28 14.2

6 Risk-based strategy Annual 35-74 32835 616 28.8 42.5 3253 53 14.5

7 �  % change (6) vs. (5) 232% 75% 50% 72% 301% 89% 2%

8 PRS5 (2.0 < RR < 3.0) � Guideline Biennial 50-74 10469 252 13.9 21.0 859 42 12.0

9 Risk-based strategy an40-50,bi50-74 19574 358 17.2 26.2 1954 55 13.7

10 �  % change (9) vs. (8) 87% 42% 23% 25% 127% 31% 14%

11 PRS4 (1.5 < RR < 2.0) � Guideline Biennial 50-74 10844 183 10.2 17.7 891 59 10.3

12 Risk-based strategy Biennial 40-74 15646 242 12.1 21.2 1462 65 11.4

13 �  % change (12) vs. (11) 44% 32% 18% 20% 64% 9% 10%

14 PRS3 (1.0 < RR < 1.5) � Guideline Biennial 50-74 11091 137 7.6 15.2 912 81 9.0

15 Risk-based strategy Biennial 40-74 15923 180 9.0 18.1 1487 89 9.9

16 �  % change (15) vs. (14) 44% 32% 18% 19% 63% 9% 10%

17 PRS2 (0.5 < RR < 1.0) � Guideline Biennial 50-74 11332 90 5.1 12.4 932 126 7.3

18 Risk-based strategy Biennial 50-74 11332 90 5.1 12.4 932 126 7.3

19 �  % change (18) vs. (17) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0%

20 PRS1 (0.0 < RR < 0.5) � Guideline Biennial 50-74 11588 40 2.3 9.0 953 290 4.4

21 Risk-based strategy Triennial 50-74 8020 34 1.9 8.3 705 238 4.1

22 �  % change (21) vs (20) -31% -16% -15% -8% -26% -18% -8%

23 PRS groups aggregated (rows 3,6,9,12,15,18,21) 13011 148 7.7 15.9 1154 88 9.3

24 �  % change (23) vs. (1) 17% 19% 11% 10% 26% -2% 9%

*The life-years gained and breast cancer deaths averted are relative to the life-years and breast can-
cer deaths of women at the same level of risk who are never screened.
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Discussion

This is the first modeling study to quantify the harms and benefits of breast cancer screen-

ing based on polygenic risk and family history. Using two tumor type-specific natural 

history models including sensitivity and specificity of digital mammography, we show 

that risk-based screening has greater projected benefits when based on polygenic risk 

scores than family history. The screening approach combining polygenic risk scores and 

family history resulted in the maximal improvement in outcomes compared to current 

Table 4 Benefits and harms comparison of mammography screening based on breast cancer family 
history, polygenic risk score, and family history combined with polygenic risk – for both the pri-
mary analysis and the sensitivity analyses. Outcomes presented as average of two models per 1,000 
women screened.
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1 Average risk population Biennial 50-74 11157 124 7.0 14.5 917 90 8.6

2 FH groups aggregated Risk-based strategies 11813 131 7.2 14.9 997 90 8.8

3 � % change (2) vs. (1) 6% 6% 3% 3% 9% 0% 3%

4 PRS groups aggregated Risk-based strategies 13011 148 7.7 15.9 1154 88 9.3

5 � % change (4) vs. (1) 17% 19% 11% 10% 26% -2% 9%

6 PRS + FH groups aggregated Risk-based strategies 13032 155 8.0 16.3 1157 84 9.5

7 � % change (6) vs. (1) 17% 24% 14% 14% 26% -6% 10%

8 Sensitivity Analyses

9 PRS groups aggr. (167 SNPs) Risk-based strategies 12948 149 7.7 15.9 1150 87 9.4

10 � % change (9) vs. (1) 16% 20% 11% 10% 25% -3% 9%

11 PRS + FH aggr. (167 SNPs) Risk-based strategies 12722 154 7.9 16.2 1128 83 9.5

12 � % change (11) vs. (1) 14% 24% 14% 12% 23% -8% 11%

13 Redistributing screens ** Risk-based strategies 11172 135 7.2 14.2 968 85.7 10.3

14 � % change (13) vs. (1) 0% 9% 3% -2% 6% -7% 13%

*The life-years gained and breast cancer deaths averted are relative to the life-years and breast 
cancer deaths of women at the same level of risk who are never screened.
** The redistributing screens scenario represents a scenario where the number of screens of current 
screening guidelines (in row 1) is not increased, rather redistributed across the population based 
on the polygenic risk scores. The selection of screening strategies in this scenario are given in Ap-
pendix 2.
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age-based screening guidelines. The risk group-specific outcomes suggest that high risk 

women could initiate screening at an earlier age, and that women with below-average risk 

could consider screening at longer intervals than current age-based guidelines. Inclusion 

of additional, more recently identified SNP into the models only modestly improved the 

benefits and harms. With the inclusion of more SNPs in the future, there is still potential 

for a PRS to further improve the discriminatory performance. Notably, polygenic risk used 

in combination with breast density, and reproductive, lifestyle, and hormonal factors is 

likely to improve risk prediction and the harm-benefit ratio for stratified screening.(25)

Current age-based guidelines recommend that women should discuss screening with 

healthcare providers to select the best approach for their individual risk.(2, 21) Our 

analysis extends this advice by providing specific screening strategies that could be con-

sidered in practice based on genetic risk factors. Our data suggest that among higher 

than average-risk women (i.e., twice the average population risk), initiating screening at 

an earlier age (<50) is likely to provide greater benefits than harm.

Our results are consistent with our previous work on risk-based screening based on 

more common classical risk factors (26, 27) and prior research in other countries. In Spain, 

Vilaprinyo and colleagues performed an analysis using four risk-groups based on breast 

density, family history, and personal history of breast biopsy to guide screening for 

women aged 40-85.(28) Recently, Pashayan used a life-table model to assess risk-based 

screening for women 50-85 in the United Kingdom based on polygenic risk profile.(11) 

Figure 1 Selected screening strategies in the family history (blue), and polygenic risk (red) screening 
approaches. Starting age and interval of screening, as well as family history status may change by 
age (top row).
The screening strategies selected for the 35 risk-groups in the polygenic risk combined with breast 
cancer family history screening approach can be found in Appendix 3.
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Like our results, both studies concluded that risk-based screening strategies were more 

efficient and had lower harm-benefit ratios than age-based screening.

While our results, and the results of others lend support to risk-based screening, our 

approach was unique in evaluating whether the associated increases in benefits were 

merely attributed to the increase in the number of screening examinations. In the sensi-

tivity analyses, we demonstrated that, redistributing the guideline-concordant number of 

screens across all women, increased life-years gained and breast cancer deaths averted 

more than overdiagnoses and false-positives would increase. However, this also showed 

that a large part of the projected benefit-increase was explained by the greater number 

of mammograms as screening increases cancer detection.

Implementing breast cancer screening based on polygenic risk and family history status 

would require a one-time saliva sample to establish a polygenic risk profile. The result, 

together with a questionnaire about family history could assist women in making choices 

about more personalized screening options. Knowledge of genetic susceptibility to 

breast cancer could guide early detection strategies. However, ethical aspects of genetic 

testing such as patient autonomy, accessibility, possible (unknown) differential effects 

across ancestries, should be considered before the implementation or recommendation 

of polygenic risk-based screening. Overall, it will be essential to develop and evaluate 

polygenic risk models for non-European ancestry women.

This study has several important strengths including consistent results across two well-

established simulation models, use of U.S. national data, and evaluation of polygenic 

risk and family history information to personalize breast cancer screening. There are also 

several caveats that should be considered in evaluating the results. First, we did not ex-

plicitly model the effects of rare but higher risk variants in genes such as BRCA1, BRCA2, 

PALB2, CHEK2 or ATM that could be used to tailor screening strategies. Mutations in 

genes BRCA1 and BRCA2 confer exceptionally high risk, and carriers of mutations in 

these genes are typically advised to undergo annual screening with both MRI and mam-

mography, starting at an early age.(29) MRI has higher sensitivity than mammography 

but is associated with a higher false-positive rate. We anticipate that if MRI were to be 

used as screening modality in the setting of higher than average polygenic risk, projected 

benefits would be larger but false-positives and possibly overdiagnoses would increase 

as well. Second, while we account for differing tumor natural history by ER/HER2 tumor 

status, the models assumed that polygenic risk did not affect tumor type and tumor 

progression since there are insufficient data to inform modeling of variation in natural 

history. However, an increasing number of SNP associations are known to differ by tumor 

subtype, particularly ER-status (30, 31), and there is some data showing that the PRS has 

differential effects by mode of detection (32). It is possible in due course that a separate 

PRS consisting of SNPs associated with faster or slower growing tumors may inform 

screening intensity. Third, we did not explicitly consider second degree family members 
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with breast cancer, nor the use of breast density or other risk factors which may have 

potential value for risk-based screening.(26) Fourth, to test the efficacy of risk-based 

screening, we assumed 100% uptake of genetic testing, screening, and treatment. Fifth, 

the effectiveness of screening in combination with treatment in women under age 40 has 

been assessed in case-control studies, but not in a randomized controlled trial. Finally, 

the PRS used in this study was developed using data primarily from Caucasian women 

of European ancestry. Screening strategies should be re-assessed for minority groups as 

genetic databases evolve.

Overall, this research showed that more breast cancer deaths could be prevented and 

lives extended for select, but identifiable, groups of women at high risk due to their 

family history of breast cancer and polygenic risk. These results are intended to inform 

continued debates about optimal breast cancer screening strategies and could begin to 

guide patient-provider discussions in routine clinical practice.
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Appendix

1.	 Model descriptions

2.	 Prevalence and relative risk calculations for the polygenic risk score groups

3.	 Strategies in the combined polygenic risk score and family history screening ap-

proach

4.	 Individual model predictions

Appendix 1

Model Descriptions

The Institutional Review Board at Georgetown University approved the study as exempt 

based on the use of de-identified data. Detailed descriptions of model inputs and model 

validation have been described in detail elsewhere.(11, 17-19) 

Model Erasmus University Medical Center (Model E)

Model E, also known as MISCAN-Fadia which is an acronym for Microsimulation Screen-

ing Analysis – Fatal Diameter is a breast cancer simulation model that uses continuous 

tumor growth to simulate the natural history of breast cancer. The model simulates indi-

vidual life histories from birth to death, with and without breast cancer, in the presence 

and in the absence of screening and treatment. Life histories are simulated according to 

discrete events such as birth, tumor inception, metastasis, and death from breast cancer 

or death from other causes. Model E consists of four main components: demography, 

natural history of breast cancer, screening, and treatment. Screening impact on the 

natural history of breast cancer is assessed by simulating continuous tumor growth and 

the “fatal diameter” concept. This concept implies that tumors diagnosed at a size that 

is between the screen detection threshold and the fatal diameter are cured, while tumors 

diagnosed at a diameter larger than the fatal tumor diameter metastasize and lead to 

breast cancer death. MISCAN-Fadia includes different natural histories for molecular 

subtypes based on a tumor’s ER status and HER-2 status.

Model Georgetown University-Albert Einstein College of Medicine (Model 
GE)

Model GE is a continuous-time, event-driven microsimulation of single-life histories of 

women utilizing a parallel universes approach. The parallel universes approach starts 

with the generation of a basic life history for each simulated woman in the absence of 

any screening or adjuvant treatment. The effects of each screening and adjuvant treat-

ment strategy under study are then simulated starting using the exact same basic life 
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history. In this manner, the outputs for the different screening and adjuvant treatment 

strategies are matched pairs. The approach for simulating breast cancer natural history 

is phenomenological, relying on dates, stage, and age of clinical and screen detection 

for a tumor molecular subtype without explicitly modeling tumor growth. The model 

accommodates differences in natural history associated with estrogen receptor (ER) and 

human epidermal growth factor receptor 2 (HER2) biomarkers, as well as conventional 

breast cancer risk factors. Breast cancer incidence depends on age, time period, and 

birth cohort, and is modified based on risk. The incidence includes a subset of ductal 

carcinoma in situ (DCIS) tumors that never surface clinically and eventually regress. 
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Appendix 2

Prevalence and relative risk calculation for polygenic risk score groups (77-
SNPs PRS)

We modeled the distribution of risk relative to the average woman without a family 

history (RR*) as a function of polygenic risk and family history:

RR* = Lognormal (FHχ  µi +
σi 
 − 


σi 


2

, σi )2 2

Where FHx is an indicator for first degree family history of breast cancer (yes=1, no=0), 

γ is the log relative risk of family history (adjusted for polygenic effects), and σi is the log 

relative risk associated with a one standard deviation change in the polygenic risk score 

in age group i. 

We used the following parameter values for µi and σi from Table 3 in Mavaddat (2015) 

JNCI.

Age

Sigma (σ)

All cancers ER+ ER-

< 40 0.46 (0.38 – 0.53) 0.56 (0.47 – 0.65) 0.48 (0.36 – 0.59)

40-49 0.46 (0.42 – 0.50) 0.53 (0.48 – 0.57) 0.36 (0.29 – 0.43)

50-59 0.48 (0.45 – 0.51) 0.54 (0.50 – 0.57) 0.37 (0.32 – 0.43)

≥60 0.41 (0.38 – 0.43) 0.44 (0.41 – 0.47) 0.36 (0.31 – 0.42)

All ages 0.44 (0.42 – 0.46) 0.49 (0.47 - 0.51) 0.37 (0.34 – 0.40)

To model the distribution of risk relative to the population average, we consider RR = 

RR*/mean(RR*), where the mean of RR* is taken over the joint distribution of family history 

and polygenic risk in the population. The distributions of risk relative to the population 

average for various subgroups are displayed in the following figures:



Screening based on polygenic risk and family history 273

Figure 1: Distribution of breast cancer relative risk as a function of PRS (left) and family history 
+ PRS (right). Red represents FH+ < age 40 women, green: FH+ between ages 40 and 65, blue: 
no FH in life. 

In the screening approach based on a polygenic risk score (77-SNPs) combined with 

family history of breast cancer, the prevalence distribution of women among the risk-

groups is as follows:

FH group

Polygenic risk score groups (low to high polygenic risk)

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-5.0 5.0-10.0

30 < FH+ < 40 0.9% 20.2% 33.5% 23.4% 17.6% 4.2% 0.3%

40 < FH+ < 49 0.9% 20.3% 33.5% 23.3% 17.5% 4.3% 0.3%

50 < FH+ < 64 9.6% 51.0% 27.7% 8.4% 3.0% 0.3% 0.0%

65 < FH+ < 100 9.7% 50.9% 27.7% 8.4% 3.0% 0.3% 0.0%

No FH in life 14.0% 54.8% 23.3% 5.9% 1.8% 0.2% 0.0%

Sensitivity analyses

In the sensitivity analyses screening based on a polygenic risk score consisting of 167 

SNPs instead of 77 SNPs, we used a sigma (σ) of 0.48 instead of 0.44. The prevalence 

distribution of women among the polygenic risk groups based on the 77-SNP and 167-

SNP polygenic risk score is as follows. The total percentage of women who end up in a 

different risk group based on the 167-SNP PRS compared to the 77-SNP PRS is 7.6%. 



274 Chapter 10

Polygenic risk group 77-SNPs 167-SNPs Screening strategy

 Polygenic risk group 1  (0.0 < Relative Risk < 0.5)  9.5% 12.3% Triennial 50-74

 Polygenic risk group 2  (0.5 < Relative Risk < 1.0)  49.4% 47.3% Biennial 50-74

 Polygenic risk group 3  (1.0 < Relative Risk < 1.5)  27.7% 26.0% Biennial 40-74

 Polygenic risk group 4  (1.5 < Relative Risk < 2.0)  9.4% 9.4% Biennial 40-74

 Polygenic risk group 5  (2.0 < Relative Risk < 3.0)  3.5% 4.3% Hybrid 40-74

 Polygenic risk group 6  (3.0 < Relative Risk < 5.0)  0.4% 0.6% Annual 35-74

 Polygenic risk group 7  (5.0 < Relative Risk < 10.0)  0.0 %  * 0.0 %  * Annual 30-74

* Based on the 77-SNP and 167-SNP polygenic risk score [21], practically zero women would have 5 
to 10-fold increased breast cancer risk.

In the screening approach based on a polygenic risk score (167-SNPs) combined with 

family history of breast cancer, the prevalence distribution of women among the risk-

groups is as follows:

FH group

Polygenic risk score groups (low to high polygenic risk)

0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-5.0 5.0-10.0

30 < FH+ < 40 1.6% 22.1% 31.3% 21.6% 17.6% 5.4% 0.5%

40 < FH+ < 49 1.6% 22.1% 31.4% 21.6% 17.5% 5.4% 0.5%

50 < FH+ < 64 12.0% 48.5% 26.2% 9.0% 3.8% 0.5% 0.1%

65 < FH+ < 100 12.0% 48.6% 26.1% 9.0% 3.8% 0.6% 0.0%

No FH in life 17.5% 51.9% 21.8% 6.3% 2.3% 0.3% 0.0%

In the screening approach that redistributed the number of screens of biennial 50-74 

across the different polygenic risk groups, the following screening strategies were se-

lected:
Polygenic risk group Screening strategy

 Polygenic risk group 1  (0.0 < Relative Risk < 0.5)  No screening

 Polygenic risk group 2  (0.5 < Relative Risk < 1.0)  Biennial 50-74

 Polygenic risk group 3  (1.0 < Relative Risk < 1.5)  Biennial 45-74

 Polygenic risk group 4  (1.5 < Relative Risk < 2.0)  Biennial 45-74

 Polygenic risk group 5  (2.0 < Relative Risk < 3.0)  Hybrid 40-74

 Polygenic risk group 6  (3.0 < Relative Risk < 5.0)  Hybrid 40-74

 Polygenic risk group 7  (5.0 < Relative Risk < 10.0)  Annual 30-74
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Appendix 3

Selected screening strategies in the approach combining polygenic risk scores (PRS) with 

family history (FH) of breast cancer. 

Risk group Screening strategy

PRS group 1 (0.0 < RR < 0.5)� FH positive between 30 and 39 Triennial 30-74

FH positive between 40 and 49 Triennial 40-74

FH positive between 50 and 64 Triennial 50-74

FH positive at age 65 or older Triennial 50-74

No positive FH in life Triennial 50-74

PRS group 2 (0.5 < RR < 1.0)� FH positive between 30 and 39 Biennial 35-74

FH positive between 40 and 49 Biennial 40-74

FH positive between 50 and 64 Biennial 50-74

FH positive at age 65 or older Biennial 50-74

No positive FH in life Biennial 50-74

PRS group 3 (1.0 < RR < 1.5)� FH positive between 30 and 39 Biennial 30-74

FH positive between 40 and 49 Biennial 40-74

FH positive between 50 and 64 Biennial 45-74

FH positive at age 65 or older Biennial 45-74

No positive FH in life Biennial 45-74

PRS group 4 (1.5 < RR < 2.0)� FH positive between 30 and 39 Annual 30-50 + Biennial 50-74

FH positive between 40 and 49 Annual 40-50 + Biennial 50-74

FH positive between 50 and 64 Biennial 40-74

FH positive at age 65 or older Biennial 40-74

No positive FH in life Biennial 40-74

PRS group 5 (2.0 < RR < 3.0)� FH positive between 30 and 39 Annual 30-74

FH positive between 40 and 49 Annual 40-74

FH positive between 50 and 64 Annual 40-50 + Biennial 50-74

FH positive at age 65 or older Annual 40-50 + Biennial 50-74

No positive FH in life Annual 40-50 + Biennial 50-74

PRS group 6 (3.0 < RR < 5.0)� FH positive between 30 and 39 Annual 30-74

FH positive between 40 and 49 Annual 35-74

FH positive between 50 and 64 Annual 35-74

FH positive at age 65 or older Annual 35-74

No positive FH in life Annual 35-74

PRS group 7 (5.0 < RR < 10.0)� FH positive between 30 and 39 Annual 30-74

FH positive between 40 and 49 Annual 30-74

FH positive between 50 and 64 Annual 30-74

FH positive at age 65 or older Annual 30-74

No positive FH in life Annual 30-74
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Appendix 4 

Benefits and harms projections of mammography screening based on breast cancer fam-

ily history. Outcomes for model E (Erasmus) per 1,000 women screened.

Risk group based on family
history (FH) of breast cancer Screening strategy

Number
of
screens

Life
years
gained 

Breast 
cancer 
deaths 
averted 

Over 
diagnoses

False 
positives

Positive FH ages 30-39     Biennial 50-74 10754 141.5 8.6 21.2 889

Risk-based strategy Biennial 30-74 20466 212.1 10.9 28.5 2083

Positive FH ages 40-49     Biennial 50-74 10859 141.3 8.6 21.4 897

Risk-based strategy Biennial 40-74 15670 182.7 10.0 26.4 1472

Positive FH ages 50-64     Biennial 50-74 (risk-based) 11025 126.0 7.9 21.6 911

Risk-based strategy Biennial 40-74 (risk-based) 11143 104.3 6.6 21.6 911

Positive FH ages 65+     Biennial 50-74 (risk-based) 11197 88.3 5.4 19.3 920

Benefits and harms projections of mammography screening based on breast cancer fam-

ily history. Outcomes for model GE (Georgetown-Einstein) per 1,000 women screened.

Risk group based on family
history (FH) of breast cancer Screening strategy

Number
of
screens

Life
years
gained 

Breast
cancer
deaths
averted 

Over
diagnoses

False
positives 

Positive FH ages 30-39     Biennial 50-74 10875 194.7 10.0 11.9 895

Risk-based strategy Biennial 30-74 20590 296.6 13.0 14.9 2076

Positive FH ages 40-49     Biennial 50-74 10949 195.2 10.1 12.1 906

Risk-based strategy Biennial 40-74 15755 274.3 12.5 14.1 1464

Positive FH ages 50-64     Biennial 50-74 (risk-based) 11084 197.2 10.2 12.1 906

Risk-based strategy Biennial 40-74 (risk-based) 11227 154.2 8.4 12.1 919

Positive FH ages 65+     Biennial 50-74 (risk-based) 11275 121.6 6.2 12.1 919
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Benefits and harms projections of mammography screening based on polygenic risk 

scores. Outcomes for model E (Erasmus) per 1,000 women screened.

Risk group based on polygenic
risk score (PRS)

Screening
strategy

Number
of
screens

Life
years
gained 

Breast 
cancer 
deaths 
averted 

Over
diagnoses

False
positives 

PRS7 (5.0 < RR < 10.0) Biennial 50-74 9009 361 21.3 44.4 750

Risk-based strategy Annual 30-74 35105 763 36.1 91.9 3668

PRS6 (3.0 < RR < 5.0) Biennial 50-74 9889 267 16.2 37.9 820

Risk-based strategy Annual 35-74 32616 517 26.0 70.4 3255

PRS5 (2.0 < RR < 3.0) Biennial 50-74 10429 200 12.2 30.2 863

Risk-based strategy An40-50,bi50-74 19165 281 14.6 38.6 1930

PRS4 (1.5 < RR < 2.0) Biennial 50-74 10799 148 9.1 23.5 892

Risk-based strategy Biennial 40-74 15604 191 10.6 28.3 1467

PRS3 (1.0 < RR < 1.5) Biennial 50-74 11048 113 7.0 18.4 912

Risk-based strategy Biennial 40-74 15889 145 8.1 21.9 1490

PRS2 (0.5 < RR < 1.0) Biennial 50-74 11298 75 4.7 12.6 932

Risk-based strategy Biennial 50-74 11298 75 4.7 12.6 932

PRS1 (0.0 < RR < 0.5) Biennial 50-74 11567 34 2.1 5.8 953

Risk-based strategy Triennial 50-74 8005 27 1.7 4.5 758

Benefits and harms projections of mammography screening based on polygenic risk 

scores. Outcomes for model GE (Georgetown-Einstein) per 1,000 women screened.

Risk group based on polygenic
risk score (PRS)

Screening
strategy

Number
of
screens

Life
years
gained 

Breast
cancer
deaths
averted 

Over
diagnoses

False
positives 

PRS7 (5.0 < RR < 10.0) Biennial 50-74 8763 664 33.6 11.6 702

Risk-based strategy Annual 30-74 35323 1154 49.4 14.6 3628

PRS6 (3.0 < RR < 5.0) Biennial 50-74 9905 436 22.4 11.7 802

Risk-based strategy Annual 35-74 33054 715 31.7 14.7 3252

PRS5 (2.0 < RR < 3.0) Biennial 50-74 10509 303 15.7 11.8 855

Risk-based strategy An40-50,bi50-74 19982 436 19.8 13.8 1979

PRS4 (1.5 < RR < 2.0) Biennial 50-74 10890 218 11.3 11.9 889

Risk-based strategy Biennial 40-74 15688 292 13.6 14.1 1458

PRS3 (1.0 < RR < 1.5) Biennial 50-74 11133 160 8.3 12.0 911

Risk-based strategy Biennial 40-74 15957 215 10.0 14.4 1483

PRS2 (0.5 < RR < 1.0) Biennial 50-74 11367 105 5.5 12.1 932

Risk-based strategy Biennial 50-74 11367 105 5.5 12.1 932

PRS1 (0.0 < RR < 0.5) Biennial 50-74 11609 46 2.4 12.3 953

Risk-based strategy Triennial 50-74 8035 41 2.1 12.1 651
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Benefits and harms projections of mammography screening based on polygenic risk 

scores and breast cancer family history combined. Outcomes for model E (Erasmus) per 

1,000 women screened.

Risk group based on polygenic 
risk score (PRS) and breast cancer 
family history (FH)

Screening
strategy

Number
of
screens

Life
years
gained 

Breast 
cancer 
deaths 
averted 

Over 
diagnoses

False
positives 

PRS group 7 (5.0 < RR < 10.0)

FH+ ages 30-39     Biennial 50-74 8093 313 18.2 37 675

Risk-based strategy Annual 30-74 32362 903 38.5 96 3419

FH+ ages 40-49     biennial 50-74 8413 335 19.4 41 701

Risk-based strategy Annual 30-74 33415 826 37.1 99 3522

FH+ ages 50-64     biennial 50-74 8876 327 19.4 47 740

Risk-based strategy Annual 30-74 34847 720 34.2 97 3650

FH+ ages 65+     biennial 50-74 9169 288 17.5 46 763

Risk-based strategy Annual 30-74 35564 659 31.5 93 3708

PRS group 6 (3.0 < RR < 5.0)

FH+ ages 30-39     biennial 50-74 9117 258 15.4 37 758

Risk-based strategy Annual 30-74 35293 663 29.9 83 3678

FH+ ages 40-49     biennial 50-74 9365 268 15.9 40 778

Risk-based strategy Annual 35-74 31196 587 28.2 82 3135

FH+ ages 50-64     biennial 50-74 9744 250 15.3 43 809

Risk-based strategy Annual 35-74 32308 501 25.4 79 3233

FH+ ages 65+     biennial 50-74 9999 215 13.4 41 829

Risk-based strategy Annual 35-74 32925 444 22.7 73 3282

PRS group 5 (2.0 < RR < 3.0)

FH+ ages 30-39     biennial 50-74 9812 204 12.4 33 814

Risk-based strategy Annual 30-74 37225 496 23.1 68 3845

FH+ ages 40-49     biennial 50-74 10005 207 12.6 34 829

Risk-based strategy Annual 40-74 28112 411 20.9 63 2671

FH+ ages 50-64     biennial 50-74 10301 191 11.8 36 854

Risk-based strategy an40-50,bi50-74 19055 269 14.2 44 1922

FH+ ages 65+     biennial 50-74 10507 161 10.2 33 870

Risk-based strategy an40-50,bi50-74 19275 235 12.4 40 1940

PRS group 4 (1.5 < RR < 2.0)

FH+ ages 30-39     biennial 50-74 10319 158 9.7 27 854

Risk-based strategy an30-50,bi50-74 28744 309 14.1 42 3146

FH+ ages 40-49     biennial 50-74 10466 159 9.7 28 866

Risk-based strategy an40-50,bi50-74 19196 246 12.4 37 1933

FH+ ages 50-64     biennial 50-74 10694 145 9.0 29 885

Risk-based strategy Biennial 40-74 15501 184 10.4 34 1459
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FH+ ages 65+     biennial 50-74 10855 121 7.7 26 897

Risk-based strategy Biennial 40-74 15672 159 9.0 30 1473

PRS group 3 (1.0 < RR < 1.5)

FH+ ages 30-39     biennial 50-74 10319 158 9.7 27 854

Risk-based strategy Biennial 30-74 19926 263 13.0 38 2037

FH+ ages 40-49     biennial 50-74 10466 159 9.7 28 866

Risk-based strategy Biennial 40-74 15212 220 11.8 35 1435

FH+ ages 50-64     biennial 50-74 10694 145 9.0 29 885

Risk-based strategy Biennial 45-74 13370 171 10.2 33 1199

FH+ ages 65+     biennial 50-74 10855 121 7.7 26 897

Risk-based strategy Biennial 45-74 13551 145 8.8 30 1213

PRS group 2 (0.5 < RR < 1.0)

FH+ ages 30-39     biennial 50-74 11041 85 5.2 16 911

Risk-based strategy Biennial 35-74 18652 132 6.9 21 1833

FH+ ages 40-49     biennial 50-74 11117 84 5.2 16 918

Risk-based strategy Biennial 40-74 15964 113 6.2 19 1496

FH+ ages 50-64     biennial 50-74 11238 75 4.7 16 927

Risk-based strategy biennial 50-74 11238 75 4.7 16 927

FH+ ages 65+     biennial 50-74 11325 62 4.0 14 934

Risk-based strategy biennial 50-74 11325 62 4.0 14 934

PRS group 1 (0.0 < RR < 0.5)

FH+ ages 30-39     biennial 50-74 11447 39 2.4 8 944

Risk-based strategy Triennial 30-74 14742 47 2.5 8 1724

FH+ ages 40-49     biennial 50-74 11483 39 2.4 8 946

Risk-based strategy Triennial 40-74 10983 38 2.1 7 1218

FH+ ages 50-64     biennial 50-74 11538 35 2.2 7 951

Risk-based strategy Triennial 50-74 7987 26 1.7 6 756

FH+ ages 65+     biennial 50-74 11578 28 1.8 7 954

Risk-based strategy Triennial 50-74 8012 22 1.4 5 758
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Benefits and harms projections of mammography screening based on polygenic risk 

scores and breast cancer family history combined. Outcomes for model GE (Georgetown-

Einstein) per 1,000 women screened.

Risk group based on polygenic 
risk score (PRS) and breast cancer 
family history (FH)

Screening 
strategy

Number
of
screens

Life
years  
gained 

Breast 
cancer 
deaths 
averted 

Over 
diagnoses

False 
positives 

PRS group 7 (5.0 < RR < 10.0)

FH+ ages 30-39     biennial 50-74 7417 774 38.6 11 589

Risk-based strategy Annual 30-74 31822 1550 62.5 14 3293

FH+ ages 40-49     biennial 50-74 7716 805 40.2 11 612

Risk-based strategy Annual 30-74 32912 1513 62.7 14 3407

FH+ ages 50-64     biennial 50-74 8289 865 43.2 12 658

Risk-based strategy Annual 30-74 34391 1381 60.4 15 3550

FH+ ages 65+     biennial 50-74 8904 702 37.2 13 713

Risk-based strategy Annual 30-74 35681 1155 52.1 16 3663

PRS group 6 (3.0 < RR < 5.0)

FH+ ages 30-39     biennial 50-74 8979 545 27.6 11 723

Risk-based strategy Annual 30-74 35662 1030 42.8 14 3653

FH+ ages 40-49     biennial 50-74 9188 557 28.2 11 740

Risk-based strategy Annual 35-74 31419 975 41.9 14 3102

FH+ ages 50-64     biennial 50-74 9579 580 29.4 12 772

Risk-based strategy Annual 35-74 32409 875 39.7 15 3198

FH+ ages 65+     biennial 50-74 9996 462 24.9 12 809

Risk-based strategy Annual 35-74 33282 717 33.6 15 3274

PRS group 5 (2.0 < RR < 3.0)

FH+ ages 30-39     biennial 50-74 9849 392 20.0 11 799

Risk-based strategy Annual 30-74 37764 722 30.4 15 3848

FH+ ages 40-49     biennial 50-74 9999 398 20.3 12 811

Risk-based strategy Annual 40-74 28395 647 28.9 14 2658

FH+ ages 50-64     biennial 50-74 10277 409 20.9 12 834

Risk-based strategy an40-50,bi50-74 19772 546 25.3 14 1959

FH+ ages 65+     biennial 50-74 10572 323 17.5 12 860

Risk-based strategy an40-50,bi50-74 20084 440 21.1 14 1988

PRS group 4 (1.5 < RR < 2.0)

FH+ ages 30-39     biennial 50-74 10412 285 14.7 12 848

Risk-based strategy an30-50,bi50-74 29630 492 20.6 14 3196

FH+ ages 40-49     biennial 50-74 10521 288 14.8 12 857

Risk-based strategy an40-50,bi50-74 19997 438 19.4 14 1979

FH+ ages 50-64     biennial 50-74 10722 295 15.2 12 873

Risk-based strategy Biennial 40-74 15530 372 17.6 14 1443
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FH+ ages 65+     biennial 50-74 10935 231 12.5 12 892

Risk-based strategy Biennial 40-74 15745 296 14.6 14 1463

PRS group 3 (1.0 < RR < 1.5)

FH+ ages 30-39     biennial 50-74 10778 213 11.0 12 880

Risk-based strategy Biennial 30-74 20478 327 14.3 15 2065

FH+ ages 40-49     biennial 50-74 10859 216 11.1 12 887

Risk-based strategy Biennial 40-74 15656 304 13.8 14 1455

FH+ ages 50-64     biennial 50-74 11009 218 11.2 12 899

Risk-based strategy Biennial 45-74 13063 253 12.2 13 1167

FH+ ages 65+     biennial 50-74 11166 171 9.3 12 913

Risk-based strategy Biennial 45-74 13217 196 9.9 13 1181

PRS group 2 (0.5 < RR < 1.0)

FH+ ages 30-39     biennial 50-74 11133 141 7.3 12 911

Risk-based strategy Biennial 35-74 18051 205 9.1 15 1777

FH+ ages 40-49     biennial 50-74 11187 141 7.3 12 916

Risk-based strategy Biennial 40-74 16017 198 9.0 14 1489

FH+ ages 50-64     biennial 50-74 11285 143 7.4 12 924

Risk-based strategy biennial 50-74 11285 143 7.4 12 924

FH+ ages 65+     biennial 50-74 11389 111 6.1 12 933

Risk-based strategy biennial 50-74 11389 111 6.1 12 933

PRS group 1 (0.0 < RR < 0.5)

FH+ ages 30-39     biennial 50-74 11505 62 3.2 12 944

Risk-based strategy Triennial 30-74 14019 76 3.4 15 1431

FH+ ages 40-49     biennial 50-74 11529 62 3.2 12 946

Risk-based strategy Triennial 40-74 10986 74 3.4 14 1044

FH+ ages 50-64     biennial 50-74 11572 63 3.3 12 950

Risk-based strategy Triennial 50-74 8012 56 2.9 12 649

FH+ ages 65+     biennial 50-74 11618 49 2.7 12 954

Risk-based strategy Triennial 50-74 8042 43 2.4 12 652
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Discussion

In developed countries, most women within the 50-70 age range have been regularly 

screened for breast cancer in the last decades. (1, 2) However, measuring the public 

health impact of breast cancer screening has been challenging for several reasons. First, 

it is unknown how many breast cancers diagnoses and breast cancer deaths would have 

occurred had there been no screening. The lack of a control group of women who are not 

screened makes it difficult to quantify the impact of screening. Second, the simultaneous 

improvements in breast cancer screening and treatment make it difficult to quantify the 

contributions of either. These are areas where models come into play. (3, 4) Models can 

simulate a population of women in the presence and in the absence of various screening 

and treatment strategies. Further, models can extrapolate the findings from randomized 

controlled trials by synthesizing data on breast cancer epidemiology, demographics, 

screening accuracy, and treatment effectiveness to estimate the magnitude of harms 

and benefits associated with many different screening strategies. The predictions by 

the Cancer Intervention and Surveillance Modeling Network (CISNET) models have 

been used to support the current United States Preventive Services Task Force (USPSTF) 

screening guidelines. (5) Overall, there are numerous reasons why models can contribute 

to a better understanding of trends in breast cancer incidence and mortality. Neverthe-

less, breast cancer microsimulation models can also be perceived as complex and be 

challenging to fully understand.

Research question 1: How can model description, comparison, and 
validation contribute to a better understanding of model predictions?

Microsimulation model MISCAN-Fadia

One way to improve the understanding of model predictions is to provide a detailed 

description of the model. The tumor size-oriented MIcrosimulation SCreening ANalyses 

(MISCAN) model is characterized by exponential continuous tumor growth based on 

the tumor volume doubling time concept. The tumor FAtal DIAmeter (FADIA) concept 

represents distant metastasis of breast cancer. These concepts form an intuitive biologi-

cal entry to modeling breast cancer natural history. One advantage is that tumor size can 

be observed at diagnosis and if real data on tumor progression rates becomes available 

in the future this can be used directly in the model. A challenge however, is that trials 

evaluating the performance of screening modalities often only report test sensitivity, and 

have to be recalibrated to tumor sizes in order to be applicable in the model. Logically, 

newer and more sensitive screening tests are able to detect tumors of smaller diameter 

sizes than less sensitive (older) screening modalities such single view film mammography. 

Similarly, the efficacy of breast cancer treatment found in studies (6) is translated into a 

tumor size that can be cured by a specific treatment.
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In randomized controlled trials, randomization of participants is a key step to reduce 

the chance of systematic differences between study participants in the intervention and 

control groups. In the model this is imitated by simulating a target population twice with 

the exact same characteristics, except the screening strategy. In general, describing the 

demography, breast cancer natural history, screening and treatment part of a model and 

including the model inputs, should contribute to a better understanding of the model. In 

2018, a special issue in Medical Decision Making was dedicated to providing a detailed 

description of all CISNET breast cancer models.(7)

Comparison of DCIS models

One of the most important harms of routinely screening asymptomatic women for breast 

cancer, that has profound implications for quality of life, is overdiagnosis and overtreat-

ment. The magnitude of overdiagnoses has been a matter of extensive debate because 

the standard of care is that all tumors are treated immediately upon diagnosis. Moreover, 

overdiagnoses is difficult to measure as it not observable in individual women and esti-

mates vary widely. (8) The CISNET models project that 34-72% of DCIS diagnoses are 

overdiagnosed in a biennial 50 to 74 screening scenario.(9) The comparison of multiple 

approaches to modeling DCIS (in chapter 3) showed that models assuming a stable 

background trend in breast cancer incidence predicted the highest rates of overdiag-

noses of DCIS. The stable background trend implied that the majority of the increase 

in breast cancer diagnoses due to screening were overdiagnoses. Models with a rela-

tively long pre-clinical duration of DCIS and therefore a relatively long period to detect 

DCIS by screening, also predicted a high percentage of DCIS overdiagnoses. Models 

including invasive breast cancer which can be non-progressive, predicted relatively low 

levels of DCIS overdiagnoses. Overall, and similar to what other studies have found, the 

comparative modeling outcomes showed that even though there is uncertainty about 

DCIS natural history, the amount of overdiagnoses among DCIS cases is substantial and 

greater than the amount of overdiagnoses among invasive breast cancers. (10)

Evidently, the quality of model inputs is related to the quality of model outputs. Since 

the information about DCIS natural history is still limited, the model projections for DCIS 

overdiagnoses may therefore not be sufficiently accurate yet to inform clinical practice. A 

key step in the improvement of our understanding of DCIS natural history and the associ-

ated value of modeling DCIS is using observed data from DCIS trials. The COMET(11), 

LORD, and LORIS (12) trials monitor women with DCIS with the intent of only offering 

treatment when needed and thereby reduce the risk of overtreatment. Future steps that 

modeling groups have to make are including new trial information and predictors for 

disease progression. Predictors for progression include cytologic grade, younger age at 

diagnosis, ethnicity, or DCIS tumor size. (13, 14)
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External model validation

There is a complex interplay between multiple factors that contribute to the effects of 

screening and treatment on cancer incidence and mortality. These factors include, sen-

sitivity and specificity of screening, screening frequency, attendance to screening, treat-

ment effectiveness, treatment adherence, disease risk and natural history of the disease. 

Models can synthesize data from various sources to simulate the interplay between such 

factors and make predictions for the impact of screening and treatment. If collaborative 

modeling outcomes point to similar conclusions by different models, this should improve 

the credibility of the conclusion. To formally assess a model´s predictive ability, model 

predictions should be compared to observed clinical trial outcomes. This is called model 

validation. The comparison of model predictions to observed event data not used in 

model development, is called external validation and is seen as one of the strongest 

forms of model validation. (15)

The effectiveness of screening below age 50 is an important issue in breast cancer 

screening. While young women (< age 50) are at lower risk to develop breast cancer 

than older women, tumors grow faster and mammography performs less well due to the 

prevalence of dense breasts in younger women. (16) The different screening guidelines 

reflect the uncertainty about screening in this age group. The U.K. Age trial was specifi-

cally designed to address the question about the effectiveness of screening in women in 

the 40 to 49 age range. (17) In chapter 4, Five CISNET models, primarily built for making 

predictions of screening and treatment in the United States, made predictions for breast 

cancer screening in the United Kingdom. Predictions were compared to the findings of 

the U.K. Age trial that compared annual mammography screening of women ages 40 

to 49 years with no screening in this age group. The models underestimated the effect 

of screening on breast cancer mortality at 10-year follow-up. On average, the modeled 

breast cancer mortality reduction due to screening was 15% (range across models, 13% 

to 17%) vs. 25% (95% CI, 3% to 42%) observed in the Age trial. (18) At 17-year follow-up, 

the models predicted 13% (range across models, 10% to 17%) vs. the non-significant 

12% (95% CI, -4% to 26%) observed in the trial.

On closer inspection and comparison of model outcomes, we observed that models 

with slower tumor progression on average predicted a slight increase in breast cancer 

mortality reduction between 10 and 17-year follow-up. The models with faster tumor 

progression, and thus a shorter time to breast cancer metastases, on average showed 

a decline or stable trend in breast cancer mortality reduction. Given that the underesti-

mation at 10-year follow-up was present across all models, it might be explained by a 

common model input not related to screening. Specifically, no treatment information has 

been reported in the trial. The models used a derived treatment dissemination based on 

U.K. surgical oncology reports that may have been different from the actual treatments 

received by women diagnosed with breast cancer in the trial.
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It is known that if screening is first introduced there is a delay in the impact on cancer 

mortality. The Age trial is one example that shows that lifetime follow-up is important 

when measuring the impact of screening and treatment. If an extension of the U.K. 

screening program to women under age 50 was based on the conclusions of the trial at 

10-year follow up, one could argue that based on the breast cancer mortality reduction at 

17-year follow up this should be reversed. A different challenge of the Age trial was that 

an ongoing national screening program was in place for women aged 50 and older, and 

for justified ethical reasons women in both arms of the trial were invited to participate 

in this program. To assess the effectiveness of screening on breast cancer mortality, the 

trial restricted their analyses to breast cancers diagnosed during the intervention phase. 

With regard to screening quality in the trial, the models and the trial itself showed more 

breast cancer diagnoses due to symptoms (interval cancers) than from early detection 

by screening in the intervention group. We attributed this finding to the relatively low 

sensitivity of single view mammography at the time.

Overall we conclude that the models captured the observed long-term effect at 17-

year follow-up of screening from age 40 to 49 years on breast cancer incidence and 

mortality in the UK Age trial, suggesting that the model structures, input parameters, and 

assumptions about breast cancer natural history are reasonable for estimating the impact 

of screening on mortality in this age group. It can be noted that it is quite common to 

have relatively wide confidence intervals in randomized trials on cancer screening. The 

wide confidence intervals are partly due to the limited number of women included and 

absolute number of breast cancer deaths. In modeling studies, the outcomes and simula-

tions are not limited to a certain number of women, but models are ultimately informed 

by these observed data as well.

Which model aspects drive model predictions (MCLIR method)

A necessary step in the interpretation of collaborative model results is to understand 

how model structure and assumptions contribute to variations in cancer incidence and 

mortality predictions. However, explaining differences in model predictions is not always 

straightforward for reasons related to the nature of the disease. Modeling breast cancer 

involves the representation of unobservable processes such as tumor onset and tumor 

progression, upon which interventions are overlaid. To model breast cancer, models 

must make assumptions about the timing of tumor inception, tumor progression, and 

progression variability among tumors. These assumptions, in conjunction with model 

structure, impact 3 key determinants of screening effectiveness: 1) pre-clinical duration 

of breast cancer in which cancers could be detected by screening; 2) the sensitivity of the 

screening test; and 3) the improvement in prognosis from treatment, e.g., to what extent 

(earlier) treatment actually reduces (more) breast cancer mortality. The maximum clinical 

incidence reduction (MCLIR) method was used to isolate the effects of tumor onset, 
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tumor progression, screening test sensitivity, and breast cancer treatment by comparing 

model results before and after imposing a one-time screening intervention at age 62 

under varying assumptions about screening performance and treatment effectiveness.

Even though different models may use the same data on screening sensitivity and 

breast cancer treatment effectiveness, the implementation of screening and treatment 

varies because model structures are different. The MCLIR method was designed to gain 

insight into how model structure and assumptions influence model predictions. The 

rationale behind this method is that in the absence of screening, breast cancers will only 

be diagnosed because of clinical symptoms; referred to as clinical incidence and defined 

as breast cancers diagnosed due to symptoms. Screening is assumed to detect some of 

these cancers before symptomatic diagnosis, thereby reducing clinical incidence, and 

possibly cancer mortality. Differences in ‘clinical incidence reduction’ reflect differences 

in how models portray the pre-clinical detectable phase of breast cancer (tumor onset 

and progression) and mechanisms of screen detection (incorporation of sensitivity). On 

the other hand, differences in breast cancer mortality are expected to capture model-

specific assumptions about implementation of treatment as well as the impact of tumor 

onset and progression on breast cancer natural history.

The hypothetical ‘perfect screening test’ scenario showed that some models have 

relatively large numbers of tumors in existence at screening. On closer inspection, these 

models have in common a model structure that simulates tumor inception long before 

the start of the sojourn time (the screen-detectable phase). Moreover, the outcomes 

also indicated that the tumors in these models are, on average, slowly progressing with 

longer survival times. On the other hand, models with few cancers in existence at screen-

ing, were models with structures that simulated tumors at the start of the sojourn time 

and with assumptions of relatively fast tumor progression that resulted in shorter survival 

times on average. Overall, models may be perceived as complex, however the interplay 

between screening and treatment interventions with unobservable disease natural his-

tory is also complex in itself. The MCLIR method can isolate model parts and provide 

more insight into the factors that drive incidence and mortality predictions. Overall we 

conclude that in models, the timing of tumor inception and its effect on the length of the 

pre-clinical phase of breast cancer can have substantial impact on their predictions for 

breast cancer incidence and mortality reduction.

Part 2: Quantifying the harms and benefits of age-based 
breast cancer screening in the United States.

The evidence obtained from randomized controlled trials on the effectiveness of breast 

cancer screening in the past 30 years led to the widespread use of mammography screen-
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ing. Despite this body of evidence, the magnitude of the harms and benefits of breast 

cancer screening has been debated extensively and the lack of consensus is reflected in 

the current screening guidelines. This debate has been fueled by the increase in harms 

such as false-positives and overdiagnoses. Also, the simultaneous improvements in 

breast cancer screening and treatment over time make it difficult to disentangle the 

contributions of either to the overall harms and benefits.

Research question 2: What are the benefits and harms of current age-
based breast cancer screening in the United States?

Explaining the decline in U.S. breast cancer mortality

Advances in breast cancer screening and treatment have both contributed to the decline 

in U.S. breast cancer mortality in the last 30 years. In 2005, the CISNET models estimated 

that screening and treatment contributed about equally to the decline in breast cancer 

mortality between 1975 and 2000.(3) After the year 2000, two important developments 

have emerged: digital mammography screening and improvements in molecularly 

targeted treatments. To further reduce breast cancer mortality, it is useful to assess the 

relative contributions of screening and treatment to breast cancer mortality in the first 

decade of the 21st century. No single cancer registry in the U.S., nor any randomized trial, 

collected sufficient long-term information about ER/ERBB specific treatment to quantify 

the contributions of screening and treatment by molecular subtype at the population 

level.

We used 6 different CISNET models to simulate US breast cancer mortality from 2000 

to 2012 for multiple birth cohorts using national data on plain-film and digital mam-

mography patterns and performance, dissemination and efficacy of ER/ERBB2(HER2)-

specific treatment, and competing mortality. In 2000, the contribution of screening to 

overall breast cancer mortality reduction was 44% and 56% of the reduction associated 

with treatment. In 2012 this changed; screening was estimated to be responsible for 

37% and treatment for 63% of the total breast cancer mortality reduction in that year. 

Improvements in chemotherapy and hormone therapy were mainly responsible for this 

increase in the contribution of treatment. Molecular subtype tumors ER+/ERBB+ were 

mainly treated with Trastuzumab in 2012 and showed the largest relative contributions 

associated with treatment vs screening: 69% vs 31%. The ER-/ERBB- tumor group saw 

the lowest breast cancer mortality reduction (37%) and did not benefit from improve-

ments in hormone therapy nor Trastuzumab. Overall, all models conclude there has been 

a shift in in the relative contributions associated with screening and treatment to U.S. 

breast cancer mortality. Advances in screening from film to digital mammography have 

contributed to the overall decline in breast cancer mortality. Even so, the dissemination 

of new molecularly targeted therapies and the improved delivery of standard treatment 
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regimens has had a stronger impact on breast cancer mortality than screening between 

2000 and 2012.

Our analyses focused on explaining the decline in breast cancer mortality and did 

not investigate the harms associated with screening and treatment. However, in future 

perspective, one possible long-term implication of our findings could be that, if cancer 

treatments become more and more effective, more targeted, and less burdensome, 

early detection by screening could become less important. In such scenario, improved 

treatments could indirectly lead to a reduction in the number of screens and thereby 

a reduction in false-positives and overdiagnoses. It will be important to continuously 

evaluate the contributions of screening and treatment in light of new developments. In 

the meantime, improving the sensitivity and specificity of screening is the most direct 

way to reduce false positives and recall rates. The use of prognostic factors for invasive 

breast cancer or watchful waiting strategies in non-invasive cases could potentially re-

duce overdiagnoses.

Model predictions informing screening guidelines

One of the lessons learned in decades of breast cancer screening is that the harms do 

not always outweigh the benefits. In 2009, the United States Preventive Services Task 

Force used collaborative modeling outcomes to support the revision of their recommen-

dations from annual screening beginning at age 40 years to biennial screening beginning 

at age 50. (19) In 2016, the CISNET models updated the model inputs to account for 

improvements in screening and systemic treatment. We estimated the magnitude of 

harms (false-positive mammograms, benign biopsies, overdiagnosis) and benefits (breast 

cancer mortality reduction, life-years gained, quality-adjusted life-years) of eight differ-

ent screening strategies. Screening strategies varying in start age of screening (40, 45, 

50) and screening interval (annual, biennial, and hybrid), where hybrid strategies consist 

of annual screening before age 50 followed by biennial screening, were evaluated. All 

models showed that, when considering the average-risk population, screening starting 

at age 40 led to substantially more false-positives and overdiagnoses among women 

in their forties than screening starting at age 50. Starting biennial screening at age 40 

vs. 50 modestly lowered breast cancer mortality, and QALYs gained increased by 22% 

from 86 to 105 per 1.000 women screened. Overall, biennial screening strategies were 

efficient and preferred over annual strategies for average-risk women. Efficient strategies 

are strategies that result in the greatest gain in benefits per mammogram. Women at 

2-to 4-fold average risk could consider annual screening at ages 40 or 50. Sensitivity 

analyses of screening cessation at older ages showed that comorbidity levels could be 

used to tailor stopping age of screening.

Overall, these results suggest that screening starting at age 40 has some benefits, but 

increases the harms substantially. From a public health perspective considering the ratio 
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between harms and benefits, extending the 50 to 74 biennial screening recommenda-

tions to include women aged 40 to 49 is not favorable for average risk women. However, 

from a woman’s perspective the choice to start screening at age 40 may depend on the 

value she attaches to the potential benefits and harms of screening.

Radiation induced breast cancer

The ionizing radiation associated with repeated mammography may increase breast 

cancer risk and could lead to radiation induced cancer. To date, radiation induced breast 

cancer risk was based on exposure from routine screening only and assumed 4 views 

per screening. We considered radiation from routine screening for different subgroups 

of women, diagnostic work-up following an abnormal screening result, false-positive 

recalls, breast biopsies, and follow-up screening examinations. Variation in radiation 

dose was taken into account as some women receive more than the mean radiation 

dose for reasons related to breast thickness, breast augmentation, or breast movement 

during screening. Annual screening including diagnostic work-up among women aged 

40 to 74 years induced 125 breast cancers and 16 breast cancer deaths per 100.000 

women screened. Biennial screening from ages 50 to 74 resulted in 27 breast cancers 

and only 4 breast cancer deaths. Screening and diagnostic work-up among women with 

large breasts lead to 2.3 times more radiation exposure and were consequently at ap-

proximately two times greater risk of radiation induced breast cancer and breast cancer 

death than women with small or average-sized breasts. Overall, our estimates show that 

it is important to account for variation in radiation dose when quantifying the number of 

radiation induced breast cancer and breast cancer deaths

Previous analyses showed that the harms of annual compared to biennial screening 

greatly increased in terms of false-positives and overdiagnoses. We now showed that, 

especially when considering annual screening or screening initiation before age 50, the 

risk of radiation induced breast cancer and breast cancer death is substantial and should 

be taken into account by policy makers, healthcare providers, and ideally women them-

selves. Moreover, among women with large breasts who undergo more views on average 

for a complete screening examination, the radiation induced harms are even greater 

and approximately doubled. In light of the rapid adoption of digital 3-dimensional to-

mosynthesis in the United States and elsewhere, it is important to keep in mind that the 

radiation dose is similar or slightly greater than of digital mammography. It goes without 

saying that combining digital mammography with tomosynthesis doubles the amount of 

radiation exposure and risk for inducing breast cancer.
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Part 3: Projecting the harms and benefits of risk-based 
breast cancer screening in the United States.

In developed countries, the majority of women adhere to breast cancer screening guide-

lines. Whilst all guidelines recommend women to be screened regularly, there are differ-

ences in the start and stop age of screening as well as in screening interval. (19-21) The 

guidelines have in common the age-based approach to recommend screening. The logic 

behind this approach is that age is the strongest risk-factor for most women and ethically 

all women should have the same rights to potential benefits of screening. However, there 

is also a downside to an age-based approach to screening. For instance, a screening 

guideline of biennial screening from ages 50 to 74 essentially treats all women between 

ages 50 and 74 as being at equal risk for developing breast cancer. It is known that breast 

cancer risk varies among women of the same age.

Research question 3: To what extent can risk-based breast cancer 
screening improve the harm-benefit ratio of current age-based screening 
guidelines?

Risk-stratified screening implies that women are screened in a way that is based on their 

risk level. A prerequisite is that ahead of screening some sort of risk-assessment has to 

be made. This could for instance be assessed by asking about their personal or family 

history of breast cancer, measuring their breast density, or testing for genetic risk factors 

such as SNPs or rare variants.

Tailoring breast cancer screening intervals by breast density and risk

Despite the consensus about screening women aged 50 and older that is reflected in 

the various age-based guidelines, it remains challenging to incorporate information on 

breast cancer risk into screening routines beyond age. Breast density is a risk factor 

for breast cancer, may change as women age, and affects mammography performance. 

(22, 23) We estimated the outcomes for screening strategies in the U.S. varying interval 

of screening (annual, biennial, and triennial) tailored to women aged 50 years or older 

with various combinations of breast density and relative risk. Four density levels, in line 

with the American College of Radiology’s Breast Imaging reporting were considered: 1) 

almost entirely fat, 2) scattered fibroglandular density, 3) heterogeneously dense, and 4) 

extremely dense. Additionally, increased risk levels 1.3, 2.0, and 4.0 that represent for 

example post-menopausal obesity, history of a benign breast biopsy, or personal history 

of breast cancer were included. The results showed that screening, regardless of interval 

and age group, yielded more breast cancer deaths averted, life-years gained, and quality 

adjusted life-years among women with dense breast and among women at increased 

relative risk within each density group. In other words, higher breast cancer risk was 
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associated with more benefits of screening. The number of false-positives and benign 

biopsies decreased with increasing risk and density, while overdiagnoses increased by 

risk. When considering a cost-effectiveness threshold of $100,000 per QALY, triennial 

screening was the only effective strategy for women with low breast density at average 

risk. Biennial screening was cost-effective among women at increased risk regardless of 

density, and annual screening was only cost-effective across subgroups at the highest 

(4.0) risk level and breast density categories 3 and 4 (extremely dense).

Overall, we conclude that breast density and risk level can be used to guide screening 

intervals. Across women with varying levels of risk and breast density, those with dense 

breasts at increased risk are most likely to benefit from the current USPSTF guidelines 

of biennial screening from ages 50 to 74. From a policy maker perspective, the results 

suggest that only women with extremely dense breasts at the highest risk levels should 

consider annual screening. Otherwise, annual screening is not cost-effective. Triennial 

screening was cost-effective for a relatively large group of women with low breast density 

and average risk. In international perspective, triennial screening is standard practice in 

the U.K. while in the U.S. this interval is not considered in any guidelines. The modeling 

results show that triennial screening has a similar balance between harms and benefits 

compared to biennial screening. In absolute numbers, the benefits, but also the harms 

are greater for biennial screening, but if relative measures or harm-benefit ratios are 

leading, triennial screening could be considered for low density, average-risk women. 

It remains difficult to extend this analysis to younger (<50) women as breast density is 

unknown until the first mammogram. Incorporating changes in breast cancer risk over 

time or by age could potentially increase the benefits and reduce the harms of risk-

stratified screening.

Personalizing breast cancer screening based on polygenic risk and family history

A first-degree family member diagnosed with breast cancer is a risk factor to develop 

breast cancer and relatively easy to assess. Polygenic risk can be assessed by a SNP 

test using blood or saliva and polygenic risk is presumed to remain unchanged dur-

ing life. These characteristics are the rationale behind our study assessing risk-stratified 

screening approaches using first-degree family history (FH) and polygenic risk scores 

(PRS). The models established risk groups based on first-degree family history and risk 

groups based on a 77-and 167 SNP polygenic risk score. Annual, hybrid, biennial, and 

triennial digital mammography screening strategies starting at ages 30, 35, 40, 45, and 

50 were evaluated for each risk group. Women at high risk due to a first degree family 

history of breast cancer and/or high polygenic risk could initiate screening before age 50. 

Women with below-average polygenic risk could consider triennial screening. We pro-

jected greater benefits (breast cancer deaths averted, life years gained) when targeted 

screening was based on polygenic risk scores rather than family history. The screening 
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approach combining risk from polygenic risk and family history resulted in the maximum 

improvement in benefits compared to current age-based screening guidelines.

Sensitivity analyses including additional, more recently identified SNP only modestly 

improved the benefits and harms. If the discriminatory performance of polygenic risk 

scores improves in the future, different screening scenarios may be optimal from a public 

health perspective. From an individual perspective, the attitude towards the harms and 

benefits of polygenic risk-based screening may result in a different preferred screening 

strategy. We noticed that quite some screening strategies were associated with more 

intense screening than the current biennial 50-74 screening guidelines. To remove this 

aspect and quantify the benefit from just the risk-stratification, we redistributed the 

guideline-concordant number of screens across all women. The outcomes showed that 

life-years gained and breast cancer deaths averted still increased modestly. Conversely, 

this showed that a considerable part of the projected increase in benefits was explained 

by the increase in cancer detection following from more screening examinations.

Increasing number of guidelines advise women to discuss individual breast cancer risk 

with their healthcare providers. Ongoing trials such as the WISDOM trial (24) and My-PEBS 

just started to investigate screening approaches based on genetic markers. Until results 

become available, the model estimates provide specific screening strategies based on 

genetic risk factors that could be considered in practice. Combining multiple risk factors 

such as polygenic risk, breast density, and reproductive, lifestyle, and hormonal factors 

is likely to improve risk prediction and the harm-benefit ratio for stratified screening. In 

all scenarios, obtaining genetic information should be done with utmost care and ethical 

approval. Other ethical aspects of genetic testing such as patient autonomy, accessibility 

to polygenic risk testing, and differential effects across ancestries should be considered 

before the implementation or recommendation of polygenic risk-based screening.

Directions for future research by breast cancer simulation 
models

Microsimulation models are commonly used to evaluate and quantify the benefits and 

harms, i.e. cost and effects of health care policies and interventions. Several applica-

tions and topics for future research related to breast cancer screening modalities, breast 

cancer detection, risk-based screening, and treatment are listed here.

Breast cancer screening modalities

·	 Estimate the potential impact of screening strategies combining multiple modalities 

such as mammography, tomosynthesis, magnetic resonance imaging, and/or liquid 

biopsies.
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·	 Estimate the impact of breast self-examination strategies in developing countries.

·	 Evaluate active surveillance screening strategies using liquid biopsies to monitor 

disease activity and possible treatment response.

Breast cancer detection

·	 Estimate the harms and benefits of currently available blood-based liquid biopsies in 

detecting circulating tumor DNA and confirming healthy tissue. 

·	 Estimate the required test performance for liquid biopsies to be cost effective.

·	 Estimate the current and future potential of computer aided detection reducing the 

harms of screening including false positives, overdiagnoses, and false reassurances.

Risk-based screening 

·	 Estimate the cost and effects of screening targeted to individual, age-specific, breast 

cancer risk based on a combination of risk factors including polygenic risk (SNPs), 

breast density, rare variants, and lifestyle factors.

·	 Find the optimal screening strategies for mutation carriers who are at increased risk 

to develop breast cancer with distinct natural history.

·	 Estimate the potential of combining breast cancer risk (e.g. subtype-specific risk) with 

assumptions about tumor progression rates to inform screening strategies.

Breast cancer treatment 

·	 Assess the impact of a new treatment or vaccine discovery that can prevent or treat 

metastatic breast cancer.

·	 Estimate ‘watchful waiting’ strategies for the treatment of DCIS.

Model development / methodology

·	 Develop models for the interaction between breast cancer risk and tumor progres-

sion.

·	 Develop models to predict local, regional, and distant breast cancer recurrence.

·	 Extend the current DCIS models by including prognostic factors for DCIS.

·	 Further develop the Maximum Clinical Incidence Reduction method to explore the 

effects of model structure and assumptions on predictions about the harms of screen-

ing.
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Conclusions

Research question 1: How can model description, comparison, and 
validation contribute to a better understanding of model predictions?

Describing the breast cancer natural history, screening, treatment, and demography 

component of micro simulation model MISCAN-Fadia provided necessary information 

to understand the workings of the model. The most important and distinct characteristics 

of the model are continuous tumor growth, the fatal diameter concept representing me-

tastasized “fatal” breast cancer, and the use of tumor size as a proxy for screen detection 

and treatment effects. We concluded that the model is quite flexible and can synthesize 

data from different sources, but also requires recalibration of several inputs before these 

can be used in this tumor-size oriented model. In this detailed model description, we 

justified modeling choices, and listed considerations as well as limitations that should 

improve transparency.

The comparison of model predictions of overdiagnoses among screen detected DCIS 

was 34% to 72% and 2% to 12% among invasive breast cancers in a biennial 50-74 

screening scenario. We concluded that regardless of differences in model structure and 

assumptions about breast cancer natural history, overdiagnoses among DCIS is exten-

sive and as long as the standard of care is treatment of DCIS upon diagnosis, many 

women are overtreated. Convergence of overdiagnoses predictions can be achieved 

when data on, currently unobservable, DCIS progression rates becomes available from 

active surveillance trials.

The models´ predictive ability was formally assessed by the comparison of breast 

cancer incidence and mortality predictions of annual screening from ages 40 to 49 to 

observed outcomes in the Age trial. The models reproduced the patterns in breast 

cancer incidence, but underestimated breast cancer mortality reduction at 10- and were 

more accurate at 17-year follow-up. We concluded that the model structures, existing 

input parameters, and assumptions about breast cancer natural history are reasonable 

for estimating the impact of screening on mortality in the 40-49 age group.

The maximum clinical incidence reduction (MCLIR) method was used to compare mod-

els and disentangle the interplay between screening and treatment interventions with 

model-specific assumptions about unobservable breast cancer natural history. Overall, 

we concluded that in models, the timing of tumor inception and its effect on the length 

of the pre-clinical phase of breast cancer had substantial impact on predictions for breast 

cancer incidence and mortality reduction.
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Research question 2: What are the benefits and harms of current age-
based breast cancer screening in the United States?

The models consistently showed that biennial screening starting at age 40 instead of 50 

lead to disproportionately more false-positives and overdiagnoses among average-risk 

women. Breast cancer mortality was only modestly lowered, but QALYs gained increased 

by 22%. Compared to annual screening strategies, biennial screening resulted in the 

greatest gain in benefits per mammogram and dominated annual strategies for average-

risk women. Only for women at 2-to 4-fold average risk could consider annual screening 

at ages 40 or 50. Overall, we concluded that screening starting at age 40 has some 

benefits, but increased the harms substantially.

In light of the simultaneous improvements in breast cancer screening and treatment 

in the last decade, the models incorporated the transition from film to digital mam-

mography and included molecular subtype specific breast cancer treatments to separate 

the contributions of either to breast cancer mortality reduction. In 2000, the contribution 

of screening to overall breast cancer mortality reduction was 44% vs. 56% explained by 

treatment. We showed that between 2000 and 2012 there has been a shift in relative 

contributions, screening was estimated to be responsible for 37% and treatment for 

63% of the total breast cancer mortality reduction in 2012. The models concluded that 

dissemination and improved delivery of new molecularly targeted therapies has had a 

stronger impact than screening improvements on breast cancer mortality between 2000 

and 2012.

The ionizing radiation associated with repeated mammography may increase breast 

cancer risk and could lead to radiation induced cancer. Annual screening including diag-

nostic work-up among women aged 40 to 74 years induced 125 breast cancers and 16 

breast cancer deaths per 1.000 women screened. Biennial screening from ages 50 to 74 

resulted in 27 breast cancers and only 4 breast cancer deaths. Overall, we concluded that 

it is important to account for variation in radiation amount caused by diagnostic work-up 

following an abnormal screening result, false-positive recalls, breast thickness, breast 

augmentation, breast biopsies, and follow-up screening examinations when quantifying 

the number of radiation induced breast cancer and breast cancer deaths

Research question 3: To what extent can risk-based breast cancer 
screening improve the harm-benefit ratio of current age-based screening 
guidelines?

The results of screening based on breast density and risk-level showed that increased 

breast cancer risk from either source was associated with more benefits of screening. 

Conversely, the number of false-positives and benign biopsies decreased with increasing 

risk and density while the number of overdiagnoses increased by risk. When considering 

a cost-effectiveness threshold of $100,000 per QALY, triennial screening was the only 
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effective strategy for women with low breast density at average risk. Biennial screening 

was cost-effective among women at increased risk regardless of density, and annual 

screening was only cost-effective across subgroups at the highest (4.0) risk level and 

breast density categories 3 and 4 (extremely dense). Overall, we concluded that breast 

density and risk level can be used to guide screening intervals.

We projected greater benefits (breast cancer deaths averted, life years gained) when 

screening was based on polygenic risk scores rather than family history. The screening 

approach combining risk from polygenic risk and family history resulted in the maximum 

improvement in benefits compared to current age-based screening guidelines. Women 

at high risk due to a first degree family history of breast cancer and/or high polygenic risk 

could initiate screening before age 50. Women with below-average polygenic risk could 

consider triennial screening. A large part of the projected increase in benefits was ex-

plained by the increase in cancer detection following from more screening examinations. 

Nevertheless, the benefits would still modestly increase at equal number of screens.
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Summary

Chapter 1 introduces the motivation and overall topic of this thesis: breast cancer, and 

breast cancer screening. The causes, risk-factors, incidence, survival, and breast cancer 

mortality are described. Potential benefits of early detection through screening are: 

life-years gained, improved quality of life, breast cancer deaths prevented, correct reas-

surance among women without breast cancer. Potential harms of screening include false 

reassurance, overdiagnosis, overtreatment, false-positive screening test results, and to 

some extent the temporary uncertainty after screening, and exposure to radiation that 

can induce breast cancer. The scientific body of evidence on breast cancer screening 

that has been gathered in the past decennia, has led to the widespread use of mam-

mography worldwide. However, there is no consensus about which screening strategy is 

optimal. This is the area where simulation models are used to make projections about the 

effects of various different screening strategies. In this thesis, we investigate how model 

predictions can be better understood and to what extent risk-stratification can increase 

the benefits of breast cancer screening.

Part 1: Breast cancer micro-simulation: methods, comparative modeling, 
and model validation.

Chapter 2 provides an overview of microsimulation screening analysis – Fatial diameters 

(MISCAN-Fadia) model. The four main components of the model: demography, breast 

cancer natural history, screening , and treatment are described in detail. The MISCAN-

Fadia model distinguishes itself from many other models by using a biological entry such 

as tumor growth and tumor size to modeling the natural history of breast cancer. The 

effectiveness of treatment and the sensitivity of screening are both linked to tumor size. 

The model adopts a ‘fatal diameter’ concept which implies that a cancer is not curable 

anymore and basically represents distant metastasis of breast cancer. The model is able 

to simulate many screening and treatment strategies in a short amount of time with 

varying adherence to screening and treatment. In each simulation, women differing in 

risk, birthyear, and life expectancy can be included. The model produces estimates of 

lifeyears gained, breast cancer eaths prevented, stage distributions, overdiagnoses, and 

interval cancer. Recent model developments include radiation induces breast cancers, 

breast density, and cancer by molecular subtype.

Chapter 3 shows how the CISNET breast cancer models simulate DCIS. Since the intro-

duction of mammpgraphy screening in the 1980’s in the United States, the incidence of 

DCIS, which is seen as a precursor of breast cancer, increased substantially. Uncertainty 

remains about the natural history of DCIS because tumor onset and tumor progression 

cannot be observed. In the 5 CISNET models, invasive breast cancer can develop from 

preclinical screen-detectable DCIS, or preclinical undetectable DCIS. A part of preclinical 
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DCIS may also regress. The models estimate that a large part of screen detected DCIS 

are overdiagnoses: 34%-72% in a biennial 50 to 74 screening strategy. Overdiagnosis 

is defined as a screen detected tumor that in the absence of screening would not have 

been found. The model predictions show no association between the amount of DCIS- 

and invasive overdiagnoses. The large differences in predictions of overdiagnosed DCIS 

cases, which is also found in other scientific literature, reflects the uncertainty around the 

natural history of DCIS. This underscores the importance of active surveillance trials such 

as the LORD, LORIS, and COMET trial that can provide more observed data on DCIS 

natural history.

Chapter 4 presents an external validation that compares model predictions to ob-

served data from the ‘U.K. Age trial’. The trial compared annual mammography screen-

ing in women aged 40 to 49 to a control group who were offered usual care, which is 

no screening in this age group. The 5 CISNET models used demography, screening 

attendance, and mammographic sensitivity from the trial in combination with extant as-

sumptions about the onset en natural history of breast cancer to predict the incidence 

and mortality in the intervention and control arm. The results show that the effect of an-

nual screening on breast cancer incidence is reproduced quite well. The average breast 

cancer mortality reduction after 10 years of follow-up was underestimated by the models 

15% (range: 13% to 17%) compared to 25% (95% CI, 3% to 42%) in the trial. After 17 

years of follow-up, the trial showed a 12% (95% CI, -4% to 26%) non-significant reduction 

and the models 13% (10% - 17%) on average. We conclude that the models reproduced 

the long term effects of the age trial reasonably well. This suggests that the existing 

model structures, model input parameters, and assumptions are suitable for estimating 

the effect of screening on breast cancer mortality in this age group.

In chapter 5, investigates how model structures and assumpations about the preclinical 

duration of breast cancer influence model predictions. The Maximum Clinical Incidence 

Reduction (MCLIR) method is used and extended to disentangle the effects of tumor 

growth rate, timing of tumor onset, screening sensitivity, and treatment effectiveness. 

The models do this in a simplified setting of a single screen at age 62 with varying 

assumptions about test sensitivity and treatment effectiveness. The MCLIR method 

compares changes in the number of breast cancer cases and deaths in 4 scenarios: 1. 

no screening, 2. a screen with perfect (100%) sensitivity and perfect treatment (100% 

cure), 3. a screen with sensitivity of digital mammography and perfect treatment, 4. a 

screen with sensitivity of digital mammography and realistic (observed) effectiveness of 

treatment. The models predict a 19% to 71% reduction in clinical incidence and 33% 

to 67% reduction in breast cancer mortality as a result of a perfect screening test and 

perfect treatment. In the scenario with sensitivity of digital mammography and realistic 

treatment effectiveness, the prediction converge: 11% to 24% clinical incidence reduc-

tion and 8% to 18% breast cancer mortality reduction. The timing of tumor onset and its 
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influence of the preclinical duration had the largest impact on model predictions. Models 

with relatively fast progressing tumors also had a shorter preclinical duration. The MCLIR 

method can shed light on the root of the differences between model predictions and can 

be applied in other disease settings where the effects of screening are modeled.

Part 2 – Quantifying the harms and benefits of breast cancer screening 
among women in the United States

In chapter 6, the harms and benefits of eight screening strategies varying in starting 

age and interval are estimated by 6 cisnet models. The target population was average 

risk women and women at increased breast cancer risk due to their breast density or 

co-morbidity. Biennial screening from ages 50 to 74 prevented 7 breast cancer deaths 

on average compared to no screening. Annual screening in the same age ranges would 

prevent 3 additional breastr cancer deaths, but would increase false-positives by almost 

2.000 per 1.000 women screened over a lifetime. Starting annual screening at age 40 

showed similar harms and benefits among women with 2 to 4 times the average risk. 

Women with moderate to severe comorbidity could stop screening at age 66 or 68. All 6 

models conclude that starting screening at age 40 leads to a small benefit in terms of life 

years gained and breast cancer deaths prevented, but the increase in false positives and 

overdiagnoses is substantial. This quantitative analyses shows that biennial screening 

among average risk women is most efficient. Policy makers cab use this information to 

inform their decision about breast cancer screening policy.

In chapter 7, six breast cancer simulation models are used to assess the relative contri-

butions of screening and treatment to the trend in breast cancer mortality between 2000 

and 2012. Given the improvements in treatment and new adjuvant therapies which were 

given to breast cancer patients in these periods, the analysis focuses on combination of 

breast cancer subtypes estrogen receptor (ER) positive and human epidermal growth 

factor receptor (HER) 2. In 2000, the models estimate a 37% (27%-42%) breast cancer 

mortality reduction vs. no screening. 56% of this reduction is explained by breast cancer 

treatment and 44% by screening. However, in 2012 the total breast cancer mortality 

reduction is estimated at 49% (39%-58%) of which 37% is explained by screening and 

63% by improvemens in treatment. For 3 out of the 4 subtypes it holds that treatment 

has made a larger contribution to the decline in breast cancer mortality, except for the 

ER-/HER2- tumors where the contributions of screening and treatment are estimated as 

approximately equal. The models conclude that in 2000 to 2012 the continued decline 

in overall breast cancer mortality can be explained for a larger part by new and improved 

treatments than by screening in this period.

Chapter 8 investigates to what extent the exposure to the ionizing radiation of re-

peated mammography screening contributes to breast cancer and breast cancer death. 

Prior research was based on 4 views per screening and did not account for breast size 
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and breast thickness, nor false-positives, diagnostic work-up, and variations in radia-

tion dose caused by breast augmentation or breast positioning during screening. This 

study accounted for these factors because of their impact on the overall radiation dose 

and consequent radiation induced breast cancers. We estimated the radiation induced 

breast cancer in 8 screening strategies varying starting age (40, 45, 50) and screening 

interval (annual, biennial, hybrid). The benefits of annual screening of 100.000 women 

between ages 50 and 74 are estimated at 968 breast cancers prevented, but would 

also induce 125 breast cancer and 16 breast cancer deaths through radiation. Among 

women with large breasts, 8% receives more radiation doses during screening and this 

was estimated to cause 266 breast cancers of which 35 would lead to breast cancer 

death per 100.000 women screened. The results in this study show that it is important to 

account for variations in radiation dose from and after screening when determining the 

number of radiation induced breast cancers and breast cancer deaths.

Part 3: Projecting the lifetime harms and benefits of risk-based breast 
cancer screening.

In chapter 9, the effects of screening among women with varying breast density and risk 

are quantified. Three CISNET models simulate the effect of annual, biennial, and hybrid 

screening between ages 50 and 74 or 65 and 74. We distinguished four density groups 

spanning between almost entirely fat to extremely dense breast tissue. Increased breast 

cancer risk caused by other factors was modeled by including 4 relative risk groups: 1.0 

(average risk), 1.3, 2.0, 4.0. The results show that in all screening intervals, the breast 

cancer deaths prevented and life years gained increased with breast density as well as 

increases in relative risk from other factors. At the same time, false positives and unnec-

essary biopsies decreased while overdiagnoses increased. The results in this study show 

that breast density and increased risk due to other factors can be useful in the formation 

of risk-based screening guidelines.

In chapter 10 we investigated the effects of screening based on breast cancer family 

history and small DNA variations and how these relate to the results of age-based screen-

ing guidelines. Two CISNET models estimated the effects of screening strategies with 

starting ages (30, 35, 40, 45, 50) and stopping age 74, and screening intervals (annual, 

biennial, triennial, hybrid). Among women younger than age 50 with a first-degree family 

member diagnosed with breast cancer; about 9% of the population, starting screening 

before age 50 would gain 44% life years and avert 24% breast cancer deaths compared 

to starting screening at age 50. However, the increase in the number of mammograms 

among these women also led to 25% more overdiagnoses and false positives would 

double. Screening based on polygenic risk gained 19% additional life years, prevented 

11% breast cancer deaths, and overdiagnoses and false positives increased by 10% and 

26%. Screening based on breast cancer family history and polygenic risk resulted in the 
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largest increase in benefits compared to current USPSTF guideline screening. This study 

showed that risk stratified screening can lead to fewer breast cancer deaths and more life 

years gained among women who are at increased risk of breast cancer due to polygenic 

risk and family history.
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Samenvatting

Hoofdstuk 1 introduceert zowel de aanleiding als het overkoepelende thema van dit 

proefschrift: borstkanker en borstkankerscreening. Naast de oorzaken en risicofactoren 

worden ook de incidentie, overleving, en sterfte aan borstkanker besproken. De po-

tentiele voordelen van vroege opsporing door middel van borstkankerscreening zijn: 

gewonnen levensjaren, verhoogde levenskwaliteit, voorkomen borstkanker sterfgeval-

len, en terechte geruststelling bij gezonde vrouwen zonder borstkanker. De potentiele 

nadelen van screening zijn: onterechte geruststelling, overdiagnose en overbehandeling, 

fout-positieve uitslagen, en in mindere mate de tijdelijke onzekerheid na het screenen, 

en blootstelling aan straling wat kan bijdragen aan de ontwikkeling van borstkanker. 

Het wetenschappelijk bewijs voor borstkankerscreening wat in de afgelopen decennia 

is vergaard, heeft ertoe geleid dat wereldwijd vrouwen regelmatig worden gescreend. 

Echter is er geen consensus over welke screeningstrategie optimaal is. Dit is het ge-

bied waarin simulatiemodellen gebruikt worden om voorspellingen te maken over de 

effecten van verschillende screeningstrategien. In dit proefschrift wordt onderzocht hoe 

we voorspellingen van meerdere modellen beter kunnen begrijpen en in welke mate 

risico-stratificatie de voordelen van borstkankerscreening kan vergroten.

Part 1: Breast cancer micro-simulation: methods, comparative modeling, 
and model validation.

Hoofdstuk 2 geeft een overzicht van het Microsimulation Screening Analysis – Fatal 

diameter (MISCAN-Fadia) model. De vier belangrijkste componenten van het model: 

demografie, natuurlijk beloop van borstkanker, screening en behandeling worden 

uitvoerig besproken. Het MISCAN-Fadia model onderscheidt zich van veel andere 

modellen door een biologische grondslag zoals tumor groei en tumor grootte te nemen 

om het ontstaan en verloop van borstkanker te simuleren. Zowel de effectiviteit van 

behandelingen in het genezen van borstkanker en de gevoeligheid van de screening 

test wordt in MISCAN-Fadia gelinkt aan tumor grootte. Het model hanteert het ‘fatale 

diameter’ concept wat de niet meer geneesbare staat van kanker, metastase op afstand, 

symboliseert in de vorm van een fatale tumor grootte. Het model is in staat om in een kort 

tijdsbestek vele screening strategieën en behandelschema’s te simuleren met variërende 

screeningopkomst en therapietrouw . In deze simulatie kunnen vrouwen van verschillend 

geboortejaar, risico en levensverwachting tegelijkertijd worden gesimuleerd. Het model 

produceert schattingen voor onder andere gewonnen levensjaren, voorkomen borst-

kanker sterfgevallen, stadium verdelingen, overdiagnoses, en interval kankers. Recente 

ontwikkelingen omvatten het simuleren van vrouwen met verschillende borstdichtheid, 

de impact door straling geïnduceerde borstkankers, en trendanalyses in borstkanker 

naar moleculair subtypes.
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Hoofdstuk 3 laat zien hoe de CISNET borstkankermodellen DCIS simuleren. Sinds de 

introductie van mammografie screening in de jaren ‘80 in de Verenigde Staten is de inci-

dentie van DCIS, wat gezien wordt als voorstadium van en risicofactor voor borstkanker, 

sterk toegenomen. Er is onzekerheid over het natuurlijk beloop van DCIS omdat het 

ontstaan van een tumor en progressie snelheid niet observeerbaar zijn. In de 5 CISNET 

modellen kan invasieve borstkanker ontstaan uit pre-klinische screen-detecteerbare 

DCIS, of uit pre-klinische nog niet screen-detecteerbare DCIS. Daarnaast kan een deel 

van de pre-klinische DCIS ook regresseren. De modellen schatten dat een groot deel 

van de screen gedetecteerde DCIS overdiagnoses zijn: 34% - 72% bij tweejarig screenen 

tussen leeftijden 50 en 74. Overdiagnose is hier gedefinieerd als een screen gedec-

teerde tumor die in de afweigheid van screening niet gevonden zou zijn geworden. De 

model voorspellingen laten geen verband zien tussen de hoeveelheid DCIS-en invasieve 

overdiagnoses. De grote verschillen tussen voorspelde over-gediagnosticeerde DCIS 

gevallen, wat ook in andere wetenschappelijke literatuur wordt gevonden, geeft de 

onzekerheid over het natuurlijk beloop van DCIS weer. Dit onderschrijft het belang van 

active surveillance trials zoals de LORD, LORIS en COMET trial die meer geobserveerde 

data kunnen verschaffen over het natuurlijk beloop van DCIS.

Hoofdstuk 4 is een externe validatie waarbij model voorspellingen worden vergeleken 

met geobserveerde data uit de ‘U.K. Age trial’. Deze trial vergeleek jaarlijkse mammo-

grafie screening in vrouwen tussen de 40 en 49 jaar met een controle groep die de ge-

bruikelijke zorg ontvingen, wat geen screening is in deze leeftijdsgroep. De vijf CISNET 

modellen gebruikten demografie, screeningsdeelname, en mammografie sensitiviteit van 

de U.K. Age trial in combinatie met bestaande aannames over het ontstaan en natuurlijk 

beloop borstkanker om de incidentie en moraliteit in de interventie en controle arm te 

voorspellen. De resultaten laten zien dat het effect van jaarlijks screenen op borstkanker 

incidentie goed wordt gereproduceerd door de modellen. De gemiddelde voorspelde 

borstkanker mortaliteitsreductie na tien jaar follow-up was 15% (range: 13% tot 17%) en 

daarmee onderschat vergeleken met de 25% (95% CI, 3% to 42%) gevonden in de trial. 

Na 17 jaar vond de trial een 12% (95% CI, -4% to 26%) niet-significante reductie en de 

modellen gemiddeld 13% (10% - 17%). In deze externe validatie concluderen we dat de 

modellen de lange termijn effecten van de U.K. Age trial redelijk goed reproduceren. Dit 

suggereert dat de model structuren, model input parameters, en aannames geschikt zijn 

om het effect van screenen op borstkanker mortaliteit in deze leeftijdsgroep te schatten.

In hoofdstuk 5, wordt onderzocht hoe model structuren en aannames over de pre-

klinische duur van borstkanker invloed hebben op voorspellingen. De ‘Maximum Clinical 

Incidence Reduction’ (MCLIR) methode wordt gebruikt en uitgebreid om de effecten van 

tumor groeisnelheid, de timing van het ontstaan van de tumor, screening test sensitiviteit 

en behandelingseffectiviteit te ontrafelen. De modellen doen dit door de effecten van 

één screen op leeftijd 62 te simuleren met variërende aannames over screening sensiti-
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viteit en behandelingseffect. De MCLIR methode vergelijkt veranderingen in het aantal 

borstkankers (niet screen gedetecteerd) en borstkanker sterfgevallen in vier scenario’s: 

1. geen screening, 2. één screening test op leeftijd 62 met perfect (100%) sensitiviteit en 

perfecte (gegarandeerd genezende) behandeling, 3. één screening test met sensitiviteit 

van digitale mammografie op leeftijd 62 met en perfecte behandeling, 4. één screening 

test met sensitiviteit van digitale mammografie op leeftijd 62 met geobserveerde be-

handelingseffectiviteit. De modellen voorspellen een 19% tot 71% reductie in klinische 

incidentie als gevolg van een perfecte screen met perfecte behandeling en 33% tot 67% 

borstkanker mortaliteit reductie. In het scenario met sensitiviteit van digitale mammogra-

fie en realistische behandelingseffectiviteit liggen de voorspellingen een stuk dichterbij 

elkaar: 11% tot 24% reductie in klinische incidentie en 8% tot 18% borstkanker mortaliteit 

reductie. Het moment van tumor ontwikkeling en de invloed op de preklinische duur had 

het grootste effect op de model voorspellingen voor incidentie en mortaliteit. Model-

len met een relatief snellere tumorgroei lieten gemiddeld genomen ook een kortere 

preklinische duur zien. De MCLIR methode kan licht schijnen op de oorsprong tussen 

verschillen in modelvoorspellingen en kan ook worden toegepast in andere ziektes waar 

het effect van screenen gemodelleerd wordt.

Part 2 – Quantifying the harms and benefits of breast cancer screening 
among women in the United States

In hoofdstuk 6 worden de voor-en nadelen van acht screening strategieën varierend in 

start leeftijd en screening interval door 6 modellen geschat. De doelgroepen zijn gemid-

deld risico vrouwen en vrouwen met een verhoogd borstkanker risico door borstdichtheid 

of co-morbiditeit. Tweejaarlijks screening van leeftijd 50 tot 74 voorkwam gemiddeld 7 

borstkanker sterfgevallen vergeleken met helemaal niet screenen. Jaarlijks screenen in 

dezelfde leeftijden zou 3 extra sterfgevallen voorkomen, maar wel tot bijna 2000 extra 

fout-positieven leiden per 1000 gescreende vrouwen. Jaarlijks screenen vanaf leeftijd 40 

heeft vergelijkbare voor-en nadelen voor vrouwen met een 2 tot 4-keer zo hoog risico als 

gemiddeld risico vrouwen. Vrouwen met matig tot ernstige co-morbiditeit zouden kun-

nen stoppen met screenen op leeftijd 66 of 68. Alle 6 modellen concluderen dat starten 

met screenen op leeftijd 40 leidt tot een kleine toename in gewonnen levensjaren en 

voorkomen borstkanker sterfgevallen, maar de toename in nadelen zoals in fout-posi-

tieven en overdiagnosen is groter. Deze kwantitatieve analyse laat zien dat tweejaarlijks 

screening voor gemiddeld risico vrouwen het meest efficient is. Beleidsmakers kunnen 

met deze uitkomsten hun overwegingen of beslissingen omtrent borstkanker screenen 

ondersteunen.

In hoofdstuk 7 wordt, gebruikmakend van 6 borstkanker simulatiemodellen, onder-

zocht wat de relatieve bijdrage van screening en behandeling is aan de trends in borst-

kankersterfte tussen 2000 en 2012. Gezien de verbeteringen in behandeling en nieuwe 
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adjuvante therapieën die in deze periode aan borstkanker patiënten zijn gegeven, 

concentreert deze analyse zich op combinaties van borstkanker subtypes oestrogeen re-

ceptor (ER) positief en human epidermal growth factor receptor (HER) 2. In 2000 schatten 

de modellen de borstkanker mortaliteitsreductie op 37% (27%-42%) vs. geen screening. 

56% van deze reductie verklaren de modellen door borstkanker behandeling en 44% is 

toe te wijzen aan screening. Echter, in 2012 wordt de totale borstkankersterfte reductie 

geschat op 49% (39%-58%) waarvan 37% door screening en 63% door verbeterde be-

handelingen. Voor drie van de vier subtypes geldt dat behandeling een grotere bijdrage 

heeft gehad in de afgenomen borstkankersterfte, behalve voor ER-/HER2- schatten de 

modellen de bijdrage van screening en behandeling als praktisch even groot. Daarmee 

concluderen de modellen dat in de periode 2000 tot 2012 de verdere afname in totale 

borstkankersterfte voor een groter deel te verklaren is door de verbeterde en nieuwe 

behandelingen dan door screening in deze periode.

Hoofdstuk 8 onderzoekt in welke mate herhaaldelijke mammografie screening leidt 

tot borstkanker of zelfs borstkankersterfte door blootstelling aan straling. Voorgaand 

onderzoek was gebaseerd op 4 röntgen foto’s per screening en hield geen rekening 

met borstgrootte en dikte, fout-positieve screening resultaten, diagnostisch vervolgon-

derzoek na een abnormaal screenings resultaat, of variaties in stralingsdosering door 

een borstvergroting of verkeerde borstpositionering. Deze studie houdt wel rekening 

met deze factoren aangezien deze allemaal invloed hebben op het aantal door straling 

geïnduceerde borstkankers. We schatten de straling geïnduceerde borstkanker inciden-

tie en sterfte voor 8 verschillende screening strategieën die variëren naar startleeftijd 

(40, 45, 50) en screening interval (jaarlijks, tweejaarlijks, hybride). De voordelen van het 

jaarlijks screenen van 100,000 vrouwen tussen leeftijd 40 en 74 worden geschat op 968 

voorkomen borstkanker doden, maar dit leidt ook tot 125 borstkankers en 16 borstkan-

ker doden die ontstaan door de straling. Voor 8% van de vrouwen met grote borsten 

die meer straling ontvangen bij screenen worden het aantal borstkankers en borstkanker 

doden geschat op 266 en 35 per 100,000 vrouwen. De resultaten uit dit onderzoek laten 

zien dat het belangrijk is om de variaties in de hoeveelheid schadelijke straling tijdens 

en na het screenen mee te nemen bij het bepalen van het aantal straling geïnduceerde 

borstkankers en borstkanker doden.

Part 3: Projecting the lifetime harms and benefits of risk-based breast 
cancer screening.

In hoofdstuk 9 wordt het effect van verschillende screening strategieën op vrouwen met 

variërende borstdichtheid en borstkankerrisico gekwantificeerd. Drie CISNET modellen 

simuleren het effect van jaarlijks, tweejaarlijks, en hybrid screenen tussen leeftijden 50 

en 74 of 65 en 74. We onderscheiden voor borstdichtheid 4 groepen van bijna volledig 

vetweefsel tot extreem dicht borstweefsel. Voor een verhoogt borstkankerrisico door 
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andere factoren worden ook 4 risicogroepen gemodelleerd met een relatief risico van: 

1.0 (gemiddeld risico), 1.3, 2.0, en 4.0. De resultaten laten zien dat voor alle screening 

intervallen de voorkomen borstkanker doden en gewonnen levensjaren toenemen naar-

mate zowel borstdichtheid als het borstkankerrisico toenemen. Tegelijkertijd nemen fout 

positieve screenings en onnodige biopsieën af, echter neemt het aantal over diagnoses 

wel toe. De resultaten uit deze studie laten zien dat borstdichtheid en een verhoogd 

risico bruikbaar kunnen zijn bij het opstellen van risico-gebaseerde screening richtlijnen.

In hoofdstuk 10 wordt onderzocht hoe de effecten van screening gebaseerd op familie 

historie van borstkanker en kleine afwijkingen in het DNA zich verhouden tot die van 

de op leeftijd gebaseerde screening richtlijnen. Twee CISNET modellen schatten de ef-

fecten van screening strategieën met verschillende startleeftijd (30, 35, 40, 45, 50) met 

stopleeftijd 74 en screening interval (jaarlijks, tweejaarlijks, driejaarlijks, hybride). Voor 

jonge vrouwen (<50) met een eerstegraads familielid met borstkanker; ongeveer 9% in 

de populatie, levert eerder beginnen met tweejaarlijks screenen 44% extra gewonnen 

levensjaren en 24% minder borstkanker doden ten opzichte van beginnen met tweejaar-

lijks screenen op leeftijd 50. Echter, de toename in mammogrammen leidt in deze groep 

ook tot naar schatting 26% meer overdiagnoses en het aantal fout positieven verdub-

belt. Screenen gebaseerd op polygenetisch risico, levert op populatie niveau 19% extra 

gewonnen levensjaren, 11% minder borstkanker doden, overdiagnoses stijgen met 10% 

en fout positieven met 26%. Screenen gebaseerd op familie historie van borstkanker en 

polygenetisch risico levert de meeste voordelen op ten opzichte van de huidige USPSTF 

richtlijnen. Dit onderzoek laat zien dat risico gestratificeerd screenen voor een aantal 

groepen vrouwen met een verhoogt risico op borstkanker door een familie historie met 

borstkanker en afwijkingen in hun DNA minder borstkanker doden en meer levensjaren 

kan opleveren.
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Breast Cancer Surveillance Consortium Working Group Meeting, Bethesda, 
MD, United states.

2014 0.7 ECTS

Research Seminars, Erasmus MC, department of Public Health, Rotterdam, 
the Netherlands.

2013-2018 3.7 ECTS

International Cancer Screening Network Meeting, Rotterdam, the 
Netherlands

2019 0.7 ECTS

Total 15.5 ECTS

Presentations, posters & workshops Period Workload

Cancer Intervention & Surveillance Modeling Network Meeting, 2 Oral 
presentations at the Breast Working Group. Minneapolis, MN, & Bethesda 
MD, United states.

2014 2.0 ECTS

International Cancer Screening Network Conference, Rotterdam, the 
Netherlands. Oral presentation.

2015 1.0 ECTS
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Breast working Group, Cancer Intervention & Surveillance Modeling Network 
Meeting, Seattle, United states. Two Oral Presentations.

2015 2.0 ECTS

Research Seminar department of Public Health: Oral Presentation: 
“Validating CISNET breast cancer models on the outcomes of the Age Trial”. 
Erasmus MC, Rotterdam, the Netherlands

2016 0.5 ECTS

Breast working Group (2x), Cancer Intervention & Surveillance Modeling 
Network Meeting, Boston MA, & Bethesda MD, United states. 2 Oral 
Presentations.

2016 2.0 ECTS

Breast cancer screening symposium, National University of Singapore, 
Singapore.

2016 1.0 ECTS

Breast working Group (2x), Cancer Intervention & Surveillance Modeling 
Network Meeting, Stanford University, Palo Alto, CA, & Bethesda MD, United 
states. 3 Oral Presentations.

2017 3.0 ECTS

Breast working Group, Cancer Intervention & Surveillance Modeling Network 
Meeting, Ann Arbor MI, United states. Oral Presentation.

2018 1.0 ECTS

Poster at the International Cancer Screening Network Meeting, Rotterdam, 
the Netherlands

2019 1.0 ECTS

Total 13.5 ECTS

Teaching activities Period Workload

Community Project Mentor, Assisting two groups of 3rd year Bachelor 
of Medicine students with a project on “Health Literacy”, Erasmus MC, 
Rotterdam, the Netherlands

2014 - 2015 1.4 ECTS

Reviewing Bachelor Essays 3rd year Bachelor of Medicine students, Erasmus 
MC, Rotterdam, the Netherlands

2014 0.7 ECTS

Breast cancer screening symposium, National University of Singapore, 
Singapore. Workshop: “Interactive hands-on workshop on Microsimulation 
model MISCAN-Fadia”.

2016 1.0 ECTS

Mentor in Mentoring program for junior researchers, Erasmus MC, 
Rotterdam, the Netherlands.

2017 0.5 ECTS

Total 3.6 ECTS

Other Period Workload

Harvard School of Public Health international exchange at the department 
of Genetic Epidemiology, Boston, MA. Collaboration with Peter Kraft Phd, 
Professor of Epidemiology on Breast cancer screening based on genetic risk 
profile (chapter 9 of this thesis). Attended several seminars, presentations, 
including in-person meetings at the Dana-Farber Cancer Institute, Harvard 
School of Public Health and Harvard Medical School.

2017
(4 months)

4.0 ECTS

Reviewing manuscript for Eastern Mediterranean Health Journal. 2014 0.3 ECTS

Total 4.3 ECTS

Total Total 36.9 ECTS
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Harry, jouw specifieke kennis over borstkankerscreening, strategisch inzicht, en interna-

tionale netwerk  heeft een grote bijdrage geleverd aan dit proefschrift. Ik heb je ervaren 

als een promotor met een kritische wetenschappelijke visie én humor. Daarnaast ben je 

samen met Nicolien een mentor geweest in alles wat bij het internationaal samenwerken 

komt kijken. In de afgelopen jaren hebben we ook veel leuke niet-werkgerelateerde mo-

menten gehad in binnen-en buitenland en daarbij is onze gedeelde interesse in muziek 

en goed voetbal ((PSV) natuurlijk) een mooie bijkomstigheid. Ik kijk ernaar uit om na mijn 

promotie mijn onderzoek bij het Erasmus MC voort te zetten en daarmee bij te kunnen 

dragen aan het verder terugdringen van de kankersterfte.

Nicolien, in het begin moest ik met mijn econometrie achtergrond behoorlijk wennen 

want ik was niet thuis in de medische wereld en zeker niet in het screenen op borstkanker. 

Er is niemand waar ik zoveel van heb geleerd in de afgelopen jaren als jij; je inhoudelijke 

kennis van het modelleren, analyzeren en verbanden leggen heeft een zeer grote directe 

en indirecte bijdrage gehad aan dit proefschrift en mijn ontwikkeling als wetenschapper. 

In de afgelopen jaren heb je een stuk meer verantwoordelijkheden gekregen, zowel op 

werkgebied als met het moederschap en ondanks dat stond je altijd voor mij klaar, was je 

relaxt én flexibel! Bedankt voor je fijne begeleiding en de prettige samenwerking

Mijn dank gaat ook uit naar Marjolein, de vele discussies over de MCLIR waren zeer 

nuttig, daardoor heb ik veel geleerd over het natuurlijke beloop van kanker op model-

niveau. Collega’s van de screensectie, oud-kamergenoten, paranimfen Kevin en Lisa, en 

in het bijzonder het ‘breast cancer team’, bedankt voor de inhoudelijke discussies en 

gezelligheid. 

Ik wil ook de leden van de kleine commissie hartelijk danken voor het beoordelen van 

mijn proefschrift, maar ook de andere leden van de promotiecommissie voor hun de 

interesse en bereidheid om met mij hierover van gedachten te wisselen.

Very important, this work is to a great extent the result of many collaborations within 

CISNET and the Breast Cancer Surveillance Consortium. In particular Jeanne, Tasha, 

Oguz, Clyde, Amy, Sandra, Don, Sylvia, and Diana, our in-person discussions, shared 

work and your contributions have been invaluable over the years. I would also like to 

thank all other members of cisnet breast working group and coauthors for their contribu-

tion and inspiration.
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Peter I’m very grateful for the opportunity that you provided to extend my research at 

the Harvard School of Public Health. Your expertise and guidance in the polygenetics of 

breast cancer has been profound. I count myself lucky for having had your mentorship. 

Esther and Chris, you were wonderful colleagues to spend time with during and after 
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Lieve pap en mam, (Andre en Eveline), de onvoorwaardelijke liefde en mogelijkheden 

die ik heb gekregen van jongs af aan maken jullie echt geweldige ouders en tegelijkertijd 

goede vrienden die ik zonder enige twijfel iedereen kan toewensen. Stijn, ondanks dat 

we verschillend zijn ben je altijd jezelf en daarmee een voorbeeld. Lieve mooie Lisa, be-
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