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A B S T R A C T

Blockers of the renin-angiotensin-aldosterone system (RAAS), i.e., renin inhibitors, ACE inhibitors, angiotensin 

(Ang) II type 1 (AT
1
) receptor antagonists and mineralocorticoid receptor (MR) antagonists, are a cornerstone in 

the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating 

RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after 

initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the 

response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should 

now be answered on what basis (e.g., gender, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, 

and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does 

optimal blockade imply maximum RAAS blockade, e.g., by combining 2 or more RAAS blockers, or by simply 

increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects 

of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and MR blockers 

have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious 

ACE-Ang II-AT
1
 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang 

II type 2 receptor and ACE-2-Ang-(1-7)-Mas receptor arms, paving the way for multiple new treatment options. 

This review provides an update about all these aspects, critically discussing the many controversies, and allowing 

the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension. 
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Figure 1  

New and existing drugs interfering with the renin-angiotensin system cascade. Classically, interference 

occurs at the level of renin, ACE, the AT
1
 receptor (R) or the mineralocorticoid receptor (MR), with renin 

inhibitors, ACE inhibitors AT
1
 receptor blockers ARBs) or MR antagonists. Novel enzyme inhibitors now 

target aminopeptidase A (APA), which generates Ang III (=Ang-(2-8)) from Ang II (=Ang-1-8)), or aldosterone 

synthase (CYP11B2). Activators of ACE2 (XNT and diminazene), which generates Ang-(1-7) from Ang II, 

were recently found to act equally well in ACE2 KO animals, thus questioning their mechanism of action. 

Numerous agonists for both the AT
2
 receptor and Mas receptor are being developed. Aminopeptidase N 

(APN) degrades Ang III to Ang IV (=Ang-(3-8)), which may act on the AT
4
 receptor, also known as insulin-

regulated aminopeptidase (IRAP).

I N T R O D U C T I O N

Blockers of the renin-angiotensin-aldosterone system (RAAS), i.e., renin inhibitors, ACE inhibitors, angiotensin 

(Ang) II type 1 (AT
1
) receptor antagonists and mineralocorticoid receptor (MR) antagonists, are a cornerstone 

in the treatment of hypertension. At first sight, their mechanism of action appears simple: they reduce the 

formation or block the effects of Ang II and/or aldosterone, thereby preventing the deleterious cardiovascular 

effects of these 2 compounds. Logically, they should then be particularly applied in patients with ‘high’ RAAS 

activity, as measured in blood plasma. However, it is now well accepted that they are also effective in patients 

with medium-to-low RAAS activity. Moreover, after an initial suppression/blockade of Ang II/aldosterone, 

the plasma levels of these 2 compounds often return to normal, or even rise above pre-treatment levels: the 

so-called Ang II/aldosterone ‘escape’.1, 2 Yet, remarkably, the RAAS blocker effect remains, at least partially. These 

puzzling observations have led to the concept of a ‘local’ RAAS in various organs, i.e., the real site of action of 

RAAS blockers. According to some investigators, this local RAAS occurs entirely intracellular (‘intracrine’ RAAS).3 

In addition, during RAAS blocker application, an upregulation occurs of multiple angiotensin metabolites, which 

may exert actions of their own and possibly even contribute to the beneficial effects of RAAS blockade. Examples 

of these ‘protective’ (vasodilator) pathways include the angiotensinase A-Ang III-Ang II type 2 (AT
2
) receptor 

pathway and the ACE2-Ang-(1-7)-Mas receptor pathway (Figure 1). Further knowledge in this area might lead 

to new drugs. 
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What is a local RAAS?
Originally, when developing the concept of local RAAS, it was proposed that all components required to generate 

Ang II and aldosterone locally are synthesized at multiple sites in the body, allowing their generation to occur 

independently from the classical sites of RAAS component synthesis: the kidney (renin), liver (angiotensinogen) 

and adrenal (aldosterone). In addition, a wide variety of non-classical enzymes, in particular chymase, was 

suggested to contribute to Ang II generation as well.4 Some, if not all, RAAS components were even detected 

in cells, leading to the concept of an ‘intracrine’ RAAS, involving the intracellular generation of Ang II acting on 

intracellular (nuclear) receptors.3 

 Finally, the confusing observation that humans have large amounts of prorenin, the inactive precursor 

of renin, has led to a search for prorenin receptors, that bind and activate prorenin locally, thus offering an 

explanation of why we have so much prorenin (its concentrations are up to 100 times of renin): it would then 

function as a regulator of tissue Ang generation. One such candidate, the so-called (pro)renin receptor ((P)RR), 

which binds both renin and prorenin, has received much attention during the last decade.5 Unfortunately, the 

concentrations of renin/prorenin (together denoted here as (pro)renin) that are required to result in receptor 

binding are far above the normal (patho)physiological levels, and transgenic rodents overexpressing either the 

(P)RR or prorenin did not reveal any evidence for (pro)renin-(P)RR interaction in vivo, i.e., their Ang II levels were 

unaltered.6 Moreover, (P)RR knockout (KO), unlike renin KO, is lethal.7 This may relate to (P)RR’s association with 

vacuolar H+-ATPAse, a crucial enzyme found in virtually every cell type that is important for the acidification of 

intracellular compartments. Therefore, (P)RR research is now focusing on its functions beyond the RAAS, as the 

(P)RR may not be a part of the RAAS after all, except perhaps in organs where (pro)renin is synthesized locally 

(allowing high local concentrations that result in receptor activation). 

 Similarly, the view of chymase as a major Ang I-II converting enzyme is most likely an in vitro artefact, 

related to the measurement of Ang II formation in tissue homogenates (particularly from the human heart), 

where chymase is no longer in its intracellular storage sites.4 Careful measurements of Ang II in ACE KO mice did 

not support the concept that chymase is an Ang I-II converting enzyme in vivo.8 In fact, renin and angiotensin 

measurements are hampered by multiple technical difficulties, particularly in tissues, and since many of the 

original conclusions on tissue RAAS were based on such non-ideal measurements, they need to be viewed with 

care. For instance, the original observations that renin and Ang II are unaltered after a bilateral nephrectomy 

turned out not to be true.9 Moreover, there is no intracellular Ang II in AT receptor KO mice.10 Clearly therefore, 

there is only one renin source in the body (the kidney), angiotensin generation occurs extracellularly (in 

blood, interstitial fluid and/or on the cell surface), and any Ang II present in cells accumulated there after its 

internalization following AT receptor binding. Selective KO of renal angiotensinogen revealed that the concept 

of renal angiotensinogen contributing to renal Ang II production was not true: all renal Ang II generation

For a long time, it was thought that the more RAAS blockade, the better, also in view of the above described Ang 

II/aldosterone escape. However, dual RAAS blockade trials have now shown that this is not necessarily the case, 

and that the consequences of too much RAAS suppression (hyperkalemia, renal dysfunction, hypotension) may 

overrule the beneficial effects of this approach. A variety of RAAS differences exists between men and women, 

and between black and white people, with men and white people generally having higher renin levels. This does 

not necessarily translate into similarly elevated aldosterone levels, and in fact, patients with high aldosterone-

to-renin ratios (ARR) can be identified which respond particularly well to MR blockers. A wide range of mutations 

has recently been identified that gives rise to selective aldosterone rises.  

 This review will critically discuss all the above aspects. What is a local RAAS? What are the local actions of 

Ang II in the vessel wall? What are the (genetic) determinants of a solid response to a RAAS blocker? Is there such 

a thing as ‘too much’ RAAS blockade? Are all RAAS blockers equally good? Are the gender and ethnicity-related 

RAAS differences clinically relevant? What about the recent developments in primary hyperaldosteronism, and 

the extrarenal effects of aldosterone? Finally, can we expect new RAAS drugs?
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Figure 2

Circulating versus tissue renin-angiotensin system. Circulating renin is kidney-derived, and circulating 

angiotensinogen originates in the liver. ACE is located on endothelial cells. Ang II generated in the 

circulation will diffuse to tissues in order to bind to its main receptor (the Ang II type 1 receptor, AT
1
R) to 

exert effects. In addition, circulating renin and angiotensinogen might also diffuse to tissue sites (e.g., the 

interstitial space) and generate, with the help of tissue ACE, Ang II locally. In a limited number of tissues 

renin’s precursor prorenin is produced locally. To what degree such prorenin, e.g. following its conversion 

to renin, contributes to local angiotensin production remains unknown. Although local production has 

also been claimed for angiotensinogen, in particular in the kidney, current evidence does not support a 

functional role for kidney-derived angiotensinogen, since the renal Ang II levels in renal angiotensinogen 

KO mice are identical to those in wild-type mice.11 Locally generated Ang II rapidly binds to AT
1
 and AT

2
 

receptors, the former being followed by internalization. This explains the intracellular presence of Ang II, 

as well as the high tissue levels of Ang II in high AT
1
 receptor-density organs like the adrenal. (Illustrated 

Credit: Ben Smith).

depended on hepatic angiotensinogen.11 Although similar conclusions have been reached in the heart,12 

local angiotensinogen synthesis has been claimed in the vessel wall,13 and adipocytes are generally believed 

to generate angiotensinogen.14 Surprisingly, adipocyte angiotensinogen deficiency did not affect plasma 

angiotensinogen levels, but greatly reduced circulating Ang II under high fat diet conditions.14 Additional 

studies, inducing selective KO of adipocyte angiotensinogen, hepatic angiotensinogen, or both are required 

to fully understand the contribution of adipocyte angiotensinogen to Ang II production. Also with regard to 

aldosterone, the original reports on its generation in heart, vessel wall and kidney, were not confirmed upon 

careful re-examination of the measurements after adrenalectomy and in isolated organs.15-17
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Figure 3

Effects of Ang II, via its AT
1
 and AT

2
 receptors (AT

1
R, AT

2
R) on vascular remodeling and constriction/

vasodilation. Transforming growth factor-β (TGF-β)-signaling by the TGF-β receptor (via the Smad2/3 

pathway) and mitogen-activated protein kinase (MAPK) activation following AT
1
 receptor stimulation jointly 

regulate the transcription of target genes (e.g., matrix metalloproteinase, MMP; plasminogen-activator 

inhibitor-1, PAI-1; connective tissue growth factor, CTGF) that result in proliferation, extracellular matrix 

production/fibrosis, differentiation and inflammation. AT
1
 receptor stimulation additionally upregulates 

NAD(P)H oxidase (NOX), thereby increasing reactive oxygen species (ROS) formation, which also regulates 

the transcription of the above-mentioned target genes.  AT
2
 receptor stimulation inhibits this pathway 

by blocking MAPK. AT
2 

receptors also induce vasorelaxation by activating NO synthase (NOS). This may 

counteract the constrictor effects of AT
1
 receptor stimulation (mediated by the inositol trisphosphate 

(IP
3
)-Ca2+ and diacylglycerol (DAG)-protein kinase C (PKC) pathways). Under pathological condition, ROS 

uncouple NOS, thereby diminishing NO production, and potentially facilitating ROS formation by NOS. 

Summarizing, the current view is that Ang II generation in tissues does occur (in fact, >90% of tissue Ang II is 

synthesized locally, and not taken up from plasma18, 19), but depends on renal renin and largely, if not completely, 

on hepatic angiotensinogen. Both diffuse into the interstitium, allowing local Ang II generation to take place in 

that compartment with the help of membrane-bound, ubiquitously present ACE (Figure 2). This Ang II rapidly 

binds to AT receptors, and such binding is followed by internalization, explaining why tissue Ang II levels are 

often high and correlate closely with tissue AT receptor density.20 Aldosterone is exclusively adrenal-derived. To 

what degree prorenin has a role, beyond the (P)RR, remains to be determined. 
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Local effects of Ang II in the vessel wall 
When focusing on the vessel wall, it is well-established that activation of AT

1
 receptors induces vasoconstriction, 

endothelial dysfunction, inflammation, growth and remodeling, while AT
2
 receptors are believed to counteract 

these effects (Figure 3). However, the latter is not a uniform finding, and under certain conditions, e.g., in the 

spontaneously hypertensive rat (SHR), AT
2
 receptors may become AT

1
 receptor-like.21, 22 The mechanism behind 

this phenotype change is unclear, but most likely involves a difference in location (endothelial cell (EC) vs. vascular 

smooth muscle cell (VSMC)) and/or heterodimerization with AT
1
 receptors. Therefore, whether upregulation of 

AT
2
 receptors under pathological conditions is always beneficial remains unknown.23 Similar opposing findings 

with regard to AT
2
 receptor function have been made in the heart.24 Of interest, post-myocardial infarction a 

moderate cardiac AT
2
 receptor overexpression in transgenic mice protected against maladaptive remodeling 

and dysfunction, whereas a massive, 9-fold overexpression did not yield such positive effects.25 Thus, also the 

degree of overexpression may determine AT
2
 receptor function.

 Wide attention has been paid to the fact that increased vascular Ang II levels increase NAD(P)H oxidase 

activity in EC, adventitial cells, and VSMC, thereby stimulating reactive oxygen species (ROS) formation in 

the vessel wall.26  ROS products like superoxide and H
2
O

2 
subsequently activate multiple signaling pathways, 

involving mitogen-activated protein kinases (MAPK), tyrosine kinases, phosphatases, calcium channels and 

redox-sensitive transcription factors,26, 27 together resulting in cell growth, expression of pro-inflammatory 

genes (e.g., transforming growth factor-β (TGF-β)), and the production of extracellular matrix (ECM) proteins, 

like collagen, elastin, fibrillin, fibronectin and proteoglycans. The latter production usually involves a phenotype 

switch in VSMC, from contractile to proliferative/synthetic. In addition, there is an imbalance between apoptosis 

and growth. 

Extracellular matrix defects and vascular disease
The extracellular matrix is composed of numerous macromolecules, including  collagens, elastin and 

proteoglycans. These extracellular matrix molecules not only provide structural support to cells and tissues, 

but also exhibit important functional roles that control the behaviour of cells such as adhesion, migration, 

proliferation and differentiation. Moreover, the extracellular matrix provides mechanical properties required for 

the functioning of the vasculature.28 Minor alterations in extracellular matrix composition of the vasculature 

can lead to changes in cellular phenotype and function, which can ultimately lead to development of vascular 

disease. Diseases that are associated with an extracellular matrix defect include cutis laxa, osteogenesis 

imperfecta, Ehlers-Danlos and Marfan syndrome.29 

 The strength and elasticity of our blood vessels is mainly established by the extracellular matrix components 

elastin and collagen, which originate in the medial layer of the vessel wall. Degeneration of the medial layer of 

the aorta allows the development of an aneurysm, which is characterized by elastic fibre fragmentation, loss of 

smooth muscle cells, and accumulation of amorphous extracellular matrix.30 Two main types of aortic aneurysms 

can be distinguished; abdominal aortic aneurysm and thoracic aortic aneurysm. Abdominal aortic aneurysms 

are usually caused by multiple environmental factors, such as smoking, high blood pressure and inflammation, 

while the development of thoracic aortic aneurysms often has a genetic origin. Moreover, it is suggested that 

alterations towards the breakdown of the extracellular matrix contributes to the progression of atherosclerosis 

and plaque instability,31 and to the formation of aortic aneurysms.32, 33 

Involvement of the RAS in atherosclerosis
Atherosclerosis refers to the build-up of fat, cholesterol and other substances in and around the vasculature. 

Over time this build-up, so-called plaques, causes thickening and stiffening of the vessel wall. Moreover, as 

these plaques grow larger and larger, they eventually partially or totally block the blood flow through an artery. 

Numerous cardiovascular diseases are a direct consequence of the atherosclerotic process. Diseases that could 

develop as a result of this plaque build-up include coronary heart disease, carotid artery disease, peripheral 

artery disease and chronic kidney disease. Two types of plaques are described in literature; stable and unstable/



Introduction16

vulnerable plaques, the latter having a high risk of rupture.34 Plaque rupture and subsequent thrombus formation 

are among  the main causes of acute cardiovascular events like unstable angina, acute myocardial infarction and 

sudden cardiac death.35 It is suggested that loss of vascular function together with oxidation and accumulation 

of low-density lipoprotein and endothelial damage promotes an inflammatory vascular response, which plays an 

essential role in the development of atherosclerotic plaques. Several risk factors are strongly associated with the 

onset of plaque build-up such as ageing, smoking, lack of physical activity, unhealthy diet, hypercholesterolemia, 

hypertension and genetic background. In addition, it is proposed that the RAS, and particularly Ang II, is involved 

in the initiation and progression of atherosclerotic plaques, since various atherogenic stimuli are mediated by 

RAS activity.36 Ang II stimulates the atherogenic process not only through its hemodynamic effects but also 

through various effects on the vessel wall itself.37 In particular, Ang II promotes the generation of oxidative stress 

in the vasculature, which plays a pivotal role in endothelial dysfunction and lipoprotein oxidation. Furthermore, 

Ang II induces the expression of cellular adhesion molecules and pro-inflammatory cytokines, which contribute 

to the induction of the inflammatory process in the vessel wall. Ang II also triggers vascular smooth muscle 

cells to proliferate and migrate, subsequently leading them to produce growth factors and extracellular matrix 

components. It was also reported that overexpression of ACE2, which converts Ang II to Ang-(1-7), improves 

endothelial function and decreases plaque formation in atherosclerotic mice.38, 39 Moreover, several studies 

suggest that Ang II may be involved in the acute complications of atherosclerosis by promoting plaque 

vulnerability, eventually resulting in plaque rupture.40-43

Current RAS-related therapeutic interventions for vascular and aneurysm disease
Several studies already demonstrated that ACE inhibitors might inhibit atherosclerosis in animal models 

independent of blood pressure lowering.44-46 Additionally, renin inhibition and angiotensin receptor blockers 

reduced atherosclerotic lesion size in cholesterol fed mice susceptible for atherosclerosis.47-50 Moreover, research 

in aneurysmal mouse models has shown that inhibition of the RAS reduces the formation and progression of 

aortic aneurysms. 

 Recent evidence supports a role for the Ang II-TGF-b axis in aneurysm development.51, 52 Infusion of Ang 

II in atherosclerotic apolipoprotein E - or LDL receptor KO mice provides an experimental model for the most 

common type of aneurysm, the abdominal aortic aneurysm. Thoracic aortic aneurysms (TAAs) are less common, 

and often have a genetic background, involving mutations in the above-mentioned ECM proteins and TGF-b. A 

well-known example is Marfan’s syndrome. Losartan was shown to be effective in adults with this syndrome,53 

and animal data suggest that this effect involves AT
2
 receptor stimulation rather than AT

1
 receptor blockade.54 

Both the TGF-b-induced canonical (pSmad2/3) and non-canonical (MAPK) signaling pathways are upregulated 

in TAA mouse models, and their suppression may underlie the effectiveness of AT
1
 receptor blockade in these 

models.54, 55 

 Besides, TGF-b-signalling (by TGF-b-neutralizing antibodies) effectively blocks the production of downstream 

TGF-β and thereby inhibits aortic root dilatation and aneurysm formation.56-58

 As a consequence of these exciting new findings, multiple trials now investigate the effectiveness of RAAS 

blockers in Marfan’s syndrome.52 An important issue will be to what degree ACE inhibition (which does not result 

in AT
2
 receptor stimulation) differs from AT

1
 receptor antagonism. One of these trials was recently published.59 

Involving 608 Marfan patients (age 6 months-25 years), it did not show superiority of losartan versus the beta-

adrenergic antagonist atenolol. Beta-adrenergic antagonists are the current standard therapy in Marfan patients. 

Here it should be realized that such drugs also suppress renin release. The investigators applied a relatively high 

dose of atenolol, and a low dose of losartan, and there was no placebo group. Moreover, treatment was started in 

most cases at an advanced stage of the disease. Thus, on the basis of this study it can be concluded that losartan 

is a safe alternative for a beta-adrenergic antagonist, but not yet whether (at the appropriate dose and perhaps 

when given at an earlier stage of development) it might be better.     
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Figure 4

Vasoconstrictor-vasorelaxant balance of the RAAS in relation to sex hormone status in men and pre- and 

postmenopausal women. The Figure highlights X-chromosome-located RAAS genes, including the (pro)

renin receptor ((P)RR) gene. The current view is that its relationship with the RAAS may be limited to (pro)

renin-synthesizing organs, where (pro)renin is sufficiently high to result in significant receptor binding. 

Gender-related aspects 
Physiologically the two major differences between men and women are (1) different levels of sex hormones 

(testosterone vs. estrogen), and (2) the sex chromosome complement (XY vs. XX). The combination of a different 

hormonal milieu and different genes located on the sex chromosomes results in a transcriptome with a sex-

specific and sex-biased expression. This leads to a marked sexual dimorphism in anatomy, physiology and 

metabolism, but also extends to sex differences in blood pressure (BP), sensitivity to Ang II, and severity of 

cardiovascular disease.60 
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Sex hormones 
Premenopausal women have a lower BP in comparison to age-matched men (~10 mm Hg for systolic BP and ~5 

mm Hg for diastolic BP). Since this sexual dimorphism in BP manifests itself during adolescence and disappears 

after the menopause, it is logical to assume a role for sex hormones. Testosterone binds to the androgen receptor, 

whereas estrogen (17β-estradiol) stimulates the estrogen receptor α and β, as well as the G-protein-coupled 

estrogen receptor-1 (GPER). These receptors mediate both genomic and non-genomic effects. The former 

involve interaction of the hormone-receptor complex with nuclear DNA, modulating the transcription of sex 

hormone-responsive genes (taking hours), while the latter involves signaling cascades resulting in effects within 

seconds-minutes. In the case of estrogen, this results in endothelium-dependent and -independent dilator 

effects through nitric oxide (NO), cGMP, cAMP, and/or K+-channels. 61 Testosterone is believed to counteract such 

endothelium-dependent vasorelaxation and to exert direct constrictor effects61; the BP-lowering effects after 

castration confirmed this view.62 

 In addition, sex hormones affect RAAS components and modulate Ang II sensitivity. Indeed, estrogens 

increase angiotensinogen, ACE2, AT
2
 receptor density and endothelial NO synthase (eNOS), while they decrease 

renin, ACE, AT
1 
receptor density, and the NADPH oxidase subunits Nox1 and Nox2 (Figure 4).63, 64 These alterations 

are suggestive for an upregulation of ACE2-derived angiotensin-(1-7) formation, enhanced AT
2
 receptor 

stimulation and NO release, combined with reduced ROS formation, in other words they favour the vasodilator 

arm of the RAAS (see also below). Indeed, low doses of Ang II even decreased BP in female (but not male) rats,65 

and higher doses exerted larger BP-increasing effects in males than in females, while gonadectomy reversed 

these effects.66 Testosterone increases renin, ACE and AT
1
 receptors, and downregulates AT

2
 receptors, thereby 

favouring the constrictor arm. There are no clear differences in aldosterone levels between men and women.67 

In postmenopausal women the balance will shift towards the vasoconstrictor arm, unless they receive hormone 

replacement therapy.63

Sex chromosomes
In most mammals, males are heterogametic, possessing one X and one Y chromosome, while females are 

homogametic with two X chromosomes. This characteristic  plays a fundamental role in the sexual dimorphism 

through variances in gene expression. Evolutionary, sex chromosomes have evolved out of a pair of matched 

autosomes which eventually lost the ability to recombine due to an accumulation of male-specific functions on 

one chromosome and degradation of non-recombining regions.68 Genes mapped to the Y chromosome play an 

important role in sex development, testosterone production and fertility. 

 A limited number of studies suggests that sex chromosomes influence BP and regulate RAAS genes. 

Introgression of the Y
SHR

 chromosome from the SHR strain on a normotensive WKY background resulted in a 

~20 mm Hg BP difference versus rats where the normotensive Y
WKY

 chromosome was introgressed on the SHR 

background.69 The ‘four core genotype’ mouse model involves the deletion of the sex-determining region Y (Sry) 

from the Y chromosome and the insertion of the Sry transgene onto an autosome, thereby resulting in XY-Sry 

males.70 Crossing these mice to normal XX females will result in four genotypes, XX gonadal males and females, 

as well as XY gonadal males and females. Interestingly, Ang II induced a larger BP rise in gonadectomized four 

core genotype mice with an XX genotype than in their XY counterparts independent of prior sex hormone status 

and gonadal phenotype.71 It is tempting to speculate that this mechanism underlies the relatively rapid increase 

in BP observed in postmenopausal women.72 The Sry gene family is known to upregulate angiotensinogen, 

renin and ACE, whereas it downregulates ACE2 in vitro.62 In addition, the (P)RR, ACE2, Nox1, Nox2 and the AT
2
 

receptor are mapped to the X chromosome (Figure 4). Although dosage-compensation takes place in women 

by an epigenetic mechanism called X-inactivation in order to prevent a lethal dose of X-mapped genes, several 

genes (15-20%) have been reported to escape X-inactivation73 and contribute to sex differences due to a higher 

expression in XX than XY cells.74 Such escape also applies to the (P)RR,75, 76 but the physiological relevance of this 

observation is still unknown. 
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Consequences for treatment? 
It is well-accepted that premenopausal women are protected from the development of cardiovascular disease 

in comparison to age-matched men.77 Obviously, having a higher BP for up to 4-5 decades, even when modest, 

will have consequences. As discussed above, animal data support a major role for the RAAS in gender-related 

differences. Yet, there are no sex-specific recommendations for antihypertensive therapy, nor is there currently 

any evidence that men and women respond differently to RAAS blockers. One retrospective study in patients 

with heart failure claimed a higher efficacy of ACE inhibitors in males, and of AT
1
 receptor blockers in females.78 

Although this potentially supports the importance of AT
2
 receptor stimulation in women, large prospective 

studies are warranted to confirm such claims.

Determinants of RAAS blocker response and the degree of blockade
Prediction of RAAS blocker response
Although gender, as discussed above, is not an established determinant of RAAS blocker response, multiple 

attempts have been made to predict the response to a RAAS blocker on the basis of alternative parameters. 

Genetic variation has been evaluated, usually by studying single nucleotide polymorphisms in RAAS genes in a 

retrospective manner in large clinical trials.79, 80 Emphasis has been on the ACE insertion/deletion polymorphism.81 

Unfortunately, the effects were small and difficult to replicate, and, given the non-existence of large prospective 

studies to further evaluate these findings, at this stage, there is no useful genetic information that can be applied 

to the individual patient to help choosing a specific RAAS blocker. 

 Along the same lines, it has been argued that patients with ‘high’ RAAS activity (like patients with ‘bad’ RAAS 

gene variants) should preferably be treated with RAAS blockers. Such patients should then be selected on the 

basis of their high renin, ACE and/or aldosterone levels. Ang II levels might also be useful, but given the technical 

difficulties to measure this RAAS component, this is currently not feasible. The background of this concept is 

that patients with high baseline RAAS activity have a higher risk to develop cardiovascular disease. Indeed, 

retrospective analyses of patient populations in clinical trials in whom baseline renin measurements were 

available, support that high renin levels are indicative of future cardiovascular disease and death, particularly in 

patients with kidney dysfunction and/or hypertension.82-85 Remarkably, this relationship was not affected by the 

use of RAAS blockers, which, through interference with the negative feedback loop between Ang II and renin, 

increase renin release. Obviously, renin measurements, when based on activity, will be disturbed by the use of 

renin inhibitors, and thus during such treatment only measurements of plasma renin concentration (PRC), and 

not  plasma renin activity (PRA), will give an indication of the true renin levels. In addition, salt intake affects renin 

secretion, with patients on a low salt diet displaying higher renin levels. Preferably therefore, when considering 

pre-treatment renin levels as a treatment determinant, salt intake should be taken into account. 

 Laragh and Sealey distinguish a low renin, sodium-volume dependent form of essential hypertension and 

a medium-to-high renin form of hypertension.86 The former occurs whenever body sodium content increases 

beyond the point where plasma RAAS activity is turned off, whereas the latter occurs when too much renin is 

secreted relative to the body sodium content. Antihypertensive treatment should then be aimed at reducing 

either body salt and volume content (diuretics, calcium antagonists) or RAAS activity (RAAS blockers and 

b-adrenergic antagonists; the latter suppress renin release). Retrospective analyses of BP trials confirmed this 

concept.87, 88 In addition, Gupta et al. observed that African Americans, who on average have lower renin levels 

compared to Caucasians,89 responded less well to atenolol.90 Yet, others observed either no role for baseline 

renin,91 or at most a weak trend.92,93, 94 Moreover, the BP decreases for a given baseline renin level (uncorrected 

for salt intake) varied >40 mm Hg. In addition, a uniform definition of ‘high’ renin (PRA/PRC) is not available, 

and clearly complicated by the intake of salt, gender, ethnicity, and the use RAAS-affecting drugs.87, 91, 93 Thus, 

although in general it is probably true that patients with ‘high’ renin levels respond better to RAAS blockers (for 

instance patients pretreated with a diuretic, which activates the RAAS), the variation in renin is such (not even 

taking into consideration the additional variation at the tissue level!) that it is of limited practical use for the 
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individual patient. Unfortunately, the same is true for plasma ACE.95 The use of aldosterone measurements will 

be discussed below. 

Desired degree of RAAS blockade
Given the Ang II/aldosterone escape during RAAS blocker treatment, usually occurring within days-weeks after 

drug initiation,96 for many years it was argued that the more blockade, the better, to keep the levels of these 

active components (or their activity) low. Nevertheless, early animal studies in SHR97 had already shown that 

dual RAAS blockade, particularly under low-salt conditions (when the RAAS is most needed) is lethal: it caused a 

major decrease in BP and severe renal failure which were accompanied by massive rises (up to several 100-fold) 

in plasma renin and renal renin levels, thereby decreasing the angiotensinogen concentration in plasma. These 

deleterious effects of dual RAAS blockade were prevented by a high salt diet. Studies in human cardiac tissue, 

obtained from patients undergoing cardiac transplantation or severe heart failure patients at the time of left 

ventricular assist device (LVAD) implantation,98, 99 both being treated with (high) RAAS blocker doses, revealed 

that also in the human heart renin levels may rise >100-fold, thereby decreasing cardiac angiotensinogen. 

Interestingly, following LVAD implantation, renin levels dropped 10-fold, and cardiac angiotensinogen levels 

rose again, thereby allowing a rise in cardiac Ang II levels.99 This illustrates the fact that at very high renin levels, 

angiotensinogen depletion essentially renders Ang II generation impossible.  

 Taken together, these data illustrate that too much RAAS blockade annihilates the capacity of tissues to 

acutely generate Ang II when necessary. Particularly in the kidney, this may be crucial to preserve glomerular 

filtration. Recent data obtained in salt-depleted healthy volunteers exposed to increasing doses of a new renin 

inhibitor, VTP-27999, provide further evidence for this concept.100 To fully appreciate these data, it should be 

mentioned that renin inhibitors selectively accumulate in the kidney, remaining present in renal tissue at high 

levels, even at days-weeks after stopping treatment, when plasma levels are undetectable.101, 102 It was observed 

that at the highest dose of VTP-27999 tested  (600 mg), the drug blocks the renal RAAS more effectively than 

the circulating RAAS. Indeed, when stopping drug intake after 10 days of dosing, the PRC levels at 24-72 hours 

after the last dose exceeded the capacity of extrarenal VTP-27999 to fully block renin’s enzymatic activity (Figure 

5). Therefore, even though the intrarenal RAAS is still inhibited at these times, extrarenal RAAS activation now 

occurred, increasing the circulating concentrations of Ang II and aldosterone. These findings are reminiscent of 

the nephrocentric view of ACE inhibition noted 25 years ago in patients with congestive heart failure.103 It was 

asked why the kidneys continue to release renin in such patients; the answer being that they do everything 

possible to preserve renal function and glomerular filtration, apparently at the expense of the hemodynamic 

burden on the heart. Exactly this happened in the VTP-27999 study, where the kidneys responded to excessive 

renal RAAS suppression by releasing very large quantities of renin, resulting in elevations of PRA, Ang II and 

aldosterone. Such elevated Ang II levels were most likely responsible for the (non-significant) increase in heart 

rate observed in the subjects treated with 600 mg VTP-27999. Clearly therefore, renin inhibition has an upper 

limit and more is not always better. 

 The latter also applies to other types of excessive RAAS blockade (e.g. when combining an ACE inhibitor and 

an AT
1
 receptor antagonist): several large dual RAAS blockade studies (ONTARGET, ALTITUDE, NEPHRON-D)104-106 

in a variety of patients all concluded that the adverse effects (hypotension, hyperkalemia and renal dysfunction), 

all due to (renal) Ang II depletion, outweighed the beneficial effects. In reaching this conclusion, it should be 

realized that often these patients additionally took b-adrenergic antagonists and MR antagonists, and thus were 

in reality not exposed to dual but to quadruple RAAS blockade. This led Nussberger and Bohlender to conclude 

that the goal should not be maximal but optimal RAAS blockade, guided by regularly measuring BP, serum 

potassium and creatinine.107 

 Recent guidelines no longer recommend the combined use of ACE inhibitors, AT
1
 receptor blockers and renin 

inhibitors in hypertension.108 Most evidence is obviously available for the ACE inhibitors. As explained above, 

there is still discussion to what degree the AT
2
 receptor stimulation during AT

1
 receptor blockade is beneficial or 

harmful. Two recent meta-analyses show that ACE inhibitors reduce all-cause mortality and cardiovascular death 
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Figure 5

The consequences of too much renin inhibition (with the new renin inhibitor VTP-27999), as observed after 

stopping treatment. Normally, the decrease in plasma drug level and renin concentration after stopping run 

in parallel. However, after a high (600 mg) dose of VTP-27999 (which, like aliskiren, is known to accumulate 

in the kidney102), plasma renin suppression lags behind the decline in plasma drug decrease, most likely 

because the renal RAAS is still suppressed, thus keeping renin release at a (too) high level, which can 

no longer be suppressed by VTP-27999 in plasma. As a consequence, plasma renin activity, Ang II and 

aldosterone rise above control levels. In other words, too much renin inhibition, by excessively blocking the 

renal RAAS, my effectively activate extrarenal RAAS activity. Data are taken from Balcarek et al..100
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in patients with hypertension and diabetes mellitus, whereas AT
1
 receptor blockers do not.109, 110 This may relate 

to the possibility that AT
2
 receptor stimulation affects the incidence of myocardial infarction111, 112 and induces 

apoptosis in intestinal epithelial cells, thereby inducing severe gastrointestinal problems.113, 114 Additionally, AT
2
 

receptor stimulation activates the bradykinin axis,115 although bradykinin accumulation will also occur after ACE 

inhibition. The exact contribution of bradykinin to the beneficial effects of RAAS blockade in humans remains 

to be determined. Nevertheless, based on these findings, it is clear that ACE inhibitors should be considered as 

first-line agents in patients with hypertension and diabetes mellitus. 

Aldosterone
Aldosterone is a steroid hormone produced in the zona glomerulosa of the adrenal gland. Like Ang II, aldosterone 

is an effector hormone of the RAAS, principally involved in volume and BP regulation. Beyond BP, aldosterone 

has emerged as a cardiovascular risk factor promoting cardiovascular and renal inflammation, fibrosis and 

remodeling. Furthermore, in cohort studies of non-hypertensive individuals higher circulating aldosterone levels, 

but still within the physiological range, are a risk factor for the development of hypertension.116 With regard to 

hypertension the importance of aldosterone is largely related to primary aldosteronism and treatment-resistant 

hypertension. The mechanism of action of aldosterone was thought to be restricted to its renal genomic effects, 

causing sodium and water retention. More recently, evidence has accumulated for effects of aldosterone on 

EC and VSMC that may or may not be mediated by the MR.117-119 In the first part of this section we focus on 

new insights in the potential vascular effects of aldosterone and the receptors involved. In the second part 

new developments in the pathogenesis and etiology of primary aldosteronism and the role of aldosterone in 

resistant hypertension will be reviewed.

Aldosterone, aldosterone receptors and sodium channels 
Aldosterone is synthesized from cholesterol in the zona glomerulosa of the adrenal gland by a series of 

enzymatic reactions. The final steps of aldosterone synthesis are catalyzed by aldosterone synthase encoded 

by the gene CYP11B2 located on chromosome 8q21-22. Classic stimulators of aldosterone biosynthesis are Ang 

II, extracellular potassium concentration and ACTH. Vascular endothelial growth factor has recently emerged 

as a stimulator of aldosterone production.120 Stimulation by these factors results in activation of aldosterone 

synthase induced by an increase in intracellular calcium concentration.121

 Aldosterone classically works in a genomic way through the induction and modulation of gene transcription 

with the cytoplasmatic/nuclear MR within the renal cortical collecting duct cells as its main target. After binding 

of aldosterone to the MR, causing dissociation of chaperones and formation of MR dimers, this complex 

translocates to the nucleus resulting in increased expression of several intracellular kinases, including serum- and 

glucocorticoid-induced kinase 1, Kirsten Ras GTP-binding protein 2A and WNK4. This process leads to increased 

expression of the luminal located epithelial sodium channel (ENaC), renal outer medullary K+-channels, and the 

basolaterally located Na+/K+- ATPase.122 Increased renal ENaC activity promotes renal Na+ reabsorption, resulting 

in volume expansion and a rise in BP.

 Additionally to its expression in renal collecting duct cells, the MR is also expressed in ECs and VSMCs.118, 119 

Important new insight in the role of the VSMC-MR has been obtained by engineering a mouse with an inducible, 

selective deletion of VSMC-MR.123 In these KO mice BP at young age is similar as in wild-type control mice, but, 

despite intact renal MR receptors, the age-related rise in BP is attenuated. Furthermore, aged VSMC-MR-KO mice 

have a decreased vascular tone, and the aged vessels exhibit decreased contractile responses to thromboxane, 

Ang II and calcium channel agonists.123 Moreover, these mice have an attenuated increase in BP and superoxide 

production to Ang II infusion and a decrease in large-artery stiffness after aldosterone salt challenge compared 

to wild-type mice.124 

 Several new molecular pathways activated by the interaction of aldosterone with the VSMC-MR  and 

contributing to vascular remodeling have been described in the past several years.124-126 These pathways promote 

vascular inflammation, fibrosis and VSMC hypertrophy and proliferation and may contribute to the development 



The Renin-angiotensin Aldosterone alterations and its involvement in vascular disease 23

of large artery stiffness. Although the clinical implication of these pathways requires further research, it has 

already been shown in patients with familial hyperaldosteronism type I that cardiac and vascular damage may 

precede the development of hypertension.127 

 In ECs aldosterone increases the expression of endothelial Na channels (EnNaCs) in a MR-dependent way 

that can be blocked by spironolactone.128 Increased EnNac activity in combination with a high plasma sodium 

leads to stiffening of the cortex of ECs due to an increase in sodium influx. A direct consequence of this stiffening 

is a decrease in eNOS-mediated NO release.129 Thus high aldosterone in combination with high salt intake 

may result in endothelial dysfunction, which may contribute to a rise in BP independent of the renal effects of 

aldosterone. 

Besides its genomic effects mediated by stimulation of the MR receptors in the kidney and vasculature, rapid 

non-genomic effects of aldosterone have also been reported.117 These non-genomic effects of aldosterone may 

be mediated by GPER.117, 130 GPER is a widely distributed receptor, also identified in EC and VSMC.131 GPER in 

cultured EC and VSMC can be stimulated by estrogen but also by aldosterone at picomolar concentrations.117 

Aldosterone-induced activation of aortic vascular ECs via GPER leads to vasodilation as well as to pro-apoptotic 

and anti-proliferative effects.130 These effects of aldosterone are blocked by the GPER receptor antagonist 

G15. Whether aldosterone also exerts effects on VSMCs through activation of the GPER is uncertain, as GPER 

expression is no longer present when aortic VSMCs are cultured.117 GPER seems to play a role in the potentiation 

of Ang II-induced vasoconstriction by aldosterone, because this potentiation could be blocked by G15, but not 

by the MR-antagonist eplerenone.132 

Sporadic and Familial Primary Aldosteronism 
Primary aldosteronism (PA) is characterized by excessive autonomous aldosterone secretion by the adrenal 

gland.  The consequent volume expansion and hypertension leads to renin suppression and accordingly the 

ARR has been advocated as a screening test for PA.133 Among hypertensive individuals the prevalence of PA is 

high, ranging from 4.3% in a primary care setting to 9.0% of referred patients, and to 20% of those with therapy-

resistant hypertension.134 We and others have shown that the sensitivity of the ARR as a screening test for PA 

is relatively poor, which may relate to the way patients were selected and to overestimation of the true renin 

concentration by the nowadays commonly used direct renin assay (due to co-detection of prorenin) instead of 

PRA measurements.135, 136 

 PA can be divided in frequent sporadic and rare familial forms. Familial hyperaldosteronism (FH) type 1, 

also known as glucocorticoid-remediable aldosteronism, is an autosomal dominant disease caused by a 

recombination between the CYP11B2 and CYP11B1 (the latter being responsible for cortisol synthesis) genes, 

creating a chimeric gene whereby the CYP11B1 promotor and CYP11B2 coding sequences are juxtaposed. In 

FH-I aldosterone synthesis is regulated by ACTH rather than by Ang II. Administration of glucocorticoids thereby 

suppressing ACTH reduces aldosterone levels and the lowest dose of glucocorticoids normalizing BP is the 

treatment of choice. The cause of FH-II has yet to be identified. FH-II is diagnosed if 2 or more members of one 

family are affected. Adenomas as well as bilateral hyperplasia may underlie FH-II. The first family with FH-III has 

been described in 2008.137 The affected family members presented with severe hypertension and hypokalemia at 

very young age and in contrast to FH-I aldosterone could not be suppressed by dexamethasone. FH-III appeared 

to be caused by a mutation in the KCNJ5-gene, encoding for the G-protein-activated inward rectifier potassium 

channel Kir3.4.138 This mutation results in the loss of K+-selectivity and increased Na+ conductance, leading to 

membrane depolarization of the zona glomerulosa cell with subsequent opening of voltage-dependent calcium 

channels and activation of the calcium-signaling pathway (Figure 6). Several other mutations in the KCNJ5 

gene causing FH-III, not always accompanied by a severe phenotype as described for the first cases, have been 

reported.139 In addition to the germline mutations causing FH-III, somatic KCNJ5 mutations, resulting in loss of the 

selectivity filter of Kir3.4 channel, have been identified in surgically removed aldosterone-producing adenomas 

(APAs). These mutations are present in up to 47% in APAs from Western populations and up to 65% from a 

Japanese population.121 In addition, several other less frequently occurring somatic mutations in 2 members 
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of the P-type ATPase gene family (ATP1A1 and ATP2B3) and in CACNA1D (encoding for the voltage-gated Ca2+ 

channel Ca
v
1.3) have been identified (Figure 6).140, 141 In adrenal glomerulosa cells, mutations in ATP1A1 result in 

inappropriate depolarization, mutations in ATP2B3 in decreased intracellular calcium clearance, and mutations 

in CACNA1D in increased Ca2+ influx. In 308 APAs, negative for KCNJ5 mutations, 5.2% somatic mutations in 

ATP1A1 and 1.6% mutations in ATP2B3 have been identified.121 CACNA1D mutations may occur in up to 11% of 

APAs.142 Interestingly, KCNJ5 mutations are common in APAs resembling the cortisol-secreting cells of the zona 

fasciculata, whereas mutations in P-type ATP-ases and CACNA1D have been found in small zona glomerulosa cell 

APAs.141 These genotype-phenotype correlations might hopefully be of clinical use in the near future.

Aldosterone and resistant hypertension
Resistant hypertension is defined as uncontrolled hypertension despite therapy with 3 drugs including a 

diuretic, or BP elevations requiring ≥ 4 drugs for control with an estimated prevalence of 10-15% of hypertensive 

patients treated.143 PA because of its high prevalence, can underlie resistant hypertension, but also in patients 

without PA BP control was lower in patients with an elevated ARR and higher aldosterone levels.144 That 

aldosterone plays a role in resistant hypertension is supported by trials showing that addition of MR blockers 

Figure 6

Mutations in ion channels (encoded by the genes KCNJ5, ATP1A1, CACNA1D and ATP2B3) of the adrenal 

glomerulosa cell that have recently been linked to excessive aldosterone production. Normally, AT
1
 receptor 

activation induces depolarization due to inactivation of the potassium channel Kir3.4 and Na+,K+-ATPase. 

Such depolarization triggers Ca2+-influx via voltage-gated Ca2+ channels (Ca
v
1.3), and the resultant rise in 

intracellular Ca2+ activates the aldosterone synthase gene CYP11B2. Ca2+-ATPase subsequently removes 

Ca2+ from the cell. KCNJ5 mutations affect the selectivity of the Kir3.4, now also allowing Na+ conductance. 

Similarly, mutations in ATP1A1 result in loss of pump activity and strongly reduced affinity for potassium, 

thereby increasing intracellular Na+. Increased Na+ levels cause depolarization, even in the absence of AT
1
 

receptor stimulation. Mutations in CACNA1D facilitate Ca2+ influx, while mutations in ATP2B3 hamper its 

removal form the cell, thus both elevating intracellular Ca2+. This activates CYP11B2 transcription.
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to usual antihypertensive treatment can sometimes produce pronounced BP reductions.145 In an open-label 

study addition of spironolactone 25-100 mg per day to 175 patients with true resistant hypertension to existing 

antihypertensive therapy reduced ambulatory BP by 16/9 mmHg.146 The mechanism of the BP-lowering effect 

of MR antagonists in resistant hypertension is incompletely understood, because indices of aldosterone 

excess such as low renin or high ARR or a low serum potassium do not predict the response to aldosterone 

receptor blockers.147 Spironolactone-mediated inhibition of central sympathetic nervous system activity has 

been proposed as one of the mechanisms.148 Furthermore, reduction of vascular stiffness and improvement of 

endothelial function by blockade of vascular MRs may be involved.

The ‘protective’ arms of the RAAS: can we expect new RAAS drugs? 
All current RAAS blockers interfere with the renin-ACE-AT

1
 receptor-aldosterone axis. Aldosterone synthase 

inhibitors are being considered as an alternative for MR antagonists,149 but such drugs would obviously also 

interfere with this pathway. Three new RAAS pathways have been discovered in the last 2 decades, which might 

be of interest for future drug development: 1) AT
2
 receptor stimulation, (2) stimulation of ACE2/Ang-(1-7)/Mas 

receptor signaling, and (3) modulation of angiotensin III and IV signaling. In addition, drugs are being developed 

which block the RAAS plus an additional hormonal system, e.g., combined AT
1
 receptor blockers/neprilysin 

inhibitors (‘ARNI’), which prevent the degradation of natriuretic peptides (by neprilysin), and combined AT
1
 

receptor/endothelin-1 receptor antagonists. Their discussion is beyond the scope of this review. 

AT2 receptor stimulation
As discussed before, the AT

2
 receptor is generally considered to have effects that are opposite to those of the AT

1
 

receptor. Its presumed endogenous ligands are Ang II, Ang III, Ang IV and Ang-(1-7), in order of highest to lowest 

affinity (Figure 1).150 Ang III appears to be the preferred agonist for AT
2
 receptors.151-153 For reasons that are still 

unclear, AT
2
 receptor-mediated vasodilation is best detected under partial AT

1
 receptor blockade, and the same 

may apply to its natriuretic, antifibrotic, and anti-inflammatory effects in the kidney.151, 154-156 AT
2
 receptor KO mice 

display an increased BP, worsened pressure-natriuresis, increased baroreflex sensitivity, increased responsiveness 

to hypertensive stimuli (NOS inhibition), and decreased cardiac and vascular AT
1
 receptor expression.157-159 AT

2
 

receptor overexpression shows the opposite.160 It therefore seemed logical to develop specific AT
2
 receptor 

agonists. 

 Currently, four candidate drugs for clinical development have been identified, namely the peptidergic 

agonists β-Tyr4-Ang II, β-Ile5-Ang II, and LP-2-3, and the non-peptide agonist Compound 21 (C21).156, 161 β-Tyr4-Ang 

II and β-Ile5-Ang II are Ang II analogues in which the Tyr4 and Ile5 α-amino acid residues have been replaced by 

β-amino acids, i.e. amino acids containing an additional methylene group.156 This results in an almost complete 

loss of AT
1
 receptor affinity, a modest (»5-15-fold) decrease in AT

2
 receptor affinity, and an increased stability. 

Both peptide agonists caused weak, AT
2
 receptor-mediated, NO-dependent vasorelaxation in the mouse aorta. 

In addition, β-Ile5-Ang II lowered BP in SHR during co-infusion with candesartan.156 

 LP2-3 is cyclic Ang-(1-7) (see below) with a D-lysine N-terminal extension.161 Although it inhibits pathological 

remodeling of lung, cardiac and vascular tissue in a model of hyperoxia-induced neonatal pulmonary 

dysplasia,161 there is currently no proof of its claimed AT
2
 receptor agonistic activity. Much more is known about 

C21, which is expected to enter the clinical phase of development this year.162 Confusingly, despite the wealth 

of data on AT
2
 receptor-mediated vasodilation, C21 has either no effect on BP or even increases BP.155, 162, 163 The 

latter may relate to the fact that, for instance in SHR, AT
2
 receptors become AT

1
 receptor-like (i.e., constrictor), 

while at exceptionally high doses C21 also activates AT
1
 receptors.21, 163 In vitro, C21 has a weak vasodilator effect, 

particularly observed during AT
1
 receptor blockade, at concentrations above its K

d
.164 In fact, since such effects 

were also observed in vessels of AT
2
 receptor KO mice, it has been proposed that C21 has pleiotropic effects; 

its ability to block vasoconstriction to non-angiotensin constrictors further confirmed this view.163 In summary, 

although C21 does not seem to be an appropriate antihypertensive drug, the antifibrotic and anti-inflammatory 

effects of AT
2
 receptor stimulation warrant alternative indications, including Marfan’s syndrome.54 
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Since AT
2
 receptors also stimulate neurite outgrowth, thereby facilitating pain,165 a recent clinical trial has 

investigated to what degree AT
2
 receptor antagonists might be applied in neuropathic pain. Indeed, already 

after 3 weeks, such drugs reduced pain in patients with postherpetic neuralgia.166 Whether this outcome affects 

the future application of AT
2
 receptor agonists cannot yet be said.    

 
ACE2-Ang-(1-7)-Mas receptor axis
Ang-(1-7), mainly produced from Ang II by ACE2 (Figure 1), opposes AT

1
 receptor-mediated effects via its binding 

to the Mas receptor.167 Yet, it also binds AT
2
 receptors, and at high concentrations even acts as a partial AT

1
 

receptor agonist.168 A plethora of beneficial cardiovascular effects has been described for Ang-(1-7) in the past 25 

years. These include protection against heart failure, natriuretric, antithrombotic, antihypertrophic, antifibrotic, 

and anti-arrhythmic effects, attenuation of plaque formation and amelioration of metabolic syndrome-related 

vascular dysfunction.155, 169 It has weak vasodilator effects, which have not uniformly been confirmed. Ang-(1-7) 

also stimulates the production of endothelial progenitor cells (and tube formation thereof ), but simultaneously 

inhibits tube formation by adult EC.155, 169 The circumstances under which the BP-lowering effects of Ang-(1-7) 

have been investigated varied widely (species, models, co-treatment with RAAS blockers/NOS inhibitors, salt 

intake) so that even now it cannot be stated with certainty that Ang-(1-7) is an antihypertensive agent. Similarly, 

although ACE2 overexpression does lower BP, this may be simply due to its capacity to degrade Ang II (rather 

than its generation of Ang-(1-7)).170 Even more worryingly, the putative ACE2 activators 1-[(2-dimethylamino) 

ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one (XNT) and diminazene 

were recently shown to act fully independently from either ACE2 or Ang-(1-7), thus questioning whether their 

in-vivo effects have anything to do with this pathway.171 

 Despite these controversies, stimulation of the ACE2-Ang-(1-7)-Mas receptor axis might still be an interesting 

therapeutic option. In view of the rapid breakdown of Ang-(1-7) (as well as its AT
1
 receptor agonistic properties 

at high concentrations), alternative strategies have been developed. These are oligosaccharide (hydroxypropyl 

β-cyclodextrin)-encapsulated Ang-(1-7), Ang-(1-7) peptide stabilization by thioether bridging (creating so-called 

cyclic Ang-(1-7)), NorLeu3-Ang-(1-7), the peptide drug CGEN856S , and the non-peptide drug AVE0991.155, 172 

Cyclodextrin-encapsulated Ang-(1-7), AVE0091 and CGEN856S have shown BP-lowering effects in hypertensive 

animals, while the other agonists have not been tested yet in such a setting. Clearly, much more work is needed 

before these drugs can enter the clinic, although NorLeu3-Ang-(1-7) has been used clinically to treat foot ulcers 

in diabetic patients.173  

Blockade of Ang III and Ang IV 
As discussed above, Ang III is believed to act as an AT

2
 receptor agonist, e.g., in the kidney and vessel wall. Yet, in 

the brain it has been proposed to be the preferred  AT
1
 receptor agonist, thus causing hypertension.174 On this 

basis, aminopeptidase A inhibitors (which block the conversion of Ang II to Ang III) are now being developed, 

which act exclusively in the brain. Indeed, RB150 (4,4′-dithio[bis(3S)-aminobutyl sulfonic acid]) is a prodrug 

that, after crossing the blood-brain barrier, is converted to the aminopeptidase A inhibitor EC33 ((3S)-3-amino-

4-sulfanyl-butane-1-sulfonic acid).175 RB150 can be delivered orally, and has already shown antihypertensive and 

cardioprotective properties in animal models, so that it is now under evaluation in a phase Ib clinical study.176 

To what degree the aminopeptidase N product of Ang III, i.e., Ang IV, has a function in BP regulation remains 

unclear. At high (micromolar) concentrations, it binds to AT
1
 and AT

2
 receptors, resulting in both constrictor and 

relaxant effects, the former possibly involving endothelin-1.177, 178 However, the relevance of these observations, 

given its low (femtomolar) concentrations in vivo, is questionable. Instead, high potency effects of Ang IV may 

rather involve its binding to insulin-regulated aminopeptidase (IRAP), also known as the AT
4
 receptor (please 

note that AT
3
 receptors do not exist, the 4 refers to Ang IV).179 Unfortunately, even this concept has recently been 

challenged,180 leaving as a final option the observation that Ang IV binds with high affinity to AT
1
 receptors that 

are constitutively active, i.e., that already display activity without agonist binding.181 Until today the physiological 

relevance of this phenomenon is unknown.  
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C O N C L U S I O N S

Tissue angiotensin generation depends on kidney-derived renin and hepatic angiotensinogen, occurs 

extracellular, and is followed by rapid AT receptor binding and internalization. Locally generated Ang II affects 

the constrictor/relaxant balance, vascular remodeling, and inflammation. Tissue angiotensin generation does 

not necessarily run in parallel with angiotensin generation in the circulation, and this explains why the beneficial 

effects of RAAS blockers cannot be simply explained on the basis of changes in the circulating RAAS. Gender, 

ethnicity, salt intake, genetic variation, and the use of antihypertensive drugs determine the degree of RAAS 

activity, and although in general ‘high’ RAAS activity (as evidenced by ‘high’ plasma renin levels) would be 

supportive for the application of RAAS blockers, the inter-individual RAAS component variation is such that 

it is impossible to exactly define ‘high’or ‘low’ renin levels that warrant the choice for a certain RAAS blocker. 

Too much RAAS blockade yields effects that can be expected when removing Ang II/aldosterone (hypotension, 

hyperkalemia, renal dysfunction), and thus the goal should be to obtain optimal instead of maximal RAAS 

blockade, guided by regularly measuring BP, potassium and creatinine. Aldosterone unexpectedly has a wide 

range of extrarenal effects, among others in EC and VSMC, and these are not necessarily all mediated via the 

MR. Together with the many mutations that have recently been discovered in genes encoding for proteins 

that control sodium, potassium and calcium ion homeostasis in adrenal cells (with strong resultant effects 

on aldosterone synthesis), this explains the revived interest in drugs that block aldosterone, e.g., in resistant 

hypertension. In addition, the discovery of the relaxant, protective arms of the RAAS, involving AT
2
 and Mas 

receptor stimulation, may yield new drugs that can be applied in the future on top of the existing RAAS blockers 

in patients with cardiovascular and renal disorders.
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S C O P E  O F  T H I S  T H E S I S

Aortic diseases such as aneurysmal disease and atherosclerosis can be life-threatening conditions and the 

occurrence of these diseases increase in the elderly as the average age of population rises. Aortic aneurysm 

disease involves widening of the aorta, and is associated with atherosclerosis. On the other hand atherosclerosis 

can lead to occlusive arterial disease due to aortic medial wall growth and atherosclerotic plaque formation. 

These diseases have common risk factors and similarities in the underlying biological processes. In aortic disease, 

the process of extracellular matrix remodeling is a key component, as deduced from genetic familial aneurysmal 

disease studies. Additionally, (elevated) blood pressure may affect the aorta. The renin-angiotensin system (RAS) 

affects aortic pathology locally, as well as via its effect on blood pressure. 

In part II we investigate the role of the RAS in aneurysmatic Fibulin-4 mice. Aortic aneurysm disease is a 

degenerative disease of the aortic media, and these mice that express reduced levels of the extracellular 

matrix protein Fibulin-4 serve as a model organism that can be used to study thoracic aortic aneurysm (TAA) 

development. In Chapter 2 we characterize the Fibulin-4 model histologically and functionally through a 

detailed analysis of the composition of the aortic wall and its contractility. In Chapter 3 we study the effects of 

reduced expression of Fibulin-4 on heart function. In Chapter 2 and Chapter 4 we investigate the therapeutic 

potential of RAS blockers, in particular angiotensin II type 1 receptor (AT
1
) blockade, on aneurysm progression. In 

Chapter 4 the treatment effect on both the aneurysm and the heart failure is described. In Chapter 5 we analyze 

the aberrations in TGFβ signaling due to Fibulin-4 deficiency in molecular detail in aortic smooth muscle cells.

In part III, genetic factors involved in aneurysms are investigated. Aneurysmatic and atherosclerotic arterial 

diseases have common risk factors and similarities in biological processes, despite the fact that the two diseases 

have opposite outcomes. In Chapter 6 we evaluate the genetic factors and molecular pathways that differentiate 

aneurysmatic from atherosclerotic aortic disease, with the intention to identify new biomarkers. Additionally, 

since TAA diseases are partly inherited, in Chapter 7 we have set up a massive parallel sequencing technique to 

identify pathogenic mutations in the genome of TAA-linked genes. 

Finally, in part IV we investigate the role of the RAS in rats with hypertension and diabetes, a combination that 

is well-known to result in (cardio)vascular pathology. Indeed, hypertensive patients with diabetes exhibit an 

increased risk for cardiovascular complications, like nephropathy, stroke and heart failure. The studies described 

in Chapter 8 were aimed to evaluate the therapeutic effect of Handle Region Peptide (HRP), a (pro)renin receptor 

blocker, on top of renin inhibition in diabetic rats with hypertension.
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A B S T R A C T

Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we 

investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient 

mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT
1
) receptor antagonist losartan in 

preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous 

Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as 

found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle 

cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile 

capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation 

of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were 

accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-

scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular 

mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment 

with the AT
1
 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in 

the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and 

improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In 

conclusion, the AT
1
 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome 

aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does 

improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-

angiotensin system to the preventive treatment of aneurysm disease. 
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I N T R O D U C T I O N

Degeneration of the medial layer of the aorta is a key feature of aneurysm disease and aortic dissection1. Cystic 

medial degeneration is characterized by elastic fiber fragmentation, loss of smooth muscle cells (SMC), and 

accumulation of amorphous extracellular matrix (ECM) in the aortic wall. Although media degeneration occurs 

to some degree with aging, excessive aortic wall degeneration may lead to dilatation of the aorta and aneurysm 

formation, or, alternatively, aortic dissection2, 3.  In addition, advanced aortic degeneration may be part of 

inherited disorders of the connective tissue. One of the most common of these syndromes is Marfan syndrome 

(MFS), resulting from a mutation in the FBN1 gene which encodes the ECM glycoprotein fibrillin-14H.drom. 

MFS is characterized by elastic fiber fragmentation, loss of elastin content, and accumulation of amorphous 

matrix components in the aortic wall, resulting in the formation of thoracic aortic aneurysms (TAAs)5. Mice with 

a mutation in the fibrillin-1 gene are widely used to study the pathophysiologic mechanisms underlying MFS 

and its treatment options 6. 

 Several mutations in other genes encoding extracellular matrix proteins have also been identified in 

patients with TAAs, including mutations in the fibulin-4 gene7 8. Fibulin-4 is one of the seven-member family of 

ECM proteins that play a role in elastic fiber assembly and function 9. Fibulin-4 is highly expressed in the medial 

layers of blood vessel walls, including the aortic media It has been shown that mutant mice lacking fibulin-4 

(Fibulin-4-/-) die perinatally from aortic rupture11. Furthermore, newborn mice with a systemic 4-fold reduced 

expression of fibulin-4 (Fibulin-4R/R) display elastic fiber fragmentation and develop aneurysms in the ascending 

thoracic aorta. Interestingly, even a 2-fold reduced expression of fibulin-4 in the heterozygous Fibulin-4+/R mice 

already induces similar, though milder, changes in the aorta12. 

 Since aneurysm disease is a condition of the aging population, the present study first focused on the 

structural and functional characterization of aortic wall degeneration in adult fibulin-4 deficient mice. Recent 

studies have shown that antagonizing transforming growth factor-β (TGF-β) by either TGF-β neutralizing 

antibodies or the angiotensin (Ang) II type 1 (AT
1
) receptor antagonist losartan can slow the progression rate 

of aortic root dilatation in an MFS mouse model6 and in patients with MFS13. Therefore, we next investigated 

the role of the renin-angiotensin system (RAS) in aneurysm formation in fibulin-4 deficient mice. We show that 

prenatal treatment with the AT
1
 receptor blocker losartan can prevent aortic media degeneration in this non-MFS 

aneurysm mouse model. Losartan could not attenuate established aortic aneurysms in adult fibulin-4 mice, but 

largely improved survival of these animals. These findings point towards potential therapeutic application of 

inhibitors of the RAS to the preventive treatment of aneurysm disease.
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M E T H O D S

Experimental animals
We previously generated a fibulin-4 allele with reduced expression by transcriptional interference through 

placement of a TKneo targeting construct in the downstream Mus81 gene12. Heterozygous (Fibulin-4+/R) mice in 

a mixed C57Bl/gJ;129Sv background were mated to obtain Fibulin-4+/+, Fibulin-4+/R and Fibullin-4R/R littermates 

and were housed in the institutional animal facility. All experiments were performed under the regulation and 

permission of the Animal Care Committee of the Erasmus MC, Rotterdam, The Netherlands (protocol ID 139-

08-06). The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US 

National Institutes of Health (NIH Publication No. 85-23, revised 1996). 

Histology and immunohistochemistry
Mice (age 100 days) were euthanized by an overdose CO

2
, fixed by perfusion fixation with 4% formaldehyde, 

and autopsied according to standard protocols. Perfusion-fixed aortas were isolated and paraffin embedded. 

Next, 4 μm sections were haematoxylin and eosin stained and stained for elastin (Verhoeff-van Gieson), 

glycosaminoglycans (Alcian Blue) and SMCs (α-SMA). Immunohistochemistry for phosphorylated Smad2 

(pSmad2) was performed as described previously 14 using rabbit antiphospho-smad2 antibodies. The relative 

SMCs area of the ascending aorta was quantified by calculating the surface area of SMCs divided by the total 

surface area of the aortic rings (Qwin, Leica, Gleisburg, Switzerland). The relative amount of positive stained 

pSmad2 cells was calculated as the amount of positive stained pSmad2 cells, divided by the total number of cells. 

Hemodynamic measurements
Mice (15-20 weeks old) were sedated with 4% isoflurane and intubated as previously described15. For measuring 

systolic and diastolic BP, mice were instrumented with a calibrated high fidelity 1.4 Fr microtip pressure 

transducer catheter (SPR-671, Millar Instruments), which was inserted into the left carotid artery and advanced 

into the aortic arch12. Hemodynamic data were recorded and digitized using an online 4-channel data acquisition 

program (ATCODAS, Dataq Instruments, Akron, Ohio, USA), for later analysis with a program written in Matlab. 

Ten consecutive beats were selected for determination of BP.

Mulvany myographs
Male mice (age 120 days) were euthanized with an overdose of pentobarbital i.p. (60 mg/kg). Thoracic aorta, 

abdominal aorta and iliac artery were isolated and stored overnight in cold, oxygenated Krebs-Henseleit buffer 

solution. The following day, vessel segments were mounted in 6-mL organ baths (Danish Myograph Technology, 

Aarhus, Denmark) containing Krebs-Henseleit buffer (NaCl 118, KCl 4.7, CaCl
2
 2.5, MgSO

4
 1.2, KH

2
PO

4
 1.2, NaHCO

3
 

25 and glucose 8.3; pH 7.4) at 37oC and oxygenated with 95% O
2
 and 5% CO

2
. The tension was normalized to 90% 

of the estimated diameter at 100-mm Hg effective transmural pressure.16 Maximum contractile responses were 

determined using 100 mmol/L KCl. Concentration response curves (CRCs) were constructed to phenylephrine 

and Ang II (Sigma); the latter with a 30-minute incubation with the NO synthase inhibitor L-NAME (100 μmol/L; 

Sigma). 

Microarray hybridizations
Standard procedures were used to obtain total RNA (Qiagen) of two Fibulin-4+/+, two Fibulin-4+/R and four 

Fibulin-4R/R aortas (10 days old). Synthesis and hybridization was performed as described before12. To examine 

the quality of the various arrays, several R packages (including affyQCreport) were run starting from the CEL 

files. All created plots, including the percentage of present calls, noise, background, and ratio of GAPDH 3’ to 5’ 

(<1.4) indicated a high quality of all samples and an overall comparability, except for two samples, which were 

excluded from further analysis. Of the 45101 probe sets, ~55% was called present in all samples. Raw intensities 

values of all samples were normalized by robust multichip analysis normalization (background correction 
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and quantile normalization) using Partek version 6.4 (Partek Inc., St. Louis, MO). The normalized data file was 

transposed and imported into OmniViz version 6.0.1 (Biowisdom, Ltd., Cambridge, UK) for further analysis. For 

each probe set, the geometric mean of the hybridization intensities of all samples was calculated. The level 

of expression of each probe set was determined relative to this geometric mean and 2log transformed. The 

geometric mean of the hybridization signal of all samples was used to ascribe equal weight to gene expression 

levels with similar relative distances to the geometric mean. Differentially expressed genes were identified using 

ANOVA (Partek) and SAM (OmniViz). Cut-offs values for significantly expressed genes were the FDR and a fold 

change of 1.5. Functional analysis was done using IPA (Ingenuity, Mountain View, CA). Microarray experiments 

have been previously described and complied with the regulations for Minimum Information of Microarray 

Experiments (MIAME) and can be retrieved from ArrayExpress, accession code: E-MEXP-840)12.

Biochemical measurements
Kidneys were excised and blood was collected from the left ventricle and stored in 4 mol/l guanine thiocyanate 

as described before17. Both were immediately frozen in liquid nitrogen and stored at -80oC. Ang II was determined 

using radioimmunoassay, following SepPak extraction and high-performance liquid chromatography 

separation18. 

Quantitative real-time reverse transcription polymerase chain reaction
Total RNA was isolated from kidneys and aortic arches using RNeasy Fibrous Tissue Mini Kit (Qiagen) and reverse 

transcribed using the SuperScript VILO cDNA synthesis kit (Invitrogen). The resulting cDNA was amplified in 

40 cycles (denaturation at 95° C for 10 min; thermal cycling at 95°C for 15 sec, annealing/extension at 60°C for 

1 min) with a Step-One cycler using TaqMan Universal Mastermix and TaqMan probes (Applied Biosystems) of 

individual genes. Specific primers (Rplp0 Mm01974474_gH, Efemp2 Mm00445429_m1, Agtr1a Mm00616371_

m1, Agtr1b Mm02620758_s1 and Agtr2 Mm01341373_m1) were obtained from Applied Biosystems. After PCR 

cycling, the fluorescence intensities of the reporter (FAM) dyes were quantified. The threshold cycle (Ct), i.e. the 

cycle number at which the amount of the amplified gene of interest reached a fixed threshold, was determined 

subsequently. The comparative Ct method (ΔΔCT) was used for relative quantification of gene expression19. 

Treatment
Fibulin-4+/R mice were bred to produce Fibulin-4+/+ and Fibulin-4R/R mice. Pregnant mice received either 

propranolol (0.5 g/liter, Sigma), losartan (0.6 gram/liter, Sigma) or placebo in their drinking water as described 

before6. Treatment was started at embryonic day (E)14.5 and continued for five days. At E19.5 the pregnant 

mice were euthanized by an overdose CO
2
 and a caesarian section was performed to collect the fetuses. Adult 

Fibulin-4R/R mice and their wild type littermates were treated during 10-14.5 weeks, starting at the age of 5.5 

weeks. Aortas from the fetuses and adult mice were isolated and paraffin embedded. Next, 4-μm sections were 

stained for elastin (Verhoeff-van Gieson). Ascending aortic wall thickness is the average of four measurements 

per quartile using Leica QWin software (Leica, Glattburg, Switzerland). 

Data-analysis
Normally distributed data are presented as mean±SEM. CRCs were analyzed using Graph Pad Prism 5 (Graph Pad 

Software Inc., San Diego, California, USA) to determine the maximum effect (E
max

) as described before.20 Analysis 

of the differences between CRCs was performed by two-way ANOVA. The one-way ANOVA was considered for 

the analysis of E
max

, blood pressures, angiotensin II levels and vessel wall thickness. Both analyses were followed 

by post hoc evaluation according to Bonferroni. To compare the observed distributions of the genotypes with 

the expected mendelian distribution, a chi-square test was used. The survival of fibulin-4 mice over time is 
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Figure 1

Survival of fibulin-4 mice. (A) Distribution of the three genotypes at 0 and 3 weeks of age. The grey bars 

show the expected Mendelian distribution and the overlying bars the observed distribution of the different 

genotypes. Fibulin-4 mice are born in a Mendelian distribution (n=10-20). Already after three weeks, this 

distribution is lost (n=50-180, p<0.0001). (B) Kaplan-Meier survival curves of Fibulin-4+/+, Fibulin-4+/R and 

Fibulin-4R/R mice alive at the age of three weeks (n= 50-180). After 21 weeks, 96% of wild type Fibulin-4+/+ 

and 92% of Fibulin-4+/R mice survived. Survival of Fibulin-4R/R mice dramatically decreased to 33% (p<0.0001 

vs. wild type). Note that the survival curve starts with all mice alive at the age of three weeks. Symbols 

indicate censored data.

presented in a Kaplan-Meier curve for a cohort of mice alive at age 3 weeks and the curves were compared by 

the Log Rank test. To evaluate the dose-dependent effect of fibulin-4 expression, a linear regression analysis was

was performed obtain a p for trend. The latter statistical analyses were performed using SPSS 15.0 for Windows 

(SPSS, Chicago, Ill, USA). All statistical tests were two-sided and a p-value <0.05 was considered statistically 

significant.  
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R E S U L T S

Adult fibulin-4 deficient mice display aortic wall degeneration 
Newborn Fibulin-4R/R mice already showed severe TAAs12, but only a small number of Fibulin-4R/R mice survived 

towards adult age. Fig. 1 shows the survival of fibulin-4 deficient mice. Newborn fibulin-4 mice demonstrate 

a Mendelian distribution of the three genotypes (30.2% Fibulin-4+/+, 46.5% Fibulin-4+/R and 23.3% Fibulin-4R/R 

mice). Due to the high mortality in the first weeks, genotyping takes place at the age of three weeks. At this 

age, the amount of Fibulin-4R/R mice already dropped to 15% and the Mendelian distribution is lost (Fig. 1A, 

p<0.0001). To get insight in the mortality rate of these mice, we constructed a Kaplan-Meier curve with all mice 

alive at the age of three weeks (Fig. 1B). The curves clearly demonstrate a dramatic survival of Fibulin-4R/R mice 

when compared to their wild type littermates (p<0.0001). The structural alterations resulting from reduced 

fibulin-4 in adult mice were characterized in 100-days-old mice. All aneurysms of Fibulin-4R/R mice were located 

in the ascending thoracic aorta. Aortic wall thickness was increased in Fibulin-4+/R and Fibulin-4R/R as compared 

with Fibulin-4+/+ mice (Fig. 2A-C). The increase in aortic wall thickness was, at least in part, due to increased 

deposition of glycosaminoglycans in the ECM, as demonstrated by Alcian blue staining (Fig. 2D-F). Aortas of 

wild type mice displayed a normal pattern of elastic lamellae forming dense parallel sheets. In contrast, the 

thickened aortic walls in fibulin-4 deficient mice displayed changes in elastic fiber organization, varying from 

moderate elastic fiber fragmentation in Fibulin-4+/R mice to complete destruction of elastin lamellar organization 

in Fibulin-4R/R mice (Fig. 2G-I). In addition to changes in elastin structure, aortic walls of Fibulin-4+/R and Fibulin-

4R/R mice displayed loss of SMCs, as evidenced by α-smooth muscle actin (SMA) staining (Fig. 2J-L) and increased 

numbers of apoptotic cells (data not shown). Next, to evaluate the reduction of SMCs seen in Fibulin-4R/R aortas, 

we quantified the amount of SMCs relative to the vessel wall area. Although the absolute amount of SMCs varied 

among the different genotypes, the relative amount of SMCs was significantly lower in Fibulin-4R/R mice when 

compared to Fibulin-4+/+ and Fibulin-4+/R mice (Fig. 2M). 

Functional consequences of fibulin-4 deficiency
Increased aortic pulse pressure
Since elastic fiber fragmentation may be associated with loss of elasticity and increased stiffness of the aortic 

wall, we next determined the in vivo aortic blood pressure using a microtip pressure catheter. In Fibulin-4R/R mice 

a slightly increased systolic blood pressure and decreased diastolic blood pressure was observed compared 

to wild type animals resulting in a significantly higher aortic pulse pressure in Fibulin-4R/R mice compared to 

controls (Fig. 3), which is consistent with increased arterial stiffness21. Interestingly, we observed a gene dose-

dependent decrease (trend) in diastolic blood pressure and increase (trend) in pulse pressure (Fig. 3), while no 

aortic valve abnormalities are present in Fibulin-4+/R mice. We therefore hypothesize that this blood pressure 

effect is due to primary vessel wall impairment in fibulin-4 deficient mice, while in Fibulin-4R/R mice, this 

phenotype is aggravated due to aortic valve dysfunction.

Reduced aortic contractility
To evaluate the functional effects of SMC loss, in vitro vascular contractility was studied in different segments of 

the aorta and the iliac arteries. After mounting, the vessel diameter was measured for each segment. Ascending 

thoracic aortic diameters were 1106±22, 1086±27 and 2023±88 μm for Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R 

mice respectively (n=14-18). Descending thoracic aortic diameters were 830±17, 797±17 and 955±49 μm for 

Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice respectively (n=17-22). Abdominal aortic diameters were 568±12, 

585±15 and 611±30 μm for Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice respectively (n=18-20). Iliac arteries 

were 420±12, 401±11 and 378±14 μm for Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice respectively (n=18-

19). The diameter of both the ascending and descending thoracic aorta were significantly larger in Fibulin-

4R/R mice when compared to wild type Fibulin-4+/+ mice, while the iliac arteries were significantly smaller in 

diameter. Furthermore, the increase in vessel diameter of the ascending thoracic aorta was accompanied by an 
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Figure 2

Architecture of ascending thoracic aortas. In adult Fibulin-4+/R and Fibulin-4R/R aortas there is an increase 

in aortic wall thickness (A-C), glycosaminoglycan depositions (blue areas) (D-F), elastic fiber fragmentation 

(G-I) and loss of smooth muscle cells in the media (J-L), also quantified (M).
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Figure 3

Systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) measured using an 

intra-aortic microtip pressure transducer 

catheter. With decreasing expression 

of Fibulin-4, DBP decreased and pulse 

pressure (PP) increased (p for trend 0.009 

and <0.001 resp.). Data are mean±SEM 

of 4-17 mice. * p <0.05 vs. Fibulin-4+/+ and 

Fibulin-4+/R (two-way ANOVA). 

approximately 2-fold elongation of the aortic segment.  

In line with the relative reduction of SMCs in the thoracic aorta, the maximum contractility of thoracic aortas 

in response to KCl (100 mmol/L) was more than 3-fold lower in Fibulin-4R/R mice than in Fibulin-4+/+ mice (Fig. 

4A). Similarly, receptor-mediated vasoconstriction in response to phenylephrine (100 μmol/L) was significantly 

lower in thoracic aortic rings of Fibulin-4R/R mice than in Fibulin-4+/+ mice (Fig. 4B). The contractile responses of 

the abdominal aorta and the iliac arteries did not differ between groups (data not shown). Increasing doses 

of Ang II, following a 30-minute incubation with Nω-nitro-L-arginine methyl ester (L-NAME), did not induce 

vasoconstriction in the thoracic aorta (Fig. 4C-D). The contractile responses of the abdominal aorta and iliac 

arteries in response to Ang II were not different between fibulin-4 deficient and wild type mice (Fig. 4E-F). This 

difference probably relates to the lower AT
1
 receptor levels in the thoracic aorta than in other large arteries in 

the mouse22, 23.

Disturbed calcium signaling in fibulin-4 deficient mice
Next, genome-scaled network analysis from Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R aortas was performed using 

dedicated microarray statistics with a focus on canonical pathway analysis. Differentially expressed genes were 

initially identified using statistical analysis of microarrays ANOVA (false discovery rate (FDR) 0.5 and 1.5-fold 

change up- or downregulation). Transcriptomes of Fibulin-4+/+ and Fibulin-4+/R full length aortas were compared 

and 26 probe sets were identified. With Ingenuity Pathway Analysis (IPA), a list of involved canonical pathways 

was constructed (Supplemental Table S1). The calcium signaling showed up as the top canonical pathway. 

Next, an independent SAM analysis was performed (FDR of 0.0032 (falsely called <1) and 1.5-fold change up- or 

downregulation). This approach identified 279 probe sets, from which a second top list of canonical pathways was 

constructed (Supplemental Table S2). Again, the calcium signaling pathway was highly significant. Interestingly, 

very specific genes involved in muscle cell contraction were up- or downregulated (Fig. 5). 

Next, differences between transcriptomes of Fibulin-4+/+ and Fibulin-4R/R aortas were analyzed. Statistical analysis 

of microarrays ANOVA was performed with the same selection criteria as for Fibulin-4+/+ vs. Fibulin-4+/R aortas. 

Canonical pathway analysis identified mainly pathways involved in immunological and inflammatory diseases 

(Supplemental Table S3) and after analysis with SAM (FDR 0.2 and 1.5-fold change up- or downregulation) a 

table with principally similar pathways was constructed (Supplemental Table S4). These analyses identified a few 

genes involved in the aforementioned calcium signaling pathway. 
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Figure 4

Contractility mediated by KCl, phenylephrine and angiotensin II. (A) In ascending aortas, KCl-induced 

contractility decreased in a gene dose-dependently in Fibulin-4+/R and Fibulin-4R/R mice (p for trend <0.001). 

(B) In descending aortas, phenylephrine-induced contractility decreased gene dose-dependently in Fibulin-

4+/R and Fibulin-4R/R mice (p for trend 0.004). Data are mean±SEM of 6-18 experiments, *p<0.05 vs. Fibulin-

4+/+ mice. (C-F) Effect of angiotensin II on (C) ascending thoracic aortas, (D) descending thoracic aortas, (E) 

abdominal aortas and (F) iliac arteries. Data (mean±SEM of 3-6 experiments) are shown as a percentage of 

the response to 100 mmol/L KCl. 
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Figure 5

Calcium signaling pathway in a resting muscle cell (Fibulin-4+/R vs. Fibulin-4+/+ aortas). Colors show up- (red) 

and downregulation (green) of molecules involved in muscle cell contraction.



Part II: The Role of the Renin-Angiotensin System on Aortic and Cardiac Pathology in Aneurysmatic Fibulin-4 Mice52

Fibulin-4 deficient mice show dysregulation of TGF-β signaling and increased tissue angiotensin II 
In a mouse model of MFS, it has been demonstrated that dysregulation of TGF-β activation and the RAS play 

an important role in aneurysm formation6, 24, 25. Hence, we next investigated the involvement of TGF-β signaling 

and Ang II in fibulin-4 deficient mice. First, genome-scaled network analysis from Fibulin-4+/+, Fibulin-4+/R and 

Fibulin-4R/R aortas identified the upregulation of TGF-β in Fibulin-4R/R mice compared to Fibulin-4-4+/+ mice 

(Supplemental Table S3 and S4). Next, immunohistochemical staining for phosphorylated Smad2 (pSmad2), an 

intracellular mediator of the TGF-β signal, in ascending thoracic aortas was performed. A graded increase in the 

nuclear translocation of pSmad2 in the aortic media of Fibulin-4+/R and Fibulin-4R/R mice was observed (Fig. 6A), 

indicating increased TGF-β signaling in adult aneurysmal fibulin-4 deficient mice. 

 Ang II is important in TGF-β signaling, by stimulating TGF-β1 mRNA and protein expression, which leads to 

TGF-β activation. This indicates that TGF-β acts downstream of Ang II signaling26. Therefore, we subsequently 

measured Ang II levels in blood and in kidney tissue of fibulin-4 deficient mice. Plasma Ang II levels were identical 

in the three genotypes (Fig. 6B). In contrast, renal tissue Ang II levels displayed a clear gene dose-dependent 

increase in Fibulin-4+/R and Fibulin-4-4R/R mice (Fig. 5b; p<0.004 for gene deletion effect), which may be due to 

increased AT
1 

receptor binding at this site, resulting in increased receptor-bounded Ang II levels27. Subsequent 

analysis of angiotensin receptor expression indeed demonstrated increased AT
1
b receptor expression in both 

the kidneys and aortic arches (Fig. 6C). It is thus reasonable to assume that the Ang II content is also larger in the 

vasculature of fibulin-4 deficient mice, due to an increased receptor density at this site. 

Treatment with AT1 receptor blocker losartan prevents aortic wall degeneration, but does not attenuate 
established aortic aneurysms
In genetically engineered MFS mice with abnormal fibrillin-1, blocking TGF-β, either by TGF-β neutralizing 

antibody or by the AT
1
 receptor blocker losartan, has been shown to prevent aortic root dilatation, elastic fiber 

degeneration, and pSmad2 activation6. Since dysregulation of TGF-β signaling and activation of the RAS were 

also observed in fibulin-4 deficient mice, we next investigated the potential therapeutic effect of losartan. To 

prevent Fibulin-4R/R mice for premature drop-out due to aortic rupture, mice were treated as early as possible. 

Thus, mice were prenatally treated with placebo, beta-adrenergic receptor blocker propranolol, or AT
1
 receptor 

blocker losartan. Propranolol, used as standard therapy to slow progression rate of aortic root growth in patients 

with MFS, served as control agent in an equihypotensive dosage6. Cross-sections of ascending aortas collected 

from Fibulin-4+/+ newborn mice, revealed the presence of intact elastic layers (Fig 7A). As expected, placebo-

treated Fibulin-4R/R mice showed severe fragmentation and an increased aortic wall thickness in this area (Fig. 

7A-B). Treatment of Fibulin-4R/R mice with propranolol did not change elastic fiber fragmentation, but slightly 

lowered vessel wall thickness. Yet, treatment with losartan improved elastic fiber fragmentation and greatly 

reduced vessel wall thickness. 

 Since AT
1
 receptor blockade is contraindicated during pregnancy and aortic aneurysms are usually 

diagnosed in a more advanced state, we performed a postnatal treatment trial with losartan. While only a 

minority of the Fibulin4R/R untreated mice reach a lifespan of 120-140 days, losartan-treated Fibulin4R/R animals 

could reach a lifespan of at least 160-180 days (n=3), after which they were sacrificed for histological analysis. 

Postnatal treatment of Fibulin-4R/R mice with losartan did not reduce vessel wall thickness, but contrary, led to 

aortic wall thickening when compared to placebo-treated Fibulin-4R/R mice (Fig. 7D). This might, at least in part, 

be due to the increase in age of the losartan-treated animals. There were no signs of active remodeling of the 

aortic wall due to losartan treatment, since no change in elastic fiber architecture (Fig. 7C) or lumen diameter 

(Fig. 7F) was observed. To address whether losartan was able to reduce TGF-β signaling in these adult animals 

we performed pSmad2 staining. We found no reduction in pSmad2 positive cells with 99% of all nuclei stained 

positive for both groups (Fig. 7E). Since losartan reduced systolic blood pressure to approximately 60 mmHg, we 

therefore attribute the increased lifespan of the losartan-treated animals to the lower blood pressure measured. 
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Figure 6

Increased levels of pSmad2 and angiotensin II in fibulin-4 mutant aortas. (A) Immunhistochemistry reveals 

a graded increase in expression and nuclear translocation of pSmad2 in the aortic media of adult fibulin-4 

deficient mice. (B) With reduced fibulin-4 expression, tissue (but not blood) Ang II levels increase (p for 

trend 0.004). Data are shown as mean±SEM of 4–18 experiments. *p<0.05 vs. Fibulin-4+/+. (C) Relative mRNA 

expression of Fibulin-4 and Ang II receptors. As published previously, a substantial decrease of fibulin-4 

was observed in Fibulin-4+/R and Fibulin-4R/R mice when compared to wild type littermates. Both the renal 

and aortic arch AT
1
b receptor content was larger in Fibulin-4R/R mice when compared to Fibulin-4+/+ and 

Fibulin-4+/R mice. No differences in AT
1
a or AT

2
 receptor expression were observed between the different 

genotypes (n=3-10). AT1aR, angiotensin II type 1a receptor; AT1bR, angiotensin II type 1b receptor; AT2R, 

angiotensin II type 2 receptor.
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Figure 7

Aortic aneurysm treatment with losartan. (A) Elastic fiber fragmentation in newborn Fibulin-4R/R mice could 

be prevented with losartan, but not with propranolol or placebo. (B) Vessel wall thickness of thoracic 

aortas from newborn Fibulin-4+/+ and treated Fibulin-4R/R mice. Losartan treatment of Fibulin-4R/R mice 

recovered vessel wall thickness. (C) Losartan treatment of adult Fibulin-4R/R mice did not improve elastic 

fiber fragmentation. (D) Vessel wall thickness increased after postnatal losartan treatment. (E) Postnatal 

treatment with losartan did not reduce the amount of pSmad2 positive cells, nor did it affect lumen diameter 

(F). *p<0.05 vs. wild type, #p<0.05 vs. placebo-treated Fibulin-4R/R mice, n=4-5.
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D I S C U S S I O N

Adult fibulin-4 deficient (Fibulin-4+/R and Fibulin-4R/R) mice display gene-dose-dependent elastic fiber 

fragmentation, dropout of SMCs, and deposition of mucopolysaccharide ground substance in the ECM of 

the aortic media. The structural changes observed in adult fibulin-4 deficient mice reflect the key histological 

features of cystic medial degeneration in patients with aortic aneurysm or dissection1, 28, 29. In patients, medial 

degeneration is histologically characterized by fragmentation and loss of elastin, loss of SMCs, and formation of 

areas devoid of elastin that are filled with amorphous ECM. Cystic medial degeneration characterizes the final 

common pathway for various processes that affect the integrity of the aortic media. These findings support the 

use of the fibulin-4 deficient murine model for the study of aortic degeneration and aneurysm formation and its 

pharmacotherapeutical intervention.

 The ECM provides the structural and functional platform of the aorta. In normal healthy aorta, elastin and 

collagen account for 50% of the dry weight and provide the aortic wall with non-linear elasticity properties30. One 

of the critical elements of the ECM are the elastic lamellae. Elastin is incorporated in elastic fibers on a scaffold of 

microfibrils. The elastic fibers in normal healthy aorta are arranged in concentric elastic lamellae and, together 

with vascular SMCs, form lamellar units31. Deposition of elastin is not uniform in the aorta, with a decrease in 

the number of elastin lamellar units from the ascending aorta to the abdominal aorta30. The circumferentially 

aligned collagen and elastin fibers in the aortic media provide tensile strength, permitting the aorta to withstand 

pulsatile flow and blood pressure delivered by the heart and to limit distal shear stress. The loss of elastic 

fiber integrity in the aortic wall observed in fibulin-4 deficient mice was associated with an increase in aortic 

pulse pressure, mainly due to a decline in diastolic blood pressure, reflecting diminished aortic resilience and 

tensile strength. Similar stiffening of the aortic wall with increased pulse pressure has been found in the well-

characterized genetically engineered mouse model of MFS with a mutation in the FBN1 gene (Fbn1C1039G/+) and in 

patients with MFS32 33. The rise in aortic pulse pressure in conjunction with aortic dilatation will further increase 

arterial wall stress over the cardiac cycle and thereby extend elastic fiber fragmentation. In MFS patients it has 

been shown that elevated aortic pulse-wave velocity, as a measure for reduced aortic elasticity, is a predictor for 

aortic dilatation and dissection34.

 The changes in aortic media structure were accompanied by impaired contractile function. Both adrenergic-

receptor and receptor-independent vascular contractility were reduced in fibulin-4 deficient aortic rings. The 

decreased contractile capacity could, at least in part, be explained by the loss of SMCs in fibulin-4 deficient 

aortas. In addition, loss of fibulin-4 is assumed to disrupt the interaction between elastic fibers and SMCs, leading 

to alterations in actin cytoskeleton organization 35. Third, altered calcium signaling may contribute to disturbed 

vascular contractile capacity. Using aortic transcriptome analysis, we identified altered expression pattern of 

genes encoding for proteins involved in calcium signaling in Fibulin-4+/R as compared with Fibulin-4+/+ aortas. 

These data indicate that fibulin-4 deletion not only affects aortic media structure, but also affects contractile 

function, as was also predicted based on fibulin-4 conditional knockout mice35. It has been suggested that aortic 

contractility contributes to the overall tensile strength and structural integrity of the aortic wall36. The observed 

disturbances in the biomechanical properties of the aorta are in line with findings in the genetic mouse model of 

MFS37. The altered load-bearing capacity of the aorta due to disturbances in the synthesis and breakdown of the 

aortic medial ECM as well as impaired aortic contractility culminates in increased aortic wall stress, which may 

contribute to dissection and aneurysm formation.

 As in the MFS mouse model, the alterations in aortic structure and function were associated with increased 

TGF-β signaling in adult aneurysmal fibulin-4 deficient mice, as evidenced by a graded increase in the expression 

of pSmad2, an intracellular mediator of the TGF-β signal, in the aortic media of Fibulin-4+/R and Fibulin-4R/R mice. 

Augmented TGF-β activation is associated with upregulation of matrix metalloproteinases and degradation 

of the aortic media, as shown in both MFS mice and in newborn fibulin-4 deficient mice37-39. Furthermore, 

altered TGF-β signaling has also been reported in humans with cardiovascular malformations due to fibulin-4 

deficiency40. The importance of TGF-β signaling in aneurysm formation is further supported by the recent 
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demonstration of increased circulating TGF-β concentrations in patients and mice with MFS, and the correlation 

between increased serum TGF-β and aortic root dilatation41. 

 It is still unclear how fibulin-4 deficiency correlates with increased TGF-β signaling. Increased TGF-β 

production may be due to Ang II42-45. For example, in human vascular SMCs, stimulation with Ang II induced a 

6-fold increase in TGF-β production43. The contribution of the RAS in the fibulin-4 mouse model was investigated 

by measuring circulating and renal tissue Ang II. Changes in renal Ang II content mirror changes in the Ang 

II content of other tissues, including the aorta17, 27. However, renal Ang II levels are generally much higher 

than Ang II levels in blood vessel walls, and can thus be measured with much greater accuracy. Therefore, we 

determined renal tissue Ang II levels as a reflection of changes in aortic Ang II content in adult fibulin-4 deficient 

mice. While Ang II levels were preserved in plasma, renal Ang II levels increased with decreasing expression of 

fibulin-4. Parallel increases in renal AT
1b

 receptor content were observed, although these increases were not 

yet significant at n=3-10. Since tissue Ang II levels are determined largely, if not completely, by AT
1a

 and/or AT
1b

 

receptor binding and subsequent internalization of extracellularly generated Ang II17, 27, these data suggest that 

the increased renal Ang II levels are due to increased renal AT
1
 receptor binding. Importantly, qPCR  supported 

an aortic AT receptor upregulation profile in these mice that was identical to the profile in the kidney, i.e., 

selective AT
1b

 upregulation. Thus, based on these data it seems reasonable to assume that the vascular Ang II 

levels, like the renal Ang II levels, are increased in fibulin-4 deficient mice due to increased AT
1
 receptor binding. 

Alternatively, upregulated tissue Ang II levels may be due to increased renin uptake at tissue sites46, and thus 

future studies should investigate vascular (pro)renin receptor density. Evidence is accumulating that the RAS 

plays an important role in the pathogenesis of aneurysm formation6, 25, 47-49. Ang II and AT
2
 receptor expression are 

increased in MFS aortic tissue and have been associated with cystic medial degeneration25. The increased tissue 

Ang II levels observed in fibulin-4 deficient mice are in line with these findings and support the role for the RAS 

in this model. 

 Drugs that interfere with the RAS may reduce aortic media degeneration. In cultured aortic cells from MFS, 

angiotensin-converting enzyme inhibition and AT
1
 receptor antagonism significantly inhibited SMC apoptosis25. 

Interestingly, blockade of the AT
1
 receptor by losartan has been shown to diminish TGF-β signaling, with a 

reduction in free TGF-β levels, tissue expression of TGF-β–responsive genes, and levels of mediators within the 

TGF-β signaling cascade, and to prevent aortic aneurysm development in the MFS mouse model6. Furthermore, 

treatment with losartan reduced circulating TGF-β levels and slowed the rate of aortic root dilatation both in 

MFS mice and in MFS patients13, 41. Based on these findings, we investigated whether aortic media degeneration 

in the fibulin-4 aneurysm model is associated with increased TGF-β signaling and could be prevented by the 

TGF-β antagonist losartan. In addition to interfering with TGF-β signaling, AT
1
 receptor blockade will indirectly 

stimulate the AT
2
 receptor. Through a negative feedback-mechanism, Ang II levels rise and bind the AT

2
 receptor, 

which can have positive effects on the vascular remodeling. Results obtained in MFS mice further demonstrate 

that losartan is able to improve phenylephrine-induced contractility50. 

 AT
1
 receptor blocker losartan, but not by the β-blocker propranolol, prevented elastic fiber fragmentation 

and disarray in the aortic media of newborn Fibulin-4R/R mice. Treatment of established aortic aneurysms in adult 

fibulin-4 mice with these losartan doses (0.6g/L) did not affect elastic fiber architecture. Thus, losartan was only 

able to prevent aortic wall degeneration in newborn Fibulin-4R/R mice. This is opposite to findings in MFS mice, 

where postnatal treatment did improve aortic wall degeneration6. Clearly, there are differences between the 

mouse models. All Fibulin-4R/R mice suffer from severe aortic aneurysms from birth that are prone to rupture, 

resulting in a tremendous reduction in lifespan as compared to their wild type littermates. MFS mice start to 

develop aortic aneurysms at the age of two months with variable severity of the aneurysm, and have a normal 

lifespan51. We hypothesize that aortic damage of Fibulin-4R/R mice at the age of 5.5 weeks is too severe to regress 

or prevent further aortic growth with losartan treatment. Therefore, no difference in vessel lumen could be 

observed between placebo- or losartan-treated Fibulin-4R/R mice. Most importantly, lifespan of adult Fibulin-4R/R 

mice treated with losartan largely improved, accompanied with an increase with vessel wall thickness. Thus, 

thickening of the aortic wall might prevent aortic rupture. Postnatal losartan treatment of Fibulin-4R/R animals 
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neither resulted in improved vessel wall structure nor in reduced TGF-β signaling, arguing against an active 

remodeling of the aorta.. Thus, the improved lifespan seem to be a result of a reduced haemodynamic stress, 

evidenced by a lower blood pressure. Whether results are specific for AT
1
 receptor blockers and/or inhibitors of 

the renin-angiotensin system or whether similar effects can be obtained with other blood pressure lowering 

agents has to be evaluated. 

 The present study is the first to show that losartan is effective in the prevention of non-MFS based aortic 

aneurysms. For established aortic aneurysms, losartan proved to largely improve lifespan, accompanied 

with a (preventive) thickening of the aortic wall. Together with previous reports, these data suggest that the 

antihypertensive drug losartan, an AT
1
 receptor blocker that blunts TGF-β activation, may be an effective drug in 

the early secondary prevention of aortic media degeneration and aneurysm formation.
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A B S T R A C T

Fibulin-4 is a ubiquitously expressed protein essential for elastic fiber formation. Although fibulin-4 is known to 

be important for aortic wall integrity, little is known about its function in the heart. We therefore examined the 

role of fibulin-4 in cardiac function and pathology.

 Echocardiography and hemodynamic measurements revealed that mice with a 4-fold reduction in fibulin-4 

expression (Fibulin-4R/R) spontaneously develop cardiac hypertrophy, dilation and dysfunction as well as aortic 

aneurysms. This was accompanied by reduced force generating capacity of Fibulin-4R/R cardiomyocytes, and 

altered transforming growth factor beta signaling. Subsequently, we evaluated the effects of reduced fibulin-4 

expression in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to investigate cell-type 

specific consequences of reduced elastogenesis. Strikingly, shRNA-mediated knockdown of fibulin-4 expression 

increased cardiomyocyte size accompanied by increased atrial natriuretic peptide, connective tissue growth 

factor and plasminogen activator inhibitor-1 mRNA expression. As cardiac hypertrophy might be influenced 

by aortic regurgitation in homozygous Fibulin-4R/R mice, we additionally studied heterozygous Fibulin-4+/R mice 

with a 2-fold reduced fibulin-4 expression.  While untreated Fibulin-4+/R mice show no apparent cardiovascular 

or valvular abnormalities, mortality after transverse aortic constriction (TAC) was aggravated in Fibulin-4+/R 

animals. Moreover, a 2-fold reduced fibulin-4 expression aggravated TAC-induced left ventricular dysfunction 

and pathological alterations in gene expression, without affecting valvular function. 
 By using both mouse models with reduced fibulin-4 expression as well as human iPSC-derived cardiomyocytes, 

we show that cardiac fibulin-4 drives myocardial pathology implying that improper elastogenesis can be a 

primary cause of cardiac disease.
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I N T R O D U C T I O N

The extracellular matrix (ECM) not only provides structural support to cells, but its composition and mechanical 

properties are also essential in cell development, signaling and function.1 Within the ECM, elastic fibers, 

determine tissue elasticity.2 Accordingly, impaired elastic fiber assembly is the underlying cause of several 

heritable connective tissue disorders such as Marfan syndrome. These disorders frequently exhibit cardiovascular 

manifestations including thoracic aortic aneurysm, aortic valve regurgitation and cardiac remodeling and 

dysfunction2, 3 accompanied by altered transforming growth factor beta (TGF-β) signaling.4 Cardiac dysfunction 

in patients with improper elastogenesis is predominantly attributed to aortic valve regurgitation. However, 

primary myocardial impairment has also been postulated in patients with Marfan syndrome.3 A direct link 

between elastic fibers and cardiac performance indeed seems plausible since elastic fiber components are 

expressed in the heart,5 and mechanical properties of the ECM and its associated components, including TGF-β, 

highly influence cardiac pathology.6 Additionally, studies in rats demonstrate that elevated elastin levels in the 

infarct zone of a myocardial infarction attenuate cardiac dilation and dysfunction.7, 8 We therefore hypothesize 

that improper elastogenesis is a currently unexplored intrinsic cause of cardiac abnormalities in elastin-related 

ECM disorders. 

A crucial factor in elastic fiber assembly and homeostasis is the ECM-protein fibulin-4.9, 10 Fibulin-4 is expressed 

in cardiovascular tissues including blood vessels, heart valves, and in the interstitial space surrounding 

cardiomyocytes.11 In humans, mutations in the fibulin-4 gene cause the cutis laxa syndrome which next to loose 

skin is characterized by cardiovascular pathology similar to Marfan syndrome12-16 We previously demonstrated 

that mice with a systemic 4-fold reduced fibulin-4 expression (Fibulin-4R/R) share a number of key features with 

the human disease phenotype, including aortic aneurysm formation, aortic valve disease, increased TGF-β 

signaling and impaired cardiac function.17, 18 Manifestation of fibulin-4 related pathology is dose-dependent 

since Fibulin-4+/R mice, with a milder 2-fold reduction in fibulin-4 expression, develop no apparent cardiovascular 

abnormalities.17, 18

 We investigated the consequence of reduced fibulin-4 expression in the heart of Fibulin-4R/R mice. 

Because, Fibulin-4R/R mice not only display the cardiac but also the aortic phenotype of human pathology 

including aortic valve regurgitation and subsequent cardiac volume overload we further evaluate the effects 

of fibulin-4 knockdown independent of valvular leakage, in human induced pluripotent stem cell (iPSC)-

derived cardiomyocytes using lentivirus-mediated short hairpin (sh) RNAmirs. Additionally, we studied the 

aortic-independent influence of fibulin-4 on cardiac susceptibility to pathology, by subjecting Fibulin-4+/R mice, 

without cardiovascular abnormalities under normal circumstances, to 4 weeks of cardiac pressure-overload. 

Together these models allow assessment of the novel concept that impaired elastic fiber formation, triggered by 

fibulin-4 deficiency, drives cardiac pathology.
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M E T H O D S

Experimental Animals
We previously generated a fibulin-4 allele with reduced expression by transcriptional interference through 

placement of a TKneo targeting construct in the downstream Mus81gene.17 Heterozygous Fibulin-4+/R mice 

in a mixed C57Bl/6J;129Sv background were mated to obtain Fibulin-4+/+ and Fibulin-4R/R littermates. Systemic 

fibulin-4 expression is reduced 2-fold in Fibulin-4+/R and 4-fold in Fibulin-4R/R mice.17 Myocardial fibulin-4 protein 

levels were determined through western blot analysis. All animals received care in compliance with institutional 

guidelines and the Guide for the Care and Use of Laboratory Animals published by the NIH (Publication No. 

85-23, Revised 1996).

Echocardiographic and Hemodynamic Measurements 
To evaluate the impact of fibulin-4 on cardiac function and geometry, echocardiographic and hemodynamic 

measurements were performed in 14-week-old Fibulin-4+/+ (n=16) and Fibulin-4R/R mice (n=6). All mice were 

ventilated and anesthetized with 2.5% isoflurane and echocardiography of the ascending aorta and left 

ventricle (LV) was performed using a Vevo2100 (VisualSonics Inc., Toronto, Canada). LV lumen diameters and 

ejection fraction (EF) were obtained from M-Mode images and pulse wave Doppler was used to visualize aortic 

regurgitation. Subsequently, aortic and LV pressure (LVP) were measured. The maximum rate of rise (LV dP/

dt
max

) and fall (LV dP/dt
min

) of LVP, as well as the rate of LVP-rise at a pressure of 40 mmHg (LV dP/dt
P40

) and the 

time constant of LVP decay (tau) were calculated as previously described.19 At the end of each experiment LV, 

right ventricle (RV) and lung weights as well as tibia lengths (TL) were determined and LV tissue samples (not 

containing aorta or aortic valve tissue) were stored for histological and molecular analysis.  

Isometric Force Measurements
The force generating capacity of single membrane-permeabilized cardiomyocytes from Fibulin-4+/+ and Fibulin-

4R/R mice was assessed as described previously.19 In short, myocytes from 3 LV sections per group (2–4 cells per 

section) were isolated and all membranes removed. Isometric force measurements were performed in activation 

solutions with different calcium concentrations to determine maximal force (F
max

), myofilament calcium-

sensitivity (pCa
50

) and passive force (Fp
as

). 

Cardiac Histology
Paraffin embedded LV tissue was serially sectioned into 5-µm slices and stained with Gomori’s silver staining for 

determination of cardiomyocyte cross-sectional area. Picrosirius Red and Resorcin Fuchsine dyes were used to 

determine collagen and elastic fibre content, respectively.

Mouse LV mRNA Analysis 
mRNA expression analyzes of LV samples (n=5 per group) was performed using real-time fluorescence 

assessment of SYBR Green Primer sets for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), 

α-skeletal muscle actin (α-SKA), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and connective tissue growth 

factor (CTGF) (Integrated DNA Technologies, Coralville, USA) (Suppl. Table 1). mRNA levels were corrected for the 

housekeeping gene β-actin and normalized to sham Fibulin-4+/+.

Western Blotting 
LV tissue samples (n=4-5 per group) were used for immunoblotting of extracellular signal-regulated kinases 

(ERK1/2), phosphorylated ERK1/2 (pERK1/2), Smad, phosphorylated Smad2 (pSmad2) and fibulin-4 (Cell 

Signaling Technology, Danvers, MA, USA; Abcam, Camvridge, UK). Ratios of phosphorylated protein levels to 

total protein levels and ratios of fibulin-4 to loading control β-actin and coomassie staining were calculated.
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Cell Culture and Knockdown of Fibulin-4 by Lentivirus-Mediated shRNA
Two lentiviral vectors containing shRNAmirs against Fibulin-4 as well as a non-silencing control shRNAmirs 

(Thermo Scientific, Huntsville, USA) were used to generate lentivirus. 

 To inhibit endogenous fibulin-4, human iPSC-derived cardiomyocytes (iCell cardiomyocytes, CDI, Madison, 

WI, USA) were infected with the lentiviral shRNAmir constructs, achieving an infection rate of ~90%. Four days 

after infection, cells were harvested or fixed and stained with fluorescently-conjugated antibodies to α-myosin 

heavy chain (α-MHC) (clone MF20, R&D) and a polyclonal fibulin-4 antibody that was characterized previously.20 

Additionally, the purity of iPSC-derived cardiomyocyte cultures was determined as the percentage of α-MHC 

stained cells. At the time of collection, the cultures contained ~98% α-MHC positive cells demonstrating that 

only 2% of the total cell population consisted of non-cardiomyocytes.

Gene Expression Analysis in Human iPSC-Derived Cardiomyocytes
Levels of human iPSC-derived cardiomyocyte mRNA were analyzed by real-time PCR using Taqman primers 

against fibulin-4, ANP, CTGF and plasminogen activator inhibitor type 1 (PAI-1) (Applied Biosystems, Foster City, 

CA, USA) (Suppl. Table 2) and corrected for the housekeeping gene Large Ribosomal Protein. 

Induction of TAC and In Vivo Measurements
To explore the role of fibulin-4 in cardiac pathology, 14-weeks old male Fibulin-4+/+ and Fibulin-4+/R mice, 

were subjected to severe TAC (sTAC) (Fibulin-4+/+ n=5, Fibulin-4+/R n=5), mild TAC (mTAC) ) (Fibulin-4+/+ n=11 , 

Fibulin-4+/R n=17) using a 27G or 25G needle respectively or a sham operation (Fibulin-4+/+ n=11, Fibulin-4+/R 

n=10) as previously described.19 Echocardiography and hemodynamic measurements were performed 4 weeks 

after surgery. LVP and aortic pressure proximal and distal to the stenosis were measured. The systolic pressure 

gradient over the stenosis was used as a measure for stenosis severity. Subsequently, LV, RV, lung weights as well 

as TL were determined and LV tissue samples were stored for histological and molecular analysis.  

Statistical Analysis
One-way ANOVA was applied to compare Fibulin-4+/+ with Fibulin-4R/R mice and evaluate results from iPSC-

derived cardiomyocytes. Statistical comparison of Fibulin-4+/+ and Fibulin-4+/R with or without mTAC was 

performed using a two-way ANOVA. One-way and two-way ANOVA were followed by a post hoc Dunnett test 

when appropriate. A p-value <0.05 (two-tailed) was considered statistically significant. Data are presented as 

means±SEM.
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R E S U L T S

A 4-fold Reduced Fibulin-4 Expression Causes Cardiac Remodeling and Dysfunction
As previously shown for the aorta,17 western blot analysis demonstrated 2-fold and 4-fold reduced myocardial 

fibulin-4 protein levels in the hearts of 14-week old Fibulin-4+/R and Fibulin-4R/R mice compared to wildtype 

Fibulin-4+/+ littermates (Suppl. Figure 1). This 4-fold reduction in fibulin-4 expression produced marked cardiac 

hypertrophy and dilation in all Fibulin-4R/R mice, (Figure 1A-D). Additionally, all Fibulin-4R/R mice suffered from 

aortic valve regurgitation demonstrated by aortic backflow during diastole (Figure 1E). LV remodeling was 

reflected in an approximate doubling of LV weight/TL and end diastolic LV lumen diameter (LVEDD) in Fibulin-

4R/R mice compared to Fibulin-4+/+ littermates (Figure 1F). This was associated with marked cardiac dysfunction 

evidenced by a reduced EF and LVP-derived parameters for cardiac contractility, maximal rise of LVP (dP/dt
max

) 

(Table 1) and the less afterload-sensitive rate of LVP increase at a pressure of 40mmHg (dP/dt
P40

) (Figure 1F). 

Likewise, Fibulin-4R/R mice showed marked cardiac diastolic dysfunction evident from a decrease in the rate 

of diastolic LVP decline (dP/dt
min

) and elevated end diastolic pressure (LVEDP) (Figure 1F). In addition, the LV 

relaxation constant tau tended to be higher in Fibulin-4R/R animals indicating impaired relaxation. Accordingly, 

lung and RV weight were increased in Fibulin-4R/R mice, indicating right-sided heart failure, (Figure 1F, Table 

1). Altogether these data show that Fibulin-4R/R mice develop clear pathological cardiac remodelling and 

dysfunction.

 To assess the effect of reduced fibulin-4 expression on cardiomyocyte function we measured isometric force 

characteristics of cardiomyocytes from Fibulin-4+/+ and Fibulin-4R/R mice. Similar to LV function, a 4-fold reduced 

fibulin-4 expression decreased F
max

 of single cardiomyocytes by 20% (Figure 1G). However, no changes in F
pas

 or 

pCa
50

 were observed (Figure 1G). This indicates that force generation is impaired in cardiomyocytes of Fibulin-

4R/R mice.

Figure 1

(A) Cross sections (black bars represent 2 mm), (B) whole hearts (bars represent 4 mm), (C) echocardiographic 

LV long axis B-Mode and (D) M-Mode images, (E) aortic flow patterns (bars represent a flow rate of 0 

and 1000 mm/s), (F) parameters of LV function and dimension (Fibulin-4+/+ (n=16), Fibulin-4R/R (n=6)) and (G) 

isometric force characteristics of single cardiomyocytes (3 LVs per group (2-4 cells per LV). LV, left ventricle; 

LVW, LV weight; LVEDD, LV end-diastolic diameter; maximal force, Fmax; Ca2+-sensitivity, pCa50; passive 

force, Fpas. *P<0.05 vs Fibulin-4+/+.
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Figure 2

(A) Cardiomyocyte size, fibrosis and elastin content in Fibulin-4+/+ (n=7) and Fibulin-4R/R (n=5-6) hearts (bars 

represent 200 μm). (B) mRNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), 

α-skeletal muscle actin (α-SKA), sarcoplasmatic reticulum Ca2+-ATPase (SERCA2a) and connective tissue 

growth factor (CTGF) in Fibulin-4+/+ (n=3-7) and Fibulin-4R/R mice (n=3-4). (C) Enhanced pSmad2 and pERK 

protein levels in Fibulin-4R/R (n=4-6) versus Fibulin-4+/+ hearts (n=4). *P<0.05 vs Fibulin-4+/+

Fibulin-4R/R Mice Develop Cardiomyocyte Hypertrophy and Disturbed TGF- β Signaling
LV hypertrophy in Fibulin-4R/R mice was associated with a 2-fold increase in cardiomyocyte cross sectional area 

(Figure 2A), but not by cardiac fibrosis (Figure 2A). Additionally, in 4 out of 6 Fibulin-4R/R hearts, elastin content 

was reduced compared to Fibulin-4+/+ hearts (Figure 2A). 

 Additionally, a 4-fold reduced expression of fibulin-4, elevated expression of genetic markers for cardiac 

hypertrophy ANP, BNP and α-SKA (Figure 2B) and reduced mRNA levels of the Ca2+ pump SERCA2a (Figure 

2B), which is indicative for cardiac dysfunction. Additionally mRNA expression of CTGF, associated with ECM 

deposition, showed a non-significant increase in Fibulin-4R/R animals (Figure 2B).

 Since Fibulin-4 deficiency increases TGF-β signalling in aortas of Fibulin-4R/R mice,17 we explored TGF-β 

signaling in heart tissue of Fibulin-4R/R animals by measuring relative protein levels of the canonical mediator 

of TGF-β signaling, pSmad2 and of pERK1/2, which represents non-canonical TGF-β signaling in elastic fibre 

diseases such as Marfan syndrome.21 Reduced fibulin-4 expression increased relative pSmad2 and pERK levels, 
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Figure 3

(A) Effects of fibulin-4 knock down in human iPSC-derived cardiomyocytes. mRNA expression of fibulin-4, 

atrial natriuretic peptide (ANP), connective tissue growth factor (CTGF) and plasminogen activator inhibitor-

1 (PAI-1). (B) Cardiomyocyte size, showing one representative field of view of each group (bars represent 

100 μm). In a total of 40-46 fields of view per group 1515 shRNA mock, 1082 shRNA Fibulin-4#1 and 831 

shRNA Fibulin-4#2 transfected cells of which the borders could be well defined were analysed. *P<0.05 vs 

sh mock, †P<0.05 vs sh Fibulin-4#1.

Figure 4 (next page)

Reduced fibulin-4 expression aggravates TAC-induced pathology. (A) Survival ratio following sham, mild 

TAC (mTAC) and severe TAC surgery (sTAC). (B) Representative whole hearts (black bars represent 4 mm), 

(C) LV long axis B-Mode images, (D) aortic flow patterns (bars represent a flow rate of 0 and 1000 mm/s) and 

(E) geometrical and functional cardiac parameters of sham (Fibulin-4+/+ n=9, Fibulin-4+/R n=8) and mTAC mice 

(Fibulin-4+/+ n=9, Fibulin-4+/R n=10). LV, left ventricle; LVW, LV weight; TL, tibia length; LVEDD, LV end-diastolic 

diameter; RVW, right ventricular weight; EF, Ejection Fraction; SPG, systolic pressure gradient; LVEDP, LV 

end-diastolic pressure. *P<0.05 vs corresponding Fibulin-4+/+, †P<0.05 vs corresponding sham. 

indicating increased cardiac TGF-β signaling (Figure 2C). In summary, cellular adaptations, including increased 

cell size, elevated expression of markers for cardiac hypertrophy and increased TGF-β signaling, are associated 

with the observed cardiac dysfunction and pathological remodeling in Fibulin-4R/R mice. 

Knockdown of Fibulin-4 Affects Cardiac Gene Expression and Cellular Dimensions Human iPSC-Derived 
Cardiomyocytes
Since aortic valve regurgitation contributes to cardiac pathology in Fibulin-4R/R mice, we subsequently studied 

cardiomyocyte-autonomous effects of fibulin-4, independent of aortic valve abnormalities, using human iPSC-

derived cardiomyocytes. In the iPSC-derived cardiomyocyte cultures, fibulin-4 is endogenously expressed and, 

similar to the vasculature, fibulin-4 is predominately located in the ECM (Suppl. Figure 2). Fibulin-4 knockdown 

by lentivirus-mediated transfer of two shRNAmirs directed against human fibulin-4, reduced fibulin-4 mRNA 

levels by 72% and 88% respectively (Figure 3A). Downregulation of fibulin-4 increased mRNA expression of the 

cardiac stress related gene ANP and the TGF-β activated genes CTGF and PAI1 (Figure 3A). Additionally, analogous 
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Figure 5

Effects of reduced fibulin-4 levels on mTAC-induced histological and mRNA alterations. (A) Cardiomyocyte 

size, fibrosis and elastin deposition (bars represent 200 μm, n=6 in all groups). (B) mRNA expression of 

atrial natriuretic peptide (ANP), α-skeletal muscle actin (αSKA), sarcoplasmatic reticulum Ca2+-ATPase 

(SERCA2a) and connective tissue growth factor C (CTGF) in sham (Fibulin-4+/+ n=7-8, Fibulin-4+/R n=5-6) 

and mTAC mice (Fibulin-4+/+ n=5-6, Fibulin-4+/R n=4-6). *P<0.05 vs corresponding Fibulin-4+/+, †P<0.05 vs 

corresponding sham. 
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to the observed cardiomyocyte hypertrophy in Fibulin-4R/R hearts, knockdown of fibulin-4 by both shRNAmirs 

increased cardiomyocyte surface area by approximately 1.5-fold (Figure 3B). Even though we cannot completely 

exclude the possibility that the few present cardiac fibroblasts (<2% of the total cell population) contributed 

minorly to the fibulin-4 induced effects in our iPSC-derived cells, these results clearly demonstrate that loss of 

cardiac fibulin-4 induces cardiomyocyte pathology, independent of concomitant aorta-related factors.

Reduced Fibulin-4 Expression Increases Cardiac Susceptibility to Pressure-Overload 
We subsequently evaluated fibulin-4-mediated cardiac defects in vivo independent of aortic abnormalities 
in 14-weeks old Fibulin-4+/R mice. Fibulin-4+/R animals have only a 2-fold reduction in fibulin-4 expression and 

demonstrate no cardiac or aortic valve dysfunction under normal conditions.17 To challenge the hearts of Fibulin-

4+/R  mice we induced cardiac pressure-overload through sTAC or mTAC in these animals. Reduced fibulin-4 

expression markedly aggravated sTAC-induced mortality from 20% in Fibulin-4+/+ mice to 83% in Fibulin-4+/R 

littermates (Figure 4A). Similarly, 4 weeks of mTAC resulted in 27% mortality in Fibulin-4+/R mice without affecting 

survival in Fibulin-4+/+ animals (Figure 4A). Accordingly, A 2-fold reduction in fibulin-4 expression by itself did 

not affect heart size (Figure 4B), LV end diastolic lumen diameter (Figure 4C) or aortic valve function (Figure 4D) 

in sham mice while mTAC-induced cardiac hypertrophy and remodeling was aggravated in surviving Fibulin-

4+/R mice (Figure 4B, C, E), without inducing aortic valve regurgitation in either genotype (Figure 4D). This was 

reflected in a trend towards increased relative LV weight and a significant increase in LV end diastolic lumen 

diameter (Figure 4E). Additionally, mTAC-induced cardiac dysfunction (EF) was markedly aggravated by reduced 

fibulin-4 expression and mTAC only affected LV dP/dt
P40

 and LV dP/dt
max

 in Fibulin-4+/R animals but not in Fibulin-

4+/+ littermates. Similarly, only in Fibulin-4+/R mice, mTAC aggravated diastolic dysfunction (dPdt
min

, tau and LVEDP) 

(Figure 4E and Table 2) and increased relative RV weight indicative for right-sided heart failure (Figure 4E). Thus, 

a 2-fold reduction in fibulin-4 levels does not produce cardiovascular adaptations under normal circumstances 

but, independent of aortic valve function, markedly aggravates mortality and LV remodeling and dysfunction 

following cardiac pressure-overload.

Pressure-Overload-Induced Myocyte Hypertrophy and Altered Gene Expression is Aggravated in Fibulin-
4+/R Mice
Consistent with the trend towards increased heart weight, TAC increased cardiomyocyte size more in Fibulin-4+/R 

mice than in Fibulin-4+/+ animals (Figure 5A). Additionally, reduced fibulin-4 expression tended to aggravate 

mTAC-induced cardiac fibrosis (Figure 5A). Elastin deposition, which co-localized with fibrotic tissue, was elevated 

in 3 out of 6 Fibulin-4+/+ and 6 out of 6 Fibulin-4+/R animals, compared to sham-operated mice (Figure 5A). 

Additionally, TAC-induced re-expression of the LV hypertrophy-associated gene ANP was exacerbated in Fibulin-

4+/R mice (Figure 5B). A similar trend was observed in α-SKA mRNA expression. Likewise, reduced fibulin-4 levels 

exacerbated the TAC-induced reduction of mRNA expression of the Ca2+ pump SERCA2a and the increase in TGF-β 

activated CTGF mRNA. In conclusion, reduced fibulin-4 expression aggravated TAC-induced cardiomyocyte 

hypertrophy and pathological alterations in expression of genes involved in hypertrophy, cardiac function and 

TGF-β signaling. 
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D I S C U S S I O N

Here we identify fibulin-4 as an intrinsic contributor to cardiac pathology irrespective of extrinsic vascular or 

valve abnormalities. In vivo, a 4-fold reduction in fibulin-4 expression increased LV diameter and mass, induced 

severe cardiac dysfunction, elevated TGF-β signaling and altered mRNA levels of the heart failure associated 

genes ANP, BNP, α-SKA and SERCA2a. Even though cardiac pathology in Fibulin-4R/R mice is aggravated by aortic 

valve disease, the development of cardiac remodeling and dysfunction was more pronounced in Fibulin-4R/R 

mice than in other genetic22, 23 or mechanically induced24, 25 models for aortic regurgitation. This suggests that at 

least part of the cardiac disease in Fibulin-4R/R mice is related to cardiac fibulin-4. To further evaluate this concept 

we used cardiomyocytes from human pluripotent stem cells that are not affected by aortic disease. Lentiviral 

knockdown of fibulin-4 in these human iPSC-derived cardiomyocytes similarly demonstrated the importance of 

cardiac fibulin-4 in heart disease. 

 Reduction of fibulin-4 expression in these cardiomyocytes not only increased the expression of the cardiac 

stress-related gene ANP and the TGF-β activated genes CTGF and PAI1, but additionally increased cell area by 

40%. Although our iPSC-derived cell population almost exclusively contained cardiomyocytes (98%) we cannot 

completely exclude the possibility that the few present cardiac fibroblasts  contributed to some extent to the 

fibulin-4 induced effects we found in the cardiomyocytes. Still, these data clearly demonstrate cardiomyocyte 

pathology as a result of reduced cardiac fibulin-4 levels (produced by cardiomyocytes and/or cardiac fibroblast). 

This was further confirmed by increased susceptibility to cardiac pathology in Fibulin-4+/R mice that have normal 

aortic valve function. In these animals reduced fibulin-4 expression increased mortality and aggravated TAC-

induced cardiac hypertrophy and dysfunction as well as expression of heart failure-associated genes. 

 Enhanced myocardial stiffness in Fibulin-4R/R mice, evidenced by elevation of LV end diastolic pressure, was 

not explained by cardiac fibrosis, but is most likely related to reduced myocardial ECM elasticity resulting from 

impaired elastogenesis. Although elastic fibres are predominantly produced during development and early 

after birth,7  previous observations suggest a potential role for elastin in cardiac pathology. For example, in rats 

with a myocardial infarction, implantation of cells overexpressing elastin into the infarct7, and transplantation 

of a myoblast sheet secreting elastin onto the infarct,8 enhanced the amount of elastic fibers in the scar tissue, 

improved cardiac function and prevented ventricular remodeling. However, a potential role for elastin in other 

forms of cardiac disease has not been proven to date. It has been suggested that cardiac ECM stiffness does 

not depend on collagen content but on the elastin/collagen ratio.26 Accordingly, increased myocardial stiffness 

(indicated by elevated LV end diastolic pressure) was accompanied by less elastin deposition in LV tissue of 

Fibulin-4R/R mice. Additionally, in Fibulin-4+/R animals with only a 2-fold reduction in fibulin-4 expression, 

increased elastin deposition in the ECM, which might be induced in an effort to compensate for TAC induced 

fibrosis, does not result in sufficient elastic fibres to counterbalance the TAC-induced cardiac stiffening.

 In addition to improper elastic fibre assembly, an intrinsic cardiomyocyte defect may underlie cardiac 

dysfunction in fibulin-4 deficient hearts but this remains the subject of future investigation. 

 In individuals with impaired elastic fiber assembly, including those with Marfan syndrome and cutis laxa, 

cardiac failure is generally explained as a consequence of aortic valve disease and thoracic aneurysms. Like 

fibulin-4, the defective gene in Marfan syndrome, fibrillin-1 is essential for proper elastogenesis. Both fibrillin-127  

and fibulin-4 (evidenced by our western blot analysis, and previously shown11 are present in the myocardium, 

suggesting the possibility of vascular and valve independent cardiomyopathy in elastic fibre disease. Indeed one 

quarter of Marfan syndrome patients without significant aortic regurgitation had reduced LV ejection fraction, 

supporting the concept of primary cardiomyopathy.3

 In conclusion, we identified fibulin-4 as a novel direct contributor to cardiac pathology. Severe reduction in 

fibulin-4 expression results in cardiac remodeling and dysfunction, while fibulin-4 directly affects cardiomyocyte 

signaling and cell size in human cardiomyocytes. Moreover, a mildly decreased fibulin-4 expression elevates 

cardiac susceptibility to pathology, irrespective of extrinsic vascular or aortic valve pathology. These findings 

have important implications for the prevention and attenuation of cardiac disease in patients with elastic fiber 
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disorders. Due to improvements in medical and surgical treatment of aortic valvular pathology, life expectancy 

among patients with connective tissue disorders has risen substantially over the past decades.28 Analogous to 

Fibulin-4+/R mice, hearts of patients with connective tissue disorders may be unaffected under normal conditions 

but more susceptible to pathological stimuli. Currently, pharmacological treatment of patients with impaired 

elastic fiber assembly and causative thoracic aortic disease like in Marfan and cutis laxa syndrome is primarily 

aimed at reducing aortic growth.29, 30 Our data suggest that besides prevention of aortic root expansion, medical 

care of patients with elastic fiber disorders should additionally focus on the heart, to prevent future cardiac 

pathology. Further studies should therefore also address the mechanisms of matrix-related cardiomyopathy and 

pharmacological targets to attenuate the progression of heart disease in these patients. 
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Table 1

Anatomical and functional data of Fibulin-4+/+ and Fibulin-4R/R mice

 

Fibulin-4+/+ Fibulin-4R/R

Anatomical data

Body weight (g) 24,7 ± 0.8 23.8 ± 1.0

Tibia length (cm) 1.82 ± 0.01 1.80 ± 0.01

LV weight (mg) 89 ± 3 218 ± 16*

RV weight (mg) 22 ± 1 47 ± 4*

Lung weight (mg) 131 ± 2 162 ± 4*

Heart weight / body weight (mg/g) 4.5 ± 0.1 9.8 ± 0.7*

Functional data

Heart Rate (bpm) 575 ± 5 555 ± 13

MAP (mmHg) 91 ± 2 69 ± 5*

LV dp/dt
max

 (mmHg·s-1) 10770 ± 300 4650 ± 330*

LVEDP (mmHg) 3.4 ± 0.4 12.1 ± 2.0*

tau (ms) 9.5 ± 0.8 13.4 ± 2.7

Fibulin-4+/+ (n=16), Fibulin-4R/R (n=6), *P<0.05 vs Fibulin-4+/+. LV, left ventricle; 

RV, right ventricle; MAP, mean arterial pressure; LVEDP, LV end diastolic pressure.

Table 2 (next page)

Anatomical and functional data of Fibulin-4+/+ and Fibulin-4+/R mice
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Fibulin-4+/+ Fibulin-4+/R

Anatomical data

Body weight (g) sham 29.4 ± 0.6 29.6 ± 0.5

mTAC 28.7 ± 1.1 28.9 ± 0.7

Tibia length (cm) sham 1.85 ± 0.01 1.83 ± 0.02

mTAC 1.85 ± 0.01 1.84 ± 0.01

LV weight (mg) sham 102 ± 4 101 ± 5

mTAC 150 ± 5† 164 ± 7†

RV weight (mg) sham 26 ± 2† 25 ± 1†

mTAC 28 ± 2† 31 ± 2†

Lung weight (mg) sham 139 ± 3 141 ± 3

mTAC 165 ± 15† 187 ± 16†

Heart weight / body weight (mg/g) sham 4.3 ± 0.1 4.3 ± 0.2

mTAC 6.0 ± 0.2* 6.7 ± 0.3*†

Functional data

Heart Rate (bpm) sham 580 ± 9 572 ± 9

mTAC 555 ± 15 550 ± 11

MAP prox (mmHg) sham 90 ± 3 83 ± 5

mTAC 84 ± 5 79 ± 4

ΔSPG (%) sham 1 ± 2 -1 ± 4

mTAC 81 ± 7† 89 ± 8†

LV dp/dt
max

 (mmHg·s-1) sham 10940 ± 480 10630 ± 500

mTAC 8880 ± 590† 7620 ± 630†

tau (ms) sham 9.8 ± 1.4 6.8 ± 0.2

mTAC 9.8 ± 1.0 13.6 ± 1.6*†
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A B S T R A C T

 Aims: Increasing evidence supports a role for the angiotensin (Ang) II-AT
1
 receptor axis in aneurysm 

development. Here we studied whether counteracting this axis via stimulation of AT
2
 receptors is beneficial. 

Such stimulation occurs naturally during AT
1
 receptor blockade with losartan, but not during renin inhibition 

with aliskiren. 

 Methods and Results: Aneurysmal homozygous Fibulin-4R/R mice, displaying a 4-fold reduced fibulin-4 

expression, were treated with placebo, losartan, aliskiren, or the b-blocker propranolol from day 35-100. Their 

phenotype includes cystic media degeneration, aortic regurgitation, left ventricular (LV) dilation, reduced 

ejection fraction, and fractional shortening. While losartan and aliskiren reduced hemodynamic stress and 

increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber 

fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased 

ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen 

with aliskiren or propranolol. Longitudinal microCT measurements, a novel method in which each mouse serves 

as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because 

the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling.  

 Conclusions: Losartan, but not aliskiren or propranolol, improved survival in Fibulin-4R/R mice. This most 

likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect 

during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system 

blockade, suggests that it might be due to AT
2
 receptor stimulation.

C O N D E N S E D  A B S T R A C T

Treatment of thoracic aortic aneurysms (TAAs) is aimed at lowering hemodynamic stress. Increasing evidence 

supports a role for renin-angiotensin system blockade in TAA treatment. To what degree this is related to 

suppression of the angiotensin II-angiotensin II type 1 receptor (AT
1
R) axis, or stimulation of angiotensin II type 

2 receptors (AT
2
R) is controversial. By comparing the effects of the AT

1
R blocker losartan (allowing selective AT

2
R 

stimulation) and the renin inhibitor aliskiren (preventing AT
1
R and AT

2
R stimulation) in a TAA mouse model, this 

study supports the latter. Indeed, only losartan improved survival, by stabilizing aortic growth, reducing aortic 

distensibility, and improving cardiac function and structure, independently of its effect on blood pressure.
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I N T R O D U C T I O N

Thoracic aorta aneurysms (TAA) show degeneration of the medial layer of the aortic wall, characterized by elastic 

fiber fragmentation, loss of smooth muscle cells, and the accumulation of amorphous extracellular matrix 1. Such 

aortic wall degeneration is often a consequence of inherited connective tissue disorders. The most common 

inherited TAA disease, Marfan syndrome (MFS), is due to a mutation in the FBN1 gene, which encodes the 

extracellular matrix (ECM) glycoprotein fibrillin-1. FBN1 mutations result in a disorganized ECM assembly in the 

aortic wall 2, leading to all above described key features of TAA in MFS patients. Mice heterozygous for a cysteine 

substitution in an epidermal growth factor-like domain of fibrillin-1 (Fbn1C1039G/+ mice), i.e., a mutation which is 

prototypical for the FBN1 mutations in humans, similarly develop TAA 3.

 Another factor in the elastic fiber assembly of the vessel wall, heart valves and myocardial interstitium, is 

the ECM protein fibulin-4, encoded by the FBLN4 gene 4, 5. In humans, a mutation in this gene causes cutis laxa 

syndrome, that besides cutis laxa (loose skin), bone fragility and lung emphysema is characterized by vascular 

tortuosity and aneurysms similar to those observed in MFS 6-11. Moreover, mice with a systemic 4-fold reduced 

fibulin-4 expression (Fibulin-4R/R) share similar key features as seen in MFS and cutis laxa syndrome, i.e., cystic 

media degeneration, aortic regurgitation, and impaired cardiac morphology and function 12, 13, while complete 

fibulin-4 gene knock-out mice (Fibulin-4-/-) die perinatally from aortic rupture 14.

 Recent studies have shown that transforming growth factor (TGF)β signaling is upregulated in TAAs of MFS 
13, 15, 16. While direct regulators of TGFβ signaling include TGFβ and bone morphogenetic protein ligands, indirect 

stimulation of TGFβ signaling is accomplished by angiotensin (Ang) II, via its type 1 receptor (AT
1
R). In support 

of this concept, both TGFβ-neutralizing antibodies and the AT
1
R blocker losartan exerted beneficial effects in 

rodent TAA models, including Fibulin-4R/R mice when treated prenatally 13, 15. Yet, clinical studies with losartan in 

MFS did not yield uniformly positive results 17, 18. Blocking AT
1
R results in a counterregulatory rise in renin, thereby 

increasing Ang II levels. This Ang II cannot stimulate the blocked AT
1
R, but it may still bind to the unoccupied 

Ang II type 2 receptors (AT
2
R), which antagonizes AT

1
R-mediated effects 19, 20. Such AT

2
R stimulation is potentially 

beneficial in TAA 20, and will not occur during other forms of renin-angiotensin system (RAS) blockade, i.e., 

inhibition of the enzymes that generate Ang I (renin) or Ang II (ACE). 

 In the present study, we hypothesized that losartan outperforms the renin inhibitor aliskiren in the treatment 

of Fibulin-4R/R mice, given its additional AT
2
R-stimulating effects. Both drugs were compared with placebo and 

the b-blocker propranolol, a MFS drug that is often used in the clinic because it is expected to reduce heart rate, 

blood pressure and dP/dt. ACE inhibitors were not included, since such drugs, in addition to suppressing Ang 

II, also increase bradykinin, thus introducing interference with yet another hormonal system. Treatment started 

postnatally at a clinically relevant age: day 35, when the aneurysm is already present, and lasted up to 100 

days. Moreover, we used a novel in-vivo μCT-technique allowing longitudinal measurement that monitors the 

therapeutic treatment effects on both aneurysm progression as well as cardiac growth in time simultaneously.

Our data show that losartan, but not aliskiren or propranolol, independently of its blood pressure-lowering 

effect, improved survival in Fibulin-4R/R mice. The absence of this effect during aliskiren treatment suggests that 

it might involve AT
2
R stimulation. 
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M E T H O D S

Experimental animals
Generation of Fibulin-4R/R mice has been described previously 12. Heterozygous (Fibulin-4+/R) mice in a mixed 

C57Bl/6x129 background were mated to obtain Fibulin-4+/+ (wild-type) and Fibulin-4R/R littermates. Animals 

were housed in the institutional animal facility. Both males and females were included in the study, and since 

no apparent sex-related differences were observed, data from both sexes were pooled. All experiments were 

performed under the regulation and permission of the Animal Care Committee of the Erasmus MC, Rotterdam, 

The Netherlands (protocol number 139-11-09 and 139-13-11). The investigation conforms to the Guide for the 
Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, revised 

2011).

Treatment
Fibulin-4R/R mice and wild-type mice were treated postnatally from the age of 35 days up to 100 days with 

placebo, losartan (60 mg/kg p.o. per day; a kind gift of MSD, Haarlem, The Netherlands), aliskiren (62.5 mg/kg 

p.o. per day; a kind gift of Novartis Pharmaceuticals, Basel, Switzerland), or propranolol (50 mg/kg p.o. per day; 

Sigma, St. Louis, USA) in drinking water, as described before 13, 15, 21, 22.

Histology 
Mice (age 100 days) were weighed, euthanized by an overdose of CO

2
, and necropsied according to standard 

protocols. Perfusion-fixed aortas and hearts were isolated and paraffin-embedded. Next, 4 μm-aorta sections 

were haematoxylin and eosin (HE)-stained, stained for elastin (Verhoeff van Gieson), glycosaminoglycans 

(Alcian Blue) or vascular smooth muscle cells (VSMCs, a-smooth muscle actin). Immunohistochemistry for 

phosphorylated Smad2 (pSmad2) was performed as described previously 23, using rabbit antiphospho-smad2 

antibodies (Cell Signaling Technology, Danvers, USA). Positively stained pSmad2 nuclei were divided by the 

total number of nuclei to obtain relative amounts. HE-stained aorta slides were scanned with a nanozoomer 

(Hamamatsu, Almere, The Netherlands), and subsequently aortic wall diameter and aortic wall area were 

analyzed with NanoZoomer Digital Pathology view (Hamamatsu). Finally, 5-μm heart sections were stained with 

Gomori’s silver staining to visualize individual cardiomyocytes of the left ventricle (LV) 24. Only transversally cut 

cells showing a nucleus were used to determine the cardiomyocyte area. 

Biochemical measurements 
RAS components were measured in kidneys (Ang II) and blood plasma (renin). Blood was collected from the left 

ventricle immediately prior to euthanization in heparin-coated tubes, centrifuged at 5500 RPM, and plasma was 

stored at -80°C. Kidneys were removed after the animals had been euthanized, frozen in liquid nitrogen, and 

stored at -80°C. Tissue Ang II was measured by radioimmunoassay, after SepPak extraction and reversed-phase 

HPLC separation as previously described 25, 26. Plasma renin concentration (PRC) was determined by enzyme-

kinetic assay in the presence of excess angiotensinogen as described before 26. Additionally, B-type natriuretic 

peptide-45 (BNP-45) was measured in plasma, making use of a commercially available enzyme immuno-assay 

(Phoenix Pharmaceuticals Inc., Karlsruhe, Germany).

Ultrasound and hemodynamic measurements 
To evaluate the treatment of the different compounds on aneurysm formation and cardiac function, cardiac 

geometry, echocardiographic and hemodynamic measurements were performed in 100-days old Fibulin-4+/+ 

(wild type) and Fibulin-4R/R mice. Mice were anesthetized with 2.5% isoflurane and ventilated with 35% O
2
. 

Anesthesia did not affect heart rate (data not shown). Echocardiography of the ascending aorta and LV was 

performed using a Vevo2100 (VisualSonics Inc., Toronto, Canada). Ascending aorta and LV lumen diameter, aortic 
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distensibility, ejection fraction and fractional shortening were obtained from M-Mode images. Ejection fraction 

and fractional shortening were defined as the relative differences between end-diastolic and end-systolic 

volumes and diameter, respectively 13. Subsequently, a 1.4-Fr microtipped manometer (Millar Instruments, 

Houston, USA) was inserted into the right carotid artery to measure aortic pressure 27. Hemodynamic data were 

recorded and digitized using an online 4-channel data acquisition program (ATCODAS, Dataq Instruments, 

Akron, USA), analysis was performed with a program written in Matlab 28. Ten consecutive beats were selected 

for determination of systolic and diastolic blood pressure, subsequent mean arterial pressures (MAP) were 

calculated. 

Western blot
LV tissue samples were used for immunoblotting of extracellular signal-regulated kinases (ERK1/2), 

phosphorylated ERK1/2 (pERK1/2), Smad2 and pSmad2 (Cell Signaling Technology). Ratios of phosphorylated 

protein levels to loading control β-actin were calculated and corrected for the ratios in wild-type mice.

Quantitative real-time reverse transcription polymerase chain reaction
Expression of angiotensin II type 1a, type 1b and type 2 receptors (AT

1a
R, AT

1b
R and AT

2
R) was analyzed 

in LV tissue. Total RNA was isolated using RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden, Germany) 

and reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad, Veenendaal, The Netherlands). 

cDNA samples were subjected to 40 cycles real-time PCR analysis using SYBR Green qPCR Master Mix 

2x (Bio-Rad) and primers; β-actin 5’-AGCCATGTACGTAGCCATCCA-3’, 5’-TCTCCGGAGTCCATCACAATG-3’; 

β
2
-microglobin 5’-CTCACACTGAATTCACCCCCA-3’, 5’-GTCTCGATCCCAGTAGACGGT-3’; AT

1a
R 

5’-CCCACGTGTCCCTGTTACTAC-3’, 5’-TTTGGGGACAGTACAGGTTTC-3’; AT
1b

R 5’-CTGTGAAATTGCGGACGTAGT-3’, 

5’-AAGCCATAAAACAGAGGGTTCAG-3’; AT
2
R 5’-TACCCGTGACCAAGTCCTGA-3’, 5’-TACCCATCCAGGTCAGAGCA-3’. 

Gene expression was calculated using β-actin and β
2
-microglobin as housekeeping genes and the comparative 

Ct method (ΔΔCt) was used for relative quantification of gene expression.

FMT-CT Imaging
We used vascular Computed Tomography (CT) and fluorescent mediated tomography (FMT)-CT imaging with 

near-infrared fluorescent protease activatable probes as previously described 29. In short, mice subjected to 

FMT-CT were shaved and depilated to remove all hair that otherwise would absorb light and interfere with 

optical imaging. Mice subjected to vascular CT and FMT-CT mice received 5 mL/kg body weight Exia 160 

contrast agent (Binitio Biomedical Inc., Ottawa, Canada) through injection in the tail vein for subsequent CT 

analysis. Mice only subjected to vascular CT imaging were anesthetized (2.5% isoflurane) and scanned directly 

with the micro-CT scanner (Quantum FX system, Perkin Elmer Inc., Akron, USA). The thoracic aorta diameter, 

thoracic aortic volume and left ventricular volume were analyzed with a rendering program ‘microCT Tools by 

Analyze 11.0 software’ (AnalyzeDirect Inc., Overland Park, USA). Fibulin-4 mice which were also subjected to 

FMT imaging, were scanned with an FMT 2500 system (Perkin Elmer Inc.) at 680 nm excitation and emission 

wavelengths, at 24 hours after tail vein injection of 5 nmol of MMPSense 680 (Perkin Elmer Inc.). Mice were 

anesthetized (2.5% isoflurane) and fixed into the portable animal imaging cassette that lightly compressed the 

anesthetized mouse between optically translucent windows, thereby preventing motion during FMT and CT 

imaging. After FMT imaging, anesthetized mice were scanned with the micro-CT scanner to identify heart and 

aortic root region of the animals. After FMT-CT imaging, complete aortas were harvested and fluorescence was 

quantified using the FMT 2500 and Odyssey imaging systems (LI-COR Inc.). Near infrared images were obtained 

in the 680 nm channel.



Part II: The Role of the Renin-Angiotensin System on Aortic and Cardiac Pathology in Aneurysmatic Fibulin-4 Mice88

Figure 1

(A-B) Reduced fibulin-4 expression results in thoracic aorta aneurysms and cardiac hypertrophy in 100-day 

old Fibulin-4R/R mice (white bars represent 4 mm). (C) Kaplan-Meier survival curves of WT and treated 

Fibulin-4R/R mice (n=7-19). *P<0.05 vs. placebo. (D-F) Mean arterial pressure (MAP; n=3-5), plasma renin 

concentration (PRC; n=10-18), and renal angiotensin II levels (n=5) in Fibulin-4R/R mice treated for 65 days 

with placebo, losartan, aliskiren or propranolol vs. untreated age-matched WT mice. Data are mean±SEM. 

*P<0.05, **P<0.01, ***P<0.001.
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Figure 2

(A-C) Aortic diameter, distensibility and wall diameter in Fibulin-4R/R mice treated for 65 days with placebo, 

losartan or aliskiren vs. age-matched untreated WT mice (mean±SEM of n=6-10) (black bars represent 100 

µm); *P<0.05 vs. placebo. Treatment did not affect aortic wall morphology (D), elastic fiber fragmentation (E), 

extracellular matrix deposition (Alcian Blue) (F), a-smooth muscle actin (SMA) deposition (G), or pSmad2-

signaling (H). 
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Figure 3

(A) In-vivo three-dimensional FMT-CT co-registration of heart and aorta in Fibulin-4R/R mice treated for 65 

days with placebo or losartan vs. age-matched untreated WT mice, after injection of MMPSense 680 to 

determine matrix metalloproteinase (MMP) activity. (B) MMP activity determined ex-vivo in whole aortas, 

and (C) its quantification (mean±SEM of n=2).
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Data analysis
Normally distributed data are presented as mean±SEM. One-way ANOVA was applied for the analysis between 

groups, followed by a post-hoc Dunnett’s test when appropriate. All statistical tests were two-sided and P<0.05 

was considered statistically significant. 

R E S U L T S

Losartan increases survival of adult Fibulin-4R/R animals independently of its effect on blood pressure and 
the degree of RAS blockade
Reduced fibulin-4 expression resulted in severe TAA, cardiac hypertrophy, and diminished survival (Figures 

1A-1B), in full agreement with previous observations 12, 13. Losartan, but not aliskiren treatment, significantly 

improved survival (Figures 1C). Propranolol even tended to diminish survival (P=0.25), and no animal survived 

up to 100 days with this treatment. As a consequence, blood pressure data could not be obtained in propranolol-

treated mice, and in only 3 surviving aliskiren-treated mice versus 5 losartan-treated mice. MAP tended to be 

diminished in Fibulin-4R/R mice (P=0.17). Both RAS blockers similarly reduced MAP at 100 days (Figure 1D). PRC 

Figure 4

A-D) Left ventricular (LV) mass, LV diameter, ejection fraction and fractional shortening determined by 

in-vivo transthoracic echocardiography in Fibulin-4R/R mice treated for 65 days with placebo, losartan or 

aliskiren vs. age-matched untreated WT mice (mean±SEM of n=6-10). *P<0.05, **P<0.01.
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Figure 5

(A-B) Cardiomyocyte area (n=5-12; panel A shows a representative example) and (C) plasma brain natriuretic 

peptide (BNP; n=10-18) levels in Fibulin-4R/R mice treated for 65 days with placebo, losartan or aliskiren 

vs. age-matched untreated WT mice. Data are mean±SEM, **P<0.01, ***P<0.001 vs. WT or placebo. (D-E) 

pSmad2, pERK, and β-actin protein levels in hearts of Fibulin-4R/R mice treated for 65 days with placebo or 

losartan vs. age-matched untreated WT mice (n=3-4). *P<0.05 vs. WT. (F) Relative gene expression of LV 

Ang II receptors (n=3-10). *P<0.05 vs. WT.
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Figure 6

A) 3D overview of CT-angiography with contrast agent Exia160. (B-C) Aortic and LV volume of placebo and 

losartan treated Fibulin-4R/R mice at baseline. (D-E) Percentage growth of ascending aortas and left ventricle 

(LV). Data are mean±SEM of n=4-6. *P<0.05, ***P<0.001 vs. placebo.
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and renal Ang II were higher in fibulin-4R/R mice than in wild-type animals (Figures 1E-1F). Losartan and aliskiren 

comparably increased PRC versus placebo, suggesting a similar degree of RAS blockade. Losartan, but not 

aliskiren, additionally suppressed renal Ang II.

Losartan improves aneurysm size and aortic distensibility without affecting structural changes and 
matrix metalloproteinases (MMPs) 
At the age of 100 days, the ascending aortic diameter in Fibulin-4R/R mice was almost 3 times enlarged compared 

to wild-type mice (Figure 2A). This widening was accompanied by an approximately 50% decrease in distensibility 

(Figure 2B) and an increased wall thickness (Figure 2C). Losartan improved diameter and distensibility without 

affecting thoracic aortic wall thickness, whereas aliskiren had no significant effect on any of these parameters 

(Figures 2A-2C). For reasons discussed above, similar data could not be obtained for propranolol. Neither losartan 

nor aliskiren affected the disturbed aortic wall morphology, the severe alterations in elastic fiber organization, 

or the increased glycosaminoglycan deposition in Fibulin-4R/R mice (Figures 2D-2F). These drugs also did not 

significantly improve the reduced VSMC content, or diminish the increased pSmad2-signaling in these animals 

(Figures 2G-2H). Non-canonical (pERK) TGFβ signaling was similarly unaffected (data not shown). 

 In-vivo MMP activity, measured by 3D FMT-CT, was undetectable in aortas of wild-type mice, but greatly 

increased in the aortic arch of placebo- or losartan-treated Fibulin-4R/R mice (Figure 3A). Abdominal aorta MMP 

measurements were inaccurate due to the high fluorescent signal from the liver. Removal of the aortas after 

sacrifice allowed ex-vivo imaging at much great sensitivity (Figure 3B), and confirmed the in-vivo observations. 

Losartan did not affect MMP activity as compared to placebo (Figure 3C). Consequently, MMP activity was not 

determined in aliskiren-treated mice. 

Losartan improves cardiac morphology and function 
Transthoracic echocardiography in placebo-treated Fibulin-4R/R mice revealed a tripling of LV mass and a 

doubling of LV diameter versus wild-type mice (Figures 4A-4B) at the age of 100 days. Ejection fraction and 

fractional shortening were both greatly reduced (Figures 4C-4D). Losartan improved all parameters, although 

significance was not reached for LV mass. Aliskiren affected none of these parameters. Data for propranolol in 

100-day old mice could not be obtained. 

Losartan prevents cardiomyocyte hypertrophy and reduces canonical TGFβ signaling
Cardiomyocyte area doubled in Fibulin-4R/R versus wild-type mice, and losartan (but not aliskiren) fully prevented 

this hypertrophic response (Figures 5A-5B). As expected, changes in plasma BNP paralleled this pattern, 

although no significant differences were observed for this parameter (Figure 5C). Both canonical (pSmad2) and 

non-canonical (pERK) TGFβ signaling were upregulated in hearts of Fibulin-4R/R mice, but losartan reduced only 

the former to wild-type levels (Figure 5D-5E). Smad2 and ERK levels were identical under all conditions (data not 

shown). LV AT
1a

R -, AT
1b

R -, and AT
2
R expression were downregulated

 
in Fibulin-4R/R mice versus wild-type mice, 

and losartan treatment exclusively normalized AT
1a

R expression (Figure 5F). Unfortunately, due to scarcity of 

available tissue, similar data could not be obtained in aliskiren- or propranolol-treated mice. 

Losartan prevents LV and aneurysm growth rate 
We used a novel micro-CT method in combination with the vascular contrast agent Exia160, yielding longitudinal 

3D data sets in which each animal serves as its own baseline control (Figure 6A). At the start of treatment, both 

aortic volume and LV volume were not different in placebo- and losartan-treated Fibulin-4R/R mice (Figures 

6B-6C). Both volumes increased by approximately 60% during placebo treatment, and losartan largely (aortic 

volume), if not completely (LV volume) prevented this (Figures 6D-6E).
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D I S C U S S I O N

The present study shows that losartan, but not aliskiren or propranolol, increased survival in Fibulin-4R/R mice, 

and that this predominantly related to its capacity to improve cardiac function and structure. Although losartan 

also stabilized aortic growth, these effects were more modest than its effects on LV growth, and they did not 

result in any change in aortic wall morphology, TGFβ-signaling, or MMP-activity. Nevertheless, there was an 

improvement in aortic distensibility. The larger effects on the heart most likely reflect the fact that the heart 

profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. Since none 

of these effects were seen with aliskiren, despite the fact that this RAS blocker lowered blood pressure and 

inhibited the RAS to the same degree as losartan, we conclude that they are blood pressure-independent, and 

that losartan exerts effects beyond blockade of the classical Ang II-AT
1
R axis. This most likely concerns its unique 

capacity to induce AT
2
R stimulation. A second possibility would be activation of the angiotensin-(1-7)-Mas 

receptor axis. However, a study making use of Fbn1C1039G/+ mice (an alternative, albeit less severe, TAA model) 

supports the former only, since it observed no effect of an ACE inhibitor, although such a drug, like an AT
1
R 

blocker, activates the angiotensin-(1-7)-Mas receptor axis  20, 30. Our study is the first to directly compare renin 

inhibition and AT
1
R blockade in a mouse TAA model. 

 RAS activation, both in the circulation and at the tissue level, is an established characteristic of Fibulin-4R/R 

mice 13, 31. Given the low Ang II levels in the aorta and its relatively small size 32, we measured Ang II in renal 

tissue to confirm the upregulated tissue RAS activity in this model. Increased Ang II levels will facilitate TGFβ-

signaling, which is known to be enhanced in patients and mice with MFS 29, 33-36. In fact, increased serum TGFβ 

levels correlated directly with aortic root dilation 33. In agreement with the causative role of Ang II, we showed 

in an earlier study that prenatal treatment with losartan successfully improved elastic fiber fragmentation and 

reduced vessel wall thickness in Fibulin-4R/R mice 13. Moreover, in mice that lack fibulin-4 in VSMCs (Fbln4SMKO 

mice), aneurysm formation could be prevented completely when RAS blockade was started within a narrow 

therapeutic window during the first month of life 31. In this latter study, ACE inhibition with captopril and losartan 

treatment were equally effective. Yet, in contrast with our study, no cardiac phenotype was reported in Fbln4SMKO 

mice. 

 The present study in Fibulin-4R/R mice now evaluated postnatal losartan versus aliskiren treatment, 

started on day 35, i.e., when aneurysm formation is already present. This is not only more clinically relevant, 

as treatment in TAA patients usually starts in the presence of an aneurysm, but also more realistic given the 

fact that such blockade is contraindicated during pregnancy. Propranolol, a classical MFS drug, was used as 

a comparator, but exerted no effect, in agreement with its lack of effect at the same dose (50 mg/kg p.o. per 

day) in Fbn1C1039G/+ mice 15. All drugs were given orally, since the fragility of our model, resulting in a very low 

survival, was not compatible with the operation required to implant osmotic minipumps. Although aliskiren 

displays a low bioavailability 37, and is highly species-specific 38, it blocks mouse renin at the same concentration 

range as human renin 39. Consequently, by applying oral doses that were over 10 times higher than those used 

in humans (62.5 mg/kg p.o. per day versus 150-300 mg/day in humans), we were able, as in previous studies 21, 

22, to achieve a degree of RAS blockade that yielded the same blood pressure-lowering effects as losartan at 60 

mg/kg p.o. per day. Importantly, as an indication of RAS blockade, losartan and aliskiren increased circulating 

renin similarly. Probably as a consequence of this rise in renin release, aliskiren did not significantly decrease 

renal Ang II. Similar observations were made previously in the rat kidney 40. Yet, losartan decreased renal Ang II, 

in agreement with the fact that tissue Ang II largely reflects Ang II that is bound to, or has been internalized via, 

AT
1
R 41, 42. Therefore, during losartan treatment, the reduction in tissue Ang II is an indication of the degree of AT

1
R 

blockade. Unfortunately, we were unable to obtain comparable data for propranolol-treated mice, since none 

of these mice survived until the age of 100 days, i.e., the day of sacrifice for our RAS component measurements, 

at which timepoint blood pressure was measured. Nevertheless, it might be speculated that propranolol, given 

its modest renin-suppressing effects 43, did reduce Ang II. Long-term treatment with propranolol was feasible 
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in Fbn1C1039G/+ mice, in which aneurysm formation starts only at the age of 2 months 3, 44. Propranolol affected 

blood pressure in Fbn1C1039G/+ mice to the same extent as losartan 15. Even if this had also been the case in our 

model, e.g., based on Ang II reduction, this effect would have resembled that of aliskiren, i.e., it could not have 

resulted in enhanced AT
2
R stimulation. Thus, once TAA are established, both renin suppression with propranolol 

and renin inhibition with aliskiren lack the beneficial effects of losartan. In contrast, when treatment is started 

before the onset of TAA, like in the Fbln4SMKO mice model described above 31, captopril yielded the same effects 

as losartan. Since captopril does not allow AT
2
R stimulation, these data suggest that, at a very early stage of 

TAA, AT
1
R are predominant, while at a later stage AT

2
R may additionally come into play. This correlates well 

with the widely accepted phenomenon that AT
2
Rs normally display low-to-undetectable levels, which increase 

only under pathological conditions, e.g., post-myocardial infarction, during hypertension-induced remodeling, 

and in heart failure 45-47. Clearly, timing of treatment is of utmost importance, and different ages at the start of 

treatment (e.g. children/adolescents versus adults) may explain the success (or lack thereof ) of different RAS 

blockers in clinical trials 17, 18, 48. Moreover, when classifying FBN1 mutations into ‘haploinsufficiency’ (decreased 

amount of normal fibrillin-1), and ‘dominant negative’ (normal fibrillin-1 abundance with mutant fibrillin-1 

incorporated in the matrix), Franken et al. observed that Marfan patients with haploinsufficient FBN1 mutations 

were more responsive to losartan 49. Since the Fbn1C1039G/+ and Fibulin-4R/R TAA models closely correspond with 

the haploinsufficiency situation, it appears that the underlying mutation is an additional determinant of the 

success of AT
1
R blockade in Marfan patients. Taken together, simultaneous AT

2
R stimulation may not always 

offer an additional advantage, and thus selective AT
2
R agonists should not by definition be preferred over AT

1
R 

antagonists. 

 Given the predominant effects of losartan on the heart, we focused on canonical (pSmad2) and non-

canonical (pERK) TGFβ signaling in cardiac tissue. Both were upregulated in Fibulin-4R/R mice, comparable to 

their upregulation in aortic tissue in Fbln4SMKO and Fbn1C1039G/+ mice 20, 31. Yet, although losartan suppressed both 

types of signaling in aortic tissue in these latter models, in the hearts of our mice only the canonical signaling 

was found to be suppressed after losartan, while no pSmad2 suppression was seen in the aortic wall (Figure 

5E). These findings concur with the heart-specific effect of this AT
1
R antagonist in our model, and suggest that 

the AT
2
R stimulatory effects, if occurring, result in reduced canonical TGFβ signaling in the heart. Studies in 

transgenic animals support the concept that AT
2
Rs are antihypertrophic and prevent remodeling 50, 51. The lack 

of effect on pERK signaling in our Fibulin-4R/R mice is in agreement with a recent study by Cook et al. 52, who 

demonstrated that ERK1/2 activation peaks at a very early stage of the disease only, while pSmad2 remains 

elevated throughout the disease. From this perspective, effects of losartan on pERK1/2 are no longer expected 

after 100 days, simply because pERK1/2 is not activated anymore at that stage.   

 Gene expression studies in LV tissue revealed a reduction of all Ang II receptor types in Fibulin-4R/R mice 

compared to wild type mice. It should be noted that mice, unlike humans, display two AT
1
R subtypes, AT

1a
R 

and AT
1b

R, and that losartan blocks both AT
1
Rs equally well. AT

1
R downregulation is also known to occur in 

heart failure patients 53. It was not observed in the aortic arch or kidney of our Fibulin-4R/R mice 13, implying that 

its downregulation was cardiac-specific. Importantly, although the raw Ct values for the AT
1b

R, the AT
2
R and 

the housekeeping genes β-actin and β
2
-microglobin were identical in LV tissue and aorta (B.S. van Thiel, data 

not shown), the raw Ct values for the AT
1a

R in the LV were approximately 6 cycles lower than in the aorta. This 

suggests that AT
1a

R expression in the heart greatly exceeds that in the aorta. Losartan treatment exclusively 

normalized cardiac AT
1a

R expression in Fibulin-4R/R mice. Such upregulation is a well-known physiological 

response to receptor antagonism, once again supporting effective AT
1a

R blockade by losartan in the heart. Yet, 

it does not imply that AT
1a

R activation had now normalized (due to the simultaneous presence of losartan), and 

thus predominant AT
2
R stimulation by the elevated levels of Ang II during losartan treatment is still highly likely.

 Our data are the first to show the losartan-induced stabilization of LV growth over time with longitudinal 

microCT measurements. Using each animal as its own baseline control, this novel approach enabled us to 

conclude that the effects of losartan on LV growth exceeded those on aortic growth. Combined with the FMT to 

co-registrate MMP-activity, this approach allows monitoring of cardiac and aortic remodeling in a unique, non-
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invasive manner. It would also reduce the required number of animals. Given the major limitation of our animal 

model, i.e. a complicated breeding scheme and a high death rate resulting in low n-numbers, this is an important 

advantage. 

In conclusion, losartan, but not aliskiren or propranolol, improved survival in Fibulin-4R/R mice, by simultaneously 

stabilizing aortic growth, reducing aortic distensibility, and improving cardiac function and structure. The 

absence of these effects during aliskiren treatment, despite a similar reduction in blood pressure and degree of 

RAS blockade, suggests that it might be due to AT
2
R stimulation and/or activation of the angiotensin-(1-7)/Mas 

receptor axis. Future studies, making use of AT
2
R/Mas receptor knockout animals, AT

2
R/Mas receptor antagonists 

(e.g., PD123319 and A779, respectively) or AT
2
R/Mas receptor agonists (e.g., C21 and AVE0991, respectively) 

may help to substantiate this view. However, given the non-specific effects of the latter types of drugs 54, 55, the 

possibility that AT
2
R heterodimerize with Mas receptors 56, and the consequences of AT

2
R deletion on cardiac 

development and remodeling 57, the results of such studies may not be straightforward. In addition, none of 

these approaches is currently feasible in humans. 
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A B S T R A C T

Fibulins are extracellular matrix proteins associated with elastic fibres. Homozygous Fibulin-4 mutations lead 

to life-threatening abnormalities such as aortic aneurysms. Aortic aneurysms in Fibulin-4 mutant mice were 

associated with upregulation of TGF-β signalling. How Fibulin-4 deficiency leads to deregulation of the TGF-β 

pathway is largely unknown. Isolated aortic smooth muscle cells (SMCs) from Fibulin-4 deficient mice showed 

reduced growth, which could be reversed by treatment with TGF-β neutralizing antibodies. In Fibulin-4 deficient 

SMCs increased TGF-β signalling was detected using a transcriptional reporter assay and by increased SMAD2 

phosphorylation. Next, we investigated if the increased activity was due to increased levels of the three TGF-β 

isoforms. These data revealed slightly increased TGF-β1 and markedly increased TGF-β2 levels. Significantly 

increased TGF-β2 levels were also detectable in plasma from homozygous Fibulin-4R/R mice, not in wild type 

mice. TGF-β2 levels were reduced after losartan treatment, an angiotensin-II type-1 receptor blocker, known to 

prevent aortic aneurysm formation. In conclusion, we have shown increased TGF-β signalling in isolated SMCs 

from Fibulin-4 deficient mouse aortas, not only caused by increased levels of TGF-β1, but especially TGF-β2. 

These data provide new insights in the molecular interaction between Fibulin-4 and TGF-β pathway regulation 

in the pathogenesis of aortic aneurysms. 
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I N T R O D U C T I O N

In developed countries 1-2% of all deaths are caused by aortic aneurysms and dissections1. In these countries 

the incidence of thoracic aortic aneurysm (TAA) is approximately 25 per 100,000 persons per year2. In general, a 

TAA is characterized by degeneration of the extracellular matrix (ECM) and vascular smooth muscle cells (SMCs), 

including (phenotypic) loss of SMCs and changes in SMC proliferation3-5. Several genes have been identified in 

both syndromic and non-syndromic forms of TAA, including ECM genes, genes encoding contractile proteins in 

SMCs and genes involved in the regulation of the transforming growth factor (TGF)-β pathway6-8. 

 There are three mammalian TGF-β isoforms; TGF-β1, -β2 and -β3. They are encoded by different genes, but 

show a high degree of amino acid sequence homology. All TGF-β isoforms bind to the latency-associated protein 

(LAP) and via the latent TGF-β binding protein (LTBP) to the ECM. Upon activation TGF-βs can bind to the type-II 

TGF-β receptors (TβRII), which recruit the type-I TGF-β receptor (TβRI), also called activin receptor-like kinase 

(ALK)-5. ALK-5 is transphosphorylated by TβRII and subsequently downstream SMAD proteins (i.e. SMAD2/3) 

are phosphorylated. Activated SMAD2 and -3 associate with SMAD4, leading to translocation to the nucleus 

where they interact with target gene promoters and regulate transcription of genes encoding for plasminogen 

activator inhibitor (PAI)-I, matrix metalloproteinases (MMPs) and ECM proteins9.

A crucial role for the TGF-β pathway in syndromes associated with TAA became evident from both studies in 

patients and in mouse models10-14. Although TAAs are usually associated with increased TGF-β signalling, 

this association has also been observed with loss of function mutations in TGF-β and TGF-β receptors15. The 

identification of these mutations has led to new insights in the pathogenesis of aneurysm formation, but the 

molecular mechanism remains to be elucidated.

 Mutations in genes of the TGF-β pathway and the ECM lead to phenotypic and functional SMC loss: Tgfbr2 

mutations in Loeys-Dietz syndrome leads to decreased expression of SMC contractile proteins5. Furthermore, 

SMCs from mice with Marfan syndrome, another syndromic form of TAAs caused by mutations in the ECM 

glycoprotein Fibrillin-1, display an altered expression profile with morphological changes, but retain expression 

of vascular SMC markers4. In addition, increased TGF-β signalling inhibits proliferation of SMCs16. 

 Upregulated TGF-β signalling has been observed in another heritable form of TAA caused by a deficiency 

in the extracellular matrix protein Fibulin-413, 17-20. Fibulin-4 regulates proper elastogenesis by tethering lysyl 

oxidase to tropoelastin to facilitate crosslinking21, 22. In Fibulin-4 deficient patients and mice elevated TGF-β 

signalling has been shown12, 13, 20. However, the exact mechanism by which Fibulin-4 deficiency leads to 

increased TGF-β signalling remains to be determined. To further investigate this we isolated SMCs from the 

aortic arch of hypomorphic Fibulin-4 (Fibulin-4R/R) mice, displaying a 4-fold reduction of Fibulin-4 expression. This 

leads to congenital vascular abnormalities in these mice, including TAAs and vascular tortuosity12. Heterozygous 

Fibulin-4+/R mice, which have a 2-fold reduced Fibulin-4 expression, show minor irregularities and ECM changes 

in the aortic wall. Our data reveal that TGF-β signalling is enhanced in isolated SMCs derived from the aortas of 

Fibulin-4 deficient mice. We observed a decreased proliferation rate in Fibulin-4R/R SMCs, which could be reverted 

by addition of TGF-β neutralizing antibodies. We found that this increased TGF-β signal transduction activity is 

not only associated with increased levels of TGF-β1, but especially with enhanced TGF-β2 levels. Increased levels 

of TGF-β2 could also be detected in blood and aortic tissue lysates of the Fibulin-4R/R mice. Treatment of Fibulin-
4R/R mice with losartan, an angiotensin II type-1 receptor blocker, reduced the increased TGF-β2 levels in blood 

plasma. This study shows that increased TGF-β signalling in SMCs of Fibulin-4 deficient mice leads to decreased 

proliferation of SMCs and could be caused by increased bioavailability of TGF-β1 and especially TGF-β2.
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R E S U L T S 

Characterization of SMCs derived from Fibulin-4 deficient aortas
To examine TGF-β signalling in Fibulin-4 deficient SMCs, we isolated SMCs from the aortic arches of Fibulin-4+/+, 

Fibulin-4+/R and Fibulin-4R/R mice. To confirm that the cells we isolated were SMCs, the cells were analysed for 

the presence of SMC markers, including α-smooth muscle actin (α-SMA), smooth muscle specific protein-22 

(SM22), smooth muscle myosin heavy chain II (MHC II) and fibroblast specific protein 1 (FSP1), which stains SMCs 

with a rhomboid phenotype23, 24. Human umbilical vein endothelial cells (HUVECs) were taken along as positive 

control for CD31 staining and were negative for all other markers, while mouse embryonic fibroblasts (MEFs) 

were positive controls for FSP1, and SMA and SM22 staining25. Isolated SMCs showed positive staining for α-SMA, 

SM22, MHC II, FSP1 and were negative for CD31 (Figure 1A) confirming the SMC phenotype. QPCR expression 

analysis also showed no detectable CD31 and von Willebrand Factor (an additional endothelial marker) mRNA 

expression (data not shown). α-SMA was highly expressed and seemed somewhat increased in Fibulin-4+/R 

and Fibulin-4R/R SMCs (Figure 1B). Next, the levels of Fibulin-4 were analysed by QPCR. These data revealed that 

expression levels of Fibulin-4 mRNA in Fibulin-4+/R and Fibulin-4R/R SMCs was downregulated (Figure 1C). These 

data show that we isolated a population of SMCs with a gradual reduced Fibulin-4 expression level, which we 

used for further cell biological and molecular analyses.

TGF-β reduces proliferation of Fibulin-4R/R SMCs 
Previously we showed in 10 days old Fibulin-4R/R mice increased BrdU uptake indicating increased proliferation of 

SMCs, leading to changes in the tunica adventitia of the aorta12. However, in adult Fibulin-4R/R mice (100 days old) 

increased proliferation was observed specifically in the endothelial layer (Figure 2A). No proliferation of SMCs in 

the adventitia or media of the aortic wall was observed. Next, we analysed proliferation rates of the SMCs with 

reduced Fibulin-4 expression in vitro. Figure 2B shows similar growth rates of all three genotypes until day 5, after 

which proliferation was decreased in Fibulin-4R/R SMCs. As TGF-β can inhibit cell proliferation, we determined 

whether the reduced growth of Fibulin-4R/R SMCs is a consequence of increased TGF-β activity. Therefore SMCs 

were treated with TGF-β neutralizing antibodies (nAb), which neutralize all three TGF-β isoforms26, 27. Treatment 

with the TGF-β nAb reversed the growth inhibition observed in Fibulin-4R/R SMCs compared to Fibulin-4+/+ SMCs 

(Figure 2C-F). On day 7 the number of Fibulin-4R/R SMCs was significantly increased after treatment with TGF-β 
nAb compared to non-treated Fibulin-4R/R SMCs. Moreover, proliferation was similar to Fibulin-4+/+ SMCs. These 

data indicate that Fibulin-4 deficiency leads to increased TGF-β, which inhibits proliferation of SMCs.

Fibulin-4 expression regulates TGF-β signalling in aortic SMCs
Since we observed that TGF-β neutralizing antibodies revert the decreased proliferation rates of Fibulin-4R/R 

SMCs, we further analysed transcriptional consequences of increased TGF-β signalling in these cells using a 

SMAD3/SMAD4 dependent promoter transcriptional reporter construct (CAGA-luciferase)28. Although there was 

a difference in proliferation between different genotypes at later time points, this was not observed during the 

shorter duration of this assay (Figure 3A). To determine whether transfection efficiency was similar between the 

different genotypes a green fluorescent protein (GFP) expressing construct was transfected and GFP expression 

determined. Flow cytometric analysis showed no differences between the percentages of GFP expressing 

Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs (Figure 3B) and thus no differences in transfection efficiencies 

among these different genotype. Next, we used the CAGA-luciferase reporter construct to assess TGF-β 

signalling activity in Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs. Stimulation with TGF-β of Fibulin-4+/+, Fibulin-
4+/R and Fibulin-4R/R SMCs showed a strong induction of luciferase activity, which was increased in a Fibulin-4 

dose-dependent manner (Figure 3C). Addition of the TβRI kinase inhibitor SB431542, a compound selectively 

blocking TGF-β binding29, abolished TGF-β-induced transcriptional responses. Analysis of downstream pSMAD2 

and pSMAD3 by western blotting revealed a gradual increase in SMAD2 and SMAD3 phosphorylation after 

stimulation with TGF-β in Fibulin-4+/R and Fibulin-4R/R SMCs compared to Fibulin-4+/+ SMCs (Figure 3D), confirming 
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Figure 1

Characterization of isolated SMCs from the aortic arch. (a) Immunofluorescent staining of aortic SMCs 

isolated from Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice showed that these cells stained positively for 

SMA, SM22, MHC II and FSP1. The SMCs were negative for the endothelial marker CD31, while HUVECs 

were positive. HUVECs were negative for all other stainings. MEFs stained positive for SMA, SM22 and 

FSP1 and were negative for MHC II and CD31. Magnification 20x, scale bar 100 µm. (b) Fibulin-4+/R and 

Fibulin-4R/R SMCs show gradual increased SMA mRNA expression levels compared to Fibulin-4+/+ SMCs. (c) 

Fibulin-4 mRNA expression in SMCs. Fibulin-4+/R and Fibulin-4R/R SMCs show gradual decreased Fibulin-4 

mRNA expression levels compared to Fibulin-4+/+ SMCs.
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Figure 2

Reduced proliferation of Fibulin-4R/R SMCs is reversed by inhibition of the TGF-β  pathway. (a) Increased 

proliferation of endothelial cells is present in the aortic wall from 100 days old Fibulin-4R/R mice and is 

indicated by the arrows. 

(b) Growth analyses of Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs revealed a reduced growth starting 

from day 5 for Fibulin-4R/R SMCs as compared to Fibulin-4+/+ SMCs (3 dishes per experiment were counted 

and the average of 3 independent experiments is shown). Treatment of (c) Fibulin-4+/+, (d) Fibulin-4+/R 

and (e and f) Fibulin-4R/R SMCs with TGF-β neutralizing antibodies significantly increased proliferation of 

Fibulin-4R/R SMCs from day 5. (f) At day 7 the number of treated Fibulin-4R/R SMCs was significantly higher 

and comparable to the amount of Fibulin-4+/+ SMCs (* p<0.05, ** p<0.01). Data represent 3 independent 

experiments performed in triplicate. 
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Figure 3

Increased TGF-β signalling in Fibulin-4 deficient SMCs. (a) Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs show 

similar proliferation rates in the time course of the experiment (MTS proliferation assay) (b) Transfection with 

green fluorescent protein (GFP) encoding plasmids display no difference in percentage of transfected SMCs 

between Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs. (c) The TGF-β response assay reveals a gradual increase 

in TGF-β activity in Fibulin-4+/R and Fibulin-4R/R SMCs compared to Fibulin-4+/+ SMCs, after stimulation with 

exogenous TGF-β. Data represent fold change relative to unstimulated Fibulin-4+/+ SMCs. Addition of the ALK-5 

kinase inhibitor (SB431542) abolishes the TGF-β response in Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs. (d) 

Western blot analyses for TGF-β signalling downstream mediators pSMAD2 and pSMAD3 on TGF-β stimulated 

SMCs show a gradual increase in TGF-β signalling in Fibulin-4 deficient SMCs compared to Fibulin-4+/+ SMCs. (e) 

Measurement of basal TGF-β activity (no stimulation by exogenous TGF-β) by the CAGA-luciferase reporter show 

increased TGF-β activity in Fibulin-4R/R SMCs compared to Fibulin-4+/+ SMCs, which can be inhibited by the TβRI 

kinase inhibitor SB431542. (f ) These data were confirmed by western blot analyses for pSMAD2 and pSMAD3. 

All data shown are representative for in total n=3 independent experiments and all performed under serum 

starved conditions (*p<0.05, **p<0.01).
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the CAGA-luciferase reporter data. These data indicate that Fibullin-4 deficient cells show increased signalling 

upon exogenous TGF-β stimulation.

To explore whether basal TGF-β signalling is also affected in Fibulin-4 deficient cells, SMCs were transfected with 

the CAGA-luciferase reporter and TGF-β signalling without exogenous addition of TGF-β ligand was analysed. 

This showed that luciferase activity was already increased in untreated Fibulin-4R/R SMCs compared to Fibulin-4+/+ 

SMCs (Figure 3E). This could be reversed by SB431542, suggesting a TGF-β mediated effect. Western blot analysis 

showed gradually increased basal phosphorylation of SMAD2 and SMAD3 in untreated Fibulin-4+/R and Fibulin-
4R/R SMCs (Figure 3F). Taken together, these data indicate that increased phosphorylation of Smad2/3 leads to 

enhanced transcriptional activation of downstream TGF- β signalling genes and reduced growth in Fibulin-4 

mutant cells.

Increased TGF-β1 and TGF-β2 levels in Fibulin-4 deficient SMCs
Since we observed increased basal TGF-β signalling in Fibulin-4 deficient SMCs, we analysed whether this was 

due to increased TGF-β levels. Subconfluent Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs were serum-starved and 

conditioned medium was collected for 4 consecutive days to determine TGF-β1, -2 and -3 levels. TGF-β3 levels 

were very low and did not differ between the different genotypes (data not shown). Although Tgf-β1 mRNA 

levels in SMCs did not differ between the genotypes (Figure 4A), TGF-β1 levels in Fibulin-4R/R SMCs conditioned 

medium were higher compared to Fibulin-4+/+ SMCs (Figure 4B). Conditioned medium from Fibulin-4+/R SMCs 

showed intermediate TGF-β1 levels. To analyse whether the increased TGF-β1 levels were also observed in vivo, 

we prepared lysates from aortic arches of Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice and measured TGF-β1 
levels. These data revealed a similar gradual increase in TGF-β1 levels in aortic arch lysates of Fibulin-4+/R and 

Fibulin-4R/R mice (Figure 4C). 

Next, we analysed TGF-β2 expression in the SMCs. Fibulin-4+/R and Fibulin-4R/R SMCs showed >5-fold increased 

Tgf-β2 mRNA expression levels (Figure 4D). ELISA analysis on conditioned medium from Fibulin-4+/+, Fibulin-
4+/R and Fibulin-4R/R SMCs revealed strongly increased TGF-β2 levels in medium from Fibulin-4+/R and Fibulin-4R/R 

SMCs compared to Fibulin-4+/+ SMCs, in which TGF-β2 was undetectable (Figure 4E). TGF-β2 levels were already 

significantly higher in conditioned medium from Fibulin-4+/R SMCs. Increased TGF-β2 levels were also detectable 

in Fibulin-4R/R aortic arch lysates, when compared to aortic arch lysates from Fibulin-4+/+ and Fibulin-4+/R mice 

(Figure 4F). Given the increased TGF-β levels in SMCs and aortic tissue derived from Fibulin-4 deficient mice, we 

determined TGF-β1 and TGF-β2 levels in plasma samples from these mice. TGF-β1 levels were not significantly 

different among plasma from Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice (Figure 5A). In contrast, plasma TGF-β2 

levels were very low in wild type mice and could be detected in 2 out of 15 Fibulin-4+/+ mice and 2 out of 19 

Fibulin-4+/R mice (Figure 5B). In contrast TGF-β2 levels could be detected in plasma from 12 out of 24 Fibulin-4R/R 

mice with significantly higher concentrations compared to Fibulin-4+/+ and Fibulin-4+/R mice. These data show 

that specifically TGF-β2 levels in aortic tissue and plasma of Fibulin-4 deficient mice are strongly increased.

Losartan treatment rescues lethality and lowers plasma TGF-β2 levels in Fibulin-4R/R mice
Next, adult mice were treated with Losartan, an angiotensin-II type-I receptor blocker, which prevents aortic 

root enlargement and reduces circulating TGF-β1 in a Marfan mouse model30. Compared to the increased 

secretion of TGF-β2 in placebo treated Fibulin-4R/R mice we observed, TGF-β2 levels were not detectable in the 10 

losartan treated Fibulin-4R/R mice. Consistent with previous studies31, Losartan treatment of wild type, Fibulin-4+/R 

and Fibulin-4R/R mice showed improved survival rates of Losartan treated Fibulin-4R/R mice until at least the age 

of 160 days compared to placebo treated Fibulin-4R/R mice, which maximally survive until the age of 100 days 

(Figure 5C). All losartan and placebo treated wild type and Fibulin-4+/R mice survived at least until the duration 

of the experiment (data not shown). Despite improved survival, 160 days old Losartan treated Fibulin-4R/R mice 

developed significantly enlarged aortic diameters compared to losartan treated wild type mice (Figure 5D), and 

a thickened and degenerated aortic wall architecture as evidenced by fragmentation of its elastin layers (Figure 

5E). Previously we showed a reduced SMA staining in the aortic wall of 100 days old Fibulin-4 deficient mice, 
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Figure 4 

Strong increase of TGF-β2 levels in Fibulin-4 deficient SMCs. (a) Fibulin-4+/R and Fibulin-4R/R SMCs show equal Tgf-β1 

mRNA expression levels compared to Fibulin-4+/+ SMCs. (b) Increased TGF-β1 levels measured in conditioned 

medium (CM) from Fibulin-4R/R SMCs compared to Fibulin-4+/+ CM on day 1-4 after serum starvation. Fibulin-4+/R 

SMCs showed significant increased TGF-β1 levels on day 2 and 4 after serum starvation compared to Fibulin-4+/+ 

SMCs. Furthermore, on day 4 Fibulin-4R/R SMCs show significant increased TGF-β1 levels compared to Fibulin-
4+/R SMCs (n=4 per day for each genotype). Two-way ANOVA analysis for genotype and between days p<0.05. 

(c) Gradually increased TGF-β1 is also observed in aortic arch lysates of Fibulin-4+/R (n=6) and Fibulin-4R/R mice 

(n=5) compared to Fibulin-4+/+ aortas (n=5). This increase is significant in Fibulin-4R/R aortic arch lysates compared 

to Fibulin-4+/+ aortic arch lysates. (d) Fibulin-4+/R and Fibulin-4R/R SMCs show gradual increased Tgf-β2 mRNA 

expression levels compared to Fibulin-4+/+ SMCs. (e) Measurement of TGF-β2 revealed markedly increased levels 

in CM of Fibulin-4+/R and Fibulin-4R/R SMCs, while TGF-β2 was undetectable in CM of Fibulin-4+/+ SMCs (experiments 

were performed in at least 3 independent experiments). Two-way ANOVA analysis for genotype and between 

days p<0.05. (f ) Measurements in aortic arch lysates display significantly increased TGF-β2 in Fibulin-4R/R aortas 

compared to Fibulin-4+/R and Fibulin-4+/+ aortas (*p<0.05, **p<0.01). 
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Figure 5

Increased levels of TGF-β2 are detectable in plasma from 100 days old Fibulin-4R/R mice, which reduces 

on Losartan treatment. (a) TGF-β1 measurements in plasma samples showed no difference between 

placebo treated Fibulin-4+/+ (n=9), Fibulin-4+/R (n=8) and Fibulin-4R/R mice (n=10). (b) TGF-β2 was detectable in 

plasma of 12 out of 24 placebo treated Fibulin-4R/R mice compared and only 2 out of 15 in placebo treated 

Fibulin-4+/+ mice and 2 out of 19 in Fibulin-4+/R mice. TGF-β2 levels are significantly higher in Fibulin-4R/R 

mice compared to placebo treated Fibulin-4+/+ and Fibulin-4+/R mice.  Losartan treatment of Fibulin-4R/R mice 

seemed to reduce the TGF-β2 levels (0 out of 9) as compared to placebo treated Fibulin-4R/R mice. The 

red line indicates the detection of the ELISA (Chi-square p<0.001). (c) Kaplan-meier survival curve shows 
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indicative for SMC loss31. This SMC loss is not ameliorated by losartan treatment of Fibulin-4R/R mice (Figure 5E). 

Both placebo and Losartan treated Fibulin-4+/R mice showed an increase in aortic wall thickness and minor elastin 

breaks compared to wild type mice, which was also previously observed in non-treated Fibulin-4+/R mice12. These 

results show that lethality and increased plasma TGF-β2 levels in Fibulin-4R/R mice can be reduced by losartan 

treatment, showing a causal relation between increased TGF-β signalling and lethality in aneurysmal Fibulin-4 

mice.

D I S C U S S I O N

In this study we show that TGF-β signalling is gradually enhanced in Fibulin-4 deficient SMCs in a Fibulin-4 dose-

dependent manner and influences proliferation of these cells. The increased TGF-β signalling is consistent with 

increased TGF-β1 levels, and especially with increased TGF-β2 levels, detected in plasma from Fibulin-4 deficient 

mice. 

 Previous analyses on aortas from Fibulin-4 deficient mice showed increased TGF-β signalling associated 

with aneurysm formation by gene expression analysis and increased nuclear pSMAD2 staining in the SMCs of 

these aortas12. Isolation of aortic SMCs from these mice provided the opportunity to assess TGF-β signalling in 
vitro. Fibulin-4R/R SMCs have a reduced proliferation rate compared to Fibulin-4+/R and wild type SMCs, which is 

reversed by TGF-β inhibition. Reduced proliferation only takes place after a prolonged incubation time, which 

is most probably caused by the requirement of certain levels of TGF-β before it affects the proliferation rates 
of the SMCs. However, in the aortic wall local active TGF-β concentrations can be much higher, due to 

local activation of the ECM bound TGF-β. In our previous studies we found a hyperproliferation of SMCs as well 

as a decreased SMC content in the aortic wall of Fibulin-4 deficient mice12, 31. The hyperproliferation of SMCs 

was specifically found in the adventitial layers of the aortic wall of newborns. Tsai et al showed that TGF-β can 

transform from an inhibitor to a stimulant of SMC proliferation in the context of elevated Smad332. We observed 

a gradual increase in TGF-β signalling in Fibulin-4 deficient SMCs, which could be reverted by inhibition of 

TGF-β. These data indicate that the proliferation of Fibulin-4 deficient SMCs is reduced due to increased TGF-β 

signalling, thereby potentially contributing to aortic aneurysm formation. 

 ELISA analyses point to increased TGF-β1 levels in Fibulin-4 deficient SMCs and strongly increased TGF-β2 

levels, also detected in plasma of Fibulin-4R/R mice. The three TGF-β isoforms are involved in both overlapping and 

divergent roles. While Tgf-β1 null mice develop an autoimmune-like inflammatory disease33 and Tgf-β3 knockout 

mice show abnormal lung development and cleft palate34 Tgf-β2 knockout mice have multiple developmental 

defects, including cardiovascular, pulmonary, skeletal, ocular, inner ear and urogenital manifestations35. Tgf-β2 

heterozygous mutations in patients result in a different phenotype compared to Tgf-β2 knock-out mice15. 

TGF-β2 haplo-insufficiency predisposes for adult-onset vascular disease, including aortic tortuosity and dilation, 

cerebrovascular disease and mitral valve disease, which overlaps with the phenotype of Fibulin-4 deficient 

and increased survival of Losartan treated Fibulin-4R/R mice compared to placebo treated Fibulin-4R/R mice. 

(d) Aortic diameter of 160 days old placebo and losartan treated Fibulin-4+/+, Fibulin-4+/R mice and Losartan 

treated Fibulin-4R/R mice. Losartan treated Fibulin-4R/R mice have significantly enlarged aortic diameters 

compared to wild type mice, while there are no differences between placebo and Losartan Fibulin-4+/R mice 

and wild type mice. (e) HE, elastin and αSMA staining of ascending thoracic aortas. Placebo and losartan 

treated Fibulin-4+/R mice (160 days old) show an increase in aortic wall thickness and some elastin breaks 

compared to Fibulin-4+/+ mice. Losartan treated Fibulin-4R/R mice show despite of their survival disrupted 

aortic wall architecture. In addition, despite losartan treatment there is loss of smooth muscle cell content 

in the media of Fibulin-4R/R mice. (*p<0.05, **p<0.01).
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patients. The phenotype of the TGF-β2 deficient patients also shows overlap with other TGF-β signalopathies 

including Marfan syndrome, Loeys-Dietz syndrome, the aneurysm-osteoarthritis syndrome and similarly present 

with a paradoxical, probably compensatory, local increase in TGF-β1 and TGF-β2. Furthermore, increased 

Tgf-β2 expression has been detected in patients with the Loeys-Dietz syndrome36. The fact that TGF-β2 haplo-

insufficiency results in a cardiovascular phenotype and local increased TGF-β2, stresses the potential importance 

of TGF-β2 in the vasculopathy. For various TGF-β superfamily members it is known that their effects are very 

concentration dependent37, 38. Very high or very low levels of these cytokines can have similar or opposite 

effects on cells. In addition, crucial in the regulation of TGF-β activity is its activation from the latent ECM-bound 

complexes. This might explain the, at first sight, contradictory findings. This also suggests that increased TGF-β2 

expression is part of a common pathophysiologic process involved in aortic aneurysm formation in these 

syndromes. Whether it is a direct or indirect consequence of Fibulin-4 deficiency has to be determined in further 

studies.

 We observed that specifically the TGF-β2 isoform is elevated and detected at higher levels in the conditioned 

medium from these cells and in vivo in aortic lysates and blood. TGF-β2 differs in its receptor binding properties 

from TGF-β1 and TGF-β3. While TGF-β1 and TGF-β3 have a high affinity for binding to TβRII, TGF-β2 primarily binds 

to the transforming growth factor type-III receptor (TβRIII), also called betaglycan, after which it presents the 

ligand to the TβRI-TβRII signalling complex39. Bee et al. showed a specific regulatory role for the TGF-β receptor-

IIb (TβRIIb), an alternatively spliced variant of TβRII, in TGF-β2 signal transduction. TβRIIb mutations result in 

TGF-β2 dependent increased SMAD2 phosphorylation, which is involved in aortic aneurysm progression40. 

Human SMCs express TβRI, TβRII and TβRIII, while in SMCs derived from atherosclerotic lesions TβRII expression 

is decreased41. This indicates that alterations in TGF-β receptor expression probably contribute to the regulation 

of the TGF-β pathway. As our data point to markedly increased TGF-β2 levels in Fibulin-4 deficient SMCs, analyses 

on TGF-β receptors on these SMCs might further clarify the process of TGF-β regulation and determine its role in 

the pathogenesis of Fibulin-4 associated aortic aneurysms.

 Increased TGF-β levels or TGF-β signalling is associated with multiple diseases. Enhanced TGF-β signalling 

is known to mediate a pathologic increase in ECM secretion and deposition and is causative for fibrosis in 

multiple disorders throughout the body42. Overexpression of TGF-β2 is likely to induce trabecular meshwork 

ECM deposition43 and increased ECM deposition is also observed in aortic aneurysm formation. TGF-β2 is also 

frequently overexpressed in malignant cancers, where it induces immunosuppression and stimulates metastasis 

formation44. TGF-β2 expression can be targeted with antisense oligonucleotides, which are currently under 

investigation in clinical trials45. As inhibition with pan TGF-β neutralizing antibodies is likely to induce side 

effects, aortic aneurysms associated with increased TGF-β2 might benefit from a TGF-β2 specific intervention 

decreasing systemic side effects by targeting the other isoforms. In Marfan patients, mouse models for Loeys-

Dietz syndrome and transverse aortic constriction (TAC), losartan treatment prevents aortic aneurysm formation 

accompanied by reduced TGF-β1 levels in patients with Marfan syndrome, and reduced TGF-β1 and TGF-β2 

levels in Loeys-Dietz syndrome and TAC mice30, 36, 46, 47. Our data indicate that losartan could also serve as an 

important therapeutic agent. The exact mechanism how losartan treatment leads to reduced TGF-β signalling 

needs to be determined.

 Fibulin-4 binds LTBP-1 with high affinity and therefore an important role for Fibulin-4 in the association of 

LTBP-1 with microfibrils is predicted. The large latent complex (LLC), which is formed by LTBP and LAP-bound 

TGF-β, is linked to microfibrils through binding of LTBP-1 to Fibrillin-1. Therefore, Fibulin-4 might be additionally 

involved in sequestering of the LLC through LTBP-1 binding48. We speculate that reduced Fibulin-4 levels lead 

to defective sequestering to the ECM and thereby increased free TGF-β1 and TGF-β2. In conclusion, these data 

show that SMC derived TGF-β2 is associated with aortic aneurysm formation and levels decrease upon losartan 

treatment, which improves survival of Fibulin-4 deficient mice. Specific intervention on TGF-β2 could provide 

more information on its role in the pathogenesis of aortic aneurysm formation. In vitro analyses on isolated SMCs 

provide the opportunity to determine the molecular link between Fibulin-4 and TGF-β pathway regulation, and 

to further unravel its role in aortic aneurysm formation. 
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M A T E R I A L  A N D  M E T H O D S

Animals 
Mice containing the Fibulin-4R allele were generated as previously described12. All mice used were bred in a 

C57BI/6J background and were kept in individually ventilated cages to keep animals consistently micro-flora 

and disease free. To avoid stress-related vascular injury, mice were earmarked and genotyped 4 weeks after 

birth. Animals were housed at the Animal Resource Centre (Erasmus University Medical Centre), which operates 

in compliance with the “Animal Welfare Act” of the Dutch government, using the “Guide for the Care and Use of 

Laboratory Animals” as its standard. As required by Dutch law, formal permission to generate and use genetically 

modified animals was obtained from the responsible local and national authorities. All animal studies were 

approved by an independent Animal Ethical Committee (Dutch equivalent of the IACUC).

Treatment of mice
Fibulin-4+/+ and Fibulin-4R/R mice received 0.6 gram/liter losartan (Sigma, Zwijndrecht, the Netherlands) or placebo 

in their drinking water as previously described30, 31. Adult Fibulin-4R/R mice and their wild type littermates were 

treated during 10 weeks or 18 weeks, starting at the age of 5 weeks. Blood samples from placebo or losartan 

treated Fibulin-4+/+ and Fibulin-4R/R mice were obtained by cardiac puncture and collected in lithium heparin vials 

(Sarstedt, Numbrecht, Germany). 

Isolation of SMCs and cell culture
Vascular SMCs were isolated from the luminal side of the aortic arch from Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R 

male mice. The tissue was washed with phosphate-buffered saline (PBS), cut into 5-mm pieces with the luminal 

side on the 0.1% gelatine coated cell culture dishes and incubated. After 7–10 days, smooth muscle-like cell 

outgrowth was observed. SMCs were maintained in DMEM (Lonza, Leusden, the Netherlands), supplemented 

with 10% foetal calf serum (HyClone, Thermo Scientific, Breda, the Netherlands),100 U/ml penicillin and 100 μg/
ml streptomycin (Sigma-Aldrich, Zwijndrecht, the Netherlands). Cells were used at passage 5–11.

Immuno-fluorescent and –histochemical stainings
Subconfluent SMCs, Human Umbilical Vein Endothelial Cells (HUVECs), isolated as described before 49, and Mouse 

Embryonic Fibroblasts (MEFs), isolated from 8 day old C57/bl6 mouse embryos, were grown on coverslips and 

fixed in 1% paraformaldehyde. Cells were permeabilised with 0.1% Triton/PBS and blocked with PBS containing 

1.5% bovine serum albumin/0.15% glycine (Sigma). Next, coverslips were incubated overnight at 4oC with the 

primary antibodies; mouse anti-smooth muscle actin 1:1500 (Progen, Heidelberg, Germany), rabbit polyclonal 

anti-SM22 alpha antibody 1:400 (Abcam, Cambridge, UK), mouse monoclonal anti-smooth muscle myosin heavy 

chain II 1G12 1:500  (Abcam, Cambridge, UK), rabbit anti-CD31 1:800 (Santa Cruz Biotechnologies, Santa Cruz, 

USA) and rabbit anti-FSP1/S100A4 1:1600 (Millipore, MA, USA). The next day cells were incubated with secondary 

antibodies anti-mouse alexafluor 488 1:1000 (Molecular Probes, Eugene, Oregon) for SMA and MHC II and anti-

rabbit alexafluor 594 1:1000 (Molecular Probes, Eugene, Oregon) for SM22, CD31 and Fibroblast Specific Protein1 

(FSP-1), and mounted with DAPI. Slides were analysed with the LEICA DMRBE Aristoplan Microscope equipped 

with the Hamamatsu ORCA-ER Camera. Pictures were taken at 25 x magnification. To analyse in vivo SMC content 

and proliferation 4 µm sections of paraffin embedded aortas were stained with haematoxylin and eosin, elastin 

(Verhoeff-van Gieson), and α-smooth muscle actin as described before31. BrdU staining was performed according 

to the manufacturers’ protocol (Roche, Basel, Switzerland).

Proliferation assay
Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs were seeded in triplicate in 6 cm dishes (5000 cells/well) and allowed 

to attach overnight. Next cells were treated with TGF-β neutralizing antibodies (kindly provided by Dr. E. de Heer, 

Leiden University Medical Centre, Dept. of Pathology 26, 27) and counted every day using a Burker cell counting 
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chamber. Medium was replaced every other day. The MTS proliferation assay was performed according to the 

manufacturer’s instructions (Promega, Madison, USA). In short SMCs were seeded in 96-well plates (1500 cells/
well) and allowed to attach overnight. At day-1, -2 and -3 medium was changed to 100 μl complete DMEM + 
20 μl MTS substrate and the metabolic activity of the cells was analysed by absorbance change at 490 nm 

after 2 hours.

TGF-β response assay
TGF-β response in SMCs was determined using (CAGA)

12
−MLP−Luciferase promoter reporter construct28. This 

construct contains 12 palindromic repeats of the SMAD3/4 binding element derived from the PAI-1 promoter 

and was shown to be highly specific and sensitive to TGF-β. The assay was performed as described previously29. 

In short SMCs were seeded in 1% gelatine coated 24-well plates and allowed to attach overnight. Subconfluent 

cells were transfected using Lipofectamin 2000 (Invitrogen, Carlsbad, California, USA) according to the 

manufacturer’s protocol. A β-galactosidase plasmid was co-transfected to correct for transfection efficiency. 

After 6 hours, medium was changed to DMEM containing 10% FCS and the cells were incubated for 24 hours. 

Next cells were serum-starved overnight and stimulated with 5 ng/ml TGF-β3 (kindly provided by Kenneth K. 

Iwata, OSI, Inc., New York, USA) in the presence or absence of 10 uM SB431542 (Tocris/R&D systems, Abington, 

UK) for 6 hours. After stimulation the cells were washed, lysed and luciferase activity was determined according 

to the manufacturer’s protocol (Promega). β-Galactosidase activity in the lysates was determined using β-gal 

substrate (0.2 M H
2
PO

4
, 2 mM MgCl

2
, 4 mM ortho-nitrophenyl-phosphate, 0.25% β-mercaptoethanol) and 

measuring absorbance change at 405 nm. The luciferase count was corrected for β-galactosidase activity. The 

relative increase in luciferase activity was calculated versus controls. All experiments were performed at least 

three times in triplicate. To determine the transfection efficiency of Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R SMCs 

they were transfected with a GFP plasmid as described above, trypsinised and fixed with 1% PFA. Subsequently, 

SMCs were analysed with flow cytometry for the percentage of GFP transfected SMCs compared to the total 

amount of SMCs.

Western blot analysis
Western blot analysis was performed as described before50. In short, equal amounts of protein (DC protein assay, 

Bio-Rad Laboratories, Hercules, CA, USA) were separated on 10% SDS−polyacrylamide gel electrophoresis under 

reducing conditions. Proteins were transferred to nitrocellulose membranes (Whattman, Dassel, Germany) 

and blocked with 5% milk powder in Tris-HCl buffered saline containing 0.05% Tween-20 (Merck, Darmstadt, 

Germany). After washing, blots were overnight incubated with rabbit anti-pSMAD2 (Cell signaling Technologies, 

USA) and rabbit anti-pSMAD3 (kindly provided by Dr. E. Leof, Mayo Clinic, Rochester, MN, USA) followed by 

horseradish peroxidase-conjugated secondary antibodies (all GE Healthcare, Waukesha, WI, USA). Detection 

was performed by chemoluminescence according to the manufacturer’s protocol (Pierce, Rockford, IL, USA). 

Afterwards, blots were stripped and reprobed with mouse anti-β-actin antibodies as a loading control. 

RNA isolation and real-time PCR
Expression of Fibulin-4 and Tgf-β2 were analysed in SMCs. RNA was isolated using RNeasy Mini Kit according 

to the manufacturer’s instructions (Qiagen, Hilden, Germany). RNA concentration and purity was determined 

spectrometrically. Complementary DNA synthesis was performed using random primers. cDNA samples were 

subjected to 40 cycles real-time PCR analysis using maxima SYBR Green qPCR Master Mix 2x (Fermentas, Vilnius, 

Lithuania) and primers shown in table I. Reactions were performed in triplicates for each sample. Product 

specificity was determined by melting curve analysis and gel electrophoresis. The average Ct values of the triple 

reactions were calculated for each gene and all values were normalized for cDNA content by Hprt expression. The 

levels of fold-change for each gene were calculated relative to the gene expression levels in baseline wild type 

SMCs. RNA isolated from HUVECs and fibroblasts were used as controls for the genes analysed.
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TGF-β ELISAs
SMC conditioned medium was prepared by seeding the cells and growing them to subconfluence. Medium was 

changed to serum-free DMEM, containing antibiotics as described above, and incubated for 4 days. Samples 

were collected every day and frozen at -20 until analysis. Lysates were prepared from aortic arches of 14-15 week 

old Fibulin-4+/+, Fibulin-4+/R and Fibulin-4R/R mice and protein amounts were determined (Pierce BCA protein assay 

kit, Thermo Scientific). Total TGF-β1, TGF-β2, and TGF-β3 levels in CM samples, aortic arch lysates and plasma 

samples were determined by commercially available duo-sets (R&D Systems) using transient acidification as 

described before 51.

Statistical analysis
Data are presented as mean ± SEM. The non-parametric Mann-Whitney U-test and unpaired student’s t-test were 

performed to analyse the specific sample groups for significant differences. The two-way ANOVA test was used 

to test significant differences between independent variables. A p-value of <0.05 was considered to indicate a 

significant difference between groups. All analyses were performed using IBM SPSS Statistics version 20.0 and 

22.0 (SPSS Inc., Chicago, IL, USA).
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Table I

Primers used for quantitative real time PCR. Forward and reverse primers are displayed for each gene from 

5’ to 3’.

 

Genes Forward primers Reverse primers

Fibulin-4 5’-GGGTTATTTGTGTCTGCCTCG-3’ 5’-TGGTAGGAGCCAGGAAGGTT-3’

SMA 5’-GTCCCAGACATCAGGGAGTAA-3’ 5’-TCGGATACTTCAGCGTCAGGA-3

TGF-β1 5’-CAACAATTCCTGGCGTTACC-3’ 5’-TGCTGTCACAAGAGCAGTGA-3’

TGF-β2 5’-CCGCCCACTTTCTACAGACCC-3’ 5’-GCGCTGGGTGGGAGATGTTAA-3’
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A B S T R A C T

An abdominal aortic aneurysm (AAA) is a widening of the aorta below the renal arteries, usually asymptomatic 

until rupture causes fatal bleeding, which is a major vascular health problem. Abdominal aortic aneurysms 

are associated with high age, male gender and cardiovascular risk factors such as hypertension and smoking, 

however the underlying genetic changes remain to be elucidated. In order to develop proper treatment 

strategies, it is crucial to understand the mechanisms and targets that play a role in AAA. Strikingly, AAA has 

many if not all risk factors in common with aortic occlusive disease (AOD), yet the outcome is quite opposite; 

dilation versus occlusion of the aorta. We therefore compared RNA expression profiles of abdominal aortic 

samples of AAA patients using ‘best match control’ material of patients with AOD to identify molecular 

mechanisms that underlie AAA disease. In addition, to identify novel biological mechanisms, pathways and key 

regulators, we designed an analysis pipeline to select genes based on their level of expression, their potential 

as blood marker and their possible relevance for aneurysmal disease, resulting in a list of potential targets and 

markers for further study in blood of AAA patients. The list of significantly changed genes included COL11A1 

(32-fold increase, p=0.00012), ADIPOQ, LPL (21-fold increase, p=0.0003) that have previously been associated 

with AAA, validating our approach. The list also included genes such as CXCL13, SLC7A5, FDC-SP, for which 

the connection with aneurysmal disease is novel. IPA analysis revealed an overrepresentation of significantly 

altered immune related pathways next to pathways previously associated with aneurysmal disease. Our gene 

expression profiling approach not only identifies genes and pathways previously associated with AAA genes, 

but also reveals that simultaneous inhibition of BMP and activation of TGF-b signaling controls aneurysm growth 

in the abdominal aorta. 
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I N T R O D U C T I O N

Aneurysms are life-threatening arterial diseases identified by the dilatation of a blood vessel with a more than 

50% increase of the diameter compared to normal. Aortic aneurysms can arise at different locations, and most 

common are thoracic and abdominal aortic aneurysms (TAA and AAA). Both these types are associated with 

high age, male gender and atherosclerosis, as well as with environmental and familial components. Around 5% 

of TAAs are present in a syndromic form, with early onset, and several responsible genes have been identified 

so far.1-3 

 Genes that have directly been linked to syndromic forms of TAA encode for transforming growth factor 

β (TGFβ) components, cytoskeleton proteins, or extracellular matrix (ECM) proteins. Well-known examples are 

Marfan syndrome (MFS) with a mutation in the extracellular matrix protein Fibrillin-1, and Loeys-Dietz syndrome 

with mutations in genes including the TGFβ-receptors 1 and 2, and SMAD3.4-6 Histological staining of aortic 

aneurysm sections of these patients usually show abnormalities in the extracellular matrix (ECM), loss of smooth 

muscle cells and disorganization of elastin and collagen structure.7 Furthermore, TGFβ-signaling is increased in 

TAAs of patients and mice, and high serum TGFβ levels correlated directly with aortic root dilation.8-12 It is unclear 

if genetic factors affected in TAA also play a role in AAA, though a recent study identified overlapping genetic 

defects between AAA and familial TAA.13 The prevalence of AAA is ~8% among men older than 65 years of age 

and is much higher than for TAA.14 Yet, in contrast to TAA, for AAA causative genes are hard to identify. 

 Interestingly, aneurysm formation and arterial occlusive disease (AOD) share a number of important risk 

factors, such as smoking, hypertension, and older age. In men over 65 years of age, 48% have atherosclerosis in 

the aorta, of which 9-16% will also develop an aortic aneurysm.15-17 Based on this common clinical risk profile, 

aneurysm formation was formerly ascribed to atherosclerosis. Of the many types of cardiovascular diseases, 

atherosclerosis is most common and contributes to major morbidity and mortality in developed countries. 

Contributing factors such as dyslipidemia, diabetes and hypertension will result in the manifestation of plaque 

development, vascular smooth muscle cell (VSMC) proliferation, and extracellular matrix modulation, eventually 

resulting into obstruction of the blood vessel as seen in AOD. Abdominal aneurysms, with similar risk factors 

and alike pathologic processes as AOD, shows another form of extracellular matrix modulation and a different 

role of VSMCs. The process of matrix modulation results in enzymatic degradation of the elastin laminae 

causing disruption of arterial wall integrity, therefore weakening and dilatation of the aortic wall, resulting in 

an aneurysm.2 Pathologically, aneurysm formation is characterized by destruction of elastin and collagen in 

the media and adventitia of the arterial wall, loss of medial smooth muscle cells, and transmural infiltration of 

lymphocytes and macrophages. However, despite many similarities in risk factors for AAA and AOD, the two 

diseases have opposite outcomes, i.e. dilatation versus stenosis/occlusion.

 Targeted ultrasound screening of high risk cases may allow reduction of AAA related mortality and early 

diagnosis therein is crucial. Thus, a clinical risk prediction model will aid in earlier, and more efficient, identification 

of persons at risk. Identifying the underlying processes and genes that differentiate these two diseases will be a 

first step towards such a risk prediction model. In this study we therefore investigated the transcriptional profiles 

and molecular processes that differentiate AAA from AOD. 
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M A T E R I A L S  A N D  M E T H O D S

Tissue analysis 
Patient cohort Micro-array
Aortic tissue was derived from patients undergoing elective open surgical reconstruction of the infrarenal 

abdominal aorta for either abdominal aortic aneurysm (AAA) or aortoiliac occlusive disease (AOD) in the Erasmus 

University Medical Center between 2008 and 2012. The study complies with the Helsinki declaration on research 

ethics. Aortic biopsies were obtained by protocol approved by the institutional Medical Ethics Committee (MEC-

2012-387, MEC 2013-265, MEC-2014-057).

Aortic biopsies
Full thickness aortic tissue samples for RNA expression profiling in AAA patients were collected from the infrarenal 

anterior aneurysm wall in AAA patients. Full thickness aortic tissue samples in AOD patients were obtained from 

the infrarenal anterior aortic wall at the site of the proximal anastomosis of the prosthetic graft. Tissue samples 

were snap frozen in liquid nitrogen directly after harvesting and stored at -80oC until RNA isolation.

RNA isolation and Microarray hybridization
Total RNA including miRNAs were isolated using the miRNeasy Mini Kit (Qiagen, Hilden, Germany). Tissues 

were disrupted with a 5mm steal bead by a disruption program of 2 times 20Hz in the TissueLyser II (Qiagen, 

Hilden, Germany). RNA quality was checked with the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 

CA, USA). Samples with a high quality RNA Integrity number (RIN) and with a 28S/18S ratio of >0.9 were 

used for hybridization. Microarray hybridization and scanning were performed at SkylineDiagnostics (Skyline 

Diagnostics, Rotterdam, The Netherlands). In short, 625 ng RNA was processed to generate cRNA. Fragmented 

and biotinylated cRNA was subsequently hybridized on Affymetrix U133 plus 2.0 microarrays (Affymetrix Inc, 

Santa Clara, CA, USA) and these microarrays were scanned with an Affymetrix Genechip System 3000Dx v.2 

microarray scanner (Affymetrix Inc, Santa Clara, CA, USA). 

RNA expression analysis
The CEL files generated by the Affymetrix Genechip System 3000Dx v.2 microarray scanner were subsequently 

imported into Partek Genomics Suite version 6.4 (Partek Inc, St Louis, MO, USA). Quantile normalization and 

background correction was applied to the raw intensity values of all samples via GC Robust Multichip Analysis. 

As the data was processed in 3 hybridization batches, hybridization batch effect correction was applied. To 

visualize the correlation between the samples, principal component analysis and unsupervised hierarchical 

clustering were used. For the comparison of AAA with AOD samples, 2-sample T-test statistics were applied to 

calculate the fold changes with associated p-values.

Microarray data processing
During data processing within Partek Genomics Suite 6.4, all microarray CEL files were assessed for passing of 

quality control (QC) thresholds. We started the analysis with 14 AAA samples and 7 AOD samples. One AAA 

samples failed QC due to bad hybridization and this sample was removed from the analysis. During unsupervised 

clustering, all AAA samples grouped together and all AOD samples also grouped together. One AAA sample 

grouped together with the AOD samples. Since the two groups clustered into 2 clear groups we suspected a 

potential sample misidentification and therefore this AAA sample was removed from the analysis.

IPA analysis
A set of differential expressed genes was uploaded into Ingenuity/Qiagen IPA (Qiagen, Redwood City, CA, USA) 

and a core analysis was performed on 1047 significant expressed genes (-2<=FC=>2 and p-value=<0.05), as part 

of the core analysis we looked at functions, pathways and upstream regulator. First the log2Ratio (fold change) 
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and p-value data generated from the 2-sample test analysis in Partek Genomics Suite 6.4, was uploaded into IPA. 

For the Ingenuity Pathway Analysis (IPA), significance thresholds of log2Ratio=1 (this equals -2<=FC=>2) and 

p-value=<0.05 were applied for the comparison of the AAA vs AOD groups. During upload of the data into IPA, 

the probe level data was mapped to the gene level and averaged based on the median Fold Change values. For 

the upstream analysis the z-score significance thresholds were set to -1.8=<z-score>=1.8 and p-value =<0.01. 

Selection of genes
A list of 50 genes that could serve as potential markers for AAA was generated by applying the following 

potential prioritization protocol, which was designed to identify best possible markers. The two parts of the 

IPA core analysis that contributed to this prioritization schedule were the list of significantly upregulated genes 

scored by highest fold change and p-value together with the list of significant Upstream Regulators (Figure 2). 

These are genes that are not necessarily themselves differentially regulated, but are identified based on the 

prediction to regulate a significant (or substantial) set of genes present within the gene expression dataset being 

analyzed. The final selection list consists of 30 genes; 15 based on selection of the most significantly upregulated 

genes (left selection procedure in Figure 2) and 15 genes based on the most significant Upstream regulators 

(right selection procedure in Figure 2).

 Steps to prioritize the 15 most significantly upregulated genes were as follows (1) The normalized raw 

expression values were divided into 3 categories: Low (<80), Medium (80-800) and High (>800). Only genes with 

High or Medium expression levels were considered as we reasoned it will be technically difficult to detect a gene 

with low expression values. (2) Only genes that showed an increase in expression levels in the AAA samples 

relative to the AOD samples were selected since detection of increased expression (presence) is more robust 

than detection of decreased expression (absence). (3) Genes that at the protein level are expressed on the cell 

membrane or that are secreted extracellularly were selected as we reasoned that this would improve the ability 

to detect a potential marker in blood. (4) All genes were marked that were part of our in-house developed 

Vascular Gene Set. The Vascular Gene Set (4209 genes; Supplemental Table II) is a list of genes with relevance to 

vascular tissue development, maintenance and disease, including aortic aneurysms, that are selected based on 

HGMD and OMIM information, GO terms, KEGG pathways, Ingenuity IPA pathways, GWAS studies and literature 

(Supplemental Table I). (5) As a last step we also marked the genes that were identified as significant upstream 

regulators. Here we reasoned that prioritization via two independent analyses gives increased overall confidence 

in the proper selection.

 Steps to prioritize the 15 most significantly upstream regulators: (1) Upstream regulators were prioritized 

based on the highest Upstream Regulator z-score with a minimal p-value of 0.01. (2) All genes that were part the 

Vascular Gene Set were marked. (3) Upstream regulators that were identified as being significantly upregulated 

at the mRNA level in our dataset, above the threshold of log2Ratio=1(fold change=2) were also marked. Here 

we reasoned that prioritization via two independent analysis gives increased overall confidence in the proper 

selection.

QPCR analysis
Expression data of COL11A, Adiponectin, CXCL13, SLC7A5 and FDC-SP were analyzed in diseased 

aortic tissue. Total RNA was reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad, 

Veenendaal, The Netherlands). cDNA samples were subjected to 40 cycles real-time PCR analysis 

using SYBR Green qPCR Master Mix 2x (Bio-Rad, Veenendaal, Netherlands) and primers; Actin-β 

5’-CTCCCTGGAGAAGAGCTACG-3’, 5’-GAAGGAAGGCTGGAAGAGTG-3’; Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) 5’-TGACACTGGCAAAACAATGCA-3’, 5’-GGTCCTTTTCACCAGCAAGCT-3’, 

COL11a1 5’-ACAATAGCACAGACGGAGGC-3’, 5’-GGATTTGGCTCATTTGTCCCAG-3’, Adiponectin 

5’-GTGATGGCAGAGATGGCACC-3’, 5’-ACTCCGGTTTCACCGATGTC-3’, CXCL13 5’-CGAATTCAAATCTTGCCCCGT-3’, 
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Figure 1 

(A) Non-supervised hierarchical clustering dendrogram of AAA and AOD samples. (B) Principal Component 

Analysis plot of AAA and AOD samples. In red the AAA patient samples, in blue the AOD patient samples. 

On the x, y, and z axis: PC#1 25.1%, PC#2 11.8%, PC#3 9.88%, respectively.
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Figure 2

Selection procedure flowchart of the top upregulated genes (left) and top upstream 

regulators (right).
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5’-ACTTGTTCTTCTTCCAGACTATGA-3’, SLC7a5 5’-TCATCATCCGGCCTTCATCG-3’, 5’-AGCAGCAGCACGCAGAG-3’, 

and FDC-SP 5’-GGCTGTTGGTTTCCCAGTCTC-3’, 5’-TGGTGGAAGTGGGCGAAATG-3’. Gene expression was 

calculated using actin-β and HPRT as housekeeping genes and the comparative Ct method (ΔΔCt) was used for 

relative quantification of gene expression.

Vascular surgery aortic tissue sample collection
The study population consisted of a cohort of vascular surgery patients consecutively operated at the Erasmus 

Medical Center in Rotterdam. Patients undergoing elective open or endovascular surgery for aortic aneurysm 

repair, peripheral arterial disease or carotid artery disease, were included in the study. Patients were classified as 

aneurysmal disease (AA) or arterial occlusive disease (peripheral arterial disease or carotid artery disease). The 

study complies with the Helsinki declaration on research ethics and was approved by the institutional Review 

Board of the Erasmus Medical Center (MEC 2011-510).

Clinical characteristics vascular surgery patient cohort
The clinical characteristics of the index AAA patients were obtained from medical files and included gender, age 

at diagnosis, age at surgery, body mass index (BMI), as well as the cardiovascular comorbidities and risk factors. 

Cardiovascular comorbidities included congestive heart failure, ischemic heart disease (history of myocardial 

infarction, angina pectoris, coronary revascularisation or pathologic Q-waves on the electrocardiogram), and 

cerebrovascular disease (history of ischemic/hemorrhagic stroke or transient ischemic attack). Cardiovascular 

risk factors included kidney disease (serum creatinine ≥2.0 mg/dL), diabetes mellitus (fasting plasma glucose 

≥7.0 mmol/L, non-fasting glucose
 

≥11.1 mmol/L or use of anti-diabetic medication), and hypertension (blood 

pressure ≥140/90 mmHg in non-diabetics, ≥130/80 mmHg in diabetics or use of antihypertensive medication).

Smoking status was obtained and included current smoking and ever smoking (ie, patients who are currently 

smoking OR patients with a history of smoking). Prescription medications were recorded and included the use 

of statins, beta-blockers, renin-angiotensin system inhibitors, diuretics, and antiplatelets. 

Lipoprotein and inflammatory parameters
Serum levels of triglycerides, high-density lipoprotein, low-density lipoprotein and high-sensitive C-reactive 

protein (hs-CRP) were determined as described.18 Patients with an hs-CRP higher than 10 mmol/L were excluded 

from analysis due to the chance of active inflammation status.19 

Statistical analysis 
Dichotomous data are presented as numbers and percentages. Continuous variables are presented as mean 

± standard deviation or median and interquartile range (IQR) when not normally distributed. Categorical data 

were analysed with Fisher’s exact test or chi-square test and continuous variables with t-test, ANOVA or Kruskal-

Wallis test. Linear univariable and multivariable regression analyses were performed to evaluate the difference 

in lipoprotein and inflammatory markers (triglycerides, high-density lipoprotein, low-density lipoprotein and 

hs-CRP) between patients with aortic aneurysm and those with arterial occlusive disease. Multivariable analyses 

were adjusted for age, gender, body mass index, congestive heart failure, ischemic heart disease, cerebrovascular 

disease, kidney disease, diabetes mellitus, hypertension, current smoking, and the use of statins, beta-blockers, 

renin-angiotensin system inhibitors, diuretics and antiplatelets. Covariates were chosen on the basis of biological 

plausibility. For all tests, a p-value <0.05 (two-sided) was considered significant. Analyses were performed using 

Graphpad Software (Graphpad Software inc, La Jolla, CA, USA) or SPSS statistics (version 21.0; IBM Inc, Chicago, 

IL, USA).
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R E S U L T S

AAA and AOD patient and sample characteristics
Based on high quality RNA RIN values, 14 AAA and 7 AOD samples were selected for microarray hybridization. 

During the quality control of the microarray data, 2 AAA samples were removed from the analysis: one due to bad 

microarray hybridization and the other as it was an outlier in the principal component analysis (PCA) and the non-

supervised hierarchical clustering. The final selection of patient samples therefore included 12 AAA samples and 

7 AOD samples. Patient characteristics are depicted in Table 1 accordingly. The baseline characteristics showed 

a difference in age and gender, though as expected, no significant differences were found in cardiovascular risk 

factors such as diabetes mellitus, ischemic heart disease, renal insufficiency, hypertension, dyslipidemia and 

smoking status. 

Gender difference exclusion 
Both age and gender are important risk factors for AAA. In our dataset, 11 out of 12 AAA patients were male 

and 5 out of 7 AOD patients were female. Due to the overlap of gender with disease phenotype, our analysis 

could also potentially identify differences between males and females. To identify genes that are differentially 

expressed between male and female aortic samples we obtained microarray expression data from another study 

investigating AAA.20 We downloaded the expression data from GEO (GSE 7084) and performed a 2 sample t-test 

on the male and female sample groups within the control group only. This dataset consisted of an Affymetrix 

array based analysis and an Illumina array based analysis (for both array based analysis: 2 females vs. 4 males). We 

identified genes as significantly differentially expressed in the Affymetrix analysis with p-value<0.05 and FC cut 

off of >3.5 whereas in the Illumina analysis we applied p value<0.05 and FC > 2.5. With these stringent settings 

we identified 137 gender specific genes. As in the present study, we were specifically interested in the genes that 

differentiate aneurysmal disease from occlusive disease irrespective of gender, these 137 gender specific genes 

were removed from our AAA vs AOD analysis. For example, we show in Table 2 a top selection of 50 upregulated 

genes with 10 gender specific genes marked (see M symbol in column). For our AAA specific gene selection, all 

marked ‘gender-specific’ genes were excluded. In addition we performed an IPA core analysis on the dataset with 

and without the gender specific genes (1077 and 1047 ready molecules, respectively). Both analyses showed 

very similar results regarding functions, pathways and upstream regulators, suggesting that the differences 

between AAA and AOD state are the predominant state difference in this dataset (data not shown). 

Non supervised hierarchical clustering and Principal Component Analysis 
Non-supervised hierarchical clustering was performed on the genome wide microarray gene expression data of 

the 19 samples (Figure 1A). This analysis showed a clear separation of the AAA and AOD groups, and thus can 

be considered a validation of clear microarray gene expression differences between the two groups. In addition, 

Principal Component Analysis (PCA) was performed on the samples and again a clear separation of the AAA and 

AOD samples was observed (Figure 1B).

Selection procedure of top upregulated genes reveals ‘known’ and novel ‘marker genes’ for AAA
Top upregulated genes were selected based on fold change and p-value (Figure 2), and categorized by location 

and type. In addition, we checked the presence of filtered genes in our Vascular Gene Set, which is an enriched 

gene set consisting of genes expressed in vascular tissues and/or having a role in vascular related pathways and 

functions. The top 10 upregulated genes with highest fold changes are depicted in Table 3. In the columns of 

this table, fold change, p-value, location, and presence in the Vascular Gene Set are depicted. A literature search 

of these top 10 upregulated genes was performed where we screened for relevance in AAA or atherosclerotic 

disease, which is summarized in Table 3. Collagen-alpha1(XI) (COL11A1) appears highly relevant for AAA based 
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on its location in the ECM and its previous association with aneurysmal disease.21 Also Adiponectin (ADIPOQ) 

seems relevant, as ADIPOQ is elevated in Kawasaki patients (aneurysms in coronary artery).22 (aneurysms in 

coronary artery). Both associations show that our filtering is able to identify potential or known AAA-relevant 

genes. Furthermore, many highly upregulated genes are associated with the immune system, for instance CXC 

motif chemokine 13 (CXCL13), follicular dendritic cell secreted protein (FDC-SP), POU domain class 2-associating 

factor 1 (POU2AF1), membrane-spanning 4A (MS4A1 or CD20), and marginal zone B and B1 cell-specific protein 

(MZB1). Upregulation of these genes indicates that our gene expression profiling approach identifies the 

prominence of inflammation genes in AAA. In our literature research many of these genes showed no direct link 

with aneurysmal disease, therefore these genes could be ‘novel’ for aneurysmal disease.

 A subset of 5 potential ‘marker genes’ were selected from Table 3 to be verified by QPCR, as additional 

check for the micro-array results. Selection criteria were; increased fold change, extracellular location and an 

association with aneurysmal disease, resulting in selection of CXCL13, COL11A1 and ADIPOQ. Additionally, 

FDC-SP and Solute carrier family 7 member 5 (SLC7A5) were selected as they had not previously been associated 

with aneurysmal disease. QPCR data shows that COL11A1, ADIPOQ, CXCL13, SLC7A5 and FDC-SP are upregulated 

in AAA compared to AOD (Figure 3), which corresponds to the micro-array data, although only COL11A1 and 

FDC-SP were significantly upregulated. The other genes were upregulated, but not significantly, probably due to 

small availability of samples. 

Selection of top upstream regulators indicating potential key regulators in AAA
The parallel selection procedure to identify novel genes in AAA was performed by prioritizing our data with 

upstream regulator information available within IPA (Figure 2). The upstream regulator analysis is based on the 

idea that the activation state of a known upstream regulator can be determined by assessing the expression 

fold changes of all of its downstream targets and then using a z-score based algorithm to test if there is a good 

correlation between the hypothetical regulatory state of the upstream regulator and the regulatory state of 

all of its known downstream targets. The data was prioritized by highest upstream regulator z-score, with a 

minimal p-value of 0.01, and a threshold of log2Ratio=1, resulting in a gene list selected on the basis of upstream 

regulators. In Table 4 we show 46 genes which are upregulated with a cut-off z-score of >2, together with their 

respective fold changes in the gene expression dataset. This list of genes could indicate novel markers and key 

regulators involved in AAA disease.

Pathway selection by Ingenuity Pathway Analysis shows a clear inflammatory component
Functional analysis, pathway analysis and upstream regulator analysis was performed with the data set of 1047 

ready genes. In Figure 4 we show a top 10 IPA list of pathways which are significantly altered in AAA disease. 

Interestingly these top 10 pathways are all of an inflammatory nature, indicating the immune system as an 

important component in the differences between AAA and AOD phenotype. Therefore, the immune system 

and its associated markers would be interesting to further investigate in these patient groups. However our 

analysis was not sufficient to pinpoint one inflammation pathway which exclusively differentiates AAA disease 

from AOD. More likely, we need to look for a combination of different significantly altered immune pathways, 

together providing an ‘immune signature’ that is different for AAA compared to AOD. This could subsequently 

further be explored in blood of AAA and AOD patients.

Inflammation changes in a large vascular surgery patient cohort with aneurysmal or arterial occlusive 
disease
We analyzed 1393 cardiovascular patients for indications of inflammation changes. The patient and baseline 

characteristics are depicted in Table 5. The baseline population consisted of 1393 patients with either aortic 

aneurysm (n=614), peripheral arterial disease (n=491) or carotid artery disease (n=288). Endovascular procedures 

were performed in 598 patients (43%). The mean age of the population was 68 ±10 years and the majority of 

patients were men (75%). The clinical characteristics of the patients were as follows; 614 patients (44%) were 
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Figure 3

Significantly regulated genes from the top 10 selection (Table 4), verified by QPCR. Plotted are the fold 

changes of COL11A1, ADIPOQ, CXCL13, SLC7a5 and FDCSP gene (AAA vs AOD n=5). *p<0.05 vs AAA.

classified as aortic aneurysms and 779 patients (56%) as arterial occlusive disease. The patient and baseline 

characteristics are depicted in Table 5. A significant difference was observed between aneurysmal and occlusive 

disease patients in age (71 versus 66 years, respectively) and male gender (86% versus 67%, respectively), as 

was likewise present in our small patient group used for gene expression profiling, showing the representative 

nature of this database for the general population, and the samples used in this study. In Table 6 it is shown that 

the inflammatory marker high-sensitivity C-reactive protein (hs-CRP) was slightly, though significantly higher in 

patients with AAA compared to occlusive disease (4.07 mg/L versus 3.06 mg/L). Although this is a rather small 

difference and clinically this difference cannot be used to distinguish both groups, an adult population with a 

hs-CRP of >3.0 mg/L have a 2 fold increased relative risk for cardiovascular disease as compared with patients 

with a hs-CRP<1.0 mg/L.19. Multivariable regression analysis showed unadjusted differences for hs-CRP (β -0.51, 

95% CI: -0.78 : -0.25, P<.001), as shown in Table 7. Importantly hs-CRP, remained significant in multivariable 
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analysis after adjustment for potential confounding factors (β -0.55, 95% CI: -0.99 : -0.11, P=.015). 

Taken together, these differences in gene expression as well as in the broader patient population study hint 

towards differences in the immune system of AAA and AOD patients, which might explain at least part of the 

different arterial outcomes. Therefore, it would be interesting to perform immunoprofiling studies on the blood 

of these two patient groups.

The TGFβ pathway is significantly regulated at both gene and upstream regulator level
Although IPA analysis showed many significantly altered inflammation pathways, also other interesting pathways 

were significantly altered, amongst which the TGFβ signaling pathway. As the TGFβ pathway is also an important 

factor in the development of TAA, we next examined this pathway more closely. In figure 5 we show the TGFβ 

signaling and the BMP-pathway, as derived from IPA, with all genes and upstream regulators that are significantly 

Figure 4

Top 10 IPA list of upregulated pathways in AAA disease. The –log(p) value depicted on the x-axis represents 

significance of the depicted pathways. 

altered. As shown, many genes and upstream regulators from our dataset are upregulated in the TGFβ pathway, 

e.g. the known factors TGFβ, ERK1/2, SMAD2/SMAD3 and Pai-1. Notably, IRF7 is not only upregulated at the mRNA 

level but also predicted to be upregulated at the upstream regulator level. Interestingly, many genes in the BMP 

signaling pathway were significantly downregulated, which implies that the pathway itself is inhibited in AAA 

disease compared to AOD. Moreover, genes involved in the pERK pathway are predicted to be upregulated. This 

pathway has been previously associated with (thoracic) aneurysmal disease, and it is interesting to note that it 

can regulate both the TGFβ as well as the BMP signaling pathway, which warrants further investigation. 
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Figure 5

TGFβ signaling pathway with mediators in the TGFβ pathway and BMP pathway are depicted, adapted 

from IPA. Upregulated genes in red, downregulated genes in green, and upstream regulators which are 

predicted to be upregulated in yellow.
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D I S C U S S I O N

In this study we investigated the genetic factors and molecular processes that differentiate abdominal aortic 

aneurysm from arterial occlusive disease, despite overlapping characteristics between both diseases. By 

comparing the gene expression profiles of both diseases we show important pathway differences, in particular 

differences in upregulation of distinct inflammation pathways, but also differences in two previously identified 

TAA-related pathways; TGFβ and BMP signaling.

 Non-hierarchal clustering and Principal Component Analysis of the data showed two distinct datasets of 

genes which are up- or downregulated in AAA compared to AOD (Figure 1). Clinical characteristics of the 19 

patients included in our microarray dataset were analyzed and we observed no differences in the cardiovascular 

risk factors, indicating that indeed these factors do not explain the observed phenotypic differences between 

AAA and AOD. Additionally, the subsequent database study of 1393 patients likewise showed no differences 

in cardiovascular risk factors, strengthening our findings. Smoking, gender, obesity, age, hypertension, and 

dyslipidemia are associated with an increased risk for AAA, whereas diabetes, is associated with a reduced risk.23 

Interestingly, we observe that diabetes is significantly lower in the AAA compared to the AOD group. In line with 

this observation, it has been described that diabetes seems to be protective when it comes to AAA formation 

and growth.24, 25 

 In both the micro-array and database study (Tables 1 and 5) we show a gender and age difference between 

AAA and occlusive disease patients with a male dominance in AAA compared to occlusive disease patients 

(85.5% vs. 66.9%, p<0.001, Table 5). This observation has been described earlier as it is known that the incidence 

of AAA disease rises rapidly after the age of 55 years in men.14 Therefore, these datasets reflect the actual AAA 

and occlusive disease patient population. We used a dataset of gender specific genes to correct our data for sex 

differences, as gender could be an influencing factor for several upregulated genes. However, comparison of the 

gender-dependent and gender-independent datasets revealed only minor differences. We performed an IPA 

core analysis on the dataset with and without the gender specific genes and both analyses showed very similar 

results regarding functions, pathways and upstream regulators, suggesting that the differences between AAA 

and AOD are the predominant determinant in this dataset. To select AAA-specific genes irrespective of gender, 

we used the list of gender-independent significantly regulated genes, for further IPA analysis of AAA disease 

(Table 2).

 From the list with significantly upregulated genes we selected a top 10 of potential markers, based on 

their expression level, significance and presence in vascular tissue, and performed literature research to 

identify possible connections of these genes to AAA or AOD. Of these 10 genes, 4 showed an association with 

aneurysmal disease, showing that our selection procedure indeed can reveal aneurysm relevant markers. At the 

same time, the other 6 genes showed no previously known association, making them potential novel markers 

for AAA disease. We performed an additional validation step of 5 upregulated genes by QPCR. As determined 

by microarray analysis, all these genes showed upregulation, however, probably due to small sample size only 

COL11A1 and FDC-SP were significantly upregulated. At this point upregulation of potential AAA markers at the 

transcriptional level should be further verified in blood of AAA and control patients, for which an independent 

AAA patient cohort is needed.

 The IPA analysis showed an overrepresentation of significantly regulated immune-specific pathways for 

AAA disease (Table 3). Moreover, analysis of hs-CRP levels in an additional patient cohort of 1393 patients 

showed slightly increased hs-CRP levels in AAA compared to occlusive disease patients, both in the unadjusted 

and adjusted data analysis. Although in this larger cohort we show increased inflammation based on hs-CRP, 

data of other known inflammation markers were not available. However, the significance of increased hs-CRP 

in already established aneurysms is unknown, as inflammation is a multifactorial process. Similar to what we 

find, other studies reported the role of the immune-related genes and pathways in AOD and AAA disease.26, 27 

Though, we used additional IPA analysis and upstream regulator information to go in depth of distinct pathways 

to distinguish both pathogenic mechanisms. Together the changes in distinct inflammation pathways derived 
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from our gene expression analysis, as well as the finding that hs-CRP levels differ significantly between AAA and 

occlusive disease patients, imply that a more thorough analysis of immune factors in the blood for these two 

patient groups would be a very relevant next step. 

 Dysregulation of the TGFβ and BMP signaling pathway, previously described for TAA patients11, was also 

shown for AAA patients in our IPA analysis. While we find most components of the TGFβ signaling pathway 

were significantly upregulated, most components of the BMP-pathway were downregulated in AAA compared 

to AOD. Moreover, many upstream regulators involved in the TGFβ pathway were predicted to be upregulated 

in our analysis. Interestingly, TGFβ signaling was mostly reported to be upregulated in TAA, and intervention 

therapy aimed at reducing TGFβ is able to reduce aneurysmal growth. In addition, blockade of TGFβ-signaling 

by TGFβ-neutralizing antibody (Nab) showed beneficial effects in MFS rodent models. In contrast, TGFβ-Nab 

administration exacerbated the pathology of aneurysms in angiotensin-II induced AAA mice models.28, 29 

Consequently, in AAA (dys)regulation of the TGFβ signaling pathway is not clear yet. For example, a small study 

in 12 AAA and 6 control biopsies showed downregulation of TβRII subtype mRNA30. Yet, about 20-30% of AAA 

patients later in life also develop a TAA.31, 32 Vice versa, many TAA patients have aneurysms at multiple sites, 

including the abdominal part.33 Therefore similar mechanisms might be at work in both AAA and TAA patient 

groups. In this respect it is very interesting that our data show that the TGFβ signaling pathway might be 

dysregulated in AAA aorta samples, with predictions that the pathway is upregulated. At the same time, the 

closely associated BMP pathway is predicted to be downregulated. These data could indicate that an imbalance 

between TGFβ and BMP signaling causes part of the AAA phenotype. This might also explain the different 

findings described above on TGFβ signaling pathway involvement in AAA versus TAA. It would therefore be 

interesting to further investigate factors involved in both the TGFβ and BMP signaling pathways in tissue or 

serum samples from AAA patients. In particular, measuring the TGFβ ligands 1-3 in the serum could be of great 

importance, in parallel to measurements of TGFβR subtype mRNA levels.

 In conclusion, our data show that gene expression profiling is an important tool to distinguish AAA from 

AOD, clinical entities that share the same risk factors, but show completely different disease progression. As we 

reveals that simultaneous inhibition of BMP and activation of TGFβ signaling plays a role in abdominal aortic 

aneurysms. Besides, these profiles are important in the identification of novel genes, markers and processes that 

can shed light on the molecular mechanisms underlying abdominal aneurysm formation.

Limitation of the study
One limitation of this micro-array study is the small number of samples in the AAA and AOD groups, however 

previously other studies showed novel differences of upregulated genes and pathways in comparison analysis 

of similar small patient groups.26, 27. In addition, we did identify novel markers and pathways with significant 

p-values, that separate AAA disease from aortic occlusive disease. One reason for these small sample groups 

is that it is becoming increasingly difficult to obtain the abdominal aortic tissue as nowadays AAA disease and 

occlusive patients are generally operated by endovascular procedures.. Another limitation of the study is that 

one disease (AAA) is compared with another disease (AOD) without a ‘healthy’ control group as part of this 

comparison. Because of this limitation, genes that are considered upregulated in AAA in this study, could be 

higher expressed in AAA as compared to a healthy individuals or they could be genes that are downregulated 

in AOD as compared to a healthy individual. Nonetheless, this study clearly demonstrates that interesting 

biological interpretations can be made from this comparison as TGF-beta signaling is identified both as a 

significant differentially regulated pathway and several of its components are identified as significant upstream 

regulators of the AAA versus AOD differentially expressed dataset.
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T A B L E S

Characteristic AAA

(n=12)

AOD

(n=7)

 P-value

Male gender – n (%) 11 (92) 2 (29) .0095

Age – (y, mean ± SD) 68 ± 6.7 56 ± 5.7 .001

Diabetes mellitus – n (%) 0 (0) 1 (14) .3684

Ischemic heart disease – n (%) 2 (17) 1 (14) 1

Renal insufficiency – n (%) 4 (33) 1 (14) .6027

Hypertension – n (%) 9 (75) 5 (71) 1

Dyslipidemia – n (%) 9 (75) 6 (86) 1

Current smoking – n (%) 6 (50) 4 (57) 1

Ever smoking – n (%) 4 (33) 3 (43) 1

Table 1

A t-test (continuous data) or Fisher’s exact test (categorical data) was applied for the analysis between 

groups. All statistical analyses were performed using Graphpad Software (Graphpad Software inc, La Jolla, 

CA, USA). All statistical tests were two-sided and P<0.05 was considered statistically significant.
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Gene Symbol Entrez Gene Name Fold Change p-value Gender Specific

RPS4Y1 ribosomal protein S4, Y-linked 1 48,386 0,00238 M

CXCL13 chemokine (C-X-C motif) ligand 13 32,269 0,000112

DDX3Y DEAD (Asp-Glu-Ala-Asp) box helicase 3, Y-linked 30,326 0,00208 M

COL11A1 collagen, type XI, alpha 1 27,046 5,29E-05

SAA2 serum amyloid A2 24,96 3,95E-07

PLIN1 perilipin 1 23,989 9,49E-05 M

ADIPOQ adiponectin, C1Q and collagen domain containing 21,454 0,000301

FDCSP follicular dendritic cell secreted protein 21,38 0,000101

PTX3 pentraxin 3, long 19,063 1,10E-05 M

POU2AF1 POU class 2 associating factor 1 18,842 0,000479

MS4A1 membrane-spanning 4-domains, subfamily A, member 1 18,414 0,000261

KDM5D lysine (K)-specific demethylase 5D 17,854 0,00275 M

MZB1 marginal zone B and B1 cell-specific protein 17,072 0,00126

SLC7A5 solute carrier family 7 (amino acid transporter light chain, 

L system), member 5

15,716 5,37E-07

LEP leptin 14,288 1,94E-06

MARCO macrophage receptor with collagenous structure 13,563 0,000412

LPL lipoprotein lipase 12,984 3,51E-05

IL1RN interleukin 1 receptor antagonist 12,873 0,00116

IGLL5 immunoglobulin lambda-like polypeptide 1 12,848 0,000973

CR2 complement component (3d/Epstein Barr vir-us) receptor 2 12,123 0,00113

KIAA1199 KIAA1199 12,122 0,0016
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Gene Symbol Entrez Gene Name Fold Change p-value Gender Specific

TREM1 triggering receptor expressed on myeloid cells 1 11,851 0,000433

P2RX5 purinergic receptor P2X, ligand-gated ion channel, 5 11,706 8,53E-05

EIF1AY eukaryotic translation initiation factor 1A, Y-linked 11,554 0,00304 M

SPAG4 sperm associated antigen 4 11,463 0,00106 M

HMOX1 heme oxygenase (decycling) 1 10,932 5,47E-05

IGLJ3 immunoglobulin lambda joining 3 10,776 0,00729

IGH immunoglobulin heavy locus 10,257 0,000424

ISG20 interferon stimulated exonuclease gene 20kDa 10,238 1,31E-05

CCL18 chemokine (C-C motif) ligand 18 (pulmonary and activation-

regulated)

10,164 0,000151

CD79A CD79a molecule, immunoglobulin-associated alpha 10,064 0,000197

FNDC1 fibronectin type III domain containing 1 10,028 0,00028

IL8 interleukin 8 9,89 0,00235 M

TIMD4 T-cell immunoglobulin and mucin domain containing 4 9,859 0,00259

PIM2 pim-2 oncogene 9,838 0,000235

CXCL5 chemokine (C-X-C motif) ligand 5 9,659 0,000276

FCRL5 Fc receptor-like 5 9,596 0,00249

CXCL3 chemokine (C-X-C motif) ligand 3 9,526 3,06E-06

MIAT myocardial infarction associated transcript (non-protein 

coding)

9,359 0,00011

GZMB granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated 

serine esterase 1)

9,211 0,000277

IGHM immunoglobulin heavy constant mu 8,93 0,0051

AQP9 aquaporin 9 8,908 0,00445
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Gene Symbol Entrez Gene Name Fold Change p-value Gender Specific

COMP cartilage oligomeric matrix protein 8,739 0,00511

CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth 

stimulating activity, alpha)

8,677 1,07E-05 M

PAX5 paired box 5 8,41 0,000776

IGK immunoglobulin kappa locus 8,403 0,00257

USP9Y ubiquitin specific peptidase 9, Y-linked 8,296 0,00493 M

SYTL1 synaptotagmin-like 1 8,235 4,38E-06

C15orf48 chromosome 15 open reading frame 48 8,225 0,0064

DPH1 diphthamide biosynthesis 1 8,218 0,00019

Table 2

Top upregulated genes in AAA vs AOD with the gender specific genes marked (M) that were excluded for 

further analysis.

Table 3 (next two pages)

Top 10 genes up-regulated genes in AAA vs AOD.
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Gene Function and relation to AAA or atherosclerosis FC p-value Location Vascular 

Gene Set

CXCL13

C-X-C motif 

chemokine 

13

Selective chemotactic for B cells (B-1 and B-2 

subsets), by interacting with chemokine receptor 

CXCR5. Control of B cell organization within follicles 

of lymphoid tissues. 

High levels of CXCL13 are found in aneurysm and in 

atherosclerotic lesions 34-36.

32.26 .000112 Extracellular 

space

YES

COL11A1

Collagen 

alpha-1(XI) 

chain

Adds structure and strength to connective tissues 

supporting muscles, joints, organs, and skin. 

Col11a1 protein levels are upregulated in TAA and 

AAA tissue 21, 37, 38

27.05 5.3E-05 Extracellular 

space

YES

SAA2

Serum 

amyloid A 

protein

Production primarily in liver, circulates in low levels 

in the blood. Although its function is not fully 

understood, serum amyloid A appears to play a role 

in the immune system. 

Different biomarker studies have shown association 

of SAA with atherosclerotic disease. Patients with 

atherosclerotic disease show increased levels of 

Amyloid A protein. 39-42

24.96 4.0E-07 Extracellular 

space

NO

ADIPOQ

Adiponectin

Involved in the control of fat metabolism and insulin 

sensitivity, with direct anti-diabetic, anti-atherogenic 

and anti-inflammatory activities. Stimulates AMPK 

phosphorylation and activation in liver and skeletal 

muscle, enhancing glucose utilization and fatty-

acid combustion. Negatively regulates TNF-alpha 

expression in various tissues such as liver and 

macrophages. Inhibits endothelial NFβB signaling 

through a cAMP-dependent pathway. 

Adiponectin is dysregulated in aneurysm and 

atherosclerotic disease. 43-45

21.45 .000301 Extracellular 

space

YES

FDCSP

follicular 

dendritic 

cell-secreted 

protein

FDCSP bind to the surface of B-lymphoma cells. 

Functions as a secreted mediator acting upon 

B-cells. 

No direct associations of FDCSP with atherosclerotic 

disease or AAA are described in literature. 46, 47 

21.38 .000101 Extracellular 

space

NO
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Gene Function and relation to AAA or atherosclerosis FC p-value Location Vascular 

Gene Set

POU2AF1

POU domain 

class 

2-associating 

factor 1

Transcriptional coactivator that specifically 

associates with either OCT1 or OCT2. It boosts the 

OCT1 mediated promoter activity and to a lesser 

extent that of OCT2. Essential for the response of 

B-cells to antigens and required for the formation of 

germinal centers. 

Little is known about this factor in AAA, though in 

carotid plaque formation analysis it is shown that 

POU2AF1 is upregulated, which is related to the 

immune and inflammatory processes linked to 

atherosclerosis. 48, 49

18.84 .000479 Nucleus NO

MS4A1

membrane-

spanning 

4A / CD20

B-lymphocyte surface molecule which plays a role in 

the development and differentiation of B-cells into 

plasma cells. 

B-lymphocytes with MS4A1 expressed are found in 

aneurysm and atherosclerotic. 50-53

18.41 .000261 Plasma 

membrane

YES

MZB1

Marginal 

zone B 

and B1 

cell-specific 

protein 

Associates with immunoglobulin M (IgM) heavy 

and light chains and promotes IgM assembly and 

secretion. Acts as a hormone-regulated adipokine/ 

proinflammatory cytokine implicated in causing 

chronic inflammation, affecting cellular expansion 

and blunting insulin response in adipocytes. 

No direct association of MZB1 with atherosclerotic 

disease or AAA are described in literature. 54

17.07 .00126 Extracellular 

space

NO

SLC7A5

Solute 

carrier family 

7 member 5 

Encodes for a protein called y+L amino acid 

transporter 1 (y+LAT-1). Involved in transport of amino 

acids, namely lysine, arginine, and ornithine. The 

y+LAT-1 protein forms one part (the light subunit) of 

a complex called the heterodimeric cationic amino 

acid transporter, responsible for binding to the 

amino acids that are transported. 

There is no direct association of SLC7A5 with 

atherosclerotic disease or AAA described in the 

literature. 55

15.72 5.4E-07 Plasma 

membrane

YES

LEP

Leptin

Hormone involved in the regulation of body weight. 

As fat accumulates in cells, more leptin is produced, 

indicating that fat stores are increasing. 

Increased leptin levels are associated with 

atherosclerotic disease. Furthermore, in an AAA 

animal model mRNA and protein levels of leptin 

were found to be upregulated in aneurysmatic 

tissue.56-60

14.29 1.9E-06 Extracellular 

space

YES
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KEGG pathways 

Vascular Smooth Muscle Contraction hsa04270 

Tight Junction hsa04530 

ECM receptor interaction hsa04512 

TGFβ signaling hsa04350 

notch signaling hsa04330 

Focal Adhesion hsa04510 

Adherens junctions hsa04520 

Fat Dig and Absorption hsa04975 

Renin-Angiotensin-System hsa04614 

GO-Terms 

Vasculogenesis GO 0001570 

Vasculature Development 0001944 

Relaxation of smooth muscle GO 0060087 

Cardiovascular system development GO:0072358 

Vascular smooth muscle contraction GO:0014829 

Reg. of vascular permeability GO 0002528 

Regulation of vascular smooth muscle contraction GO:0003056 

Cardiac vascular smooth muscle cell differentiation GO:0060947 

macrophage derived foam cell differentiation GO:0010742 

Negative regulation of macrophage derived foam cell differentiation GO 0010745 

positive regulation of macrophage derived foam cell differentiation GO 0010744 

regulation of macrophage derived foam cell diff GO 0010743 

IPA functions and pathways 

Adherens Junction IPA 

Cardiovascular IPA 

Extracellular matrix IPA 

Fat Digestion and Absorption IPA 

Foam Cell IPA 

Focal Adhesion IPA 

Supplemental Table I

The Vascular Gene Set, constructed from HGMD, OMIM, relevant GO terms, relevant KEGG pathways, relevant 

Ingenuity IPA pathways, GWAS studies and the literature. 



Notch Signaling IPA 

Renin Angiotensin IPA 

TGFβ Signaling IPA 

Tight Junction IPA 

vascular smooth muscle IPA 

Vasculature Development IPA 

Vasculogenesis IPA 

Vascular Permeability IPA 

AAA GWAS gene 

aneurysm HGMD genes 

aneurysm OMIM 

aneurysm custom 

Supplemental Table I. The Vascular Gene Set, constructed from HGMD, OMIM, relevant GO terms, relevant KEGG pathways, relevant Ingenuity IPA pathways, GWAS studies and the literature.  

 

Supplemental Table II. This Vascular Gene Set consists of 4209 genes, which are implicated to have a role in the vascular tissue system. (See digital excel list) 

 

Supplemental Table II

This Vascular Gene Set consists of 4209 genes, which are implicated to have a role in the vascular tissue system. 

(See digital excel list)
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Part III: The Identification of Genetic Factors Involved in Aneurysms160

A B S T R A C T

Aortic aneurysms are complex multifactorial diseases with genetic and environmental risk factors. Genetic 

factors have been shown to play a role in the etiology of thoracic aortic aneurysms mostly present in a 

syndromic form, with early onset. Responsible aneurysm-associated gene mutations have been identified, such 

as mutations in cytoplasmic, contractile, extracellular matrix (ECM) and transforming growth factor β associated 

proteins. Aneurysms are identified in patients with ultrasound, CT or MRI imaging methods. In addition the 

genome is sequenced for potential mutations, as genetic profiling will identify patients at high risk of aneurysm 

development, allowing early follow-up. Our goal is to set up a method for reliable massive parallel genomic 

DNA sequencing of aneurysm-associated genes. In this report we show the essential enrichment of complete 

TAA genes, by optimization of long range-PCR of TAA linked genes, covering 14 aneurysm-associated genes, 

including intron, exon and regulatory sequences. The next step will be massive parallel sequencing to screen for 

potential pathological mutations, which can be performed from this point.
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I N T R O D U C T I O N

The regular definition of an aneurysm is an increase of 50% or more in vessel diameter size. Aortic aneurysms are 

divided into thoracic aortic aneurysms (TAA) and abdominal aortic aneurysms (AAA) based upon their location. 

Due to dilation of the aortic wall, the wall weakens, thereby increasing the risk of rupture.1 Aortic aneurysmal 

disease, either of the abdominal or thoracic aorta, contributes significantly to the disease burden of the elderly 

population. Age and gender are important risk factors for AAA, and currently AAA has a prevalence rate ranging 

from 1.7% to 7.2% for men above the age of 65.2 Although various environmental factors, such as smoking and 

hypertension, are implicated in the development of the pathology, there is also a clear hereditary component. 

Yet, although 15% of the AAA patients show a positive family history, the direct causative genes have not been 

identified.2-5

 TAAs and thoraco-abdominal aortic aneurysms (TAAA) are less common, with an incidence of 10.4 new 

aneurysms per 100,000 person-years for TAA and 2.2 new aneurysms per 100,000 person-years for TAAA.6, 7 There 

is a strong genetic factor in TAA and TAAA disease, they mostly present in a syndromic form, with early onset, 

and responsible genes have been identified. Mutations are found in genes encoding for cytoplasmic, contractile 

and extracellular matrix (ECM) proteins as well as for transforming growth factor β (TGFβ) components. A well-

known example is Marfan syndrome (MFS) with a mutation in the extracellular matrix protein Fibrillin-1, which 

was the first gene described causing TAA disease.8 Another example is Loeys-Dietz syndrome with mutations 

in  TGFβ signaling pathway components, such as TGFβR18, TGFβR29-11, and SMAD3 (also known as aneurysm 

osteoarthritis syndrome).12 Furthermore, mutations in contractile proteins of smooth muscle cells have been 

described, such as ACTA213 and MYH11.14 Despite the fact that a spectrum of different genetic mutations causing 

aneurysm disease have been identified, hallmark histological anomalies like fragmentation of the elastic lamina 

and loss of extracellular matrix integrity are similar. Clinically, aneurysms are identified with ultrasound CT or MRI. 

If necessary aneurysms are treated by open or endovascular surgery. Normally, surgery is indicated for TAA at a 

diameter of ≥5.5 cm, for males with AAA at a diameter of ≥5.5 cm, and for women with AAA at a diameter of ≥4.5 

cm.1 However, the loss of vessel wall integrity that precedes aortic dilatation can neither be detected, nor treated 

in time.1 Nevertheless, for existing AAAs and TAAs β-blocker therapy is considered important in reducing the risk 

of aortic aneurysm expansion and rupture.15 Consequently, genetic sequencing of familial TAA associated genes 

is necessary to detect patients with high probability in developing aneurysm disease, as about 20% of all TAAs 

are familial.5 Nowadays, at least 14 genes are directly linked to TAA disease (see table 1). Accordingly, patients 

and family members are screened when there is a suspicion of mutations in one of the TAA linked genes by 

genetic sequencing.

 At present, different TAA genes are routinely analyzed for mutations in the coding part of genes through 

targeted Sanger sequencing of individual genes or next generation exome sequencing, with the exome being 

the part of the genome formed by exons. Our goal is to set up reliable massive parallel DNA sequencing for 

mutation analysis of complete genomic sequences, including intron, exon and regulatory sequences, of these 

14 aneurysm-related genes. To this end we set up selective amplification of targeted genomic regions spanning 

the entire aneurysm-associated gene length. Genetic profiling will identify people at high risk of aneurysm 

development, allowing early follow-up of these patients using ultrasound and other molecular imaging methods. 

In this study we show long range polymerase chain reaction (LR-PCR) optimization and the enrichment of DNA 

fragments of 14 TAA associated genes. This represents the first step in the set up for mutation analysis with 

massive parallel DNA sequencing.
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M A T E R I A L S  A N D  M E T H O D S

TAA genes
TAA linked genes were selected from literature and can be categorized in: extracellular matrix proteins: collagen 

α-1 III (COL3A1), collagen α-1 IV (COL4A1), fibulin-4 (EFEMP2); elastin (ELN) and fibrillin-1 (FBN1); cytoskeleton 

proteins: α-smooth muscle actin (ACTA2), smooth muscle myosin (MYH11), myosin light chain kinase (MYLK) and 

myosin light chain 9 (MYL9); Transforming Growth Factor beta (TGF-β) associated components; TGF-β receptor 

type 1 (TGFBR1), receptor type 2 (TGFBR2) and SMAD family member 3 (SMAD3); other proteins: Notch1 and 

glucose transporter type 10 (SLC2A10).  

LR-PCR Primer Design 
Human gene sequences of the 14 selected TAA genes, were imported from the NCBI database to the Vector 

NTI software program (Vector NTIO express, Life Technologies). The gene sequences were extended with an 

additional 5000 base pair (bp) upstream and an additional 1000 bp downstream. All exons were marked, and 

the gene sequences were divided into fragments of roughly 1500 up to 10.000 bp. The exons were generally 

combined into bundles of several exons to generate these 1500 - 10.000 bp fragments. Primers were designed 

in a 300 bp region, at least 500 bp upstream and downstream of the exons, except upstream of exon 1; there 

the primer was at least 1000 bp upstream. The sequences were exported to the Primer 3 website (Primer 3 

version 0.4.0, //bioinfo.ut.ee/primer3-0.4.0/) and primers were designed using this program. The following 

parameters were used and adjusted from standard settings; primers must be in the 300 bp regions upstream 

and downstream of the bundled sequences; product size should be 1000-10.000 bp, primer size of 25-35 bp with 

an optimal size of 30 bp; melting temperature (Tm) between 59-64˚C with an optimal of 62˚C,  a Tm difference 

of only 0.5˚C at maximum; and preferably a GC-clamp. Designed primers were checked for single-nucleotide 

polymorphism (SNP) in their prime region, for which the SNP Check3 program was used (//ngrl.manchester.

ac.uk/SNPCheckV3). Only primers without a SNP or without a significant SNP were used in this study, since a SNP 

variation could prevent a primer from annealing properly in patient cohorts. Primers using the desalt purification 

method were ordered from Life Technologies, dissolved in TE-buffer (10 mM Tris, pH8 and 1 mM EDTA) at 100 μM, 

and stored in the freezer (-20 ºC).

Optimization of Primers
Although annealing temperatures were preferably calculated to be the same for all  in silico designed primers, 

they were first optimized and tested by using a gradient PCR thermocycler. The optimal annealing temperature 

was determined for each primer set by using an annealing gradient of 56°C up to 63°C. If necessary, new primers 

were designed. The annealing temperatures generally turned out to be 2 degrees lower in these LR-PCR reactions 

than the calculated Tm. 

Genomic DNA
Genomic DNA (gDNA) was extracted from a cultured human lymphoblast cell-line clone, and obtained from 

ThermoFisher (control DNA from CEPH individual 1347-02)26. Accordingly control DNA from CEPH individual 

1347-02 was used as normal healthy gDNA.

Long Range Polymerase Chain Reaction
Kapa HiFI HotStart Readymix (2x) (Kapa Biosystems) was used in the Long Range-PCR (LR-PCR), as it is able to 

amplify long DNA targets up to 15.000 bp. The concentration for each PCR reaction was as follows; 1x Kapa 

HiFI HotStart Readymix, 0.3 μM Forward and 0.3 μM Reverse primer (10 μM stocks), 10 ng gDNA (5 ng/μl) and 

PCR-grade water was added to obtain an end-volume of 25 μl. Standard conditions were changed if necessary 

to improve reactions and these changes are noted in the supplemental table I. The PCR program settings  for an 

amplicon size of 1000-2000 bp were as follows; (1) denaturation at 95ºC for 5 minutes. (2) denaturation at 98ºC 
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Gene Description Category

COL3A116  

(collagen α1(III)) 
COL3A1 gene encodes for type III collagen, and is found in extendable 

tissues. 

Extracellular 

matrix protein

COL4A117  

(collagen α1(IV)) 
COL4A1 gene encodes for the type IV alpha collagen chain of base-

ment membranes. 

Extracellular 

matrix protein

EFEMP218 

(fibulin-4) 
EFEMP2 gene encodes for a protein involved in the formation of elas-

tic fibers.

Extracelular 

matrix protein

ELN19  

(elastin) 
ELN gene encodes for a protein forming elastin fibers. Mutations in 

this gene cause cutis laxa.

Extracelular 

matrix protein

FBN110  

(fibrillin-1) 

FBN1 gene encodes for the fibrillin-1 protein. It provides force bearing 

structures. Mutations in this gene are associated with Marfan syn-

drome.

Extracelular 

matrix protein

ACTA213 

(α-smooth muscle actin) 

ACTA2 gene encodes for a member of the actin family proteins.  α-Ac-

tin is found in the skeletal muscle and is a component of the contrac-

tile apparatus.

Cytoskeleton 

proteins

MYH1120  

(smooth muscle myosin) 
Smooth muscle myosin belongs to the myosin heavy chain family. 

MYH11 hydrolyses ATP to obtain mechanical energy for its contractile 

function.

Cytoskeleton 

proteins

MYLK21  

(myosin light chain ki-

nase) 

MYLK gene encodes for myosin light chain kinase, and this enzyme 

phosphorylates myosin light chains with actin filaments to produce 

contractile activity.

Cytoskeleton 

proteins

MYL922  

(myosin light chain 9) 

MYL9 gene encodes for a myosin light chain protein, it binds calcium 

to regulate muscle contraction and is activated by myosin light chain 

kinase. 

Cytoskeleton 

proteins

TGFBR111

(TGF-β receptor type 1) 

TGFBR1 gene encodes for a protein forming the TGF-β receptor, which 

binds TGF-β. Mutations in this receptor can cause Loeys-Dietz syn-

drome.

TGF-β associ-

ated compo-

nents

TGFBR29 

(TGF-β receptor type 2) 
TGFBR2 gene encodes for a protein forming TGF-β receptor protein, 

which binds TGF-β. It phosphorylates other proteins that enter the 

nucleus and regulate transcription processes.

TGF-β associ-

ated compo-

nents 

SMAD323  

(SMAD family member 3) 
SMAD3 protein belongs to the SMAD family and is a signal transducer 

and transcriptional modulator. SMAD3 is activated by TGF-β signaling.

TGF-β  

associated 

components

Notch124 Notch1 is part of the intracellular signaling pathway and controls cell 

fate decisions. The exact interaction of NOTCH1 in aneurysm disease 

is not yet determined.

Other

SLC2A1025 

(glucose transporter 

type 10) 

SLC2A10 gene encodes for a glucose transporter protein and is in-

volved in glucose homeostasis. 

Other

Table 1 

General information about the TAA associated genes.
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for 20 seconds. (3) annealing at 56-66ºC for 15 seconds. (4) extension at 72ºC for 1 minute, with PCR reaction 2-4 

being repeated going  34 times, followed by (5) extension at 72ºC for 2 minutes. With increasing amplicon sizes 

the extension times were increased with 30 seconds per 1000 bp. Consequently, for amplicons of 8.000-9.000 bp 

the annealing time in step 4 is increased up to 4.5 minutes and in step 5 up to 5.5 minutes. Finished PCR reactions 

were cooled  to a temperature of 10ºC or stored at 4ºC upon further processing.

PCR Product Verification 

LR-PCR products were initially verified on an agarose gel (1% agarose in TBE buffer with 0.005% ethidium 

bromide) with a λBsteII or λPstI (Invitrogen) marker. One third of LR-PCR reaction volumes were mixed with 

loading dye (6X Orange G DNA Loading Dye, homemade), loaded and ran for at least 2 hours at 100 Volt. Gels were 

visualized by a Typhoon imager (Typhoon FLA 9500, GE Healthcare Life Sciences). If the observed bands were 

of the correct size and showed a sharp and single banded pattern, the corresponding settings were approved 

and depicted in the tables. In addition, LR-PCR products were verified by using a restriction enzyme procedure. 

The total sequence of PCR products was obtained from the UCSC genome browser (https://genome.ucsc.edu) 

by inserting only forward and reverse primer sequences. Selection of the single cutting restriction enzymes was 

attained by uploading total sequences in the NEBcutter website (http://nc2.neb.com/NEBcutter2/). About 5 μl of 

each LR-PCR product was digested in an end-volume of 25 μl, using a single cutting restriction enzyme (Biolabs 

~20 Units (20000 units/ml)), the associated 10x buffer (Biolabs), and PCR-grade water. Samples were digested at 

37˚C for an hour, loaded and verified on agarose gel as described previously. 
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R E S U L T S

ACTA2
Pathogenic ACTA2 mutations lead to altered cell mobility, resulting in a different structure and integrity of 

the aortic wall.13 Of all inherited TAAs 14% is caused by mutations in the ACTA2 gene. The following settings 

were used to enrich DNA covering the promotor region, all exons and large parts of the introns (table 2 and/or 

supplemental table I). In figure 1 an overview of ACTA2 PCR products is shown. 

Lane Primers Sequence Annealing 

temperature (°C)

Amplicon 

Size (bp)

Extension 

Time (min)

1 ACTA2ex1LRFNew tatgtctgatctttgtatttgactcatctg 60 2338 1,5

ACTA2ex1LRR aggttgaactacagcagaagcctttag 60  1,5

2 ACTA2ex2LRF gtaaagtaaaagtcctcatgattcaaaaag 59 2952 1,5

ACTA2ex3LRR ttgtagagacaggatcttactatgttaccc 59  1,5

3 ACTA2ex4LRF attaggttttcaagtaagcgtcatttattc 60 5528 3

ACTA2ex7LRR tgctctttatctatctcctgtaattctcac 60  3

4 ACTA2ex8LRFNew ttacaggagatagataaagagcacttagcc 63 4698 2,5

ACTA2ex9LRRNew cataaaagtcagaccacctgtttctatatg 63  2,5

Table 2

ACTA2 gene details of primer sequence, annealing temperature, amplicon size and extension times

In addition, all LR-PCR products were verified by restriction enzyme analysis to confirm the size of each product 

and specificity of the primers. The total sequences were obtained from the UCSC genome browser, and enzymes 

with a unique restriction site in this sequence were selected from the NEBcutter website (http://nc2.neb.com/

NEBcutter2/). This procedure was performed for all primer sets. (for an example see lane 5 figure1). Supplemental 

Table I contains all the restriction enzymes used for each primer set, and their expected DNA fragment sizes.

MYH11
The MYH11 gene encodes for smooth muscle myosin heavy chain 11, and this cytoplasmic protein hydrolyses 

ATP to obtain mechanical energy for its contractile function. Mutations, in MYH11 result in TAA disease.20 The PCR 

conditions are listed in supplemental table I, Figure 2 shows the result of amplification of the complete genomic 

MYH11 DNA sequence covering the promotor region, all exons and large parts of the introns. 
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SMAD3
SMAD3 belongs to the SMAD family and is a signal transducer and transcriptional modulator. SMAD3 is activated 

by TGF-β signaling, and mutations in SMAD3 result in SMAD3-related aneurysms-osteoarthritis syndrome, also 

called Loeys-Dietz syndrome, and results in aortic aneurysms.23 The PCR conditions are listed in supplemental 

table I, Figure 3 shows the result of amplification of the complete genomic SMAD3 DNA sequences, covering the 

promotor region, all exons, and large parts of the introns.

Figure 1

Overview of the ACTA2 genomic PCR products obtained with the primer sets listed in suppl. table I. Marker 

λPstI, lane 1 primer set covering exon 1, lane 2 covering exon 2 up to exon 3, lane 3 covering exon 4 up to 

exon 7, and lane 4 and covering exon 8 up to exon 9. Lane 5 the verification of Amplicon 2 of ACTA2 by 

restriction enzyme analysis. ACTA2 amplicon 2 was cut by EcoRI and the expected DNA fragment lengths 

of 1558 bp and 1394 bp were obtained. The 2952 bp band is still visible, as the novel LR-PCR product was 

not digested completely. The lanes corresponds with suppl. table I. 

Figure 2

Overview of the MYH11 genomic PCR products obtained with the primer sets listed in suppl. table I. The 

lanes corresponds with suppl. table I, marker λPstI.
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NOTCH1
Notch1 encodes a member of the Notch family. Members of this Type 1 transmembrane protein family share 

structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like 

(EGF) repeats, and an intracellular domain consisting of multiple different domain types. Notch family members 

play a role in a variety of developmental processes by controlling cell fate decisions. The Notch signaling network 

is an evolutionarily conserved intercellular signaling pathway which regulates interactions between physically 

adjacent cells. The molecular role of NOTCH1 in aneurysms is not known.24 PCR conditions for NOTCH1 are 

listed in supplemental table I. Figure 4 shows the result of amplification of the complete genomic NOTCH1 DNA 

sequences covering promotor region, all exons and large parts of the introns.

Figure 3

Overview of the SMAD3 genomic PCR products 

obtained with the primer sets listed in suppl. 

table I. The lanes corresponds with suppl. table 

I, marker λPstI.

Figure 4

Overview of the NOTCH genomic 

PCR products obtained with the 

primer sets listed in suppl. table I. 

The lanes corresponds with suppl. 

table I, marker λPstI.
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SLC2A10
The SLC2A10 gene encodes for a glucose transporter protein and is involved in glucose homeostasis.25 

Mutations in this gene alter angiogenesis and cause arterial tortuosity syndrome. Furthermore this syndrome 

is characterized by elongation, stenosis and aneurysm formation in the major arteries owing to disruption of 

elastic fibers in the medial layer of the arterial wall. SLC2A10 PCR conditions are listed in supplemental table I. 

Figure 5 shows the result of amplification of the complete genomic SLC2A10 DNA sequences covering promotor 

region, all exons and large parts of the introns.

TGFBR1
The TGFBR1 gene encodes for the transforming growth factor-beta (TGF-β) receptor type 1, which binds TGF-β. 

Mutations in this receptor can cause Loeys-Dietz syndrome, with presentation of aortic aneurysm dissection.11 

Many patients are characterized by the triad of 1) widely spaced eyes (hypertelorism); 2) a bifid uvula, cleft 

palate, or both; and 3) generalized arterial tortuosity with widespread vascular aneurysms and dissections.8 The 

TGFBR1 receptor together with TGFBR2 forms a heterodimeric complex, which phosphorylates other proteins 

that enter the nucleus, thereby regulating transcriptional processes, for instance cell proliferation. The TGFBR1 

PCR conditions are listed in supplemental table I. Figure 6 shows the result of amplification of the complete 

genomic TGFBR1 DNA sequences covering promotor region, all exons and large parts of the introns.

Figure 5

Overview of the SLC2A10 genomic PCR 

products obtained with the primer sets listed 

in suppl. table I. The lanes corresponds with 

suppl. table I, marker λPstI.

Figure 6

Overview of the TGFBR1 genomic PCR 

products obtained with the primer sets listed 

in suppl. table I. The lanes corresponds with 

suppl. table I, marker λPstI.



169Long range polymerase chain reaction amplification of Aortic Aneurysm Genes

TGFBR2
The TGFBR2 gene encodes for the transforming growth factor-beta (TGF-β) receptor type 2, which binds TGF-β. 

Likewise, mutations in this receptor can cause Loeys-Dietz syndrome, with presentation of aortic aneurysm 

dissection. As the TGFBR2 receptor forms a heterodimeric complex with TGFBR1, mutations in this receptor show 

a similar phenotype as mutations in TGFBR1.9 PCR conditions for TGFBR2 are listed in supplemental table I. Figure 

7 shows the result of amplification of the complete genomic TGFBR2 DNA sequences covering promotor region, 

all exons and large parts of the introns.

Figure 7

Overview of the TGFBR2 genomic PCR products 

obtained with the primer sets listed in suppl. 

table I. The lanes corresponds with suppl. table 

I, marker λPstI.

Figure 8

Overview of the COL3A1 genomic 

PCR products obtained with the 

primer sets listed in suppl. table I. The 

lanes corresponds with suppl. table I, 

marker λPstI.
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COL3A1
The COL3A1 gene encodes for type III collagen, and is found in extensible connective tissues such as skin, lung 

and the vascular system.16 Haploinsufficiency for the COL3A1 allele of type III procollagen results in a phenotype 

similar to the vascular form of Ehlers-Danlos Syndrome;  type IV. COL3A1 PCR conditions are listed in supplemental 

table I. Figure 8 shows the results of amplification of the complete genomic COL3A1 DNA sequences covering 

promotor region, all exons and large parts of the introns.

COL4A1
The COL4A1 gene encodes for the type IV alpha collagen chain of basement membranes.17 COL4A1 is a candidate 

gene for unexplained familial syndromes with autosomal dominant hematuria, cystic kidney disease, muscle 

cramps, and mutations can result in intracranial aneurysms.17 This aneurysm-related gene could be involved in 

aortic aneurysm formation, however a direct link is not yet been described.27 The PCR conditions for COL4A1 are 

listed in supplemental table I. Figure 9 shows the result of amplification of the complete genomic COL4A1 DNA 

sequences covering promotor region, all exons and large parts of the introns.

EFEMP2
The EFEMP2 gene encodes for the Fibulin-4 protein, which is involved in the formation of elastic fibers and in 

connective tissue development.18, 28 Patients are diagnosed with cutis laxa, vascular tortuosity, ascending aortic 

aneurysm, developmental emphysema, inguinal and diaphragmatic hernia, joint laxity, and pectus excavatum. 

The EFEMP2 PCR conditions are listed in supplemental table I. Figure 10 shows the result of amplification of the 

complete genomic EFEMP2 DNA sequences covering promotor region, all exons and large parts of the introns.

ELN
The ELN gene encodes for a protein that forms the elastin fibers. Heterozygous mutations in the ELN gene have 

been shown to cause autosomal dominant cutis laxa, and mutations can cause severe aortic disease in patients.19 

ELN PCR conditions are listed in supplemental table I. Figure 11 shows the result of amplification of the complete 

genomic ELN DNA sequences covering promotor region, all exons and large parts of the introns.

Figure 9

Overview of the COL4A1 genomic PCR products obtained with the primer sets listed in suppl. table I. The 

lanes corresponds with suppl. table I, marker λPstI.
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FBLN1
The FBN1 gene encodes for the fibrillin-1 protein, which provides force bearing structures to the extracellular 

matrix. Mutations in this gene are associated with Marfan syndrome,10 which is an inherited disorder of 

connective tissue with an incidence of 1 in 5000 patients. Marfan syndrome manifests in the ocular, skeletal and 

cardiovascular systems, and is mainly characterized by mitral valve prolapse and medial degeneration of the 

aorta resulting in aneurysm formation. The FBLN1 PCR conditions are listed in supplemental table I. Figure 12 

shows the results of amplification of the complete genomic FBLN1 DNA sequences covering promotor region, 

all exons and large parts of the introns.

Figure 10

Overview of the EFEMP2 

genomic PCR products obtained 

with the primer sets listed 

in suppl. table I. The lanes 

corresponds with suppl. table I, 

marker λPstI.

Figure 11

Overview of the ELN genomic PCR products obtained 

with the primer sets listed in suppl. table I. The lanes 

corresponds with suppl. table I, marker λPstI.

Figure 12

Overview of the FBLN1 genomic PCR products obtained with the primer sets listed in suppl. table I. The 

lanes corresponds with suppl. table I, marker λPstI.



Part III: The Identification of Genetic Factors Involved in Aneurysms172

MYLK
The MYLK gene encodes for myosin light chain kinase, and this enzyme phosphorylates myosin light chains 

with actin filaments to produce contractile activity.21 Genetic and functional studies showed that heterozygous 

loss-of-function mutations in MYLK are associated with aortic dissections. The MYLK PCR conditions are listed in 

supplemental table I. Figure 13 shows the result of amplification of the complete genomic MYLK DNA sequences 

covering promotor region, all exons and large parts of the introns.

Figure 13

Overview of the FBLN1 genomic MYLK products obtained with the primer sets listed in suppl. table I. The 

lanes corresponds with suppl. table I, marker λPstI.

MYL9
The MYL9 gene encodes for a myosin light chain protein, that is activated by 

myosin light chain kinase and binds calcium to regulate muscle contraction.22 

The exact connection of MYL9 to aneurysmal disease is not yet determined. 

MYL9 PCR conditions are listed in supplemental table I. Figure 14 shows 

the result of amplification of the complete genomic MYL9 DNA sequences 

covering promotor region, all exons and large parts of the introns.

Figure 14

Overview of the MYL9 genomic MYLK products obtained with the primer 

sets listed in suppl. table I. The lanes corresponds with suppl. table I, 

marker λPstI.
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D I S C U S S I O N

In this study we show LR-PCR optimization of 14 TAA linked genes, which allows massive parallel sequencing 

for these aneurysm genes, including promotor regions, exons and a large part of the introns. Genomic DNA 

enrichment of aneurysm-associated genes by LR-PCR amplification is an important step in massive parallel 

sequencing, since it improves sensitivity, specificity, uniformity and reproducibility.29 After complete genomic 

TAA gene enrichment these PCR products can subsequently be used in massive parallel sequencing. For 

this purpose, products are sonicated into small fragments, and these genomic DNA fragments are ligated to 

adapters to both ends of the fragments. With a range of unique adapters for each PCR product it is then possible 

to sequence multiple different PCR products of TAA associated genes from different patients pooled into one 

sample run with next generation sequencing. With this new phase of pooling and next generation sequencing 

it is possible to screen patients or complete families for mutations on a very large scale. Moreover, it is less time 

consuming and can be performed at lower costs than the conventional methods.

 The first target of this study was to design primers to amplify complete genes including exons and the 

surrounding intron sequences for at least 500 bp. Average product sizes were up to 8000 bp, covering exons 

and most introns completely. Furthermore, at least 1000 bp of the promotor region upstream of exon 1 was 

amplified, in order to screen mutations in the promotor-sequence and in the adjacent responsive elements. By 

amplification of all exons, a large part of the intron sequences, the promotor-sequence and the 3’-untranslated 

region (UTR)-sequence, it becomes possible to screen for mutations outside the exome, as these sequences 

contain binding sites for gene regulation, thus  mutations in these regions could influence protein expression 

levels.30 Accordingly, transcriptional regulatory DNA sequences recruit transcription factors (TFs) in a DNA 

sequence-specific manner, allowing cells to precisely control the rates of chromatin decompaction, transcription 

initiation, and the release of RNA polymerase II (RNAPII) into productive elongation.31, 32 Though, the TAA linked 

gene mutations that were selected for this study are thus far reported in the coding region or intron-exon splice 

junctions, which results in a dysfunctional protein causing aneurysm disease (table 1). However, since 15% of 

aneurysm patients show a positive family history with late onset of the disease ,2-5 the direct causative genes 

have not been identified. In these cases, gene expression dysregulation of  known aneurysm-linked genes could 

potentially be causative.

 Important regulatory sequences are promoters and enhancers. A promoter is a regulatory region located 

upstream of a gene that binds transcription factor II D (TFIID) and allows the subsequent coordination of 

components of the transcription (pre-)initiation complex (PIC), facilitating recruitment of RNA polymerase II and 

initiation of transcription.33, 34 The core promotor generally spans approximately 80 bp around the transcription 

start site (TSS), and can be separated into two distinct classes: conserved TATA-box enriched promotors that initiate 

at a single TSS, and variable CpG-rich promotors containing multiple TSS.35 Multiple TSS promoter elements are 

involved in regulation of transcription initiation. Both upstream and downstream promoter elements (UPE and 

DPE) contain transcription factor binding sites (TFBS), and may act independently or synergistically with the core 

promoter that facilitates transcription initiation.33, 34 Other enhancer elements within the promoter region are 

the insulators, activators and repressors. All these factors selectively contribute to transcription initiation activity. 

It is therefore of importance to screen this promoter region for mutations or presence of sequences binding 

these core elements, especially within the promoter region spanning approximately 80 bp. Deletion analyses 

implicated sequences lying -300 to -50 bp upstream of the TSS generally having a positive effect on promoter 

activity, while elements negatively affecting promoter activity were located -1,000 to -500 bp upstream of the 

TSS for 55 % of the genes examined.30, 36 Hence, also wider screening for mutations in the promoter sequence 

region could give extra insight into aneurysmal disease.

 The 5’-UTR is a regulatory region in the DNA situated at the 5’ end of all protein-coding genes that is 

transcribed into mRNA but not translated into protein. The 5’-UTRs contain various regulatory elements and 

plays a role in translation initiation. Besides,  5’-UTRs are highly conserved across species, indicative of functional 

conservation.37 The 5’ cap is a modification added to the 5’ end of precursor mRNA38, and this structure is essential 
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for efficient translation of mRNA, serving as a binding site for the pre-initiation complex (PIC).39 Additionally, 

upstream open reading frames (uORF) occur in 5’-UTRs when there is an in-frame stop codon following an 

upstream AUG (uAUG) codon, prior to the main start codon.30, 40 uORFs are present in ~50% of human 5’-UTRs, 

and their presence correlates with reduced protein expression and with mutation studies indicating that uORFs 

reduce mRNA levels by 30% and reduce protein expression by 30-80% on average.41S Ribosomes binding to an 

uAUG codon may translate an uORF, which can impact on downstream expression by altering the efficiency 

of translation or initiation at the main ORF. Mutations involving uORFs are likely to be detrimental, as they can 

disrupt the control of gene expression, resulting in aberrant gene expression levels.42

 Introns are regions of DNA that are transcribed into pre-messenger RNA but are removed during splicing to 

generate a mature mRNA. Specific mutations in the introns of TAA associated genes could disrupt the assembly 

of a spliceosome,30 resulting in disrupted splicing that could lead to problems in normal mRNA maturation. 

Though intron-exon boundary splice mutations are usually also identified by conventional Sanger Sequencing 

of amplified exons, as these amplicons usually contain a few base pairs of the intron as well. Furthermore, introns 

could have deleterious effects on gene expression, such as a delay in mature transcript production due to 

aberrant splicing or increased pre-mRNA length. Furthermore, introns are sources of non-coding RNAs, carriers 

of transcriptional regulatory elements (enhancers) and contributors to alternative splicing. However, these kind 

of mutations have not been found or reported yet in aneurysmal disease.

 The 3’-UTR is a regulatory region in the DNA situated downstream of the protein-coding sequence, and is 

transcribed into a mature mRNA sequence. The 3’-UTR has been found to be involved in numerous regulatory 

processes including transcript cleavage, stability and polyadenylation, translation and mRNA localization, 

and is therefore critical in determining the fate of an mRNA. In addition, 3’-UTRs are highly conserved across 

species, indicating functional conservation.37 Furthermore, the 3’-UTR serves as a binding site for numerous 

regulatory proteins as well as microRNAs (miRNAs). The binding sites in the 3’-UTR can bind miRNAs, which 

are single-stranded non-coding RNA molecules of approximately 22 nucleotides in length that interact post-

transcriptionally with mRNA targets to regulate expression. Generally miRNAs exert their effect by partial 

basepairing to a miRNA response element (MRE) on a target mRNA via a seed sequence at the 5’ end of the 

miRNA, which then recruits proteins of the Argonaut family and inhibits translation of the mRNA43-45. Recently, 

miRNAs such as miR-24, miR-155, miR-205, miR-712, miR-21, miR-26a, miR-143/145, miR-29, and miR-195, have 

been demonstrated to be differentially expressed in diseased aortic tissues and were shown to be strongly 

associated with the development of aortic aneurysms.46, 47 

 To recapitulate, regulatory sequences such as the promotor sequence, upstream and downstream promoter 

elements (UPE and DPE) sequences, enhancer element sequences, uORF sequences, recognition sequences 

in the introns for the spliceosome, and MRE sequences are all of interest as they could contain pathogenic 

mutations causing aneurysm disease. Pinpointing pathogen mutations in these transcription factor binding 

sites (TFBS) is quite challenging,48 but gradually the ability to read individual genomes is in progress and along 

with sequencing the introns, promotors, 5’-UTR and 3’-UTR-sequences we will get a better understanding of 

initiation and progression of aneurysmal disease.

 There is great potency to gain extra information by sequencing more than  the exome alone, thus the 

next generation sequencing technique presented in this study could be more beneficial than the conventional 

methods. The next step is to screen patient cohorts along with their relatives on the short-term, for which 14 

TAA genes were completely covered and enriched. The next step of massive parallel sequencing to screen for 

mutations resulting in damaged or dysregulated proteins can now be performed.
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A B S T R A C T

Dual renin-angiotensin system (RAS) blockade in diabetic nephropathy is no longer feasible because of 

the profit/side effect imbalance. (Pro)renin receptor ((P)RR) blockade with HRP has been reported to exerts 

beneficial effects in various diabetic models in a RAS-independent manner. To what degree (P)RR blockade adds 

benefit on top of RAS blockade is still unknown. Here we treated diabetic TGR(mREN2)27 rats, a well-established 

nephropathy model with high prorenin levels (allowing continuous (P)RR stimulation in vivo), with HRP on top 

of renin inhibition with aliskiren. Aliskiren alone lowered blood pressure and exerted renoprotective effects, 

as evidenced by reduced glomerulosclerosis, diuresis, proteinuria, albuminuria, and urinary aldosterone levels, 

and diminished renal (P)RR and AT
1
 receptor expression. It also suppressed plasma and tissue RAS activity, and 

suppressed cardiac ANP and BNP expression. HRP, when given on top of aliskiren, did not alter the effects of 

renin inhibition on blood pressure, RAS activity or aldosterone. Yet, it counteracted the beneficial effects of 

aliskiren in the kidney, induced hyperkalemia and increased plasma plasminogen activator-inhibitor 1, renal 

cyclo-oxygenase-2 and the cardiac collagen content. All these effects have been linked to (P)RR stimulation, 

suggesting that HRP might in fact act as a partial agonist. Therefore, the use of HRP on top of RAS blockade in 

diabetic nephropathy is not advisable.   
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I N T R O D U C T I O N

Hypertensive patients with diabetes exhibit an increased risk for cardiovascular complications such as 

nephropathy, stroke and heart failure. The renin-angiotensin system (RAS) is believed to modulate the underlying 

structural and functional changes in the kidney and heart1, 2, thereby explaining the beneficial effects of RAS 

blockers in this condition.  Elevated levels of prorenin, the precursor of renin, are an early indicator of nephropathy 

in diabetes3, 4. Prorenin has been speculated to contribute to angiotensin generation in the kidney via binding 

to the so-called (pro)renin receptor ((P)RR). Indeed, (P)RR-bound prorenin displays angiotensin I-generating 

activity5, 6. Yet, it also stimulates (P)RR-mediated signal transduction in an angiotensin-independent manner, 

resulting in the activation of extracellular signal-regulated kinase (ERK) 1/2, cyclo-oxygenase-2 (COX-2) and 

fibrotic pathways5, 7. The latter includes enhanced transforming growth factor-β1 (TGFβ1) synthesis, plasminogen 

activator-inhibitor 1 (PAI-1) release, and the upregulation of fibronectin and collagens5, 7-9. In agreement with 

this concept, ubiquitous expression of the human (P)RR in rats led to proteinuria, glomerulosclerosis and 

nephropathy, which could be reversed by the putative (P)RR blocker, handle region peptide (HRP)10. Beneficial 

renal effects of HRP were also observed in angiotensin II type 1a (AT
1a

)-receptor-deficient mice, suggesting that 

they are not solely due to interference with the RAS. Yet, the capacity of HRP to block the (P)RR is controversial11, 

and recent studies in knockout animals suggest that (P)RR deletion in cardiomyocytes or podocytes is actually 

lethal12-14. Thus, a relevant question is to what degree HRP should still be used, e.g., on top of RAS blockade in 

diabetic patients with nephropathy and heart failure. This is of particular importance now that the combination 

of 2 or more RAS blockers is no longer advocated in diabetic patients, since the side effect profile (hypotension, 

hyperkalemia) of this approach outweighs the beneficial effects15, 16.   

 In the present study we therefore set out to study the effects of HRP on top of renin inhibition (with aliskiren) 

in a well-established high prorenin model, the TGR(mRen2)27 (Ren2) rat, which overexpresses the mouse Ren2 

gene17 and also displays elevated (P)RR levels18. Aliskiren is renoprotective in this model, and its effects are 

comparable to those observed during AT
1
 receptor blockade or ACE inhibition, despite non-equivalent blood 

pressure-lowering effects of these 3 types of RAS blockers19, 20. Cardioprotective effects of aliskiren have also 

been observed in diabetic rodents21, 22. 

 Rats were made diabetic with streptozotocin (STZ), and treated for 3 weeks with aliskiren and/or HRP. We 

used a dose of HRP that has been applied before in several rodent studies10, 23-25. We reasoned that, if anywhere, 

the beneficial effects of this putative (P)RR blocker on kidney and heart should be observed in this high-prorenin, 

high-(P)RR model. 
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M E T H O D S

Animal studies
Homozygous Ren2 rats (400-500 g; a kind gift of dr. M. Bader, Berlin, Germany) were crossed with Sprague 

Dawley (SD) rats (Harlan, Boxmeer, The Netherlands) to generate heterozygous Ren2 rats. Heterozygous rats 

were subsequently used in all studies, since these rats, in contrast to homozygous Ren2 rats, did not require 

lisinopril treatment (10 µg/ml in drinking water) to decrease mortality. All studies were performed under the 

regulation and permission of the Animal Care Committee of the Erasmus MC. Rats were housed in individual 

cages and maintained on a 12-hour light/dark cycle, having access to standard laboratory rat chow and water ad 

libitum. Radiotelemetry transmitters were implanted as described before26 for continuous measurement of heart 

rate, blood pressure, and activity. Two weeks later, to induce diabetes mellitus (DM), rats were fasted overnight 

and administered STZ (1 injection of 55 mg/kg STZ i.p., Sigma-Aldrich, Zwijndrecht, The Netherlands). Rats were 

checked for non-fasting blood glucose and β-ketone levels by tail incision daily during the first 3 days after 

STZ injection, and once-weekly thereafter(Precision Xceed, Abbott, Zwolle, The Netherlands). Only rats with a 

glucose level >15 mM were considered diabetic, and they subsequently received 2-4 U insulin per day (Levemir®, 

Novo Nordisk, Denmark). Diabetic Ren2 rats had an average blood glucose level of 25.8±0.9 mmol/L. After 

two weeks of DM status osmotic minipumps (2ML4 ALZET, Cupertino, USA) were implanted subcutaneously 

under isoflurane anesthesia to infuse vehicle (saline; n=8), aliskiren (a gift of Novartis, 10 mg/kg per day; n=8) or 

aliskiren + rat HRP (NH
2
-RILLKKMPSV-COOH, 1 mg/kg per day, Biosynthan, Berlin, Germany; n=7). In the animals 

receiving aliskiren + HRP, 2 separate minipumps were implanted at both sides of the body. During the study, 

rats were placed in metabolic cages on day -14 (non-DM), day 0 (DM) and day 21 (DM+treatment) to collect 

24-hour urine. Each rat served as its own control for the non-DM state. The urine was frozen and stored until 

analysis of total protein, albumin, creatinine, Na+, endothelin-1 and aldosterone. Three weeks later, animals were 

anaesthetized by pentobarbital injection i.p., and the hepatic portal vein was cannulated to collect blood for 

the measurement of angiotensin I and II, aldosterone, endothelin-1, TGFβ1, PAI-1, K+, cystatin C (a marker of 

glomerular filtration that is less dependent on muscle mass compared to creatinine), and creatinine (day 21). 

Kidney and heart were excised, weighed, divided into transverse segments, and fixated in 4% paraformaldhyde 

for histological analysis or frozen in liquid nitrogen for gene expression analysis. Blood and organs were also 

obtained from 6 DM Ren2 rats treated with saline for 3 weeks and 8 untreated non-DM Ren2 rats, which did not 

undergo hemodynamic measurements. 

Biochemical measurements
ET-1 was assessed using a chemiluminescent ELISA (QuantiGlo, R&D Systems), albumin by enzyme immunoassay 

(Spi-Bio, Montigny-Le-Bretonneux, France), and aldosterone by radioimmunoassay (Coat-a-Count, Siemens 

Medical Solutions Diagnostics, Los Angeles, USA). TGFβ1, cystatin C (Quantikine, R&D systems) and PAI-1 

(Zymutest, Tebu-Bio, Le Perray-en-Yvelines, France) were measured by ELISA. Creatinine, K+, Na+ and total protein 

were measured at the clinical chemical laboratory of the Erasmus MC. Angiotensin I and II were measured by 

radioimmunoassay, after SepPak extraction and reversed phase high performance liquid chomatography (HPLC) 

separation as described before27, 28.

Histology
After fixation, kidney and heart sections were dehydrated and paraffin embedded. Gomori silver staining was 

applied to sections (5 µm) of the left ventricle of the heart to visualize individual cardiomyocytes. Sirius red 

staining was applied to visualize collagen as a measure of cardiac fibrosis. Cardiomyocyte size and the amount 

of collagen was measured using Qwin (Leica).

Transversely sliced kidney sections (deparaffinized, 2 µm) were stained with periodic acid Schiff (PAS) to localize 

kidney damage and α-smooth muscle actin (SMA) to identify interlobar arteries. In the sections, glomerular 

volume, arterial wall thickness and lumen diameter of interlobar arteries were blindly assessed. To measure 
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glomerular volume, 50 individual glomeruli from each kidney section were traced along Bowman’s capsule to 

measure glomerular circumference using the system of NanoZoomer Digital Pathology. Glomerular volume was 

calculated from the glomerular circumference and radius according the method of van Damme et al.29 using the 

formula 4/3πr2. To measure arterial wall thickness to lumen diameter ratio, the arterial and lumen circumference 

of 6 interlobar arteries per kidney section was measured using the system of NanoZoomer Digital Pathology. 

Arterial wall thickness was calculated by deduction of lumen radius from the arterial outerradius. Data were 

also expressed as arterial wall thickness divided by lumen diameter ratio to correct for the size of the arteries 

measured.

 The presence of focal segmental glomerulosclerosis was assessed in all glomeruli of one kidney section 

per animal with a mean of 181±4 glomeruli per section. All sections were semiquantitavely scored by a renal 

pathologist in a blinded manner. Renal scarring of all glomeruli was scored on an arbitrary scale from 0 to 

4. Grade 0 (n
0
) indicated no glomerulosclerosis; grade 1 (n

1
), less than 25% of sclerosis; grade 2 (n

2
), 25-50% 

of sclerosis; grade 3 (n
3
), 50-75% of sclerosis; and grade 4 (n

4
), more than 75% of sclerosis per glomerulus. 

Hereafter, the individual glomerulosclerosis index (GSI) was calculated for each rat with the following formula: 

[(1xn
1
)+(2xn

2
)+(3xn

3
)+(4xn

4
)]/[n

0
+n

1
+n

2
+n

3
+n

4
]. Furthermore, 10 images of each kidney section (100x 

magnification) were analyzed for arterial hyalinosis, intima fibrosis and mediahypertrophy as wel as tubular 

atrophy, interstitial fibrosis and renal inflammation according to the BANFF classification30. Each parameter 

was graded in 10 fields with a score of 0-3 in which 0 meant no changes in pathology; grade 1, less than 

25% of change; grade 2, 25-50% of change; grade 3, more than 50% of affected tissue. From these data, the 

tubulointerstitial score (TIS) was calculated by dividing the combined score of tubular atrophy, interstitial fibrosis 

and renal inflammation with the number of parameters.

Quantitative Real-Time RT-PCR
Total RNA was isolated from snap-frozen rat kidney and heart using Trizol (Life Technologies, Grand Island, 

USA) and reverse transcribed into cDNA using the QuantiTect Reverse Transcription Kit (Qiagen, Venlo, The 

Netherlands). The resulting cDNA was amplified in 40 cycles (denaturation at 95°C for 10 min; thermal cycling at 

95°C for 15 sec, annealing/extension at 60°C for 1 min) with a Step-One cycler (NYSE, Life Technologies) using 

the SYBR® Green PCR Master Mix (Life Technologies). The intron-spanning oligonucleotide primers for qPCR 

were designed with NCBI (Primer-BLAST; Table 1). The comparative cycle time method (DDCT) was used for 

relative quantification of gene expression, using the geometric mean of the housekeeping genes hypoxanthine 

phosphoribosyl transferase-1 (HPRT1), β
2
-microglobulin and β-actin for normalization. In cardiac left ventricular 

tissue gene expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain 

(β-MHC), the (P)RR and the AT
1
 receptor was determined. Gene expression of rat renin, the (P)RR, the AT

1
 receptor, 

collagen-1, TGFβ
1
, TNFα, NF-κB, COX-2 and neutrophil gelatinase-associated lipocalin (Ngal, a marker of tubular 

damage)  was measured in kidney medulla and cortex. 

Statistical analysis
Statistical analysis was performed using unpaired t-test after one-way ANOVA with Bonferroni post-test 

confirmed differences between groups. Data are given as mean±SEM. P<0.05 was considered significant. 
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R E S U L T S

Animal characteristics
Hemodynamic data have been reported before31. In brief, diabetic Ren2 rats were severely hypertensive, and 

a three-week treatment with aliskiren (but not vehicle) lowered blood pressure (Table 2). The effect on blood 

pressure was unaltered by HRP. Diabetic Ren2 rats displayed a reduced body weight (BW) and heart weight 

(HW), and an increased kidney weight (KW), and as a result, the HW/BW ratio was unaltered in diabetic animals 

while their KW/BW ratio was increased (Table 2). Treatment with aliskiren ± HRP did not affect these parameters. 

Figure 1

Urinary volume (A),urinary protein (B), and urinary albumin (C) in non-diabetic (non-DM) and DM Ren2 rats, 

treated with vehicle, aliskiren or aliskiren+HRP.  Urine was collected on day -14 (non-DM), day 0 (DM; 2 

weeks DM) and day 21 (after 3 weeks treatment; 5 weeks DM, vehicle, aliskiren and aliskiren+HRP)-. Please 

note that the Day 0 data (DM) reflect the measurements immediately before the start of treatment. Data are 

mean+SEM of n=7-8. *P<0.05 vs non-DM, #P<0.05 vs 2 weeks DM, $P<0.05 vs vehicle.

Biochemical measurements
STZ-induced DM increased blood glucose in Ren2 rats ≈4-fold, and this was unaffected by treatment (Table 2). 

DM increased urinary volume time-dependently. It was up ≈4-fold after 2 weeks, and after an additional 3 weeks 

(during treatment with vehicle) ≈13-fold (Figure 1). Aliskiren prevented this rise in diuresis, most likely due to its 

effects on blood pressure, while HRP negated the protective effects of aliskiren. Changes in urinary protein and 

albumin ran in parallel with the changes in urinary volume, although HRP did not prevent the effect of aliskiren 

on albumin (Figure 1).  

 DM decreased plasma creatinine, and this was unaffected by aliskiren treatment. HRP, when given on top of 

aliskiren, normalized plasma creatinine. No significant changes in urinary creatinine or creatinine clearance were 

observed following DM induction, with or without treatment (Table 2).  Likewise, there was no change in plasma 

cystatin C, indicating no change in glomerular filtration rate due to 5 weeks of DM with or without treatment.

 DM marginally decreased PRA (P=NS) and this was accompanied by a significant decrease in angiotensin 

levels in heart and kidney (Figure 2). Aliskiren further reduced these levels in the kidney, both with and without 

HRP. Plasma aldosterone levels were also decreased in diabetic Ren2 rats, and this resulted in increased natriuresis 

and an (nonsignificant) increase in plasma K+ levels (Figure 3). Remarkably, despite the reduction in 
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Figure 2

Plasma renin activity (A, PRA) and angiotensin (Ang) levels in heart (B) and kidneys (C) from non-diabetic 

(non-DM) and DM Ren2 rats, the latter treated for 3 weeks with vehicle, aliskiren or aliskiren+HRP.  Data are 

mean+SEM of n=7-12. *P<0.05 vs non-DM, $P<0.05 vs vehicle.

plasma aldosterone, urinary aldosterone excretion rose 8-fold. Aliskiren ± HRP greatly reduced the latter and yet 

non-significantly increased plasma aldosterone. As a result, natriuresis tended to diminish (P=NS). Of interest, 

HRP on top of aliskiren further increased plasma K+. 

 The plasma levels of TGFβ
1
 and PAI-1 were not affected by diabetes or treatment with aliskiren. Yet, HRP on 

top of aliskiren increased plasma PAI-1 by 50% compared to vehicle or aliskiren treated rats, without affecting 

TGFβ
1
 (Table 2). Plasma and urinary endothelin-1 levels were unaffected by DM or treatment (Table 2). 

Kidney – gene expression
DM did not alter rat renin, AT

1
 receptor, COX-2 or Ngal expression in medulla or cortex (Figure 4). It increased (P)

RR and collagen-1 expression in the medulla, and to a lesser degree (P=NS) in the cortex. DM decreased TGFβ
1
 

expression in the cortex, whereas it induced a non-significant increase in TGFβ
1
 expression in the medulla. 

Similar changes were observed for TNFα and NF-κB, but these were not significant (data not shown). Aliskiren 

did not alter the DM-induced changes in TGFβ
1
 and collagen-1, and increased cortical rat renin expression. A 

similar increase in renin expression, albeit non-significant, was observed in the medulla. Aliskiren diminished 

cortical (P)RR and AT
1
 receptor expression, without affecting these parameters in the medulla. Aliskiren tended 

to increase cortical COX-2 expression (P=NS). Changes by aliskiren were unaltered in the presence of HRP, except  

for the increase in COX-2, which became significant after addition of HRP. 
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Figure 3

Levels of plasma (A) and urinary aldosterone (B), urinary K+ (C), urinary Na+ (D) and plasma cystatin C (E) in non-

diabetic (non-DM) and DM Ren2 rats, the latter treated for 3 weeks with vehicle, aliskiren or aliskiren+HRP.  Data 

are mean+SEM of n=7-13. *P<0.05 vs non-DM, $P<0.05 vs vehicle.
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Figure 4 

Gene expression analysis of rat renin (A), (pro)renin receptor (B), AT
1
 receptor (C), collagen-1 (D), TGFβ1 (E), 

COX-2 (F) and Ngal (G) in kidney medulla and cortex from non-diabetic (non-DM) and DM Ren2 rats, the 

latter treated for 3 weeks with vehicle, aliskiren or aliskiren+HRP.  Data are mean+SEM of n=5-9 and have 

been expressed as fold-change vs. non-DM. *P<0.05 vs non-DM, $P<0.05 vs vehicle.

Kidney - histology
DM did not alter TIS, glomerular volume, interlobar arterial lumen diameter and wall thickness (nor the ratio 

of the latter two), and non-significantly decreased GSI (Figure 5). Arterial hyalinose, intima fibrosis and media 

hypertrophy were not observed. Aliskiren reduced GSI, without affecting any of the other parameters. HRP, 

when given on top of aliskiren, did not alter its effects on GSI, but tended to increase glomerular volume and 

lumen diameter, the latter resulting in a decrease in lumen diameter/wall thickness ratio. However, none of these 

changes were significant. 

Heart - gene expression
DM did not affect cardiac ANP, BNP and (P)RR expression, and increased β-MHC and AT

1
 receptor expression 

(Figure 6). Aliskiren + HRP, but not aliskiren alone, normalized the latter. Drug treatment did not affect (P)RR 

or β-MHC expression. Aliskiren, with or without HRP, reduced cardiac BNP expression, and similar trends were 

observed for cardiac ANP expression, although now the changes were significant only during combination 

treatment. 

Heart - histology
DM increased the cardiac collagen content, without altering myocyte size. Aliskiren did not affect these changes, 

while aliskiren + HRP further increased the collagen content and marginally diminished myocyte size (Figure 7).
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Figure 5

Glomerular volume (A), glomerulosclerosis index (B, GSI), tubulointerstitial score (C, TIS), interlobar arterial 

lumen diameter (D), wall thickness (E) and wall/lumen ratio (F) in kidney sections from non-diabetic 

(non-DM) and DM Ren2 rats, the latter treated for 3 weeks with vehicle, aliskiren or aliskiren+HRP.  Data are 

mean+SEM of n=7-8. *P<0.05 vs non-DM. a and b, representative pictures of PAS-stained kidney sections; 

c, representative pictures of smooth muscle actin-stained interlobar arteries.
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Figure 6

Gene expression analysis of ANP (A), BNP (B), β-MHC (C), (pro)renin receptor (D),andAT
1
 receptor (E), in 

hearts from non-diabetic (non-DM) and DM Ren2 rats, the latter treated for 3 weeks with vehicle, aliskiren 

or aliskiren+HRP.  Data are mean+SEM of n=7-10 and have been expressed as fold-change vs. non-DM. 

*P<0.05 vs non-DM, $P<0.05 vs vehicle.
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Figure 7

Cardiomyocyte size (A) and fibrotic area (B) in left ventricular tissue of hearts from non-diabetic (non-DM) and 

DM Ren2 rats, the latter treated for 3 weeks with vehicle, aliskiren or aliskiren+HRP.  Data are mean+SEM 

of n=7-8. a, representative pictures of Gomori-stained cardiomyocytes; b, representative pictures of Sirius 

red-stained LV tissue. *P<0.05 vs non-DM, $P<0.05 vs vehicle. 
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D I S C U S S I O N

This study shows that HRP counteracts the favorable effects of aliskiren on early renal damage in diabetic Ren2 

rats. In agreement with previous studies, the hypertensive Ren2 rat, when made diabetic with STZ, displayed 

mild glomerulosclerosis, accompanied by albuminuria, proteinuria and diuresis31, 32. A three-week treatment 

with aliskiren improved these parameters, while the addition of HRP on top of aliskiren negated the protective 

effects of aliskiren on the latter two. HRP also induced hyperkalemia and increased plasma PAI-1, renal COX-2 

and the cardiac collagen content. This argues against the application of HRP in combination with aliskiren in 

diabetic patients. 

 Plasma creatinine decreased after the induction DM, most likely reflecting the weight (and muscle) loss 

occurring in these animals. There were no changes in cystatin C or renal Ngal expression, suggesting that indeed 

the renal damage in our DM animals was at an early stage, not yet resulting in alterations in glomerular filtration 

or tubular damage. Of interest, aliskiren alone did not alter these parameters, whereas HRP on top of aliskiren 

increased plasma creatinine and tended to increase (P=NS) cortical Ngal expression, again suggesting that HRP, 

if anything, worsened renal function when combined with aliskiren.      

 DM reduced plasma, cardiac and renal RAS activity in the Ren2 rat, although only the reduction in tissue was 

significant. The reduction in PRA was modest, in full agreement with the consequence of diabetes in humans33. 

Along with this RAS suppression, plasma aldosterone decreased by almost 50%. Not surprisingly, this resulted 

in natriuresis and a (non-significant) rise in plasma K+. Yet, urinary aldosterone excretion increased 8-fold. This is 

suggestive for a net rise in adrenal  aldosterone production, most likely to compensate the loss of aldosterone via 

urine (»1.5 ng/day). Of interest, aliskiren greatly diminished the urinary aldosterone loss, reflecting a reduction 

in aldosterone production, although plasma aldosterone, if anything tended to go up, thereby counteracting 

the above effects on natriuresis and hyperkalemia. The effects of aliskiren on aldosterone and natriuresis were 

unaltered by HRP. Yet, it greatly elevated plasma K+. Since this occurred independently of changes in aldosterone, 

it might be the consequence of direct effects of HRP, e.g., via the (P)RR34.  

 The aliskiren-induced reduction in renal angiotensin content, together with the reduction of cortical AT
1
 

receptor expression, probably underlies the beneficial effect of renin inhibition in the kidney. Aliskiren-induced 

AT
1
 receptor suppression has been reported before, both in the kidney and other organs35-37. At 5 weeks after 

STZ injection, we observed modest regional changes in renal TGFβ1, TNFα, NF-κB and collagen-1 expression, 

although no fibrosis or inflammation could be detected. It is therefore not surprising that aliskiren did not 

significantly affect these parameters in the kidney. Such effects have been observed before, but this required a 

longer duration of DM (10 weeks), and aliskiren treatment starting at the moment of STZ injection36. HRP did not 

alter the effect of aliskiren on TGFβ1, but unexpectedly increased the levels of PAI-1. These observations contrast 

with the idea that HRP prevents (pro)renin-(P)RR interaction, thereby blocking the rise in PAI-1 that result from 

such (P)RR stimulation, at least in vitro9, 38. Possibly, the increase in renal (rat) renin expression after aliskiren was 

too modest to increase PAI-1. In addition, aliskiren suppressed (P)RR expression. Recently, HRP has been reported 

to act as a partial agonist of the (P)RR34, 39. Thus, its stimulatory effects on PAI-1 on top of aliskiren might also be 

the consequence of direct (P)RR stimulation.  

 Hyperglycemia elevates (P)RR expression in rat mesangial cells via protein kinase C, ERK1/2 and JNK40, and 

this has been suggested to facilitate angiotensin II generation and AT
1
 receptor-dependent COX-2 induction41. 

Ubiquitous overexpression of the human (P)RR in the rat also resulted in COX-2 upregulation10. Simultaneously, 

COX-2 inhibition reduced the glucose-induced (P)RR upregulation, suggesting that COX-2 itself upregulates (P)

RR42. Our study confirms renal (P)RR upregulation in diabetic Ren2 rats. Yet, significant COX-2 upregulation was 

only seen following concomitant HRP administration, even in the face of aliskiren-induced (P)RR suppression. This 

suggest that (P)RR upregulation per se is insufficient to increase COX-2, and requires additional (P)RR stimulation, 

either by renin, HRP or their combination. COX-2 elevation has been reported before in the macula densa after 

renin upregulation due to salt restriction43. Such COX-2 upregulation has detrimental effects; for instance, COX-2 

generated endothelium-derived contractile factors (EDCF) in diabetic Ren2 rats, thereby inducing vascular 
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dysfunction31, and the COX-2 upregulation in human (P)RR-overexpressing rats was accompanied by proteinuria 

and glomerulosclerosis10. 

 Natriuretic peptides are released by the hypertrophied heart, and their levels are elevated in patients with 

heart failure44 and homozygous Ren2 rats45. Aliskiren reduced cardiac ANP and BNP expression in the diabetic, 

heterozygous Ren2 rats of the present study, most likely due to its blood pressure-lowering effect. Yet, aliskiren 

did not affect cardiac hypertrophy, β-MHC expression, or myocyte size. These effects were unaltered by HRP. 

Moreover, no changes occurred in cardiac (P)RR expression, suggesting that (P)RR upregulation by hyperglycemia 

is not a uniform phenomenon. Although aliskiren with or without HRP did not significantly reduce the cardiac 

angiotensin content, HRP combined with aliskiren did suppress cardiac AT
1
 receptor expression, suggesting 

that this combination may have reduced the consequences of angiotensin II-AT
1
 receptor interaction. Yet, this 

did not result in a reduction of cardiac fibrosis, possibly because the degree of fibrosis in our model was still 

modest. Remarkably however, cardiac fibrosis increased significantly following co-treatment of aliskiren + HRP. 

This contrasts with studies showing antifibrotic effects of HRP in stroke-prone spontaneously hypertensive rats46, 

and once again illustrates the partial agonistic capacities of HRP. 

 In conclusion, renin inhibition improves renal function in diabetic Ren2 rats with early kidney damage, and 

(P)RR blockade with HRP not only counteracted this effect in a RAS-independent manner, but also increased 

K+, PAI-1, renal COX-2 and cardiac fibrosis. This contrasts with the beneficial cardiac and renal effects of HRP 

observed in various models23, 47, 48, but agrees with the deleterious effects of (P)RR knockout in heart and kidney12, 

13. A uniform explanation might be that HRP acts as a partial agonist35, 39. Nevertheless, given these controversial 

findings, it seems that at this stage, HRP should not be considered as add-on drug in diabetics treated with a 

RAS inhibitor. Furthermore, given the uncertainty whether HRP is a (P)RR blocker or not, future studies should 

carefully examine the exact function of the (P)RR in diabetes, e.g., making use of (inducible) renal cell-specific 

knockout models, in order to define its role as a treatment target.   
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Table 1 

Real-time RT-PCR primers

gene forward primer 5’-3’ reverse primer 5’-3’

HPRT-1 TGGACAGGACTGAAAGACTTGCTCG CTTCAGCACACAGAGGGCCACA

β-actin AGCCATGTACGTAGCCATCCA TCTCCGGAGTCCATCACAATG

β2-microglobulin ATGGCTCGCTCGGTGACCG TGGGGAGTTTTCTGAATGGCAAGCA

rat renin CGGGAGGAGGATGCCTCTCTGG CAAGATTCGTCCAAAGCTGGCTGT

Collagen-1 TCTGGCGCAAGAGGCGAGAGA GTTGCCGGGGGCACCATTGT

TGFβ1 AGTGGCTGAACCAAGGAGACGGA TGCCCAGGTCACCTCGACGT 

(P)RR TGAAGGAAGACCTGTCTTGGCCAGG ATAATGGTAGCCCGGGGCCGG

AT1R ACTGCCTGAACCCTCTGTTC TCGTAGACAGGCTTGAGTGG

COX-2 ATTGCTGGCCGGGTTGCTGG TCAATGGAGGCCTTTGCCACTGC

TNF-α GACCCTCACACTCAGATCATCTTCT TGCTACGACGTGGGCTACG

NF-κB TCTGATTGGCCAGAGGCTCCC GGGCGTGGCCATAGTTCAAGGG

ANP ATGGGCTCCTTCTCCATCAC TCTACCGGCATCTTCTCCTC

BNP ACAATCCACGATGCAGAAGCT GGGCCTTGGTCCTTTGAGA 

β-MHC ATGGACCTGGAGCGAGCAAA GTCCTTCTTTTTGAGTCGCTCATCC

Ngal GGGCTGTCCGATGAACTGAA CATTGGTCGGTGGGAACAGA

HPRT-1, hypoxanthine phosphoribosyltransferase; TGFβ1, transforming growth factor β1; (P)RR, (pro)renin 

receptor; AT1R, angiotensin II type 1 receptor; COX-2, cyclooxygenase 2; TNF-α,  tumor necrosis factor-α; 

NF-κB, nuclear factor-κB; ANP, atrial natriuretic peptide; BNP, B-type natriuretic peptide; β-MHC,  β-myosin 

heavy chain; Ngal, neutrophil gelatinase-associated lipocalin.
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Table 2

Main characteris≠≠tics, urine and plasma analysis in non-diabetic (DM) Ren2 rats and DM 

rats treated with vehicle, aliskiren or aliskiren + HRP. Data are mean+SEM of n=7-8.

non-DM vehicle aliskiren aliskiren+HRP

MAP on day 21(mm Hg)# n.d. 123±7 104±9$ 103±4$

Body weight (BW; kg) 0.562±0.02 0.409±0.01* 0.419±0.01* 0.422±0.01*

Heart weight (HW; g) 2.15±0.06 1.55±0.07* 1.51±0.04* 1.60±0.05*

HW/BW (g/kg) 3.9±0.10 3.7±0.11 3.6±0.12 3.7±0.09

Kidney weight (KW; g) 1.48±0.06 1.58±0.07 1.69±0.04* 1.63±0.05

KW/BW (g/kg) 2.7±0.12 4.1±0.15* 4.0±0.10* 3.9±0.12*

Blood glucose (mM)# 6.0±0.5 24.5±0.8* 26.1±1.0* 24.8±1.0*

urine

creatinine (µmol/day) 128±4 114±9 116±13 109±5

endothelin-1 (pg/day) 3.6±0.7 7±3 0.5±0.5 3.8±2

creatinine clearance (ml/min) n.d. 3.4±0.3 3.3±0.3 2.8±0.2

plasma

creatinine (nmol/ml) 32.6±1.6 23.9±0.9* 23.9±0.7* 27.8±1.8

endothelin-1 (pg/mL) 9.1±4 12.4±9 19.6±8 18.4±14

PAI-1 (ng/mL) 3.2±0.5 7.7±1.2 7.6±1.9 11.8±3.9*

TGFβ1 (pg/mL) 423±99 266±78 408±124 268±80

HRP, handle region peptide; PAI-1, plasminogen-activator inhibitor type 1; TGFβ1, transforming 

growth factor β1; n.d., not determined. *P<0.05 vs non-DM, $ P<0.05 vs vehicle. Creatinine 

clearance in non-DM could not be calculated since plasma and urine creatinine levels in this 

group were determined on day 21 and day -14, respectively, i.e., not on the same day. #Data 

are from Batenburg et al.31.
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S U M M A R Y

The aorta is the largest artery that supplies oxygen to the body. Hence, aortic occlusive disease could obstruct 

the bloodflow, resulting in a pathophysiological outcome, as seen in atherosclerotic patients with aorta or iliac 

stenosis. Correspondingly, aortic aneurysm disease, which is a widening of the aorta, is an progressive process 

that is generally asymptomatic; consequently aortic aneurysms are usually only detected at a late and severe 

stage. Both aortic diseases are important causes of cardiovascular death in elderly patients. Moreover, these 

diseases share important risk factors, such as increased age and hypertension. As (high) blood pressure has an 

important effect on the aorta, the renin-angiotensin system (RAS) affects aortic pathology locally, as well as via 

its effect on blood pressure. Indeed, increasing evidence supports a role for the RAS in aneurysm development, 

as seen in thoracic aorta aneurysm (TAA) patients. In preclinical research, infusion of angiotensin (Ang) II, the 

main effector peptide of the RAS, in atherosclerotic apolipoprotein E and LDL receptor knockout mice induces 

aortic aneurysm.1, 2 This mouse model provides an experimental model for abdominal aorta aneurysms (AAA) 

and the findings from this model implicate that the RAS has a pivotal role in aneurysm disease. When focusing 

on the local effects of the RAS and mainly of Ang II in the vessel wall, it is well-established that activation of Ang II 

type 1 (AT
1
) receptors induces vasoconstriction, endothelial dysfunction, inflammation, growth, and remodeling, 

whereas Ang II type 2 (AT
2
) receptors are believed to counteract these effects (chapter 1). Additionally, recent 

evidence supports a role for the Ang II-transforming growth factor β (TGFβ) -axis in aneurysm development.3-5 

 When focusing on aneurysm disease, TAAs show degeneration of the medial layer of the aortic wall, 

characterized by elastic fiber fragmentation, loss of smooth muscle cells (SMC), and the accumulation of 

amorphous extracellular matrix.6 Such aortic wall degeneration is often the consequence of inherited connective 

tissue disorders. TAAs mostly present in a syndromic form, with early onset, and responsible genes have been 

identified. Mutations are found in genes encoding for cytoplasmic, contractile, extracellular matrix (ECM) 

proteins or components of the TGFβ signaling pathway. A well-known example is Marfan syndrome (MFS) with 

a mutation in the extracellular matrix protein fibrillin-1, which was the first gene to be linked to TAA disease.8 

Furthermore, another example is Loeys-Dietz syndrome with a mutation in TGFβ-receptor subtypes (both 

TGFβR17 and TGFβR28). Finally, mutations in  the gene encoding for SMAD3,9-11 an intracellular mediator of the 

TGFβ pathway, also result in TAA disease. Increased TGFβ-signaling in MFS patients and also the dysregulation of 

the TGFβ pathway showed the importance of TGFβ in aneurysm disease. 

 Although mutations in different genes cause aneurysm disease, hallmark histological anomalies of this 

disease, like fragmentation of the elastic lamina and loss of extracellular matrix integrity, are similar. Likewise, 

mutations in the ECM protein fibulin-4 have been identified in patients with TAAs.12 Fibulin-4 is a member of 

the seven-member family of ECM proteins that play a role in elastic fiber assembly and function.13 Fibulin-4 is 

an ubiquitously expressed protein essential for elastic fiber formation and is expressed in blood vessels, heart 

valves, basement membranes, and around cardiomyocytes.14 In humans, mutations in fibulin-4 lead to  cutis laxa 

syndrome that besides loose skin is characterized by cardiovascular pathology, for instance vascular tortuosity 

and ascending aortic aneurysm.12 We demonstrated that mice with a systemic 4-fold reduced expression of 

fibulin-4 (Fibulin-4R/R) (where R stands for reduced) share a number of key features with the human phenotype 

of connective tissue disease, including aortic wall degeneration, aortic aneurysm formation, aortic valve 

disease, increased TGFβ-signaling and impaired cardiac function (chapter 2).15 Manifestation of fibulin-4 related 

pathology is dose-dependent, since Fibulin-4+/R mice, with a milder 2-fold reduction in fibulin-4 expression, 

develop no apparent cardiovascular abnormalities.

 In part II of this thesis we used our fibulin-4 mouse model to study aortic and cardiac pathology, as well the 

effects of RAS blockade. The pathology of the model resembles many other aneurysm diseases, with increased 

TGFβ-signaling in the aortic wall, accompanied by increased tissue levels of Ang II, a well-known regulator of 

the TGFβ-axis.4, 16 In chapter 2 we describe that reduction of fibulin-4 in a dose-dependent manner results in 

deterioration of the aortic wall, which displays the histological features of cystic media degeneration, including 

elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ECM in the aortic media. Furthermore, 
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we observed that the aortic contractile capacity, determined by isometric force measurements, was diminished 

in Fibulin-4R/R mice. Accordingly, transcriptome analysis showed that a dysregulation of contractile genes 

associated with this phenotype. The structural and functional alterations were accompanied by upregulation of 

TGFβ-signaling, as identified by genome-scaled network analysis as well as by immunohistochemical staining for 

phosphorylated Smad2, an intracellular mediator of TGFβ. Prenatal treatment with the AT
1
 receptor antagonist 

losartan, to block the Ang II-TGFβ-axis, blunted TGFβ-signaling in newborn Fibulin-4R/R mice, and prevented 

elastic fiber fragmentation in the aortic media. Postnatal losartan treatment reduced haemodynamic stress and 

greatly improved the lifespan of homozygous knockdown fibulin-4 animals, without affecting the aortic vessel 

wall structure.

 In chapter 3 we investigated the influence of reduced fibulin-4 expression on cardiac pathology, to 

delineate whether cardiac pathology is a consequence of the arterial disease or whether fibulin-4 is directly 

involved in cardiac structure and function. Using echocardiography and hemodynamic measurements, we 

showed that Fibulin-4R/R mice spontaneously develop cardiac hypertrophy, dilation and dysfunction as well as 

aortic aneurysms. In addition, Fibulin-4R/R cardiomyocytes display reduced force-generating capacity and altered 

TGFβ-signaling. We also evaluated the effects of reduced fibulin-4 expression in human induced pluripotent 

stem cell-derived cardiomyocytes. shRNA-mediated fibulin-4 knockdown resulted in increased parameters 

associated with heart impairment, like cardiomyocyte size, and the expression of atrial natriuretic peptide (ANP), 

connective tissue growth factor (CTGF) and plasminogen activator inhibitor-1 (PAI-1). Cardiac hypertrophy might 

be influenced by aortic regurgitation in homozygous Fibulin-4R/R mice. Importantly, heterozygous Fibulin-4+/R 

mice show no apparent cardiovascular or valvular abnormalities. When exposing the latter to transverse aortic 

constriction (TAC), we observed aggravated mortality, left ventricular dysfunction and pathological alterations 

in gene expression, without changes in valvular function. Taken together, these data suggest that reduced 

fibulin-4 levels in the heart drive myocardial pathology.

 Given the findings in chapter 2 on postnatal losartan treatment, in chapter 4 we further explored this 

treatment in Fibulin-4R/R mice, now also investigating aortic function and pathology. A comparison was made 

to the renin inhibitor aliskiren and the b-blocker propranolol, a classical TAA drug. Although both types of RAS 

blockers identically lowered hemodynamic stress, only losartan increased survival, reduced aneurysm size 

and improved aortic wall distensibility. Losartan (but none of the other drugs) also increased ejection fraction, 

decreased left ventricle diameter and reduced cardiac TGFβ-signaling. None of these drug affected aortic wall 

morphology. To explain the beneficial effect of losartan compared to aliskiren we reasoned that losartan offers 

an additional advantage, possibly stimulation of angiotensin II type 2 (AT
2
) receptors. 

 In chapter 5, we investigated how fibulin-4 deficiency leads to dysregulation of the TGFβ pathway. We 

observed reduced growth in isolated aortic SMCs from fibulin-4 deficient mice, which could be reversed by 

treatment with TGFβ neutralizing antibodies. Correspondingly, increased TGFβ signaling was confirmed on the 

basis of elevated levels of phosphorylated Smad2. We found not only increased TGFβ1 levels in serum of cells, 
but also considerably increased TGFβ2 levels. Interestingly, elevated TGFβ2 levels were also detected in plasma 

from Fibulin-4R/R mice, but not in losartan treated mice.

 In part III of this thesis we investigated genetic factors involved in aneurysm formation and progression. In 

chapter 6 we first focused on the potential mechanisms and targets that have been linked to AAA, comparing 

genetic RNA expression profiles of abdominal aortic samples from AAA patients with ‘best match control’ material 

of patients with aortic occlusive disease (AOD). We showed separation of the samples in distinct AAA and AOD 

groups, by principal component analysis. In addition, using ingenuity pathway analysis (IPA), we identified 

immune-related pathways with significantly changed expression in AAA. Interestingly, while expression of 

canonical TGFβ signaling genes was significantly upregulated, bone morphogenetic protein (BMP) signaling 

was downregulated in AAA. Furthermore, we obtained a list of potential targets related to AAA that may result 

in biomarkers in future studies. 
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 In chapter 7, we optimized the long-range PCR of TAA-associated genes to use the enriched fragments 

in massive parallel DNA sequencing for complete mutation analysis, including intron, exon and regulatory 

sequences.

 In part IV of this thesis we investigated the beneficial effects of (pro)renin receptor blockade with the 

so-called handle region peptide (HRP) on top of renin inhibition in diabetic nephropathy. We confirmed that 

aliskiren alone lowered blood pressure and exerted renoprotection, most likely by suppressing plasma and 

tissue RAS activity. However, HRP, when given on top of aliskiren, did not alter the effects of renin inhibition on 

blood pressure, RAS activity, or aldosterone, and counteracted the beneficial effects of aliskiren in the kidney. 
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D I S C U S S I O N

Aortic disease is an important cause of cardiovascular morbidity and mortality. Hence, treatment or surgical 

intervention is a prerequisite, and in case of aneurysm disease even essential to prevent growth, dissection or 

rupture. In TAA disease, β-adrenergic receptor blockade is the standard therapy to reduce hemodynamic stress.2, 

17 Numerous studies showed the importance of the RAS in aneurysm development, and raised the possibility 

to reduce the increase in TGFβ-signaling in the aortic wall of TAA patients by AT
1
 receptor blockade. Indeed, 

given the concept of an AT
1
 receptor-TGFβ-axis, AT

1
 receptor blockade should reduce TGFβ-signaling, thereby 

reducing aneurysm progression and improving aortic wall structure.4, 5 Theoretically, AT
1
 receptor blockade might 

even outperform a β-blocker for a given degree of blood pressure-lowering. Indeed, initial studies in Marfan 

syndrome mouse models,18 together with our fibulin-4 mouse model,19 and in small patient cohorts,2 confirmed 

this hypothesis. In particular, losartan appeared to reduce TGFβ-signaling by targeting its non-canonical 

pathway component pERK.5 Yet, Lacro et al.20 reported losartan and β-receptor blockade with atenolol reduced 

aneurysm progression equally well in MFS patients. The efficacy of β-adrenoceptor blockade is controversial, 

and based on small-scale studies.17, 21-24 Nevertheless, guidelines recommend β-adrenoceptor blockade to treat 

aortic dilation in MFS patients.25, 26 A randomized trial comparing β-blockade or AT
1
 receptor blockade versus 

placebo is unlikely to be ever performed because of ethical issues. Recent studies showed that timing of AT
1
 

receptor blockade is of utmost importance, i.e. different ages at the start of treatment (e.g. children/adolescents 

versus adults) may explain the success (or lack thereof ) of RAS blockers in clinical trials.20, 27, 28 The underlying 

mutation is an additional determinant of the success of AT
1
 receptor blockade.29

 Our animal model suggested that RAS blockade with losartan is superior versus blockade with the renin 

inhibitor aliskiren. Since both drugs exerted the same degree of RAS blockade and blood pressure-lowering, 

losartan has an additional feature that aliskiren lacks. This might be AT
2
 receptor stimulation. Obviously, further 

work in alternative models is needed to substantiate this view. Longitudinal microCT measurement is a novel and 

quick method allowing monitoring of cardiac and aneurysm parameters in mice in vivo. Fluorescent mediated 

tomography (FMT)-CT imaging additionally allows monitoring of cardiac or aortic remodeling. An important 

advantage of these non-invasive techniques is that animals are their own baseline control, so that fewer animals 

need to be studied.  

 The work described in this thesis supports the important contribution of the AT
1
 receptor-TGFβ-axis in TAA, 

and revealed the upregulation of immune pathways in AAA. Interestingly, losartan decreased the upregulated 

TGFβ2 plasma levels in fibulin-4 mice. Future studies should investigate to what degree this exclusively 

relates to AT
1
 receptor blockade, i.e., whether other types of RAS blockers exert identical/better effects. (Pro)

renin receptor blockade on top of other RAS blockers may lead to side effects and must be avoided. A detailed 

knowledge of the various upregulated pathways in AAA may help to design new drugs and new biomarkers 

in the aneurysm field. Complete genomic mutation analysis of the TAA-linked genes may similarly bring new 

insight in aneurysm research. It is important to realize that although in ageing humans  atherosclerosis plays 

an important role in aneurysm formation, mice do not normally develop atherosclerosis. The combination of 

atherosclerosis and aneurysm formation might be mimicked in mice by crossing ApoE knock-out mice with 

our heterozygous fibulin-4+/R, assuming at least that the addition of aortic atherosclerosis on top of a mild ECM 

defect triggers aneurysm formation. If so, RNA expression analysis of these mice would help to better understand 

aneurysm disease, and extend the ingenuity pathway analysis data of our AAA patient group.

 Our studies in isolated cardiomyocytes and intact hearts of fibulin-4 mice revealed that improper 

elastogenesis might be a primary cause of cardiac disease. Given the beneficial effects of losartan (but not 

aliskiren) on the heart of fibulin-4 mice, which potentially involve AT
2
 receptor stimulation, other inherited ECM 

defects in the heart could also benefit from AT
2
 receptor stimulation.  
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N E D E R L A N D S E  S A M E N V A T T I N G

De aorta is de grootste slagader in het menselijk lichaam die zuurstof vervoert. Vernauwing van slagaders 

(occlusief vaatlijden), zoals optreedt bij aderverkalking (artherosclerose), kan leiden tot een pathofysiologisch 

beeld dat gevolgen kan hebben voor de patiënt. Daarnaast is bij verwijding van de aorta,  aneurysma genoemd, 

een progressief proces gaande van vaatwand re- en deconstructie wat leidt tot vergroting van de aorta. Meestal 

hebben patiënten een asymptomatisch ziektebeeld, en worden aorta aneurysmata vrijwel alleen ontdekt in een 

laat en ernstig stadium. Beide aorta aandoeningen, occlusie en verwijding, dragen bij aan sterfte veroorzaakt 

door hart- en vaatziekten (cardiovasculaire sterfte). Naast hogere leeftijd en hoge bloeddruk (hypertensie) zijn 

ze dan ook een belangrijke risicofactor voor cardiovasculaire sterfte. Hoge bloeddruk heeft een belangrijke 

uitwerking op de aorta, waarbij het renine-angiotensine systeem (RAS) pathologie van de aorta zowel lokaal 

als via het effect op de bloeddruk beïnvloedt. Steeds meer bewijs ondersteunt de rol van het RAS in aneurysma 

ontwikkeling, zoals in abdominale aorta aneurysmata (AAA) en thoracale aorta aneurysma (TAA) patiënten. 

In preklinische studies op atherosclerotische apolipoproteïne-E en LDL-receptor knock-out muizen resulteert 

infusie van angiotensine (Ang) II, de belangrijkste RAS effector peptide, in het ontstaan van aorta aneurysmata. 

Deze experimentele muismodellen verschaffen inzicht in de ziekte processen die een rol spelen bij AAA, waarbij 

de bevindingen in deze modellen laten zien dat het RAS een sleutelrol heeft in aneurysma ontwikkeling. De 

effecten van het RAS en met name van Ang II op de vaatwand worden bewerkstelligd door activering van Ang II 

type 1 (AT1) receptoren, waarbij algemeen wordt aangenomen dat AT1 receptoren vaatvernauwing induceren, 

evenals endotheel dysfunctie, ontstekingsreacties, vaatwand groei, en vaatwand re- en deconstructie. 

Daarentegen gaan Ang II type 2 (AT2) receptoren deze effecten tegen (hoofdstuk 1). Tot slot hebben recente 

studies een belangrijke rol aangetoond voor de Ang II-‘transforming growth factor-β’ (TGFβ)-as in aneurysma 

ontwikkeling.

 Wanneer men aneurysma ziektes nader onderzoekt, worden TAA’s gekenmerkt door degeneratie van de 

media (middelste laag) van de aortawand,  fragmentatie van elastische vezels, verlies van gladde spiercellen 

en door ophoping van extracellulaire matrix. Deze aortawand degeneratie is vooral bij jongere patiënten 

vaak het gevolg van erfelijke bindweefselaandoeningen, waarbij TAA’s vooral aanwezig zijn in syndromale 

ziektebeelden. De verantwoordelijke genen zijn grotendeels geïdentificeerd binnen deze patiënten populatie 

en coderen voornamelijk voor cytoplasmatische, contractiele en extracellulaire matrix eiwitten of voor één van 

de TGFβ componenten. Een bekende aneurysma ziekte is het Marfan syndroom (MFS), met een mutatie in het 

extracellulaire matrix eiwit fibrilline-1. Dit is het eerste gen beschreven is in de literatuur waarvan bekend is 

dat het TAA veroorzaakt. Een ander bekend voorbeeld is het Loeys-Dietz syndroom met een mutatie in één 

van de TGFβ receptor subtypes (zowel TGFβR1 en TGFβR2). Daarnaast leiden mutaties in het gen dat codeert 

voor SMAD3, een intracellulaire mediator van de TGFβ signaal transductie route, tot TAA’s. Toegenomen TGFβ 

signaal transductie in MFS patiënten, evenals ontregeling van TGFβ signaal transductie tonen het belang van 

het TGFβ systeem in aneurysma ziekten aan. Hoewel mutaties in verschillende genen aneurysmata veroorzaken, 

zijn de histologische afwijkingen veelal gelijk, zoals fragmentatie van de elastische lamina in de aortawand en 

het verdwijnen van de extracellulaire matrix integriteit. Tot slot resulteren mutaties in het extracellulaire matrix 

eiwit fibuline-4 in TAA. Het fibuline-4 eiwit is lid van de zevenledige familie van extracellulaire matrix eiwitten 

die een rol spelen bij de vorming van elastische vezels, en het goed functioneren daarvan. Fibulin-4 komt onder 

andere tot expressie in bloedvaten, hartkleppen, basale membranen en in het hart rondom hartspiercellen. 

Mutaties in fibuline-4 leiden tot het ‘cutis laxa’ syndroom bij mensen, dat wordt gekenmerkt door een losse huid 

en door cardiovasculaire pathologie, zoals vasculaire kronkeligheid en TAA’s. Wij hebben in studies laten zien 

dat een systematische viervoudige verlaging van fibuline-4 expressie  (Fibulin-4R/R, R staat voor gereduceerd) 

in muizen resulteert in pathologie vergelijkbaar met die van fibuline-4 patiënten. Dit betreffen afwijkingen 

behorend tot het ‘cutis laxa’ syndroom, zoals aortawand degeneratie, aorta aneurysma, aortaklep afwijkingen, 

verhoogde TGFβ signaal transductie en verminderde hartfunctie (hoofdstuk 2). Het manifesteren van fibuline-

4 pathologie is dosis afhankelijk, aangezien Fibulin-4+/R muizen met een (mildere) tweevoudige verlaging van 
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fibulin-4 expressie geen cardiovasculaire pathologie vertonen.

 In deel II van dit proefschrift onderzochten we de facetten van aorta en hart pathologie in ons fibuline-4 

muismodel, alsmede de effecten van RAS blokkade. De pathologie van het fibuline-4 muismodel lijkt veel op 

andere aneurysma ziekten en wordt gekarakteriseerd door onder andere verhoogde TGFβ signaal transductie in 

de aortawand, vergezeld door verhoogde weefselconcentraties van Ang II, een bekende regulator van de TGFβ-as. 

In hoofdstuk 2 beschrijven we dat dosis afhankelijke verlaging van fibulin-4 expressie leidt tot verslechtering 

van de aortawand, histologisch gekenmerkt door media degeneratie, fragmentatie van elastische vezels, het 

verlies van gladde spiercellen en de ophoping van extracellulaire matrix in de aorta. Verder hebben we door 

middel van isometrische krachtmetingen aangetoond dat de contractiele capaciteit van de aorta is afgenomen 

in Fibulin-4R/R muizen. In overeenstemming hiermee heeft transcriptoom analyse aangetoond dat er sprake is 

van ontregeling van de contractiele genen, hetgeen geassocieerd kan worden met bovenstaande beschreven 

afwijkingen. De structurele en functionele veranderingen in ons fibuline-4 muismodel worden gekenmerkt door 

toegenomen activiteit van de TGFβ signaal transductie route, hetgeen wij hebben vastgesteld door middel van 

genoom expressie analyse, alsmede door immunohistochemische kleuring voor het gefosforyleerde SMAD2 

eiwit, een intracellulaire mediator van TGFβ. Prenatale behandeling met de AT1 receptor antagonist losartan, 

blokkeert de TGFβ signaal transductie route in pasgeboren Fibulin-4R/R muizen waarmee fragmentatie van 

de elastische vezels in de aortawand voorkomen wordt. Postnatale behandeling van Fibulin-4R/R muizen met 

losartan vermindert hemodynamische stress in de aorta en verlengt de levensduur van deze muizen, maar geeft 

geen verbetering van de extracellulaire matrix integriteit van de aortawand.

 In hoofdstuk 3 onderzochten we de invloed van verminderde fibuline-4 expressie op hartafwijkingen. Dit 

om te onderzoeken of hart pathologie een gevolg is van de aorta afwijking, of dat fibulin-4 zelf van belang 

is voor een goed functionerend hart zonder structurele afwijkingen. Met behulp van echocardiografie en 

hemodynamische metingen hebben we aangetoond dat Fibulin-4R/R muizen spontaan hypertrofie, dilatatie 

en dysfunctie van het hart ontwikkelen en daarbij aorta aneurysmata ontwikkelen. Daarnaast laten we zien 

dat hartspiercellen van Fibulin-4R/R muizen een verminderde kracht-genererende capaciteit hebben, als ook 

een verandering in de TGFβ signaal transductie route. Bovendien hebben we de effecten onderzocht van 

verminderde fibulin-4 expressie in humane hartspiercellen, welke door inductie van pluripotente stamcellen 

waren gegenereerd. shRNA gemedieerde fibulin-4 knockdown in deze hartspiercellen resulteert in verhoging 

van parameters geassocieerd met hartfalen, zoals hartspiercel grootte (hypertrofie), en de expressie van 

‘atrial natriuretic peptide’ (ANP), ‘connective tissue growth factor’ (CTGF) en ‘plasminogen activator inhibitor-

1’ (PAI-1). Hypertrofie van het hart zou kunnen worden verergerd door aortaklep insufficiëntie in Fibulin-4R/R 

muizen. Daarentegen vertonen heterozygote Fibulin-4+/R muizen van nature geen duidelijke cardiovasculaire 

of aortaklep problemen. Echter, wanneer deze Fibulin-4+/R muizen worden blootgesteld aan een geïnduceerde 

aorta vernauwing (‘trans-aortic constriction’, TAC), zien we een verslechterde overleving, evenals linker ventrikel 

dysfunctie en pathologische veranderingen in de genexpressie van parameters geassocieerd met hartfalen, 

zonder veranderingen van de hartklep functie zelf. Dit betekent dat aorta klep insufficiëntie niet per se 

hypertrofie van het hart veroorzaakt in Fibulin-4 muizen. Samenvattend kunnen wij concluderen dat reductie 

van fibuline-4 expressie in het hart leidt tot hart pathologie en hartfalen. 

 Afgaande op de bevindingen van de postnatale losartan behandeling uit hoofdstuk 2 zijn we in hoofdstuk 
4 verder ingegaan op de effecten van losartan behandeling op het functioneren van de aorta en op aorta 

pathologie in Fibulin-4R/R muizen. Daarbij hebben we een vergelijking gemaakt tussen losartan, de renine 

remmer aliskiren en de β-blokker propranolol (het gebruikelijk medicijn in de behandeling van TAA’s). Hoewel 

beide RAS blokkers (losartan en aliskiren) gelijkwaardig de bloeddruk verlagen, zien we dat alleen losartan 

zorgt voor een betere overleving, verminderde aneurysma groei en verbeterde aortawand flexibiliteit. Verder 

zorgt losartan behandeling, voor een verbeterde ejectiefractie, een verkleining in linker ventrikel diameter, en 

een verlaging van TGFβ signaal transductie in het hart. Desalniettemin zien we dat geen enkel geneesmiddel 
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postnataal de aortawand morfologie verbetert. Om verschil tussen losartan versus aliskiren te verklaren, moet 

worden aangenomen dat losartan een extra voordeel biedt, aangezien het zijdelings voor Ang II Type 2 (AT2) 

receptor stimulatie zorgt.

 In hoofdstuk 5 hebben we onderzocht hoe reductie van fibulin-4 expressie leidt tot ontregeling van de TGFβ 

signaal transductie route. We zien een verminderde groei van gladde spiercellen geïsoleerd uit de aortawand 

van Fibulin-4R/R muizen. Deze verminderde groei kan worden opgeheven door de behandeling met TGFβ 

neutraliserende antilichamen. Verder wordt een verhoogde TGFβ signaal transductie bevestigd op basis van 

verhoogde aanwezigheid van het gefosforyleerde SMAD2 eiwit. Bovendien hebben we verhoogde TGFβ1 levels 

in celkweek serum gemeten, en ook aanzienlijk verhoogde TGFβ2 levels. Interessant is dat we deze verhoogde 

levels van TGFβ2 hebben gedetecteerd in het plasma van Fibulin-4R/R muizen, terwijl losartan behandeling deze 

stijging voorkomt.

 In deel III van dit proefschrift onderzochten we de genetische factoren betrokken bij de vorming van 

aneurysmata en de progressie daarvan. In hoofdstuk 6 hebben we ons gericht op de mogelijke mechanismen 

en aangrijpingspunten die geassocieerd zijn met AAA ziekte. Hierbij vergeleken we de genetische RNA-

expressie profielen van aorta weefsel van AAA patiënten met ‘best match control’ materiaal van patiënten 

lijdend aan occlusief vaatlijden van de aorta (‘aortic occlusive disease’, AOD). Er is een duidelijke scheiding 

van RNA-expressie profielen in de AAA ten opzichte van de AOD groep aangetoond door middel van een 

‘principal-component’ analyse. Vervolgens hebben we met ‘ingenuity pathway analysis’ (IPA) meerdere immuun 

gerelateerde mechanismen geïdentificeerd, die significant verschillen in de AAA ten opzicht van de AOD groep. 

Een interessante bevinding is dat genen in de TGFβ signaal transductie route activiteit verhoogd zijn, terwijl 

genen in de ‘bone morphogenetic protein’ (BMP) signaal transductie route activiteit verlaagd zijn. Bovendien 

hebben we een lijst opgesteld van mogelijke genen, mechanismen en aangrijpingspunten die gerelateerd zijn 

aan AAA, die kunnen leiden tot potentiële bio-markers voor toekomstige studies. In hoofdstuk 7 hebben we 

de ‘long range’-PCR geoptimaliseerd om TAA geassocieerde genen te amplificeren, om met deze verrijkte DNA 

fragmenten door middel van de ‘massive parallel DNA sequencing’ methode een volledige mutatie sequentie 

analyse uit te voeren, met daarbij  mutatie analyse van intronen, de exonen, en regulerende DNA sequenties.

 In deel IV van dit proefschrift onderzochten we de additionele effecten van de (pro)renine-receptor blokker 

‘handle region peptide’ (HRP) bovenop renine remming in diabetische nefropathie. We laten zien dat bij gebruik 

van alleen de renine remmer aliskiren er een bloeddrukverlaging optreedt. Daarnaast tonen wij een beschermend 

effect voor nier schade, hoogstwaarschijnlijk door onderdrukking van het RAS in zowel bloedplasma en als in 

de weefsels. Wanneer HRP in combinatie met aliskiren wordt gegeven zien we geen additionele effecten op de 

bloeddruk, RAS activiteit, of aldosteron levels, en zien we de gunstige effecten van aliskiren in de nier teniet 

gedaan worden.
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