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The past century major progress has seen in the understanding of the genetic etiology of lipid
metabolism. In this thesis | aim to further dissect the complex genetic nature of circulating
lipid levels, in particular four types of lipids: high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG). Blood
concentration of these lipids are highly heritable! with genetic heritabilities of 0.485 + 0.029
for HLD-C, 0.539 + 0.028 for LDL-C, 0.556 + 0.028 for TC, and 0.358 + 0.028 for TG. Circulating
lipid levels are determinants of artherosclerosis and cardiovascular disease (CVD)*2. They have
been targets for therapeutic intervention of CVD. CVD are the leading cause of morbidity and
the number one cause of death worldwide*. The goal of this thesis is to identify new variants
associated with circulating lipid levels. Ultimately understanding the genetics of lipids may
lead to earlier detection, and improved prevention through identification of new targets for
therapeutic invention of CVD.

Circulating lipid levels

LDL-C transports cholesterol from the liver to the artery wall. It plays a key role in the
pathogenesis of arthesclerosis, and is strongly associated with an increased risk of
cardiovascular disease>®. Circulating LDL-C levels are a target for prevention. Statins and
other lipid lowering therapy has been successful in reducing the LDL-C levels. LDL-C levels are
strongly correlated with total cholesterol levels in humans, which is often used in a clinical
setting either by itself or in relation to HDL-C. Although it is preferred to measure the LDL-C
levels in the circulation, the LDL-C levels can also be estimated with the Friedewald equation’:
LDL-C = TC = HDL-C — k - TG where k is 0.20 if the quantities are measured in mg/dl and 0.45
if in mmol/I. This method has often been used in epidemiological and genetic studies, though
there are limitations to this method, most notably that samples must be obtained after a 12
to 14 hour fasting and that LDL-C cannot be calculated if plasma TG is above 4.52 mmol/L
(400 mg/dL).

HDL-C transports various fat molecules including cholesterol out of the artery walls to
the liver®. In that, its function is the antipode of that of LDL-C and indeed HDL-C has been
associated with a decreased risk of CVD. However, HDL-C also is an effective antioxidant and
it possesses anti-inflammatory properties. In terms of protecting against the development of
cardiovascular disease®, these antioxidant and anti-inflammatory properties of HDL-C may
be as important as its cholesterol efflux function. The key player in the reverse transport of
cholesterol from the artery walls to the liver is the protein encoded by the Cholesteryl Ester
Transfer Protein (CETP) gene'®, as shown by functional analyses in mice!?, hamsters'? and
rabbits®. CETP has been a target for drug development. CETP is one of the genes that has
been associated to longevity*. Up until now, developments of therapy targeting low HDL-C
have failed®.
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Although there is scepticism on the value as HDL-C for prevention of CVD, there are major
gaps in our knowledge. Figure 1 gives an overview of the common genetic variants identified
to date for HDL-C, LDL-C, TC and TG. Remarkably, CETP plays a key role in not only HDL-C, but
also LDL-C and TC levels suggesting the gene is a target for various lipids. This is also the case
for TRIB1, FADS1-2-3 and APOA1 (see Figure 1). Genome-wide association studies have also
brought to light many new HDL-C genes that are more specific for HDL-C (see Figure 1). A key
question to answer is how different genes relate to the various HDL-C particles. There are a
large number of sub particles of HDL-C. HDLs are a class of heterogeneous lipoproteins; their
heterogeneity is attributable to a different content of apolipoproteins, lipids and enzymes
and to the remodelling of HDL-C particles by lipolytic enzymes, lipid transporters and by lipid
and apolipoprotein exchange with other circulating lipoproteins and tissues'®?’. Large HDL-C
particles are inversely associated while small HDL-C particles are positively associated with
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Figure 1: Overlap of loci associated with different lipid traits, as discovered by Teslovich et al** and GLGC
et al*®*. The Venn diagram illustrates the number of loci that show association with multiple lipid traits.
The number of loci primarily associated with only one trait is listed in parentheses after the trait name,
and locus names are listed below. Loci that show association with two or more traits are shown in the
appropriate segment. Source: GLGC et al*:.



HDL-C levels are strongly inversely related to triglycerides. Triglycerides are esters derived
from glycerol and three fatty acids which enables bidirectional transference of adipose fat
and circulating glucose from the liver. There are at present 16 genes that are involved in both
HDL-C and TG, as expected. This overlap is larger compared to the overlapping genes that are
involved in both LDL-C and TC. There has been debated whether lowering TG has not resulted
in prevention of CVD®, Yet, epidemiological and genetic research found evidence that raised
triglycerides are a risk factor for cardiovascular disease also in the general population®.
The high heritability of circulating lipids® has fuelled the great interest in genetic research
that has already been successful in the second half of the previous century. These studies
have revealed that many lipid related syndromes are caused by a relative rare mutation in a
single gene. In these Mendelian forms of dyslipidemia, such as familiar hyperlipidemia, the
circulating lipid levels are strongly elevated and carriers have an increased risk of early onset
CVD (before the age of 65 years)?*. This disease is segregating from generation to generation,
both as a dominant form with up to 50% of first degree relative affected as well as recessive
forms with recurrence risk in siblings of 25%. There are also lipoprotein deficiency disorders in
which the circulating lipid levels lead to the pathology, e.g. Tangier disease?*?. Tangier disease
(TD) is an autosomal recessive disorder of lipid metabolism. It is characterized by absence of
plasma HDL-C and deposition of cholesteryl esters in the reticulo-endothelial system with
splenomegaly and enlargement of tonsils and lymph nodes. Although low HDL-C is associated
with an increased risk for coronary artery disease, this condition is not consistently found in
TD pedigrees. Metabolic studies in TD patients have revealed a rapid catabolism of HDL-C and
its precursors. The TD locus has been mapped to chromosome 9q31 within the ABC1 gene??.
There are many more Mendelian genes involved in lipid related syndromes, of note that
these are various genes overlapping with the findings of the GWAS, like LDL-R and APOB**?>.
Despite that many rare and common variants found to date, not all heritability is explained
yet and thus there are still many variants to be found, probably with even smaller effects and/
or smaller frequencies worldwide. There may be various explanations why these have not
been found so far. This lack of information is often referred to as the missing heritability?®,
or more precisely our missing knowledge of the heritability, which may be attributed to the
fact that:

1. Many regions in the genome have been associated with circulating lipid levels, however,
the causal variant is still to be identified. Identification of the causal variant may improve
the heritability explained. Due to improved technologies, it is now possible to fine-map
these regions and locate the causal variant.

2. Mainly common have been studied in the general population and low-frequency variants
segregating in families but these have not been studied together with rare variants.
However, also rare variants are expected to determine circulating lipid levels in the
population.



16 | Partl

3. Interactions of genetic variants may explain part of the heritability. This may concern gene
environment interactions or gene-gene interactions. Gene environment interactions have
been studies as part of the ENGAGE contortium?’. There has been little work on gene
interactions, particular gene-gene interactions. Persistent evidence for interacting loci
involved in lipid metabolism comes from experimental animal research in which various
loci interact with each other®,.

4. Genetic mechanisms like structural variation, DNA methylation and histone modification
are also potential candidates determining circulating lipid levels?*2°.

This thesis focuses on the explanation 1, 2 and 3 and specifically aims to identify variants
associated with individual circulating lipid levels in the general population. Common variants
typically have small effects compared to the Mendelian variants. Although the variants
segregate according to Mendelian principles, there is no typical aggregation of disease in
families in contrast to the clinical expression of the Mendelian variants. At present, genome-
wide association studies (GWAS) and sequencing of exomes have identified many common
variants with small effects on circulating lipid levels**®. | aim to identify common variants
integrating the GWAS data with that of large scale sequencing projects such as the 1000
Genomes and genome of the Netherlands (GoNL). This will allow me to finemap regions and
search for independent variants explaining the heritability and find new variants. Further |
aim to study gene-gene interactions and find rare variants both in families associated with
HDL-C.

Genetic epidemiological approaches

In this thesis several genetic epidemiological approaches are used to dissect the complex
nature of circulating lipid levels. The genes identified in families have often used a linkage
approach which is depicted in figure 2. Linkage occurs in a family when alleles located close
together on a chromosome with the disease mutation are inherited together during meiosis.
The discovery of the common variants is based on the same principle of inheritance, but
used another statistical approach, association. The basic rationale of the methods is that
if a variants is causally associated to a disease, the variant is expected to be found more
often in cases than controls. However, as genes are segregating from parents to offspring
as chromosomes, large pieces of chromosomes may be linked to each other also in the
population (linkage disequilibrium) and also nearby non-causal variants are shared. Thus it
is not necessary to determine all variants in the genome but for GWAS variants are used
to cover the full genome based on linkage disequilibrium?* (Figure 2). This principle can be
applied genome-wide, allowing identification of new variants or regions associated with the
trait without any prior hypothesis but also to candidate genes, i.e., genes that based on the
protein they encode for as expected to be associated to a trait because the protein has been
implicated in the outcome.
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Figure 2: Linkage and Linkage Disequilibrium. Within a family, linkage occurs when two genetic
markers (points on a chromosome) remain linked on a chromosome rather than being broken apart
by recombination events during meiosis, shown as red lines. In a population, contiguous stretches of
founder chromosomes from the initial generation are sequentially reduced in size by recombination
events. Over time, a pair of markers or points on a chromosome in the population move from linkage
disequilibrium to linkage equilibrium, as recombination events eventually occur between every possible
point on the chromosome. Source: Bush and Moore3.
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GWAS have been extensively used to identify variants associated with various traits among
which circulating lipid levels®***3*37 In a GWAS, millions of genetic variants along the genome
are tested to be associated with a particular trait®3°. However, testing millions of variants,
will lead to a large multiple testing correction and therefore the threshold for significance*®in
these studiesis 5 - 10®. In the early stages of GWAS of circulating lipid levels, only one or a few
cohorts were used yielding 6 and 17 variants®*>*. Subsequently, more to cohorts were meta-
analysed due to the imputation strategies and sample sizes increased yielding in total 72, 55,
71 and 42 variants for HDL-C, LDL-C, TC and TG respectively*?2*4!, see Figure 1. Multiple tools
have been developed to enable fast and accurate testing of all variants on the genome®”4>43,
Although GWAS replaced the candidate-gene approach in which a gene is studied in detail as
opposed to the full genome, it has produced large number of new candidate regions, where
the causal variant remains to be found by sequencing or imputation of clinical studies.

In my thesis | have also used exome-wide association studies (ExXWAS). Whereas GWAS makes
use of genotype data, mostly imputed to a certain reference panel (see below), EXWAS makes
use of exome sequencing data and is thus targeting a subset of the genome, i.e., the region
of the genome that encodes for proteins (exome). As the main difference between GWAS
and ExXWAS is that in an EXWAS only coded variants are tested for association whereas GWAS
also test not coding variants, there are no principle differences in the analyses. However,
there are major technical differences in how the variants are assesses. In GWAS genotyping
arrays are used while exome sequencing uses next generation sequencing. The analysis
used for GWAS determine classical genotypes at a locus while they are usually common bi-
allelic single nucleotide polymorphism (SNPs). SNPs are DNA sequence variations occurring
commonly within a population in which a single nucleotide (A, T, C or G) in the genome differs
between individuals. To allow pooling of studies using different arrays, common SNPs are
usually imputed. Also rare variants are imputed but these are not always present, depending
on the reference panel. The next generation sequencing of exonic variants is a probabilistic
approach in which the quality of genotyping depends on the read depth, i.e. how often a
variant is seen. Next generation sequencing therefore may results in more reliable results as
the variants in the GWAS dataset are only estimates of the variants.

Genome-wide interaction studies (GWIS) are used to discover interactions between genetic
variants. GWIS has been hampered by the computation time needed for testing all unique
pairs of SNPs on a regular Computer Processing Units (CPUs). In this thesis | make use of the
GLIDE software package* which makes use of modern Graphics Processing Units (GPUs) to
perform linear regression for all pairs of SNPs in a relatively short time period. Just like with
GWAS and ExWAS, also in GWIS, the large number of tests that are performed need to be
taken into account and therefore the threshold for significance for this GWIS was 1 - 10%,
which is debatable.



Bioinformatics plays a key role in the current genetic field, where much work is performed
by the computer, not only the analysis itself, but also creating the datasets for the analysis.
Bioinformatics is needed to create large datasets, harmonizing genetic information over
data sets by genetic imputations, develop the tools for the analysis and run the analysis.
After the analysis, the results of the genetic epidemiologic research needs to be interpreted.
Bioinformatic tools for annotation, for prediction of functional effects, for amino acid
substitutions, for pathway analysis can be of help for the interpretation of the results. In
my thesis, | have performed various imputations of sequence data using different referent
panels, which is discussed below.

Reference panels for imputations

A common approach in GWAS studies to find new variants has been to enlarge the samples
by pooling studies. This requires all cohorts to have the same variants in their GWAS. This is
not always the case, as different chips of different size and different manufactors are available
for genotyping. Using the principles of LD, it has been possible to impute genotypes based
on a set of common reference haplotypes. The HapMap reference set®* was the basis
of the first genetic imputations. This set has been used in the past intensively to identify
variants associated with various phenotypes. The Phase | HapMap version*” was based on
90 YRI, 90 CEU, 45 CHB and 44 JPT. The CEU and YRI samples were 30 parent-offspring trios.
The genotyping goal of the Phase | HapMap Project was to genotype at least one common
SNP (MAF=>0.05) every 5 kilobases (kb) across the genome in the 269 samples, resulting
in approximately 1.3 million SNPs. In Phase Il of the HapMap Project, a further 2.1 million
SNPs were successfully genotyped on the same individuals resulting in an SNP density of
approximately one per kilobase*. The HapMap 3 Project contains 1.6 million common SNPs
in 1,184 individuals from 11 global populations (including the 269 individuals from HapMap
Phase | and 1l), and sequenced ten 100-kilobase regions in 692 of these individuals®.
These populations were included to provide further variation data from each of the three
continental regions represented in HapMap Phase | and I, as well as data from some more
admixed populations residing in the US. Although HapMap was successful for most European
common variants, rare variants (MAF < 0.01) cannot be imputed as too few haplotypes are
available in the reference panel.

The 1000 Genomes (1kG) project*®“° aimed to make a reference panel for rare variants. One
of the aims of the pilot phase of the project* was to develop and compare different strategies
for genome-wide sequencing with high-throughput platforms. Therefore 179 individuals were
sequenced low-coverage, 6 individuals in two trios were deep sequenced and 8,140 exons
in 697 individuals were sequenced. The phase | of the project contained* 1,092 individuals
sampled from 14 populations drawn from Europe, East Asia, sub-Saharan Africa and the
Americas analysed through a combination of low-coverage (2-6x) whole-genome sequence
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data, targeted deep (50-100x) exome sequence data and dense SNP genotype data. The final
version of the project (phase 3 version 5) of the 1kG reference set contains a total of about
81.2M polymorphic variants coming from low-coverage whole-genome sequencing of 2,500
unrelated samples from 19 populations.

The main difference between HapMap and 1kG project is that the former has fewer
genotypes: as it is based on fewer persons it capture less variation in the population. There
also is a difference in quality of haplotypes between HapMap and 1kG. The reliability of the
imputations is determinant by: (1) the number of haplotypes in the reference set and (2)
the quality of the haplotypes which differs in parent-offspring trios and statistical estimates.
A variant may not be represented adequately in the reference data set. This explains why
imputations of common variants are more reliable compared to imputations of rare variants.
Intially HapMap haplotypes were estimated for different ethnic groups as LD is expected
to be different between ethnic groups. The 1kG aims to create maps of genetic variation
across multiple populations, but the number of individuals per population is modest in this
reference panel. Splitting groups reduces the size of the reference set and as rare variant
haplotypes may occur in the different ethnic groups mixing different ethnic populations in
one reference set appears to improve imputation quality particular for the rare variants®**?,
even the addition of samples are from ethnic groups are not closely related to the samples
in the target set. However, when the percentage of unrelated samples is beyond a certain
proportion, the imputation quality does not improve, especially for low-frequency variants®2.
Nowadays, many efforts are ongoing to further increase the sample size of the reference
panels. The larger the reference panel, the larger the change it will contain the haplotype
of interest and thus the more accurate the imputations will be. As the frequency of rare
variants may increase in certain populations due to drift and founder effects®?, the power
of searches for rare functional variants may improve by the use of reference sets specific
to distinct populations. Such references allow for better quality imputation of rare variants
especially those with increased frequency in the population of interest>*°. However, to
characterize a population, it is crucial to sequence as many individuals as possible to maximize
the probability of capturing rare variants®. This approach has been applied by the Genome
of the Netherlands consortium to develop the GoNL reference panel. For this custom-built
reference panel for the Dutch population the whole genome of 250 parent-offspring trios
were sequenced at approximately 13x coverage® . An approximately equal representation
from the original 11 Dutch provinces were choosen, and an oversampling from the two major
cities, Amsterdam and Rotterdam.

One of the first questions addressed whether there are differences in the genome across
the Netherlands. Figure 3°° shows the results of the Principal Component Analysis (PCA) of
all 769 GoNL samples. The three PCs correlated significantly with geographic location and
distinguished between: (1) the North and South of the Netherlands; (2) between the East
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and West; and (3) between the middle-band of the Netherlands and the rest of the country.
The PCs capture the geographical variation in the data very well. Due to the trio design, the
phasing quality of the reference panel was better than that of the 1kG Phase 1 panel®®. The
GoNL reference panel was used in this thesis for the imputations of the Dutch biobanks prior
to a meta-analysis of circulating lipid levels with the aim to identify low-frequency and rare
variants associated with circulating lipid levels.
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Figure 3: PCA results highlighting differences in genetic make-up across the Netherlands: the plots give
PC1 versus PC2, and PC1 versus PC3. Source: Boomsma et al>®

Scope of this thesis

The aim of this thesis is to dissect the complex genetic nature of circulating lipid levels, in
particular HDL-C, LDL-C, TC and TG. One of the approaches used in this thesis to identify
new variants associated with these circulating lipid levels are meta-analysis of GWAS of
multiple cohorts. This requires all cohorts to have the same variants in their GWAS. To this
end, genotypes that have not been measured in a given cohort can be imputed based on
a set of reference haplotypes. In Chapter 2 the 1000 Genomes reference panel was used
for imputations of the cohorts of the CHARGE consortium. Chapter 2.1 describes the fine-
mapping of the CETP region, a region that has been known to be associated with HDL-C for
a long time*. Though the causal variant has not been determined so far and by using the



22 | Partl

1kG as a reference panel, there will be more power to fine-map the association between
CETP and HDL-C. Chapter 2.2 focuses on new variants associated with one of the four
circulating lipid levels. Chapter 3 focuses on the Genome of the Netherlands reference panel.
Chapter 3.1 provides guidelines for performing imputations with this population-specific
reference panel and Chapter 3.2 uses this population-specific reference panel there was a
significant improvement for rare variants (MAF between 0.05 and 0.5%) compared to the
1000 Genomes, both for Dutch, British and Italian samples. Chapter 3.3 uses GoNL for the
identification of novel variants associated with circulating lipid levels after imputations with
the GoNL reference panel, followed by a meta-analyses. Meta-analysis of GWAS of multiple
cohorts has been applied on various phenotypes before with various reference panels being
used for the imputations and although also in this thesis the method showed to identify even
more variants associated with circulating lipid levels, | also applied new methods to dissect
the complex genetic nature of HDL-C (Chapter 4). In Chapter 4.1 | performed the first GWIS to
identify SNPxSNP interactions associated with HDL-C. In Chapter 4.2 | performed an EXWAS to
identify rare coding variants associated with HDL-C. Finally, in Chapter 5, | discuss the findings
of this thesis, and their implications for future research.
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CHAPTER 2.1

Fine mapping the CETP region reveals a common
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ABSTRACT

Background: Individuals with exceptional longevity and their offspring have significantly
larger high-density lipoprotein concentrations (HDL-C) particle sizes due to the increased
homozygosity for the 1405V variant in the cholesteryl ester transfer protein (CETP) gene.
In this study we investigate the association of CETP and HDL-C further to identify novel,
independent CETP variants associated with HDL-C in humans.

Methods: We performed a meta-analysis of HDL-C within the CETP region using 59,432
individuals imputed with 1000 Genomes data. We performed replication in an independent
sample of 47,866 individuals and validation was done by Sanger sequencing.

Results: The meta-analysis of HDL-C within the CETP region identified five independent
variants, including an exonic variant and a common intronic deletion. We replicated these
five variants significantly in an independent sample of 47,866 individuals. Sanger sequencing
of the deletion within a single family confirmed segregation of this variant.

The strongest reported association between HDL-C and CETP variants, was rs3764261;
however, after conditioning on the five novel variants we identified, the support for
rs3764261 was highly reduced (Bunadjusted:3.179 mg/dL (p-value=5.25-10°%), Badjusted:0.859
mg/dL (p-value=9.51-10%)), and this finding suggests that these five novel variants may

partly explain the association of CETP with HDL-C. Indeed, three of the five novel variants
(rs34065661, rs5817082, rs7499892) are independent of rs3764261.

Conclusions: The causal variants in CETP that account for the association with HDL-C remain
unknown. We used studies imputed to the 1000 Genomes reference panel for fine mapping
of the CETP region. We identified and validated five variants within this region that may partly
account for the association of the known variant (rs3764261) as well as other sources of
genetic contribution to HDL-C.
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INTRODUCTION

Aging is characterized by a deterioration in the maintenance of homeostatic processes over
time, leading to functional decline and increased risk for disease and death®. One of the
genes linked to healthy aging and longevity is the cholesteryl ester transfer protein (CETP)
gene®?. Homozygosity in the 405VV variants of CETP is associated with lower concentrations
of CETP, higher concentrations of high-density lipoprotein concentrations (HDL-C) and greater
HDL-C particle size, all associated with both protection against cardiovascular disease® and
exceptional longevity*.

Functional analyses in mice®, hamsters® and rabbits’ have revealed that the protein encoded
by the CETP gene mediates the transfer of cholesteryl esters from HDL-C to other lipoproteins
such as atherogenic (V)LDL particle and is a key participant in the reverse transport of
cholesterol from the periphery to the liver®. Due to the function of CETP and the association of
the gene with HDL-C in humans®*, the CETP gene is one of the targets for drug development
for dyslipidemia®2, CETP-inhibition leads to an increase of HDL-C from 30% up to 140%
depending on the compound used. The first drug of its class, Torcetrapib was unfortunately
associated with an increased mortality and morbidity in patients receiving the CETP-inhibitor
in addition to atorvastatin®®*,

The estimated heritability of HDL-C levels is high in humans: 47-76%*>2%. Previously published
whole-genome sequence data® reported that common variants (minor allele frequency
(MAF) > 1%) explain up to 61.8% of the variance in HDL-C levels and that rare variants (MAF
< 1%) explain an additional 7.8% of the variance. Genome-wide association studies (GWAS)
revealed that numerous variants are associated with HDL-C, among which are various
common®¥ and rare?*? variants within the CETP gene in multiple ancestries*®?¢28_|n this
paper we investigate the association between CETP and HDL-C in humans in further detail to
identify variants that are likely to be causal.

To this end, we used a meta-analysis of association studies with imputed genotypes within
the CETP region. Our study consisted of data from 59,432 samples, of which the genotypes
were imputed to the 1000 Genomes project reference panel (version Phase 1 integrated
release v3, April 2012, all populations). By using 1000 Genomes imputed data we expected to
find more rare or low-frequent variants as well as novel insertions and deletions.

METHODS

Study descriptions

The descriptions of the participating cohorts can be found in the supplemental material.
All studies were performed with the approval of the local medical ethics committees, and
written informed consent was obtained from all participants.
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Study samples and phenotypes

The total number of individuals in the discovery phase was 59,432 and in the replication
phase, 47,866. Of the discovery samples, 44,108 individuals (74.21%) were of European
ancestry. Of the replication samples, 47,081 individuals (98.36%) were of European ancestry.
A summary of the details of both the discovery and replication cohorts participating in this
study can be found in Supplemental Table 1.

Genotyping and imputations

All cohorts were genotyped using commercially available Affymetrix or lllumina genotyping
arrays, or custom Perlegen arrays. Quality control was performed independently for each
study. To facilitate meta-analysis and replication, each discovery and replication cohort
performed genotype imputation using IMPUTE2% or Minimac®® with reference to the 1000
Genomes project reference panel (version Phase 1 integrated release v3, April 2012, all
populations). The details per cohort can be found in Supplemental Table 2.

Association analysis in discovery cohorts

The lipid measurements were adjusted for sex, age and age? in all cohorts and if necessary
also for cohort-specific covariates (Supplemental Table 1). Some cohorts included samples
using lipid lowering medication; we did not adjust for lipid lowering medication in our analysis
because HDL-C levels are only minimally influenced by lipid lowering medication. Each
discovery cohort ran association analysis for all variants within the CETP region (chromosome
16, 56.99 Mbp — 57.02 Mbp) with HDL-C.

Meta-analysis of discovery cohorts

The association results of all discovery cohorts for all variants within the CETP region
(chromosome 16, 56.99 Mbp — 57.02 Mbp) were combined using inverse variance weighting
as applied by METAL31. This tool also applies genomic control by automatically correcting
the test statistics to account for small amounts of population stratification or unaccounted
relatedness and the tool also allows for heterogeneity. We used the following filters for the
variants: 0.3 < R2 (measurement for the imputation quality) < 1.0 and expected minor allele
count (expMAC =2 - MAF - R2 - sample size) > 10 prior to meta-analysis. After meta-analysis
of all available variants, we excluded the variants that were not present in at least 3 cohorts,
to prevent false positive findings.

Selection of independent variants

In order to select only variants that were independently associated with HDL-C, we used the
Genome-wide Complex Trait Analysis (GCTA) tool, version 1.13%. Although this tool currently
supports multiple functionalities, we only used the functions for conditional and joint
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genome-wide association analysis. This function performs a stepwise selection procedure to
select independent SNP associations by a conditional and joint analysis approach. It utilizes
summary-level statistics from the meta-analysis and linkage disequilibrium (LD) corrections
between SNPs are estimated from the 1000 Genomes (1000G Phase | Integrated Release
Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes)). GCTA estimates the
effective sample size and determines the effect size, the standard error and the p-value from
a joint analysis of all the selected SNPs. In this way we select the best associated variants in
CETP. We subsequently checked whether these variants were in LD within the 1000 Genomes
reference panel (1000G Phase | Integrated Release Version 22 Haplotypes (2010-11 data
freeze, 2012-02-14 haplotypes)) using PLINK32 software (Supplemental Table 3).

Replication of independent CETP variants

Five variants were selected for replication in a sample of 12 independent cohorts: Athero-
Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA, PREVEND, PROSPER, QIMR,
TRAILS and YFS. The lipid measurements were adjusted for sex, age and age2 in all cohorts
and if necessary also for cohort-specific covariates (Supplemental Table 1b). The details per
cohort regarding variant genotyping and imputations can be found in Supplemental Table 2.
The association results of all replication cohorts were combined and the standard error based
weights were calculated by METAL®. Since none of the five variants are in LD (Supplemental
Table 3), the Bonferroni-corrected p-value for multiple testing was 0.01.

Test previous published results

The meta-analysis of HDL-C as published by Teslovich et al.° identified 38 genome-wide
significant (p-value < 5 - 10®) variants within the CETP region (chromosome 16, 56.99 Mbp
— 57.02 Mbp). Within all discovery and replication cohorts, we tested these 38 variants,
adjusting for the 5 newly identified independent variants to explore whether the new variants
explain previously published results. The association results of all cohorts were combined and
the standard error based weights were calculated by METAL®.

We used the genotypes of all 1,092 individuals of the 1000 Genomes project (1000G Phase
| Integrated Release Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes))
to calculate the correlation between the 38 variants. This correlation matrix was used by
matSpDlite** which examines the ratio of observed eigenvalue variance to its theoretical
maximum to determine the number of independent variables. For these 38 genome-wide
significant variants within the CETP region, the effective number of independent variables
is 18 and therefore the experiment-wide significance threshold required to keep type | error
rate at 5% is 2.85 - 10°.
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Conditional analysis of independent CETP variants

The replicated independent variants were selected for conditional analysis in both the
discovery and the replication cohorts. In this analysis we adjusted for the lead SNP for this
region as reported by Teslovich et al.° (rs3764261, chromosome 16, position 56,993,324
basepairs). The association results of all discovery and replication cohorts were combined
and the standard error based weights were calculated by METAL®3. The Bonferroni-corrected
p-value for multiple testing was 0.01, since none of the five variants is in LD (Supplemental
Table 3).

Validation of the new CETP insertion within a family

Within the ERF study, 3,658 individuals have been genotyped on various lllumina and
Affymetrix chips, followed by imputations with MaCH (1.0.18c) and Minimac (minimac-
beta-2012-03-14) to the 1000 Genomes reference panel (1000G Phase | Integrated Release
Version 22 Haplotypes (2010-11 data freeze, 2012-02-14 haplotypes)). Based on the best
guess imputed genotypes, we selected one family in which we expected the insertion to
segregate.

Validation of the insertion was performed by Sanger sequencing. Genomic DNA was isolated
from peripheral blood using standard protocols (salting-out). The intron 2-3 of the CETP gene
(Supplemental Table 4) was amplified using PCR and the following primer sequences were
used to amplify: forward; tgggggactcaggtctctcc; reverse; aaagcacctggcccacaacc; size 409 bp.
PCR reactions was performed in 17.5 ul containing 37.5 ng DNA, 10 pmol/ul of each primer,
2.5 mM dNTP’s, 10x PCR buffer with Mg+ (Roche) and 5 U/ul FastStart Tag (Roche). Cycle
conditions: 7 min at 94°C; 10 cycles of 30 s denaturation at 94°C, 30s annealing at 70°Cto 1°C
per cycle and 90s extension at 72°C; followed by 20 cycles of 30s denaturation at 94°C, 30s at
60°C and 90 s at 72°C; final extension 10 min at 72°C. Sephadex G50 (Amersham Biosciences)
was used to purify the sequenced PCR products. Direct sequencing of both strands was
performed using Big Dye Terminator chemistry version 4 (Applied Biosystems). Fragments
were loaded on an ABI3100 automated sequencer and analyzed with DNA Sequencing
Analysis (version 5.3) and SeqScape (version 2.6) software (Applied Biosystems). All sequence
variants are numbered at the nucleotide levels according to the following references: NC
~000016.10:.56963437_56963438insA  (NCBI), NM_000078.2:c.233+313_233+314insA,
Human Feb. 2009 (GRCh37/hg19) Assembly.
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RESULTS

Meta-analysis in all discovery cohorts to select independent variants

The association of all variants within the CETP region (chromosome 16, 56.99 Mbp — 57.02
Mbp) to HDL-C was tested in all discovery cohorts. These results were combined using the
inverse-variance weights as applied by METAL®. After exclusion of the variants that were
not present in at least 3 cohorts, 254 variants remained (Figure 1). A conditional and joint
analysis of the 254 variants using GCTA identified five independent variants (Figure 2). Three
variants were intronic (rs5817082, rs4587963 and rs7499892), one variant was intergenic
(rs12920974) and one variant was exonic (rs34065661) (Table 1). Using PLINK software,
we calculated the LD between the 5 variants based on the 1000 Genomes reference panel
(1000G Phase | Integrated Release Version 22 Haplotypes (2010-11 data freeze, 2012-02-14
haplotypes)), and found that none are in high LD with each other (Supplemental Table 3).

1512920974
rs34065661
X rs5817082
300 4 o rs4587963
1s7499892

X % >?§< other

rs3764261

OxmEEO0mEO

200 —

—log1o(p-value)

’ CETP— ‘

56.99 56.995 57 57.005 57.01 57.015 57.02
Position on chr16 (Mb)

Figure 1. Results of the meta-analysis of all discovery cohorts within the CETP region.
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Figure 2. Forest plots from the discovery meta-analysis results for the five independent variants
identified within the CETP region. Only cohorts in which the variants passed QC are included in the
forest plot. A: rs12920974 (chromosome 16, position 56,993,025), B: rs34065661 (chromosome 16,
position 56,995,935), C: rs5817082 (chromosome 16, position 56,997,349), D: rs4587963 (chromosome
16, position 56,997,369) and E: rs7499892 (chromosome 16, position 57,006,590).

Replication of the independent CETP variants

The five independent variants within the CETP region were selected for replication within
the following cohorts: Athero-Express, CHS, FINCAVAS, LBC1936, Lifelines, LLS, NTR-NESDA,
PREVEND, PROSPER, QIMR, TRAILS and YFS. Five variants were replicated at a p-value of 2.99
- 103 (Figure 3 and Table 2).

Test to explain the previously published results

In each discovery and replication cohort we tested if the five independent variants explain the
associations within the CETP region (chromosome 16, 56.99 Mbp — 57.02 Mbp) as reported
in Teslovich et al.°. We tested a total of 38 genome-wide significant (p-value <5 - 10®) SNPs
within this region identified by Teslovich et al.° and conditioned for the five independent
variants in all discovery and replication cohorts. All 38 variants were significantly (p-value
corrected for multiple testing < 2.85 - 10°%) associated with HDL-C in our joint analyses without
adjusting for the five independent variants we identified in this work, and 37 (97.37%) were
genome-wide significant (p-value < 5 - 10®) despite the fact that our sample size is about
65% of the study of Teslovich et al.° (Table 3). When conditioning on the 5 variants identified
in this work, 27 (71.05%) variants remained significant (p-value < 2.85 - 10?), though the
p-values were markedly reduced (Table 3). This finding suggests that the new variants we
identified may explain in part the previously reported association. Remarkably, the p-value of
rs3764261 which was reported as the lead SNP for this CETP region by Teslovich et al.® was
highly reduced from 5.25 - 10°% to 9.51 - 10> while the B decreased from 3.179 mg/dL to
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0.859 mg/dL. This variant is not in LD with any of the 5 new variants. Due to the lack of LD,
the standard error of rs3764261 does not change much (SEuﬂadj=0.066, SEadJ=O‘084), but the
effect of rs3764261 does (B =3.179, Badj=0.859) and therefore the chi-square decreases as
well, and that results in a higher p-value. This indicates that a part of the effect of rs3764261

unadj

can be explained by the effect of the 5 new variants.

Conditional analysis of the independent CETP variants

Next, we performed conditional analysis of the independent variants in both the discovery
and replication cohorts. We conditioned on the lead SNP for the CETP region as reported by
Teslovich et al.® (rs3764261, chromosome 16, position 56,993,324 basepairs), see Table 4 and
Figure 4. This analysis showed that three out of the five variants (rs34065661, rs5817082,
rs7499892) are independent of rs3764261. For all variants the p-values and B’s decreased,
but all p-values remained significant. The effect of the single variant rs34065661, of the
insertion rs5817082 and of the single variant rs7499892 were reduced by 53.20%, 38.48%
and 32.67%, respectively.

Validation of the insertion within a family

We selected based on the best guess imputations of the ERF study, a large family of 30
individuals for Sanger sequencing of rs5817082. Using MERLIN3® we estimated that the total
heritability of HDL-C within this family is 27.47%. DNA was available for 16 individuals. Figure 5
shows the results of the Sanger sequencing for rs5817082 for these 16 individuals within the
family. The sequencing of the insertion confirmed the best guess results for ten individuals
(62.5%), of which seven were heterozygous for the insertion, one was homozygous for the
insertion and two did not carry the insertion. Three individuals that are homozygous for the
insertion, were predicted to be heterozygous by the best guess imputations. Three individuals
that are heterozygous for the insertion, were not predicted to carry the insertion by the
best guess imputations. Furthermore, the Sanger sequencing showed that the insertion
segregates with the outcome within this family. The proportion of variance explained by the
insertion within this family is 35.50%, while the proportion explained by rs3764261, the lead
SNP within the CETP region as reported by Teslovich et al.? is 14.11%.
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Figure 3. Forest plots of the replication meta-analysis for the five independent variants within the CETP
region. Only cohorts in which the variants passed QC are included in the forest plot. A: rs12920974
(chromosome 16, position 56,993,025), B: rs34065661 (chromosome 16, position 56,995,935), C:
rs5817082 (chromosome 16, position 56,997,349), D: rs4587963 (chromosome 16, position 56,997,369)
and E: rs7499892 (chromosome 16, position 57,006,590).
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Figure 4. Forest plots of the conditional analysis in the combined discovery and replication cohorts for
the five independent variants within the CETP region. Only cohorts in which the variants passed QC
are included in the forest plot. A: rs12920974 (chromosome 16, position 56,993,025), B: rs34065661
(chromosome 16, position 56,995,935), C: rs5817082 (chromosome 16, position 56,997,349), D:
rs4587963 (chromosome 16, position 56,997,369) and E: rs7499892 (chromosome 16, position
57,006,590).

DISCUSSION

We conducted an analysis to fine-map the association between CETP genetic variants and
HDL-C. To this end, a total of 59,432 samples were imputed to the latest version of the 1000
Genomes (version Phase 1 integrated release v3, April 2012, all populations). We identified
and replicated five independent variants within the CETP region (chromosome 16, 56.99 Mbp
— 57.02 Mbp), of which four are SNPs and one is an insertion. We validated the insertion
by Sanger sequencing within a large family, as the largest effect on HDL-C comes from this
insertion.

The relationship between the CETP gene and HDL-C has been known for a long time® and
GWAS have revealed many common and rare variants in this region. Although the associated
genetic variants are strongly correlated with HDL-C, the causal variants have not been
determined. Our study showed that when using the latest 1000 Genomes reference panel,
we have more power to fine-map this association. By conditional analysis of the five variants,
we were able to reduce the p-values of the genome-wide significant associations published
before by Teslovich et al.°. Furthermore, conditional analysis showed that three out of the
five variants are independent of the lead SNP for the CETP region as reported by Teslovich et
al.® (rs3764261).
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Figure 5. Validation of the deletion (rs5817082) with a large family. The numbers present the dosage
for rs5817082 after imputations, second row the best guess result (I is insertion, R is reference) and the
third row the genotypes of the deletion from Sanger sequencing.

Several fine-mapping effort have been previously published®* and in all those efforts
sequencing was used for the fine-mapping. In our project we did not use sequencing, but
imputations using the 1000 Genomes as a reference panel. This method has been widely-
used in the past and is much lower in cost. With new reference panels available, we were
able to have a revised study of this region. The 1000 Genomes reference panel consists of 30
million variants including a million insertions and deletions. By using this reference panel for
imputation, we were able to impute these insertions and deletions in 59,432 samples from
various cohorts. This led to the significant association of an insertion within a known region
with HDL-C. So far, no association between a structural variation and HDL-C has been found
in such a large sample size. Validation of the insertion by Sanger sequencing confirms the
correct imputations of this insertion in 62.5% of the individuals, of which seven heterozygous
carriers, one homozygous carrier and two did not carry the insertion.

The results of this study showed that by using the 1000 Genomes reference panel, the
proportion of the variance explained can be increased and that multiple common variants
in the same region may be implicated in a single family of the ERF study. The insertion we
identified in this study explains 35.50% of variation in the HDL-C level in a single family of the
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ERF study; this is in concordance with the results of the whole-genome sequence data?. This
is much higher than the proportion of the variance explained (14.11%) in the same family
by rs3764261 which was reported before as the lead variant of this region. Fine-mapping of
various associations may help us in unravel the genetic background of various phenotypes.
Although rs3764261 was identified by Teslovich et al.’ to be the lead SNP of this region, other
variants are used in clinical settings. Three of the classical variants are located in the promoter
region of the CETP gene:-1337C/T (rs708272 or TaqlB),-971G/A and-629C/A (rs1800775)
polymorphisms®. Carriers of the B2 allele of the common Tag1B polymorphism exhibit lower
plasma CETP levels and higher HDL-C. Furthermore, a recent meta-analysis showed that the
B2 allele is associated with a reduced risk for coronary heart disease®. One more classical
variant is rs5882A (4051/V), which is located outside the promoter region*:. The-1337C/T
and-629C/A are in strong linkage disequilibrium (LD), however, they are in very low LD (r2 of
0.442 for rs708272 and 0.461 for rs1800775) with rs3764261, despite the fact that all three
variant are within 3,000 basepairs of each other.

Large HDL-C particle sizes have been associated with exceptional longevity before and with
an increased homozygosity for the 1405V variant within the CETP gene“. Many of the studies
confirm this relationship, however, all are based on genotyping of the 1405V variant. Our
study however shows that more variants within the CETP gene are associated with HDL-C
levels in the blood circulation. Therefore we would suggest investigating more variants within
the CETP gene for its association with longevity and healthy aging.

Some genetic variants identified in our study were published before®*?*, but so far no
conditional analyses have been performed with these variants. Our study suggests that
various CETP variants may be relevant for HDL-levels in the blood circulation and that these
may have a substantial role in the heritability of HDL-C in specific families.
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ABSTRACT

So far, more than 170 loci have been associated for circulating lipid levels through genome-
wide association studies (GWAS). These associations are largely driven by common loci, their
function is often not known, and many are likely to be markers for the causal variants. In
order to obtain better estimates for rare functional variants we used the 1000 Genomes
Project as a reference panel for the imputations of GWAS data from ~60,000 individuals.
Replication in ~90,000 samples resulted in the identification of five new associations with
circulating lipid levels at four loci. All four loci are within genes that can be linked biologically
to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within
the ANGPTL4 gene. This study illustrates that GWAS with high-scale imputation may still help
us unravel the biological mechanism behind circulating lipid levels.
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INTRODUCTION

Genome-wide association studies (GWAS) for circulating lipid levels (high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC)
and triglycerides (TG)) have identified over 170 loci*®. These studies have been based on
imputations to the HapMap reference panel® or primary versions of the 1000 Genomes
Project (1kG)* or genotyping on the Illumina Exome Chip3. None has used imputations with
the Phase 1 integrated release v3 of the 1kG which allows the imputation of rare functional
variants and structural variations with more precision. Evidence of rare functional variants
associated with circulating lipid levels comes from recent studies in which exome sequencing
of the NPC1L1 gene identified rare variants associated with reduced LDL-C levels and reduced
risk of coronary heart disease*. Moreover, exome sequencing of LDLR and APOA5 identified
rare variants associated with an increased LDL-C and increased TG levels® and exome
sequencing of APOC3 identified rare variants associated with reduced TG levels and reduced
risk of coronary heart disease®.

Our goal in this study was to identify rare functional variants associated with circulating
lipid levels in a larger sample size compared to the exome sequencing of candidate gene
approach. To this end, we imputed genotypes for study samples participating in the cohorts
of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium
using the Phase 1 integrated release v3 of the 1kG and conducted a meta-analysis of about
approximately 60,000 individuals, followed by a replication in an independent set of 90,000
individuals.

METHODS

Please see Supplementary Methods for complete descriptions of the methods. In summary,
for the discovery stage of this project, we used the data from 20 cohorts of the CHARGE
consortium (Supplemental methods). All cohorts were imputed with reference to the 1kG
reference panel (version Phase 1 integrated release v3). The total number of individuals in
the discovery stage was 59,409 for HDL-C, 48,780 for LDL-C, 60,024 for TC and 49,549 for
TG. Supplemental Table 1 and 2 contain the baseline characteristics per cohort and more
details about SNP genotyping and genotype imputations. Within each cohort, each variant
was tested for association with each of the lipid traits, assuming an additive genetic model.
The association results of all cohorts for all variants were combined using inverse variance
weighting. We used the following filters for the variants: 0.3 < R? (measurement for the
imputation quality) < 1.0 and expected minor allele count (expMAC=2 - MAF (minor allele
frequency) - R? - sample size) > 10 prior to meta-analysis. After meta-analysis of all available
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variants, we excluded the variants that were not present in at least 4 cohorts, to prevent false
positive findings. In order to select only variants that were independently associated with
each of the lipid traits, we used the GCTA” tool. To identify novel loci we selected from the list
of variants identified by GCTA, those variants located more than 0.5Mb away from previously
identified loci of the corresponding trait>* and which were significant (p-value < 5:10%) in
the initial discovery stage. To prevent the identification of false positive loci, we added a
second replication stage within 23 independent cohorts. The experiment-wide significance
threshold required to keep type | error rate within the replication stage at 5% is 2.63-103
(Bonferroni correction based on nineteen variants). We also meta-analyzed the individuals of
the discovery and replication stage together.

RESULTS

The association of all variants with HDL-C, LDL-C, TC and TG was tested in all discovery cohorts
(Supplemental Figure 1 and 2). We significantly replicated 88.1% of the loci described by
Teslovich et al.? despite a sample size of about 80% (Supplemental Figure 5 and Supplemental
Table 3). We also significantly replicated 43.4% of the loci described by Global Lipids Genetics
Consortium (GLGC)® despite a sample size of about 30% (Supplemental Figure 6 and
Supplemental Table 4).

A conditional and joint analysis using GCTA identified 186 independent variants for HDL-C, 175
for LDL-C, 215 for TC and 120 for TG. Next, we excluded all variants that were not genome-
wide significant (p-value < 5:10%) in the initial discovery stage as these are probably false
positives and we excluded all variants which are within 0.5 Mb of a loci previously published
by Teslovich et al.? or GLGC?, which resulted in three variants for HDL-C, three for LDL-C,
seven for TC and six for TG. These variants are located at seventeen different loci and includes
one deletion (Figure 1 and Table 1). These nineteen variants were selected for replication.
The total number of individuals in the replication stage was 84,598, 72,486, 83,739 and
73,519 for HDL-C, LDL-C, TC and TG respectively (see Supplemental Table 1 and 2 for baseline
characteristics and information about SNP genotyping and imputation details). The sample
size in the replication stage was larger than the initial discovery sample for seventeen out of
the nineteen variants. The frequencies of the variants were similar between the discovery
and replication cohorts. The directions of effect were the same in both the discovery and
replication cohorts for sixteen out of the nineteen variants (Supplementary Figure 7). We
used a Bonferroni corrected threshold for significance (p-value < 2.63:1073). Five out of the
nineteen variants were significantly replicated (Table 1): rs6457374 (TC), rs186696265 (LDL-C
and TC), rs77697917 (HDL-C) and rs116843064 (TG). The frequency of these variants ranging
from 0.012 to 0.249 within the discovery sample.
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Table 1. The results for the nineteen variants after the meta-analysis of all discovery cohorts, of all
replication cohorts and of all cohorts combined. Al is allele 1 and A2 is allele 2, Freq is the frequency
of A1, B is the effect of Al.

Trait Chr:Position rs identifier A1/A2  All cohorts combined
Freq B SE, p-value

HDL-C  3:72,067,255 rs75909755  1/c 0034 0002 0031 357801
TC 6:31,272,261 rs6457374 e UEN 0o Gbie i
LDL-C  6:31,325,323 r$9266229 gle eIl COEEE S OUls AdAER
6 6:36,648275 - CAG/c 0464 -0013 0003  5.93E-07
TG 6:139,839,498  rs608736 c/c 048 0013 0002 910809
TG 6:160,851,766  rs376563 7/c 0460 -0.010° 0.002 136805
LDL-C  6:161,111,700  rs186696265 T/ 0011 0304 0076  6.17E-05
TC 6:161,111,700  rs186696265 ~ T/c 0010 0278 0075  193E-04
HDL-C ~ 7:80,492,357  rs60839105 ~ T/c ~ 0070 2948 0518  125E-08
TC 8:68,351,787  rs151198427  A/G 0112 4797 1035 3.56E-06
LDL-C  9:78,728,065 pldszEzayi e GeRR BERD OIS 2eE0n
TC 9:78,728,065  rsl46369471  T/c 0994 0057 0103 579801
TC 12:51,207,704  rs829112 fvig  GeZ O BA S0
TG 13:114,544,024  rs7140110 e Gods B0Ls DOE Sl
TG 15:43,726,625  rs150844304 ~ A/c 0961 -0.066  0.008  9.52E-16
TC 17:18,046,290  rs8065026 e G ARb2 QUL 202
HDL-C  17:41,840,849  rs77697917 ~ T/c ~ 0031 -0.241 0035 1.04E11
TG 19:8,429,323  rs116843064  A/G 0031 -0.087 0012 3.83E-13
TC 20:17,844,684  rs2618566 e el g QO 10
DISCUSSION

We conducted a GWAS that included GWAS data imputed to the 1kG to identify rare,
potentially functional, variants associated with circulating lipid levels. To this end, we imputed
genotypes in approximately 60.000 individuals from 20 cohorts in the CHARGE consortium
with the 1kG reference panel. The meta-analysis, followed by GCTA analysis revealed nineteen
associations with MAF ranging from 0.01 to 0.48. Of the nineteen associations, we were able
to replicate five in an independent sample of approximately 90.000 individuals.

One of the five associations we identified is between TG and rs116843064, an exonic variant
in the ANGPTL4 gene on chromosome 19 (Figure 2C). This missense variant changes the
amino acid glutamic acid into lysine (Glu40Lys) and is predicted to be damaging for the
structure and function of the protein by Polyphen28, MutationTaster® and LRT*. ANGPTL4
has been associated with HDL-C before using the GWAS approach2 and with TG before using
an exome sequencing approach'! and more recently using the GWAS approach®. ANGPTL4
is significantly associated with the KEGG term fatty acid metabolism, the GO process lipid
storage and the GO cellular component lipid particle (p-value of 1.10-10%, 1.31-10%° and
2.87-108, respectively, genenetwork.nl).
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Table 1 continued. The results for the nineteen variants after the meta-analysis of all discovery cohorts,
of all replication cohorts and of all cohorts combined. Al is allele 1 and A2 is allele 2, Freq is the
frequency of A1, B is the effect of Al.

Trait rs identifier A1/A2 Discovery cohorts
Freq N B SE, p-value

HDL-C rs75909755 T/C 0.033 62,607 1.593 0.275 7.27E-09
TC rs6457374 T/C 0.751 46,839 2.339 0.339 5.32E-12
LDL-C rs9266229 C/G 0.526 37,981 -2.201 0.344 1.62E-10
TG (6:36,648,275) CAG/C 0.451 53,425 -0.019 0.003 7.63E-09
TG rs608736 C/G 0.481 53,425 -0.019 0.003 5.67E-09
TG rs376563 T/C 0.459 47,036 -0.020 0.003 3.37E-09
LDL-C rs186696265 T/C 0.012 49,221 11.247 1.241 1.31E-19
TC rs186696265 T/C 0.012 59,859 10.004 1.162 7.20E-18
HDL-C rs60839105 T/C 0.068 7,882 3.355 0.571 4.26E-09
TC rs151198427 A/G 0.108 17,361 6.552 1.147 1.12E-08
LDL-C rs146369471 T/C 0.990 43,398 8.529 1.449 3.99E-09
TC rs146369471 T/C 0.990 53,787 7.978 1.413 1.64E-08
TC rs829112 A/G 0.681 56,924 1.448 0.258 2.02E-08
TG rs7140110 T/C 0.713 48,221 -0.021 0.004 3.65E-08
TG rs150844304 A/C 0.968 52,720 -0.083 0.010 2.52E-17
TC rs8065026 T/C 0.785 56,924 -1.644 0.292 1.76E-08
HDL-C rs77697917 T/C 0.023 45,052 -2.717 0.407 2.38E-11
TG rs116843064 A/G 0.030 35,643 -0.101 0.016 6.46E-11
TC rs2618566 T/G 0.651 63,300 -1.566 0.251 4.68E-10

The second new findings we identified is the association between TC and rs6457374, an
intergenic variant located on chromosome 6 between the genes HLA-C and HLA-B (Figure
2A). Both genes are associated with the KEGG term ABC transporters (p-value of 4.29-10°
and 3.84-10° for HLA-C and HLA-B respectively, genenetwork.nl) which is in line with among
others a previously published association between TC and an exonic variant in the ABCA6 gene
which is also an ABC transporter'?. ABC transporters transport a wide variety of substrates
across extra- and intracellular membranes, including lipids®.

The third finding of this study is the association between HDL-C and rs77697917, an
intergenic variant on chromosome 17 between the genes SOST and DUSP3 (Figure 2B).
DUSP3 is associated with the regulation and function of carbohydrate-responsive element-
binding protein (ChREBP) in the liver (p-value=3.03-10°, genenetwork.nl). ChREBP mediates
the activation of several regulatory enzymes involved in lipogenesis'*8. This variant is in high
linkage disequilibrium (D’=0.936) in the 1kG with rs72836561, an exonic variant in the gene
CD300LG (MAF=0.027, =-2.437, se,=0.381, p-value=1.51-10"° in the discovery stage). This
missense variant changes the amino acid arginine into cysteine (Arg82Cys) and is predicted
to be damaging for the structure and function of the protein by Polyphen28, MutationTaster®
and LRT®. This amino acid polymorphism has been associated with HDL-C in exome-wide
association studies'® and TG in GWAS? before.
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Table 1 continued. The results for the nineteen variants after the meta-analysis of all discovery cohorts,
of all replication cohorts and of all cohorts combined. Al is allele 1 and A2 is allele 2, Freq is the
frequency of A1, B is the effect of Al.

Trait rs identifier Al1/A2 Replication cohorts
Freq N B SE, p-value

HDL-C rs75909755 T/C 0.034 86,252 -0.019 0.031  5.45E-01
TC 1s6457374 T/C 0.807 74,417  0.057 0016  4.23E-04
LDL-C 159266229 c/G 0.411 61,582 -0.025 0.014  7.37E-02
TG (6:36,648,275)  CAG/C 0.486 59,018 -0.003 0.004  5.20E-01
6 1s608736 /G 0486 73,512 0008  0.003 2.67E-02
6 1$376563 T/C 046 73,512 0001  0.003 8.22£-01
LDL-C rs186696265  T/C 0011 59,497  0.263 0.076  5.42E-04
TC rs186696265  T/C 001 75821  0.238 0.075  1.46E-03
HDL-C rs60839105 T/C 0078 4,971 1.067 1228  3.85E-01
TC rs151198427 A/G 0.128 1,419 -2.858 2.396  2.33E-01
LDL-C 1146369471  T/C 0.994 51,367  0.068 0103  5.11E-01
- 1146369471  T/C 0.994 70,241  0.015 0.103  8.84E-01
TC ($829112 AJG 0732 87,659  0.009 0012  4.63E-01
6 1s7140110 T/c 0721 60437  -0.006  0.005 2.68E-01
TG rs150844304 A/C 0.945 63,884 -0.026 0.015  8.85E-02
TC rs8065026 T/C 0.808 76,913 -0.026 0.013  4.93E-02
HDL-C rs77697917 T/C 0.031 67,843 -0.222 0.036  4.27E-10
6 rs116843064  A/G 0031 44,194 -0.065 0019 4.53E-04
TC r$2618566 /G 0.6 88,946  -0.024 0011 2.83E-02

The fourth variant we identified is rs186696265, which is located on chromosome 6 and
associated with both LDL-C and TC (Figure 2D and 2E). This intergenic variant is between
the LPA (Lipoprotein, Lp(A)) gene and the PLG (Plasminogen) gene. The LPA gene has been
associated before with LDL-C and TC before?. The reported lead SNP was rs1564348, which
is in the newer human genome versions is annotated to the SLC22A1 (Solute Carrier Family
22 (Organic Cation Transporter), Member 1) gene instead of the LPA gene. This explains why
we identified again a locus near the LPA gene, which has been identified by others as well®.

Fourteen out of the nineteen variants were not replicated despite similar sample size and
similar frequencies within the replication stage as compared to the discovery stage. Of
those fourteen variants, eleven exhibited effect sizes in the same direction in both stages.
A possible explanation might be that the replication sample size is much larger compared to
that of the discovery sample size. Two variants might have lacked significant replication due
to small sample size, rs60839105 and rs151198427. Both variants only pass quality control in
the cohorts in the discovery stage that contain individuals of African ancestry (Supplementary
figure 7). Although there are several cohorts with individuals of African ancestry in the
replication stage, both variants did not pass quality control in most cohorts which leads to
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the conclusion that these variants might be population-specific. This is also suggested by the
1kG data (Phase 3) as the frequency of the C-allele is 92% in African samples and 100% in
the European samples for rs60839105 and the frequency of the G-allele is 86% in the African
samples and 100% in the European samples for rs151198427. Imputations of cohorts with
individuals of African ancestry with the African Genome Variation Project?® might confirm the
association of rs60839105 with HDL-C and rs151198427 with TC.

To our knowledge, this is the first GWAS of circulating lipid levels using the Phase 1 integrated
release v3 of the 1kG, therefore we cannot compare the positive replication rate with other
studies. However, we did replicate 88.1% of the findings of Teslovich et al.? and 43.4% of the
findings of GLGC® despite our smaller sample. We also tried to replicate findings from exome
sequencing of candidate genes. The p.Arg406X mutation in the NPCIL1 gene (rs145297799),
which was reported to be associated with reduced LDL-C levels and reduced risk of coronary
heart disease*, is not available in the 1kG reference panel and, therefore, we were not able
to replicate this finding. Do et al.® described the exome sequencing of the genes LDLR and
APOAS5 and identified rare variants associated with an increased risk of myocardial infarction,
increased LDL-C and TG levels. Of those rare variants, only two in the LDLR gene and seven
in the APOAS gene exist in our discovery meta-analysis. Both LDLR variants are associated
with TG in our discovery meta-analysis (rs34282181, 3=-0.093, SE=0.023, p-value=4.827-10°
and rs2075291, $=0.219, SE=0.046, p-value=2.092-10°), but not significantly associated
with LDL-C (rs34282181, B=-3.939, SE,=1.861, p-value=0.034 and rs2075291, B=-2.316,
SE.=3.001, p-value=0.440). None of the seven APOA5 variants were significantly associated
with TG or LDL-C in our discovery meta-analysis (lowest p-value is for LDL-C with rs72658860,
=-18.430, SE;=7.140, p-value=9.848:-103). The third published finding we tried to replicate,
was the association between APOC3 and TG levels®. Of the seven variants reported, only
one existed in our discovery meta-analysis (chromosome 11, position 116,701,354), which
is associated with TG (B=-0.343, SE;=0.113, p-value=2.311-103). Those authors also reported
an association between an APOA5 variant (rs3135506) and TG as the most significant finding.
This variant was also significantly associated with TG in our discovery meta-analysis (=0.129,
SE;=0.007, p-value=1.099:10%). These replication efforts demonstrate that many of the
published results of exome sequencing can be replicated through the use of 1kG imputations.
In conclusion, we identified and replicated five variants associated with circulating lipid levels.
These variants are in genes that can be linked biologically to lipid metabolism. Although
there were a large number of variants that did not replicate at the accepted genome-wide
significance threshold, the low-cost, hypothesis-free approach that we applied uncovered five
variants. This study, therefore, illustrates that GWAS may still help us unravel the biological
mechanisms behind circulating lipid levels.
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ABSTRACT

In order to meaningfully analyse common and rare genetic variants, results from Genome-
Wide Association Studies (GWAS) of multiple cohorts need to be combined in a meta-analysis
in order to obtain enough power. This requires all cohorts to have the same Single Nucleotide
Polymorphisms (SNPs) in their GWAS. To this end, genotypes that have not been measured in
a given cohort can be imputed based on a set of reference haplotypes. This protocol provides
guidelines for performing imputations with two widely used tools: minimac and IMPUTE2.
These guidelines were developed and used by the Genome of the Netherlands consortium
that has created a population-specific reference panel for genetic imputations and used this
reference to impute various Dutch biobanks. We also examine several factors that might
influence the final imputation quality. This protocol, which has been used by the largest
Dutch biobanks should take approximately several days, depending on the sample size of the
biobank and the computer resources available.
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INTRODUCTION

Data from Genome-Wide Association Studies (GWAS) of different cohorts can be combined
into a meta-analysis even when the samples of the cohorts have been typed on different
genotyping platforms. By imputing missing genotypes, a homogeneous data set for meta-
analysis can be created. Genotype imputation allows estimation of genotypes in a target
data set, based on one or more available reference sets of Single Nucleotide Polymorphisms
(SNPs) and is based on searching common haplotypes between an individual’s genome
and a reference panel with a high density of genotyped SNPs, such as those provided by
the HapMap?!, 1000 Genomes? and the Genome of the Netherlands (GoNL)** projects.
Missing genotypes are then inferred from common haplotypes found in the reference set.
Implementation of these methods usually results in estimates of the posterior probability
distributions P = (P, Py Pss) Of the genotypes based on the available data®.

Weaknesses in both genotype calling and imputation of missing genotypes can lead to biases
in GWAS and subsequently in meta-analysis. Therefore, Anderson et al.” have previously
published a protocol dealing with quality control of genotype data, and our work can be seen
as an extension of that protocol. A guideline for imputations with the Beagle® and IMPUTE2?
tools, as well as post-imputation quality control has been published by Verma et al.’°, and a
protocol for doing meta-analysis of GWAS results for large numbers of cohorts is described
in Winkler et al.*.

In this protocol, we show how to perform genotype imputations with a population-specific
reference panel including how to deal with factors that may adversely affect the imputation
result (e.g. how to properly split up large data sets for imputation). This protocol differs to the
previous guideline from Verma et al.’°, providing instructions for imputations with IMPUTE2°
and minimac!2. We describe the different pipelines for imputations using the genome-wide
SNP data provided by Anderson et al.” as a target data set. We will start with the quality
control of this target set using the pipeline from Anderson et al.”. We will show how to
lift the target set over to the correct NCBI build and then provide pipelines for imputation
using IMPUTE2® and minimac®? (Figure 1). All pipelines are developed for GNU/Linux based
computer resources and all commands should be typed at the Bash shell prompt where
Bash variables are indicated by S{variablename}. This protocol does not include commands
to submit compute intensive tasks to a job scheduling system like OpenPBS (see Section
Computer Resources), as different computer clusters may use different scheduling systems.
This protocol has been used to impute the genotypes of individuals of various Dutch biobanks,
using the GoNL reference panel. This has resulted in the discovery of five novel associations
at four loci for cholesterol levels including a rare missense variant in the ABCA6 gene which
is predicted to be deleterious®.
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Figure 1: Workflow of the imputation protocol for imputations of unobserved genotypes with the GoNL
reference panel. The first stage of the protocol is to perform quality control of the target data set
consisting of measured genotypes, followed by liftover to the correct human genome build. The human
genome build of the GoNL reference panel is UCSC hg19. These steps are independent of the tools that
are used for the actual phasing and imputation. The next step is to download the reference set, which is
necessary to create the correct input file for phasing and imputations. The reference set file format are
different for each tool. Next, MaCH or SHAPEIT are used for phasing, followed by minimac and IMPUTE2
for the imputations.

Genome of the Netherlands reference set

The construction of a novel imputation reference data set is a complex procedure that
requires dense genotyping and accurate estimation of haplotypes from genotype data (known
as phasing) of samples from a specific population. The most thoroughly documented and
widely available imputation reference sets are coming from the HapMap?* and 1000 Genomes
projects®. Both projects contain samples from various populations and consequently a given
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genotype of a low-frequency variant may not be represented adequately in the reference
data set. Moreover, when the percentage of samples belonging to a different geographical
population is beyond a certain proportion, the imputation quality does not improve. Jostins
et al.** found that when imputing samples from the 1,958 British Birth Cohort, the accuracy
starts to fall off when the proportion of non-CEU samples exceed 20%, as the effect of
increased diversity is outweighed by the effect of mismatching. This relationship is specific
to low-frequency variants. Morever, Pistis et al.> found that the effectiveness of population-
specific reference panels can be appreciable for other populations, but will vary depending
on the size of the panels and the demographic history of the isolate.

As the interest of the field of genetic epidemiology is shifting towards low-frequency variants,
the GoNL consortium created a population-specific reference set for imputation with the goal
of identifying associations between various phenotypes and low-frequency genetic variants.
To this end, 231 parent-offspring trios and 19 parent-offspring quartets of Dutch descent had
their complete genome sequenced with at least 12x coverage®*. The strength of this reference
set comes from several factors. First, the trio design which improves the haplotype quality,
second, the coverage which is higher than that of the 1000 Genomes Project, and third,
the sequencing of samples from a homogeneous population. The quality of the haplotypes
boosts imputation accuracy in independent samples, especially for lower frequency alleles*.
The GoNL reference set is available by applying through http://www.nlgenome.nl/, menu
option “Request data”, which leads to the application form. After filling in the form, the request
will be evaluated by the GoNL steering committee. After positive evaluation, a data access
agreement needs to be signed and subsequently, the reference panel can be downloaded in
Variant Call Format (VCF). For this protocol the fourth release of the GoNL reference panel
was used, which contains 499 individuals of Dutch ancestry and 19,562,004 autosomal SNPs.

Tools for imputation

The three most commonly used tools for genotype imputation are minimac®?, IMPUTE2®
and Beagle®. Multiple aspects of the three tools, e.g. their imputation accuracy, error rates
and computational performance have been compared previously®'%'®'’ The choice for a
given tool depends on the target set that is to be imputed and on the type of computational
resources available as discussed in this paper. Within the GoNL3>® consortium, only minimac
and IMPUTE2 were used for imputations, and therefore Beagle will not be discussed in this
manuscript. It is, however, possible to impute samples with the GoNL reference panel using
Beagle. Minimac can be downloaded freely from the web, its source code is available under
an open source licence. IMPUTE?2 is available for download for academic use only, no source
code is provided.

IMPUTE2 performs both the phasing and the imputation, whereas minimac only imputes
data sets that have been phased by MaCH* or SHAPEIT2'. However, although IMPUTE2
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can perform phasing, its authors recommend to use SHAPEIT2? for the phasing followed
by using IMPUTE2 for the imputations. Of the three tools, only IMPUTE2 can combine two
reference panels. This allows imputation with both the 1000 Genomes reference panel as
well as the GoNL reference panel, which has been shown to improve imputation quality?.
MaCH/minimac make their own recombination map based on input data, IMPUTE2 requires
a recombimation map.

The requested file format of the reference set is also different among the tools. Both the
GoNL project**, 1000 Genomes project’ and the HapMap project® provide their data in
Variant Call Format (VCF)®. The VCFtools?® software package can convert these VCF files
into phased haplotypes in IMPUTE2 reference-panel format. The authors of IMPUTE2 also
provided a Perl script to perform this conversion. Minimac can handle the original VCF files
without conversion.

Both tools produce several output files. The first one is the so-called info file containing
the SNP name, the basepair positions, the frequencies of the alleles and the R?. Here R? is
the estimated squared correlation (between zero and one) between the allele dosage with
highest posterior probability in the genotype probabilities file and the true allele dosage for
the marker; larger values of allelic R? indicate more accurate genotype imputation. In a second
file IMPUTE2 gives the probabilities of the three genotypes AA, AB and BB, whereas minimac
gives the probability of a homozygote for allele 1 and the probability of the heterozygote.
Only minimac has the option to output best-guess alleles. Dosage files are produced only
by minimac, however, it takes only one additional step to convert the genotype probabilities
from IMPUTE2 into dosages. If a sample has genotype probabilities (P, P,,, P,,) for a marker,
then the estimated B-allele dosage (d,) is d,= P,, + 2 P,.. All formats can be converted using
fcGene?,

Quality control of the target data set

In order to achieve high-quality imputation standard GWAS quality control filters need to be
applied to the target data set and if necessary also to the reference set prior to imputation.
The purpose of these filters is to exclude both markers and samples with low-quality data.
Anderson et al.” and Verma et al.** provide a detailed protocol that deals with both per-maker
and per-individual filtering.

Other factors influencing the imputation quality are the type of arrays used for genotyping,
strand and build issues. Present day high-density arrays are of high quality, however, the
low-density arrays used in the beginning of the GWAS era were less so. It is therefore useful
to check the type of array that was used for genotyping of the target set. The genotype calls
from the arrays are aligned to a specific strand??. In order to obtain high-quality imputations it
is important to correct possible strand alignment issues. Although IMPUTE2 and MaCH have
options to fix misaligned alleles between study and reference panel by inverting the alleles
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when possible, the alignment of the target set should be fixed prior to imputing the target set
with for example SHAPEIT2%. This only holds for ambiguous strands (AT and TA for example),
detecting and correcting the strand of the non-ambiguous SNPs (AT and GC for example) is
more of a challenge, Deelen et al. have published a method for solving the strand issues of
non-ambiguous SNPs?. For imputation purposes, the alleles should be aligned to the forward
strand, since the imputation tools assume that the target set is on the same strand as the
reference panel, which is the forward strand.

It is important for imputation that both the target set and the reference set are on the same
NCBI build as SNP names may change or SNPs may be relocated or merged between builds.
Release four of the GoNL reference set uses NCBI build 37 (human genome 19, hg19). If the
reference and the target set are aligned using a different genome assembly, it is recommend
to re-align the target panel to the assembly of the reference rather than the other way
around. This is because the phased haplotype structure of the reference panel will be
distorted if the position of the markers is altered. Moreover, re-aligning of the target set costs
less time compared to re-aligning the reference panel. The liftOver tool from UCSC?* converts
genome positions between different genome builds (see Section Perform quality control and
http://genome.sph.umich.edu/wiki/LiftOver).

A major pitfall of genotype imputation is a difference between groups of individuals which
after imputations can be (falsely) associated with a phenotype. Array differences or quality
differences (for example call rates) between cases and controls should be avoided. Therefore,
the most ideal situation would be to genotype all individuals on the same array. If this is not
possible, it is highly advised to apply strict quality control. The type of array is also of influence
on the imputations, chunking the observed genotypes of low-density arrays as discussed in
Section “Handling large target data sets” may lead to empty chunks. High-density genotype
arrays are therefore advised. Other important imputation pitfalls are monomorphic and
extremely rare SNPs?*, therefore these should be removed from both the target set and the
reference panel.

After performing all quality control steps, the target data set needs to be converted into the
correct input format (see BOX 1) for the imputation tool of choice.

Quality metrics

The quality of an imputation experiment can be assessed by various metrics'®. These can be
divided into two categories based on whether true genotypes are available or not. The most
common imputation metric is the R? that represents the correlation between the imputed
and the real genotypes.

When the true genotypes are unknown, various statistics can be used to estimate the R%.
Marchini et al.? present a thorough review of the R? metrics used by MaCH, Beagle, SNPTEST
and IMPUTE2. Comparison of these measures showed that they are highly correlated.
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Another R* metric?® is the ratio of the variance of the imputed allele dosage and the variance
of the true allele dosage. Although the variance of the true allele dosage is unknown, it can
be estimated as 2p(1-p) under Hardy-Weinberg equilibrium, where p is the estimated allele
frequency. To illustrate how well rare and common SNPs were imputed, a plot can be made
with the percentage of SNPs at various cut-offs for the R? for various minor allele frequency
(MAF) bins®?”.

In case the true genotypes are available, the quality of the imputation can also be evaluated
by calculating the false positive and false negative genotypes®. False positive genotypes are
the ones that have a high imputation R?, but were in fact imputed incorrectly. False negative
genotypes are the ones that have a low R* but were actually imputed correctly. Another
qualitative metric is the concordance between real and imputed genotypes. A graph of the
percentage of discordance versus percentage of missing genotypes for various thresholds of
the genotype probability can be used to compare different imputation methods®.

Handling large target data sets

To successfully identify rare variants associated with particular phenotypes large sample
sizes are needed. Splitting up the target sets and distributing the computational burden of
phasing and imputation over several computers allows imputation of such large sets to finish
within a reasonable time frame. Splitting up the target set reduces the time to finish the
imputations (see Supplementary Figure S1), however it does require a computer cluster. A
target set can be split up in two ways: (1) splitting into subsets of samples and (2) splitting
into chunks of chromosomes. The division into groups of samples can be done randomly,
although the distribution of cases and controls should be similar in the subgroups. However,
since imputations are mostly done once per cohort followed by the subsequent analysis of
many phenotypes using the same imputed genotype data, splitting a target set into equal
proportions of cases and controls provides a challenge and we therefore do not recommend
this. This only holds for the imputations and not for phasing, as the samples do not affect each
other in phasing. Splitting up in samples may, however, be helpful to optimize the capacity
utilization of a compute cluster.

The second, more useful, strategy of splitting up the target set is to split the chromosomes
into chunks of a few Mb. Depending on the imputation tool, the strategy to split up into
chunks is different. When using minimac, the ChunkChromosome tool (http://genome.
sph.umich.edu/wiki/ChunkChromosome) can be used to split each chromosome prior
to imputation (see Section Imputations with MaCH and minimac). When imputing with
IMPUTE?2 it is not necessary to first split up the chromosome as one of the command line
arguments of IMPUTE2 is the position interval to impute.

To evaluate the quality of the imputations after the chromosome is split into chunks, we
imputed chromosome 21 of all 5,974 samples of the Rotterdam Study cohort | with the
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European part of the 1000 Genomes reference set (release August 2010) using minimac
after phasing with MaCH using two approaches. In both approaches the data set was split
up before phasing with MaCH. The first approach was to split the SNPs on chromosome 21
into chunks of 500kb, 1Mb, 2Mb, 3Mb, 4Mb, 5Mb, 7.5Mb and 10Mb, respectively, each with
an overlap of 5% on each side of the chunk. The second approach was to split the same
chromosome into chunks of 5Mb with an overlap of 2.5% (250kb), 5% (500kb), 7.5% (750kb),
10% (1Mb) and 12.5% (1.25Mb) on each side, respectively. Figures 2a and 2b show that the
target set can be split into subsets of at least 5Mb with an overlap of at least 250kb without
decreasing imputation quality.
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Figure 2: The percentage of SNPs with R? > 0.3 after imputing chromosome 21 of 5,974 samples of
Rotterdam Study cohort | (a) when the target set is split into several chunks of chromosomes and the
percentage overlap between chunks is 10% and (b) when the chromosome of the target set is split into
5Mb chunks and the size of the overlap is varied. This figure illustrates that the target set can be split
into subsets of at least 5Mb with an overlap of at least 250kb without decreasing imputation quality.

MATERIALS

Equipment

Data

e Genome-wide SNP data (raw-GWA-data.tgz). See supplementary data from Anderson
etal’.

e GoNL reference panel for imputations. The reference set is available by applying through
http://www.nlgenome.nl/.
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Software

This protocol assumes that the computer uses GNU/Linux as its operating system (which is

the case for most, if not all computer clusters), and the analyst uses Bash as his/her shell

(which is the default on most GNU/Linux systems).

e Several tools like gawk, sort, uniq, wget, tar, sed, and head, which are usually installed by
default on a GNU/Linux system.

e PLINK v1.07%%; the binaries compiled for various platforms and installation instructions
can be downloaded from http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml.

e |iftOver; this tool can be used to lift over from one human genome build to the other
and can be downloaded from http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
liftOver

e VCFtools v0.1.12b; this tool can be downloaded from http://sourceforge.net/projects/
vcftools/files/latest/download/vcftools_0.1.12b.tar.gz

e ChunkChromosome (release 2014-05-27); this tool can be downloaded from http://www.
sph.umich.edu/csg/cfuchsb/generic-ChunkChromosome-2014-05-27.tar.gz

e MaCH (release 1.0); this tool can be downloaded from http://www.sph.umich.edu/csg/
abecasis/MaCH/download/mach.1.0.18.Linux.tgz

e Minimac (release 2013.7.17); this tool can be downloaded from http://www.sph.umich.
edu/csg/cfuchsb/minimac-beta-2013.7.17.tgz

e SHAPEIT v2.790; this tool can be downloaded from https://mathgen.stats.ox.ac.uk/
genetics_software/shapeit/shapeit.v2.r790.RHELS_5.4.static.tar.gz

e |IMPUTE2 v2.3.1; this tool can be downloaded from https://mathgen.stats.ox.ac.uk/
impute/impute_v2.3.1_x86_64_static.tgz

Computer resources

Imputing SNPs in data sets of several thousands of samples using reference sets consisting of
several millions of SNPs (e.g. HapMap? up to several tens of millions of SNPs (GoNL project®®
or the 1000 Genomes project? cannot be done on a commodity desktop computer since
that would take months of time and requires more memory (RAM) than is usually available.
As discussed earlier, the answer lies in splitting the imputation task into smaller pieces and
running these sub-tasks on a computer cluster.

The work described in this paper was done on two such clusters. The Lisa cluster at SARA
(http://www.surfsara.nl/systems/lisa/) is a heterogeneous cluster consisting of
more than 500 machines with a total of more than 6000 cores and 16 to 24 GB of RAM each,
running Debian Linux (http://www.debian.org). The Millipede cluster at Groningen
University is a heterogeneous cluster with 252 nodes with a total of 3216 cores and 24
to 128 GB of RAM each. It runs RedHat Enterprise Linux 5 (http://www.redhat.com/
products/enterprise-linux/). Both clusters use the OpenPBS (http://www.mcs.
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anl.gov/research/projects/openpbs/) system to schedule tasks across their nodes.
The memory requirements for MaCH are about 100MB and for the minimac protocol 3GB,
whereas SHAPEIT requires about 1.5MB and IMPUTE2 about 3GB.

PROCEDURE

Perform quality control (TIMING ~8 hours)

1. The first step is to perform standard quality control on the target set. To do this, complete
the protocol for quality control as described by Anderson et al.”. We assume that the
genotypes have been called by a genotyping center and returned in PLINK format named
raw-GWA-data.ped, raw-GWA-data.map. All genotypes are annotated to the
forward strand. After performing quality control of this genome-wide SNP data, 1,919
samples and 313,878 markers remain. The resulting files are named clean-GWA-data.
bed, clean-GWA-data.bimand clean-GWA-data.fam

Converting the target set to the correct genome build (TIMING ~20 min)

2. If the target set is on another genome build than the reference set, it is important to lift
the target set over to the same build as the reference set. The following protocol shows
how to convert the target set from UCSC hgl17 (NCBI build 35) to UCSC hgl19 (Genome
Reference Consortium GRCh37). First download the chain file:
wget http://hgdownload.cse.ucsc.edu/goldenPath/hgl7/1iftOver/hgl?7
ToHgl9.over.chain.gz
and type gunzip hgl7ToHgl9.over.chain.gz to unzip the chain file.

3. To start the liftover, convert the target set with PLINK to a map and ped file:
plink --noweb --bfile clean-GWA-data --recode --out clean-GWA-data
This will create the files clean-GWA-data.map and clean-GWA-data.ped.

4. The next step is to create a BED file based on the map file using the following command:
gawk “{print “chr”s$l, $4, $4+1, $2}’ OFS="\t” clean-GWA-data.map >
clean-GWA-data HG17.BED

5. Then perform the liftover: ./liftOver -bedPlus=4 clean-GWA-data HG17.
BED hgl7ToHgl9.over.chain clean-GWA-data.HG19.BED clean-GWA-data
unmapped. txt

6. Use the resulting file clean-GWA-data unmapped.txt to create a list of unmapped
SNPs:
gawk ‘/~["#]/ {print $4}’ clean-GWA-data unmapped.txt > clean-GWA-
data unmappedSNPs.txt

7. Create a mapping file using the new BED file:
gawk “{print $4, $2}’ OFS="\t” clean-GWA-data.HG1l9.BED > clean-GWA-
data.HG1l9.mapping.txt
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8. Use PLINK to remove the unmapped SNPs from the target data set:
plink --noweb --file clean-GWA-data --exclude clean-GWA-data
unmappedSNPs. txt --update-map clean-GWA-data.HGl9.mapping.txt
—-make-bed --out clean-GWA-data.HGl9.temp
plink -—-noweb --bfile clean-GWA-data.HGl19.temp --recode --out clean-
GWA-data.HG19
9. Create a new SNP list for the data set:
gawk ‘{print $2}’ clean-GWA-data.HGl9.map > clean-GWA-data.HG19.
snplist
The resulting files produced after quality control and lifting over the data set to the correct
build, are named clean-GWA-data.HG19.map and clean-GWA-data.HG19.ped. In this
case the data set was lifted over from build 35 to build 37, however, other liftovers are also
possible, the UCSC Genome Browser website provides multiple chain files.

Imputations with minimac or IMPUTE2

10. SNP imputations can be performed using either a combination of MaCH/minimac (Option
A) or IMPUTE2 (Option B).

(A) MaCH/minimac (Timing ~60 hours)
(i) Download the reference set for minimac. This pipeline for imputations with MaCH and
minimac imputes the target set after quality control and (if necessary) lifted over to the
correct build with the GoNL reference panel release 4. First create a new directory for the
reference set: mkdir reference-GoNL-v4. The zipped VCF files of the GoNL reference
panel should be placed in this directory. In this protocol we assume the names of the files
are as follows: gonl.chr{1-22}.release4.gtc.vcf.gz
(i) Use VCFtools to create info files for all chromosomes by running:
for chr in {1..22}; do vcftools --gzvcf reference-GoNL-v4/gonl.
chr${chr}.released.gtc.vcf.gz --get-INFO NS --out reference-
GoNL-v4/gonl.chr${chr}.released.gtc; done
(iii) Create a file with all the positions that are in the reference set:
rm -f snps-reference.txt
for i1 in reference-GoNL-v4/gonl.chr*.released.gtc.INFO; do gawk
‘$1!="CHROM” {print $1” ”$2}’ $i >> snps-reference.txt; done
(iv) Creating the input files for phasing and imputation. To get a list of positions of SNPs
that are in the target set and/or in the reference set:
gawk “{print $1” ”$4}’ clean-GWA-data.HGl9.map > snps-reference-
and-rawdata
and

sort snps-reference.txt | unig >> snps-reference-and-rawdata



To get only those SNPs that are in both the target set and reference set:

sort snps-reference-and-rawdata | uniqg -d | gawk -F “ 7 “{$3=852+1;
print $1, $2, $3, “R”NR}’ > snps-reference-and-rawdata-duplicates
? TROUBLESHOOTING

(v) The names of the SNPs that are in both the target set and in the reference set need to
be extracted from the target set. Using PLINK this can be done as follows:

plink --noweb --file clean-GWA-data.HGl9 --extract snps-reference-
and-rawdata-duplicates --range --make-bed --out clean-GWA-data.
HG19.for-impute.plink

(vi) MaCH and minimac need one file per chromosome. Extract SNPs for each chromosome:
for chr in {1..22}; do plink --noweb --bfile clean-GWA-data.HG19.
for-impute.plink --chr ${chr} --recode --out clean-GWA-data.HG19.
for-impute.plink.chr${chr}; done

(vii) Convert the resulting PLINK sets into merlin file format since minimac requests this:
for chr in {1..22}; do gawk ‘{$6=0; print $0}’ clean-GWA-data.HG19.
for-impute.plink.chr${chr}.ped > clean-GWA-data.HG19.for-impute.
merlin.chr${chr}.ped; echo “T faketl” > clean-GWA-data.HG1l9.for-
impute.merlin.chr${chr}.dat; gawk '$2="M “$2 {print $2}’ clean-
GWA-data.HG19.for-impute.plink.chr${chr}.map >> clean-GWA-data.
HG19.for-impute.merlin.chr${chr}.dat; echo “chromosome markername
position” > clean-GWA-data.HG1l9.for-impute.merlin.chr${chr}.map;
gawk M{print $1, $2, $4}’ clean-GWA-data.HGl9.for-impute.plink.
chr${chr}.map >> clean-GWA-data.HG19.for-impute.merlin.chrS${chr}.
map; done

(viii) Split the merlin files so they contain 2500 markers with a 500 marker overlap using
the ChunkChromosome tool:

for chr in {1..22}; do ./generic-ChunkChromosome/executables/Chunk
Chromosome -d clean-GWA-data.HGl9.for-impute.merlin.chr${chr}.dat
-n 2500 -o 500; done

(ix) Using MaCH for phasing. Use MaCH to phase the haplotypes in each chunk:

for «chunk 1in chunk*.dat; do machfile="${chunk%.*}”; merlinfile
="S{machfile#*-}.ped”; executables/machl -d ${chunk} -p ${merlinfile}
--rounds 20 --states 200 --phase --interim 5 --sample 5 --compact
--prefix ${machfile}; done

? TROUBLESHOOTING

(x) Imputation with minimac. Execute the following commands to impute all chunks using
minimac:

for «chunk in chunk*.dat; do filenamel="${chunk%.*}”; filename?2
="${filenamel#*-}.ped”; chr="echo “S${filenamel##*.}” | sed ‘s/
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chr//’"; minimac --vcfReference --rs --refHaps reference-GoNL-v4/
gonl.chr${chr}.released.gtc.vcf.gz --haps ${filenamel}.gz --snps
S{filenamel}.dat.snps --rounds 5 --states 200 --autoClip autoChunk-
clean-GWA-data.HG1l9.for-impute.merlin.chr${chr}.dat --gzip --phased
--probs --prefix ${filenamel}; done

? TROUBLESHOOTING

(B) Imputations with IMPUTEZ2 (Timing ~7 hours)

(i) Download the reference set for IMPUTE2: This pipeline for imputations with IMPUTE2
imputes the target set after quality control and (if necessary) lifted over to the correct build
with the GoNL reference panel release 4. First create a new directory for the reference set:
mkdir reference-GoNL-v4.Allfiles of the GoNL reference panel should be placed in
this directory. In this protocol we assume the names of the files are as follows: gonl.
chr{l-22}.released4.gtc.{hap.gz, legend.gz, geneticmap.txt}.

(i) Now a file can be created with all the SNP names that are in the reference set:

rm —-r snps-reference.txt; for chr in {1..22}; do gunzip -c reference-
GoNL-v4/gonl.chr${chr}.released.gtc.legend.gz | gawk -v chr=${chr}
‘$5=="SNP” && $1!=7id” {print chr” ”$2}’ >> snps-reference.txt;
done

(iii) Creating the input files for phasing and imputation. Use the following commands to
get a list of positions of SNPs that are in the target set and/or in the reference set:

gawk ‘{print $1” ”$4}’ clean-GWA-data.HGl9.map > snps-reference-
and-rawdata

and

sort snps-reference.txt | unig >> snps-reference-and-rawdata

To get only those SNPs that are in both the target set and reference set:

sort snps-reference-and-rawdata | unig -d | gawk -F “ 7 “{$3=852+1;
print $1, $2, $3, “R”NR}’ > snps-reference-and-rawdata-duplicates
? TROUBLESHOOTING

(iv) The names of the SNPs that are in both the target set and in the reference set need to
be extracted from the target set. Use PLINK to run:

plink --noweb --file clean-GWA-data.HGl9 --extract snps-reference-
and-rawdata-duplicates --range --make-bed --out clean-GWA-data.
HG19.for-impute.plink

(v) Since we will phase per chromosome, split the PLINK file into 22 files:

for chr in {1..22}; do plink --bfile clean-GWA-data.HG19.for-impute.
plink --chr S$chr --recode --out clean-GWA-data.HG19.for-impute.
plink.chr${chr}; done



This creates the following files per chromosome: clean-GWA-data.HG19.for-
impute.plink.chr${chr}.ped and clean-GWA-data.HG19.for-impute.plink
.chr${chr}.map.

? TROUBLESHOOTING

(vi) Using SHAPEIT for phasing. For every chromosome, the haplotypes are phased using
SHAPEIT

for chr in {1..22}; do namefile="clean-GWA-data.HGl9.for-impute.
plink.chr${chr}”; ./shapeit.v2.r790.RHELS 5.4.static --input-ped
${namefile}.ped ${namefile}.map --input-map reference-GoNL-v4/gonl.
chr${chr}.released.gtc.geneticmap.txt --output-max S{namefile}.
phased --thread 8 --output-log ${namefile}.phased; done

(vii) Imputation with IMPUTE2. For every chromosome, perform imputations in chunks
of 5Mb:

refdir="reference-GoNL-v4”; for chr in {1..22}; do namefile="clean-
GWA-data.HG19.for-impute.plink.chr${chr}.phased”; maxPos=$ (gawk ‘$
1!="position” {print $1}’ ${refdir}/gonl.chr${chr}.released.gtc.
geneticmap.txt | sort -n | tail -n 1); nrChunk=$ (expr ${maxPos}
“/” 5000000); nrChunk2=$(expr ${nrChunk} “+” 1); start="0"; for
chunk in $(seq 1 $nrChunk2); do endchr=$ (expr S$start “+” 5000000) ;
startchr=$ (expr $start “+” 1); ./impute v2.3.1 x86 64 static/impute2
-known_haps g ${namefile}.haps -m ${refdir}/gonl.chr${chr}.releases
.gtc.geneticmap.txt -h${refdir}/gonl.chr${chr}.released.gtc.hap.gz
-1 ${refdir}/gonl.chr${chr}.released.gtc.legend.gz —-int ${startchr}
${endchr} -Ne 20000 -o ${namefile}.chunk${chunk}.impute2; start=$
{endchr}; done done

(viii) Convert the files with the probabilities for the three genotypes into dosage files:
for chr in {1..22}; do namefile="clean-GWA-data.HGl9.for-impute.
plink.chr${chr}.phased”; maxPos=$ (gawk ‘$1!="position” {print $1}’
${refdir}/gonl.chr${chr}.released.gtc.geneticmap.txt | sort -n |
tail -n 1); nrChunk=$ (expr ${maxPos} “/” 5000000); nrChunk2=$ (expr
${nrChunk} “+” 1); for chunk in $(seq 1 $nrChunk2); do gawk ‘{tp =
$1 ™ ™ g2 ™ ™ g3 N NS4 N 85, for (i=6; i<=NF; i+=3) tp = tp “ "
S(i+1l) + 2.0*$(i+2); print tp }’ ${namefile}.chunk${chunk}.impute2
> ${namefile}.chunk${chunk}.impute?2.dosage; done done

? TROUBLESHOOTING
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Timing
Step 1, Perform quality control: ~8 hours
Step 2 — 9, Converting the target set to the correct build: ~20 min

Imputations with minimac or IMPUTE2:

(A) Minimac: ~ 60 hours

Step i —iii, Download the reference set for minimac: ~15 min

Step iv —viii, Creating the input files for imputation: ~5 min

Step ix, Using MaCH for phasing per chunk: ~15 hours

Step x, Imputation with minimac: ~45 hours

(B) IMPUTE2

Step i —ii, Download the reference set for IMPUTE2: ~10 min

Step iii — v, Creating the input files for imputation: ~10 min

Step vi, Using SHAPEIT for phasing per chromosome: varies per chromosome from 1.5 hours
up to 5.5 hours.

Step vii, Imputation with IMPUTE2 per chunk: ~1 hour

Inexperienced analysts will typically require more time. The estimated times and memory
requirements are based on the target and reference sets used in this protocol, the estimates
may also vary with different cohort designs. Moreover, given the computational nature of
this protocol, timing will also heavily depend on the computational resources available to the
analyst, and to a lesser extent on the versions of the tools. The phasing and imputation steps
are the most time consuming steps.

Troubleshooting

It is likely that many of the tools used in this protocol will be updated as time passes, we
therefore recommend checking if there are new versions of the tools each time the protocol
is run and what the changes between versions are.

Imputation with MaCH and minimac, step 10A(iv) and imputation with IMPUTE?2, step 108(iii):
This step checks the concordance between SNPs within the target set and the reference
panel based on position on the chromosome, assuming the SNP names are equal in both.
This requires both panels to be aligned to the correct human genome build. Another option is
to leave the SNPs which are in the target set and not in the reference panel. In that case, step
10A(iv) and 10A(v) (for MaCH and minimac) or step 108(iii) and 10B(iv) (for IMPUTE2) can
be replaced by plink --noweb --file clean-GWA-data.HG19 --make-bed --out
clean-GWA-data.HG19.for-impute.plink. It is also important to have both the
target set and the reference panel on the same human genome build, as IMPUTE2 links the
two panels based on chromosome and position, not on SNP name.
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Imputation with MaCH and minimac, step 10A(ix): The command line parameters --interim 5
(to save intermediate results), --sample 5 (random (but plausible) sets of haplotypes for each
individual should be drawn every 5 iterations) and --compact (reduces memory use at the
cost of runtime) can be removed from the command line to save time and disk space.
Imputation with MaCH and minimac, step 10A(x): The command line parameter --rs allows
the use of rs GWAS SNP identifiers in the target set. This command line parameter can be
removed if the target set does not include rs identifiers.

Imputation with IMPUTE2, step 10B(v): To increase the speed of the IMPUTE2 protocol,
the target set could be reformatted into binary PLINK format (see BOX 1), therefore the
--recode command should be replaced by --make-bed. The follow up steps 10B(vi) and
10B(vii) should be adjusted for binary files in that case.

Imputation with IMPUTE2, step 10B(vii): When the analyst wants to use two phased reference
panels, the IMPUTE2 command should be replaced with ./impute v2.3.1 x86 64
static/impute2 -known haps g ${namefile}.haps -m ${refdir}/gonl.
chr${chr}.released.gtc.geneticmap.txt -h ${refdir}/gonl.chr${chr}.
released.gtc.hap.gz ${refdir}/1000g.chr${chr}.released.gtc.hap.gz -1
S{refdir}/gonl.chr${chr}.released.gtc.legend.gz ${refdir}/1000g.chr$
{chr}.released.gtc.legend.gz -int ${startchr} ${endchr} -Ne 20000 -o
${namefile}.chunk${chunk}.impute?2;

When combining several of the commands into Bash shell script files, be sure to add set
—e and set -u as the first two actual commands in the script. This makes sure that the
script halts on errors and when undefined variables are being used, respectively. If additional
debugging of Bash scripts is required, running a script like this: bash -x scriptfile.sh
will run the script in debug mode, showing the value of variables, etc. Alternatively, if only a
certain part of a Bash script is to be debugged, adding set -x before and set +x after the
problematic part will enable debugging only for that part.

ANTICIPATED RESULTS

Converting the target set to the correct build. The genome-wide SNP data used in this

protocol consists of 1,919 samples and 313,878 markers after performing quality control.

After lifting this data set over from hgl7 to hg19, the data set consists of 1,919 samples and

304,930 markers.

Imputation with MaCH and minimac. Imputation with minimac results in 8 files per chunk.

Each files is a compressed (zipped) file. If needed such a file can be decompressed by running

gunzip -c filename.gz > filename. Given the command for minimac specified earlier,

the names of the outputfiles start with chunkl-clean-GWA-data.HG19.for-impute.

merlin.chrl for chunk 1 of chromosome 1.

e 2 file with the extension .dose.gz which contains the imputed dosage for each genotype.
Each row in the output will include one column per marker.
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a file with the extension .erate.gz which contains the error rate per marker.

a file with the extension .hapDose.gz which contains the dosage for each haplotype
separately.

a file with the extension .haps.gz which contains the most likely alleles for each haplotype
separately.

a file with the extension .info.draft which contains the reference allele, non reference
allele, frequency per marker. It also gives which markers were genotyped.

a file with the extension .info.gz which contains the information about reference allele,
frequencies and quality of imputations per marker. It also lists which markers were
genotyped.

a file with the extension .prob.gz which contains the imputed probabilities for each
genotype. Each row in the output will include two columns per marker. The first of these
columns denotes the probability of a homozygote for allele 1. The second column denotes
the probability of a heterozygote.

a file with the extension .rec.gz which contains the switch error rate per interval.

Imputation with IMPUTE2. Imputations of IMPUTE2 results in 5 files per chunk. Given the
command for IMPUTE2 specified earlier, the names of the outputfiles start with clean-
CWA-data.HG19.for-impute.plink.chrl.phased.chunkl.impute?2 for chunk 1 of
chromosome 1:

a file without any extra extension, this file contains the main results of the imputations.
The first 5 entries of each line should be the SNP ID, rs ID of the SNP, base-pair position
of the SNP, the allele coded A and the allele coded B. The subsequent columns contain
the probabilities for the three genotypes AA, AB and BB for the each individual in the
target set. This format allows for genotype uncertainty and therefore the probabilities for
a given individual need not sum to 1.

a file with the extension _info, this file contains the following columns: SNP identifier,
rsID, base pair position, expected frequency of allele coded 1, measure of the observed
statistical information associated with the allele frequency estimate, average certainty of
best-guess genotypes and the internal “type” assigned to SNP.

A file with the extension _info_by_sample which contains the concordance and the R? per
sample.

a file with the extension _summary which contains a summary of the screen output.

a file with the extension _warnings which contains all warnings generated by IMPUTE?2.



Box 1: input files for imputations

The input files for the various imputation tools

For MaCH and minimac, the target set that will be imputed needs to be stored per chromosome
in Merlin? format. The Merlin pedigree file contains both the relationships, the phenotypes and
the genotypes per individual per row. The first columns of the pedigree file contains the family
identifier, the individual identifier, the father and mother identifiers, the sex of the individual
(with females decoded as 2 and the males decoded as 1). The subsequent columns can encode
phenotypes for discrete and quantitative traits followed by the genotypes. The alleles should be
coded as ‘A, ‘C’, ‘G’ or ‘T’ and missing alleles should be encoded with ‘N’, ‘X" or ‘0". Since MaCH and
minimac assume samples to be unrelated, both the father and mother identifiers should be zero.
The description of the columns is stored in the data file, with one row per column, indicating the
data type (encoded as M- marker, A- affection status, T- quantitative trait and C- covariate) and
providing a one-word label for each column.

For IMPUTE2 the genotype information should be stored in a one-line-per-SNP format. The first 5
entries of each line should be the SNP ID, rs ID of the SNP, base-pair position of the SNP, the allele
coded A and the allele coded B. The subsequent columns contain the prior probabilities for the
three genotypes AA, AB and BB for the each individual in the target set. This format allows for
genotype uncertainty and therefore the probabilities for a given individual need not sum to 1. The
order of samples in the genotype file should match the order of the samples in the sample file. The
sample file has three parts (a) a header line detailing the names of the columns in the file, (b) a line
detailing the types of variables stored in each column, and (c) a line for each individual detailing
the information for that individual (more details on the IMPUTE2 file formats can be found at
http://www.stats.ox.ac.uk/~marchini/software/gwas/file format.html).

PLINK format to store genotyped data

The most commonly used file format for storing genotype data of the samplesin the target set is the
PLINK format (http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped).
The pedigree file (extension .ped) in PLINK format is a headerless white-space (space or tab)
delimited file which contains the pedigree information, the phenotype information and the
genotype information for all samples in the data set. Every row corresponds to one individual
and contains at least six columns which contain the family identifier, the individual identifier, the
paternal and maternal identifier, the sex of the samples (with males encoded as 1 and females
encoded as 2) and the phenotype of the sample, just like the Merlin format. Genotypes (column
7 onwards) can be any character (e.g. 1, 2, 3, 4 or A, C, G, T or anything else) except O which is, by
default, the missing genotype character. All markers should be biallelic. All SNPs (whether haploid
or not) must have two alleles specified and either both or neither alleles should be missing. The
SNPs are described in the map file (extension .map), each line of the this file describes a single
marker and must contain exactly 4 columns, the chromosome, the SNP identifier, the genetic
distance in Morgans and the base-pair position in bp units. The ped and map file can be converted
into a more memory- and time-efficient binary files with the extensions .bed, .bimand . fam.
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ABSTRACT

Although genome-wide association studies (GWAS) have identified many common variants
associated with complex traits, low-frequency and rare variants have not been interrogatedina
comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes
Project (1000G), enables testing of ungenotyped variants for association. Here we present
the results of imputation using a large, new population-specific panel: the Genome of The
Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference
sets by comparing imputation genotypes with ‘true’ genotypes typed on ImmunoChip in three
European populations (Dutch, British, and Italian). GoNL showed significant improvement in
the imputation quality for rare variants (MAF 0.05—0.5%) compared with 1000G. In Dutch
samples, the mean observed Pearson correlation, r?, increased from 0.61 to 0.71. We also
saw improved imputation accuracy for other European populations (in the British samples,
r? improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined reference
set comprising 1000G and GoNL improved the imputation of rare variants even further. The
Italian samples benefitted the most from this combined reference (the mean r? increased
from 0.47 to 0.50). We conclude that the creation of a large population-specific reference is
advantageous for imputing rare variants and that a combined reference panel across multiple
populations yields the best imputation results.
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INTRODUCTION

Although genome-wide association studies (GWAS) have been very effective in identifying
loci associated with diseases or traits?, it has proved difficult to fine-map the association
signals to causal variants®®. To overcome these limitations, there has been increasing interest
in the interrogation of less frequent variants, especially given the enrichment of deleterious
alleles at low frequencies*’. There are specialized chips that can assess a larger number of
rare variants, like the ImmunoChip® or Metabochip?, although they do not provide uniform
genome-wide coverage. Hence, most investigators will use statistical imputation from SNP
arrays in GWAS using dense reference panels.

Imputation using a densely typed reference set can be performed to infer untyped variants
that can be used to improve the power of a GWAS™Y, and there are numerous examples
in which imputation has effectively enriched the results in GWAS!*2, Although most large
studies have so far been based on meta-analysis of HapMap-based imputations across
cohorts, the primary limitation is that HapMap is essentially restricted to common variation
(MAF > 5%). Thanks to the sequencing of larger samples, such as 1000G, more complete
reference panels are now being assembled, setting off a new wave of meta-analyses.

The power of detecting an association in a GWAS is determined by its sample size and
effective genome-wide coverage of the included variants, among other things!***. The
effective coverage depends directly on the number and quality of the imputed genotypes?®.
In turn, the quality of the reference panel will depend largely on the number of samples, the
quality of the haplotypes, and the number of variants included?®.

The Genome of The Netherlands (GoNL) has the potential to provide a good imputation
reference panel. GoNL is a population based sequencing project, in which 769 Dutch samples
were sequenced at, on average, 14x coverage!’. In particular, the fact that GoNL sequenced
trios (231) or quartets (19) has enabled improved haplotype phasing by using one of the
children®®, The GoNL imputation reference set contains 998 unrelated haplotypes. In this
paper, we report a quantitative analysis to assess the quality of imputed genotypes from
using both GoNL and 1000G in Dutch and other European populations.

We adopted a ‘gold standard” approach using samples genotyped on two distinct platforms,
HumanHap550 and ImmunoChip. Hap550 is a commonly used genotyping chip designed to
tag as many haplotypes as possible using common variants. ImmunoChip, however, is a fine-
mapping chip: it contains a large number of low frequency and rare variants for a limited
number of loci (primarily selected on the basis of loci identified in immune-related traits).
Starting from the Hap550-genotyped SNPs, we were able to impute a large number of variants
present on ImmunoChip. We then compared these imputed genotypes with the measured
(‘gold standard’) genotypes on ImmunoChip to quantify the imputation performance. We
have such a data set for three European populations: the Dutch, British, and Italians. For each
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population we used 745 samples genotyped on both platforms. These three populations
allowed us to ascertain population-specific differences in the imputation quality of SNPs.

MATERIAL AND METHODS

Genome of the Netherlands

GoNL is a project in which 769 individuals from different Dutch provinces were sequenced at,
on average, 14x coverage®. All samples are part of either one of the 231 trios or one of the 19
quartets. The phasing was performed using the trio information*®, and for the quartets one of
the children was used to enhance the phasing. Because of sequence failures of two parents,
from different trios, these samples were excluded from the imputation reference set. Instead,
from these two trios, we used the haplotype of the child that was not present in the other
parent. This resulted in an imputation reference set containing 998 unrelated haplotypes. We
used GoNL release 4 for all our analyses (see http://www.nlgenome.nl). The current GoNL
release 5 also contains over one million indels but did not change the SNPs.

Benchmarking samples

Samples from a celiac disease patient cohort were selected, since they had been genotyped
on both the Hap550 and ImmunoChip®. The 745 Dutch and the 745 British samples were all
cases, while the 745 Italian samples comprised 371 cases and 374 controls. The clustering for
the genotype calling of the ImmunoChip data was performed manually in the past, to ensure
proper genotyping results.

The Hap550 (516,426 SNPs) data was filtered on MAF > 1% and HWE p-value > 1 - 10* for
each population separately. The ImmunoChip (113,991 SNPs) data was filtered on MAF >
0.05% and HWE p-value of 1 - 10*“. Both datasets are filtered on variants present in both the
1000G reference set as in the GoNL reference set. After QC the Dutch, British and Italian
Hap550 data contain 509,888, 509,984 and 510,225 SNPs. The ImmunoChip data contains in
the same order 107,383, 107,212 and 107,611 SNPs.

Combining 1000G and GoNL data

The reference set combining data from 1000G and GoNL was created using the Impute2
option: “--merge_ref _panels”. This merged reference set was written to a file and subsequently
used for the benchmarking. Since our benchmarking data is filtered for variants present in
both reference sets, we did not assess the imputations of variants that are unique to either
reference set.
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Pre-phasing
The 745 samples for each population were pre-phased using SHAPEIT2>. This was done per
chromosome using the default settings.

Imputation

The imputations were performed using Impute2 2.3.0%. The different populations were
imputed separately and in chunks of 5 Mb. For the comparison using an equal number of
identical European haplotypes, we performed an imputation using all 379 European 1000G
samples and a random selection of 379 GoNL samples. The random selection of GoNL
samples was performed stratified on the Dutch provinces. These samples were selected using
the Impute2 option: “--exclude_samples_h".

We used MOLGENIS compute to implement the imputation pipeline, run the 8,835 imputation
chunks in parallel on a PBS compute cluster, and to keep track of the 15 imputations (five for
each population). All pipelines are available as open source via http://www.molgenis.org/
wiki/ComputeStart.

Gold standard method

As stated above, we used samples genotyped on two distinct platforms. We imputed the
Hap550 genotypes from these samples and compared the imputed genotypes to the SNPs
previously only present in the ImmunoChip data. We used the ImmunoChip data as our
‘gold standard’. The concordance between imputed genotypes and ImmunoChip genotypes
was determined by calculating the Pearson correlation r? between the imputed dosage and
ImmunoChip observed genotypes. The mean concordances were calculated for three MAF
bins: rare (> 0.05% and < 0.5%), low-frequency (= 0.5% and < 5%) and common (> 5%) SNPs.
The MAF used to stratify the SNPs into the bins was calculated separately for each population.
The results were plotted using R 2.14.2. The significance of the differences between the
reference sets was calculated using the Wilcoxon signed-rank test implementation in R.

Principal component analysis

The principal component analysis (PCA) was performed using the EIGENSOFT 4.2 package?®.
The components were calculated using the European 1000G, GoNL, and the 3 GWAS datasets
that we used for benchmarking. Before the components were calculated, all datasets were
filtered to only include variants with a MAF > 5%. A joint dataset, featuring variants presentin
all 5 datasets, was created. This dataset was again filtered for MAF > 5%, the merged data was
also filtered on HWE p-value > 1 - 10* and a call rate of 95%. This dataset was pruned using
PLINK 1.07%! with the “--indep-pairwise” option, windows: 1000, step: 5, r? threshold: 0.2.
The first component explained 0.33% of the variation and the second 0.10%. All subsequent
components described less than 0.06%.
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RESULTS

We stratified our analysis into three groups: common variants (MAF > 5%), low-frequency
variants (MAF 0.5%—-5%), and rare variants (MAF 0.05%—-0.5%). We focused mainly on the
rare variants, since these are more difficult to impute and most can be gained in terms of
imputation quality when using a better reference set. We observed a large increase in the
imputation quality of rare variants when using GoNL as the reference compared to 1000G
(Figure 1, Table 1). The mean observed Pearson correlation (r?) showed a significant increase
from 0.61 to 0.71 for Dutch samples (Wilcoxon p-value = 7.16 - 10%°). The British and Italian
imputations also showed a significant improvement when imputing rare variants, from 0.58
to 0.65 (p = 3.70 - 10*°) and from 0.43 to 0.47 (p = 2.64 - 10"3), respectively. GoNL also
significantly outperformed the 1000G reference set in the imputation of variants with higher

MAFs (Supplementary Figures/Appendices S1, S2, S3).
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Figure 1. Comparison of imputation quality of rare variants using the 1000G data, GoNL, and the

combined reference panel.

Table 1. Mean observed r? of rare variants.

Reference set Dutch British Italian
1000G 0.61 0.58 0.43
GoNL 0.71 0.65 0.47
1000G + GoNL 0.72 0.67 0.50

Differences in the mean imputation quality between

population (p < 0.001).

the reference sets was significant for each
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Using a combined reference set composed of the 1000G and GoNL samples, we could improve
the imputation further. The imputation of rare variants using the combined reference in Dutch
and British samples showed a small increase in quality compared to GoNL-only imputation,
respectively 0.02 (p =1.16 - 103) and 0.02 (p = 2.70 - 10°). The Italians benefitted most from
the combined reference with an increase of 0.04 (p = 3.62 - 10°°) compared to a GoNL-
only reference, resulting in a mean concordance for rare variants of 0.5. The differences in
imputation quality when using the combined reference set for more frequent alleles were
either very small or not significant (Supplementary Figure S1, Supplementary Tables S2 and
S3).

A striking trend in these results is that the imputation quality of rare variants in Italians
samples is lower than that in Dutch and British samples. The Dutch and Italian samples were
genotyped at the same center and have similar call rates, and there were no indications that
the genotyping quality of the Italian samples was lower. However, a principal component
analysis (PCA) revealed that the Italian samples were not as well represented by either 1000G
or GoNL compared to the Dutch and British GWAS samples used for benchmarking (Figure 2).
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Figure 2. Clustering of reference and study samples. PC1 and PC2 reveal 3 main clusters: Tuscans from
Italy (TSI), Finnish (FIN), and a Western European cluster with the CEU (Utah Residents with Northern
and Western European ancestry), the GBR (British) and the GoNL samples (Panel A). Panel B shows
that most of our GWAS samples clustered in a similar way to the corresponding 1000G/GoNL samples.

We assessed whether the better performance of GoNL compared to 1000G was due to the
larger number of European haplotypes in the reference set (998 vs. 578 in 1000G). We did this
by performing an imputation using solely the 379 European samples in 1000G and a random
subset of 379 GoNL samples. We found that the GoNL subset also significantly outperformed
the European 1000G subset (Table 2).
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Table 2. Mean observed r? of rare variants for reference sets of equal sample size from 1000G and GoNL
(all of European descent).

Reference set Dutch British Italian
1000G European 0.59 0.57 0.40
GoNL random subset 379 samples 0.68 0.64 0.45

Differences in the mean imputation quality between the reference sets was significant for each
population (p < 0.001).
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Figure 3. Calibration of posterior probabilities. The posterior probabilities were, in general, well
calibrated, although there were a few deviations from the expected accuracy (panel A). For common and
low-frequency variants (panels B & C), we observed a strong correlation (r? 0.97 and 0.91, respectively)
between the impute2 info metric and the observed r2. However, for the rare variants (panel D), the
relation between predicted and observed quality was less profound. We also observed a correlation of
0.70 and several large deviations from the diagonal.
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Our experimental design also allowed us to assess the calibration of the posterior probabilities
of the genotypes as they are output by IMPUTE2. We observed that the posterior probabilities
were, in general, well calibrated, although we did observe a few deviations for low-frequency
and rare variants (Figure 3A). To ascertain if these deviations in posterior probabilities
affect the predicted imputation quality, the IMPUTE2 info metric, we plotted the predicted
quality against the observed r?. This showed a strong correlation between the predicted
and observed quality for common variants and low-frequency variants (correlation of 0.97
and 0.91, respectively; Figure 3B & 3C). However, the info metric is not as accurate for rare
variants, and the correlation with observed r* dropped to 0.70 (Figure 3D). We also observed
some discrepancies where a near perfect imputation was predicted while in fact there was
poor imputation, and vice versa when assessing rare variants.

DISCUSSION

We have shown that the new GoNL reference set provides higher downstream imputation
accuracy than the 1000G reference set, not only for Dutch samples, but also for other
European populations studied in this paper. Aside from the increase in imputation quality
of rare variants in Dutch samples from 0.61 (1000G) to 0.71 (GoNL), we also observed an
increase in imputation quality in British (0.58 to 0.65) and Italian (0.43 to 0.47) samples. We
show that GoNL yielded better imputed genotypes for at least these European populations. A
combined reference set, of 1000G and GoNL, increased the mean imputation quality of rare
variants even further to 0.72, 0.67 and 0.50 for the Dutch, British and Italians, respectively.
By selecting an identical number of European haplotypes from 1000G and from GoNL, we
showed a strong added value for GoNL in all the tested populations, confirming that the trio
design of GoNL and the resulted accurate haplotypes aid the downstream imputation quality.
We also observed a population-specific added value of GoNL when imputing Dutch samples.
The added value (i.e. mean increase in imputation quality) was largest when comparing
GoNL to 1000G in imputing the Dutch samples. Of course, it was already known that a better
matched reference set will result in better imputed genotypes'®, however, the results from
this paper were based on low-frequency variants and we show that there is also an inter-
European effect of reference sets.

It is important to note that we only assessed variants present on the ImmunoChip. Although
these variants were not randomly selected, we have no reason to assume that the imputation
quality will be positively biased or that they do not represent low-frequency variants in
general. The ImmunoChip was made to fine map loci previously associated to autoimmune
diseases using a large number of low-frequency and rare variants.
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We were encouraged to observe that the posterior probabilities were, in general, well
calibrated with respect to the gold standard genotypes. We observed no adverse effects on
the accuracy of the IMPUTE2 info metrics, although for rare variants we did observe a few
instances with large deviations between the predicted and observed quality. This is in line
with previous observations??. This observed inaccuracy also emphasizes the importance of
validating associations from imputed genotypes.

It was shown earlier that a larger and more diverse reference set can improve the imputation
of low-frequency variants?®. We observed that a combination of 1000G and GoNL showed
limited added value for the imputation of rare variants in the Dutch and British samples. It
was, however, interesting to observe that the imputation of the Italian samples was improved
more by this combined reference panel, leading us to speculate that populations that are
poorly represented in the reference panel benefit more from a large and diverse reference
set. Despite the limited added value for the Dutch and British datasets, such a large reference
set may still be of interest for consortia aiming to impute cohorts of both European and non-
European origin. All these cohorts can be imputed using the same combined reference set
and then use IMPUTE2 to automatically select the best matching haplotypes*. We should
note that we were only able to assess variants present in both reference sets, since there are
very few variants on the ImmunoChip that are unique to either GoNL or 1000G. Nonetheless,
our results show that population-specific reference sets and cosmopolitan panels, such as
1000G, can augment each other. This even holds true for the imputation of samples with
ancestry other than those present in the population-specific reference sets, which provides
further motivation for international efforts towards large and integrated reference sets.
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ABSTRACT

Variants associated with blood lipid levels may be population-specific. To identify these low-
frequency variants associated with this phenotype, population-specific reference panels may
be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-
specific reference panel created by the Genome of the Netherlands Project and perform
association testing with blood lipids levels. We report the discovery of five novel associations
at four loci (p-value < 6.61 - 10*), including a rare missense variant in ABCA6 (rs77542162,
p.Cys1359Arg, frequency 0.034) which is predicted to be deleterious. The frequency of this
ABCAG variant is 3.65-fold increased in the Dutch and its effect (B =0.135, B,.=0.140) is
estimated to be very similar to those observed for single variants in well-known lipid genes,
such as LDLR.
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INTRODUCTION

Genome-wide association studies (GWAS) have identified a large number of loci associated
with blood lipid levels and analysis suggest there are additional susceptibility loci that have
not yet been discovered'?. Despite the fact that rare functional variants are known to play
a major role in lipid metabolism®3, there has been limited success in finding such variants
in population-based studies using next generation sequencing. Even if the effect of these
variants is expected to be larger than that of common variants, the sample size needed to
detect these rare or low frequent variants increases dramatically with variant rarity. As the
frequency of rare variants may increase in certain populations due to drift and founder effects?,
the power of searches for rare functional variants may improve by the use of reference sets
specific to distinct populations. Such references allow for better quality imputation of rare
variants especially those with increased frequency in the population of interest>>®. Previous
studies have successfully detected rare variants by imputation into larger sets of individuals
in isolated populations followed by association testing to detect variants associated to the
trait of interest””.

Here we describe an imputation-based GWAS for circulating lipid levels using a custom-built
reference panel for the Dutch population (Genome of the Netherlands, GoNL, http://www.
nlgenome.nl/), in which the whole genome of 250 parent-offspring trios were sequenced at
approximately 13x coverage®®. Due to the trio design, the phasing quality of the reference
panel was better than that of the 1000 Genomes Phase 1 panel. In this study we show that
using this population-specific reference panel we were able to identify five novel associations
at four loci.

METHODS

Study descriptions

The descriptions of the including cohorts can be found in the supplementary methods. A
written informed consent was obtained from all study participants for all cohorts and local
ethical committees at participating institutions approved individual study protocols.

Study samples and phenotypes

A summary of the details of both the discovery and replication cohorts participating in this
study can be found in Supplementary Tables 1 and 12.

Only samples of Dutch ancestry were used in the discovery cohorts, the samples in the
replication cohorts are from various ancestries, see Supplementary Table 12. In all studies
except MESA Whites, all individuals that used lipid lowering medication at the time the
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lipid levels were measured, were excluded. In MESA Whites the total cholesterol values for
individuals on lipid lowering medication was divided by 0.8. In all studies except for LLS and
PREVEND, the subjects were fasting when the lipid levels were measured. In LLS all samples
were non-fasted and in PREVEND 2.99% were non-fasted. The LDL-C levels were measured
within the ERF, Croatia Korcula, Croatia Split, Croatia Vis, FamHS and Lifelines cohorts, within
the other cohorts the Friedewald equation was used to calculate the LDL-C levels®.

The lipid measurements were adjusted for sex, age and age? in all cohorts. Various methods
were used to account for family relationships: in ERF grammar-gamma (GenABEL version
1.7.6"12, was used, in the Croatia Korcula, Croatia Split, Croatia Vis and Generation Scotland
cohorts mmscore (GenABEL! was used, and in LLS gt-assoc was used. In CHS the clinic was
used as extra covariate, in Lifelines PC1 and PC2, in FamHS the field center, the genotyping
array (lllumina 550k, 610k and 1M), PC5 only for TC and PC1 only for LDL, in FHS the cohort
(offspring and third generation) and PCs, in MESA Whites 2 PCs and study site, in NTR-NESDA
PCs and chip effect, in ORCADES the genotyping array and PC1, PC2 and PC3, in PROSPER-
Dutch only PC1 and in both PROSPER-Scottish and PROSPER-Irish PC1-PC4.

Genotyping and imputations

Detailed information about genotyping and imputations per cohort can be found in the
supplementary methods. In summary, all cohorts were genotyped using commercially
available Affymetrix or lllumina genotyping arrays, or custom Perlegen arrays. Quality control
was performed independently for each study. To facilitate meta-analysis, each replication
cohort performed genotype imputation using IMPUTE®, or Minimac** with reference to the
GONL project data for the discovery cohorts and with reference to the 1-kG project data for
the replication cohorts.

GWAS in all discovery cohorts

All nine discovery cohorts ran separate the genome-wide association study for each of the
four traits: HDL-C, LDL-C, TC and TG. Supplementary Table 13 shows the genomic control
factor A per trait per cohort and Supplementary Figs 10-13 show the A per MAF bin per trait
per cohort. We therefore used only the SNPs with a R > 0.3, R? < 1.1 and expected minor
allele count (expMAC = 2 - MAF - R2 - sample size) > 10. Most inflation is observed within the
ERF study, especially in the lowest-frequency variants, this is probably caused by the family
structure in this cohort.

Meta-analysis of discovery cohorts

The association results of all studies were combined and the standard error-based weights
were calculated by METALY. This tool also applies genomic control by automatically correcting
the test statistics to account for small amounts of population stratification or unaccounted
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relatedness. METAL also allows for heterogeneity. We used the following filters: 0.3 <R?< 1.1
and expMAC > 10.

After meta-analyses of all available variants, we excluded the variants that are not present
in at least 6 of the 9 cohorts. We also excluded all variants that are labeled as being in the
inaccessible genome, since the quality of those SNPs cannot be guaranteed'®. The remaining
variants per trait, see Supplementary Table 14, were used to create Manhattan plots and QQ-
plots, see Supplementary Figs 14-15. The meta-analysis resulted in 1,905 SNPs with a p-value
less than 5 - 10 for HDL-C, 2,626 SNPs for LDL-C, 3,133 SNPs for TC and 1,310 for TG.

Confirmation of known loci

Previously, Teslovich et al.? and Willer et al.? identified 157 loci associated with one of more
of the lipids. Teslovich et al.?identified 47, 37, 52 and 32 loci to be associated with HDL-C,
LDL-C, TC and TG, respectively. The positions of these loci were reported on human genome
build 36, we therefore lifted these positions over to human genome build 37 and checked
the association results after the meta-analysis of all discovery cohorts. The effect size of
these loci was reported in mg dL?, whereas in this study we use mmol L. We therefore
multiplied the effect size for the loci associated with TG with 0.0259 and the other loci with
0.011. Supplementary Fig. 2 and Supplementary Table 6 show the comparison per trait of
our meta-analysis of all discovery cohorts with the results of the meta-analysis by Teslovich
et al.'. We did the same for the loci identified by Willer et al.?, see Supplementary Fig. 3 and
Supplementary Table 7. The effect size of these loci could not be compared with our results,
since trait residuals within each study participating in the meta-analysis of Willer et al.? were
adjusted for sex, age and age? and subsequently quantile normalized. Their GWAS was done
with the inverse normal transformed trait values.

Selection of independent variants

In order to select only associated variants that were independent of previous findings, we
used the GCTA tool*. This tool performs a stepwise selection procedure to select multiple
associated SNPs by a conditional and joint analysis approach using summary-level statistics
from a meta-analysis and linkage disequilibrium (LD) corrections between SNPs estimated
from the GoNL reference panel, release 4. This analysis revealed 60 independent variants
associated with HDL-C, 142 independent variants associated with LDL-C, 134 independent
variants associated with TC and 16 independent variants associated with TG. By using this
approach, we were able to identify additional independent variants in known loci. Figure 1
shows that we identified both common and rare variants and more rare variants compared
to Teslovich et al.! and Willer et al.?. There is overlap between the genome-wide significant
SNPs of the different traits, and also between the independent SNPs of the different traits, as
shown in Supplementary Fig. 1.
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Figure 1. Identified variants for plasma lipid levels. Distribution of the variants identified by conditional
analysis implemented by GCTA to be independently associated with the lipid traits (A: HDL-C (60
variants), B: LDL-C (142 variants), C: TC (134 variants) and D: TG (16 variants)) over MAF bins after

meta-analysis of discovery cohorts (black). The histograms also includes loci identified by Teslovich et
al.* (gray) and Willer et al.? (white).

Identification of potential novel variants

To identify potential novel variants, we first excluded all variants within 1 Mb of a known
loci from Teslovich et al.? and from Willer et al.?. Since the number of loci associated with
the four traits differ, we end up with 7,946,245 SNPs for HDL-C, 8,014,693 SNPs for LDL-C,
7,923,530 SNPs for TC and 7,468,790 SNPs for TG. For all traits we do find some genome-wide
significant loci, see Supplementary Figs 16 and 17. We used the GCTA tool to select only those
variants that are independent associated with the lipid trait. This analysis revealed 2 novel
independent variants associated with HDL-C, 1 novel independent variants associated with
LDL-C, 2 novel independent variants associated with TC and 1 novel independent variants
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associated with TG, see Supplementary Table 8 and Supplementary Fig. 18. We used PLINK
to test if these 6 variants are in LD with the knowLn loci from Teslovich et al.? and from Willer
et al.?. None of the 6 variants are in LD with known loci associated with the same trait on the
same chromosome (R*< 0.14).

Replication of potential novel variants

The 6 potential novel loci were replicated in 11 cohorts: CHS, Croatia-Korcula, Croatia-Split,
Croatia-Vis, FamHS, FHS, Generation Scotland, MESA Whites, ORCADES, PROSPER-Scottish
and PROSPER-Irish. The association results of all cohorts were combined and the standard
error based weights were calculated by METAL®™. The Bonferroni-correction for multiple
testing was 8.33 - 103 This resulted in the significant replication of 5 out of the 6 variants,
see Supplementary Fig. 19 and Supplementary Table 11.

Conditional analysis

Within the discovery cohorts we performed a conditional analysis to see if the novel variants
areindependent of the known loci from Teslovich et al.* and from Willer et al.2. Supplementary
Table 10 shows the results within these cohorts with and without adjusting for the known loci
for the trait in question, if available in the GoNL reference panel. Since the unadjusted and
adjusted results are similar, we conclude that the newly identified variant are independent
of the known loci.

RESULTS

Nine large Dutch epidemiological cohorts (comprising 36,000 samples in total) were imputed
with the GoNL reference panel (~ 19.5 million SNPs) on an identical protocol®*®. All cohorts
conducted association analysis on the imputed variants assuming an additive genetic effect
on high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
total cholesterol (TC) and triglyceride (TG) levels (Methods, Supplementary Methods and
Supplementary Table 1) and results were meta-analysed. We used conditional analysis
implemented in GCTA' to identify variants associated independently with lipid levels.

Both rare (minor allele frequency (MAF) <0.01), low (0.01 < MAF < 0.05) and common variants
(MAF > 0.05) were associated with HDL-C (N = 60 variants), LDL-C (N = 142 variants), TC (N =
134 variants) and TG (N = 16 variants) in both known and novel loci (Methods, Supplementary
Table 2-5 and Supplementary Fig. 1). In Figure 1 we compare the allele frequencies that
reach genome-wide significance in the GCTA analysis (p-value < 5 - 10®) to those reported
by Teslovich et al.*and Willer et al.? (Figure 1). The majority of the known HDL-C (31 of 45,
68.9%), LDL-C (24 of 34, 70.6%), TC (33 of 48, 68.6%) and TG (13 of 30, 43.3%) loci described
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by Teslovich et al.? replicated at a p-value < 3.18 - 10* (Bonferroni correction based on
157 variants) (Methods, Supplementary Figs 2-3 and Supplementary Tables 6-7). We also
confirmed several of the HDL-C (6 of 27, 22.2%), LDL-C (7 of 21, 33.3%), TC (4 of 23, 17.4%)
and TG (1 of 12, 8.3%) loci described by Willer et al.?at a p-value < 6.02 - 10* (Bonferroni
correction based on 83 variants) despite a sample size of about 20% of the other studies.

To identify novel loci associated with blood lipid levels, we selected from the list of variants
identified by GCTA, those variants located more than 1Mb away from previously identified loci.
This resulted in six novel associations at five loci (Methods, Table 1 and 2 and Supplementary
Table 8). The five loci are not in linkage disequilibrium (LD) with previously described GWAS loci
(Methods and Supplementary Table 9). Conditional analysis in the discovery cohorts showed
that these new variants were independent from previously identified loci (Supplementary
Table 10 and Supplementary Fig. 4). Of the five loci, three (rs149580368, rs77542162 and
rs144984216) have an increased frequency in GoNL compared to 1000 Genomes (1-kG,
Phase 1 integrated release v3, April 2012, all ancestries; Table 1), suggesting there may have
been genetic drift in the Dutch population for these loci®. Yet, as each of these loci has a
MAF > 0.005, we assumed these alleles also segregate in other populations of European
descent?, such as those of the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium. Therefore, we set out replication in independent samples from the
CHARGE cohorts using the 1-kG reference panel (Phase 1 integrated release v3, April 2012,
all ancestries). We were able to replicate five out of the six variants using the Bonferroni
corrected p-value threshold of 8.33 - 10 (Table 2, Methods and Supplementary Table 11).
Of the replicated variants, rs77542162 is the most interesting variant. This missense variant is
associated with both LDL-C and TC (Supplementary Figs 5 and 6) and located on chromosome
17 within the ABCA6 gene (ATP-binding cassette, sub-family A (ABC1), member 6). The
frequency of this variant is 1.31-fold higher in the discovery cohorts than in the replication
cohorts and even 3.65-fold higher in the GoNL population than in the 1-kG population. This
missense variant changes the amino acid cysteine into arginine at position 1359 (Cys1359Arg)
and is predicted to be damaging for the structure and function of the protein by Polyphen2?,
MutationTaster*® and LRT*. The effect size of rs77542162 (B, =0.135 and B, =0.140) is very
similar to those observed for other single variants in well-known lipid genes, such as LDLR and

LDL-C

CETP as reported by Teslovich et al.?. The membrane-associated protein encoded by this gene
is a member of the superfamily of ATP-binding cassette (ABC) transporters that transport
various molecules across extra- and intracellular membranes. This protein is a member of
the ABC1 subfamily, which is the only major ABC subfamily found exclusively in multicellular
eukaryotes. ABCA6 is clustered with four other ABC1 family members on chromosome 17q24
and appears to play a role in macrophage lipid homeostasis.
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One other replicated variant, rs149580368, is also enriched with a 1.92-fold increase in
frequency in the Dutch population compared to the 1-kG population. This intergenic variant
(Supplementary Fig. 7) without a significant cis-eQTL effect, is located between the protein-
coding genes C170rf105 (chromosome 17 open reading frame 105) and MPP3 (membrane
protein, palmitoylated 3). Two replicated variants have similar frequencies in the GoNL
and 1-kG reference sets: rs4752801 (Supplementary Fig. 8), an new intergenic variant
with a high frequency (MAF = 0.355) that is located in a region previously identified! and
rs117162033 (Supplementary Fig. 9), an intronic variant in the myosin F (MYOI1F) coding
gene. C17orf15, MPP3 and MYO1F have no known impact on lipid levels. As the imputation
quality of rs117162033 is lower than the other variants, we validated the imputation of this
variant using the same approach as published by Scott et a/’. We compared in a random
sample of 65 participants of the GoNL reference panel their sequence and best-guess
GoNL imputed genotypes and found that the concordance was 100% (all participants were
correctly imputed). The association between TG and the intronic variant in the MYO1F gene
is remarkable because of the low frequency of the variant. This confirms the conclusions as
published before about the GoNL reference panel, that the trio-based phasing contributed
significantly to the imputation quality of rare variants®.

In this current study, the GoNL reference panel was used for imputations of the discovery
cohorts and the 1-kG reference panel for the imputation of the replication cohorts. Though,
it would be interesting to impute with a combined reference panel of both the GoNL data, the
1-kG data and other sequence data, this effort is ongoing.

This study shows that the imputation of a population-specific reference panel into large
epidemiological cohorts can reveal both low-frequency and rare variants associated with
blood lipid levels using classical association testing approaches. The three variants with
increased frequency in the Dutch population as compared to the 1-kG population include a
rare, predicted to be deleterious missense variant in ABCA6, which has increased frequency
3.65 times larger in the Dutch population. The effect of this variant is comparable to that of
variants in the LDLR gene, a gene for which several population-based screening programs
have been initiated. Our findings suggests that next generation sequencing effort may yield
clinically relevant findings. Our paper further shows that next generation sequencing efforts
in specific homogeneous populations as the Dutch may yield clinically relevant findings
worldwide.
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ABSTRACT

Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms
(SNPs) associated with high-density lipoprotein cholesterol (HDL-C) blood levels. This study
is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNPxSNP
interactions associated with HDL-C levels. We performed a GWIS in the Rotterdam Study (RS)
cohort | (RS-1) using the GLIDE tool which leverages the massively parallel computing power
of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of
SNPs. By performing a meta-analysis together with Rotterdam Study cohorts Il and III (RS-II
and RS-111), we were able to filter 181 interaction terms with a p-value < 1 - 10°® that replicated
in the two independent cohorts. We were not able to replicate any of these interaction
term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal =30,011) when adjusting
for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction
between rs774801 in ARMC8 and rs12442098 in SPATA8 being associated with HDL-C levels.
However, p-values do not reach the preset Bonferroni correction of the p-values. Our study
suggest that even for highly genetically determined traits such as HDL-C the sample sizes
needed to detect SNPxSNP interactions are large and the 2-step filtering approaches do not
yield a solution. Here we present our analysis plan and our reservations concerning GWIS.
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INTRODUCTION

To date, genome-wide association studies (GWAS) have revealed 95 genetic loci associated
with lipid levels in human plasma. Of these, 74 SNPs were associated with high-density
lipoprotein cholesterol (HDL-C) levels'®. Together, these 47 SNPs explain approximately
25% of the heritability of HDL-C levels. Although the largest meta-analysis of plasma lipid
concentrations* to date, already included more than 100,000 individuals of European
descent, it is expected that with increasing sample size and larger, better reference panels
for imputation, more variants will be found to be associated with HDL-C levels, probably
resulting in an increase of the explained heritability. Nevertheless, single SNP effects may not
fully explain the heritability of HDL-C levels. Genetic processes like DNA methylation, histone
modification and interactions between SNPs are also potential candidates determining HDL-C
levels®®. A previous large study did not find evidence of gene-environment interactions
influencing HDL-C levels, although this might also play a role with other environmental
factors'®. We defined interactions between SNPs as a departure from a linear statistical model
allowing for the additive marginal effects of both SNPs. Persistent evidence for interacting loci
involved in lipid metabolism comes from experimental animal research in which various loci
interact with each other'®.

Based on the loci for HDL-C levels identified to date, finding evidence for SNPxSNP interactions
in humans has proven to be difficult. Ma et al.2 identified a significant association interaction
between a locus within the HMGCR gene and a locus near the LIPC gene in relation to HDL-C
cholesterol. Furthermore, Turner et al.’® found 8 SNPxSNP interactions to be associated
with HDL-C levels of which the strongest model included an interaction between LPL and
ABCA1. These studies suggest that SNPxSNP interactions can indeed also explain some of the
heritability of HDL-C levels in humans. However, only loci were studied that had previously
been successfully replicated in GWAS of lipid levels, thus motivating a genome-wide search
for interactions associated with HDL-C levels.

Genome-wide searches for associations between phenotypes and SNPxSNP interactions have
been hampered by the computation time needed for testing all unique pairs of SNPs, given
by NSNPS(NSNPs_l)/z’ with NSNPs
all interaction terms is proportional to N_ 2, translating into months of computation time.

SNPs 7
Modern Graphics Processing Units (GPUs) are optimised for highly parallel computation tasks

the total number of SNPs. Consequently, the time for testing

and are well-suited to replace regular processors (Central Processing Units or CPUs) for these
kind of tasks. The GLIDE software package!* makes use of GPUs to perform linear regression
for all pairs of SNPs. In this study, we aim to identify SNPxSNP interactions for HDL-C levels
in the Rotterdam Study cohort | (RS-I) using GLIDE. The most significant interactions terms
in RS-1 are first filtered by a meta-analysis in cohorts Il and Ill of the Rotterdam Study (RS-l
and RS-Ill, respectively). The resulting interactions were subsequently sent for replication in
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the CHARGE cohorts (AGES, ARIC, CHS, ERF, FHS) and the NFBC-66 cohort. We also tested
whether the identified interaction terms are associated to dyslipidemia treatment within the
cohorts of the Rotterdam Study.

METHODS

Study descriptions

Ethics Statement

The AGES Reykjavik Study Genome Wide Association study was approved by the National
Bioethics Committee (00-063) and the Data Protection Authority. The ARIC study was approved
by ‘The University of Texas Health Science Center at Houston Committee for the Protection of
Human Subjects’. The CHS study was approved by the following institutional review boards:
Wake Forest University, University of California (Davis), Johns Hopkins University (Bloomberg
School of Public Health), University of Pittsburgh, University of Washington, University of
Vermont. The ERF study was approved by the Medical Ethics Committee of the Erasmus
MC. The committee is constituted according to the WMO (National act medical-scientific
research in human beings). The FHS was approved by the Boston University Medical Campus
Institutional Review Board. The NFBC66 was approved by the Ethical Committee of the
Northern Ostrobothnia Hospital District. The Rotterdam Study has been approved by the
medical ethics committee according to the Population Study Act Rotterdam Study, executed
by the Ministry of Health, Welfare and Sports of the Netherlands. A written informed consent
was obtained from all study participants for all cohorts.

Discovery cohort

Rotterdam Study cohort | (RS-1). The Rotterdam Study is an ongoing prospective population-
based cohort study, focused on chronic disabling conditions of the elderly. The study
comprises an outbred ethnically homogenous population of Dutch Caucasian origin. The
rationale of the study has been described in detail elsewhere®®. In summary, 7,983 men and
women aged 55 years or older, living in Ommoord, a suburb of Rotterdam, the Netherlands,
were invited to participate in the first phase. Fasting blood samples were taken during the
participant’s third visit to the research center.

Filtering cohorts

Rotterdam Study cohort Il (RS-II). The Rotterdam Study cohort Il prospective population-
based cohort study comprises 3,011 residents aged 55 years and older from the same district
of Rotterdam. The rationale and study designs of this cohort is similar to that of the RS-I*3.
The baseline measurements, including the fasting HDL-C measurements, took place during
the first visit.
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Rotterdam Study cohort Ill (RS-Ill). The Rotterdam Study cohort Il prospective population-
based cohort study comprised 3,932 residents aged 45 years and older from the same district
of Rotterdam. The rationale and study designs of this cohort is similar to that of the RS-I%3.
The baseline measurements, including the fasting HDL-C measurements, took place during
the first visit.

Replication cohorts

Age, Gene/Environment Susceptibility (AGES Reykjavik) Study. The Age, Gene/Environment
Susceptibility (AGES Reykjavik) Study was initiated to examine genetic susceptibility and
gene/environment interaction as these contribute to phenotypes common in old age, and
represents a continuation of the Reykjavik Study cohort begun in 1967. The study is approved
by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection
Authority. The researchers are indebted to the participants for their willingness to participate
in the study.

Atherosclerosis Risk in Communities (ARIC) Study. The Atherosclerosis Risk in Communities
Study (ARIC), sponsored by the National Heart, Lung, and Blood Institute (NHLBI) is a
prospective epidemiologic study conducted in four U.S. communities. ARIC is designed
to investigate the causes of atherosclerosis and its clinical outcomes, and variation in
cardiovascular risk factors, medical care, and disease by race, gender, location, and date.
To date, the ARIC project has published over 800 articles in peer-reviewed journals. ARIC
includes two parts: the Cohort Component and Community Surveillance Component.

The ARIC Cohort Component began in 1987, and each ARIC field center randomly selected
and recruited a cohort sample of approximately 4,000 individuals aged 45-64 from a defined
population in their community, to receive extensive examinations, including medical, social,
and demographic data. Follow-up also occurs semi-annually, by telephone, to maintain
contact and to assess health status of the cohort.

In the Community Surveillance Component, the four communities are investigated to
determine the long term trends in hospitalized myocardial infarction (Ml) and coronary heart
disease (CHD) deaths in approximately 470,000 men and women aged 35-84 years.
Cardiovascular Health Study (CHS). The CHS' is an NHLBI-funded observational study of risk
factors for cardiovascular disease in adults 65 years or older. Starting in 1989, and continuing
through 1999, participants underwent annual extensive clinical examinations. Measurements
included traditional risk factors such as blood pressure and lipids as well as measures of
subclinical disease, including echocardiography of the heart, carotid ultrasound, and cranial
magnetic-resonance imaging (MRI). At six month intervals between clinic visits, and once
clinic visits ended, participants were contacted by phone to ascertain hospitalizations and
health status. The main outcomes are coronary heart disease (CHD), angina, heart failure
(HF), stroke, transient ischemic attack (TIA), claudication, and mortality. Participants continue
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to be followed for these events. CHS participants who were free of cardiovascular disease at
the start of the study, and who consented to genetic testing, were included in these analyses.
Erasmus Rucphen Family (ERF) Study. The ERF study has been described in detail previously®.
Atotal of approximately 3,000 participants descend from 22 couples who lived in the Rucphen
region in The Netherlands in the 19" century. The 2,755 individuals with genotype data and
lipid measurements were included in the current analysis.

Framingham Heart Study (FHS). The Framingham Heart Study (FHS), funded by the National
Heart Lung and Blood Institute, is an observational population-based cohort study composed
of three generations of Framingham (MA) residents predominately of European descent. The
Original cohort (N = 5,209) was enrolled in 1948. The children and spouses of the Original
cohort comprise the Offspring cohort (N = 5,124), which was enrolled in 1971-1975%. The
Third Generation (N = 4,095) consists mostly of the children of the Offspring cohort, and was
enrolled in 2002 to 2005Y. All participants were examined every 4-8 years. DNA for surviving
participants was collected in the late 1990s and early 2000s (1995-2005). Cholesterol and
genetic data from 3,464 Offspring subjects and 3,569 Third Generation subjects contribute
to this paper.

Northern Finland Brith Cohort 1966 (NFBC-66). The Northern Finland Birth Cohort 1966
(NFBC-66) study®® is a longitudinal one-year birth cohort study designed to study the risk
factors of perinatal deaths and low birth weight. Mothers living in the two northern-most
provinces of Finland were invited to participate if they had expected delivery dates during
1966. Individuals still living in Helsinki area or Northern Finland were asked at age 31 to
participate in a detailed examination (N = 5,923). Extensive data on intermediate phenotypes
related to obesity and behavioral traits have also been collected.

Genotyping and imputation

All cohorts were genotyped using commercially available Affymetrix or lllumina genotyping
arrays, or custom Perlegen arrays. Quality control was performed independently for each
study. To facilitate meta-analysis, each replication cohort performed genotype imputation
using BIMBAM, IMPUTE, or MaCH with reference to HapMap or the 1000 Genomes project
data.

The first two cohorts of the Rotterdam Study were genotyped using the lllumina 550K
chip, the third cohort was genotyped using the Illumina 610K and 660K chip. The following
exclusions were applied to identify a final set of SNPs that was used in this study: MAF < 0.05,
SNP callrate < 0.95 and/or HWE p-value < 1 - 10”7. The QC was done per cohort.

In ARIC, genotyping was performed with the Affymetrix 6.0 chip. After genotyping, the
following quality control tresholds were applied: (1) comparison of genotype calls to sample
replicates, with exclusion of samples with greater than 1% mismatch, (2) exclusion of samples
with greater than 5% missing genotypes, (3) exclusion of samples with a mismatch between
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reported sex and that determined by genotyping, (4) exclusion of SNPs with greater than
10 % missing genotypes across samples, (5) exclusion of SNPs monomorphic in both races
and (6) exclusion of SNPs (MAF > 0.05) with HWE p-values of less than 1 - 10°®. Prior to
imputations, principal component analysis was performed to exclude outliers. Imputation
to HapMap release 23a was performed using MaCH v.1.0. After imputation SNPs with an
imputation quality less than 0.90 were excluded. 26.8% of the SNPs in the replication were
genotyped, the rest was imputed.

In AGES only imputed SNPs were used for the replication. The genotypes originated on
Illumina Hu370CNV. For imputation, only the SNPs were included which were completed in
97% of individuals and had a MAF above 1%. Imputation was performed by MaCH against
HapMap Release 22. Quality of the imputations was evaluated by the MaCH R? metric.

In CHS, genotyping was performed at the General Clinical Research Center’s Phenotyping/
Genotyping Laboratory at Cedars-Sinai using the lllumina 370CNV BeadChip system.
Genotypes were called using the lllumina BeadStudio software. The following exclusions
were applied to identify a final set of 306655 autosomal SNPs that were used for imputation:
call rate < 97%, HWE p < 1 - 10°, > 2 duplicate errors or Mendelian inconsistencies (for
reference CEPH trios), heterozygote frequency = 0 and SNP not found in HapMap. Imputation
to HapMap release 22 (build 36) was performed using BimBam v.0.99. Most of the replication
SNPs were genotyped (58.4%), the remaining were imputed.

In ERF genotyping was done on various lllumina and Affymetrix chips. QC was done for
each chip separately. On average, the following QC criteria were applied: callrate > 0.98, per
individual callrate >0.96, HWE p-value >5 - 10 and MAF > 0.005. IBS checks, sex chromosome
checks and ethnicity checks were also performed. The imputation to Hapmap 2 release 22
was performed with MaCH and minimac. All SNPs in the replication were imputed.

In FHS genotyping was done on Affymetrix 250K Nsp and 250K Sty mapping arrays and the
Affymetrix 50K supplemental gene-focused array. The following QC criteria were applied
before imputations: p,,,. < 1 - 10°, callrate > 0.97, mishap test of non-random missingness
p <1-10° < 100 Mendelian errors. The genotyped SNPs were imputed against HapMap
(release 22, build 36, CEU population) with MaCH (version 1.0.15). All SNPs in the replication
were imputed.

In NFBC-66 genotyping was done on lllumina 370K whole-genome SNP array. The following
QC criteria were observed: SNP clustering probability of genotypes > 95%, sample call rate >
95%, SNP call rate > 95%, MAF > 1% and HWE p-value > 1 - 10°°. Heterozygosity, gender check
and relatedness checks were performed and any discrepancies were removed. 10 individuals
with cryptic relatedness were also excluded from the analysis. To identify a final set of SNPs
for imputations, a SNP call rate filter of > 99% was applied to all SNPs with MAF < 5%. The
imputation to 1000 Genomes Phase | integrated variant set (Mar 2012) was performed using
IMPUTE v2.2.2. After imputation only those variants with info score > 0.9 were analysed.
58.6% of the SNPs in the replication were genotyped, the rest was imputed.
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Study samples and phenotypes

A summary of the details of the nine studies participating in this analysis can be found in Table
1. In all studies, the subjects were fasting when the HDL-C levels were measured. The HDL-C
measurements were adjusted for sex and age, except for NFBC-66 in which only was adjusted
for sex since all individuals are from the same age. In ERF mmscore (GenABEL version 1.7.0%
was used to account for family relationships. In ARIC, the HDL-C levels were also adjusted for
the three ARIC field center with two 0,1 indicator variables. In CHS the HDL-C was adjusted for
study clinic site as well and in NFBC-66 HDL-C was also adjusted for 10 PC components. In FHS
the HDL-C levels were also adjusted for related individuals with the Imekin function within
the coxme package in R (http://cran.r-project.org/web/packages/coxme/) and adjusted for
PCs. In the discovery and filtering stage, the HDL-C levels after adjustment for sex and age
were normalised around zero as this is a requirement of GLIDE. To compare the B, in the
discovery and filtering stage with the B, in the replication stage, we also calculated the B, in
the Rotterdam Study cohorts without scaling around zero for the most promising interaction
terms.

GWIS with GLIDE in RS-I

To systematically search for the epistatic interactions associated with HDL-C levels in RS-I
we used GLIDE*?. GLIDE makes use of the computational power of consumer-grade graphics
cards to detect interactions between SNPs via linear regression. To reduce computation time,
we chose to run GLIDE on genotyped SNPs only. In order to run GLIDE, the genotype data
of RS-I was stored per chromosome as a text file with one row per SNP and one column
per individual. Individuals using lipid-lowering medication were excluded. The file does not
contain column headers or row names and the SNPs need to be coded 0 (homozygous for the
major allele), 1 (heterozygous) or 2 (homozygous for the minor allele). We only used SNPs
with a MAF (Minor Allele Frequency) > 0.05 within the samples of RS-I, RS-1l and RS-Ill which
were used in this study, since the sample size is not large enough to investigate low-frequency
variants.

The names of the SNPs are stored in a separate one-column text file in the same order as
the SNPs in the file with the genotype data. The values of the scaled residuals are stored in
a separate text file in the same order as the individuals in the file with the genotype data.
GLIDE requires the phenotype to be normalised around zero. GLIDE uses the files with the
genotypes and the file with the scaled residuals to perform linear regression for all possible
unigue SNPxSNP combinations. In order to fit the data into the GPU’s memory, GLIDE splits
up the genotypes in subsets of SNPs. In this study we chose to split up in subsets of 1000
SNPs. GLIDE outputs a t-score for each interaction term and a threshold can be set to only
output interactions with a t-score above this threshold.
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The output of GLIDE does not contain the SNP names, but the number of the chunk and the
number of the SNP within a given chunk. With help of the previously created SNP files, we
assigned SNP names to the interaction terms output by GLIDE. Since GLIDE handles the data
in chunks, interaction terms occur multiple times in the output of GLIDE, consequently, the
results had to be filtered on unique interaction terms.

Filtering of interaction terms by meta-analysis of RS-I, RS-1l and RS-III.

To reduce the number of false positive interaction terms, we filtered the interaction terms
with an absolute value of the t-score > 5 (p-value < 6.06 - 107) by a meta-analysis of RS-1, RS-
Il and RS-IIl. For these interactions, we used linear regression to determine the Bs, standard
errors and p-values in RS-1, RS-Il and RS-IIl. The HDL-C levels after adjustment for sex and age
were normalised around zero in all three cohorts. The Bs and standard errors of all three
cohorts of the Rotterdam Study were subsequently meta-analyzed to filter out only those
with a p-value less than 1 - 10%.

Replication of SNPxSNP interactions

The interaction terms which had a p-value less than 1 - 10°® after meta-analysis of the three
Rotterdam Study cohorts, were replicated in 6 cohorts: AGES, ARIC, CHS, ERF, FHS and NFBC-
66. Only individuals that do not use lipid-lowering medication were included, except for
AGES. The linear regression model for replication was HDL,, = o + B, (SNP1) + B, (SNP2) +
B, (SNP1xSNP2) + €, where HDL,, are the HDL-C levels adjusted for sex and age. We meta-
analysed the B, from all 6 replication cohorts.

To see if the filtered interaction terms effect the probability of using lipid-lowering
medication, we performed a case-control study in the three Rotterdam Study cohorts. Those
individuals that have HDL-C levels available and use lipid-lowering medication were defined
as cases and the individuals in the discovery or filtering stage were defined as controls. The
no = @+ B, (SNPL) + B, (SNP2) +B
(SNP1xSNP2) + €. We performed the analysis in the three cohorts separately, and also in the

logistic regression model for replication was l\/ledica’cionye
three cohorts combined, in which we included the cohort number as an additional covariate.
Power calculations

To estimate the effect we could have detected with the current sample size, a certain type |
error and various type Il errors, we used G*Power- (version 3.1.9.2).
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RESULTS

GWIS with GLIDE in RS-

Figure 1 shows a flow diagram illustrating the analysis plan. A total of 495,508 genotyped
SNPs that passed quality control, had a Minor Allele Frequency (MAF) > 0.05 in the sample of
2,996 individuals from RS-I, and were also genotyped in RS-l and RS-IIl were used to identify
SNPxSNP interactions associated with HDL-C using GLIDE. For this analysis the HDL-C levels
after adjustment for sex and age were normalized around zero as this is a requirement of
GLIDE. This resulted in 84,031 SNPxSNP interactions with an absolute value of the t-score >

5 (i.e. p<6.06 - 107).

Rotterdam Study |

N =2996
495508 SNPs with MAF > 0.05

DISCOVERY

Analysis with GLIDE:
84031 interaction terms with p-value < 3.03x107 (t-score > 5)

T~

FILTERING

Rotterdam Study I
N=1602

Rotterdam Study Il
N=1621

l

Linear regression in RS-, RS-1l and RS-llI,
followed by meta-analysis:
181 interaction terms with p-values < 1x10°

REPLICATION

CAS

E-CONTROL

No lipid lowering medication
- AGES (N = 2490)

- ARIC (N=9315)

-CHS (N=3175)

- ERF (N =2755)

- FHS (N=7033)

- NFBC66 (N = 5243)

Case: lipid lowering medication

Control: no lipid lowering medication

- RS-l (Ncases =416, Ncontrols = 2996)
= RS-l (N;ases = 244, Neonrais = 1602)

- RS-l (Ncases =447, Ncontrols =

- Combined (Nyases = 1107, Noonrois = 6219)

1621)

No significant replication

No significant replicati

ion

Figure 1: Flow diagram overview of the analysis plan.
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Filtering of interaction terms by a meta-analysis of RS-1, RS-1l and RS-lII

Using linear regression we calculated the regression coefficient B, for the interaction term,
the standard errors and the p-values for the 84,031 interaction terms in RS-I (N = 2,996), RS-II
(N =1,602) and in RS-IIl (N =1,621). For these analyses the HDL-C levels after adjustment for
sex and age were normalized around zero since this was done in RS-l in the initial analysis with
GLIDE as this is a requirement of GLIDE. The calculated B, and standard errors were used to
meta-analyse the association between each of the 84,031 interaction terms and HDL-C levels.
After meta-analysis, 181 interaction terms with a p-value below 1 - 10® remain, of which 5
interaction terms with a p-value less than 1 - 10%°. The pooled B, for the 84,031 interaction
terms range from-0.507 to 0.746. The 181 interaction terms with a p-value less than 1 -
10® were taken forward for replication, see Supplementary Table 1. The number of unique
interaction terms for replication was reduced to 132 by filtering on linkage disequilibrium
(LD) between interaction terms (R? > 0.8). Consequently, the p-value for replication after
Bonferroni correction is 3.79 - 10*. We also calculated the B, of RS-I, RS-l and RS-lIl for these
181 interaction terms using linear regression with the unscaled phenotype to compare these
with the B, within the replication cohorts.

a b c d
RS-I - RS-I - RS-I - RS- -
RS-II . RS-l RS-II RS-l -
RS-l RS-l RS-l RS-l
ERF - ERF - ERF - ERF
ARIC - ARIC - ARIC L ARIC L]
AGES - AGES - AGES - AGES -
NFBC-66 - NFBC-66 - NFBC-66 - NFBC-66 -
CHS - CHS - CHS CHS -
FHS - FHS - FHS - FHS -
I T T T T I T T T T T
-0.10 000 0.10 0.20 -020  -0.10 0.00 -0.20 -0.10 0.00 -0.15 0.00 0.10 0.20
Bml ﬁm( Bml B\nt

Figure 2: The forest plots for B, of the four most significant interaction terms after meta-analysis of
the replication cohorts: rs2315598-rs2853228 (a), rs6848132-rs7863451 (b), rs3756856-rs11758333
(c) and rs4596126-rs11676467 (d). Although the analysis in the discovery and the filtering was done
with scaled phenotypes, for these forest plots, the HDL-C levels are not scaled in the Rotterdam Study
cohorts.

Replication of SNPxSNP interactions

Replication was conducted in 6 cohorts: AGES, ARIC, CHS, ERF, FHS and NFBC-66. In the
replication cohorts only individuals not on lipid-lowering medication were included, with the
exception of AGES, see Table 1. In AGES, ARIC, CHS, ERF and FHS, 8, 7, 7, 10 and 7 interaction
terms, respectively, could not be tested for replication since one or both of the SNPs in the
interaction term had not been genotyped or imputed. In NFBC-66 all interaction terms
could be tested for replication. A total of 170 out of the 181 interactions could be tested for
replication in all six cohorts. None of the interaction terms reached a significant p-value after
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Bonferroni correction (3.79 - 10#) in any of the replication cohorts and after meta-analysis of
all replication cohorts. Four interaction terms reached nominal significance at p = 0.05, see
Figure 2. The lowest p-value for B, after meta-analysis of all replication cohorts (N = 30,011)
was 7.57 - 1073 for the interaction between rs2315598 (chromosome 2, position 132,994,224,
gene GPR39) and rs2853228 (chromosome 8, position 103,296,258, gene RRM2B). The
second lowest p-value for B, after meta-analysis of all replication cohorts (N = 30,011) was
8.1 - 107 for the interaction between rs6848132 (chromosome 4, position 93,460,610, gene
GRID2) and rs7863451 (chromosome 9, position 129,112,065, gene GARNL3). The B, is
negative in all nine cohorts. Table 2 shows the 20 interaction terms with the lowest p-values.
Five of these terms are interactions between an intergenic locus at chromosome 6, situated
between the TCP11 and SCUBE3 genes, and a locus at the same chromosome in the SOBP

gene which are in LD with each other (R? > 0.872).

Table 1: Baseline characteristics for discovery and replication cohorts

Study Country of origin N (% male)
RS- Rotterdam Study cohort | Netherlands 2996 (57.7)
RS-II Rotterdam Study cohort Il Netherlands 1602 (54.9)
RS-111 Rotterdam Study cohort IlI Netherlands 1621 (58.3)
AGES Age, Gene/Environment Susceptibility Study Iceland 3219 (42.0)
ARIC Atherosclerosis Risk in Communities Study  United States 9315 (46.9)
CHS Cardiovascular Health Study Americans of European descent 3175 (40)
ERF Erasmus Rucphen Family study Netherlands 2755 (44.7)
FHS Framingham Heart Study Americans of European descent 7033 (46)
NFBC-66 Northern Finland Brith Cohort 1966 Finland 5243 (47.98)
Mean age (SD), years HDL-C (SD), mmol/L lipid lowering medication users
RS- 66.2 (7.2) 1.39 (0.39) excluded
RS-II 64.7 (8.1) 1.38 (0.37) excluded
RS-II] 55.6 (5.7) 1.47 (0.44) excluded
AGES 76.4 (5.5) 1.58 (0.45) included (22.6%)
ARIC 54.3 (5.7) 1.31(0.43) excluded
CHS 72.5 (5.4) 1.43 (0.41) excluded
ERF 48.9 (14.4) 1.27 (0.36) excluded
FHS 37.5(9.6) 1.37 (0.40) excluded
NFBC-66 31 (0) 1.56 (0.38) excluded
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Individuals with high levels of low-density lipoprotein (LDL) or low levels of HDL-C are treated
with lipid-lowering medication. The 181 selected interaction terms were also tested to see
whether their presence might explain the use of lipid-lowering medication and therefore
the extreme lipid levels. To this end the individuals of the Rotterdam Study in the discovery
and filtering stage were used as controls, and the individuals of the Rotterdam Study who
use lipid-lowering medication were used as cases. Table 3 shows the 20 interaction terms
with the lowest p-values for B, after testing in the three cohorts of the Rotterdam Study
combined. The interaction between rs6442460 (chromosome 3, position 14,551,071, gene
GRIP2) and rs10914332 (chromosome 1, position 31,471,589, gene NKAIN1) had the lowest
p-value (p =3.98 - 103).

Three interaction terms overlap between the top 20 hits after the replication and the top 20
hits after the case-control test, as shown in Table 4. None of the SNPs of these interaction
terms are in high LD with each other (R? > 0.8). The interaction between rs754950 and
rs10926977 has an opposite effect direction after the meta-analysis in the Rotterdam Study
cohorts compared to the one after meta-analysis in the replication cohorts and thus will
probably be a false-positive finding. The second interaction term (between rs2242312 and
rs11190870) had a positive effect on HDL, but increases the risk of lipid lowering medication
which is counter-intuitive and consequently this interaction term is likely a false-positive
finding as well. The third interaction term, however, between rs774801 (chromosome 3,
position 139,413,035, gene ARMC8) and rs12442098 (chromosome 15, position 95,385,874,
close to gene SPATAS) has a negative effect on HDL-C combined with a positive effect on
the use of lipid lowering medication. Although this last interaction term is not replicated,
the directions of the effects are consistent since this interaction lowers the HDL-C level and
increases the chance of using lipid lowering medication.
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Table 4: The overlap between the top 20 interaction terms after replication and case-control analysis.

Interaction Meta-analysis of RS-1, RS-1l and RS-l Meta-analysis of replication cohorts
B.. SE p-value B.. SE p-value

rs754950- rs10926977 00,0876 0,0148 2,92E-009 -0,01028 0,00548 0,06078

rs2242312-rs11190870 0,1238 0,0205 1,65E-009 0,01121 0,00671 0,09511

rs774801-rs12442098 -0,096 0,0167 8,57E-009 -0,01009  0,00588 0,08656

Interaction Case-control in combined RS

B.. SE p-value
rs754950- rs10926977 -0,172 0,1026 0,09409
rs2242312-rs11190870 0,304 0,1437 0,03462
rs774801- rs12442098 0,293 0,1175 0,01267

Power calculations

As none of the findings replicated, we explored the statistical power of our analyses. Figure 3
shows the power calculations using the program G*Power?®?', With our current sample size
of 2,996 individuals the smallest detectable effect will be 0.11, 0.095 and 0.05 when the type
I'erroris less than 1 - 107 and the type 2 error is 20% (power is 80%), 50% (power is 50%) and
99% (power is 1%), respectively.

DISCUSSION

Here we presented the, to our knowledge, first GWIS of HDL-C levels in blood. Our study
shows that in a single population a GWIS results in 84,031 SNPxSNP interactions associated
with HDL-C levels (p-value < 6.06 - 107). Our two-step approach to filter these SNPxSNP
interactions using two additional cohorts resulted in 181 interactions with a p-value below
1-108. Although some reached nominal significance, none of these interactions terms were
significantly replicated in a meta-analysis of 30,011 samples when adjusting for multiple
testing. We also did not find a significant association between any of the interaction terms
and treatment with lipid lowering medication in the cohorts of the Rotterdam Study after
adjustment for multiple testing.

To our knowledge, no other GWIS studies with HDL-C exist with which we can compare our
results. However, we did try to replicate previously published SNPxSNP interactions. We
adjusted for the same covariates as the authors did, except for smoking, which was used as a
covariate by Turner et al.®. Turner et al. published an interaction between rs253 and rs2515614
associated with HDL, however, the p-values of B after testing this interaction term were
0.986, 0.189 and 0.594 in the RS-I, RS-l and RS-Ill cohorts, respectively. The p-value of B,
after meta-analysing this interaction termis 0.614. The interaction term between rs3846662
and rs1532085, as published by Ma et al.?, only replicated in RS-Ill (p = 0.0214), but not in
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RS- RS combined

0

Figure 3: The smallest detectable effect with the current sample size of 2,996 individuals at 80% (a),
50% (b) and 1% (c) power levels.

RS-l (p = 0.212) or RS-l (p = 0.162). The p-value of B,  after meta-analysing this interaction
term is 0.335.

There can be multiple reasons why we were not able to uncover SNPxSNP interactions using
a hypothesis-free approach. First, in this study we selected only common variants (MAF >
0.05) which were genotyped in the Rotterdam Study. We chose these variants to avoid false
positive findings in rare variants. Furthermore, the power to detect interaction terms with
rare variants is low since our sample size in the two-stage discovery phase was 6,219. A
second limitation that we chose to only investigate genotyped SNPs instead of imputed SNPs.
Therefore, we may have missed true positive causal SNPs which are not on the genotyping
array. However, even with only genotyped SNPs the number of potentially true positive
findings is enormous, resulting in 84,031 suggestive hits at p = 6.06 - 10”. This prompted us
to use a two-stage discovery phase in which we used the RS-Il and RS-l cohorts to filter out
the false positives, reducing the number of findings from 84,031 to 181. The total number
of individuals in this two-step discovery phase is 6,219. This might be considered low for
the identification of SNPxSNP interactions. As a commonly used rule-of-thumb, the sample
size within a GWIS should be 3 to 4 times the size of GWAS. As the first GWAS identifying
loci associated with HDL-C levels! included 2,758 individuals, our study is expected to be
underpowered by that rule. To improve power, an alternative approach could have been to
combine the three cohorts of the Rotterdam Study into an one-step discovery with GLIDE.
This, however, still yielded 75,409 interactions with a p-value below our threshold of 6.06 -
107 as compared to the 84,031 interactions seen in the RS- only GWIS, see Figure 4. It should
be noted that both numbers are well in keeping with expectations.
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Figure 4: The overlap between the interaction terms with p-value < 3.03 - 107 after a GWIS with GLIDE

in RS- only and after a GWIS with GLIDE in RS-I, RS-Il and RS-IIl combined.
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The proposed genome-wide significance level for GWIS is 1 - 102, however, in this study we
used all interaction terms with a p-value less than 1 - 102 for replication. We chose a much
less stringent p-value to prevent us from missing true positives due to the relatively small
sample size. However, none of the 84,031 interaction terms had a p-value below 1 - 10 in
the separate Rotterdam Study cohorts and after meta-analysis of the three Rotterdam Study
cohorts.

The success of GWAS has been its hypothesis-free approach and this worked well for studying
lipids even in studies we consider small by today’s standards (1000 — 3000 individuals). A
GWIS is now technically feasible but needs larger sample sizes. Our study shows that the
number of hits is overwhelming at a p-value of 1 - 10%. The filtering approach in a similar
population did not resolve this problem. Our GWIS resulted in the consistent finding of a
possible interaction between rs774801 in ARMC8 and rs12442098 in SPATAS8 being associated
with HDL-C levels, both in the quantitative analysis and the case-control analysis. However,
p-values do not reach the preset Bonferroni correction of the p-values. Other major issues
related to the sample size and apparent lack of replication also needs to be overcome.
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ABSTRACT

Finding rare variants implicated in complex traits has proven to be difficult. Large family-
based studies in isolated populations are enriched for rare variants due to founder effects
and thus yield increased power for identifying these. We explored the role of rare variants
by exome sequencing in determining high-density lipoprotein cholesterol (HDL-C) in the
Erasmus Rucphen Family (ERF) study, a family based study. We identified 9 common (MAF
> 0.1) and 9 rare variants (MAF < 0.01). The 9 common variants are all located within the
CETP region, a region which is known to be associated with HDL-C level. We replicated these
variants in 85,597 individuals. The 9 rare variants are located within genes not associated
with HDL-C before. Carriers of the 9 rare variants have an extremely high HDL-C which is
associated to a reduced risk of cardiovascular disease. We validated 7 out of the 9 rare
variants by segregation analysis within pedigrees of at least 4 generations. Since HDL-C is a
component of the metabolic syndrome, we additionally tested if the variants affecting HDL-C
are also associated with several metabolomic compounds. Both rare and common variants
were associated with clearly distinct metabolomic compounds in a locus-specific manner,
indicating that distinct mechanisms underlie the association of the various loci with HDL-C.
The present exome sequencing study shows that power of fine genotyping and phenotyping
approaches in family based settings as follow up of genome-wide association studies,
provides additional insight in the mechanisms underlying the association between specific
loci and HDL-C.
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INTRODUCTION

In recent years, various approaches have been successfully applied to unravel the genetic
architecture of high density lipoprotein cholesterol (HDL-C) levels in humans. High HDL-C
levels are associated with reduced risk of cardiovascular disease!. The estimated heritability
of HDL-C is high: 47-76%*%. Genome-wide association studies (GWAS) have revealed
>70 common variants associated with HDL-C*'* while family based linkage studies have
identified a large number of rare variants with large effects’***. An extensive effort has been
performed to identify variants with an in-between (0.001-0.01) minor allele frequency (MAF)
associated with HDL-C. This includes genotyping, exome and whole genome sequencing and
imputing the low-frequency and rare coding-sequencing variants'> . However, few of these
variants with an in-between frequency have been associated with HDL-C due the fact that
these relatively rare single-variants have a modest to small impact on HDL-C and their low
frequency requires large sample sizes to obtain sufficient statistical power. The stories of
success concern primarily candidate-genes, which are deep sequenced®,

An alternative approach to identify rare variants is to study extended families. Whole exome
sequencing in families has been very successful in identifying rare variants with a large effect
size'®?2, However relatively few studies have addressed the contribution of rare variants with
a modest effect size to specific traits, in particular circulating blood lipid levels!>*8, |n this
study, we combined GWAS with whole exome sequencing in a family based population study
to identify rare variants with modest effect sizes on HDL-C. To this end, we used the Erasmus
Rucphen Family (ERF) study?, a family-based study which includes a total of approximately
3,000 participants descending from 22 couples who lived in the Rucphen region in the
southwest of the Netherlands in the 19th century. Therefore, the participants are not selected
for a specific disease, allowing us to study genes that are associated with high and low HDL-C.
Family-based studies have the advantage that the frequencies of genomic variants are
increased due to founder effects and segregation of these variants with the disease can be
studied?, which increases the power to detect true positive associations. To gain additional
insight in the molecular mechanisms underlying the association of specific variants with
HDL-C, we determined their association with a variety of metabolomic compounds.

METHODS

Study population

This study as described here was conducted within the ERF study. The ERF study is a family
based study that includes inhabitants of a genetically isolated community in the South-
West of the Netherlands, studied as part of the Genetic Research in Isolated Population
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(GRIP) program?. Study population includes approximately 3,000 individuals who are living
descendants of 22 couples who had at least six children baptized in the community church.
All data were collected between 2002 and 2005. The population shows minimal immigration
and high inbreeding, therefore frequency of rare alleles is increased in this population?.
All participants gave informed consent, and the Medical Ethics Committee of the Erasmus
University Medical Centre approved the study.

High density lipoprotein measurements

Fasting blood samples were collected during the participant’s visit to the research center. A
Synchron LX20 (Beckman Coulter Inc., Fullerton, CA. U.S.A.) spectrophotometric chemical
analyzer was utilized for the determination of plasma lipid values, among which HDL-C.
Participants were asked to present the medications they used, including lipid-lowering
medications. In individuals using statins, to account for the effect of statins on lipids, HDL-C
was divided by 1.056. These adjustments are based on the sample-size weighted mean
proportional differences in a large prospective meta-analysis including fourteen randomized
trials of statins®.

Exome sequencing

The exomes of 1,336 individuals from the ERF population were sequenced “in-house” at the
Center for Biomics of the Department of Cell Biology of the Erasmus MC, The Netherlands.
Sequencing was done at a median depth of 57x using the Agilent version V4 capture kit
on an lllumina Hiseq2000 sequencer using the TruSeq Version 3 protocol. The sequence
reads were aligned to the human genome build 19 (hg19) using BWA and the NARWHAL
pipeline*?¢. Subsequently, the aligned reads were processed further using the IndelRealigner,
MarkDuplicates and TableRecalibration tools from the Genome Analysis Toolkit (GATK)?” and
Picard (http://picard.sourceforge.net) to remove systematic biases and to recalibrate the
PHRED quality scores in the alignments. After processing, genetic variants were called using
the Unified Genotyper tool from the GATK. About 1.4 million Single Nucleotide Variants
(SNVs) were called and after removing the low quality variants (QUAL < 150) we retrieved
577,703 SNVs in 1,309 individuals. Further, for comparison and to predict the functionality
of the variants, annotations were also performed using the dbNSFP (database of human
non-synonymous SNPs and their functional predictions, http://varianttools.sourceforge.net/
Annotation/DbNSFP) and Seattle (http://snp.gs.washington.edu/SeattleSeqAnnotation131/)
databases. These databases gave functional prediction results from four different programs
(polyPhen2, SIFT, MutationTaster and LRT), apart from gene and variant annotations.
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Exome-wide association study of exome sequence data

For every SNV we did run a score test for association with HDL-C measures (Figure 1), thereby
adjusting for age, age2, sex and family relatedness using mmscore of GenABEL package
(version 1.6-7)%%. The Bonferroni corrected significance threshold applied for this step is
2.572-10°(0.05/19,438), as Seattle predicted the SNVs to be annotated within 19,438 unique
genes. Linkage disequilibrium (LD) between the significant SNV’s was estimated using the
exome sequence data of the 1,309 individuals of the ERF study to define the independent
number of significant SNVs.

Replication of the common SNVs

All SNVs with a MAF above 0.1 are considered common variants. These variants all occur in
commonly used reference panels, like the 1000 Genomes reference panel and the Genome of
the Netherlands (GoNL)*. We therefore replicated the common variants in an independent
set of 85,597 individuals (Figure 1). Of these individuals, 33,613 individuals are from Dutch
descent and therefore imputed to the GoNL reference panel (Lifelines, LLS, NTR-NESDA,
PREVEND, PROSPER, RS-I, RS-Il and RS-Ill). More details can be found in the Supplementary
Material of van Leeuwen et al.*'. The remaining 51,984 individuals are not of Dutch descent
and therefore imputed to the 1000 Genomes reference panel (AGES, ARIC (African Americans
(AA) and European Americans (EA)), CHS (EA), CROATIA KORCULA, CROATIA SPLIT, CROATIA
VIS, FHS, FamHS, Generation Scotland, JHS, MESA (AFA, CAU, CHN and HIS) and ORCADES).
Cohort descriptions of the individuals imputed to the 1000 Genomes reference panel can
be found in Supplementary Methods and Supplementary Table 1 and 2. All studies were
performed with the approval of the local medical ethics committees, and written informed
consent was obtained from all participants. In most individuals, HDL-C was measured at
fasting in subjects. We did not adjust for lipid lowering medication within the replication
cohorts.

Replication and validation of rare SNVs

All SNVs with a MAF below 0.1 are considered rare variants. We tried to replicate (Figure 1)
the rare SNV findings in the Rotterdam study cohort | (RS-1) exome sequence (N=1,387) and
GoNL imputations (N=2,989). The RS-l is an ongoing prospective population-based cohort
study, focused on chronic disabling conditions of the elderly. The study comprises an outbred
ethnically homogenous population of Dutch Caucasian origin. The rationale of the study has
been described in detail elsewhere32. In summary, 7,983 men and women aged 55 years or
older, living in Ommoord, a suburb of Rotterdam, the Netherlands, were invited to participate
in the first phase. The Rotterdam Study has been approved by the medical ethics committee
according to the Population Study Act Rotterdam Study, executed by the Ministry of Health,
Welfare and Sports of the Netherlands. A written informed consent was obtained from all
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study participants. Fasting blood samples were taken during the participant’s third visit to the
research center. In the RS-l exomes of 2,628 individuals were sequenced at an average depth
of 20x using the Nimblegen SeqCap EZ V2 capture kit on an Illumina Hiseq2000 sequencer
and the TrueSeq Version 3 protocol. The sequences reads were aligned to hg19 using BWA?,
Subsequently, the aligned reads were processed further using Picard, SAMtools* and GATK?’.
Genetic variants were called using Unified Genotyper Tool from GATK. Samples with low
concordance to genotyping array (< 95%), low transition/transversion ratio (< 2.3), high
heterozygote to homozygote ratio (> 2.0) and low call rate (< 90%) were removed from the
data. SNVs with a low call rate ( < 90%) and out of HWE (p-value < 10®) were also removed
from the data. The final dataset consisted of 600,806 SNVs in 2,356 individuals. File handling
and formatting was done using vcftools and PLINK. Annotation of the variants was performed
using SeattleSeq annotation 138. The total number of individuals with both fasting HDL-C
measurements and exome sequence data available which did not use any lipid lowering
medication was 1,387. More details of the imputations with the GoNL reference panel can be
found in the supplementary material of van Leeuwen et al.>'. The total number of individuals
with both fasting HDL-C measurements and GoNL imputations available which did not use
any lipid lowering medication was 2,989.

Next, using the pedigree available for ERF participants, we visualized the pedigrees in
which the rare (MAF < 0.1) SNVs are detected (Figure 1). Visual inspection of the pedigrees
confirmed if the variants are artifacts or not.

Test for association with metabolomics compounds

For about 1,100 individuals within the ERF study, additional measurements of metabolomics
compounds are available on 5 platforms. The first two, include lipid and TG species were
quantified either by using liquid chromatography mass spectrometry (LC-MS)** or by
electrospray ionization tandem mass spectrometry (ESIMS/MS)*. In addition to the lipidomics,
a third one included aminoacids and acyl-carnitines were analyzed using the AbsolutelDQTM
p150 Kit of Biocrates Life Sciences AG, according to the manufacturer’s recommendations
and quantified using MetlQ software as integrated a part of the kit*. The fourth and fifth
include two different extraction windows from nuclear magnetic resonance spectroscopy
(NMR); small molecular compounds window as described before®” and lipoprotein window
as extracted using a commercially available algorithm developed by Bruker Corporation, Life
Sciences services.

We tested whether the replicated or validated SNVs are also associated with any of the 713
metabolites (Figure 1). The sample sizes varies between the metabolomic compounds, for
the analysis of phosphatidylcholine data is available for around 400 individuals, whereas the
analysis of HDL-C particles contains about 1,150 samples. We therefore did run a score test
for association, thereby adjusting for age?, sex, lipid lowering medication (binary variable: yes
or no) and family relatedness using mmscore of GenABEL package (version 1.6-7)%%%,
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As metabolites are related to each other we used the method of Li and Ji* to determine
the number of effective number of independent variables. In our study, the number of
independent variables was calculated to be 58.0047 and therefore the experiment-wide
significance threshold required to keep type | error rate at 5% is 8.84-10*“. Since we test 8
independent variants the final significance threshold for this section is 1.08:10°.

Exome-wide association study
within the ERF study(N=1,252)

Replication of
common SNVs (MAF>0.1)
within 85,597 individuals.

Replication and validation of
rare SNVs (MAF < 0.1)

{ Test for association with metabolites in ERF }

Figure 1. Flow diagram overview of the analysis plan.

Biocrates measurements

Serum samples from 992 individuals were analyzed using the AbsolutelDQTM p150 Kit of
Biocrates Life Sciences AG, according to the manufacturer’s recommendations and quantified
using MetlQ software as integrated a part of the kit. Liquid handling of serum samples (100
ul) was performed with a Hamilton Star (Hamilton Bonaduz AG) robot. Sample analyses
were done on APl 4000 Q TRAP LC/MS/MS System (Applied Biosystems) equipped with a
Schimadzu Prominence LC20AD pump and a SIL-20AC autosampler. Briefly, the methods
include flow injection, ESI-MS/MS detection and extraction. Quantification of the metabolites
of the biological sample is achieved by reference to appropriate internal standards.
Concentrations of all analyzed metabolites are reported as micromolar concentrations. The
kit enables measurement of 14 amino acids, hexose (H1), free carnitine (CO), 40 acylcarnitines
(Cx:y), hydroxylacylcarnitines (C(OH)x:y), and dicarboxylacylcarnitines (Cx:y-DC), 15
sphingomyelins (SMx:y) and N-hydroxylacyloylsphingosylphosphocholine (SM (OH)x:y), 77
phosphatidylcholines (PC, aa = diacyl, ae = acyl-alkyl) and 15 lyso-phosphatidylcholines. Lipid
side chain composition is abbreviated as Cx:y, where x denotes the number of carbons in the
side chain and y the number of double bonds. For example, “PC ae C33:1” denotes an acyl-
alkyl phosphatidylcholine with 33 carbons in the two fatty acid side chains and a single double
bond in one of them. Five reference samples included in each plate were used calculate the
coefficient of variance (CV) and metabolites which have more than 25% of CV were excluded
from the analysis. Outlying data points that were 5 standard deviations outside of the mean
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were excluded from each variable. For the 27 metabolites which were measured by absolute
quantification, 9 (C12, C14, C16, C18, C3, C4, C5, C6 (C4:1-DC) had lower median values than
of their experimentally determined lower limit of quantification (LLOQ) and were excluded
from the analysis. By definition LLOQ considers the lowest concentration that meets all
quality criteria with respect to accuracy and precision according to the FDA guidelines. The
precise position of the double bonds and the distribution of the carbon atoms in different
fatty acid side chains cannot be determined with this technology.

Bioinformatic analysis

The biological relevance of the findings was validated by bioinformatic analysis with dbSNP,
GeneCards and STRING interaction network. Specifically, to facilitate the manual process of
assigning genes to a locus, we used an automated workflow developed in-house to generate
reports containing the associated protein, enzyme, metabolic reaction, pathway, and disease
phenotypes about each gene within a distance of +/- 200 kbp of the locus. In addition, SNVs
published in the GWAS catalog® and eQTLs from the GTEx-eQTL database (http://www.nchi.
nlm.nih.gov/gtex/GTEX2) were given. In detail, the reports created by our workflow were
based on the dbSNP*, NCBI-Gene (http://www.ncbi.nlm.nih.gov/gene), GTEx-eQTL, GWAS
catalog, ConsensusPathDB*!, UniProtKB*, OMIM*, Gene Ontology*, TCDB*, ExPASy*® and
KEGG database®. The databases had been downloaded earlier from the respective ftp servers
and have been integrated offline. For the KEGG database the last freely available version was
used (30-6-2011).

RESULTS

Exome-wide association study of exome sequence data

Figure 1 shows a flow diagram illustrating the analysis plan. We first conducted an exome-
wide association study of HDL-C within 1,252 individuals who had both fasted HDL-C levels
and the use of lipid lowering medication available. All individuals are part of the ERF study.
Of the 1,252 individuals, 500 are male (39.94%) and 752 are female (60.06%). The mean age
of the 1,252 individuals was 47.90 years (standard deviation of 14.19), the mean age of the
males was 48.72 years (14.27) and the mean age of the females 47.36 years (14.13). 148
individuals out of the 1,252 individuals indicated using statins and we corrected their HDL-C
as described in the methods section. Figure 2 and 3 show the results of the exome-wide
association study. Although there is some inflation in the g-q plot (A=1.05). The inflation is
explained by both the common variants (particularly in the cholesteryl ester transfer protein
(CETP) region) and the rarest variants (MAF < 0.01). There was no evidence for inflation for
the low frequency variants (MAF between 0.01 and 0.1). There are 18 SNVs with a p-value
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below 2.572:10-6, see Table 1. Of note is that the direction of the effect of all 18 SNVs except
2 SNVs in the CETP region are positive and thus increase the HDL-C, see Figure 4.
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Figure 2. Results of a genome wide association analyses in 1,252 participants of the ERF study. The black
line is the exome-wide significance line (2.572 - 10°).
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Figure 3. Q-Q plot for the genome wide association analyses in 1,252 participants of the ERF study.
Figure a shows the g-g plot including all 563,909 SNVs, figure b shows the g-q plot after the 68 SNV’s in
the CETP region (chromosome 16, 56.99 Mbp — 57.02 Mbp) are removed.



144 | Chapter 4.2

Frequency

Frequency

Frequency

Figure 4. Histogram of (a) the HDL-C and (b) the residuals after adjusting HDL-C for sex, age, age? and
family relationship in the 1,252 participants of the ERF study marking the carriers of the rare SNVs. The
red line indicate the heterozygous carriers that use lipid lowering medication (the HDL-C is corrected
for this lipid lowering medication). The magenta lines indicate the heterozygous carriers that do not
use lipid lowering medication. The blue line indicate the homozygous carriers, these do not use lipid
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Figure 4. Continued. Histogram of (a) the HDL-C and (b) the residuals after adjusting HDL-C for sex, age,
age? and family relationship in the 1,252 participants of the ERF study marking the carriers of the rare
SNVs. The red line indicate the heterozygous carriers that use lipid lowering medication (the HDL-C is
corrected for this lipid lowering medication). The magenta lines indicate the heterozygous carriers that
do not use lipid lowering medication. The blue line indicate the homozygous carriers, these do not use
lipid lowering medication.

LD analysis between the 18 significant SNV’s using PLINK within the 1,309 individuals of the
ERF study showed that all SNVs in the CETP region on chromosome 16 are in LD (R? > 0.3).
This is also the case for the SNVs on chromosome 11 and 15 (Supplementary Table 3). Thus,
we identified 9 independent loci.
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To evaluate whether the findings are influences by the correction of HDL-C in the 148
individuals that used statins, we re-evaluated the 18 variants excluding those treated. There
were 4 CETP variants that are not significant anymore when we exclude treated individuals
(Supplementary table 4). This may in part be explained by the lower statistical power after
excluding 148 out of 1,252 individuals. As the effect was in the same direction and very similar
as in the initial discovery analyses, we took these variants forward to the replication. All rare
variants remained significant when both excluding the individuals using statins.

Replication of the common SNVs

Table 2 shows the association results for the common variants after the meta-analysis of
33,613 individuals from Lifelines, LLS, NTR-NESDA, PREVEND, PROSPER, RS-I, RS-l and RS-lII
imputed to the GoNL reference panel and 51,984 individuals from AGES, ARIC (AA and EA),
CHS (EA), CROATIA KORCULA, CROATIA SPLIT, CROATIA VIS, FamHS, FHS, Generation Scotland,
JHS, MESA (AFA, CAU, CHN and HIS) and ORCADES imputed to the 1000 Genomes reference
panel combined. All common variants are genome-wide significantly replicated including
those that lost their significance when excluding those treated.

Table 2. The replication of the significant common SNVs within 85,597 samples.

* Al is allelel, A2 is allele2. "Freq is the frequency of Al. * B is the effect of Al. ¢ Direction: AGES —
ARIC (AA) — ARIC (EA) — CHS (EA) — CROATIA KORCULA — CROATIA SPLIT — CROATIA VIS — FamHS — FHS
— Generation Scotland — JHS — Lifelines — LLS — MESA (AFA) — MESA (CAU) — MESA (CHN) — MESA (HIS)
—NTR — ORCADES — PRVEND — PROSPER — RS-I = RS-II = RS-III.

rsiD Al* A2* Freq" B* EE p-value
rs13306677 A G 0.075 0.040 0.006 9.03E-12
rs17231506 T C 0.330 0.095 0.003 6.74E-189
rs1800775 A C 0.474 0.086 0.003 1.92E-167
rs3816117 C T 0.477 0.085 0.003 4.30E-166
rs711752 A G 0.435 0.085 0.003 1.18E-164
rs708272 A G 0.435 0.085 0.003 1.07E-164
rs7205804 A G 0.437 0.082 0.003 8.68E-159
rs1532625 T C 0.438 0.082 0.003 1.92E-158
rs1532624 A C 0.438 0.083 0.003 7.27E-160
rsID Direction®

rs13306677 + - + + + - - + + + + + + - 4+ - + + + + + + + +
rs17231506 + + + + + + + + + 4+ + + + + + + + 4+ + + + + + +
rs1800775 + + + 4+ + + + + + + + + + 4+ + + 4+ + + + + + + A+
rs3816117 + 4+ + + + + + 4+ 4+ + + + + + + 4+ + + + 4+ + o+ 4+ o+
rs711752 + 4+ + + 4+ + + + 4+ + + 4+ + + + 4+ + + + 4+ + + 4+ o+
rs708272 + 0+ + 4+ + + 4+ + + + + + + + + + 4+ o+ o+ o+ o+ o+ o+ o+
rs7205804 + + + 4+ + + 4+ + + + - + + 4+ + + 4+ + + + + + + +
rs1532625 + o+ 4+ o+ 4+ o+ o+ o+ o+ o+ + + 2?2?72 4+ 4+ 4+ o+ 4+ o+ 4+
rs1532624 + + + 4+ + + + + + + b E R R
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Figure 5. Segregation of the rare variants within families of the ERF studies. (a) chr2s189898907
family 1, (b) chr2s189898907 family 2, (c) chr10s44227551 family 1, (d) chr11s102221002 family 1, (e)
chr11s102564690 family 1, chr11s104879478 family 1, (f) chr15s63893739 family 1, (g) chr15s63893739
family 2, (h) chr15s64222558 family 1, (i) chr17s3937518 family 1, (j) chr17s3937518 family 2, (k)
chr21s43786630 family 1. No exome data was available for the individuals colored in black. Individuals
colored in red do have exome data available, but no variant was detected. Individuals colored green are
heterozygous for the variant and individuals colored in blue are homozygous for the variant.
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Replication and validation of rare SNVs

Replication efforts within the exome sequencing project of CHARGE failed due to different
phenotype definitions and chip differences. We tried to replicate the rare SNV findings in the
Rotterdam study cohort | exome sequence (N=1,387) and GoNL imputations (N=2,989) and
found 4 rare SNVs in the exome sequence data (rs146100075, rs150868637, rs141354791
and rs143777468) and 5 rare SNVs in the GoNL imputations (rs146100075, rs117090827,
rs140242880, rs143777468 and rs35511240). Supplementary table 5 gives the effect of the
variants, none of the rare variants were marginally significant.

As none of the rare variants (MAF < 0.1) could be replicated by imputation or exome
sequencing, we studied segregation of these variants within families. SNVs not segregating
from one generation to the next generation, might be de novo mutations but more likely are
technique errors. Only the two rare loci on chromosome 15 (rs140242880 and rs143777468)
did not segregate within pedigrees of multiple generations and may therefore be false
positives, see Figure 5f, 5g and 5h. Out of the 6 carriers of rs146100075, 4 could be linked in
a single pedigree within 4 generations, the 24 carriers of rs117090827 could be linked within
6 generations, the 8 carriers of rs150868637 could be linked within 5 generations, just like
the 9 carriers of rs141354791 and the 9 carriers of the SNV on chromosome 11 without an rs-
identifier on position 104,879,478, the 11 carriers of rs35511240 could be linked in 2 families,
one including 8 carriers and the other 3 carriers and of the 18 carriers of rs190797467, 17
could be linked within 5 generation, see Figure 5. The 9 carriers of rs141354791 are the
same individuals as the 9 carriers of the SNV on chromosome 11 without an rs-identifier on
position 104,879,478. Of those 9 carriers, 8 are also carrier of the rs150868637 variant.

Test for association with other phenotypes

The 16 exome wide significant SNVs which were replicated or validated, were tested for
association with other related metabolomic compounds. The T-scores (B divided by standard
error) and p-values of all associations were used to create a heatmap, see Figure 6. In total 47
associations between a SNV and metabolomic compounds were significant after Bonferroni
correction (p-value < 1.08-:10*), see Table 3. In Figure 6, the column of the dendograms
show a clear separation in the common variants on chromosome 16 and the other (rare)
variants. This is most likely explained by the smaller effect sizes of the common variants
compared to the effect sizes of the rare variants for most metabolomic compounds. As
expected, we found association between apolipoprotein A-I (ApoA1) and CETP*® and between
apolipoprotein A-Il (ApoA2) and CETP*. There is a significant cluster of two variants within
the CETP region (rs3816117 and rs1800775) and M-HDL-ApoA1l (p-value of 5.19:10° and
5.05-10°%, respectively), L-HDL-ApoA2 (p-value of 4.83-10° and 3.72:107%, respectively) and
M-HDL-ApoA2 (p-value of 6.96-10° and 6.89-10°, respectively). Carriers of the minor allele
of the genetic variants on chromosome 16 showed decreased levels of these metabolomics
compounds.
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Figure 6. Heatmap based on the T-score of the associations between all replicated or validated SNVs
and metabolomic phenotypes. Only the metabolomics phenotypes are shown which are significantly
associated with at least one SNV. Associations marked with . have a p-value between 0.05 and 1.08 -
10*, associations marked with * have a p-value between 1.08 - 10*and 5 - 107 and associations marked
with ** have a p-value between 5- 107 and 5 - 10°.
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Table 3. The significant results of the test for association with metabolomic compounds.

rsiD chr position metabolite name B se, p-value N
rs35511240 17 3,937,518 XL-HDL-cholesterol 1.661 0.283 5.52E-09 1145
rs35511240 17 3,937,518 XL-HDL-Free cholesterol 1.602 0.282 1.80E-08 1146
rs35511240 17 3,937,518 HDL-Free cholesterol 1.488 0.283 1.75E-07 1151
rs35511240 17 3,937,518 HDL-cholesterol 1451 0.285 4.27e-07 1151
rs190797467 21 43,786,630  XL-HDL-ApoAl 1.134 0.227 6.67E-07 1146
rs190797467 21 43,786,630 PC34:2 1531 0.311 1.29E-06 413
rs35511240 17 3,937,518 XL-HDL-phospholipids 1373 0.290 2.54E-06 1149
11:104879478 11 104,879,478 PC(36:3) 1.648 0.349 2.56E-06 1074
rs141354791 11 102,564,690 PC(36:3) 1.648 0.349 2.56E-06 1074
11:104879478 11 104,879,478 Sphingomyeline C26:1 4.439 0.933 2.76E-06 382
rs150868637 11 102,221,002 Sphingomyeline C26:1 4.439 0.933 2.76E-06 382
rs141354791 11 102,564,690 Sphingomyeline C26:1 4.439 0933 2.76E-06 382
rs190797467 21 43,786,630  XL-HDL-ApoA2 1.028 0.227 6.78E-06 1143
rs35511240 17 3,937,518 XL-HDL-ApoA1l 1340 0.298 7.38E-06 1146
rs150868637 11 102,221,002 PC(36:3) 1.673 0.373 7.99E-06 1074
rs190797467 21 43,786,630  SPM 23:1 1.475 0.331 1.09E-05 415
11:104879478 11 104,879,478 HDL-phospholipids 1.399 0.319 1.27E-05 1156
rs141354791 11 102,564,690 HDL-phospholipids 1.399 0.319 1.27E-05 1156
rs190797467 21 43,786,630  XL-HDL-phospholipids 0.969 0.222 1.40E-05 1149
rs35511240 17 3,937,518 S-HDL-triglycerides -1.216 0.282 1.76E-05 1151
rs117090827 10 44,227,551 PCO40:6 1.571 0.363 1.90E-05 406
rs190797467 21 43,786,630 PC 36:2 1.272 0301 2.90E-05 413
rs35511240 17 3,937,518 XL-HDL-phospholipids 1.188 0.283 2.91E-05 1149
rs190797467 21 43,786,630  Phosphatidylcholine diacyl C36:6 1.671 0.395 3.01E-05 378
rs150868637 11 102,221,002 HDL-phospholipids 1.408 0.339 3.49E-05 1156
rs141354791 11 102,564,690 PC(34:3) 1.550 0.374 3.61E-05 1072
11:104879478 11 104,879,478 PC(34:3) 1.550 0.374 3.61E-05 1072
rs1800775 16 56,995,236 L-HDL-ApoA2 -0.278 0.067 3.72E-05 1152
rs3816117 16 56,996,158 L-HDL-ApoA2 -0.273 0.067 4.83E-05 1152
rs141354791 11 102,564,690 M-HDL-Free cholesterol 1.272 0.312 4.92E-05 1157
11:104879478 11 104,879,478 M-HDL-Free cholesterol 1.272 0312 4.92E-05 1157
rs1800775 16 56,995,236  M-HDL-ApoAl -0.276 0.068 5.05E-05 1152
rs3816117 16 56,996,158  M-HDL-ApoAl -0.274 0.067 5.19E-05 1152
rs141354791 11 102,564,690 M-HDL-cholesterol 1.274 0.315 5.55E-05 1156
11:104879478 11 104,879,478 M-HDL-cholesterol 1.274 0.315 5.55E-05 1156
rs1800775 16 56,995,236 M-HDL-ApoA2 -0.269 0.067 6.89E-05 1152
rs3816117 16 56,996,158 M-HDL-ApoA2 -0.267 0.067 6.96E-05 1152
rs190797467 21 43,786,630  Phosphatidylcholine diacyl C36:5 1.541 0.383 6.97E-05 378
rs190797467 21 43,786,630 PCO 36:2 1377 0.344 7.39E-05 413
rs141354791 11 102,564,690 L-HDL-ApoAl 1.273 0.320 7.56E-05 1156
11:104879478 11 104,879,478 L-HDL-ApoAl 1.273 0.320 7.56E-05 1156
rs190797467 21 43,786,630  PE(38:2) 0.952 0.240 7.60E-05 1068
rs190797467 21 43,786,630 HDL-ApoAl 0.868 0.219 7.82E-05 1150
rs141354791 11 102,564,690 HDL-ApoAl 1.319 0.336 8.99E-05 1155
11:104879478 11 104,879,478 HDL-ApoAl 1.319 0.336 8.99E-05 1155
rs117090827 10 44,227,551 PC0O 32:0 1.504 0.384 1.07E-05 406
rs35511240 17 3,937,518 Phosphatidylcholine acyl-alkyl C30:0 2.011 0.514 1.08E-04 380
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Another cluster includes the three rare variants located on chromosome 11 (rs150868637,
rs141354791 and a SNV without a rs-identifier on position 104,879,478) and the metabolites
sphingomyelin C26:1 (p-value of 2.76-10° for all three variants), phosphatidylcholine diacyl
C34:3 (p-value of 1.60-103, 3.61-10° and 3.61-10°, respectively) and phosphatidylcholine
diacyl C36:6 (p-value of 7.99-10° 2.56:10° and 2.56-10°% respectively). Both
phosphatidylcholine diacyl species can accommodate a linoleic acid (C18:2) moiety. Also
rs190797467 on chromosome 21 is significantly associated with multiple metabolites of
linoleic acid (C18:2). Carriers of the variants on chromosome 11 and 21 showed increased
levels of these metabolomics compounds.

The variant on chromosome 17, rs35511240 clusters strongly with multiple large HDL-C
particles including XL-HDL-ApoA1 (p-value = 7.38-10°®), XL-HDL-cholesterol (p-value = 5.52-10°
°), XL-HDL-Free cholesterol (p-value = 1.80-10%), XL-HDL-phospholipids (p-value = 2.54-10°
€) and XL-HDL-phospholipids (p-value = 2.91-10°). Carriers of this variant showed increased
levels of these large HDL-C particles.

DISCUSSION

Combining GWAS with whole exome sequencing and metabolomics in a family-based study,
resulted in 18 significant SNVs (p-value < 2.572-:10°), among which 9 common variants
within the CETP-region. These findings provide a bench mark, as this region is known to
be associated with HDL-C'* levels. As expected, the CETP clustered with ApoAl and ApoA2
metabolites*®* providing a proof-of-principle of the cluster analyses of the new variants
with the metabolomics compounds. We found 9 rare variants which were too rare in other
populations to replicate. However, with the exception of the two chromosome 15 variants, 7
variants segregated in families. Of interest are the 7 rare variants (MAF < 0.1) associated with
HDL-C levels and their association to various metabolomic compounds.

We found two clusters of variants and metabolites The first rare variant cluster involves
variants on chromosome 11 and 21 and various metabolomics compounds of linoleic acid
(18:2). This finding is in line with earlier publications on the association between linoleic acid
and HDL-C®. The three variants on chromosome 11 are located in three distinct genes in a
2,6558,476 base pair region: the BIRC2 (baculoviral IAP repeat containing 2) gene, MMP27
(matrix metallopeptidase 27) gene and the CASP5 (caspase 5, apoptosis-related cysteine
peptidase) gene. The protein encoded by the BIRC2 gene is a member of a family of proteins
that inhibits apoptosis by binding to tumor necrosis factor receptor-associated factors
TRAF1 and TRAF2, probably by interfering with activation of ICE-like proteases. Proteins of
the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular
matrix in normal physiological processes, such as embryonic development, reproduction, and
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tissue remodeling, as well as in disease processes, such as arthritis and metastasis. The CASP5
gene encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential
activation of caspases plays a central role in the execution-phase of cell apoptosis. There
is some evidence that this gene is involved in pantothenate and CoA biosynthesis (p-value
= 4.34-10%, genenetwork.nl). The chromosome 21 locus, rs190797467, is located within
the TFF1 (trefoil factor 1) gene. Members of the trefoil family are stable secretory proteins
expressed in gastrointestinal mucosa. The function is not defined, but they may protect
the mucosa from insults, stabilize the mucus layer, and affect healing of the epithelium. Of
note is that the chromosome 21 variant in TFF1 is 69 kbp downstream of the ATP-binding
cassette, subfamily G, member 1 (ABCG1) gene. This gene encodes an active lipid transporter
and possesses different binding sites for cholesterol*’. GO annotations related to this gene
include phospholipid binding.

The third cluster involves the association of rs35511240 on chromosome 17 with multiple
large metabolites like XL-HDL-ApoA1, XL-HDL-cholesterol, XL-HDL-Free cholesterol, XL-HDL-
phospholipids and XL-HDL-phospholipids. The chromosome 17 variant (rs35511240) is
located within the ZZEF1 (zinc finger, ZZ-type with EF-hand domain 1) gene. There is some
evidence that this locus is involved in phosphatidylinositol signaling system (p-value = 1.24-10
4 genenetwork.nl). The chromosome 17 locus is associated with high levels of HDL-C and XL-
HDL, which both are associated to a reduced risk of cardiovascular disease®.

Two rare variants do not cluster with the metabolic products: rs146100075 located on
chromosome 2 within the COL5A2 (collagen, type V, alpha 2) gene and an intergenic variant
on chromosome 10 (rs117090827).

A potential limitation of our study is the lack of replication of the rare variants. Replication
failed due to the extremely low frequency of these variants and study specific discrepancies
in study design and SNV imputation. However, segregation analysis within the ERF study
confirmed that all variants, except the two variants on chromosome 15 (rs140242880 and
rs143777468), segregate in pedigrees of at least 4 generations. This suggests that these 7
SNVs are not artifacts in the ERF cohort but do not prove a causal association to HDL-C.
The strength of our study is the population based design. As opposed to clinical studies,
population based studies may yield clues to mechanisms involved in “healthy” individuals.
This study shows that combining GWAS with next-generation sequencing and metabolomics
within large family studies can help us unraveling the process from variant into biological
processes influencing clinical measurements. By using a family based study instead of a
clinical study, this study yielded clues to mechanisms involved in “healthy” individuals. Large
population-based samples will be needed to replicate the findings and final replication of our
findings await the result of ongoing sequencing efforts. The combination of exome sequencing
and metabolomics in the general population allows to identify specific lipid compounds that
may be of interest for therapy development.



| 155

REFERENCES

1. Castelli, W. P. et al. HDL cholesterol and other lipids in coronary heart disease. the cooperative
lipoprotein phenotyping study. Circulation 55, 767-772 (1977).

2. Almgren, P. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in
the Botnia Study. Diabetologia 54, 2811-2819 (2011).

3. Browning, S. R. & Browning, B. L. Identity-by-descent-based heritability analysis in the Northern
Finland Birth Cohort. Hum Genet 132, 129-138 (2013).

4, Friedlander, Y., Kark, J. D. & Stein, Y. Biological and environmental sources of variation in plasma
lipids and lipoproteins: the Jerusalem Lipid Research Clinic. Hum Hered 36, 143—153 (1986).
5. Morrison, A. C. et al. Whole-genome sequence-based analysis of high-density lipoprotein

cholesterol. Nat Genet 45, 899-901 (2013).

6. Sung, J., Lee, K. & Song, Y-M. Heritabilities of the metabolic syndrome phenotypes and related
factors in Korean twins. J Clin Endocrinol Metab 94, 4946—4952 (2009).

7. Vattikuti, S., Guo, J. & Chow, C. C. Heritability and genetic correlations explained by common SNPs
for metabolic syndrome traits. PLoS Genet 8, 1002637 (2012).

8. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with bayesian sparse linear mixed
models. PLoS Genet 9, e1003264 (2013).
9. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid

levels. Nat Genet 45, 1274-1283 (2013).

10. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet 47,
589-597 (2015).

11. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 466, 707—713 (2010).

12.  Hellwege, J. N. et al. Genome-wide family-based linkage analysis of exome chip variants and
cardiometabolic risk. Genet Epidemiol 38, 345-352 (2014).

13.  Reddy, M. V.P. L. etal Exome sequencing identifies 2 rare variants for low high-density lipoprotein
cholesterol in an extended family. Circ Cardiovasc Genet 5, 538-546 (2012).

14. Sanghera, D. K. et al. Genome-wide linkage scan to identify loci associated with type 2 diabetes
and blood lipid phenotypes in the sikh diabetes study. PLoS One 6, €21188 (2011).

15. Do, R. et al. Exome sequencing identifies rare LDLR and APOAS alleles conferring risk for
myocardial infarction. Nature 518, 102—-106 (2015).

16.  Myocardial Infarction Genetics Consortium Investigators et al. Inactivating mutations in NPC1L1
and protection from coronary heart disease. N Engl J Med 371, 2072—-2082 (2014).

17. Peloso, G. M. et al. Association of low-frequency and rare coding-sequence variants with blood
lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet 94, 223-232
(2014).

18. The TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and
Blood Institute et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N
EnglJ Med 371, 22-31 (2014).

19. van Bon, B. W. M. et al. Cantu syndrome is caused by mutations in ABCC9. Am J Hum Genet 90,
1094-1101 (2012).

20. Boczek, N. J. et al. Novel timothy syndrome mutation leading to increase in CACNA1C window
current. Heart Rhythm 12, 211-219 (2015).

21.  Makrythanasis, P. et al. MLL2 mutation detection in 86 patients with Kabuki syndrome: a
genotype-phenotype study. Clin Genet 84, 539-545 (2013).



156 | Chapter 4.2

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44

Schuurs-Hoeijmakers, J. H. M. et al. Identification of pathogenic gene variants in small families
with intellectually disabled siblings by exome sequencing. J Med Genet 50, 802—-811 (2013).
Pardo, L. M., MacKay, I., Oostra, B., van Duijn, C. M. & Aulchenko, Y. S. The effect of genetic drift
in a young genetically isolated population. Ann Hum Genet 69, 288—295 (2005).

Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis
of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267-1278
(2005).

Brouwer, R. W. W.,, van den Hout, M. C. G. N., Grosveld, F. G. & van ljcken, W. F. J. NARWHAL, a
primary analysis pipeline for NGS data. Bioinformatics 28, 284—285 (2012).

Li, Y., Willer, C., Sanna, S. & calo Abecasis, G. Genotype imputation. Annu Rev Genomics Hum
Genet 10, 387-406 (2009).

McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 20, 1297-1303 (2010).

Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide
association analysis. Bioinformatics 23, 1294-1296 (2007).

Chen, W-M. & Abecasis, G. R. Family-based association tests for genome-wide association scans.
Am J Hum Genet 81, 913-926 (2007).

Genome of the Netherlands Consortium. Whole-genome sequence variation, population
structure and demographic history of the Dutch population. Nat Genet 46, 818—825 (2014).

van Leeuwen, E. M. et al. Genome of the Netherlands population-specific imputations identify an
ABCAG variant associated with cholesterol levels. Nat Commun 6, 6065 (2015).

Hofman, A. et al. The Rotterdam Study: 2014 objectives and design update. Eur J Epidemiol 28,
889-926 (2013).

Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics 25, 2078-2079
(2009).

Gonzalez-Covarrubias, V. et al. Lipidomics of familial longevity. Aging Cell 12, 426—-434 (2013).

Demirkan, A. et al. Genome-wide association study identifies novel loci associated with circulating
phospho- and sphingolipid concentrations. PLoS Genet 8, 1002490 (2012).

Demirkan, A. et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated
with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res
47,357-362 (2013).

Demirkan, A. et al. Insight in genome-wide association of metabolite quantitative traits by exome
sequence analyses. PLoS Genet 11, e1004835 (2015).

Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation
matrix. Heredity (Edinb) 95, 221-227 (2005).

Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association
loci for human diseases and traits. Proc Natl Acad Sci U S A 106, 9362—9367 (2009).

Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308-311
(2001).

Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic
Acids Res 39, D712-D717 (2011).

Magrane, M. & Consortium, U. UniProt Knowledgebase: a hub of integrated protein data.
Database (Oxford) 2011, bar009 (2011).

McKusick, V. A. Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders.
(Baltimore, Johns Hopkins University Press., 1998).

Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology
consortium. Nat Genet 25, 25-29 (2000).



45.

46.

47.

48.

49.

50.

51.

52.

| 157

Saier, M. H., Jr, Tran, C. V. & Barabote, R. D. TCDB: the Transporter Classification Database for
membrane transport protein analyses and information. Nucleic Acids Res 34, D181-D186 (2006).
Gasteiger, E. et al. EXPASy: The proteomics server for in-depth protein knowledge and analysis.
Nucleic Acids Res 31, 3784-3788 (2003).

Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28,
27-30 (2000).

Karuna, R. et al. Plasma levels of sphingosine-1-phosphate and apolipoprotein m in patients with
monogenic disorders of HDL metabolism. Atherosclerosis 219, 855-863 (2011).

Maga, S. F., Kalopissis, A-D. & Chabert, M. Apolipoprotein A-ll is a key regulatory factor of HDL
metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 96,
56-66 (2014).

Rassias, G., Kestin, M. & Nestel, P. J. Linoleic acid lowers LDL cholesterol without a proportionate
displacement of saturated fatty acid. Eur J Clin Nutr 45, 315-320 (1991).

Schmitz, G., Langmann, T. & Heimerl, S. Role of ABCG1 and other ABCG family members in lipid
metabolism. J Lipid Res 42, 1513-1520 (2001).

Pascot, A. et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia
of abdominal obesity. J Lipid Res 42, 2007-2014 (2001).






=y

&
/

A & PART 5

W GENERAL DISCUSSION AND SUMMARY

e - - .
-
. g b -
1\ ¢ .
|
; " £ /-
. ]
; 1 ﬁ :
L A









162 | Chapter5.1



| 163

Although lifestyle and environmental risk factors such as body weight and nutrition play at key
role in circulating lipid regulation, in humans lipid levels are in part determined by genomic
variations®?, including rare and common coding variants and alternative processes like DNA
methylation. This thesis focuses on genetic variations which cause an increased or decreased
level of circulating lipid levels in the general population. | investigated the association of
common and rare variants, both single associations and interactions of mutations, using
various reference databases to impute unmeasured variants. This chapter summarizes the
findings of this thesis, addresses methodological issues, links the findings to other related
research and discusses the implications of the findings towards the understanding of the
genetic background of circulating lipid levels.

The 1000 Genomes reference panel

The two projects described in Chapter 2 have been conducted in the Cohorts for Heart and
Aging Research in Genetic Epidemiology (CHARGE) consortium*! using the 1000 Genomes
(1kG) reference panel'?. This diverse reference panel is the largest catalogue of human
genetic variation available at this moment including 1,092 samples and about 39.7 million
bi-allelic polymorphic markers.

In Chapter 2.1 | used the association analysis of the variants of 59,432 individuals within
the CETP region to fine-map the association between this gene and high-density lipoprotein
cholesterol (HDL-C). The CETP gene is a target for drug development for dyslipidemia due
to it’s association with HDL-C'*1°, The strongest reported association between HDL-C and
CETP found by genome-wide association studies (GWAS) was rs3764261%. This variant is
located 2,8kbp outside the CETP gene. The T-allele of this variant is associated with 3.47 mg/
dl increase in HDL-C cholesterol. Although rs3764261 was identified by Teslovich et al.® to
be the lead Single Nucleotide Polymorphism (SNP) of this region, other variants are used in
clinical settings. Three of the classical variants are located in the promoter region of the CETP
gene: -1337C/T (rs708272 or TaglB), -971G/A and -629C/A (rs1800775) polymorphisms®’.
In this project | used the GCTA tool*® to identify the independent variants associated with
HDL-Cin the CETP region. | discovered and replicated five variants, including an exonic variant
and a common intronic deletion in an independent sample of 47,866 individuals. | validated
the intronic deletion with Sanger sequencing in a single family from the Erasmus Rucphen
Family study (ERF). The association to the variant reported by Teslovich et al*®, rs3764261,
as measured by the regression coefficient was highly reduced after conditioning on the five
=3.179 mg/dL (p-value = 5.25-10°%), B =0.859 mg/
dL (p-value = 9.51-10%)) but remained highly significant. This finding suggests that these

novel variants | identified (B

unadjusted adjusted

five novel variants may partly explain the association of CETP with HDL-C. Moreover, these
variants may have an independent effect. The deletion | identified in this study explains
35.50% of variation in the HDL-C level in a single family of the ERF study, which is much higher
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than the proportion of the variance explained (14.11%) in the same family by rs3764261. This
also suggests that CETP may have a major effect on HDL-C in a single family.

Several fine-mapping efforts have been previously published!*?, including genotyping
with the exome chip. Our imputation analysis shows that the 1kG may be an cost effective
alternative to finetype regions. Further, using the Phase 1 integrated release v3 of the 1kG |
was able to impute successfully a structural variation and associate this variation significantly
with HDL-C in a large sample.

In Chapter 2.2 | performed a meta-analysis of HDL-C, low-density lipoprotein cholesterol
(LDL-C), total cholesterol (TC) and triglycerides (TG) genome-wide using the 1kG imputations
in approximately 60.000 individuals from the same cohorts of Chapter 2.1. | replicated 88.1%
of all loci described by Teslovich et al*® and 43.4% all loci described by Global Lipids Genetics
Consortium (GLGC) et a/** despite the reduced sample size. More important, | identified
and replicated five new variants: rs6457374 associated with TC, rs186696265 associated
with both LDL-C and TC, rs77697917 associated with HDL-C and rs116843064 associated
with TG. These variants are all within or nearby genes that can be linked biologically to lipid
metabolism (Chapter 2.2).

Of the five variants, rs116843064 is the most interesting finding as it is an exonic missense
variant within the ANGPTL4 that is predicted to be damaging for the structure and the
function of the protein by Polyphen2??, MutationTaster?® and LRT?. ANGPTL4 has been
associated with HDL-C before using the GWAS approach® and with TG before using an
exome sequencing approach? and more recently using the GWAS approach?. This missense
variant changes the amino acid glutamic acid into lysine at position 40 (Glu40Lys). ANGPTL4
is associated significantly with the KEGG term fatty acid metabolism, the GO process lipid
storage and the GO cellular component lipid particle (p-value of 1.10-10%, 1.31-10%° and
2.87-10%8, respectively, genenetwork.nl).

rs6457374 is an intergenic variant between the genes HLA-C and HLA-B which are both
associated with the KEGG term ABC transporters (p-value of 4.29:10° and 3.84-10° for
HLA-C and HLA-B respectively, genenetwork.nl). ABC transporters transport a wide variety
of substrates across extra- and intracellular membranes, including metabolic products, lipids
and drugs. The third finding of this study is the association between HDL-C and rs77697917,
an intergenic variant located between the genes SOST and DUSP3. DUSP3 is associated with
regulation and function of ChREBP in the liver (p-value of 3.03-10°, genenetwork.nl). ChREBP
mediates activation of several regulatory enzymes of lipogenesis. This variant is in high linkage
disequilibrium (D’=0.936) in the 1kG reference panel with rs72836561, an exonic variant
within the gene CD300LG which is predicted to be damaging for the structure and function of
the protein and has been associated with HDL-C in exome-wide association studies?” and TG
in GWAS?® before. The fourth finding of this study was the association between rs186696265
and both LDL-C and TC. This intergenic loci is between the LPA (Lipoprotein, Lp(A)) gene and
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the PLG (Plasminogen) gene. The LPA gene has been associated before with LDL-C and TC
before!®?:,

Remarkable in Chapter 2.2 is the high number of variants that were not significantly replicated
despite the similar sample size and frequencies and direction of effect within the replication
phase as compared to the discovery phase. Although not extremely low, the frequency of
the variants that were not replicated varied between 0.01 and 0.48. One explanation may be
that the more rare variants are spurious findings but it also includes a few common variants,
rs9266229, rs608736 and rs376563 with a frequency above 45%. Non-replication occurred
despite a high imputation quality. Only for two variants (rs60839105 and rs151198427), the
sample sizes in both the discovery and the replication phase were much lower as compared
to the other variants. An explanation for the smaller sample size might be the lack of African
populations in the discovery. As these variants are specific for the African population as
suggested by the 1kG data (Phase 3) in which the frequency of the C-allele is 92% in African
samples and 100% in the European samples for rs60839105 and the frequency of the G-allele
is 86% in the African samples and 100% in the European samples for rs151198427, many
studies were not informative. Imputations of cohorts with individuals of African ancestry with
the African Genome Variation Project?® might confirm the association of rs60839105 with
HDL-C and rs151198427 with TC.

Both projects described in Chapter 2 show that GWAS based on the 1kG reference panel are
crucial in finding new loci and fine-map known loci for circulating lipid levels and thus help us
unraveling the biological mechanism behind circulating lipid levels.

The Genome of the Netherlands reference panel

The two projects described in Chapter 2 made use of the data of the 1kG project. Before
finalizing the 1kG, there has been growing awareness that many more rare variants are
population specific. The 1kG contains human variants from various populations, however,
the sample size per population in this reference panel is limited. The expected power to find
for rare variants which are specific for a population, is therefore low when using the 1kG
reference panel. In Chapter 3 | made use of a reference panel for the Dutch population, the
Genome of the Netherlands (GoNL) reference panel with the goal to identify rare variants
associated with circulating lipid levels.

The GoNL consortium enabled many researchers of the Netherlands to collaborate. A
population-specific reference set for imputation was created by the consortium with the goal
of identifying associations between various phenotypes and low-frequency genetic variants.
To this end, 231 parent-offspring trios and 19 parent-offspring quartets of Dutch descent had
their complete genome sequenced with at least 12x coverage. The strength of this reference
set comes from several factors. First, the trio design which improves the haplotype quality,
second, the coverage which is higher than that of the 1kG Project, and third, the sequencing
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of samples from a homogeneous population. The quality of the haplotypes boosts imputation
accuracy in independent samples, especially for lower frequency alleles.

The collaboration resulted in a pipeline for imputations with the GoNL reference panel
(Chapter 3.1) which is now used by all main Dutch biobanks for imputations. Chapter 3.2
shows that using the population-specific reference panel there was a significant improvement
for rare variants (Minor Allele Frequency (MAF) between 0.05 and 0.5) compared to the 1kG.
Of note is that the improved imputation accuracy is also seen for British and Italian samples.
A combined reference set comprising both the 1kG and the GoNL improves the imputation of
rare variants even further in both Dutch, British and Italian samples. This raises the question
to what extent the reference panel for imputations should be enlarged to impute even the
rarest variants with high quality.

To illustrate the advantage of a population-specific reference panel for the identification of
variants associated with a particular phenotype, | HDL-C, LDL-C, TC and TG. The meta-analysis
of all four traits confirmed the previously reported associations'®?!* and revealed five new
associations at four loci (Chapter 3.3). Among the five loci is a missense variant (rs77542162)
which is associated with both LDL-C and TC. This exonic variant changes within the ABCA6
gene the amino acid cysteine into arginine and is predicted to be damaging for the structure
and function of the protein. Of the five loci, three have an increased frequency in the GoNL
compared with 1kG, suggesting genetic drift in the Dutch population and confirming the
benefit of a population-specific reference panel. Replication in European samples from the
CHARGE cohorts resulted in Bonferroni-corrected significant p-values, but four associations
were not genome-wide significant replicated, which again confirms that these loci would not
have been found by using the 1kG.

Of the five loci identified for circulating lipid levels using the GoNL reference panel, three
rare variants (rs149580368, rs77542162 and rs144984216) are heavily enriched in the
Dutch population. Again these variants are relatively rare (MAF between 0.02 and 0.03). The
enrichment of rare variants may be due to founder effects and drift in the Netherlands. Such
effects are seen for instance for rare variants in LDL-R and APOB, which are known to be
highly population specific not only in the Netherlands but also elsewhere. Even in a small
country as the Netherland, there are geographical differences in frequencies of rare variants.
The enrichment of specific variants is highly relevant for discovery of rare variants. It has
proven to be difficult to identify population-specific variant(s) associated with circulating lipid
levels, because: (1) the sample sizes in a single population are usually not large enough to
significantly associate rare variants with circulating lipid levels as the number of carriers are
very low. The imputation of the variant in the large Dutch population cohorts boosted our
power. (2) It is difficult to replicate population-specific variants. The variants identified were
relatively rare but are also found outside the Netherland and studying an universal outcome
as lipid levels made it possible to replicate the findings rapidly. (3) Last but not least, one
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might argue that the better imputations are partly explained by the improved haplotyping in
trios. In conclusion, chapter 3.3 shows that high quality population-specific reference panels
are valuable to identify rare variants associated with circulating lipid levels.

New approaches to reveal variants associated with HDL-C

Imputations with reference panels, followed by a GWAS and finally a meta-analysis have been
successful approaches to identify associations between traits and single variants for many
traits, among which also circulating lipid levels'®?12%31 Also in this thesis, this approach has
revealed many new loci associated with the HDL-C, LDL-C, TC and TG. In Chapter 4, less
commonly used genetic approaches are used; in Chapter 4.1 | conducted a genome-wide
interaction study and in Chapter 4.2 | conducted an exome-wide association study. As is the
case for GWAS, these approaches are hypothesis free, which means that we search for new
variants or interactions associated with HDL-C. The statistical approach used is association,
though in Chapter 4.2 this approach is combined with segregation analysis in families.
Chapter 4.1 describes the first genome-wide interaction study. Persistent evidence for
interacting loci involved in lipid metabolism comes from experimental animal research in
which various loci interact with each other®. Finding evidence for SNPxSNP interaction in
humans has proven to be difficult as this has so far only been based on the common variants
known to be associated with circulating lipid levels®*3*. This motivated a hypothesis free
genome-wide search for SNPxSNP interactions. However, these searches were hampered by
computational time needed for testing all unique pairs of SNPs. In this thesis, | therefore
used the GLIDE software package®®, which makes uses of Graphic Processing Units (GPUs) to
perform linear regression for all pairs of SNPs. Although the computational issues are now
solved, | was not able to significantly replicate any SNPxSNP interaction that were genome-
wide significant in the discovery in the Rotterdam Study. This might be because | only included
genotyped, common variants in this project and thus limited ourself to 495,508 genotyped
variants. Also the sample size in our project might have been too low as | used only 2,996
individuals who did not received lipid lowering medication. The question is not only why | did
not identify and replicate SNPxSNP interactions, but also how to improve the approach. First,
the sample size should be enlarged, as | stated in Chapter 4.1, as a rule-of-thumb, the sample
size within a genome-wide interaction studies (GWIS) should be 3 to 4 times the size of a
GWAS. However, with sequence data become available, also rare variants, both intergenic,
intronic and exonic, should be included. This willrequire more computational power, but will
also further increase the sample size needed. Although the computational problem may
be solved by improving computer resources which enable fast and parallel computing, the
increase in sample size may be the major limiting factor in classical GWIS. This raises the
guestion whether alternative approaches such as Random Forrest and machine learning will
be more powerful. Up until now, also these have failed to yield replicatable findings.
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The approach of an exome-wide association study (EXWAS) as described in Chapter 4.2 is
related to the GWAS approach. In the EXWAS, all exonic variants are tested for association with
circulating lipid levels. The exonic variants are not imputed as is done in a classical GWAS, but
sequenced. | conducted this study in the ERF. Participants (N=1,252) were exome sequences.
| identified 18 variants, nine common (MAF > 0.1) and nine rare variants (MAF < 0.1). The
common variants are all located with the CETP region. The association between HDL-C and
this gene has been extensively studied in Chapter 2.1 and this finding therefore provide a
bench mark of the approach®®. All common variants were replicated in an independent set of
85,597 individuals. | further studied the relation of the newly identified variants with other
metabolites in the circulation. As expected, the CETP variants clustered with ApoAl1 and
ApoA2 metabolites®** providing again a proof-of-principle of the cluster analyses of the new
variants with the metabolomics compounds. The nine rare variants are located on multiple
chromosomes within genes that have not been associated with HDL-C before. | was not able
to replicate these variants in an independent sample due to the extremely low frequency of
these variants and study specific discrepancies in study design and imputations. However,
segregation analysis within the ERF study validated that 7 out of the 9 variants segregate
in pedigrees of at least 4 generations. This suggests that these 7 Single Nucleotide Variants
(SNVs) are not artifacts in the ERF cohort but do not prove a causal association to HDL-C. Of
interest are the 7 rare variants (MAF < 0.1) associated with HDL-C levels and their association
to various metabolomic compounds. | found two clusters of variants and metabolites. The first
rare variant cluster involves variants on chromosome 11 and 21 and various metabolomics
compounds of linoleic acid (18:2). This finding is in line with earlier publications on the
association between linoleic acid and HDL-C®. The second cluster involves the association of
rs35511240 on chromosome 17 with multiple large metabolites like XL-HDL-ApoA1, XL-HDL-
cholesterol, XL-HDL-Free cholesterol, XL-HDL-phospholipids and XL-HDL-phospholipids. High
levels of HDL-C and XL-HDL are both associated to a reduced risk of cardiovascular disease®.
Although the findings on the rare variants are of interest, the findings await replication. This
chapter highlight the problem of replicating rare variants. The lack of replication of rare
variants is a major problem when more (extremely) rare variants are identified in specific
families. To validate the findings in the general population asks for extremely large replication
studies in which the variant is either imputed with high precision (not often the case for
extremely rare variants) or assessed by direct genotyping (which is rather costly).

The end of the GWAS era?

Recent exome sequence analysis have revealed variants in NPC1L1%, LDLR*', APOA5* and
APOC3* using a classical association approach. Of interest is the fact that these were all
candidate genes that were known to be associated to lipid metabolism before, suggesting
that the candidate gene study may make a comeback in the era of whole genome sequencing.
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Using a hypothesis-free approach like GWAS approach, it is possible to discover new loci
associated to lipid metabolism. It has been long speculated that GWAS has reached its limit
in identifying variants with large effects. The efforts described in Chapter 2.1, 2.2 and 3.3
show that the era of GWAS is not over and that this method can still help us in unraveling the
genetic background of circulating lipid levels, both for fine-mapping known regions and for
the discovery of new loci. Enlarging sample size has resulted in new findings. The first results
of GWAS of a few cohorts with circulating lipid levels were published in 2008%! identifying
a few common loci associated with HDL-C, LDL-C and TC. Later on in 2010, Teslovich et al.*
published a genome-wide meta-analyses using more than 100,000 individuals of European
ancestry which has resulted in 95 common loci for HLD-C, LDL-C, TC and TG, of which 59
show genome-wide significant associations for the first time. A follow-up meta-analysis of
circulating lipid levels by the GLGC contained 188,577 individuals of various ancestry and
revealed an additional 62 loci?*. The latest published meta-analysis of circulating lipid levels
was published by ENGAGE, it contained 62,166 samples of European ancestry and identified
10 new loci associated with circulating lipid levels?®. All these projects have revealed mostly
common loci associated with HLD-C, LDL-C, TC and TG and underscore that the statistical
power of GWAS has not been optimal and thus many of relatively common variants (0.05
< MAF < 0.20) have not surfaced yet in the GWAS conducted to date. The reference panel
used for these first lipid GWAS, the HapMap reference panel, is most likely the reason why
only common variants are identified as this reference panel mainly contains predominantly
common variants. Reference panels that were larger in numbers of variants as they were based
on larger population, revealed new variants but are also crucial to fine-map a region identified
earlier. As more and more populations are sequenced, reference panels will improve and new
imputations into studies with GWAS are likely to lead to the discovery of more rare variants.
How to proceed: do we still need new GWAS to be conducted in the age of next generation
sequencing? Without a doubt, GWAS is still cheaper than next generation sequencing and
therefore the most cost efficient way to increase the sample size. There still is an urgency to
study population that are not of European ancestry, which have been overrepresented so
far in GWAS. Using more samples of multiple ancestries may increase the power of findings
an association of a variants with an increases frequency in a particular ancestry. GWAS is
expected to find new loci by the use of improved reference panels for imputations. Imputing
improved reference panels into current GWAS may be sufficient to identify new relatively rare
variants. In this thesis | did not use the HapMap reference panel like the previously published
meta-analysis. | used in Chapter 2.1 and 2.2 the 1kG reference panel and in Chapter 3.3 the
GONL reference panel. The improved reference panels contain much more rare variants then
the HapMap reference panel. Is one reference panel better than the other? | showed that
using the GoNL reference panel significantly improved the imputations of the rare variants
compared to the 1kG, but both successfully mediated the identification of rare variants
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associated with circulating lipid levels. However, if population specific reference panels are
not available, one may also argue that including as many reference panels as possible may
be the most powerful approach to impute rare variants. This approach is currently followed
for imputations of the 1kG mixing samples of European, Asian and African descent. Chapter
3.2 shows that a combined reference set improves the imputation of rare variants further.
Another question to be answered is what is the most powerful approach to find new rare
variants in the general population: sequencing the general population, not selected for any
phenotype or sequencing those with dyslipidemia, i.e., those within the extremes in the
lipid distribution and imputing their variants into the large population based studies. The
latter approach is likely to be most powerful in that a smaller number of persons will have
to undergow sequencing and the probability of finding a predicted damaging mutation??* is
higher.

Future research

In 2008, Maher commented on that genetic components of common traits and diseases
were not found, although that was expected once the human genome was unraveled®. Up
to now, for HDL-C, LDL-C, TC and TG indeed, about ~25-30% of the genetic components have
been unraveled. In this thesis | aimed to identify new variants and fine-map known loci. In
this way, | did identify new rare, low-frequency and common variants, in new and known
loci combining the GWAS, the EXWAS and imputation approaches. However, also this thesis
does not resolve the case of the missing heritability of circulating lipid levels and many new
loci remain to be identified. Although this thesis shows that GWAS has not reached its limits,
there are also other genetic mechanisms that contribute to the total heritability. For example,
structural variants, DNA alterations and gene-gene and gene-environment interactions.
Investigation these might also be very helpful in unraveling the biological mechanism behind
circulating lipid levels.

There is increasing interest in DNA methylation in lipid research. From an epidemiological
perspective the methylation of the DNA is of interest, particularly in relation to environmental
metal exposure related to lipid levels. For example, TCand HDL-C levels in very young children
are associated with epigenetic metabolic programming, which may affect their vulnerability
for developing cardiovascular disease (CVD) in later life**. Tissue-specific methylation patterns
of the APOA1/C3/A4/A5 cluster on chromosome 11q23-24 regulate liver-specific expression
of the genes which are associated with blood lipid levels®. Within this thesis, | found several
associations between circulating lipid levels and ABC transporters. DNA methylation studies
indeed confirmed that DNA methylation changes at the ABCAI gene locus is one of the
molecular mechanisms involved in HDL-C interindividual variability*®.

Besides DNA alterations, also gene-gene interactions are yet to be discovered to be associated
with circulating lipid levels. In this thesis | present the first genome-wide interaction study.
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Although, no gene-gene interactions were identified, | expect large meta-analysis of genome-
wide interaction studies may identify gene-gene interaction associated with circulating lipid
levels in humans as interacting loci have been seen in experimental animal research?.
Although many of the genetic components of HDL-C, LDL-C, TC and TG are not found,
the question has already been raised, how to translate the genetic components into a
pharmaceutical solution for CVD*. The benchmark of GWAS is the proprotein Convertase
Subtilisin/Kexin Type 9 (PCSK9) gene. This gene plays a crucial role in the regulation of plasma
cholesterol homeostatis and fatty acid metabolism*>!. Development of drugs targeting
PCSK9 has resulted in a drug for patients with high cholesterol at risk of CVD*. This drug
inhibits PCSK9 and thereby preventing the binding of PCSK9 to an LDLR which will therefore
be able to remove LDL-C from the blood. This drug lowers LDL-C. There is also interest in
drugs which increase HDL-C. So far, development of medication that raises HDL-C has failed.
One way to prevent the costly failure of medication is to use Mendelian Randomization in
the setting of therapy development. Mendelian Randomization is used to estimate the causal
effect. Although Mendelian Randomizaton has its limitation, particular if pleiotropy occurs,
it has yielded interesting findings. For instance GWAS challenged the view that TG are not
important for CVD by showing variants in TG levels that are also relevant for CVD*. It has been
speculated that, besides LDL-C lowering and HLD-C raising medication, the pharmaceutical
companies may also try to develop TG lowering medication in the future.

As CVD is still the leading cause of mobility and the number one cause of death worldwide®,
future research may also focus on new targets for therapeuticintervention of CVD. Therapeutic
intervention is most straight forward for variants with large effect. An important problem to
solve in GWAS is that the functionally relevant variant has often not been discovered. This
limits the use of GWAS as a way to discover new drug targets. The first requirement for
the development of a new medicine, is to prioritize the findings of GWAS in terms of the
likelihood of a functional effect. Within this thesis, three genes have been described in more
detail: CETR, ABCA6 and ANGPTL4. There are several functional variants within these genes.
One of the methods to prioritize these variants, is to look at the C score. The C score is a single
measure resulting from the Combined Annotation-Dependent Depletion (CADD) method®®
which objectively integrates many diverse annotations. The higher the C score of a particular
variant, the more predicted to be deleterious. A C-score of greater of equal 10 indicates that
the variant is predicted to be the 10% most deleterious substitutions that can occur within
the human genome, a score of greater or equal 20 indicates the 1% most deleterious and
so on. Table 1 shows the C scores for the variants within the CETP, ABCA6 and ANGPTL4
genes within the 1kG data. Although there are also variants within these genes which are
not predicted to be deleterious, there do exists some variants within these gene that are
predicted to be the 1% most deleterious substitutions that you can do to the human genome.
Table 2 shows the top five highest C scores identified within this thesis. More investigation in
these variants may results in new targets for pharmaceutical developments.
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Table 1: the C scores for the variants within the CETR ABCA6 and ANGPTL4 genes within the 1kG data.

Gene Position Variants within the 1kG Range C score
CETP 16:56,961,850-56,983,845 312 0.001-34.000
ABCA6 17:69,078,691-69,143,262 987 0.001-22.100
ANGPTL4 19:8,363,289-8,374,375 161 0.001-26.200

Table 2: the top five highest C scores for the variants identified within this thesis within the 1kG data.

rs identifier Gene Position C score
rs116843064 ANGPTL4 19:8,429,323 35
rs77542162 ABCA6 17:67,081,278 29.1
rs35511240 ZZEF1 17:3,937,518 10.26
rs34065661 CETP 16:56,995,935 9.047
rs711752 CETP 16:56,996,211 8.457
Conclusion

In conclusion, this thesis describes the search for differences in the human genome that cause
a change in the level of circulating lipid levels. | used therefore the GWAS, GWIS and ExXWAS
approach. Although the GWIS did not reveal new significant SNPxSNP interactions associated
with HDL-C, the project gave us some lessons for follow-up GWIS projects for the future. For
the GWAS | used both the 1kG reference panel and the GoNL reference panel for imputations
to improve the power of our studies which were relatively small samples for GWAS. The 1kG
has not been used before for GWAS of circulating lipid levels, just like the population-specific
reference panel. The fact that | found new variants in new and known regions, suggest that
the era of GWAS is far from over. As the sample sizes of the projects described in this thesis
are relatively small, it might be expected that there is still a lot of missing heritability to be
found using GWAS. A question to be answered is whether the genes fall into novel pathways
or fall into the same ones. The next frontier will be whole genome sequencing. Up until now,
whole genome sequencing idenfied rare variants within candidate geness, but time will tell
whether also hypothesis free approaches will work for these rare variants.
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Cardiovascular disease (CVD) are the leading cause of morbidity and the number one cause
of death worldwide. Risk factors for CVD are four types of circulating lipid levels: high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol
(TC) and triglycerides (TG). These four types of circulating lipid levels are highly heritable.
Despite the large number of research that has been performed about circulating lipid
levels, the genetic variations driving this heritability are still largely unknown. Most genetic
variations discovered today come from genome-wide association studies (GWAS), however,
these variations are mostly common and the effect of these variations on circulating lipid
levels are small.

In this thesis | aimed to identify new variants associated with circulating lipid levels. Therefore
| used several genetic epidemiological approaches to dissect the complex nature of circulating
lipid levels: GWAS, genome-wide interaction studies (GWIS) and exome-wide association
studies (EWAS). The GWAS was applied on genomic data of individuals imputed to both the
Genome of the Netherlands reference panel and the 1000 Genomes reference panel. These
individuals are part of several population-based and family-based cohorts. The hypothesis
free GWIS was applied on the Rotterdam Study, an ongoing prospective population-based
cohort study and the EWAS was applied on the Erasmus Rucphen Family study, an isolated
family-based population.

In Chapter 2 individuals of several cohorts of the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium imputed with the 1000 Genomes reference
panel were used. | first run a GWAS for HDL-C in the CETP-region to identify the causal
variant for the association between the CETP gene and HLD-C in Chapter 2.1. | identified
and replicated five variants, including an exonic variant and a common intronic deletion.
These variant explain most of the effect of a previously reported variant within this region.
In Chapter 2.2 the same individuals were used, but run a GWAS for HDL-C, LDL-C, TC and TG
genome-wide. This resulted in the discovery and replication of new variants; rs6457374 for
TC, rs77697917 for HDL-C, rs116843064 for TG and rs186696265 for both LDL-C and TC.

In Chapter 3 the Genome of the Netherlands reference panel was introduced. | first present
a protocol for imputations with this population-specific reference panel in Chapter 3.1 and
compared this reference panel with the 1000 Genomes reference panel in Chapter 3.2. This
comparison shows that using the GoNL reference panel there was a significant improvement
in imputation accuracy for rare variants, not only for Dutch samples, but also for British and
Italian samples. The GoNL reference panel in Chapter 3.3 was used to impute the nine largest
Dutch biobanks followed by a GWAS per cohort with HDL-C, LDL-C, TC and TG. The meta-
analysis of all four traits revealed five new associations at four loci among which a missense



180 | Chapter5.2

variant (rs77542162) within the ABCA6 gene which is predicted to be damaging for the
structure and function of the protein.

In Chapter 4 a less commonly used genetic approaches was applied to search hypothesis-
free for new variants or interactions between variants associated with HDL-C. To this end,
| performed the, to my knowledge, first GWIS (Chapter 4.1). As these were hampered by
computational time need for testing all unique pairs of SNPs, | used the GLIDE software
package which makes uses of Graphic Processing Units (GPUs) to perform linear regression
for all pairs of SNP. Although the computational issues are now solved, | was not able to
identify and significantly replicate any SNPxSNP interaction. The lack of replication might be
because of the sample size and because | only included genotyped, common variants in this
project.

The second less commonly used genetic approach | applied was an exome-wide analysis
study in an isolated population, the ERF study. Testing all exonic SNPs for an association with
HDL-C resulted in identification of 18 variants, nine common variants within the CETP region
and nine rare variants located on multiple chromosomes within genes that have not been
associated with HDL-C before. | replicated the common variants in an independent sample
of 85,597 individuals and confirmed seven of the rare variants by segregation analysis within
pedigrees of the ERF study of at least 4 generations.

To summarize, in this thesis | first applied the commonly used genetic approach, GWAS
with two new reference panels: the 1000 Genomes reference panel and the Genome of the
Netherlands reference panel. This enabled me to fine-map a known region and to discover
new regions associated with circulating lipid levels. This showed me that the era of GWAS
is not over as using a larger reference panel provided more information about the genetic
background of circulating lipid levels. Secondly, | applied two less commonly used genetic
approaches; GWIS and EWAS. Although the first was not successful in identification of
common SNPxSNP interactions, the second resulted in nine new variants associated with
HDL-C. The conclusion of the work as described in this thesis is that | was able to reveal some
of the genetic variations driving the heritability of circulating lipid levels, but there is still
much more work to do.
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Hart- en vaatziekten vormen wereldwijd de belangrijkste oorzaak van morbiditeit en
mortaliteit. Risicofactoren voor hart- en vaatziekten zijn vier typen circulerende lipide
levels: high-density lipoproteine cholesterol (HLD-C), low-density lipoproteine cholesterol
(LDL-C), totaal cholesterol (TC) en triglyceriden (TG). Deze vier typen circulerende lipide
levels zijn in hoge mate erfelijk. Ondanks het vele onderzoek dat is gedaan naar circulerende
lipide levels, is de meeste genetische variatie die de hoge erfelijkheid bepaald, nog steeds
grotendeels onbekend. De meeste genetische variatie die tot op heden bekend is, is ontdekt
in genoomwijde associatiestudies (GWAS), echter, deze variaties zijn voornamelijk veel
voorkomende variaties en de effecten van deze variaties op circulerende lipide levels zijn erg
klein.

In dit proefschrift streef ik ernaar nieuwe variaties te ontdekken die geassocieerd kunnen
worden met circulerende lipide levels. Daarvoor gebruikte ik meerdere genetische
epidemiologische benaderingen: GWAS, genoomwijde interactie studies (GWIS) en
exoomwijde associatie studies (ExWAS). GWAS heb ik toegepast op genoom-data van
individuals die geimputeerd zijn met ofwel het Genoom van Nederland referentie panel
ofwel het 1000 Genomes referentie panel. Deze individuen zijn deels afkomstig uit populatie
gebaseerde cohorten en deels afkomstig uit familie gebaseerde cohorten. De hypothese vrije
GWIS benadering was enkel toegepast op de Rotterdam Study, een lopende studie en de
EXWAS benadering werd toegepast op een geisoleerde familie gebaseerde populatie.

In hoofdstuk 2 heb ik meerdere individuen gebruikt uit verschillende cohorts die behoorde tot
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.
Deze individuen zijn allen geimputeerd met het 1000 Genomes referentie panel. Allereest
heb ik in hoofdstuk 2.1 een GWAS uitgevoerd voor HDL-C in de CETP-regio om de variant
te identificeren die de associatie tussen het CETP gen en HDL-C veroorzaakt. Hierbij zijn vijf
varianten gevonden waaronder een exonische variant en een veelvoorkomende intronische
deletie. Deze vijf varianten verklaren grotendeels het effect van een variant binnen deze regio
die voorheen is gepubliceerd. In hoofdstuk 2.2 heb ik dezelfde individuen gebruikt maar dit
keer een GWAS uitgevoerd voor HDL-C, LDL-C, TC en TG genoomwijd. Dit resulteerde in de
ontdekking en replicatie van drie nieuwe varianten: rs6457374 voor TC, rs77697917 voor
HDL-C, rs116843064 voor TG en rs186696265 voor zowel LDL-C als TC.

In hoofdstuk 3 besprak ik het Genoom van Nederland referentie panel. Allereerst beschreef
hoofdstuk 3.1 een protocol om de genotype data van individuen te imputeren met deze
populatie-specifieke referentie panel. Ook vergeleken we dit referentie panel met het
1000 Genomes referentie panel in hoofdstuk 3.2. Deze vergelijking liet zien dat wanneer
de GoNL referentie panel gebruikt word, er een significante verbetering is in de imputatie
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kwaliteit voor zeldzame varianten in zowel Nederlandse als Italiaanse en Britse individuen. In
hoofdstuk 3.3 laat ik een GWAS zien voor HDL-C, LDL-C, TC en TG waarbij de individuen van
de negen grootste Nederlandse biobanken geimputeerd zijn met het Genoom van Nederland
referentie panel. De meta-analyse van alle vier de phenotypes resulteerde in vijf significante
associaties op vier posities waaronder een missense variant (rs77542162) binnen het ABCA6
gen van welke voorspelt is dat deze schadelijk is voor de structuur en de functie van het eiwit
dat door het gen geproduceerd wordt.

In hoofdstuk 4 hebben we minder voorkomende genetische benaderingen toegepast om
hypothese-vrij te zoeken naar nieuwe variaties of interaction die met HDL-C geassocieerd
kunnen worden. Ik voerde de eerste GWIS voor HDL-C uit in hoofdstuk 4.1. Deze methode
werd tot dus ver tegengehouden door de computationele tijd die ervoor nodig is om alle
unieke SNP paren te testen. Daarom gebruikte ik de GLIDE software die gebruik maakt van
Graphic Processing Units (GPUs) om lineare regressies voor alle SNP paren te testen. Ondanks
dat de computationele problemen nu konden worden opgelost, werden de bevindingen
niet significant gerepliceerd. De oorzaak hiervan is mogelijk het aantal individuen of de
veelvoorkomende varianten die gebruikt zijn in de studie.

The tweede minder voorkomende genetische benadering die ik heb toegepast was een
exoomwijde assocatiestudie in een geisoleerde populatie, de ERF studie. Door alle exonische
SNPs te testen voor een associatie met HDL-C, identificeerde ik 19 varianten waaronder
negen veelvoorkomende varianten binnen het CETP gen en negen zeldzame varianten op
verschillende chromosomen binnen genen die nog niet met HDL-C geassocieerd zijn. We
repliceerde de veelvoorkomende varianten in een onafhankelijke set van 85,597 individuen
en bevestigden zeven van de negen zeldzame varianten aan de hand van seggregatie analyse
binnen stambomen van de ERF studie van tenminste vier generaties.

Samenvattend, in dit proefschrift heb ik een veelvoorkomende genetisch epidemiologische
aanpak toegepast, namelijk een GWAS met twee verschillende referentie panels: het
1000 Genomes referentie panel en het Genoom van Nederland referentie panel. Hierdoor
hebben we bekende regio’s nader kunnen besturen en nieuwe regio’s kunnen identificeren
die geassocieerd zijn met circulerende lipide levels. Dit laat zien dat het tijdperk van GWAS
nog niet over is aangezien grotere referentie panels ons meer informatie heeft opgeleverd
over de genetische achtergrond van circulerende lipide levels. Daarnaast hebben we twee
minder veelvoorkomende genetische benaderingen toegepast; GWIS en ExXWAS. Ook al was
de eerste niet succesvol in het identificeren van veelvoorkomende SNPxSNP interacties, de
tweede heeft wel zeven nieuwe variaten geassocieerd met HDL-C opgeleverd. De conclusie
van het werk beschreven in dit proefschrift is dan ook dat ik een deel van de genetische
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variatie die leidt tot de hoge erfelijkheid van circulerende lipide levels heb kunnen opsporen
maar dat er nog een hoop werk te verzetten is.
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Zo, na 5 jaar dan eindelijk toe aan het belangrijkste van alles: het dankwoord. Want ook al
staat mijn naam voorop dit boek, een proefschrift schrijf je niet alleen en ook kun je niet
alleen wetenschap uitvoeren. Daarom zijn er een heleboel mensen zowel in Nederland als
erbuiten, zowel op de werkplek als erbuiten die ik moet bedanken voor hun bijdrage. En
mocht ik iemand vergeten: sorry, sorry en nog eens sorry!

Allereerst mijn promotor, professor Cornelia van Duijn. Beste Cock, samen hebben we
gestreden, tegen elkaar en met elkaar, met dit boekwerk als resultaat. Je hebt altijd een
doel voor ogen, voor de afdeling en voor al je werknemers. En ook ik heb daarvan mogen
profiteren. Je hebt mij kansen gegeven om op nationaal en internationaal niveau samen te
werken, om congressen bij te wonen en om te mogen proeven van de wetenschappelijke
wereld. Daar vroeg je wel wat voor terug, je zei onlangs dat je zelf veeleisend bent en dat
klopt! Ondanks dat was je er ook in de minder vrolijke tijden, je hield rekening met de soms
erg moeilijke omstandigheden thuis en op je eigen wijze vroeg je me hoe het met me ging en
dat heb ik erg enorm gewaardeerd. Dank je wel!

Daarnaast wil ik ook graag alle leden van de kleine commissie bedanken: professor Betram
Muller-Myhsok, professor Adrienne Cupples en professor Eric Sijorands. Dear Bertram, it was
a pleasure working with you on the SNPxSNP interactions, unfortunately did not resulted in
any significant replicated findings, but it did give me the oppurtunity to work together with
you and to learn a lot from you. Dear Adrienne, thank you for leading the Lipids Working
Group of the CHARGE consortium, thank you for sharing so much knowledge about lipids and
last but not least, thank you for giving me an amazing experience in your lab. Beste Eric, ook
u wil ik graag bedanken voor het lezen van mijn proefschrift en uw bijdrage aan de meeste
van mijn artikelen. Uw kennis van lipiden was zeer waardevol!

Ook alle leden van de grote commissie wil ik graag hartelijk bedanken: professor Eline
Slagboom, professor Ko Willems- van Dijk, professor Oscar Franco, professort Robert Hofstra
en professor Andre Uitterlinden. Beste Eline, hartelijk dank voor de fijne samenwerking de
afgelopen jaren binnen het Genoom van Nederland consortium. Beste Ko, uw suggesties voor
hoofdstuk 4.2 zijn zeer leerzaam geweest, dank u wel dat u de tijd nam mijn manuscript
te lezen en mijn proefschrift te beoordelen. Dear Oscar, thank you for being part of the
committee. Beste Robert, ook u wil ik graag hartelijk bedanken voor het lezen van mijn
proefschrift. Beste Andre, dank u wel voor alle samenwerking van de afgelopen jaren, ik hoop
van harte dat voortaan iedereen het asfalt optimaler zal benutten zodat u zich niet meer
hoeft te storen aan ongebruikte asfalt in Nederland ;).

Ook professor Ben Oostra wil ik bedanken. Beste Ben, toen ik mijn PhD baan niet meer zag
zitten en het liefste wilde stoppen, liet jij me zien dat het eigenlijk allemaal zo slecht niet was.
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Je sprak me weer moed in en gaf me tips om door te gaan. Die zijn me altijd bij gebleven
en daar ben ik je dan ook erg dankbaar voor. Ik zie een grote glimlach als u praat over uw
“nieuwe” leven, genieten met een grote G van reizen en de kleinkinderen. Geniet ervan, het
is u gegund!

Beste Lennart, je hebt mij de eerste jaren van mijn PhD begeleidt. Je leerde me op alle (kleine)
details te letten, in papers, in presentaties en tijdens het programmeren. Samen zijn we op
meerdere plekken geweest voor congressen en meeting: NUrnberg, Lunteren, Minchen,
Boston en New York. Met een grote glimlach denk ik terug aan het terrasje in New York
waar we iets te veel cocktails dronken om de zon achter de skyline van New York te zien
zakken! Helaas kon je me de laatste jaren niet meer begeleiden maar ben blij dat we toch in
contact bleven en ik altijd op je kon blijven rekenen. Bedankt voor je begeleiding, je geduld
en de gezelligheid! Dear Aaron, | also have to thank you for serving as a second supervisor.
Unfortunately you have only been my supervisor for a few months, but | would like to let you
know that your knowledge about lipids and experience within this field, have really moved
me forward. | appreciate our conversations, also the ones about science ;). Your enthusiasm
when you start talking about Noah, is priceless!

Wat ben ik een bofkont om drie paranimfen te hebben, om dus drie meiden te mogen kennen
die er altijd voor me zijn geweest de laatste jaren! Lieve Sara, dank je wel voor zoveel, het
was leeg in de trein toe je naar Cambridge verhuisde, niemand om mandarijntjes mee te
eten, niemand om kritisch maar rechtvaardig de dag mee door te nemen. Je huilde mee
toen ik slecht nieuws over mijn moeder kreeg en juichte van harte mee toen ik zwanger
van Lotte bleek te zijn. Binnenkort in Cambridge maar eens de nabeschouwing van al die
jaren genetische epidemiologie. Lieve Lieke, mijn langste en kleinste vriendinnetje: na jaren
van alleen maar lol en feestjes in Leiden, werd t voor ons “serieus business”, allebei een
PhD, Amsterdam en Rotterdam. Jullie huis, mijn mama, Lotte, wat er ook allemaal voor
zaken waren, wij bleven geregeld samen eten (en drinken), gewoon even ontspannen en
alle frustraties eruit gooien! Nu we beide onze PhD afgerond hebben, hoop ik dat er weer
nieuwe frustraties komen, zodat we nog vaak samen een excuus hebben om uit eten te
gaan. Lieve Nikkie, alhoewel we nu niet meer wekelijks elkaar spreken, weet ik dat jij er altijd
voor me bent, altijd voor mij klaar staat en dat is echt heel fijn! Geen feestje is een success
zonder jouw hulp en hopelijk als alle feestjes straks gevierd zijn, is er vast weer meer tijd voor
winkelen, theetjes drinken en uit eten gaan. Lieve Nikkie, Sara en Lieke, drie vriendinnen die
ook een PhD doen/gedaan hebben, die de tegenslagen kennen, die de frustraties kennen en
met je meeleven in goede en slechte tijden zowel op t werk als thuis, is enorm waardevol!
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Stress has nothing to do with how many hours you work, and everything to do with how you
feel during those hours. Dear colleagues from genetic epidemiology, dear Adriana, Andrea,
Andy, Annelies, Ashley, Ayse, Bernadette, Carla, Claudia, Constanza, Dina, Dream, Elena,
Elena, Eline, Elza, Fizzah, Ivana, Jeannette, Linda, Maaike, Maarten, Maksim, Najaf, Natalia,
Petra, Revanius, Robert, Sara, Shazad, Sofia, Sven and Yurii: thank you for being my colleagues,
thank you for the nice moments. Sushi on a boat, not in a boat ;). Dear Adriana, no matter
how busy you are, you always have time for anyone else. Thank you for your interest in my
work and life. | really hope that the fishes will have the phenotype you want them to have
and that your thesis will be “een eitje” and that “je niet uit het raam hoeft te springen”! Dear
Dina, thank you for the nice conversations, you are a hard working person and | would like to
give you once again the advice: take a break some now and then ;). Beste Sven, je positiviteit
was vanaf het begin opvallend, dat je die maar mag behouden en iets van dat chaotische mag
verliezen. Succes met de laatste loodjes richting thesis. Beste Carla en Linda, al enige tijd weg
van de afdeling, toch heb ik een hoop van jullie geleerd, mijn dank daarvoor. Succes op jullie
nieuwe plekken. Beste Ashley, wat fijn dat jij tegenover me kwam te zitten, een heel fijn lief
kletsmaatje! Ik weet zeker dat jij er ook wel komt!

Daarnaast wil ik ook de afdeling Epidemiologie van het Erasmus MC bedanken. Beste
professor Albert Hofman, de gestructureerde opzet van de Rotterdam Studie heeft ook mij
de mogelijkheid geboden om deel te nemen in consortia en om onderzoek te doen naar
lipiden is zoveel individuen. Drie dames van de Epidemiologie verdienen ook een plekje in het
dankwoord: Gabriélle, Virginie en Henriétte. Dank jullie wel voor de gezelligheid, tussen het
werk door, tijdens congressen en tijdens cursussen. Ik mis de snoeppot! Also some individuals
of the Internal Medicine of the Erasmus MC should be thanked: Carolina, Karol and Fernando.

Mijn onderzoek zou niet hebben plaatsgevonden als zoveel mensen vrijwillig hadden
bijgedragen aan de Rotterdam Studie en de Erasmus Rucphen Familie Studie, maar ook aan
alle andere studies waar ik mee heb samengewerkt. Ook al weet ik niet wie jullie zijn, jullie
deelname is van enorme waarde!

Alle deelnemers van het GoNL consortium wil ik hierbij ook bedanken. Beste Cisca, Dorret,
Gert-Jan, Eline, Morris en Paul: dank jullie wel dat jullie dit consortium hebben opgezet en
geleidt hebben naar verschillende publicaties. Daarnaast gaat mijn dank ook uit naar de
andere leden van het consortium waaronder Androniki, Freerk, Jeroen, Jessica, Jouke-Jan,
Kai, Laurent, Martijn, Mathijs, Patrick, Pieter en Sara. Dank jullie wel voor de samenwerking,
voor de input in mijn werk, dank jullie wel voor de kritische vragen. De samenkomsten in
Utrecht waren altijd weer bijzonder en zorgden voor een hoop nieuwe wetenschappelijke
vraagstukken. Menig één van jullie ben ik tegen gekomen bij conferenties en dat was altijd
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weer gezellig. Een speciaal word van dank gaat uit naar Cisca en Paul. Beste Cisca, graag wil
ik je bedanken voor je steun voor mijn werk binnen het consortium, je nam altijd de tijd
om mijn werk te beoordelen en hierdoor heb ik me altijd enorm gesteund gevoeld in mijn
werk voor dit consortium. Beste Paul, ik wil je graag bedanken voor al je kritische vragen
die je mij de afgelopen jaren over mijn werk binnen het Genoom van Nederland stelde. Je
liet me hierdoor nog meer nadenken over mijn eigen projecten en dat heeft toch mooie
manuscripten opgeleverd.

It has also been a privilege to work within the CHARGE consortium, in particular the Lipids
Working Group. Dear Prof. Bruce Psaty, your comments and suggestions for my analysis
plan, papers and grant proposal have been very helpful and I learned very much from this,
thank you. Dear CHARGE RSC, thank you for giving me the opportunity to go to Boston for
two month, a fantastic experience. Dear Gina, thank you for organizing the Lipids Working
Group and your input in my projects. Dear Jennifer, thank you for always replying so fast on
emails, thank you for the input in my projects and thanks for the nice collaboration during the
CHARGE commons project. Thank you for showing me around in Boston and Framingham,
you have been a great hostess!

My papers would not have existed without the help of so many co-authors. | could fill a whole
chapter with the names of my co-authors: thank you all for the collaboration, the suggestions
for my papers and for keeping fingers crossed after submission.

Collega’s van de afdeling oog-epi, na een half jaar thuis met de kinderen, is het heerlijk om
weer uitgedaagd te worden, om weer aan het werk te zijn. Dank jullie wel voor jullie warme
welkom! Op naar de toekomst met mooie projecten!

Maar zonder vrienden buiten het werk zou het leven ook maar saai zijn! Lieve Jan, je
opgewektheid is zo inspirerend, gewoon doen waar je zin in hebt, dat zou ik ook meer moeten
doen! Lieve Lisa, je bent een lieverd, altijd een luisterend oor. Jij weet als geen ander wie ik op
dit moment heel erg mis, hoe het voelt en dat ik dat met je kan delen, is heel waardevol. Dank
je wel dat we altijd welkom zijn in Almere/Arnhem, dikke kus, ook voor (al) je mannen. Lieve
Bjel, al je apjes met zoveel uitroeptekens maakt me altijd glimlachen, zoveel interesse als je
altijd toont is echt heel fijn. Ook al is Maastricht niet om de hoek, je lijkt altijd dichtbij! Lieve
mama’s uit Gouda: niet altijd kan wetenschap de vragen over Lotte en Gijs beantwoorden,
jullie well Samen zwemmen, naar de kinderboerderij, naar de speeltuin, of een kopje thee
en dan even al die verhalen over Lotte en Gijs kunnen vertellen, alle vragen kunnen stellen,
zo fijn! Niettemin wil ik natuurlijk ook Pim’s mannen bedanken, lieve Hein, Johan, Martijn,
Rob, Robert, dank je wel dat jullie er altijd zijn voor Pim, hem de nodige afleiding van thuis
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geven. Dan neem ik wel op de koop toe hoe hij vaak weer afgeleverd word ;). Maar ook
Myrthe, Rens, Remco, Loes, Arno, Silvie: even geen boekje schrijven, gewoon een drankje,
een kletspraatje, even ontspanning.

Hierbij wil ik ook alle ooms, tantes, neven en nichten van de familie van Leeuwen, de familie
Jonker, de familie Tempelaars en de familie van der Velden bedanken. Familie: je kan ze niet
uitzoeken dus bof ik zeker met zoveel lieve familieleden! Weliswaar zie ik niet iedereen even
veel maar als we elkaar zien, is het altijd gezellig. Lieve oma, wat een eer dat u hierbij kunt
zijn. Lieve Gertie, Carlo, Coen, Marleen, Rob en Maaike: nou, dat genen tellen zit erop ;). Dank
jullie wel dat jullie er altijd gewoon zijn en ons steunen in onze plannen.

Lieve broertjes, voor jullie ook een belangrijk plekje in mijn dankwoord. Ik ben apetrots
op twee van die grote broers, broers die altijd vragen hoe het gaat, die er altijd zijn op de
belangrijke momenten, die zelf hun eigen dromen achternagaan en die geweldige ooms zijn
voor kleine Lotte en Gijs. Het was zeker niet altijd even makkelijk de afgelopen jaren voor ons
alledrie maar door het verdriet met jullie te kunnen delen, was het verdriet een stuk beter te
dragen. Lieve Michiel, het gaat goed met je, als gepromoveerde in Denemarken en dat heb jij
allemaal zelf bereikt door hard te werken en je eigen doelen na te schreven. Je mag trots op
jezelf zijn daarvoor en anders ben ik het in ieder geval! Lieve Alexander, je bent en blijft mijn
kleine broertje maar ik heb enorm veel respect voor hoe je je zaakjes altijd op orde hebt, alles
probeert te regelen. Jij gaat vast een hele mooie carriere tegemoet. Lieve Steffie, dank je wel
dat je zo'n leuke lieve meid bent, altijd opgewekt en enthousiast!

Lieve papa en mama: voor jullie is dit boek. Om jullie te bedanken voor alle onvoorwaardelijke
steun die ik al mijn hele leven van jullie krijg, of ik nu voor t eerst moet gaan lopen, fietsen,
boeken moet lezen, proefwerken maken of artikelen schrijven, jullie waren er altijd naast de
zijlijn. Jullie hebben me geleerd dat door hard werken je heel veel kan bereiken maar vooral
ook veel moet genieten, dank jullie wel daarvoor, wat een belangrijke en waardevolle lessen!
Lieve papa, je schreef je proefschrift op je papadagen en nu deed ik dat op m’n mamadagen.
Je verteld trots dat je door “al die artikelen” van je dochter, je eigen artikelen niet meer kan
vinden op pubmed! Ik ben ook trots op jouw, het waren geen makkelijke jaren maar je doet
het geweldig! Lieve mama, het mocht niet zo zijn dat je trots dit boekje aan de wereld kunt
showen, dat je op de eerste rij zit bij de verdediging. Dat we samen kleding kopen voor tijdens
de verdediging. Dat je even tegen me zegt dat het vast wel gaat lukken. Ik mis je enorm veel,
elke dag, zoveel momenten die ik met je zou willen delen, even met je zou willen bespreken,
maar toch ben je erbij, in mijn gedachte!
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Lieve Lotte en Gijs, dank je wel dat jullie bestaan, dat jullie er zijn, dat jullie altijd zo vrolijk en
lief zijn en dat jullie me laten zien dat het leven zo simpel, zo leuk kan zijn. Vanavond even
geen werk, geen onderzoek maar gewoon een boekje lezen voor het slapengaan!

Lieve Pim, we hebben zoveel meegemaakt de afgelopen jaren, geweldige dagen en vreselijk
verdrietige dagen maar altijd samen. Je bent er altijd voor me geweest, stond altijd klaar, ik
mocht bij je uithuilen en samen vierden we de leuke dingen. Zoals op onze trouwkaart: samen
met jouw aan mijn zijde, kon en kan ik het allemaal aan. Sorry dat ik soms geen aandacht voor
je had, geen tijd voor je had, je bent altijd in mijn hoofd, en komt altijd op de eerste plaats.
Jij bent mijn thuis, waar ik elke dag het liefste weer naar terugkeer. Dus lieve Pimmie, dank je
wel dat je er bent, ik hou van je.
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