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Introduction

A common task in statistical practice is the estimation of unknown parameters from avail-
able data. When proposing a model one could rely on unbiased estimators, meaning that
the expected value of an estimator equals the true parameter being estimated. Historically,
the absence of bias is often considered an attractive property of an estimator, because it al-
lows intuitive interpretation of the results. However, a fixation on bias reduction increases
the variance, which deteriorates the predictive performance of a model. It also occurs that
the data do not provide enough information to produce well-behaved unbiased estimates.
In these so called ill-conditioned problems, unbiased estimators will over-fit the data, or
will be impossible to obtain.

This work focusses on ill-conditioned problems in high-dimensional data analysis.
Typical examples of high-dimensional data are signals and spectra in analytical chemistry,
image data in computer vision or microarray data in biology. In all chapters penalized esti-
mators, or often called shrinkage estimators, are used to obtain estimates. This means that
the usual loss function is augmented with some type of penalty function that constrains
or shrinks the coefficients in the model.

The concept of ill-posedness is further introduced in the next section. A short intro-
duction into penalized estimation is given in section 1.2. Section 1.3 provides a chapter by
chapter introduction to the different topics within this thesis. In addition it provides some
more details concerning the data and its technological aspects, not treated in the particular
chapters.

1.1 Problem setting

A problem is well-posed if it meets the following three conditions (Vapnik, 1999):
e A solution exists
e The solution is unique
o The solution is stable

If one or more conditions are violated one speaks of an ill-posed problem. In this thesis
we are faced with situations where an (approximate) solution exists. But because there
are too many degrees of freedom the solution is not unique. This is for instance the case



1. INTRODUCTION

when estimating a smooth curve from observed data; the intended estimates contain much
more detail compared to the ‘coarse’ data. A second example occurs when the number of
variables is larger than the number of observations, which causes the estimated covariance
matrix to be singular. Unstable estimates are often the result of overfitting, meaning that
a too complex model is fitted. It leads to large variances of the estimates and it makes the
model sensitive for changes in the data. A specific case occurs when the data matrix is full
rank, but some columns are nearly linearly dependent, causing multicollinearity between
the variables. The performance of these models is generally unsatisfactory.

One solution is to simplify the model. Feature selection and extraction are the classi-
cal options. In this thesis we rely on penalized estimation. It enables model estimation,
prevents overfitting and the variance will be reduced, leading to better predictions. This
however comes at the cost of an increased bias; the difference between the expectation of
the estimator and the true value of the parameter. Bias and variance of a model can be
expressed in terms of the mean squared error (MSE):

MSE(6) = Var(0) + Bias(d, 6)*, (1.1)

with the variance depending on the sample size. A graphical representation of the bias-
variance trade-off, as a function of model complexity, is given in Figure 1.1. Penalization or
shrinkage allows model tuning on a continuous scale, in contrast to the discrete behaviour
of variable selection and extraction. The model complexity is regulated by the weight of
the penalty. Varying the weight affects both the bias and variance, an optimal trade-off
can be found using cross-validation or some type of information criterion. A thorough
discussion of bias and variance is found in Friedman (1997).

1.2 Penalized estimation

Penalized methods have evolved from different directions. A a rough (but slightly artifi-
cial) distinction can be made between size penalties and roughness penalties, often called
smoothers. The introduction of shrinkage estimators in the multivariate setting is largely
due to Stein (1956). He showed that in many cases it is possible to find a biased estimator
with a better bias variance trade-off compared to an unbiased one. The concept of penal-
ization is however much older. Penalizing the differences of adjacent values in the fit to a
series of datapoints was introduced by Whittaker (1923).

Size penalties

Size penalties merely shrink coefficients towards zero or to given values. A prominent
shrinkage estimator is ridge regression, introduced in statistics by Hoerl in 1962 and
popularized by Hoerl and Kennard (1970). The goal of this procedure is to circumvent
multicollinearity problems in regression. In other communities ridge regression is known
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1.2. Penalized estimation

Error

Variance

Low complexity High complexity

Figure 1.1: Bias variance trade-off as a function of the model complexity

as Tikhonov regularization (Tikhonov, 1963), as weight decay (see e.g. Bishop, 2006) or
simply as L2 regularization.

Ridge regression adds a quadratic penalty function to the usual ordinary least squares
cost function. Before estimation, the data are centered so we can leave out the intercept.
We minimize:

Q2 = lly — XBIIz + AllBI13, (12)
with the squared L» norm

18115 = Zﬂ?. 1.3)

The solution can be obtained in closed form and is given by:
B=(X"X+ X)Xy (1.4)

The parameter ) is the tuning parameter. Sometimes it is called the bias parameter, related
to the increased bias in favour of a reduction of the variance. The ridge regression allevi-
ates problems due to collinearity, but because the penalty function takes the square of the
model parameters, it does not yield a parsimonious model.

A penalty that exhibits the advantages mentioned above and also performs variable
selection, is the L; norm penalty (in the following also abbreviated to L; penalty). It
was introduced by Tibshirani (1996) as the least absolute shrinkage estimator (Lasso) and,
independently, by Chen et al. (1998) as basis pursuit. Instead of taking the the square of
the coefficients as in the case of ridge regression, the L; penalty takes the absolute values.
The objective function is defined:

Q1 = |ly — XBI5 + AlIB]|1, (1.5)

3



1. INTRODUCTION

where ||b||1 denotes the L; norm

18Il = 1Bil- (1.6)

Different from L regularization, the L, penalty cannot be solved in closed form. How-
ever, the objective function is convex and thus a solution can be calculated relative effi-
ciently. A large number of optimization schemes are available for the Lasso, some of them
are discussed in Hastie et al. (2009) or Osborne et al. (2000).

Inspired by the success of the Lasso and in order to meet requirements in specific ap-
plications, researchers have proposed various other types of shrinkage estimators. Two
examples are the grouped Lasso (Yuan and Lin, 2006) and the elastic net (Zou and Hastie,
2005). Both target at shrinking groups of variables instead of single features. In high-
dimensional data the Lasso can generate a large amount of bias (see e.g. Zhang, 2011).
Zou (2006) proposed the adaptive lasso as an alternative, which includes data-dependent
weights and can obtain sparser results. A second option is to use the smoothly clipped ab-
solute deviation (SCAD) penalty (Fan and Li, 2001), designed to penalize large parameters
less heavily.

Similar to classical variable subset selection, it is also possible to penalize the non-zero
elements in the model which results in the Lo norm penalty:

Qo = |ly — XBl5 + AllB]lo (1.7)

with the Lo norm

1Bllo = Ig,20 (1.8)
7

The disadvantage of the Lo norm penalty is that it results in a non-convex optimization
problem. Nonetheless a number of successful optimization strategies have been proposed
(see e.g. Blumensath and Davies, 2008; Candes et al., 2008; Bruckstein et al., 2009). Good
results in signal recovery are reported by (Xiang et al., 2012). In chapters 3 and 4 of this
thesis we demonstrate the value of the Lo norm penalty in the context of sparse deconvo-
lution of signal data. In chapter 7 it is used for sparse network estimation. A review of
various types of penalties related to the Lasso is provided by Hesterberg et al. (2008); an
additional set of penalties, used in imaging, is presented by Starck and Murtagh (2006).

Roughness penalties

Roughness penalties utilize the idea that observed data should consist of a smooth signal
that is corrupted by noise. This notion of smoothness is useful in many areas of statis-
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1.2. Penalized estimation

tics. In this thesis, smoothers are used for density estimation, noise removal and func-
tional modelling tasks. Other types of applications can be found in for instance Simonoff
(1996) on smoothing of categorical data, Ramsay and Silverman (2005), discussing func-
tional data analysis, and Hastie and Tibshirani (1990), introducing the generalized addi-
tive model (GAM).

The smoothers we use are the Whittaker smoother and P-splines. References to other
methods are given at the end of the section. The Whittaker smoother is defined as (Eilers,
2003):

Qw = (yi—2)"+ AZ(A%)Q. (1.9)

=1

Roughness is defined using first order differences, with A the differencing operator: Az; =
zi — zi—1. The contribution of the penalty to @ is regulated by the tuning parameter \.
Increasing A will result in a smoother curve. We can translate (1.9) into matrix form:

Qw = |ly — 2|I3 + A||D=||3, (1.10)

with D is the difference matrix such that Dz = Az. In the case with n = 5, the matrix is:

(1.11)

o O O
o
—
I
—
[an)

The penalty uses the squared Lz norm; the sum of the squared differences of adjacent
values. Applying (1.10) results is a smoothly varying curve, if more sudden jumps are
required one could use the L; norm (Eilers and de Menezes, 2005). Results close to a
step function can be obtained using the Lo norm, as recently demonstrated by Rippe et al.
(2012).

For various application the Whittaker smoother has turned out to be a very useful tool.
However, when the data are irregularly sampled (i.e. not at equal distances), it cannot be
applied. In addition, no reduction of the parameter vector takes place, meaning that for
large datasets the systems to solve can become very large. In these cases P-splines can
be applied, which are defined as B-splines with a penalty on the differences. B-splines are
bell-shaped curves, composed of g+1 polynomial pieces, each of degree g. The polynomial
pieces join at g points, called the knots, and together form a smooth bell-shaped curve.
Figure 1.2 shows the individual polynomial pieces, the resulting smooth spline function
and the positions of the knots, for a single B-spline. Standard references to the B-spline
theory are Dierckx (1995) and de Boor (2001).

Using a series of equally spaced B-splines, a smooth curve g can be fitted to the ob-
served data (z,y). If we let the data be represented by B-spline coefficients we get the

5



1. INTRODUCTION

following:
k
§=> a;B;(z,q), (1.12)
Jj=1

with Bj(z, ¢) being the value at z of the j-th B-spline of degree g. Fitting B-splines to our
data results in the following minimization function:

n

k
Qs =) (yi—Y_Bj(z:)a;)? = |ly — Ball. (1.13)

i=1 =1

The B-spline framework requires optimization of the number and positions of the knots.
The P-spline approach, proposed by Eilers and Marx (1996), avoids these issues by re-
lying on equally spaced knots and the penalty. The penalty on the differences (hence
"P-splines”), forces adjacent spline coefficients to be more similar:

k

P=2X> (Aua)). (1.14)

j=1

Parameter A tunes the relative weight of the penalty. Combining (6.2) with the penalty
results in the following objective function:

Qp = |ly — Bal|3 + Al|Dacl3, (1.15)

with Dy the d-th order differences matrix, with most oftend = 1, d = 2 or d = 3. When A\
is chosen very large a constant fit is obtained when d = 1, a linear trend when d = 2 and
a quadratic fit when d = 3. Minimization of (1.15) leads to

(B'B + AD,Dg)& = B'y. (1.16)

Interesting is that the Whittaker smoother as seen above is in fact a zero-degree B-spline
model (matrix B becomes an identity matrix) with knots half-way between the data points.
In addition to the order of the penalty, we can make other changes to the difference matrix
D. In chapter 6 of this thesis, the difference matrix is adjusted in order to preserve the
circular character of the data. Other options are discussed in Eilers and Marx (2010).

A prominent alternative smoother is the LOESS algorithm (Cleveland, 1979) which
relies on local polynomials. A popular choice within signal processing literature is the
polynomial least-squares filter (Wentzell and Brown, 2000), and is also known as the Sav-
itzky and Golay filter (Savitzky and Golay, 1964). Model flexibility is tuned by varying the
degree of the polynomial and the window width. For an overview of several methods we
refer to Hastie et al. (2009). A short account on historical developments can be found in
Loader (1999) and Shenoi et al. (2006).

6
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Figure 1.2: One cubic B-spline function, the knots and cubic (shifted) segments.

1.3 Thesis outline

This section provides an introduction to the separate chapters within this thesis. Per chap-
ter the main problem and proposed solutions are shortly described. Often followed by
some theoretical background concerning the used datasets.

Chapter 2. Mixture models for baseline estimation

Many signals from chemical instruments show a baseline drift. In this chapter a new
baseline estimation procedure is proposed using weighted regression on P-splines. The
weights follow from a mixture model with two components, one for the noise around the
baseline and the second for the peaks. The method relies on a realistic statistical model, in
contrast to many existing baseline correction procedures.

The applications originate from spectroscopy and chromatography. Spectroscopy is
based on absorption, emission or scattering of electromagnetic radiation by atoms or
molecules (Hollas, 2004). The substance under study may be gas, liquid or solid. The
basic idea is to pass an electromagnetic beam through a sample and record the amount
of energy returned at different wavelengths. From the recordings a transmittance or ab-
sorbance spectrum can be produced, which reveals details about the molecular structure
of the sample. Because atoms and molecules have unique spectra, spectroscopy can be
used to identify and quantify chemicals within mixtures.

Chromatography is a class of methods for separation of mixtures into the components
of the substance (see e.g. McNair and Miller, 1998; Webster and Clark, 2010) . The result
of the analysis is presented in a chromatogram: a graph showing the detector response as
a curve. It essentially plots the concentration of analyte in the effluent (the mobile phase
leaving the column) versus effluent time or volume. A typical chromatogram consists of a

7



1. INTRODUCTION

number of peaks representing the different separated components of the original mixture.
In the clinical laboratory this class of techniques is used to detect complex substances such
as drugs and hormones.

Chapter 3. Mixture models for two-dimensional baseline estimation

In chapter 2 we introduced a model to estimate the baseline in one-dimensional signals.
In this chapter the concept is extended to cases with two dimensions, meaning we need to
model a surface. To model a smooth baseline in the case of one dimensional data, we relied
on a P-spline basis. When modelling a surface, a similar methodology can be used: tensor
product P-splines. The advantage of the proposed model is that it incorporates the correla-
tion of both dimensions in the data. In addition, it allows different degrees of smoothing in
both directions. Although the algorithm is applicable to a wide range of baseline estima-
tion problems, here we only focus on artefact elimination in time-resolved spectroscopy.
Other possible applications are baseline estimation for microarrays and electrophoretic
data.

The application that is presented comes from femtosecond spectroscopy and more spe-
cific pump-probe experiments (Dantus and Gross, 2003). The aim of these experiments is
to study the vibration of (excited) molecules on a femtosecond (10715 s) time resolution.
The experiment basically consists of two laser pulses. The first, the pump pulse, excites
molecules within the studied sample. After a certain delay time, the pump pulse is fol-
lowed by the probe pulse, and will pass trough the same volume. The intensities of the
probe pulse are registered, resulting in an absorption spectrum, similar to a steady state
spectrometer. By repeating the experiment, with increasing time between the pump and
pulse, one can monitor the dynamics of the system as a function of time. Combining the
consecutive spectra results in a surface, with in one dimension information in the spectral
domain, and in the second information in the temporal domain. On a more practical level,
ultrafast spectroscopy can add to the understanding of e.g. semiconductors, or photosyn-
thetic systems.

Chapter 4. Deconvolution of pulse trains

Chapter 2 and 3 focused on the baseline components of signals. In this chapter the peaks
are studied. The peaks are modelled as a convolution of the true input signal, and a blur-
ring function, caused by the instrument and additional sources of noise. This blurring
function is called the impulse response function (IRF) or point spread function (PSF). To
estimate the input spikes, we use deconvolution; the reverse process. Deconvolution is
a broadly applied methodology, applications can be found in for example, astronomy
(Starck et al., 2002), seismology (Silvia and Robinson, 1979) and engineering (Wei et al.,
2009).

8



1.3. Thesis outline

Deconvolution is a typical example of an ill-conditioned regression problem. Knowing
that the input signal is sparse, we employ a penalty function with an Lo norm. It makes
the model estimable and to generates sparseness. If not only the input of the system, but
also the impulse response is unknown, we speak of blind deconvolution. In these cases
one iterates between estimating the input given the response function and updating the
IRF given the current input.

One application presented in this chapter comes from chromatography, similar to data
discussed in chapter two. A second example deals with DNA sequencing data, derived
with electrophoresis. Normally these signals consist of four parallel channels (one for each
DNA-base), here we only focus on one of these. A peak in the signal corresponds to a base
call. The third data set consists of a series of hormone concentrations in human blood
(Vis et al., 2010), measured over time. The aim is to reduce the signal to a series of spikes
indicating the exact time and amounts of the hormone releases.

Chapter 5. Sparse deconvolution in one and two dimensions

This chapter is a follow-up of chapter 4. The deconvolution method as laid out in the pre-
vious chapter is applied to two-dimensional data. In addition, the blind deconvolution
algorithm is adjusted, which makes it applicable in combination with virtually any uni-
modal response function. A small simulation shows the value of the proposed method-
ology. Performance of the blind deconvolution algorithm in case of an approximately
exponential response function, is illustrated using the hormone release data, as discussed
in chapter 4.

To illustrate two-dimensional deconvolution, we use fluorescence microscopy data.
The data are a series of images showing actin structures, highlighted using fluorophores.
The goal is to give a more detailed description of the actin filaments, but is difficult given
the densely packed fluorophore molecules. Because the fluorophores blink in a random
fashion, closely positioned molecules can be resolved in time. These properties are ulti-
mately used to obtained super-resolution images.

Chapter 6. Classification of outlines using penalized signal regression

Many data analysis problems involve a classification problem. When the number of vari-
ables is small, the classification procedure can be kept relative simple. If their number is
large, or when they are highly correlated, things are more complicated. Two-dimensional
shape classification is a typical example. A solution to these problems is to apply some
kind of summarization or variable extraction. A frequently used tool in this respect is
principal component analysis. The results derived from these methods are generally dif-
ficult to interpret. This chapter presents an approach for classification of two dimensional
shapes, without the need of summarizing the data.
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In a first step the rectangular coordinates are converted into polar coordinates, which
results in a set of ‘signals’. Next, the data are summarized on a large (circular) P-spline
basis. This facilitates preprocessing like rotation and noise removal, while essentially no
detail is lost. For classification we rely on logistic penalized signal regression based upon
the algorithm proposed by Marx and Eilers (1999), developed to analyse signals in spec-
troscopy. The method uses the spline coefficients as explanatory variables. The proposed
methodology has several advantages. By analysing the complete outlines instead of a re-
stricted number of features, no information is lost in advance of the classification. Prepro-
cessing, like rotation or smoothing, is easily performed on the curves. The PSR algorithm
is a variant of the generalized linear model (GLM) and as such complete outlines can be
analysed using well established statistical tools. In addition the model is easily extended
to three dimensions, other types of outcomes, or additional covariates can be included
using additive modelling.

Three applications are presented. The motivating example is about abnormal head
shapes, caused by premature fusion of one or more cranial sutures (Craniosynostosis). De-
pending on which sutures fuse, different deformities occur. Classifying individual skulls,
into the right group is important for decisions on possible treatment. The actual data are
a set of z,y coordinates, corresponding to one skull outline taken at a fixed height and
coming from a CT-scan. Because of the small sample size, this dataset is used only for
description. In a second application the aim is to distinguish two types of (fossil) rodents,
using the outline of a molar. The dataset comes from Claude (2008) and contains 60 sam-
ples in total. A third example comes from biology and deals with the classification of
diatoms; algae with a large variety of different shapes and of a size ranging between 2 and
200 micrometer. This dataset is described in Jalba et al. (2005).

Chapter 7. Exploring network structure using penalties and priors

Gene expression data have been a major research area within biology in the last years.
By monitoring the activity levels of a large number of genes (measured by the amount of
RNA they produce), researchers try to find links between genes and diseases. In addition,
it is assumed that genes act in groups of interacting features. The aim is to establish direct
relations between genes and represent these in a network. The estimated networks are
supposed to be sparse, meaning that the number of relations is small compared to the total
number of possible pairwise connections. Network estimation is often difficult due to the
large number of variables compared to the number of samples. In this chapter we test
the ability of three shrinkage estimators to reproduce a series of simulated networks. In a
next step we try to utilize the vast amount of information stored online in the process of
network estimation. We use an adaptation of the weighted lasso to combine the proposed
prior with the data. Depending on the type of information available, the prior can be more
or less specified with respect to the loadings of the individual edges. Two applications

10



1.3. Thesis outline

show the flexibility of the method; in one the prior is built using text mining. In the
second, pathways that are found in a specific publication are used as prior information.

Chapter 8. Pseudo-Bayes smoothing of tables with very low counts

Chapter 8 applies penalized estimation to zeros or low counts in contingency tables. Low
counts can occur due to the rare nature of the observed event or when many categories are
recorded. These low counts are problematic for statistical inference and correcting these
is advised. We propose a linear shrinkage procedure, based upon the available data in
the study. The optimal balance between the data and the prior is determined using an
adjusted Akaike information criterion. The procedure is general applicable, but here we
focus on meta analysis of clinical trials, in which the observed data consists of series of
two by two tables.

Chapter 9. Conclusions

In the last chapter of this thesis we repeat the major conclusions from the different chap-
ters. In addition, a short more general discussion focusses on the interpretation of penal-
ties within the statistical framework. Proposals for future research are made where possi-
ble.

11






Mixture models for baseline
estimation

Abstract. Various instruments produce data consisting of a series of
more or less isolated peaks, superimposed on a drifting baseline. The
positions and heights of the peaks are of interest and the baseline is
a nuisance. We model a smooth baseline by weighted regression on
P-splines, a combination of B-splines and a discrete penalty to tune
smoothness. The weights are computed from a mixture model with two
component distributions, relative to the baseline, one for noise, the other
for the peaks. The algorithm is fast and it shows excellent performance
on simulated and experimental data.

2.1 Introduction

A variety of instruments deliver signals that consist of a series of more or less isolated
peaks. The physical or chemical information is in the positions and heights of the peaks.
Ideally the baseline should be flat, but this is seldom the case. In practice slow, but strong,
fluctuations are seen, which are known as background, drift, or baseline. The same sce-
nario holds for images or scans of various types. The image presents valuable information
against an interfering background. Next to signal and background, random noise is gen-
erally present.

The aim of this chapter is to estimate a baseline from a single data series, exploiting
two characteristic properties: the baseline changes smoothly, while all peaks have the
same sign, either positive or negative. After estimation, the baseline is subtracted, and
peak analysis can follow.

In the literature various strategies to estimate the baseline or background can be found,
covering disciplines like bioinformatics, chemometrics and computer vision. We do not
give an extensive review here, as this was recently done by Liland et al. (2010), primarily

This chapter is published as: de Rooi J.J. and Eilers PH.C. (2012). Mixture models for baseline
estimation. Chemometrics and Intelligent Laboratory Systems, 117:56-60.
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2. MIXTURE MODELS FOR BASELINE ESTIMATION

for spectroscopic data and by Komsta (2011) in the area of chromatography. We do men-
tion some of the more popular algorithms. A simple approach is smoothing in a moving
window method as applied by e.g. Ressom et al. (2007) or Coombes et al. (2003). The well-
known Savitzky-Golay smoothing algorithm (Savitzky and Golay, 1964) has been adapted
to baseline estimation (Wang et al., 2003). More advanced approaches rely on curve fit-
ting with asymmetric weights. Examples are asymmetric least squares, as presented and
applied by the authors (Eilers, 2004; de Rooi and Eilers, 2011), or quantile regression, as
proposed by Komsta (2011). The idea is that observations located on peaks get a very
small weight. The baseline can be described by a polynomial (Gan et al., 2006), this works
well in simple cases. In complicated cases, of which we show an example in Figure 2.4,
the polynomial needs to have very large degrees, leading to (numerical) instabilities.

Here we propose to use a mixture model. This kind of model is often used for cluster
analysis. The actual size and composition of the clusters are the unknown components of
the mixture and have to be estimated from the data. Signal data can be considered as a
mixture with two components: a baseline including noise and peaks. Any data point of
the signal has a probability to be on a peak, or on the baseline. Various books offer a quick
introduction into mixture models, often in the context of clustering, an example is Bishop
(2006). A book dedicated to the topic is McLachlan and Peel (2000).

The points on the baseline follow a smooth curve plus noise (assumed to be normally
distributed, with unknown variance). For all the points on peaks we assume that they have
been drawn from an unknown distribution on the positive (or negative, for down-pointing
peaks) axis. The baseline is modelled as a smooth curve, using P-splines, a combination
of B-splines and a discrete roughness penalty (Eilers and Marx, 1996). After subtraction of
the baseline we get a signal with a two-component probability density. One component
is related to the peaks and it is approximated by a uniform distribution on the positive
axis. The other component is for the observation noise around the baseline; it is assume
to be normal. Combining all this with the EM algorithm (Dempster et al., 1977) for pa-
rameter estimation, an effective algorithm is constructed. The method is illustrated on
experimental data.

2.2 The model

The model with a flat baseline

We have a single data series y composed of n individual observations: {yi,...,y»}. To
simplify the presentation, we first consider the case of a constant but unknown back-
ground level p. We assume normally distributed noise with an unknown standard de-
viation o. We neglect the order of the observations, and we assume that they are drawn
from a probability density f(y). If an observation is on the baseline, it is drawn from the
normal density g(y|u, o) while if it is on a peak, it is drawn from an unknown probability

14



2.2. The model

density h(y — p), which is only supported on the positive real axis. Of course, we do not
know if an observation is on the baseline or not, so we have to consider the mixture of
densities:

fy) = mg(ylp, o) + (1 = m)h(y — ), 21
where the unknown mixing ratio is denoted by .

We use the established Expectation-Maximization algorithm to estimate the compo-
nents of the mixture (McLachlan and Peel, 2000). It repeats the following two steps until
convergence is reached. In the expectation or E step, the current values of the parame-
ters are used to calculate the posterior probabilities for the baseline and peaks of all data
points. During the maximization or M step, the parameters p, y, o, and the estimate for
h(.) are updated, given the calculated probabilities.

The details of our EM algorithm are as follows. Suppose we knew approximations to
all parts of (2.1). Then we could compute the posterior probability p; that observation y;
comes from density g(y|u, o) as:

79(yl, o)
P wg(yli o) + (L= mhly — 1)’ 22
Then we can use p and y to compute weighted estimates of ;1 and o (with weights p). And
we can feed 1-p to a density smoother to estimate h(.) and take the average of p to estimate
m. From there we can start a next round. Proper starting values are needed. We skip the
details here, as they will be discussed for the general case of a drifting baseline.

We mentioned density smoothing for estimating & (.), the density of the observations
on the peaks. Actually, we can simplify this component of the model to a uniform density
(between zero and the maximum of y — p) without any problem. We are not interested
in a precise density, but only need good estimates of the posterior probabilities p. For y;
near i, p; is very near to 1, and at a distance larger than 3¢ from p it will be essentially
0, whatever the shape of h(.). The simplification will have some influence on weights not
near 0 or 1, but they are a minority.

Figure 2.1 shows three panels which explain the basics of the proposed method. The
simulated data consists of a constant baseline and a few positive peaks. The example
serves as an illustration of the major concepts of the model. In the left upper panel of Fig-
ure 2.1 the raw data (colored dots) and estimated baseline (the black line) are shown. Each
data point in the figure is either green or blue and depicts the assignment to respectively
the baseline (if p > 0.5) or the peaks. In the lower left panel the posterior probabilities for
the baseline, estimated using the EM algorithm, are shown. This figure can be viewed in
parallel to the upper panel and shows strong discrimination between data on the baseline
and data points which are part of the peaks.

In the right panel the raw data are presented using a histogram. The z-axis of the
histogram forms the actual range of the observed data (as plotted in the upper left panel).
The two colors in the plot represent the different components of the mixture: green for the
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Figure 2.1: Estimation of a constant baseline with the mixture model. The upper left panel shows the
data and the estimated baseline in black. In the lower left panel the posterior probabilities for the two
mixture components are presented. In the right panel the histograms of both mixture components are
shown, with in green the baseline and in blue the peaks.

baseline and blue for the peaks (depending on p > 0.5, or not). For this example, most of
the mass in the histogram is situated at the left which is due to the prominent baseline and
only few peaks.

The model with a drifting baseline

Now it is easy to see how more complicated baseline models can be constructed: specify
w as a curve, and apply the mixture model after subtraction of this curve. The model then
looks as follows: y; = u; + v;, with density,

fyi) = mg(vlpi, o) + (1 = m)h(y; — pi), (2.3)

with g being a normal distribution and o unknown. Again A(.) is not specified; we do not
try to estimate it reliably, but instead approximate it by a uniform distribution. The only
concern with respect to this component is to properly estimate the posterior probabilities
of the data points. Removing the baseline 1 gives us the mixture model for v = y — pu:

f) =mg(v]0,0) + (1 — m)h(v). (2.4)

The baseline is modelled using P-splines, which are B-splines with a penalty on the
differences of the coefficients, to tune smoothness (Eilers and Marx, 1996). The B-splines
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part is given by:

pi = plw:) = > Bj(wi)ay, (2.5)
with B being the n x m cubic B-spline basis with m the number of B-splines. Consider
for the moment fitting B-splines to our data, to compute a trend, not a baseline. Then we

would minimize

S=>Y (yi— Y Bji)ey) =|ly— Bal?, (2.6)

leading to the system of equations
B'Ba=B'y or a=(B'B) 'By. (2.7)
P-splines extend the objective function (3.2) with a penalty on differences of a:

S= (yi— Y Bi(@)a;)* + Ay (A%)* = |ly — Bal|* + Al|[Dal?,  (28)

where A is the differencing operator: it turned out that d = 3 gave the best results for all
examples. Then A%a; = A’a; = a; —3aj_1+3a;_2 — a;_3. Say we summarized a signal
using seven B-splines, the corresponding matrix D is given by:

-1 3 =3 1 0 0
0 -1 3 =3 1 0
0 0 -1 3 =3 1
0 0 0 -1 3 -3

D= (2.9)

= o O O

By forcing third order differences of the coefficients to be small, the variation in coef-
ficients is reduced, leading to a smoother curve compared to when using only B-splines.
With the number of B-splines being relatively large, the penalty allows continuous control
over smoothness, from a rather wiggly curve to a quadratic line, by increasing A. The spirit
of P-splines is illustrated by Figure 2.2. The same (simulated) data are smoothed with a
relatively large B-spline basis for two values of A.

Of course, we are not interested here in computing a trend. If the posterior probabili-
ties are available, we insert them as weights into (3.4), giving the new objective function

st = Zpi(yi_ZBj(xi)Oéj)Q-‘r)\Z(AdOéj)Q = (y— Ba)'P(y— Ba)+\||Da|?, (2.10)

with P = diag(p). Again we find an explicit solution:
& = (B'PB) + A\DyD4)” "B’ Py, (2.11)

A low posterior probability p, means no or little influence of an observation on the esti-
mated baseline, as required.

To make the EM algorithm work, we need proper starting values. We use asymmetric
least squares smoothing (Eilers, 2004), with 0.01 or 0.02 as value for the asymmetry param-
eter, a. Interestingly, the computational structure is almost identical to that of the mixture
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2. MIXTURE MODELS FOR BASELINE ESTIMATION

Smooting using 18 B-splines and A = 0.001

Figure 2.2: Illustration of P-spline smoothing for small A (upper panel) and for large A (lower panel).
The basis consist of 18 B-splines. The grey dots are the (simulated) data. The colored curves show
the individual B-splines, scaled by their coefficients (which are represented by the large colored dots).
The black curve shows the P-spline fit.

model. Instead of the weights in P = diag(p) in (3.7), one uses W = diag(w), with w; = a
if y; < p; and w; = 1 — a otherwise. Weighted smoothing and re-computation of the
weights are repeated until convergence, which usually occurs after a handful of iterations.
One can prove that asymmetric least squares smoothing always converges to a unique
solution, so for a chosen a and A this is an automatic starting procedure.

2.3 Applications

In this section we show four applications, with data derived from different types of in-
struments. The first example is a chromatogram. The example is relatively simple with
a slightly drifting baseline and a few strong peaks. In the upper panel of Figure 2.3 we
show the data (blue) and the baseline (green). Notice that the estimated baseline is plotted
0.003 units lower in order to show both the baseline and the signal, which are otherwise
overlapping in the sections without peaks. We used 50 B-splines and A = 0.1. Actually, 50
B-splines are far more than needed for such a smooth baseline, but it was our deliberate
choice, to illustrate that the size of the B-spline basis plays no role. The lower panel of
Figure 2.3 shows the result after subtraction of the baseline.

For a more challenging example we use data from an FTIR experiment (Phillips and
Hamilton, 1996), the results are shown in Figure 2.4. In the upper panel the raw data (blue)
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Raw data (blue) and estimated baselines with A = 0.1
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Figure 2.3: Background estimation with the mixture model applied to a chromatogram. The upper
panel shows the data (blue) and the estimated baseline (green). In the figure the estimated baseline
is plotted 0.003 lower in order to show both baseline and the signal, which are otherwise largely
overlapping. The lower panel shows the result of subtracting the baseline.

Raw FTIR spectrum (blue) and estimated baseline: A = 0.001
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Figure 2.4: Background estimation with the mixture model applied to FTIR data. The upper panel

shows the data and estimated baseline. The baseline is estimated on a basis of 50 B-splines. The lower
panel shows the data after subtracting the baseline.
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2. MIXTURE MODELS FOR BASELINE ESTIMATION

and estimated baseline are plotted. The baseline is estimated using 50 B-splines and A =
0.001. Subtracting this baseline from the data results in the picture presented in the lower
panel of Figure 2.4.

A third example is shown in Figure 2.5; it is a MALDI-TOF mass spectrum of blood
serum (de Noo et al., 2005). A baseline is fitted using 200 B-splines and setting A = 50000,
the data and baseline are plotted in the upper panel of Figure 2.5. In the figure we observe
that the amount of baseline noise is relatively large compared to the height of the peaks.
Moreover we notice that the error is larger for lower mass-to-charge ratios. Although this
is not assumed in the model, the baseline is estimated well.

As a last application we took a segment from a Raman spectrum. The data shows a
relatively subtle baseline drift. More difficult in this example is however the presence of
many overlapping peaks. The baseline was modelled using 200 B-splines. We present two
possible outcomes, in the upper panel of Figure 2.6 we show the data and the estimated
baseline, for A equals 50. According to our opinion this penalty is too mild. A more
satisfactory result, with a larger ), is provided in the lower panel.

2.4 Discussion

We have presented a new approach to baseline estimation and have shown that it per-
forms excellently on real data. The baseline itself is modelled by P-splines allowing a
very flexible curve. The assignment of observation to either baseline or peaks is based on
probabilities computed from a mixture model that incorporates observational noise.

Our model is similar to asymmetric curve fitting approaches, either by least squares
or by quantile regression. However, it avoids the problem of choosing the amount of
asymmetry, because that follows implicitly from the parameters 7, o and the model for
distribution h(.).

We did not discuss an automatic choice of the value of the penalty parameter . In-
stead we leave this to the user, relying on visual inspection. In principle cross-validation
could be used. One fits the model to a subset of the data, chosen randomly or system-
atically, and computes the log-likelihood of the left-out part of the data. Changing the
penalty parameter A on a grid and computing the cross-validation likelihood for each
value will give a curve that hopefully shows a global maximum. Experiments with simu-
lated data seem to indicate that this can work well. But the simulations use independent
noise. In real data the noise is frequently correlated, leading to complications. More re-
search is needed here.

We also do not use the order of the observations. In many data sets, stretches of base-
line alternate with peaks. Intuitively one feels that this fact should be exploited in some
way. But until now we have not found a working procedure to implement it.

Presently we are working on extending our model to series of count data, like X-ray
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Raw data (blue) and estimated baselines with A = 50000
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Figure 2.5: Background estimation with the mixture model applied to a MALDI-TOF mass spectrum.

The upper panel shows the data and baseline, estimated using 200 B-splines. The lower panel shows
the data after subtracting the baseline.
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Figure 2.6: Background estimation with the mixture model applied to a Raman spectrum. The upper
panel shows the data (blue) and the estimated baseline (green) using a moderate penalty. In the lower
panel a larger penalty is applied to the same data. In both cases the baseline is modelled using 200
B-splines.
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2. MIXTURE MODELS FOR BASELINE ESTIMATION

diffraction scans. There a baseline plus noise of constant variance is not appropriate. In-
stead, one has to introduce a curve that gives the expected value of the baseline counts,
with variance equal to the expected value.

In the example using a MALDI-TOF mass spectrum, we saw the error of the baseline
changing over the range of m/z values. In this case it turned out not to be problematic.
Nevertheless, incorporating a flexible variance estimator is a possible improvement of the
method, but needs further investigation.

Matlab code to estimate the baseline using the method discussed in this paper is avail-
able upon request. In the future we will also release an R-package.

In this chapter we focused on baseline estimation in one-dimensional data. The next
chapter presents the straightforward extension to two-dimensional data, using tensor
products of P-splines (Eilers et al., 2006).
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Mixture models for baseline
estimation in two dimensions

Abstract. Baseline correction and artefact removal are important pre-
processing steps in analytical chemistry. We propose a correction algo-
rithm using a mixture model in combination with penalized regression.
The model is an extension of the algorithm introduced in the previous
chapter, for baseline estimation in the case of one-dimensional data. The
data are modelled as a smooth surface using tensor product P-splines.
The weights of the P-splines regression model are computed from a mix-
ture model where a datapoint is either allocated to the noise around the
baseline, or to the artefact component. The method is broadly applicable
for anisotropic smoothing of two-way data such as two-dimensional gel
electrophoresis and two-dimensional chromatography data. We focus
here on the application of the approach in femtosecond time-resolved
spectroscopy, to eliminate strong artefact signals from the solvent.

3.1 Introduction

Chemical and physical interferences resulting in an unwanted baseline or artefacts, is a
relevant issue in analytical spectroscopy (Rinnan et al., 2005; Dai and Eads, 2010; Bowie
et al., 2006; Rinnan et al., 2009; JiJi and Booksh, 2000). Many pre-processing methods
have been proposed for baseline removal. These methods can be divided into several
categories, including band-pass filtering (Mosierboss et al., 1995; Alsberg et al., 1997; Gal-
loway et al., 2009), baseline modeling with a function (polynomial, spline, etc.) (Gans and
Gill, 1984; Eilers and Marx, 1996; Lieber and Mahadevan-Jansen, 2003; Vickers et al., 2001),
data smoothing Eilers (2003) and statistical methods (Phillips and Hamilton, 1996; Ruck-
stuhl et al., 2001). Generally most of these methods require the tuning of some parameters,
such as the weights in weighted least-squares procedures. The use of mixture models for

This chapter is based on: de Rooi J.J., Devos O., Sliwa M., Ruckebusch C. and Eilers PH.C.
(2013). Mixture models for two-dimensional baseline correction, applied to artefact elimination in
time-resolved spectroscopy. Analytica Chimica Acta, 771:7-13.
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baseline estimation based on P-spline regression was reported recently by de Rooi and
Eilers (2012).

Mixture models are statistical models which assume that the probability density func-
tion consists of different components; they are popular for clustering and classification
purposes (Jacques et al., 2010). For baseline modelling, the data can be decomposed in
a two-component mixture: peaks and a smooth baseline plus noise. The proportions of
both components are unknown and have to be estimated. One of the main advantages of
the procedure is that the weights that are used in the penalized regression procedure to
model the data with P-splines are computed directly from the statistical model.Very good
results were obtained when dealing with one-dimensional data as, e.g., Raman spectra
(de Rooi and Eilers, 2012). In this chapter, we illustrate how this approach can be usefully
extended to two-way data by using two-dimensional tensor products of P-splines. We fo-
cus on time-resolved spectroscopy data, but other types of applications are also possible
and are discussed in the last section.

Femtosecond transient absorption spectroscopy is an analytical technique to investi-
gate short-lived chemical intermediates and transient states created during ultrafast chem-
ical reactions, such as excited-states intramolecular proton transfer (Sliwa et al., 2010). Get-
ting information about unknown overlapping transient species often requires multivariate
analysis of the series of two-way time-resolved spectra. However, the use of ultrafast opti-
cal laser pulses, to trigger the photoreaction, results in the observation of coherent optical
processes. An example is stimulated Raman amplification scattering signals of the solvent
which show very specific spectro-kinetic features. These signals are observed during a
few hundreds of femtoseconds, as their kinetic behavior is similar to the instantaneous
response function, and their typical spectral signature consists of a series of intense and
sharp negative signals. Regarding data analysis, these signals are artefacts, distorting
broad UV-visible transient absorption spectra. In addition, these contributions alter the
ideal bilinear low-rank data structure of the spectrokinetic data as the bilinear structure is
usually required to apply classical chemometric methods such as multivariate curve reso-
lution (MCR) (Aloise et al., 2008; Mouton et al., 2010; Ruckebusch et al., 2012). As a result,
data decomposition may be biased.

Several ways of handling coherent spectrokinetic artefacts have been proposed in the
literature. Due to the nature of the signals considered, simple solvent subtraction turns
out to be very challenging in practical situations (Lorenc et al., 2002). Ernsting et al. (2001)
proposed the introduction of additional contributions in the data decomposition to deal
with coherent low-frequency oscillations. Multiset MCR analysis was also shown to be
an alternative to unravel the information related to the photochemical processes from the
perturbation of the unwanted solvent signals (Ruckebusch et al., 2009). Another alterna-
tive to remove artefacts from femtosecond transient spectra is provided by pre-processing
techniques such as smoothing procedures (Devos et al., 2011). The aim is to remove nar-
row artefact peaks from smooth data, a problem which can be considered the ‘mirror im-
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age’ of a classical baseline correction problem. In Devos et al. (2011) preliminary results
were obtained using asymmetric least squares smoothing as proposed by Eilers and Boe-
lens (2005). However, this technique suffers from a few drawbacks. In particular, spectra
have to be corrected sequentially, one by one, without considering the strong correlation
between successive spectra in time-resolved spectroscopy. Additionally, two parameters
need to be tuned for each spectrum, one for asymmetry and the other for smoothing,
which can be problematic for series of spectra.

The method we propose here relies on penalized regression with P-splines to estimate
a smooth two-dimensional baseline. Full series of time-resolved spectra can be corrected
in one run, as for images, and advantage can be taken from the fact that the correlation
between successive spectra is not ignored. In addition, the z and y direction can be tuned
independently, allowing anisotropic smoothing with tensor products of P-splines. Con-
trary to more classical weighted least-squares procedures, only the penalty parameters
require optimization.

The next section starts with introducing the method for the one-dimensional case, and
subsequently extend it to two-way data. In the third section, simulated and experimen-
tal data are introduced. The results obtained after analysing these data are presented in
section four, and we close with some conclusions in section five.

3.2 Theory

The baseline is modelled as a smooth surface and is estimated using P-splines. We as-
sume a two-component probability density for the deviations from the baseline: one for
the noise around the baseline, and the second for the peaks (or artefacts). The mixture
components are estimated using an expectation-maximization (EM) algorithm (McLach-
lan and Peel, 2000). Below, we first discuss the theory for the case of one-dimensional
data, as presented in de Rooi and Eilers (2012). In the next step the model is extended for
two-dimensional data, the focus of the current work.

Baseline estimation in 1d

A B-spline is a smooth bell-shaped curve, constructed from ¢ 4+ 1 polynomial pieces of
degree ¢. Using a set of equally spaced and identically shaped B-splines we can estimate a
smooth trend to fit the data. Let y be the signal with ¢ = 1, ..., n observations. The matrix
B is the spline basis, consisting of n rows, and K columns. Figure 3.1 shows a perspective
plot of a basis with fifteen cubic B-splines.

The model for the baseline is,

u = Ba, (3.1)
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@“@Q@

Figure 3.1: The basis B, here consisting of fifteen splines. Notice that for the presentation the matrix
is rotated about 90° counter clockwise.

where « is the vector of spline coefficients. It can be estimated by linear regression, mini-
mizing
n K
S=>[yi— Y Bj(z:)au]? = ||y — Ball?, (3.2)
i=1 k=1
giving the explicit solution

B'Ba=B'y or a=(B'B) 'By. (3.3)

There are a number of recipes to determine the number of splines and the placement
of knots. Here we follow the P-spline approach of Eilers and Marx (1996). They avoid the
knot selection problem by using a generous number of B-splines and equally spaced knots.
Smoothness is tuned by penalizing the differences of adjacent B-spline coefficients, based
on the idea of a discrete roughness penalty introduced by Whittaker (1923), more recently
discussed in Eilers (2003). Including the difference penalty, the objective functions can be
written as

n K K
§ =3 v = > Bu(zorl* + 23 "(A%aw) = |ly — Bal* + A|[Dall*,  (34)
i=1 k=1 k=1
where A9 is the differencing operator of order d, as in de Rooi and Eilers (2012) we rely on
third order differences. For seven B-splines this gives us the following matrix D:

-1 3 =3 1 0 0
0 -1 3 =3 1 0
0 0 -1 3 =3 1
0 0 0 -1 3 =3

>
I

(3.5)

= o O O

The weight of the penalty, and thus the smoothness of the curve, is regulated by the tuning
parameter \. Including the penalty, equation (3.3) becomes

&= (B'B4+AD'D)"'B'y. (3.6)

Instead of drawing a curve through the data cloud, the goal is to estimate a baseline .
All observations in the signal are part of either the peaks, or the baseline including noise.
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3.2. Theory

If we know to which component an observation belongs, we can include this information
in the objective function using weights w. However, for observed data it is unknown to
which component an observation belongs. We solve this by assuming the data are coming
from a mixture of two distributions, and estimate all parameters, including w, using an
EM algorithm (McLachlan and Peel, 2000). Weight parameter w is now defined as the
probability to belong to the baseline component. When w; is close to one, the data point is
assigned to the baseline. We minimize the following:

n K K
S* = Zwi[yi—zBk(xi)ak]Q—&—)\Z(Adak)Q = (y— Ba)'W(y— Ba)+\||Da|]?, (3.7)
i=1 k=1 k=1

with W = diag(w). The solution is:
& = (B'WB+ADyD4)” ' B'Wy. (3.8)

We assume y = i + v, with p the baseline and v a mixture drawn from the density
f(v):
f(v) = mg(v]0,0) + (1 = m)h(v). (3.9)

Here 7 is the unknown mixing ratio, and g a normal distribution with unknown o repre-
senting the noise surrounding the baseline p. The peaks or artefacts are part of the second
component which is approximated by a uniform distribution i (v). The weight or posterior
probability that observation y; comes from the baseline component g(v|0, o) is estimated:

7g(vi|0,0)
mg(vi]0,0) + (1 — m)h(v;)

In turn we estimate w given the parameter values in (3.10) (the expectation step) and the
values for 7, u, o and h(.) given w (the maximization step). This routine is repeated until
convergence. Proper starting values can be obtained by first estimating a simpler model,
like using asymmetrical least squares (Eilers and Boelens, 2005).

Baseline estimation in 2d

In two dimensions the observation forms a matrix Y withi = 1,...,nrowsand 5 = 1,....m
columns. The baseline is a similar matrix representing a smooth surface M and is es-
timated with tensor products of P-splines (Eilers et al., 2006), naturally following from
the one-dimensional splines discussed in the previous section. The tensor products are
formed from two bases: B (n x K matrix) in the row direction and B (m x L matrix) in the
column direction, an impression of cubic B-spline tensor products is given in Figure 3.2.
Notice that it is a sparse representation, a full basis would make the image too dense and
hinder interpretation.
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Figure 3.2: A sparse basis of cubic B-spline tensor products.

The fitted value for each point of the surface is expressed as

K L
Wi = Z Z aribinbji, (3.11)

k=1 1=1
where ay; is the k, [-th element of the matrix of coefficients A (K x L matrix). The expres-

sion (3.11) can be reformulated in matrix form:
M = BAB'. (3.12)
Similar as in the one dimensional case, we introduce a penalty on the differences:
Pen = \||DA||r + A|| D’ Al|F, (3.13)
with ||.||r, the Frobenius norm, the sum of the squares of all elements. The tuning pa-

rameters for both directions A and A can be tuned independently, allowing anisotropic

smoothing.
The classical solution to estimate the model is to vectorize the data matrix: y = vec(Y),

the coefficient matrix a = vec(A), the smooth surface 1 = vec(M) and the matrix with

weights w = vec(W). The penalty is written
P = )\(IL ® D&Dd) + X(Dv’dDd ® jK), (314)

with @ being the Kronecker product and I the identity matrix. After vectorization, we
are back at the weighted least squares as in (3.8), including the penalty P the equations

become
(B® BYW*(B® B) + P)a = (Q+ P)a = (B® B)W"y, (3.15)
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with W* = diag(w).

Estimating the coefficients in A using vectorization and Kronecker products is simple
but also very inefficient, especially when Y is large. If B is of dimensions m x L and B
is n x K than B ® B results in an mn x KL matrix. Instead we rely on an algorithm
introduced by (Eilers et al., 2006), later coined GLAM (generalized linear array model)
(Currie et al., 2006). This algorithm is much more efficient, leading to large savings in time
and memory use. The elements in () in (3.15) are calculated in an other product,

G* = (BOB)'W*(BUB), (3.16)

a matrix with dimensions K2 x L?, and BOB = (e, ® B) © (B ® €f) the row-wise
Kronecker product of B with itself, and BOB = (¢}, ® B) ® (B ® e/,). Here ® stands for
element by element multiplication, and ex (er) being a vector of ones of length K (L). The
system in (3.15) can now be rewritten as

(G+Pla=r. (3.17)

To get r we first create the matrix R = B'(W © Y)B, and subsequently vectorize this
column-wise. To obtain G from the matrix G*, three steps are needed. First, G* is re-
ordered in a four dimensional K x K x L x L array. Second, the dimensions are reordered
from 1,2,3,4 to 1,3,2,4. Third, the array is transformed into GG, a KL x KL matrix. The
estimated vector é& consist the columns of the matrix A.

The mixture model looks similar as in (3.9) only now referring to the two dimensions
of the surface, equation (3.10) is also modified:

7g(vi5]0,0)
7g(vi;10,0) + (1 — m)h(viz)’

Wi = (318)
the weights are iteratively updated using the discussed EM algorithm.

Optimal values for the penalty parameters are often determined using cross valida-
tion, the Akaike information criteria (AIC) (Akaike, 1974), or the Bayesian information cri-
teria (BIC) (Schwarz, 1978). However, these approaches are not robust to highly correlated
noise, often leading to poor performance in the case of artefact removal. The choice of the
tuning parameters A and ) is usually performed by visual inspection of the preprocessed
data, as for the one-dimensional approach. In some applications, detailed information
about the characteristics of the experimental data is available and, as a result, can be accu-
rately resembled by simulated data. Here we illustrate this approach for the elimination
of artefacts in time-resolved spectroscopy data, where the spectro-kinetic features of the
signal are known. The simulated data will enable estimation of proper parameter values,
or serve as good initial estimates for further refinement. The use of simulated data is not
a requirement for the method to work, but can be helpful for parameter optimization. For
the simulated data, the performance of the method can be evaluated using the sum of the
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squared errors (SQE):

SQE = ZZ(fij —ti;)?, (3.19)

i=1 j=1

the smooth surface modelled, F, is compared to the initial simulated two-way data (before
adding artefacts) 7. The optimal set of parameter values is subsequently used for the
modelling of the real data.

In the studied application we use additional knowledge in the estimation procedure.
Most of the time, the position of artefacts is partially known. In transient absorption spec-
troscopy stimulated Raman amplification signals can only be observed in a time range
matching the time resolution of the experiment and at some spectral positions depending
on the solvent used and the excitation wavelength. This information can be translated into
a mask matrix, which has the same dimension as the data matrix. The mask matrix con-
tains ones, in the region where artefacts are known to occur, and zeros elsewhere. During
the mixture model optimization procedure, the weights of only data points corresponding
to mask matrix values of one will be updated. The advantage of using a mask matrix is
that the risk of deformation in areas where no artefact is present is limited, while all data
is used for estimating the noise around the baseline. For many applications there will be
no information regarding the location of artefacts and all weights are set to one.

3.3 Experimental section

Simulated data

Simulated data were constructed, mimicking the spectro-kinetic features of femtosecond
time-resolved spectroscopy (see Figure S-1 in supplementary material). Kinetic profiles
were chosen to describe a process involving three transient species following a first-order
sequential model. The pure kinetic profiles were convoluted with an apparatus function
assumed to be a normalized centered Gaussian function with a 50 fs standard deviation.
A strong spectrokinetic artefact signal was added to the smooth two-way data, its dynam-
ics following the one of the apparatus function. The transient spectrum corresponding to
the artefact is composed of 2 negative Gaussian contributions (width 6.5 nm), centered at
time zero at 450 nm and 465 nm, respectively. A blue shift evolving linearly with the time
(-0.02 nm.fs-1) was applied to these Gaussian contributions to simulate some non-ideal
behaviours usually observed in practice, when dealing with stimulated Raman amplifi-
cation scattering signals. A homoscedastic noise corresponding to 1% of the maximum
signal amplitude was added. The resulting data are shown in Figure 3.4a.
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Experimental transient absorption spectra

In order to illustrate the method, two different UV-Vis transient absorption spectroscopy
data sets were investigated in this study (see Figure S-2 in supplementary material). Both
were obtained with the same experimental setting and similar experimental conditions,
in particular, pump excitation wavelength was set around 390 nm (see Mouton et al.,
2010, and references therein for experimental details). The first data set contains fem-
tosecond transient absorption spectra of salicylidene aniline (from here called SA data)
in acetonitrile. Measurements obtained in pure acetonitrile are also available. Stimulated
Raman amplification scattering signals of acetonitrile consist of three strong negative arte-
fact peaks at wavelength positions around 425, 435 and 450 nm, respectively. The artefact
contributions are shifting toward lower wavelength with increasing delay time. It is clear
that both artefact and transient absorption signals are appearing simultaneously at zero
delay time and that these two signals are growing with the same dynamics. artefact sig-
nals vanish after a few hundreds of femtoseconds, in agreement with the time resolution
(apparatus function) of the experiment (~150 fs) (Mouton et al., 2010). The second dataset
(from now called SB data) corresponds to the femtosecond transient absorption spectra
of 2-Pyridin-1-yl-1H-benzimidazole (Aloise et al., 2012). The same solvent (acetonitrile)
was used as for the SA data. For this reason, comparable spectrokinetic artefact signa-
ture (three strong negative artefact contributions at roughly the same position) can be
observed. However, solvent response was not measured independently for the SB data.

Software

Routines were written in MATLAB version 7.1.0 (The Mathworks, Natick, MA) and the
R programming language (R Development Core Team, 2011), and are available upon re-
quest.

3.4 Results and discussion

Parameter settings and performance of the method.

Cubic B-splines were used in the two dimensions of the signal, the order of difference (d)
was set to 3, as recommended for other applications (Devos et al., 2011). Eilers and Marx
(1996) dictate the use of a generous number of B-splines, while the model complexity is
tuned by the penalty. Fifty splines were considered in order to properly fit the data in
the spectral dimension (351 wavelength values). In the time dimension, the profiles to
model are often smoother, particularly at short time scale, as a result of the convolution
with a relative large apparatus function. As 30 to 100 time points are usually available,
the number of splines in this direction was fixed to 30. Using too few splines can be
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Figure 3.3: Grid search approach for the optimization of the regularization parameters A and A by
calculation of SQE. A 50 x 30 tensor product of cubic B-splines and third order differences was used.

problematic in this application due to the characteristics of the signal at short time delays
(close to zero), where sampling steps are small and convolution with apparatus function
is strong. As mentioned above, a large number of splines can be used as the smoothness
constraint will penalize adjacent differences between spline coefficients.

For the estimation of the posterior probability (Eq. 3.18), the initial values for the stan-
dard deviation of the noise and the amplitude of the negative artefact signals are estimated
from the data. For the simulated data, values of 0.1 and 5 were chosen to estimate first the
densities g(v) and h(v), respectively. It should be noted that the standard deviation of
noise will be updated during the procedure.

Important is the optimization of the tuning parameters A and J, for the spectral and
time dimension, respectively. For underestimated A values, some artefact contributions
will remain, whereas deformation of the transient spectra will be observed for too large
values. In this work, a grid search approach was applied, using the simulated data, for
simultaneous optimization of A and A. The results obtained are presented in Figure 3.3.
The sensitivity of the error response when varying the two parameters can be assessed
visually from the figure. The best results (SQE < 30) were obtained for values of A ~ 102
and A < 0.01 and the smallest SQE was found be equal to 28.2. This value corresponds
to 100 and 0.01 for A and J, respectively. For the simulated data, the results are shown in
Figure 3.4.

The noise standard deviation is estimated at 0.051 and the mixing ratio at 0.95. As
observed in Figure 3.4b, the corrected data are smooth and artefact contributions were
efficiently removed. This is confirmed by the observation of the removed spectrokinetic
signals presented in Figure 3.4c. It can be noticed that in addition to the two shifting
negative peaks properly extracted, noise is taken into account in the smoothing procedure.
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Figure 3.4: Raw a) and preprocessed simulated data b); the removed spectrokinetic signals and pos-
terior probability values w;; are presented in c) and d), respectively. Outside the zone marked by the
rectangle (in red) the weights are forced to one.

Excellent agreement is observed between preprocessed data and smooth, artefact free,
simulated data. Focusing on the values of the posterior probability w;; obtained after
convergence of the procedure and provided in Figure 3.4d, it is clearly observed that in the
region where spectrokinetics artefacts are present, posterior probability values are close to
zero. Elsewhere w;; values are close to 1.

The benefits of the use of this smoothing procedure with respect to soft-modelling are
discussed in the support information. It is shown from Singular Values Decomposition
(SVD) results that the smoothing procedure enables restoring concordance between the
rank observed for the simulated data and the one corresponding to the known simulated
process scheme (see Figure S-3).

Application to real data

More challenging situations are provided by both experimental datasets. For these two
real datasets we used parameter values, previously optimized on the simulated data. Only
the initial values of the noise standard deviation and artefact amplitude have to be esti-
mated for each dataset. As we will show in the following, when the real two-way data
investigated show similar structure and behaviour, or smoothness, as the simulated ones,
the consistency of the results is good. However, it was also checked that no clear improve-
ment of the correction could be obtained after fine tuning of the regularization parameters.

For SA data, it turned out that direct solvent subtraction is inefficient to remove arte-
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Figure 3.5: Transient absorption data observed for a) SA data b) acetonitrile solvent and c) results
obtained after solvent subtraction.

facts, as shown Figure 3.5. The observed SA data is presented in Figure 3.5a, Figure 3.5b
provides data obtained in pure solvent (acetonitrile) in the same experimental conditions.
Comparing the features of artefact signals, it can be observed that not only the intensity
but also the spectro-kinetic characteristics are not exactly similar for SA and solvent data.
In order to get reproducible solvent signals, experiments in pure solvent and solution
should be performed in perfectly identical optical conditions, which is hardly achievable
as the absorption coefficient of the pure solvent changes with the pump energy. Figure 3.5¢
corresponds to the results obtained performing solvent subtraction. Obviously, an artefact
pattern remains, emphasizing the need for alternative procedures to remove stimulated
Raman amplification scattering signals in femtosecond transient absorption spectroscopy.

The results obtained after pre-processing the two-way data (Figure 3.6b) are very sat-
isfying when compared to raw data (see Figure 3.6a). The removed artefact signals are
shown in Figure 3.6¢c. From the posterior probabilities w;; (Figure S-4), it is observed that
after convergence the weights are close to 1, where no artefact is present and close to zero
elsewhere. When looking at the weights magnitude, clearly three peaks are modelled in
very good agreement with solvent data, as expected.

The SB data provides another example of the efficiency of the proposed approach.
The situation is somewhat different, because the artefact superimpose on a part of the
signal which is negative (Figure 3.6d). The corrected data and removed signals obtained
with the mixture model are presented in Figure 3.6e and Figure 3.6f. As in the case of
the SA dataset, three artefact peaks with important shift are extracted by pre-processing.
Comparison of Figures 3.6c and 3.6f, shows good correspondence between the removed
signals. This is in agreement with the fact that the origin of the spectrokinetic artefacts is
the same (same solvent and similar excitation wavelength).

3.5 Conclusions

In this paper we presented a baseline correction algorithm for two-dimensional data. The
method is a natural extension of earlier work, restricted to one-dimensional signals, by two
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Figure 3.6: A) SA raw data and d) SB raw data; outside the red rectangle the weights are forced to
one. b) and e) preprocessed time-resolved data using the mixture model. The removed signals are
presented in c) and f).

of the authors. The performance of the method is demonstrated on femtosecond transient
spectroscopy where the elimination of strong spectro-kinetic artefacts is considered.

The method uses a mixture model to distinguish the baseline (including noise) from
the peaks or artefacts. Any data point y;; thus gets a probability to be associated to peaks
or to a contribution from the smooth surface, corresponding to the unknown proportion
of the two-component mixture. The baseline surface is estimated using tensor product P-
splines. This enables the method to take advantage of the correlation between successive
spectra in series of time-resolved spectra.

In the demonstrated applications an optimal model was obtained using simulated
data. If not available, or when it is impossible to simulate comparable data, the model
can be tuned by the operator. Currently no automatic procedure for model selection is
available. For future work it is valuable to investigate automated tuning of the model, us-
ing some type of information criterion. Problematic with these criteria is that they assume
uncorrelated noise, which is not realistic in the present case. The method can be used in
a wide range of applications. In this chapter we only showed negative artefacts, but per-
formance is equally well in situations with positive peaks. Some further applications are
background estimation for two-dimensional gel electrophoretic data and correcting mi-
croarray gene expression data. The GLAM framework allows fast computations on large
matrices, and enables the extension to three dimensions, where we have two spatial direc-
tions as well as a time dimension.
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Appendix

Singular value decomposition of the simulated dataset

The rank of the data is an important aspect in soft-modelling of the resolution of the time-
resolved spectroscopy data, where one aims at recovering kinetics and pure spectra of the
different species observed. The simulated data were obtained considering a sequential
three-species first-order reactional scheme affected by an apparatus function in the time
direction. Each of the three species was associated with a pure spectrum with quite large
spectra signature and significant recovery in the wavelength range considered. The results
of the singular value decomposition are provided in Figure S-6. Three series of values
are reported corresponding respectively to the analysis of the two-way data affected by
artefact contributions, artefact-free two-way data and preprocessed data. Focusing on the
comparison between the two first series, it can be clearly observed the consequence of
the addition of spectrokinetic artefact signals, which blur the ideal situation where three
contributions are clearly detected. Comparing now the results for preprocessed data with
the simulated smooth artefact-free two-way data, very good concordance is found for the
three first singular values which indicates that the low rank bilinear data structure of the
artefact-free data has been recovered.
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Figure Al: Singular values decomposition of the simulated data (two-way data affected by artefact
contributions), of the corresponding artefact-free data and of the preprocessed data.
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unit) of 351 difference absorbance values in the range 400-500 nm.
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Weights optimized for the SA dataset
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Deconvolution of pulse trains

Abstract. The output of many instruments can be modelled as a con-
volution of an impulse response and a series of sharp spikes. Decon-
volution considers the inverse problem: estimate the input spike train
from an observed (noisy) output signal. We approach this task as a lin-
ear inverse problem, solved using penalized regression. We propose the
use of an Lo penalty and compare it with the more common Ly and L
penalties. In all cases a simple and iterative weighted regression proce-
dure can be used. The model is extended with a smooth component to
handle drifting baselines. Application to three different datasets shows
excellent results.

4.1 Introduction

Many instruments produce signals that consist of a series of pulses. Examples are elec-
trophoretic DNA sequencers, chromatographs, and spectrometers. Some biological sig-
nals have the same characteristics; an example is hormone release in the human body.
The pulses have (more or less) equal shapes but different heights, and they may overlap.
These output signals are the convolution of a series of true (input) spikes or diracs and the
impulse response function. The task is to deduce the heights and positions of the spikes
from the output signal.

Essentially there are two ways to approach this issue. The first is to search for local
maxima to find peak positions, followed by summarizing the signal in their neighbour-
hoods, to estimate peak heights. Examples of this approach are found in many places in
the literature. We mention only a small selection. Yasui et al. (2003) search for zeros of
the first derivative, while Mariscotti (1967) uses the second derivative. When computing
derivatives, it is essential that proper noise filtering is first applied. Wavelets have been
proposed as a tool for filtering by Coombes et al. (2005) in this setting, but other filters are
also possible. Du et al. (2006) use a wavelet spectrum to locate peaks. It is also possible

This chapter is published as: de Rooi J. and Eilers P. (2011). Deconvolution of pulse trains with
the Lo penalty. Analytica Chimica Acta, 705(1-2):218-26.
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to apply a discrete Markov chain as done by Silagadze (1996) and Morhac (2007), these
approaches result in a probability distribution targeting the location of peaks.

The second approach is to model signals as a convolution of a series of sharp input
spikes and a constant impulse response. The task then is to estimate the input from the
observed output signal. This is the deconvolution problem that has been studied in many
fields of science. It is a so-called inverse problem, and it is generally very badly condi-
tioned, which means that small changes in the observed signal or the impulse response
lead to large changes in the estimated input. Conversely, many very different inputs are
compatible with the observed output.

To address the bad condition various deconvolution algorithms have been proposed.
An early solution is the van Cittert algorithm (see e.g. Jansson, 1996) that was later im-
proved in the form of the Gold algorithm (see e.g. Bandziich et al., 1997). Other iterative
approaches are often based on the Richardson-Lucy algorithm or using the general class
of expectation maximisation (EM) algorithms (see e.g. Vardi and Lee, 1993; Li and Speed,
2004). The EM algorithm iteratively redistributes the observed output, proportionally to
the current estimate of the input. Averaging gives an improved estimate of the input, to
be used in the next iteration.

The class of deconvolution algorithms also contains a branch of boosting algorithms.
Cardot et al. (2004) propose to use boosting to find an optimal set of input spikes. As a first
step the locations of the peaks are estimated and subsequently renewed in an updating
step, in the third stage peaks that are too close to each other are merged into one. Recently
Morha¢ and Matousek (2011) proposed a boosted version of the Gold and Richardson-
Lucy algorithms.

A general approach to ill-conditioned problems is the use of regularization: some form
of penalty is imposed on the parameters of the model. We already referred to Li and Speed
(2004). A familiar example in the chemometric literature is ridge regression (Hoerl and
Kennard, 1970), where the penalty is on the sum of the squares of the regression coeffi-
cients. This is called the L; norm; generally the sum of absolute values (of the elements of
a vector) to the power p is called the L, norm. In recent years the Lasso (Tibshirani, 1996),
a penalty based on the L; norm, the sum of absolute values, has become popular in many
applications. References can be found in the next section.

Penalties with a norm based on p < 1 have received little attention. A main theoretical
obstacle has been the fact that they lead to a non-convex optimization problem, in contrast
to penalties with p > 1. Hence one cannot be sure of having found a global minimum.
Another drawback is the lack of good practical algorithms. In this chapter we propose
regularized deconvolution using the Lo penalty, and we show very good results using an
algorithm based on repeated weighted regression. Apparently, in the limited context of
pulse train deconvolution, a non-convex objective function is not a real problem.

In the next section we introduce the deconvolution framework, and we show the ef-
fects of regularization with different norms. There we assume that the impulse response is
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known. In practice only an approximation will be available, so we also consider “blind de-
convolution”: the estimation of both input and impulse response from one signal. Drifting
baselines are quite common; we present two ways to handle them.

In section 3 we present three applications to experimental data. Two of them are instru-
mental (electrophoretic DNA sequencing and gas chromatography), the third is a series of
high-frequency measurements of concentrations of luteinizing hormone in human blood,
which show strong pulsative behaviour.

In the final section we discuss possible extensions and refinements.

4.2 The model

Convolution and deconvolution

Consider a (causal) discrete linear system with an input signal =, and an impulse response
(or spread function) ¢, which incorporates blurring and filtering effects. Actually observed
is the output signal y of length m, plus noise e. Using the superposition principle y can be
described by

Yi = Z CjTi—j + e;. (41)
7=0

Details can be found in many books on linear system theory; see e.g. Brown (2006). In-
terpreting ¢ as indexing time, this shows that y; is a weighted sum of the present and all
previous observations of z. The weights are given by the impulse response. In practice
the length n of the spread function c, is small compared to the length of = and y.

In matrix-vector form we can write y = Sz + e. The convolution matrix S consists of
m+ (n—1) rows and m columns. Row ¢ of S contains c reversed and right-shifted by ¢ — 1.
This means that the columns of S are identical but shifted, which results in a band matrix.
An example of a convolution matrix is presented in Figure 5.1.

Given S and z, computation of (a noise-free) y is straightforward, but here we consider
the inverse problem: y and S are given and we have to find x. The simple approach is to
use least squares: minimize ||y — Sz||?, the objective function of linear regression. The
closed form solution is:

z=(5'9)""5"y. (4.2)

Although the problem now looks like a simple case of regression, this does not help us
much. By construction, the columns of S are strongly correlated, leading to a a severely
ill-conditioned problem, making the results of straightforward regression useless. We will
not go into the theoretical details; one example should suffice. The middle panel of Fig-
ure 4.2 illustrates the problem for a small simulated dataset. Even though the amount of
noise is relatively small, and the fit of the model to the data is very good, the estimated
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Figure 4.1: A convolution matrix S with m + (n — 1) rows and m columns, in 3-d in the upper panel
and in the lower panel in 2-d.

input is useless. Notice the size of the estimated input signal: it is a million times larger
than the output. Also the elements of & systematically alternate signs.

Penalized regression

A general solution for ill-posed problems is regularization. A classic procedure in this vein
is Tikhonov regularization, also known as ridge regression (Hoerl and Kennard, 1970).
One adds a quadratic penalty Q = k3, (z3) = &||z||* to the usual ordinary least squares
objective function. Technically this works well: the calculation is stable and the fit to
the data generally is quite good. The lower panel of Figure 4.2 shows the results when
applying the L penalty on the simulated data. In contrast to the unrestricted regression
model, we observe estimated pulses that are relatively close to the truth.

The ridge penalty however does not result in a sparse solution: & is not very useful,
because it does not look like the series of isolated sharp spikes that we expect. A penalty
that applies shrinkage and creates sparseness is the L, penalty: Q = xX;|z;|. The L1
penalty was independently introduced by Chen et al. (1998) as basis pursuit and as the
least absolute shrinkage estimator (Lasso) by Tibshirani (1996). The L; penalty has be-
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Figure 4.2: Simulated data. Top panel: data (full blue line with dots), fit (full red line) and individual
pulses (thick gray lines). Middle panel: input as estimated without a penalty. Bottom panel: input
as estimated with an Ly penalty. The small squares give the positions and the heights of the nonzero
elements of the input used for the simulation.

come very popular in various fields of statistics, a few examples are graphical modelling
(Meinshausen and Buhlmann, 2006), time to event data (Goeman, 2009) and image de-
noising (Wang and Zhu, 2010). Applying the L; penalty gives a dramatic improvement,
the positions and magnitudes of the spikes are often close to their simulated values, as
Figure 4.3 shows. Although the L; penalty improves the results considerably, we do not
find isolated single peaks and the peak height is often underestimated. As a third alterna-
tive we propose the Lo penalty: the sum of nonzero elements of z, scaled by . In this way
heavy shrinkage of the main peaks is prevented, while minor adjacent peaks are set to
zero. The Lo penalty can be written as: Q = x>, I(z; # 0) = 3_; k[v; |°. Results on the
same simulated data using the Lo penalty are shown in the lower panel of Figure 4.3. In
most cases we do find isolated peaks that are strongly matching the position and height of
the simulated spikes. The small mismatches with respect to position and height between
truth and estimated are due to the amount of noise added to the system.

All three discussed penalties can be considered as members of a family of L,, penalties,
with 0 < p < 2. If p = 2, the ridge penalty, there is a closed form solution for 2 and looks:

z=(8'S+ kW) 'Sy, 4.3)
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Figure 4.3: Simulated data. Top panel: data (full blue line with dots), fit (full red line) and individual
pulses (thick gray lines). Middle panel: input as estimated with an L; penalty. Bottom panel: input
as estimated with an Lo penalty. The small squares give the positions and the heights of the nonzero
elements of the input used for the simulation.

with W = I, an identity matrix and « the tuning parameter for the penalty. When 1 < p <
2 the objective function is still convex and several optimization methods are available in
the literature. When p = 0 the objective function is non-convex, making the optimiza-
tion problem harder. To optimize the objective function of the L; and Lo penalty we use
an iterative procedure, previously presented in Osborne et al. (2000) to optimize the L;
penalty. It generally holds that:
[P = a3 /(&5 + B%) /2 = wjad, (4.4)
a weighted square, if ©; = z; and constant 5 equals zero. The idea is to iterate with
this formula, using for Z; the current approximation to the solution x;. The constant 5 is
added to reduce the number of iterations: § is a small number, say 1000 times smaller
than the expected maximum of z. For both penalties the basis is equation (5.7), with
for each a specific matrix W. In the case of the L, penalty W is a diagonal matrix with
wj; = 1/4/%% + B2 and for the Lo penalty: w;; = 1/(Z5 + 7).
In Figure 4.4 we see the penalty function plotted for all three norms. Compared to the
other two norms we see that the L> norm imposes a large penalty on coefficients far away
from zero. This is the shrinking effect. Although the penalty approaches zero when the
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L2, L1 and LO penalty function
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Figure 4.4: The shape of the penalty function for the L2, L1 and the Lg penalty. The degree of shrink-
age depends on the shape of the penalty function, the size of the tuning parameter and magnitude of
the estimates.

coefficients are small it will never be zero. The L penalty function is linear and compared
to Lo penalty function puts a bigger penalty on coefficients near zero and can also set
coefficients to zero. Using the Lo norm, the penalty is one if the estimate is nonzero and
zero when a coefficient is zero.

Blind deconvolution

In the previous paragraph we assumed that the impulse response is available, however
in practice this is almost never the case. Fortunately, we do get warnings when we use a
wrong impulse response, because the estimated input signal compensates the error and
we will not get the desired train of isolated spikes. If we use an impulse response that
is chosen too broad this leads to additional negative spikes in the input between the real
one, as shown in Figure 4.5. When the impulse response is chosen too narrow, we will see
close double impulses, as Figure 4.6 shows.

If we know z, estimating the impulse response c leads to an other regression problem.
So, by alternating between estimating  and c we get an algorithm for blind deconvolution.
Using equation 4.2 we estimate z, to estimate matrix .S we reverse the equation and treat
x as given. If X is a matrix with, in its columns, shifted copies of &, ¢ is found from
X'X¢ = X'y. In general this is a well conditioned regression problem since the length of
c is generally much smaller than that of  and y. A reasonable starting estimate for the
impulse response c is needed, but this is not very critical and one can pick one isolated
peak as a template.
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Figure 4.5: Simulated data. Upper panel: data (full blue line with dots), fit (full red line) and individ-
ual pulses (thick gray lines). Lower panel: deconvolution with an impulse response that is 20% too
wide.
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Figure 4.6: Simulated data. Upper panel: data (full blue line with dots), fit (full red line) and individ-
ual pulses (thick gray lines). Lower panel: deconvolution with an impulse response that is 20% too
narrow.
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4.2. The model

Baseline correction

Many spectra and traces show a drifting baseline, which should be corrected to achieve
proper results. We approach this problem in two different ways. One is to estimate a
baseline from the observed data and subtract it. The other is to introduce it in the model
and to estimate both input and baseline simultaneously.

In the literature we can find various ways of estimating a baseline component in traces
and spectra. Examples are estimating local minima and fitting the baseline with interpola-
tion (Coombes et al., 2003), peak clipping algorithms (Ryan et al., 1988; Morha¢, 2009), or
the application of robust local regression (Ruckstuhl et al., 2001). We use asymmetric least
squares smoothing (Eilers, 2004). The baseline z is estimated by minimizing the following
penalized least squares function:

R= Zvi(yi —z)? +/\Z(A2zi)2. 4.5)
The first term estimates the fit to the data, the second part A", (A%z;)? is a roughness
penalty based on the second order differences. A is the difference operator: A?z; = (z; —
zi—1) — (2zi—1 — zi—2) = 2 — 2zi—1 + 2zi—2, A is the tuning parameter. The weights v are
asymmetric: when y; > z;, v; = o, a small number between 0 and 1. Otherwise v; = 1 —a.
The weights are computed iteratively, starting from v; = 0.5. Two steps are repeated:
smoothing with the current weights and updating the weights. Convergence is generally
obtained after a handful of iterations. The parameter o determines the asymmetry; usually
a value between 0.001 and 0.01 works well. This assumes positive peaks. If the peaks are
negative, o should be replaced by 1 — a.

Increasing A will result in a smoother trend, currently A is tuned manually (as is ). The
system of equations to be solved is: z = (V + AD’D)~'Vy. Here, V is a diagonal matrix
with v on the diagonal. Dz = A%z, the (second order) difference matrix; an example with
m = 6 looks like:

1 -2 1 0 00
0o 1 -2 1 00
D= (4.6)
0 0 1 -2 10
0 0 0 1 -2 1
Alternatively we can add the baseline to the model, as follows:
y=Sxr+z+e. 4.7)

The roughness penalty A||Dz|| is applied as before, and the Lo penalty is applied to x. In
the iterative least squares approach the penalty can be written as ||W«||, with the current
weights in W. This leads to the following system of equations:

L)
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4. DECONVOLUTION OF PULSE TRAINS

In our experience, it is generally not possible to work with this system directly, unless
the baseline is small. The weights in the matrix W have to be close enough to their right
values to make this work.

The following procedure gave good results. First deconvolution is performed, with
the extended model, using a ridge penalty and an asymmetric penalty on . The latter
penalty is included to force x to be positive. It has the form Q* = k™ > wiz?, where k is a
large number, say 10°, and u; = 1if z; < 0 and u; = 0 otherwise. Like the weights v in
asymmetric smoothing, u is updated iteratively.

Figure 4.7 illustrates results and intermediate results for the proposed procedure on
simulated data. The input spikes are so closely spaced that the baseline is never reached,
except at both ends. The intermediate step finds a positive & which is not sparse, but
close enough to let the Ly penalty do its work properly in the final step. In this example
k= 0.01, s* = 3and X\ = 10*. We expect that one has to experiment with these parameter
values to get a good result in specific situations. Unfortunately we cannot give general
advice on parameter values.

4.3 Applications

In this section the algorithm is applied to three different datasets. The first example comes
from DNA sequencing by electrophoresis. The original data consists of four channels;
one for each of the four nucleotides. Here we analyse only one channel. In the upper
panel of Figure 4.8 the signal is plotted. The middle panel shows a number of peaks that
all coincide with the largest peaks present in the data, only a few smaller bumps are not
considered a peak. We used blind deconvolution. In the lower panel the initial and final
impulse response function are plotted.

The second dataset shows human hormone concentrations in human blood (Vis et al.,
2010). A constant baseline is assumed, and subtracted beforehand. An exponentially de-
caying impulse response has been assumed. Both the value of the baseline and the time
constant of the decay have been obtained by playing with parameter values and visually
inspecting the results. We do not consider this a full analysis of the data; it only serves as
an illustration of principles.

The third dataset is a gas chromatogram, with baseline drift. Prior to blind deconvolu-
tion we estimated this baseline with asymmetric smoothing and subtracted it. A Gaussian
impulse response is used as a start. Both the data and final results are shown in Figure
4.10.

All three examples show excellent performance of deconvolution with the L penalty.
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Output signal plus estimated and true baseline
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Figure 4.7: Simulation. Baseline estimation and peak detection with the extended model. Upper
panel: the simulated data (in blue), the estimated (green) and true baseline (red, dotted). Middle
panel: the intermediate solution using the L2 penalty. Lower panel: final estimates using the Lg
penalty. The small squares give the positions and the heights of the nonzero elements of the input
used for the simulation.

4.4 Discussion

Penalized regression is a popular choice to resolve identification issues in the case of ill-
posed inverse problems. We have shown that for deconvolution of sparse input signals
the Ly penalty is not useful. The L; penalty gives decent results, but not as sparse as we
would like to see, and deviations from the true peak height occur. The Lo penalty shows
superior performance: a very sparse result, close to the true input values.

The iterative weighted least squares algorithm works well, on simulated and on ex-
perimental data. This is remarkable, because the objective function is not convex, as is the
case for the L; and L» penalties. Apparently there is enough structure in the problem to
steer the computations in the right direction. It will be an interesting venture to develop
more theoretical insight in why this is the case.

We proposed two ways to handle a drifting baseline: by prior elimination, after es-
timating it by asymmetric least squares smoothing, or as an explicit smooth component
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Data and fit; k = 0.02; f = 0.0001
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Figure 4.8: Peak detection on the DNA electrophoresis data. Upper panel: output signal and fitted
model. Middle panel: estimated peaks. Lower panel: initial (in red) and final impulse response
function.

in the model. The first approach has the advantage that the user can judge the reason-
ableness of the intermediate result. But if peaks are closely spaced, it might be hard to
estimate a baseline by asymmetric smoothing. The positivity constraints used in the sec-
ond approach could be applied even without the presence of a baseline. However, to test
the full potential of these constraints in combination with the discussed penalties is left for
future research.

Currently we tune the weight of the penalty by visual inspection. Of course, an au-
tomated procedure would be attractive, but we did not yet discover clear criteria. The
essence of ill-posed problems is that the fit of a model to the data does not give much
information: it will always be very good. The desired information should come from
properties of the estimated input signal.

Throughout this chapter we modelled the impulse response in such a way that its max-
imum is at the same position as the impulse response. For real, causal, systems this cannot
be true. It is a psychological issue: when judging the results of deconvolution, it is pleas-
ant to see the positions of the estimated input spikes at the peaks of the corresponding
pulses in the output.

We have assumed that the impulse response does not change over time. In our appli-
cations this turned out not to be a problem. But for other data, and especially for longer
data series, this might no longer hold. If it is known how the impulse response changes
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Figure 4.9: Peak detection on the hormone release data, using a constant baseline and exponential
decay. Upper panel: output signal (in blue), fitted model (red) and baseline. Middle panel: estimated
peaks. Lower panel: individual fitted components.
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Figure 4.10: Peak detection on the chromatogram data. Upper panel: output signal (in blue) and
fitted model. Middle panel: estimated peaks. Lower panel: initial (in red) and final impulse response

function.
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4. DECONVOLUTION OF PULSE TRAINS

with time, it is easy to adapt the matrix S: column j contains the impulse response at input
time j. Nothing else has to be changed in the algorithms.

A future challenge is to estimate a time-varying impulse response from a data series.
We are considering two options for future research: 1) transform time in such a way that
on the new scale the impulse response is constant, and 2) estimate the contents of the
matrix S as a smooth two-dimensional surface.

To keep the presentation simple, we assumed the same sampling distance for input
and output, but we are not limited to this choice. Especially when we model the impulse
response with a flexible function, like a spline, to allow arbitrary interpolation, we can use
any grid we like. In specialized applications, the output might be sampled on an arbitrary,
non-uniform, grid. A uniform grid for the input might be more detailed than that of the
output, suggesting opportunities for increased resolution.

The DNA sequencing data as discussed, consists of four traces in parallel, from which
we only analysed one. These traces typically show some amount of crosstalk, resulting in
one large peak in the correct channel and three smaller ones in the others, for each input
impulse. Li and Speed (2000) proposed a model in which a four-by-four crosstalk matrix
is estimated together with the distributions of the input signals. It seems natural and
feasible to extend Lo-penalized regression to this setting, modelling crosstalk and input
signals together.

All computations shown in this chapter were performed in R and Matlab. On request,
the software is available from the first author.
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Sparse deconvolution in one and
two dimensions

Abstract. Deconvolution of noisy signals and images is an important
task in various areas, examples are: chemometrics, biology and imag-
ing. When the solution is required to be sparse, desirable results are
obtained using penalized estimation techniques. Sparseness is realized
by shrinking coefficients to zero. We use penalized regression with a
penalty based on the Lo norm, as presented in earlier work. Several ex-
tensions to this approach are presented. The model now applies to both
one-dimensional and two-dimensional data. In case of blind deconvolu-
tion, a smoother is applied to improve the estimated impulse response,
which is applicable to any unimodal response function.

5.1 Introduction

In many measurements of physical and biological systems some kind of convolution oc-
curs. This is the phenomenon that an input signal gets ‘blurred’, in space or time (or both),
through delays or spatial interactions. In microscopy, convolution is visible if we approach
the optical limit in resolution. In a chromatogram, it is the spreading of peaks due to dis-
persion. Inside the human body it is the gradual decrease of hormone concentrations after
a very short release burst. Convolution is also used in statistics, for instance in time series
analysis, to model the effect of time on the output variable.

In many cases convolution is linear and the blurring effect can be described by a so-
called impulse response function (IRF). If that is the case, one can try to estimate the input
signal from an observed input signal by linear regression. This is called deconvolution.
Generally this leads to an ill-posed statistical problem: the solution is extremely sensitive
to small changes in the data or the assumed impulse response function. Often the results
do not make sense at all against the background of the problem. A further complication
is that in many cases only an approximation of the IRF will be available, meaning that

This chapter is based on: de Rooi J.J. and Eilers PH.C. Sparse deconvolution in one and two
dimensions. Submitted.
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5. SPARSE DECONVOLUTION IN ONE AND TWO DIMENSIONS

both the input and the spread function have to be estimated; this is often called blind
deconvolution.

Stable estimates can be obtained by regularization of the problem. Constraints can be
imposed according to the a priori information about the system under study. We know
the input consists of a sparse series of positive spikes. All other channels are zero. The
response function should be smooth and positive everywhere. We use a shrinkage esti-
mator, employing a Lo norm penalty. A smooth positive IRF is realized using a unimodal
smoother.

The remainder of this chapter is structured as follows. In the next section we first
introduce the general model for one-dimensional data. Thereafter, blind deconvolution
and optimization of the tuning parameters are discussed. The third paragraph is devoted
to sparse deconvolution of two-dimensional data, followed by a section showing some
applications. The chapter closes with a discussion on the main findings and possible im-
provements.

5.2 The deconvolution problem

The signal y of length n is assumed to be a convolution of a series of delta functions x and
a fixed impulse response function c of length m, summarizing the blurring or distortion
in the instrument. The output signal y can be described by the model:

y(t) = /Ot z(T)e(t — 7)dr. (5.1)

Observed signals are almost always discrete. The relationship between input and output
can be expressed by the discrete convolution equation:

yi= D Tici—i, (52)
resulting in y;; a weighted sums of the present and all previous values of x, weighted by
the impulse response function c. The problem can be rewritten into matrix-vector form:

y= Cute (5.3)

with residuals e and C being the convolution matrix with m+ (n—1) rows and m identical
but shifted columns, resulting in a band matrix. An example of a convolution matrix is
presented in Figure 5.1.

A solution to Eq. 5.3 can be obtained using least squares: min||y — Cz||>. Without any
constraints this result is useless, as a consequence of the bad condition of the problem.
Small errors in y generate large oscillations in the solution &, and there are an infinite
number of ways to fit the data.
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Figure 5.1: A convolution matrix C' with n 4+ (m — 1) rows and n columns. The upper panel shows
the (rotated) matrix in 3-d, the same matrix in 2-d is visualized in the lower panel.

In the literature we find various deconvolution algorithms. Popular are iterative ap-
proaches which are often related to the van Cittert method (see e.g. Jansson, 1996):

"t =k 4 y(y - CaP), (5.4)

with v a relaxation parameter. Iteration starts with an initial guess of the input, 2°. The
differences between y and the convolution of z° with C are weighted by v and added
to 2° to finish the first iteration. The van Cittert method has successfully been used for
deblurring in imaging applications, but it also exhibits some problems. First, in case of
sparse deconvolution, the solution has too many non-zero elements. Second, it allows
negative estimates, which does not make sense in the context of the data studied here.

A similar iterative algorithm was proposed by Gold (see e.g. Jansson, 1996). To avoid
negative estimates it is based upon multiplicative corrections, instead of additive ones.
The algorithm is defined,

k+1 k

o = gt (5.5)

Yi
2, Cijzy
Given that the observed data y and the response function c are positive everywhere, the
estimates = will be positive as well. Iterations for both the van Cittert method and Gold
deconvolution are repeated until a predefined number of cycles is reached or when a con-
vergence criterion is met. Often a large number of iterations is required which makes
the procedures relatively slow. A comparison between these methods can be found in
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5. SPARSE DECONVOLUTION IN ONE AND TWO DIMENSIONS

Coote (1997), very recently Morhéc¢ also proposed a boosted version of the Gold algorithm
(Morha¢ and Matousek, 2011).

An alternative is penalized regression. The least squares cost function is augmented
with a penalty, ||y — Cz||* + P. The penalty is a function of  and puts a constraint on the
size of the input. By reducing the model complexity, the problem becomes estimable. A
prominent example within this family is the ridge penalty by Hoerl and Kennard (1970),
which combines the loss function with a quadratic term.

P=aY a2, (5.6)
J

with A a tuning parameter. Ridge regression is attractive because the solution can be ob-
tained in closed form:
&= (C'C+ W)y, (5.7)

with W = I, the identity matrix. Ridge regression shrinks the estimated coefficients.
By doing so, stable estimates are obtained and large variances in the predictions are pre-
vented. A downside is that it does not result in a sparse vector £. When penalizing the
absolute values of the solution, both shrinkage and sparsity are obtained. The L; norm
penalty (hereafter shortened to L; penalty), is well known as the Lasso (Tibshirani, 1996)
in statistics or as Basis pursuit denoising (Chen et al., 1998) in signal processing;:

P = AZW. (5.8)

It takes the sum of the absolute values of the elements of . The L1 norm penalty cannot
be solved in closed form, but the goal function is still convex and many optimizers are
available to obtain a stable solution. The L; penalty is very successful in various areas.
In relation to signals and spectra it is used for classification, as demonstrated by Li and
Speed (2004) and Du and Angeletti (2006), and for peak identification in for instance mass
spectrometry data (Renard et al., 2008).

In applications with high-dimensional data, the L, penalty often returns relatively rich
solutions. A further increase of the tuning parameter will lead to a sparser result, but at the
same time more shrinkage of the estimates. These problems have been well recognized in
the literature and have resulted in a number of alternatives. One example is the adaptive
lasso (Zou, 2006), which introduces an additional weight for each component. In essence
it is a weighted I, penalty:

P=3" A, (59)
J

with \; based on for instance the magnitude of initial estimates, obtained by using an L,
penalty (see eg. Kramer et al., 2009)).

In the present case too much shrinkage is undesirable because we try to obtain an ac-
curate estimate of the peak height. In fact, our problem is very close to traditional variable
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subset selection and naturally leads to the Lo norm penalized cost function:
P=X> Ia; #0) =AY |’ (5.10)
J J

the Lo norm penalty (hereafter shortened to Lo penalty) is the weighted sum of non-zero
elements of z,
20 = 0, ifz; =0, (5.11)
1, otherwise.

Because of its discontinuity, proper optimization is challenging. Good results are re-
ported however, by several authors such as Blumensath and Davies (2008), Elad et al.
(2007) and Herrity et al. (2006). Attractive results in the context of sparse deconvolution of
one-dimensional signals, can be found in de Rooi and Eilers (2011). In many cases either
a greedy algorithm or relaxation techniques are used. Two examples of the first approach
are forward stepwise regression and orthogonal matching pursuit (Bruckstein et al., 2009).
Both algorithms add variables sequentially based on the significance or correlation with
residuals. The downside of these methods is that they become slow when there are many
variables.

Relaxation techniques convert the Ly norm optimization into something that is more
easy to solve. Here we use an algorithm based on iteratively reweighted least squares
(IRLS). This method is earlier explained in connection to the L; norm by e.g. Osborne
et al. (2000), but is also used for Lo norm optimization (Bruckstein et al., 2009). It basically
means that the problem is iteratively converted into a weighted L; norm.

It is clear that |z;|” = 27/ (a:?)@’m/ 2. When = is unknown, but approximated by & we
have: |z;[? ~ 23/ (:E?)@’p )/2, For numerical stability, we also introduce 3, a small constant
about a thousand times smaller than the expected maximum of x, which results in:

|27 =~ 23 /(35 + B7) PP = wjal. G.12)

This weighting scheme can be used in Equation (5.7). In the case of the L; norm penalty W
is a diagonal matrix with w;; = 1/1/%;% + 82 and for the Lo penalty: w;; = 1/(&7 + 7).
The idea is to iterate with this formula, using for &; the current approximation to the
solution x;. Starting values for x can be obtained from a ridge regression, or one can start
from a constant x.

Blind deconvolution

In the preceding sections we assumed that the impulse response function is known. In
practice, the true impulse response function is hard to obtain and one has to use an ap-
proximation, or estimate it from the data. In cases where the IRF can be well approximated
by a parametric function, one could fit a series of alternative functions, and choose the one
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5. SPARSE DECONVOLUTION IN ONE AND TWO DIMENSIONS

that fits the data best (see e.g. Reiss et al., 2008; Vis et al., 2010). Model fit can be deter-
mined by inspection of the residuals. Estimating both the input and the response function
only by using the data, is often called blind deconvolution.

It is clear that blind deconvolution is more difficult compared to the case where the
response function is known. However, when the (convoluted) peaks in the signals are rel-
atively separated from each other, it becomes more easy to deduce information concerning
the shape of the IRF. When estimating the response function we are also warned when it is
too far of from reality. When the function is too narrow, compared to the truth, too many
spikes will appear in the estimated x. In cases where the response function is taken too
wide, negative peaks will be the result.

To estimate both the IRF and the input, we use an alternating minimization scheme.
Assuming that we know the impulse response, we can make an estimate of the series of
input spikes. Reversely, if we know z, we can estimate the IRF. This procedure is repeated
until convergence. In Equation 5.12 we saw how to estimate the series of input spikes,
given the impulse response function. The unconstrained solution for the IRF is given

e=(X'X)"' X"y, (5.13)

with X being a band matrix with in the columns the (shifted) input x. In principle estimat-
ing ¢ does not require regularization, but we can get better results with penalization. Good
results are obtained by applying a penalty on the differences: é = (X'X + A*D'D) ™' X'y.
The matrix D is a dth order difference matrix, imposing smoothness of the vector c¢. A*
is the tuning parameter and regulates the smoothness of the function. Using this set-up,
overfitting is a risk if the penalty is not optimized.

The applications discussed within this chapter all have a response function that is
unimodal and positive everywhere. Both constraints are implemented in the unimodal
smoother as discussed in Eilers (2005). Using this smoother, blind deconvolution can be
applied to any type of unimodal response function. One example is an exponential de-
cay function, presented in the application section. Because the limit of the smoother is a
bell curve, overfitting is no issue in case of a normal response function. The unimodal
smoother is defined:

Q=D (yi— Y miye )+ XD (A%u)" + 7Y v;(A%;)?, (5.14)
i j J J
with ¢; = €/, A being the differencing operator and + a large value, say 1000 or larger.
The weights of v depend on the sign of A?u;,
v = 1, if AQ’LL]' >0, (5.15)
0, otherwise.
As a result, the second penalty only shrinks where the differences in u are negative. For a
detailed discussion we refer to Eilers (2005).
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Model selection

In the previous sections we laid out the model estimation framework. Sparseness is ob-
tained using an Lo penalty and in cases where the impulse response is unknown it can be
estimated in an iterative manner. Here we discuss three types of model selection criteria:

e Manual tuning
o Restriction of model complexity
o Using information criteria

In many cases the user knows the data well, meaning the model can be tuned by visual
inspection satisfactorily. If one knows the limits of the studied system with respect to the
pulse rate, it is also possible to restrict the maximum number of estimated peaks. The

problem can be rewritten as a constrained minimization problem:
min ||y — Cz||>  subjectto ||z|jo = K, (5.16)

with K being the number of spikes in z. The solution can be obtained by starting with a
large X and subsequently reduce it until ||z||o = K. An example can be found in Vis et al.
(2010), where the authors restrict the allowable number of estimated hormone secretion
bursts using knowledge from endocrinology. Base calling in DNA sequencing data is a
second example. Knowing the length of the signal one can calculate the maximum number
of possible bases on the string.

The two most prominent statistical criteria are the Akaike information criterion (AIC)
(Akaike, 1974) and the Bayesian in formation criterion (BIC) (Schwarz, 1978). Here we use
the AIC which is defined as

AIC = nlog(5°) + 2K, (5.17)

with

[S1]

52 = L2 (5.18)
n

Typical for penalized regression models is a smooth AIC curve. Using an Lo norm penalty,

this is not the case, this can be explained by the discrete steps of the effective dimension,
when increasing the weight of the penalty.

Simulations
Simulations with known IRF

In this section we present a small simulation, to make a comparison between three de-
convolution algorithms. A signal is generated, including six peaks and using a Gaussian
shaped response function. The signal is short, so that performance can be inspected visu-
ally. The results for Gold deconvolution, penalized estimation using an L; norm penalty
and an Lo penalty are provided in Figure 5.2. The optimal penalty parameter for the L;
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5. SPARSE DECONVOLUTION IN ONE AND TWO DIMENSIONS

and Lo penalty is obtained using the AIC. The response function is known to all algo-
rithms. The observed signal including noise is printed in red. The positions and heights of
the true input spikes are depicted with the blue circles. The estimated pulses are presented
in green.

The upper panel shows the results using the Gold algorithm, which converged after
about 500 iterations. Observing the result, we see that too many peaks are estimated and
it seems that the algorithm is rather sensitive to noise. Using an L; penalty yields better
results, which can be seen in the middle panel of Figure 5.2. This method performs better
in finding the right location of the peaks. However the shrinkage property of this penalty
introduces bias in the form of small peaks. It could also be the case that the AIC is unable to
detect the best configuration. However, manual tuning does not result in better estimates.
Increasing the penalty term reduces the height of the estimated peaks and can even lead
to the appearance of more peaks. The most satisfactory results are obtained using the
Lo norm penalty. These results are shown in the bottom panel of Figure 5.2. Both peak
positions and heights are estimated with great precision.

Gold deconvolution with 500 iterations
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Figure 5.2: A simulated signal including noise. The observed data are printed in red, the estimated
pulses in green. The position and height of the true input spikes are printed as blue dots. The upper
panel shows the results for the Gold deconvolution, the middle panel the results using the L penalty
and the bottom panel using the Lo penalty.
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5.2. The deconvolution problem

Simulations with unknown IRF

To construct an example to illustrate blind deconvolution, we use the same input signal
as in Figure 5.2 and concentrate on the L; and Lo norm penalized methods. To make the
example somewhat harder, the true response function is changed to skewed normal. We
choose to optimize the penalty manually, because the AIC is not suitable in this case. The
effective dimension in Equation 5.17 only incorporates the size of the input = and does not
includes restrictions on the estimated response function.

The results for the L; penalty are presented in Figure 5.3. The upper panel shows the
raw signal (in red) the position and height of the true input spikes (blue dots) and the
estimated input (in green). When using this penalty, we do not retrieve the right number
of spikes, the estimated IRF is much too narrow and its right tail is missing completely.
The initial IRF is presented in red, the truth in grey.

Blind deconvolution with L1 norm penalty
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Figure 5.3: The results of blind deconvolution, using an L norm penalty. The upper panel shows
the observed signal (red), the estimated pulses (blue) and the true height and positions of the spikes
(blue dots). The middle panel shows initial (red), estimated (blue) and true IRF (grey). Residuals are
presented in the bottom panel.

The results for the Lo penalty are very satisfactory, as can be seen in Figure 5.4. Six
spikes are estimated, with right positions and intensities. The estimated response function
is very close to the true one. It appears that even when starting with a much to narrow
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response function, there is enough information in the data to converge to a very good

solution.
Blind deconvolution with LO norm penalty
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Figure 5.4: The results of blind deconvolution, using an Ly norm penalty. The upper panel shows
the observed signal (red), the estimated pulses (blue) and the true height and positions of the spikes
(blue dots). The middle panel shows initial (red), estimated (blue) and true IRF (grey). Residuals are
presented in the bottom panel.

5.3 2d deconvolution

In addition to one-dimensional deconvolution, there is a large volume of publications dis-
cussing applications in two dimensions. Many of those focus on some application in
imaging, trying to remove optical distortions (see e.g. Starck and Murtagh, 2006, for an
overview), but they do not require sparseness of the solution. Two-dimensional sparse
deconvolution is discussed by Belghith et al. (2011) in relation to 2d NMR data, or by
Morhéc¢ et al. (1997) where it is applied to y-ray spectrometer data. Further applications
can be found in fluorescence microscopy and will be treated in the next section.

Two-dimensional deconvolution is challenging, because of the large number of vari-
ables in the regression problem, one for each pixel. The data are summarized in a matrix
Y, with dimensions I x J. The model becomes:

Yij = Z Z Si—k,j—1Tkl T €ij; (5.19)
koL
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with the impulse response function s, a two dimensional (discretized) density. Alterna-
tively, s can be translated into a four-dimensional array C":

Yij = Z Z Cijkl Tkl + €ij. (5.20)
ko1

To solve the system, we vectorize the data: y = vec(Y), and translate C' to the ma-
trix C* with dimensions IJ x IJ. The special structure of this matrix can be seen in
Figure 5.5. This matrix is still relatively sparse, but depending on the response function
the bandwidth is considerable. If the images become large, estimation is computationally
demanding and segmentation is required.

100|

120|
140|
160|
180|
200!

Figure 5.5: Vectorizing the two dimensional data requires an adjustment of the convolution matrix,
resulting in the banded matrix C*.

Figure 5.6 shows the results of a simulation. The size of the image is 40 x 40 pixels
and contains five partly overlapping dots. The data is similar to the single-molecule flu-
orescence imaging data discussed in the application section. The goal is to estimate the
positions of the dots, knowing the response function. The left panel of Figure 5.6 shows
the observed data, the estimated image is depicted in the middle panel. The estimated
input spikes are presented in the right panel. Interesting about this simulation is the con-
vergence rate and the obtained degree of sparseness.

The convergence is depicted in Figure 5.7. The image shows the reduction in the num-
ber of non-zero coefficients for each iteration. The first step reduces the number of non-
zero coefficients by more than 50 percent. After ten iterations, only six coefficients remain.

5.4 Applications

In this section two applications are discussed. We start with a discussion of hormone
release data. As a second application we discuss sparse deconvolution of fluorescence
images.
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Observed Y Estimated Y Estimated x

Figure 5.6: Simulated single-molecule fluorescence imaging data (left), the reconstructed image (mid-
dle) and the estimated input (right).
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Figure 5.7: The convergence of the algorithm, expressed by plotting the iterations against the number
non-zero spikes.

Pulse identification in endocrine time series data

The data are luteinizing hormone levels, measured during 24 hours at intervals of ten
minutes, see Vis et al. (2010, 2012). The goal in this application is to model the secretion
pattern, which is assumed to be a sparse series of spikes. The impulse response function is
known to follow a decay close to an exponential function. We model it non-parametrically.
In Figure 5.8 we see the result of the (blind) deconvolution. The upper panel shows the
observed data in grey. The red signal is the estimated one; a convolution of the estimed
IRF and series of spikes. The middle panel shows the sparse series of estimated input
peaks. The 11 secretion bursts corresponds with the major peaks in the estimated data, all
other coefficients are set to zero. The third panel shows the impulse response, estimated
using blind deconvolution, in red. The blue IRF is used as an initial estimate, its decay
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Figure 5.8: Estimating input pulses for the hormone release data. In the upper panel we show the

data (grey) and estimated output. The middle panel shows the series of estimated peaks. The lower
panel shows the initial IRF (blue) and the estimated one (red).

rate is clearly too rapid for the observed data. It shows the robustness of the procedure;
even with a large discrepancy between the initial and true IRF, the algorithm converges to
a very good approximation.

Single-molecule fluorescence imaging

In the second application we focus on two-dimensional data. Fluorescence microscopy is
used to study the complex spatio-temporal interplay of biomolecules and is widely used
in molecular and cell biology. The data are a series of images showing actin structures
in which the structure is highlighted using quantum dots fluorophores. Due to their
photoswitching property, the fluorophores blink randomly over time, and make closely
positioned molecules resolvable in time. These properties are used to obtained super-
resolution images. Here we focus on localisation; estimating the exact positions of single
molecules. Analysing one image is an example of sparse deconvolution in two dimen-
sions. A more elaborate treatment of these data will be given elsewhere.

In addition to the signal we assume a baseline which need to be removed before de-
convolution. Here we rely on a mixture model approach, discussed in de Rooi et al. (2013).
Figure 5.9 shows the deconvolution of the actin data. The panel on the left in the first row
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Figure 5.9: Deconvolution of the actin data, after baseline subtraction. The sparse reconstructed image
is showed in the bottom right image.

show a part of the observed image. The estimated baseline in presented in the middle
panel. Subtracting the baseline from the observed data results in the picture presented on
the right. The left image on the second row shows the estimated positions of the dots. The
residuals and the reconstructed image are presented in the two remaining figures.

5.5 Discussion

Sparse deconvolution is a prominent problem in various disciplines. In the previous chap-
ter we proposed sparse deconvolution using an Lo penalty, which is able to estimate very
sparse models in a reliable way. In the current chapter some additions are proposed.

The algorithm is successfully applied to two-dimensional data. Vectorization of the
two-dimensional data results in large systems, which require considerable computation
time. A solution is to split images in (overlapping) segments and analyse these separate.
In addition, the model now allows blind deconvolution with in theory any shape of uni-
modal impulse response function. The IRF is estimated from the data, given the (updated)
vector of input pulses. Smoothness is imposed and results in a unimodal IRF. The blind
deconvolution algorithm can be further extended to the two-dimensional case.

The deconvolution algorithm is based on penalized regression, and allows various
further extensions. Some applications show band-broadening effects, meaning that the
observed peaks gets broader over the observed range. To capture this effect the model can
be extended with a time dependent impulse response function. In some situations with

68
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multiple signals, like DNA base calling and EEG signals, the data shows crosstalk. Mean-
ing that one signal ‘spills over” into other signals. A possible extension of the presented
model corrects for this crosstalk by introducing a mixing matrix, aiming to separate the
different sources.

The models as presented are often tuned visually, with satisfactory results. In a broader
setting it is customary to apply model selection using for instance cross-validation or some
type of information criteria. We have shown that the AIC is useful in some cases, but needs
adjustment to be applicable to blind deconvolution.
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Classification of outlines using
penalized signal regression

Abstract. Various medical and biological applications require the
classification of two-dimensional rounded outlines. In addition to classi-
fication, proper preprocessing is needed. We propose a scheme with sev-
eral steps: 1) rectangular coordinates are converted to polar coordinates;
2) scaling and rotation is applied; 3) the radius is lightly smoothed using
(circular) P-splines as a function of the angle; 4) the spline coefficients
are used as explanatory variables in logistic penalized signal regression.
Three applications to real-life datasets are presented, showing excellent
classification performance.

6.1 Introduction

Shape analysis concerns the use of geometrical properties in order to distinguish different
objects. Observed differences can be used for description or classification purposes. Ap-
plications can be found in fields like medicine, biology and engineering. Acharya and Ray
(2005) and Dryden and Mardia (1998) show examples in several areas.

Shapes can be described using landmarks, locations or points of correspondence on
measured samples that are used to calculate distances, ratios or angles to characterize
groups. Dryden and Mardia (1998) distinguish three types of landmarks: anatomical,
mathematical and pseudo-landmarks, all recorded in (z,y) space. The first two types
of landmarks are concisely defined as distinguishable points or markers, with biologi-
cal meaning or based on mathematical properties, and should be easily reproducible on
independent samples. The advantage of these types of landmarks is that complex shapes
are represented by a small set of variables, and subsequently can be analyzed using famil-
iar tools like discriminant analysis. Sometimes clear markers are lacking, or whole shapes
unveil more details. In these cases one can decide to analyze complete outlines. By us-
ing a moderate number of what Dryden and Marida call pseudo-landmarks, an accurate

This chapter is based on: de Rooi J.J. and Eilers PH.C. Classification of almost convex outlines
with penalized signal regression. Submitted.
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6. CLASSIFICATION OF OUTLINES

description of shapes can be realized. In contrast to both other types, there is no longer
a decision rule for the placements of the landmarks, the only requirement is that they are
placed on such an interval that yields a satisfactory approximation of the original outline.
With modern technologies the outlines can be easily tracked (semi-)automatically, and a
large number of (x, y) coordinate pairs can be obtained.

The motivating example for this chapter is a set of skull outlines from children. The
outlines show abnormal patterns, caused by premature fusion of one or more cranial su-
tures. Making the right diagnosis is crucial to decide on possible treatments. Our aim
is to classify the samples using complete outlines in order to classify samples in the right
group. There are two important issues that have to be addressed when analyzing outlines:

e Preprocessing of the data.

e The ill-conditioned nature of the problem, caused by the large number of coordinate
pairs.

This chapter presents a framework in which both problems are solved in an elegant way.
For the preprocessing, the pairs of (z,y) coordinates are translated into polar coordinates
(¢, p) to facilitate both preprocessing and classification. The resulting curves are then sum-
marized on a P-spline basis, which makes them of equal length, smooths possible noise
and reduces the dimensionality of the problem. If required, the curves can be rotated
and normalized, for proper comparison. In addition, it is possible to smooth areas of low
support, or small parts of missing data.

For the classification part, measures have to be taken in order to resolve the condition
problem. An often applied solution is to summarize the data on a lower dimension, e.g.
using principal components analysis as pioneered by Cootes et al. (1995). A second option
is to apply some regularization. One example, analyzing open outlines, can be found in
Ramsay and Silverman (2002), who use linear discriminant analysis with a ridge penalty
(Hoerl and Kennard, 1970). We use penalized signal regression (PSR), based on the algo-
rithm as presented in Marx and Eilers (1999). In the regression, each P-spline coefficient is
treated as a variable. In order to make the model estimable and prevent overfitting of the
data, we force the coefficient vector to be smooth by using a difference penalty. Because
the data are not transformed, the results of the regression are well interpretable.

We propose the following workflow:

e Determine the origin of the image.

e Convert cartesian to polar coordinates.

Fit P-splines.
¢ Rotate to align with the reference.

Normalize the radius.

Classify using penalized signal regression.
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In the next section all preprocessing steps are discussed. P-splines take a central role in
the proposed methodology, and are therefore explained into detail. The classification algo-
rithm is explained in the third section. In the fourth section, three applications are demon-
strated. For comparison, we apply two additional classifiers, one using mean scores and a
second based on principal components. A general overview and a discussion concerning
possible improvements are given in the last section.

6.2 Methods

Data conversion

The studied data are digitized outlines, translated from images into series of rectangular
coordinates, generally a different number for each sample. The cartesian system is prob-
ably the most common way of representing images, alternative systems are available and
might be preferable in some applications. The methodology presented in this chapter ap-
plies to outlines that are star-convex with respect to their center of gravity o. This means
that for any straight line drawn from this point to the outline, the whole line segment
lies inside the figure. In the last section of this chapter we pay some attention to more
complex shapes and ways to model these. In the upper panel of Figure 6.1 we see one
head circumference plotted using rectangular coordinates, which is a clear example of a
star convex shape. Translating these rectangular coordinates into the polar coordinate sys-
tem, results in non-crossing curves. Preprocessing like rotation and transformation can be

easily performed on the curves while centering of the original images is not needed.
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Figure 6.1: The upper panel shows one skull circumference using the cartesian system, in the lower
panel the same data is plotted, now using polar coordinates.
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Polar coordinates are a natural choice for relatively rounded shapes, and result in a
simple representation of the data: a constant in the case of a circle, or a gradually changing
radius as a function of the angle. They are regularly used to model outlines; applications
can be found in e.g. Claude (2008) and Prossinger (2005). A similar methodology is pre-
sented by Seul et al. (2000). They calculate the difference between the radii of a sample
and the radii of a reference curve.

In the lower panel of Figure 6.1 we see the same data as shown in the upper panel, here
plotted using polar coordinates. The z and y coordinates are translated into the radius p
and the polar angle ¢. The pole is calculated by taking the mean of the (z, y) coordinates,
assuming that the coordinates are sampled on a regular interval. If this assumption does
not hold, we propose a two stage procedure, explained in the discussion section. The
development of the radius p as a function of the angle ¢ is characteristic for the shape. The
starting position of the curve coincides with the position of the square in the upper panel.
The outline is subsequently described counter clockwise. Notice that the beginning and
end of the curve should join.

P-spline fit

A single B-spline is composed of g+1 polynomial pieces, each of degree ¢q. The polynomial
pieces join at g points, called the knots and together form a smooth bell-shaped curve. Us-
ing a series of equally spaced B-splines, a smooth curve f(¢) can be fitted to the observed
p (see Dierckx, 1995; de Boor, 2001, for a thorough discussion). Here we rely on the scheme
as set out by Eilers and Marx (1996). They introduced P-splines: a basis of B-splines with
in addition a penalty on the differences, forcing adjacent spline coefficients to be more
similar.

The model without a penalty can be written as f(¢) = Ba. If we let the data be
represented by B-spline coefficients we get the following:

k
p:Z%&wm, (6.1)

with B;(¢, q) being the value at ¢ of the j-th B-spline of degree g. In the following we only
use cubic B-splines. Fitting B-splines to our data gives us the minimization function:

n k
S=> (pi—>_Bi(¢:)e;)* = |lp— Baol|’. (6.2)
i=1 j=1

A regular basis B consists of k + ¢ basis functions, with k chosen by the user. We
incorporate the cyclical component of the studied contours into the smoother, causing the
beginning and end of the signal to join together (Eilers and Marx, 2010). The wrapped
around basis consists of £ columns, and starts in the first column with half a B-spline. The
second half is placed on the bottom of this column, for the second column and the last
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column the same pattern appears: the missing piece for a full B-spline is placed on the
opposite end. In Figure 6.2 the original (upper panel) and the cyclical (lower panel) basis
are shown.

Normal basis

Wrapped basis

Figure 6.2: The upper panel shows the standard basis B, in the lower panel a wrapped basis is pre-
sented. For a better presentation, both matrices are rotated about 90° counter clockwise with respect
to their normal orientation.

The penalty on the differences is defined:

k
P=2> (Aca), (6.3)

with parameter A tuning the relative weight of the penalty. The A, denotes the first order
circular difference operator, and is defined: Aa;; = o —aj—1. Like matrix B, the difference
matrix D has to be adjusted to the cyclical nature of the data. An example for a first order
penalty using five B-splines:

-1 1 0 0 0
0 -1 1 0

D= o 0 -1 1 o[, (6.4)
0o 0 0 -1 1
1 0 0 0 -1

notice the last line wraps around, forcing the beginning and end of the signal to join
smoothly. Including the penalty term in the objective function (6.2) gives:

k
S*=8+P=|p—Ba|*+ 1) (Aca). (6.5)

j=1

The system of equations, leading to the minimization of S™:

&= (B'B+AD'D)"'By. (6.6)

75
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The optimal trade off between a smooth curve and fidelity to the data, can be calcu-
lated by using cross-validation, or the Akaike information criterion (AIC). Signals, consist-
ing of hundreds of data points, can be easily summarized on a basis of about 50 B-splines.
In our situation there is no need to optimize the smoothness at this stage, here we only
add a very small penalty for noise removal. Optimization of the penalty with respect to
the estimated regression coefficients is discussed in the next section. Because we are only
interested in differences in shape, the data are normalized by making the average radius
equal to each other. This corresponds to lowering or raising individual curves.

Rotational adjustment

Proper alignment is important to bring all curves in phase with each other, in order to
be able to make a fair comparison. After the curves are summarized on a P-spline basis,
they can be presented on a grid. For alignment we take one signal as a reference and
match all others individually with this sample. If a sample is out of phase, a circular shift
algorithm can be applied, and rotates the sample along the ¢-axis. For every step, the
association with the reference is calculated. In a final step the sample is shifted to the
point of maximum association, and the P-spline coefficients are updated. The procedure
is visualized in Figure 6.3. In the upper panel we see one sample shifted ten times 4°
to the right along the ¢-axis. The middle panel shows the correlation with the reference
for a rotation over 100° of the curve. In the lower panel the reference curve (solid line),
the rotated curve (dotted line) according to the highest correlation, and the sample in its
original position are printed.

Classification with logistic regression

The result of the pre-processing steps is a matrix A = [«a;], containing the coefficients of
the P-splines that are fitted to the signals. Each row of A corresponds to an object, and the
number of columns of A equals the number of B-splines. To classify the objects we can use
logistic regression, with the columns of A as explanatory variables. The model is defined:

k
mi =log 7 flpi = aib, (67)
j=1
with the linear predictor 7;, and is the logit of the probability p; that object ¢ belongs to
the reference class. In principle this is just a Generalized linear model (GLM) (McCullagh
and Nelder, 2000). But because the number of explanatory variables is relatively large,
leading to a singular or ill-conditioned regression problem. Therefore we borrow ideas
from penalized signal regression (Marx and Eilers, 1999), and use a difference penalty as
introduced in (6.3), but now applied to the estimated regression coefficients. The penalty:
P =2 Z?zl(ACB), forces adjacent estimates to be more similar. The relative weight of
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Figure 6.3: Rotation of the signals is needed when the original images are not properly aligned. In
the upper panel we see one sample shifted ten times 4° along the ¢-axis. The middle panel shows the
correlation of the sample with the reference over 50 shifts of 2°. The vertical line indicates the best
match between both samples. In the lower panel the reference sample (solid line), the original sample
(dash-dot line) and the rotated sample according to the best match.

the penalty compared to the loss function (and hence smoothness of the coefficient vector)
is regulated with A. The vector 8 can be interpreted as normally in logistic regression.
Plotting the estimates in cartesian coordinates gives a nice visualization of the most dis-
criminating areas along the outlines. The log-likelihood for the normal model is defined:

1= yilogp; + (1 — y:)log(1 — p:). (6.8)
=1

Adding the difference penalty to this function provides us with the penalized log-likelihood:

el %A S (A (6.9)

There is no analytical solution for (6.8), but various optimizers are available to solve this
problem. We use the following iterative algorithm, producing an updated vector of
coefficients with each iteration:

B=(AWA+AD'D+rl)" A (y —p), (6.10)

including the difference penalty, and with W = diag(p(1 — p)). In practice, convergence
is usually reached in a handful of iterations. Notice that in addition to the difference
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penalty a ridge penalty is added to the equation, with « being the tuning parameter and
I an identity matrix (Hoerl and Kennard, 1970). The ridge penalty will make the model
estimable over the whole range of ), and results in more stable estimates as discussed in
Marx and Eilers (2002). In practice we do not optimize & but fix it at a small value.

The model is fitted using a training and a test set. The training set is used to optimize
the weight of the penalty by varying parameter \. The size of this set preferably comprises
about 2/3 of the total sample, but depends on the number of available samples. To op-
timize the tuning parameter, we use the Akaike information criterion (Akaike, 1974) (see
Burnham and Anderson, 2002, for a recent treatment):

AIC = deviance + 2ED, (6.11)

the deviance equals —2! (McCullagh and Nelder, 2000), and the ED is the effective dimen-
sion of the model, which is defined as the trace of the smoother matrix H, as in Hastie and
Tibshirani (1990):

H=AAWA+AD'D+rl)""A'W, (6.12)

with W and D as defined before.

The performance of the trained model is determined by predicting the samples in the
test set. There are various recipes for training and testing a classifier (see e.g. Witten and
Frank, 2005, for an overview). Here we rely on a repeated holdout procedure in order to
asses the (average) performance of the model. Repeatedly all samples are divided into a
training and test set, the model is trained and performance is determined using the test
set. The error is expressed as the percentage of wrong predictions in the test set, calculated
over all runs.

6.3 Results

In this section three applications are discussed. The first one is concerned with the outline
of skulls. This data is the motivating example for this chapter, but because of unexpected
delays, it currently consists of only eight samples, and is used only for description. In a
second application the aim is to distinguish between two types of rodents, based upon
the outlines of their molars; the data comes from Claude (2008). The third example is
concerned with the classification of diatoms, and is described in Jalba et al. (2005).

In the two latter applications, we apply two alternative classifiers in addition to the
PSR. As a first alternative we apply penalized logistic regression (PLR) on the cartesian
coordinates. A ridge penalty is used to make the problem estimable, and is optimized
using AIC. The second method is similar; again we use logistic regression only now using
principal components (PCLR) as input for the classifier. The loadings of the principal com-
ponents are derived from the training set, and projected onto the data of the test set. The
number of principal components is optimized with the AIC as defined before. Although
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Figure 6.4: The upper panel shows all fitted curves of the head shape data. The lower panel presents
the estimated regression coefficients.

more sophisticated algorithms are available, these two methods are easily programmed
and fitted into the analysis. We do not pursue an elaborate comparison amongst methods,
but rather show two additional methods as a first indication of relative performance of
PSR.

Skull data

A horizontal cross-section of the skull of a normally developing child has a more or less
elliptic shape, not too eccentric. Abnormal head shapes can occur due to premature fusion
of one or more cranial sutures and is called Craniosynostosis. Depending on which su-
tures fuse, different deformities occur. Making the right diagnosis is crucial to decide on
possible treatments. Treatment can have cosmetic purposes in order to improve the head
shape, or it is done to reduce intracranial pressure.

Here we analyze a set of skull outlines to discriminate two subtypes of deformities. In
the present literature the deformation is mostly described by relatively crude ratios, often
defined using measures like the width and height of the skull. The outlines are one slice,
coming from a CT-scan of the skull. The slices are taken at a fixed height and angle, and
are determined using three landmarks (at the nose and both ears). Although there are
various issues related to the analysis of these data, here we only focus on prediction of
class membership, given the set of (z,y) coordinates. The images are digitized to about
1500 coordinate pairs, varying from sample to sample. With only eight samples available
we only train the model, and evaluate the differences. In the upper panel of Figure 6.4,
the smoothed fitted curves of all eight samples are plotted. Due to the large differences, a
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6. CLASSIFICATION OF OUTLINES

clear distinction between the two groups can be made. The lower panel of the same figure
shows the estimated regression coefficients, and can be related to the regions where the
two groups differ most. The general interpretation of the coefficients is the same as for a
usual logistic regression.

Group = Tauta Group = Auna

1.0

0.5

0.0

-1.0

T T T T
-0.5 0.0 0.5 -0.5 0.0 0.5

Figure 6.5: Two panels showing the molar data divided into the two classes. Because the focus lies
on discrimination based on shape, the differences in size between the two groups are removed before
classification.

Fossil rodent molar data

A second example comes from Claude (2008), where the outlines of fossil rodent molars
are used to classify two species. The data consists of 60 samples, divided into a class of 31
”Auna” samples, and a class of 29 “Tauta” samples. All shapes are represented by 64 pairs
of cartesian coordinates, both classes are depicted in the panels of Figure 6.5. Aside from
the differences in size, it seems difficult to observe large differences between both classes.
As a next step the data is summarized using a basis of 36 B-splines, including a very small
penalty.

We repeatedly train the algorithm on 40 samples, randomly drawn from the data set.
Figure 6.6 shows a typical AIC profile. The performance of the model is subsequently
assessed using the remaining 20 samples. The average percentage of errors is calculated
after 25 hold outs. The same setup is used for the PLR and PCLR classifiers, see Table 6.1
for the results. It turns out that the differences between both classes are substantial, since
for all methods the error percentage is low.
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Figure 6.6: The AIC curve for the molar data, as a function of the tuning parameter .
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Figure 6.7: In the upper panel we see the preprocessed training samples of the molar data. The esti-
mated coefficients from the logistic regression model are presented in the lower panel. The coefficients
are calculated wrt. the Auna samples.

Figure 6.7 shows the results for one run of training and testing the data. In the upper

panel of the figure we can see the fitted curves of the training samples. The estimated

coefficients from the logistic regression model are presented in the lower panel. The coef-

ficients are calculated with respect to the Auna samples.
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6. CLASSIFICATION OF OUTLINES

From Figure 6.7 one can deduce the most discriminating regions along the outline. It
is also useful to plot these coefficients in cartesian coordinates, as shown in Figure 6.8. In
the inner circle of the plot the mean shapes of both classes are plotted. On the outside
the coefficients are presented. To make the plot better interpretable, the coefficients are
connected to the null line. From this figure we observe that the largest differences between
the molars are around 360°, where the Tauta samples seem to be more flat.

Figure 6.8: The regression coefficients plotted together with the mean curve per class.

Diatom data

As a third example we classify outlines of diatoms, very small single-celled algae. In this
case we tested one group against a second group consisting of two different classes. The
data comes from a larger dataset of in total 781 samples from 37 species, described in Jalba
et al. (2005). We selected three relatively similar shaped species; in Figure 6.9 one sam-
ple from each of the three different groups are displayed. The Navicula reinhardtii are
denoted as group one, the Navicula menisculus and Parlibellus delognei are combined in
the second group. All the shapes are standardized before classification. After summariz-
ing all data using 36 B-splines, the model is trained on 40 samples and tested on the 29
remaining samples. Here, we also used a repeated hold-out scheme with 25 repetitions,
the results are displayed in Table 6.1. The performance of the three classifiers differs more
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Figure 6.9: One example of each of the three groups of diatoms, plotted in rectangular coordinates.
The two classes on the right are merged into one group.

Table 6.1: Predictive performance of the three methods for the molar and diatom data.

Method
Data PLR PCLR PSR
Molars 1.6% 3.0% 0.8%

Diatoms 173% 78% 14%

in comparison to the previous example. Especially the PLR algorithm seems unable to
detect the differences between the samples.

6.4 Discussion

We presented a framework for preprocessing and classification of outlines using polar
coordinates. Preprocessing steps like rotation, normalization and noise removal are easily
performed on the set of curves summarized on a P-spline basis. Moreover, using P-splines
makes the signals of equal length while unsupported regions can be corrected using a
difference penalty. Classification is performed using penalized signal regression. One of
the benefits of PSR is that it fits into the framework of generalized linear models (GLM),
and makes it a familiar tool for many possible users. Crucial is the role of the penalty,
as it prevents overfitting of the data and makes the problem well-posed. In addition, the
coefficients are easily interpretable and can be presented in combination with the original
shapes.

One of the assumptions we made in the preprocessing stage, is that the data points
are sampled on an approximately equally spaced grid, which makes it easy to calculate
the origin. In cases with unsupported regions or irregularly sampled pseudo-landmarks,
the center of mass will not be suitable as an indicator for the origin. This problem can be
solved by, first using the initial origin to calculate polar coordinates. And subsequently
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6. CLASSIFICATION OF OUTLINES

summarizing the data on a B-spline basis, and translate the data back to rectangular co-
ordinates using a regular grid. Now a proper origin can be calculated, which is used to
determine a definite set of polar coordinates.

The model as presented here leaves room for a wide range of extensions. Above we
only discussed a binary outcome variable. Because the model is a member of the class
of generalized linear models, we are not limited to binomial data. Currently we do not
have data for alternative outcomes, but one could think of applications in industry like
the wear of machine parts related to the number of fault events. In addition, the model
can be augmented with additional variables, next to a description of the shape.

Further extensions can be sought in the type of modelled shapes. A first example is
the analysis of 3d shapes using the cylindrical or spherical coordinate system. Further-
more, the shapes as discussed in this article have a simple general structure, and thus
can be analyzed as curves. Although various problems can be approached using the de-
scribed methodology, many applications show more complicated shapes. They are not
star-convex or the defined origin is not a star center (or even lies outside the shape). In
these cases it is more difficult to use standard polar coordinates to describe the data. In
other situations not a single, but a set of shapes per sample are of concern. In these cases
it is an option to use a (normalized) distance along the outline, instead of the angle ¢.
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Exploring network structure using
penalties and priors

Abstract. Estimating a high-dimensional network of features, has be-
come a popular topic in various disciplines. In genetics, the aim is to
establish functional modules of genetic features. Network estimation
with a large number of variables is however a non-trivial task. Estima-
tion procedures can benefit from the use of external resources, available
in databases connected to the web. In this chapter we investigate the
performance of three shrinkage estimators and propose a method to in-
corporate prior knowledge into the estimation process in order to re-
trieve an underpinned network of features. The method is based upon
the weighted Lasso. Use of the method is illustrated with two applica-
tions, one relying on text mining and the second on a prior derived from
literature.

7.1 Introduction

Estimating a high-dimensional network of features has become a popular topic in various
disciplines. Examples include brain imaging in neurology (Smith et al., 2011; Lee et al,,
2011), and portfolio selection in economics (Ledoit and Wolf, 2003). Networks also play
a prominent role in genetics, where features like genes and proteins are considered as
parts of functional modules or networks (see e.g. Azuaje, 2010; Kitano, 2002; Junker and
Schreiber, 2008).

Determining associations in a high-dimensional dataset is however a non-trivial task,
and becomes even more difficult when the number of features exceeds the number of ob-
servations. A few examples of solutions in literature are support vector machines (Bleak-
ley et al., 2007), Bayesian networks (Friedman et al., 2000) and methods based on informa-
tion theory (Margolin et al., 2006). Here we consider network estimation as a covariance
selection problem (Dempster, 1972). By setting elements in the inverse covariance matrix
to zero we search for a network structure that is sparse and at the same time fits the data
well. Because of the large number of variables compared to the number of observations,
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7. EXPLORING NETWORK STRUCTURE

the covariance matrix will be often ill-conditioned or singular. Shrinkage estimators are a
popular remedy in these cases; they make the model estimable by setting relations in the
covariance matrix to zero.

In most cases the estimation procedure only relies on the data at hand. In the genetical
setting there is the advantage that, on top of the observed data, often additional knowl-
edge is available. These external resources can be used to guide the model estimation.
The prior is often a collection of covariances, probabilities or weights which expresses the
likelihood of a direct relation between two features. This prior can be used to enhance
network estimation, or test alternative network structures against each other. To build a
prior one can use online sources like KEGG (Kanehisa and Goto, 2000) and GO (Ashburner
et al., 2000), additional datasets, or curated publications.

In the next section we start with a general introduction to the problem of network
estimation. Thereafter we investigate network estimation in two directions. First we look
at three shrinkage estimators and their ability to reproduce simulated networks. Next we
discuss a method to combine prior knowledge with the available the data. In addition,
two applications are discussed.

7.2 Network estimation

Let X = (1, x2, ..., 2,) 7 be the nxp data matrix having a multivariate normal distribution
with mean p and covariance matrix 3. The standard estimate of the covariance matrix is

1
n—1

S = X'X. (7.1)

If we are interested in conditional relations we have to identify the non-zero elements in
the precision matrix & = 37!, Given that p < n and assuming that we have a positive
definite covariance matrix 3, we can simply take its inverse and from this to calculate the
partial correlations:

by = _fblf _ (7.2)
\ Piidii
The set of partial correlations can be translated into an undirected graph G = (V, £), with
V = 1, ...,p being the set of nodes and £ = {e;; }1<i<j<p the set of edges. A zero in the
inverse covariance matrix corresponds to conditional independence between two nodes
and is subsequently described in the edge set:

¢ij =0z L 1’j|:c7j & eij = 0. (7.3)

The graph or network G represents the structure of the set of genes in a graphical way
(see Figure 7.1 in section 8.3 for an example). Estimating the graph structure £ is called a
covariance selection problem after Dempster (1972).
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7.2. Network estimation

The data is most often high-dimensional with p > n. As a result the observed covari-
ance matrix will be singular and its inverse cannot be calculated. A quick solution is to
use the generalized inverse, but that will most often return unsatisfactory results (Schafer
and Strimmer, 2005). Recently, various alternatives have been proposed. A relatively sim-
ple solution is to use so-called local models, which will be discussed in the next section,
followed by a discussion on shrinkage estimators.

Local solutions

Using marginal instead of conditional associations avoids the inversion problem. For in-
stance Stuart et al. (2003) and Steuer et al. (2003) use the Pearson correlation coefficient
between subsets of variables in order to derive a network structure. To induce sparseness
one can set a threshold and remove all relations below the required level. Simple corre-
lations cannot distinguish between direct and indirect effects. To overcome this problem
higher order correlations can be used (see e.g. Fuente et al., 2004) . The modelling now
takes place on small sub-networks or ‘neighbourhoods’ consisting of three genes. In this
case the relationship between gene i and gene j is investigated conditioning on a third
gene z, which gives z; L x;|z.. In the next step all sub networks are combined to form a
large network. The advantage of this procedure is that it can estimate conditional relations,
while singularity is not a problem due to the fact that only three variables are estimated
each time. This makes it suitable for applications where there are more variables than ob-
servations. A downside of this method is that it only conditions on one (or a few if bigger
neighbourhoods are considered) variable(s), whereas it could be very well the case that the
relations are more complex than this. Reverter and Chan (2008) and Watson-Haigh et al.
(2010) combine the ideas of higher order partial correlation with an information theory
approach.

Shrinkage estimation

Full conditional models are computationally more complex, but can be obtained using a
shrinkage estimator. Various penalized procedures are inspired by the Lasso, introduced
by Tibshirani (1996). The Lasso adds a linear penalty function to the ordinary least squares
cost function and is defined:

p

min |y — XBl[5 + > |8, (7.4)
i=1

the first part of the equation being the usual least squares part, while the second part

expresses the penalty on the estimates. The amount of shrinkage is regulated using the

tuning parameter . In the standard Lasso the coefficients are shrunken towards each

other and to zero, yielding a sparse model. Adaptations to p > n data are presented by

e.g. Ambroise et al. (2009), Yuan and Lin (2007) and Friedman et al. (2008).
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Here we use the ‘neighbourhood selection” approach by Meinshausen and Buhlmann
(2006). To determine the set of adjacent nodes for all nodes in the graph, we fit p regression
models with in each model one node being the dependent variable and all others being
the predictors. This gives us p linear regression models:

T = Zﬁjx]- + e, fori=1,...,p, (7.5)
J#i
with estimates 8 = (ﬂii), ey 61-(1)1, Bi(j_)l, - éi)). From the estimated regression coeffi-

cients we can calculate the partial correlations as:

pij = sign(B)\ /BB (7.6)

Because in the setting where p > n the sign of Bj(z) can differ from the sign of ﬁAfJ ), we
define that (7.6) only holds if sign(BJ(-“) = sign(B,L-(j >), and is otherwise set to zero (Kramer
et al., 2009). For sparseness Meinshausen and Buhlmann (2006) exclusively rely on the
Lasso penalty. However, it is often recognized that the L; penalty leaves too many edges
in the network, resulting in many false positives. A penalty claimed to be more successful
in the present setting is the adaptive Lasso (Zou, 2006). For the neighbourhood selection
problem this results in

min|[2* = X815 + K Y w851, (7.7)

J#i

with X % the data matrix, exclusive the i-th column. The weights w adjust the influence
of the penalty per coefficient. Weights can be based upon e.g. the magnitude of initial
(shrunken) estimates (Kramer et al., 2009) or the variance of the estimate (Shimamura
et al., 2007). Very sparse solutions are generally obtained by penalizing the number of

non-zero coefficients, effectively implementing an Lo norm penalty,
min [lo* — XI5+ w3 1(B; # 0). (7.8)
J#i
One problem arising from this penalty is the non-convexity of the objective function. To
optimize the objective function we use a smooth approximation, discussed in case of the

L penalty by e.g. Osborne et al. (2000): |8;| = 83/|8;|. Using 8; ~ ,/B% 4 ¢?, with ¢

being a small constant, results in:

Brew = (X' X +AVTH7IX"y, 7.9)
with V' = diag(1/5? + ¢2) and iterating gives us the optimal §. In case of the Lo penalty
V is replaced with: U = diag(58* + ¢?).

7.3 Shrinkage using additional knowledge

There are a number of methods to combine shrinkage estimators with additional informa-
tion. A smoothing approach in the form of the fused Lasso is proposed by Tibshirani et al.
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(2005), it encourages (hypothesised) adjacent coefficients to be similar to each other. The
objective function, modelling an outcome y, includes both the L; norm and smoother,

»
mﬂinl\y—XBHngmZIﬁil+H2Z2\/5'¢—ﬂi71|~ (7.10)
=1 i=
A similar model inspired on the fused Lasso, is proposed by Li and Li (2008). They intro-
duce so-called network-constrained regularization. The model includes an L penalty, and
in addition smooths coefficients of adjacent nodes in a network to each other. Adjacency
of nodes is stored in a standardized Laplacian matrix.

In this work the only concern is to estimate the network. Possible additional knowl-
edge can be used to compose a prior structure and is subsequently imposed on the data.
Thus by increasing the penalty parameter, one shrinks towards the hypothesized struc-
ture. This idea is similar to the adaptive Lasso as shown in equation (7.7). For the neigh-
bourhood selection problem w corresponds to one line taken from matrix W, indicating
prior relations in the network. We adopt the following model:

min || — XTUBI + 1 Y67 + 2 D (1= wi)lBs. (7.11)
i i
In addition to the network-constrained penalty regulated by k2, an L penalty is included.

It is not optimized but added to the model in order to make it estimable, irrespective of
the (amount of) weight assigned to the prior.

Structuring the weight matrix

Both the structure and the values of the elements of the matrix IV follow from the prior in-
formation available. Depending on the source, one could compose a fully specified matrix
with edge-specific weights, or create a more global structure. Examples of prior informa-
tion are:

e Pathway information (e.g. MsigDB)

e Curated networks and functional data (e.g. KEGG, Reactome, BioCarta)
e Additional (similar) datasets

o Text mining

Pathway databases tell us information on which genes are present in certain pathways.
Information about specific gene-gene interactions can be found in functional databases
like KEGG (Kanehisa and Goto, 2000). Additional datasets or publications may serve as
a first source, providing a list of interesting genes or even interactions among them. Text
mining tools will provide co-occurrences of certain features in the literature. Especially in
the last case, the weights in W will follow naturally from the prior. In other cases weights
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might be more subjective. A special case is the binary weight matrix with entries

1, ifnode i is adjacent to node j,
Wl = ] (7.12)
0, otherwise.

Using a binary weight matrix and choosing a very large value for 1, the prior will be
imposed entirely on the data.
In addition to the weights, the structure of W has to be defined. Two examples are:

o A block diagonal matrix. In this case we augment the standard model using gene
set or pathway information. No specific functional information on the gene level
is available. However, assuming that relations within the pathways are more likely
than between them, this results in a block diagonal weight matrix, with each block
representing a pathway or set of genes.

00 O
O o0 O
O o0 O (7.13)
O O
O o

o A fully specified network structure derived from e.g. functional databases, the lit-
erature (using text mining tools), or additional data. The example shows a matrix
in which one gene serves as a hub to other genes and could be extracted from a

functional database.

o oo o
O

O (7.14)

OOoooog

7.4 Simulations

In this section a series of simulations are performed, assessing performance of different
penalties with respect to network recovery. Tested are the L1 norm penalty and the Lo
norm penalty, implemented using the smooth approximation discussed above. In addi-
tion, the adaptive Lasso is included, for which we rely on the parcor package available in
R (R Development Core Team, 2011), and discussed in Kramer et al. (2009).

As a first step, a scale-free network (see e.g. Barabasi and Bonabeau, 2003) is simu-
lated, of which an example is plotted in Figure 7.1. A sparse precision matrix §2 is created
using the connection matrix based upon the simulated network. Non-zero coefficients in
Q2 correspond with ones in the connection matrix. The values of the non-zero off-diagonal

90



7.5. Applications

relations in € are sampled from a uniform distribution, with boundaries as specified in
Table 7.1. The actual data are sampled from A/(0, Q7).

Table 7.1: Characteristics of the different simulated models

p  correlation
Sim I 50 [-0.7,-0.4]u[0.4,0.7]
SimII 50 [-1,-0.5]U[0.5,1]
SimII 50 [-1,-0.7]U[0.7,1]

Performance is measured using discrete loss and mean squared error (MSE). In the
case of discrete loss, the estimated coefficients are translated into a zero or a one. A zero
corresponds with conditional independence and a one with a non-zero relation in the pre-
cision matrix. This estimated connection matrix can be compared with the truth using
measures of precision and recall. Precision is defined as

TP

P=Tpirp (7.15)

with T'P and F'P being the true positives and false positives, respectively. The precision is
the proportion of true positives among the total number of relations that were found. This
ignores however, the ability of the algorithm to detect relevant edges, which is instead

measured by the recall score:
TP

R= -
TP+ FN’
in which F'N is defined as the number of false negatives. The F-score summarizes both

(7.16)

measures in one estimate,
P-R
P+R’

To determine the performance of the penalties with respect to the true precision matrix the

F=2 (7.17)

mean squared error is used. In Table 7.2 the results of the simulations are shown.

Changing the correlation structure does not result in large changes in the the perfor-
mance of the methods. In general we see that the L; penalty returns networks that are too
dense. The Lo and the adaptive Lasso have about the same performance with respect to
the precision. However, the adaptive Lasso performs better on the recall score, resulting
in a better F'-score.

7.5 Applications

In this section we show two applications. In the first example, we generate a prior using
text mining algorithms. In the second case the prior information is less specific. From
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Table 7.2: Average performance of the estimators per scenario (mean and standard deviation).

Precision Recall F-score MSE

Sim I

Lo 0.80(0.10) 0.36(0.05 0.49(0.06) 1.1x1073

L 0.40(0.05) 0.64(0.07) 0.49(0.05) 9.5x107*

al, 077(0.08) 0.44(0.07) 0.56(0.07) 9.4x10~4
Sim II

Lo 0.79(0.09) 035(0.06) 0.48(0.06) 13x1073

L1 044(0.05) 0.67(0.06) 053(0.04) 9.1x107*

aL; 0.78(0.08) 0.46(0.05) 0.57(0.05) 1.0x1073
Sim III

Lo 079(0.09) 032(0.05 0.45(0.06) 1.1x1073
L1 041(0.07) 058(0.05) 0.48(0.05) 8.5x107*
al; 0.80(0.09) 0.40(0.05 0.53(0.04) 84x10~*

a previous publication we derive genesets which are supposed to form functional mod-
ules. The prior assumes edges within the two genesets, but no relations between the sets.
Evidence for either support or rejection of the prior by the data is gathered using a ran-
domization test.

External data prior

In this section we test whether functional networks found in human gliomas (Bredel et al.,
2005) are reproducible in a similar type of dataset. The data we use concerns 292 microar-
ray expression samples analysed in Gravendeel et al. (2009). Bredel et al. (2005) investi-
gated the presence of networks and found four distinctive coexpression clusters. Here we
investigate two of them, consisting of 65 and 49 genes. Because both studies report a dif-
ferent type of gene identifier, some translations need to take place. To translate the clone
identifiers used in Bredel et al. (2005) into Entrez identifiers we use the MADGene tool
(Baron et al., 2011). Not all identifiers were found and after conversion we have a dataset
consisting of 81 genes (one pathway consisting of 42 genes and the other 39). Because we
do not have edge specific information, a block diagonal prior is constructed. The values
in the weight matrix are set to 0.5, if an edge is assumed and zero otherwise.

The estimated binary connection matrix is depicted in Figure 7.2. To determine whether
the prior structure is likely, given the data, we use a permutation test. In addition to the es-
timated network, using data and a prior, we compute a number of permuted priors. Both
columns and rows and permuted, meaning that a random prior structure is created. Each
prior is used to estimate a network and the tuning parameter is optimised using cross-
validation. Subsequently, for each randomization an average tuning parameter ) is calcu-
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Figure 7.1: A graph, showing the scale-free topology of the simulated network.

lated. We assume that if the prior based upon the findings in Bredel et al. (2005) fits the
data well, much shrinkage is allowed and if not, no or only little shrinkage is performed.
The amount of shrinkage is compared to the random alternatives and the distribution of
average shrinkage parameters is plotted Figure 7.3. The result connected to the observed
prior is depicted as a grey, square, all randomizations as black dots. Note that the pro-
posed prior does allow more shrinkage compared to a random alternative, suggesting the
prior does fit much better.

Text mining

Various strategies are available for using text mining tools to compose a prior network.
A very prominent one uses the vector space model and is for instance used in Faro et al.
(2012). In this approach, genes are represented by a set of relevant documents, the vector
space model is used to establish a measure of distance between the genes involved (see
e.g. Glenisson et al., 2004; Liu, 2007). A second, less often used option is to derive a direct
co-occurrence prior (Jenssen et al., 2001). PubMed is queried for publications relevant
to our data, the retrieved documents are scanned for the presence of gene names. The
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Figure 7.2: The posterior (binary) model presented in a graph. From the image we observe that,
according to the model, associations within the pathways are more likely than between the pathways.

assumption underlying the method is that genes that are mentioned in the same article
have a biological relationship of some type. The co-occurrence of the genes within the
documents of the total document set are represented in a term-document incidence matrix
I'. This is a binary matrix, with for every element a one if a certain gene ¢ is cited at least
once in document d, and a zero otherwise. To determine the closeness of any pair of genes
involved we take the average score for gene j of the document vectors in which gene ¢

appears:
N

. 1 «— .
Wij = N ;’Ydﬂdjldfj: (7.18)

with N being the size of the total number of documents and N; the size of the set in which
gene i is present. The idf denotes the inverse document frequency (see e.g. Manning et al.,
2008), a weighting factor for the number of documents in which gene j appears:

idf = log, Nﬁ (7.19)
J

Subsequently the weights are normalized and determines the weight matrix:

W= {L} (7.20)

max(w};)

The method is applied to the 292 microarray gene expression samples, as introduced
above. A network is built using penalized regression in combination with a prior based
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Figure 7.3: The result of the randomization test, with in red the modelled prior. The proposed prior
does allow more shrinkage compared to a random alternative.

on a literature search through PubMed. In order to generate a (very) small but insightful
example we restricted the number of documents to the first 2000 hits. 212 unique genes
were derived from the document set, resulting in 204 hypothesized edges. A model is
estimated using the framework discussed in the previous section and model selection is
performed using cross-validation. The posterior network is still very dense, while only a
limited number of edges are confirmed. Forty of the hypothesized edges are confirmed by
the estimated model, 164 are not found, the number of new connections (with ¢ > 0.05)
equals 1802. When we use an adaptive Lasso on the same dataset, without any prior in-
formation, a similar model appears. The adaptive lasso confirms 25 edges, rejects 179 and
finds 1239 new edges. The surprisingly large number of edges, even in the case of the
adaptive Lasso, raises questions of various kinds. Setting a threshold on the minimum
strength of associations could unveil clusters, but at the same time ignores available infor-
mation. It might be that inclusion of more genes creates a better picture of the conditional
relations in the network and even removing a number of the now present paths.

7.6 Conclusions

Estimating a network from a high-dimensional feature space has become an important
task in various disciplines. In this study we focused on network estimation in genetics.
First studied are present alternatives to estimate a network. Methods tested are the L;
norm penalty, the adaptive Lasso and the Lo norm penalty. The best performance is ob-
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tained using the adaptive Lasso, whereby the resulting graphs are sparser and the penalty
controls better the number of false positives, and the model returns a low squared error.
In the next step we investigated the use of prior information in the process of network
modelling. Weights, derived from external sources, form a prior connection matrix which
is used in the estimation step in a manner similar to the weighted Lasso. Two different
applications are provided, showing the potential of the methodology. In both settings the
conditions are rather mild, meaning that the number of samples is larger than the number
of features and 3 can be inverted. A sparse solution is, not obtained however by taking
the inverse and thus requires additional constrains. The first application seems promising
since the prior seems to fit to the data while random alternatives are worse. For a good
judgement with respect to the results more expert knowledge from the field is required.
In the case of the text mining application the situation is different. Because a relatively
small number of edges are hypothesized, we are searching for a very sparse result. But
the estimated network is very dense, even if no prior information is used. It would be
very interesting to see what happens with the estimated connections when more genes
are added to the dataset. In addition we should mention that for text mining much more
sophisticated tools are available, likely leading towards a more informed prior.
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Pseudo-Bayes smoothing of tables
with very low counts

Abstract. Sampling zeros or small counts are a nuisance in the anal-
ysis of contingency tables. Several strategies exist to make them less
harmful, by filling in non-zero numbers, a process commonly called
smoothing. We propose smoothing by a pseudo-Bayes procedure with
appropriate priors. The procedure can be applied to any contingency
table, but here we limit ourselves to meta-analysis of clinical trials. To
optimize the weight of the prior we use a modification of AIC. Perfor-
mance is evaluated with simulations and two real datasets are analyzed.

8.1 Introduction

Sampling zeros or small counts are a nuisance in the analysis of contingency tables. Sev-
eral strategies exist to make them less harmful, by filling in non-zero numbers, a process
commonly called smoothing. When the data have a natural order, one can borrow infor-
mation from neighbours. In the setting of multinomial data Fienberg and Holland (1973),
and later Simonoff (1996) (and references therein) and Burman (2004), proposed solutions
of various kinds. In this chapter we propose a quite general pseudo-Bayes procedure,
based on the ideas from Fienberg and Holland (1973) and earlier work by one of the au-
thors (Eilers, 1996). It can be applied to any contingency table, but here we limit ourselves
to meta-analysis of clinical trials. Examples of sparse data in clinical trials are numerous
and can be found in e.g. Bradburn et al. (2007); Friedrich et al. (2007); Kuss and Gromann
(2007) and Sweeting et al. (2004). With this type of data, zeros and small counts result in
estimates of log-odds which are unreliable or do not exist, and thus are problematic for
generating L'Abbé plots, funnel plots and forest plots. In the literature, various solutions
to this problem have been proposed:

Fixed corrections. Add a fixed number to each count. A popular choice is 0.5, which is
based on the continuity correction of Yates (1934). Laplace’s “rule of succession”,

This chapter is based on: de Rooi J.J., Frank L.E. and Eilers PH.C. Pseudo-Bayes smoothing of
tables with very low counts, applied to meta-analysis of clinical trials. Submitted.
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8. PSEUDO-BAYES SMOOTHING OF VERY LOW COUNTS

which is based on a Bayesian argument and adds 1 to the observed numbers of
failures and successes, can also be seen as a smoothing device. The effect of this cor-
rection on the estimated odds ratios per trial depends on the ratio of the group sizes.
An elaborate study on the effects of applying these continuity corrections, in com-
bination with various pooling methods for meta-analysis, is presented by Bradburn
et al. (2007). A thorough discussion, more specifically on continuity corrections, can
be found in Sweeting et al. (2004).

Empirical corrections. Adding constants does not use any information contained in the
data. Sweeting et al. (2004) proposed two more advanced corrections, specifically
for meta-analysis of clinical trials. The first method determines a specific correction

At and c. = J¢, with ¢; and c. being the correction

for respectively the treatment and control arm. The sum of increments over all cells

in a trial is 2(NN; + N.)/N = 2. Notice that this notation is described in Riicker et al.

(2009). The second method is the empirical continuity correction, and is based on

for both arms of the study: ¢; =

a pooled estimate Q calculated over all trials without observed zeros. The derived
odds ratio is used to calculate a correction for the studies with observed zeros. If

we set the restriction that c¢; + ¢. = 1, the correction can be calculated as follows:
~ ~ _R

R+Q R+Q’

applied on all cells of a trial which brings the sum of all corrections at 2.

with R = %—: the group size ratio. This correction is also

Bayesian models. Various types of Bayesian approaches have been proposed. Empirical
Bayesian estimators are discussed in for example Hedges and Olkin (1985), several
references to similar methods can be found in Sutton and Abrams (2001). A fully
Bayesian analysis is also possible, but is far from trivial. We do not review the
literature, but point to the paper by Paul et al. (2010).

Generalized linear mixed models. A generalized linear mixed model with a logistic link
is an advanced possibility. With many low counts or zeros this is not trivial. We will
not review the literature, but refer to the recent paper by Stijnen et al. (2010)

Pooled estimates. It is also possible to do nothing, and just calculate a joint estimator
using a procedure that is able to deal with zeros. One example is the Peto method,
which requires at least one event per trial to estimate study-specific odds ratios and
at least one event in the meta-study to estimate the pooled OR. A second option is
the Mantel-Haenszel method which needs at least one event in each cell to estimate
an OR on trial level, and at least one event in each arm overall, to estimate the
pooled OR. A third option is to use the arcsine transform, as advocated by Riicker
et al. (2009).

As said, in this chapter we explore pseudo-Bayes estimation. It has been described
and applied in a paper by Fienberg and Holland (1973), and later in the classic book by
Bishop et al. (1975, 2007). The pseudo-Bayes approach chooses a prior that consists of a
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set of numbers, one for each cell of a table of counts. The posterior estimates are weighted
averages of the prior and the empirical probabilities.

Most often the prior is based upon the data, and can be derived using different meth-
ods. A simple prior is obtained by computing probabilities from the aggregated counts
over all trials, either separately for the treatment and control arm, or combined. However,
simply aggregating the individual studies can cause problems which are formulated in
Simpson’s paradox. To avoid this problem, alternatives are discussed as well.

The success of the pseudo-Bayes procedure depends on the proper choice of the weight
of the prior. Bishop et al. presented a rather abstract recipe, based on a general asymptotic
risk argument. They did not use the observed data to optimize the prior weight. We
propose to use AIC (Akaike’s Information Criterion) (Akaike, 1974), which combines the
log-likelihood and a measure of model complexity, called the effective dimension (ED). In
our experience, the influence of the latter was too small. When we used a more or less
standard definition of ED. We propose a simple heuristic modification, inspired by the
work of Hurvich et al. (1998).

To evaluate our procedure, and compare it to other recipes, we performed simulations,
and illustrate its use for two datasets from the literature.

Pseudo-Bayes estimation for meta-analysis leads to results that fall between the fixed
model (one probability per arm) and the mixed model or a fully Bayesian analysis. The
latter approaches introduce a “population distribution” of event probabilities, from which
posterior point estimates are computed. In the pseudo-Bayes approach there are only
posterior point estimates. In fact it is a linear shrinking procedure, because it computes
weighted averages of prior and posterior probabilities.

We see our proposal as a data smoothing procedure, that results in corrected counts,
which can be plugged into a meta-analysis. We do not advocate a fixed or mixed model.
Our goal is simply to remove zeros and correct very low counts. The use of priors as a
correction method in observational studies is discussed by Greenland (2006).

In the next section we present pseudo-Bayes estimation and the modified AIC. Our
simulations are presented in Section three and application to real data in Section four. We
conclude with a short discussion.

8.2 Pseudo-Bayes smoothing

The pseudo-Bayes principle

Consider an m by n matrix X = [z;;] of observed counts. Let x4 = }_, xi; be the row
sums, £, ; = » ., ¥;; be the column sums, and z, ; be the sum of all counts in the matrix
X. Let A = [Ai;] be an m by n matrix, the prior, with >, > Aij = 1. Then, according to
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Bishop et al. (1975) the pseudo-Bayes estimates z;; are given by
3 = whij T4 + (1 —w)wiy, 8.1)

where 0 < w < 1. This is a linear shrinkage procedure where the smoothed estimate
x;; is a weighted combination of the observed data x;; and the prior A;;. The amount of
shrinkage is determined by w.

Choosing a prior

Our goal is to correct zeros or very low counts, so we expect the prior to have a strong
influence. We have several choices:

Independent of the data. The most simple choice is a two-by-two table with equal prob-
abilities (A\;; = 0.25). Using this prior comes near to adding the constant wx 1 /4 to
each cell. It is not exactly the same because of the correction (1 — w)z;;, to get the
same total counts.

Based on marginal counts. Allindividual tables are added and the probabilities are com-
puted from the result. Two choices are available: do this separately for treatment
and control arms, or do this for the two-by-two tables. The former case we call a
split prior, the latter a joint prior.

Constant log-odds prior. It is well known that when the size (of the arms) of studies
varies, the marginal table can lead to a wrong estimate of the odds ratio. This is
known as non-collapsibility and it is related to Simpson’s paradox. A discussion of
this problem in the context of clinical trials can be found in e.g. Cates (2002), Altman
and Deeks (2002) and Greenland (2010). A graphical explanation of the problem
can be found in Riicker and Schumacher (2008). For this reason one should use the
Mantel-Hénszel or Peto estimator. This suggests that we construct a separate prior
for each study, based on its marginal counts and the overall odds ratio.

Let the marginal counts of table X be given, and let ) be the desired odds ratio
of a modified table X. After some algebra one finds that #;; should be equal to
the positive root of the quadratic equation az? + bz + ¢ = 0, witha = 1 — 1/Q,
b= —(z14 + 241 + (232 — 214)/Q) and ¢ = z14 1. Once Z;; is known, the other
elements follow directly from the margins of X. The prior counts can be translated
into prior expectencies: A = X/xiy

A serious disadvantage of this prior is that it cannot be computed if the number of
events in both arms is zero.

Hybrid priors. A possible solution for cases with zero events in both arms is a hybrid ap-
proach. First, for each study the numbers in treatment and control arms are added,
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to give a table with two cells. The pseudo-Bayes procedure is applied to these ta-
bles, leading to non-zero totals for the number of events per study. In as second
round the constant log-odds prior can be computed for each study.

In this chapter we only study priors based on marginal counts and on an overall odds
ratio. All proposed priors can be applied to all studies within a meta-analysis, irrespective
of possible zero event cells. A second option is to smooth only the trials with zero events.

Optimizing the weights

To determine the optimal combination of prior and data, different methods have been pro-
posed. Fienberg and Holland (1973) and later Bishop et al. (1975) relied on the asymptotic
properties of a risk-function that minimizes the expected mean squared error. Eilers (1996)
proposed a fast leave-one-out cross-validation procedure. Unfortunately, it was based on
reducing each cell count in turn by 1 which will not work with zero counts. Instead, we
propose to use AIC. We have to modify the effective model dimension to make this work.
AIC is defined as
AlICc = D(X; X™) + 2ED, 8.2)

where the D(X; X™) and ED the effective model dimension. In the case of counts and a 1
by n table (for simplicity we suppress the index for the trial, replace w; by w, and replace
zi4 by z4) the deviance is:

D(X; X*) :2ijln(%). (8.3)

Ye (1998) defines the effective dimension of a model that estimates ¢; for observation y;
quite generally as the following sum of partial derivatives

Dy
ED = Z Bu;” (8.4)
J

Applied to our problem, this becomes

gp=%" %% (8.5)
" O:rj
J
and we find
ED:Z Owhszs + (1 = wiz,] =n(l —w+wzy/xiq), (8.6)

ox;
j J

where we have taken into account that O\, /9z; = 1/z4 4. In the case of clinical trials, we
have n = 2. The optimal weighted combination minimizes the AIC. This can simply be
done by searching on a grid for w, or by a more sophisticated optimization routine.
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In our experience this definition of AIC was not very successful. By summing the
deviance and (two times) the effective dimension, it balances closeness to the data and
complexity of a model, preventing over-fitting. In practice the influence of the effective
dimension (which is between 0 and 2, if we work on a 1 by 2 table) was too small, resulting
in a small weight for the prior.

Hurvich et al. (1998) studied AIC in the case where the number of parameters in a
model is close to the number of observations. They found that corrections to AIC are nec-
essary in this case. Their correction is very close to using ED* = EDxn/(n— ED) instead
of ED itself. This modification works well in the present context. When ED approaches
2, ED* will approach infinity, so there will always be given some weight to the prior,
although it might be small.

This choice for a modified effective dimension is heuristic. We could not (yet) find a
very convincing theoretical analysis to support it. But our simulations show good perfor-
mance of this choice, especially on the corrections of individual trials.

8.3 Simulations

In this section we study the performance of pseudo-Bayes smoothing by simulation. We
compare the following procedures.

e Pseudo-Bayes smoothing of all trials (global), with a joint prior based on marginal
counts for the two arms. The individual trials are simply stacked to form one large
table, and subsequently prior cell probabilities can be calculated.

e Pseudo-Bayes smoothing of only the trials with one or more observed zeros (local),
using the joint prior as defined above.

o Constant continuity correction with two different values: ¢ = 0.5 and ¢ = 0.1, which
are added to all cells of a trial with one or more observed zeros.

e The empirical continuity correction as presented by Sweeting et al.. The total sum
of the corrections over all four cells in a trial equals two.

o The treatment arm correction of Sweeting et al. (2004), with the condition that the
sum of the corrections over all cells equals two.

For all methods the total zero events studies are kept in the analysis, as advocated by
Friedrich et al. (2007). The design of the simulation is inspired by Sweeting et al. (2004), but
it differs in the selection of fixed and variable parameters. We focus on three parameters:
heterogeneity in the odds ratio 2 between the trials within a meta-study, heterogeneity in
the baseline event probability P. and the magnitude of the odds ratio €. For calculating
the pooled estimate we chose the Mantel-Haenszel method (Mantel and Haenszel, 1959)
and its variance estimator presented by Robins et al. (1986), because of its widespread
use and positive evaluation in connection with sparse data (Sweeting et al., 2004). Our
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Table 8.1: Parameters and assigned values used in the simulations

Parameter Assigned values
Odds ratio 2 (= e*) 0.35, 0.45, 0.5, 0.55, 0.65, 0.75
Between trial heterogeneity in effect 0;,4(0) 0, 0.05,0.10, 0.15, 0.18
Control group event probability P. (= e?) 0.01

Between trial heterogeneity in baseline o, 0,0.08,0.11,0.14, 0.17,0.20
Number of studies in each meta-analysis 10

Number of simulated meta-studies s 2000

Number of patients in treatment group 100

Ratio of group sizes R (C:T) 1:1

performance criteria are: coverage, bias and the root mean squared error (RMSE). In the
subsections that follow, we present details of the design and performance criteria and
evaluate the results of the simulations.

Simulation design

Sparse data is generated using the following design. The log of the odds ratio w = log Q2 is
drawn from a normal distribution with mean = p., and standard deviation o.,. The magni-
tude of  and o, are varied over the different scenarios. The log of the event probability in
the control group, p = log P. (i.e. the baseline effect) is drawn from a normal distribution
with the mean equals log 0.01 and standard deviation according to the scenario. Having
the odds ratio and the baseline event probability, the treatment group event probability P;
can be calculated:
(250

1—-P.

1+ ()0

(8.7)

t

After determining P; for all simulated meta-studies the actual data are generated by draw-
ing from binomial distributions. Each meta-analysis consists of ten individual studies. Be-
cause of the low event probabilities, observed zeros in either one or both arms of a trial
will be common. It might occur that all ten trials in one meta-study do not contain any
event in the treatment or control group. In these situations the prior probability is zero
as well and thus no pseudo-Bayes corrections are possible. To prevent this situation, data
with only zero events are discarded. Table 8.1 presents the parameters involved in the
simulation, the actual computations were done in R (version 2.10).

In total, fifteen simulation runs are performed, with in each run 2000 meta-studies, all
consisting of ten trials. These fifteen runs can be divided into three series; first, there are
five simulations where the standard deviation in the sampled log odds ratio o., varies from
0 till 0.18. The second series consist of five simulations with o., fixed at 0 and 2 ranging
from 0.35 up to 0.75. In the last series of simulations the control group event probability
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Figure 8.1: Distributions of the differences between estimated and simulated log odds ratio (DLO),
per trial, for six correction methods, as indicated by the titles of the panels. The simulation settings
are 2 = 0.5, 0, =0.18 and 0,= 0.

becomes a flexible parameter, following a log-normal distribution with the mean equals
log(0.01) and standard deviation on the log scale ranging from 0.08 to 0.20 (see Table 8.1).
This time o, is fixed at zero, and (2 is set to 0.5. Most of the sampled P. values are in the
range from 0.004 to 0.022.

Evaluation

We evaluate the performance of the correction procedures on several criteria and on two
levels. For the individual trials we compute differences between the simulated and es-
timated log odds ratio, which we abbreviate to DLO. The histograms include all trials,
corrected and uncorrected.

Typical results for DLO,are shown in Figure 8.1. The simulation settings are 2 = 0.5,
0w = 0.18 and o,= 0. The histograms show the distribution of DLO for the six correc-
tion methods we studied. For both pseudo-Bayes procedures we get an almost normal
distribution. The difference between the two distributions are due to the presence of un-
corrected studies in the first one. The other four methods return more complicated, multi-
modal distributions with longer tails.

The multimodality has two reasons. First it is a consequence of the specific set-up of
the simulations. The size of the treatment and the control group are fixed at 100, this in
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Figure 8.2: Distributions of the differences between estimated and simulated log odds ratio per meta-
study, for six correction methods, as indicated by the titles of the panels. The simulation settings are
Q2 =0.5,0, =0.18 and 0= 0.

combination with a small event rate, will result in many studies with similar distributions
of counts in the four cells. Second, it also also shows some of the characteristics of the
different corrections. Small changes in the data can cause drastic changes in the estimated
effect. This is especially the case for the constant continuity correction of 0.1. Applying
this correction to trials with only one observed case in one of both arms results in a large
estimated effect.

The histograms of the two constant corrections are basically the same, although when
adding a constant of 0.5 the effects on the estimates are milder. However, both corrections
set many coefficients to zero. Adding a constant of 0.1 should clearly be avoided. The
output for the treatment arm correction is equal to the constant correction of 0.5. The
empirical correction returns a distribution that is less dispersed.

On the level of the meta-analysis we first compare the estimated log of the odds ra-
tio with the simulated one using the Mantel-Haenszel estimator. The results for the same
simulation as discussed in Figure 8.1 are shown in Figure 8.2. The histograms show the
somewhat conservative nature of most of the corrections, except for the PB overall pro-
cedures which seems to be a bit optimistic. Looking at the histograms of both constant
continuity corrections we observe a large peak close to zero, indicating very small effects
on the level of a meta-study caused by many zero effects on the trial level.
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We also evaluate output of the simulations given the three scenarios as presented
above. Results connected to the first scenario, in which the odds ratio is varied, are given
in Figure 8.3.

In the left top corner we see the RMSE on the meta-level. The general picture is that
for all methods the error decreases when the true effect is nearer to zero. When smoothing
all trials using the pseudo-Bayes procedure the largest error is produced. The treatment
arm correction and the constant continuity correction of 0.5 generate the least amount of
error.

The coverage of all procedures is affected by a change in the true odds ratio. The
empirical correction the treatment arm correction and constant correction of 0.5 all bene-
fit from a smaller odds ratio. The same holds for the pseudo-Bayes procedure which only
corrects studies with empty cells. Lowering the odds ratio has a negative effect on the cov-
erage of the pseudo-Bayes procedure which smoothes all trials. The bias for this method
is small and positive over the whole range, but hardly affected by a change in the OR. The
positive bias indicates that the effect is often slightly overestimated. Al other corrections
return negative bias, which decreases when the odds ratio becomes smaller. It is likely
that they benefit from effects closer to zero because of their conservative nature.

For the RMSE at the trial level the picture is very stable. Both pseudo-Bayes procedures
generate the least amount of bias, while the constant correction of 0.1 generates the most.
Actually, this is a confirmation of the pictures we saw in Figure 8.1. Comparing both
pseudo-Bayes procedures we can conclude that shrinkage helps with respect to individual
trials. As said, shrinking to an overall estimate reduces the bias. There is, however, a price
to pay: is seems that the prior is often too extreme and strong smoothing on the trial level
will generate more bias at the meta-level. This problem can be alleviated by smoothing
only the studies with zero cells.

For the second scenario heterogeneity of the odds ratio is introduced, of which results
are shown in Figure 8.4. For all performance criteria we see a rather stable pattern over the
different amounts of heterogeneity. The constant of 0.5 and the treatment arm correction
are identical in their performance. The broader picture is comparable to the previous
scenario. The pseudo-Bayes method smoothing all studies generates the largest RMSE,
slightly overestimates the effect, but on the trial level comes closest to the true log odds
ratio. If only studies with zeros are corrected, the trial level RMSE is slightly larger. The
correction of 0.1 again creates a lot of error on this level. For all six methods the coverage
starts above 95 per cent and drops slightly when increasing the variance.

Figure 8.5 shows the output of scenario three, where we introduce heterogeneity in
the control group event probability. For all performance criteria we again see a similar
ordering in the corrections as we saw in the previous scenarios. For the coverage and bias
we observe a sharp dip at 0;,4(p) = 0.14, which is due to many estimated zero effects at
the meta-level, caused by the sampling procedure. With introducing heterogeneity in the
baseline event probability we also see that in some instances the bias of the pseudo-Bayes
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Figure 8.3: Results showing the influence of the odds ratio on performance for six correction methods
(see legend). In this scenario €2 ranges from 0.35 up to 0.75, while o, and 0;,4p, are fixed at zero.
Counter-clockwise from upper left: RMSE and bias of pooled log odds ratio, RMSE of log odds ratio
per trial, and coverage.

smoother for all trials becomes negative, instead of the positive bias observed earlier. The
RMSE at the trial level remains stable over the whole range for all corrections.

In general we observe that the smoothed effect of the global pseudo-Bayes procedure
is often a bit too optimistic. If we only smooth trials with zero we notice two effects. On
the meta-level we observe a drop in the RMSE, which makes it competitive with other cor-
rections. The bias indicates a more conservative estimate close to the empirical correction.
However, on the level of individual trials we see a slight increase in RMSE. Nonetheless
this error is considerably smaller than the error of the other four corrections. This combi-
nation makes it an attractive alternative when both the meta-study and individual trials
are of concern.

8.4 Applications

In this section two applications are presented. The first example contains only a few tri-
als with observed zeros, while the second shows extremely sparse data. In both cases we
calculate pooled estimates after applying all six corrections that were studied in the previ-
ous section. In case of the EFM data we used the pseudo-Bayes procedure in combination
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Figure 8.4: The influence of the heterogeneity of trials (o.,) on performance for six correction methods
(see legend). In this scenario o, ranges from 0 till 0.18, Q is fixed at 0.5 o} equals zero. Counter-
clockwise from upper left: RMSE and bias of pooled log odds ratio, RMSE of log odds ratio per trial,
and coverage.

with the prior based on marginal counts (the joint prior) and the constant log-odds prior
as discussed in section 2. In both cases the smoother is applied on all individual trials. Af-
ter correcting the data, a pooled odds ratio is calculated with the Mantel-Haenszel (MH)
method.

Table 8.2 shows data from seven different studies investigating whether electronic fe-
tal heart rate monitoring (EFM) causes a drop in the perinatal mortality rate (Sweeting
et al., 2004). A large part of the trials is not balanced. First, we created a simple prior by
collapsing the data into one table. Second, we generated a prior based on the MH odds
ratio over the seven studies. The smoothed counts using both methods are given in Ta-
ble 8.3. For both corrections the assigned weights are shown in the last two columns of the
table.

Table 8.4 shows pooled estimates for the log odds ratio for different corrections. The
largest value is found using the pseudo-Bayes procedure with the prior based on marginal
counts. The most conservative estimate is found applying the constant correction of 0.5.
In general, the estimated effects and variances are relatively close to each other. This is to
be expected, since this dataset is not very sparse and thus does not need a large correction.

A second example, in which the data are very sparse, is provided by Cheng et al. (2005)
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Table 8.2: The raw data from seven different studies investigating whether EFM causes a drop in the
perinatal mortality rate.

EFM No EFM

No Event Event No Event Event
1 1160 2 5410 17
2 150 0 6821 15
3 607 1 6142 37
4 4209 1 2914 9
5 553 1 689 3
6 4978 0 8632 2
7 45870 10 66163 45

Table 8.3: The corrected counts for the EFM study using a prior based on the marginal table, and a
prior based on the Mantel-Haenszel (italic). The last two columns present the weight of the prior.

EFM No EFM Weight of prior

No Event Event No Event Event mar. pr.  ORpr.
1 13359 1161.3 1.82 0.68 52359 54159 1543 11.01 0.14 1
2 290.5 149.6 0.04 0.04 6681.0 6825.9  14.47 10.07 0.06 1
3 782.0 607.7 097 025 5969.9 6153.4  34.14 25.64 0.09 1
4 3979.3 4208.9 0.96 1.10 31442 2917.8 8.54 5.23 0.15 1
5 507.4 553.8 0.55 0.25 736.0 690.7 1.99 1.26 0.51 1
6 5038.6 4976.7 0.87 1.30 8564.4 8626.9 171 712 0.66 1
7 447212 45868.0 1025 11.96 67298.1 66145.6 5836 62.45 0.28 1

Table 8.4: Pooled log odds ratio for the EFM data after different corrections.

Correction log(Qarer)  SElog(Qarm)
PB,narginal -1.40 0.27
PBg -1.24 0.28
Constant: ¢ =0.5 -1.16 0.27
Constant: ¢=0.1 -1.22 0.28
Treatment arm -1.22 0.28
Empirical -1.24 0.28
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Figure 8.5: The influence of variability (¢;) of the control group event probability on performance for
six correction methods (see legend). Here 0,4 p, ranges from 0.08 till 0.2, simulated € is fixed at 0.5
and oy, is fixed at zero. Counter-clockwise from upper left: RMSE and bias of pooled log odds ratio,
RMSE of log odds ratio per trial, and coverage.

and is also studied by Riicker et al. (2009) in relation to correcting sparse data. The meta-
study investigates the effect of off-pump surgery in coronary artery bypass grafting on
postoperative stroke. In this example we only use the pseudo-Bayes procedure in combi-
nation with a marginal counts prior calculated separate for the treatment arm and control
arm. The procedure based on a prior OR cannot be used here because there are several
studies with zero total events.

As we can see for many trials the weight assigned to the prior is rather large. For most
trials it is 1, even in both arms. This makes sense: if counts are very low or zero, a rather
strong correction is necessary.

Also for this study corrected pooled estimates have been calculated and compared
with other corrections: they are presented in Table 8.6. The pooled estimates are calculated
including the total zero event studies.

In Table 8.6 we can observe that the differences in the estimated effect size and vari-
ances between the different corrections are more pronounced in comparison with the pre-
vious example. This is due to the very sparse data of this example. The pseudo-Bayes
correction again shows the largest effect. The estimated variance of the prior is the largest
as well. Adding a constant of 0.5 returns the most conservative estimate.
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Table 8.5: Meta-analysis of off-pump surgery in coronary artery bypass grafting on postoperative
stroke. Observed counts and corrected counts (italic) using the split prior are presented. The last two
columns shows the weight of the prior. The last row shows the prior probabilities.

Treatment group Control group Weight of A
Study No Event  Event No Event  Event TG CG
1 100 99.58 0 0.42 100 99.02 0 0.98 1.00 1.00
2 100 99.58 0 0.42 101 100.01 0 0.99 1.00 1.00
3 28 27.88 0 0.12 36 36.64 1 0.36 1.00 1.00
4 14 13.94 0 0.06 16 15.84 0 0.16 1.00 1.00
5 19 19.76 1 0.24 19 19.74 1 0.26 0.83 092
6 80 79.66 0 0.34 80 79.22 0 0.78 1.00 1.00
7 54 53.77 0 0.23 49 4852 0 048 1.00 1.00
8 148 149.29 2 0.71 150 148.54 0 1.46 0.95 1.00
9 60 59.75 0 0.25 58 59.28 2 0.72 1.00 0.90
10 15 14.94 0 0.06 16 15.84 0 0.16 1.00 1.00
11 10 9.96 0 0.04 10 9.90 0 0.10 1.00 1.00
12 15 14.94 0 0.06 19 19.74 1 0.26 1.00 0.92
13 88 87.63 0 0.37 86 87.14 2 0.86 1.00 1.00
14 141 141.40 1 0.60 137 137.64 2 1.36 1.00 1.00
15 136 13543 0 0.57 131 129.72 0 1.28 1.00 1.00
16 204 203.14 0 0.86 182 182.20 21.80 1.00 1.00
17 97 9759 1 041 97 98.03 2 0.97 1.00 1.00
18 23 2376 1 024 25 2574 1 0.26 0.85 099
19 25 2490 0 0.11 25 2476 0 0.24 1.00 1.00
20 41 4083 0 0.17 67 66.35 0 0.65 1.00 1.00
21 21 20.912 0 0.09 16 15.84 0 0.16 1.00 1.00
A 9902 .0098 .9958 .0042

Table 8.6: Pooled log odds ratio for the stroke data after different corrections.

Correction log(Qarr)  SE log(Qarm)
PBrrarginal -0.80 0.43
Constant: ¢ =0.5 -0.42 0.35
Constant: ¢ =0.1 -0.70 0.45
Treatment arm -0.44 0.33
Empirical -0.63 0.35
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8.5 Discussion

To resolve problems caused by observed zeros and low counts simple continuity correc-
tions have been proposed. Also more involved mixed model and Bayesian approaches are
available. We propose the pseudo-Bayes procedure, which forms a weighted average of
the observed counts and a prior. In contrast to a fully Bayesian analysis, the combination
of prior and posterior distributions and a likelihood function is replaced by a weighted
average of two numbers. Pseudo-Bayes is a linear shrinkage procedure.

In this chapter we discussed different strategies to derive a prior. A simple recipe is
to pool the counts of all trials and calculate the cell probabilities from them. This can be
done separately for treatment and control arm, or for both arms combined. If the trials are
unbalanced, Simpson’s paradox can strike. To avoid that, we also proposed a prior using
the meta-level odds ratio.

We use an adjusted Akaike Information Criterion to determine the optimal weight of
the prior. AIC combines the deviance and an effective model dimension. We have to deal
with a situation in which the effective dimension, as defined by Ye (1998) can get very
close to the number of observations. By analogy of the work in Hurvich et al. (1998), we
introduce a factor that increases the effective dimension when it approaches the boundary.
This is a heuristic device, but it seems to work well, as shown by our simulation results.
Although it appears to work well, we are not completely happy with our heuristic solution
for the modified effective dimension. AIC was derived on the basis of a quite general
analysis of prediction performance. We are working on a similar analysis, in the specific
setting of contingency tables.

Judging from the precision of the log odds ratios estimated for the individual trials,
pseudo-Bayes clearly outperforms its competitors. It is also strong on bias and coverage
of the estimate of the pooled, Mantel-Haenszel-based, log odds ratio. However, for the
latter it shows larger variability than the other corrections.

Simulations showed that pseudo-Bayes is a useful tool. However, its value is to a
large extent determined by the chosen prior. In some situations the prior can suffer from
Simpson’s paradox and lead to incorrect outcomes. Still, if a proper prior is derived, the
correcting of trial counts can be recommended using pseudo-Bayes estimation. Discrete
outcomes are replaced by continuous numbers, which allows for the computation of dif-
ferences of logarithms of event probabilities. This is a clear advantage for graphical explo-
ration, e.g. by the L’Abbé plot (L'Abbé et al., 1987).
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Conclusions

This chapter is divided into two sections. The first section reflects, on a broad level, on the
general idea of this thesis. The second section summarizes the main findings reported in
the different chapters. In both sections possible improvements and initiatives for future
research are proposed.

9.1 General conclusions

Shrinkage estimators have become a popular tool for a wide range of analysis problems.
Examples are the widespread use of penalized regression and the generalized additive
models (GAM). In this thesis, we use penalties to overcome the ill-conditioned nature of
data in various settings. A concise overview of major developments for size penalties or
roughness penalties is provided in Chapter 1.

Roughness penalties occur in Chapters 2, 3, 4, 5 and 6. In all cases smoothness is ob-
tained using discrete penalties. They are easy to construct and quickly adapted to specific
needs, have attractive numerical properties and are well grounded in statistical theory.
For long signals the systems to solve can get very large, but using sparse matrix calcula-
tions alleviates this burden. Further gain in speed is obtained by efficiently composing the
B-spline matrix.

Size penalties are discussed in Chapters 4, 5, 7 and 8. In the literature they are promi-
nently based on the Ly and L1 norm. In some applications these penalties are unsuccessful
and alternatives are required. We concentrate on the Lo norm penalty. The problem with
all L, penalties with p < 1 is the non-convex objective function, making optimization of
the coefficient vector hard. Nonetheless a number of this type of penalties and optimizers
have been proposed (see Gasso et al., 2009, for an overview). Although the algorithms
cannot claim to reach a global minimum, satisfactory results are obtained in many set-
tings. In this thesis the Lo norm penalty is successfully applied to sparse deconvolution of
signals and images. Our results and simulations suggest that the obtained local minimum
is at least close to the global one. Estimates are obtained using an iteratively reweighted
least squares (IRWLS) based algorithm. It essentially replaces the L, norm by a weighted
Lz norm.

The great advantage of penalization techniques is that they allow the estimation of
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high dimensional models, without the necessity to apply some type of feature extraction.
The penalty makes the model estimable and proper tuning prevents overfitting of the
data. The typical way to achieve this is to use some type of information criterion or to
apply cross-validation. In reference to especially Chapters 3, 4 and 5 we note that further
investigations are required on model selection criteria in the presence of complex (serial)
correlations within the errors. The familiar information criteria, like the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion (BIC), often fail in these cases.
A possible alternative is the L-curve, as positive results are reported in the case of signal
calibration (Kalivas, 2012) and smoothing of time series (Frasso and Eilers, 2012).

Not discussed within this thesis, but important to mention are alternative interpre-
tations of shrinkage estimators. Penalized estimation is formally equivalent to a mixed
model, as discussed by Wand (2003). In this case, the penalty is written as an a priori
normal distribution on the (spline) coefficients. Attractive about this presentation is that
the amount of smoothing is automatically controlled by the variance components in the
mixed model, calculated during the estimation of the model.

By fitting penalties in a mixed model view, we are half way towards the Bayesian inter-
pretation of penalized estimation. Bayesian P-splines are proposed by Lang and Brezger
(2004), and covers various types of models. Smoothness is obtained by introducing a ran-
dom walk prior, which is dependent on neighbouring data points. The degree of smooth-
ness is controlled by the variance parameter of the prior and that of the observation noise.
The connection between Bayesian estimation and shrinkage was pointed out by Tibshirani
(1996) and further investigated by e.g. Park and Casella (2008) and Hans (2009). Inference
is carried out using MCMC algorithms, which often makes the procedure slow especially
for long signals as discussed in earlier chapters.

A downside of both the mixed model view and the Bayesian interpretation, is the
lack of flexibility in the penalty. In addition to the general model, implied by the use of a
particular penalty, it is sometimes required to impose further (local) constrains. By writing
the penalty in a more explicit way it is easily adjusted in order to incorporate for instance,
circular behaviour, periodicity, interpolation and extrapolation and the limiting behaviour
of the penalty. Ruppert et al. (2003) made a comparison of the performance of the mixed
model approach of penalized estimation against methods relying on cross-validation or
information criteria. They notice clear differences, but call for more research to make a
judgement.

9.2 Chapter-specific conclusions

Central to Chapters 2 and 3 is the proper estimation of a baseline from a noisy signal.
The signal is often composed of a series of peaks, superimposed on a drifting base-
line. The physical or chemical information is in the positions and the heights of the
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peaks and the baseline is a nuisance. The proposed baseline estimation method relies
on a two-component mixture model: one for the baseline including noise and a second
for the peaks. The baseline is estimated using P-splines. In Chapter 2, the focus is on
one-dimensional data. Application on various types of signals shows its excellent per-
formance. The model is similar to asymmetric curve fitting approaches, but avoids the
problem of choosing the amount of asymmetry, because this follows implicitly from the
mixture model. The large gain of this approach is that the baseline is approached as a
statistical model.

In Chapter 3 the method is extended to two-dimensional data, meaning that a baseline
surface has to be estimated. The same mixture principle applies, only tensor product P-
splines are used to estimate the surface. To demonstrate the value of the procedure we fo-
cus on artefact removal in time-resolved spectroscopy. The method can be applied in other
situations as well. Examples are, correction of two-dimensional electrophoretic data or mi-
croarray images used for gene expression analysis. A logical extension of the approach is
to model three dimensional data. This means we have two directions in space and one in
time. Practical examples are weather data with a spatial dimension and measured in time.
A second example comes from tribology and concerns the wear of mechanical parts as a
function of mileage. Further extensions in terms of applications are model series of count
data, like X-ray diffraction scans, and sinusoidal data series where both a lower bound and
upper bound need to be estimated. Topics requiring more research are automatic model
selection and baseline estimation in the presence of heteroscedastic noise. The second
problem could be handled by incorporating a flexible variance parameter.

In Chapter 4, the focus is on the estimation of a small set of input spikes from a noisy
convolved signal. The sparsity of the input requires a penalty that sets many parameters
to zero, but does not create too much bias in the estimated spikes. We find that regres-
sion with an Lo norm penalty performs very good, for simulated data and real data. In
many cases not only the input, but also the impulse response function (IRF) is unknown.
Estimating both from the data is often called blind deconvolution, which is implemented
using an alternating minimization scheme. Assuming we know the impulse response we
can make an estimate of the input. Reversely, if we know the input, we can make an esti-
mate of the response function. This procedure is repeated until convergence. For optimal
performance, the estimated impulse response is smoothed using a Whittaker smoother.

Chapter 5 is a continuation of Chapter 4. Deconvolution using penalized regression
with an Lo norm penalty is successfully applied to two-dimensional data. In addition, the
blind deconvolution algorithm now applied to virtually any unimodal impulse response
function. Vectorizing two-dimensional data quickly results in large systems of equations,
which leads to an increase in computation time. A possible solution is to split images in
(overlapping) segments and analyse these separate.

Chapter 4 and chapter 5 both demonstrate that penalized regression with an Lo
penalty is a very useful tool for deconvolution. To model crosstalk between parallel sig-
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nals we could extend the framework using the composite link model (CLM). The CLM
considers the data to be composed of a linear combination of generalized linear models.

Chapter 6 discusses the binary classification of two-dimensional shapes. By transform-
ing the x and y coordinates into polar coordinates, the shapes are represented as signals.
Consequently, the shapes can be summarized by P-splines, and the signals can be anal-
ysed using penalized signal regression. From a data modelling perspective this is attrac-
tive, because the samples can now be analysed by penalized logistic regression, which is
a member of the generalized linear model (GLM). Besides attractive statistical properties
of the GLM, other outcomes than the binary can be modelled. Treating the data as sig-
nals has the additional advantage that alignment and rotation of the shapes becomes easy.
Applications show excellent classification performance. Discriminative regions can be vi-
sualized by plotting the beta coefficients in a circle emphasizing which parts of the shape
are most influential. The model can be extended to three-dimensional shapes by relying
on spherical or cylindrical coordinates. In a next step the shapes can be summarized using
tensor product P-splines. The circular character of the data is preserved by adjusting the
basis and difference penalty. When covariates (clinical parameters) are available, they can
be easily included into the regression model.

Estimating gene networks, using expression data, is the central theme of Chapter 7.
Obtaining a conditional network is difficult because of the relative small number of sam-
ples, while the number of genes easily runs into thousands. To get an estimable model and
induce sparseness, size penalties are used. Different types of penalties are discussed, and
a small simulation is performed to assess the performance of three of them. To restrict the
search space and possibly improve the quality of the network, knowledge from external
sources is included in the estimation procedure. A simple framework to combine the prior
and data is proposed and two applications are presented. In the first application a prior
is build using text mining. In the second, one specific publication and the connections
found therein are used as a basis for a prior. With text mining there is the advantage that
the prior matrix is fully specified by the algorithm, meaning that gene to gene weights are
available. In other situations this is often not the case, which makes it difficult to generate
a weighting scheme for hypothesized edges.

In Chapter 8 we propose a pseudo-Bayes procedure to resolve problems caused by
observed zeros and low counts in contingency tables. The cell counts are corrected by a
linear shrinkage procedure and are calculated as weighted average of the observed counts
and a prior. Different priors are possible depending on the application. The optimal com-
bination of the data and prior is determined with an adjusted AIC. Both simulations and
applications show that correcting of cell counts using pseudo-Bayes estimation can be rec-
ommended.
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Central to this thesis are ill-conditioned problems, in a high-dimensional setting. In many
cases this problem is caused by the fact that the number of features is (much) larger than
the number of observations. As a result, proper model estimation is difficult and addi-
tional measures have to be taken. A number of solutions are available, often roughly
divided into variable selection and extraction strategies. Imposing constrains is a third
option. In the preceding chapters we relied on penalties on the size and smoothness of
a solution. An optimal balance between a parsimonious model and fidelity to the data
can be found using for instance information criteria or cross-validation. Chapter 1 offers
a concise overview of the conditioning problem and penalized estimation. The chapters
2-8 showing the versatility of penalized estimators and their ability to reach a satisfactory
solution in a broad range of applications.

Chapter 2 and Chapter 3 focus on the correction of baselines and artefacts, as present in
instrumental signals, studied for instance in analytical chemistry. The physical or chemical
information is in the positions and the heights of the peaks and the baseline is a nuisance.
The proposed solution relies on a mixture model of two components. One component for
the peaks, and a second for the baseline including noise. The model is optimised using
an EM algorithm, the smooth baseline is estimated using P-splines. One advantage of the
procedure is that the baseline can be considered as a statistical model, rather than a fixed
element. In Chapter 2 the method is presented and applied to one-dimensional signals.
An extension into two dimensions is proposed and evaluated in Chapter 3. The smooth
surface is modelled using tensor product P-splines.

Baseline removal is important for the analysis of signals in which the shape and height
of the peaks that are present need to be determined. Assuming that the peaks are a con-
volution of an input signal with an impulse response function (IRF), peak characterization
can be performed using deconvolution. The task is to estimate the input signal, given
the observed data and the point spread function. One-dimensional sparse deconvolution
is discussed in Chapter 4. Sparseness is imposed using an Lo-norm penalty. In many
cases both the input signal and the point spread function are unknown. We estimate both
in an iterative manner, and smooth the IRF for optimal results. Chapter 5 present some
extensions to the proposed procedure. First, the method is applied to two-dimensional
data, as found in for instance microscopy. Second, by adjusting the updating function of
the IRF, the algorithm can now perform blind deconvolution for a much broader class of
functions. An adjusted smoother forces the estimated response function to be unimodal
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and positive everywhere. An application is shown where an IRF with an approximate
exponential decay is estimated.

A seemingly totally different topic is treated in chapter 6, namely the classification
of two-dimensional shapes. However, by transforming the x,y coordinates into polar
coordinates, the data can be analysed as signals. After transformation, the data are sum-
marised on a P-spline basis. This facilitates preprocessing steps like sample alignment
and noise removal. By adjusting the basis and the penalty, the circular character of the
data is preserved, irrespective of the amount of smoothing. Classification is performed
using penalized signal regression (PSR). The elegance of this model is that it is a general-
ized linear model, and thus connects shape analysis to very familiar statistical tools. The
estimated coefficients are interpretable, like any other GLM. By representing them on a
(mean) shape, discriminating areas are easily located. Three applications are discussed,
all showing excellent results.

Chapter 7 elaborates on network estimation and, more in particular, identification of
gene modules. Because of the large number of features and the limited number of samples,
estimation is not trivial. A number of approaches are present in the literature, in which
shrinkage estimators play a prominent role. We investigate the value of three different
penalties using simulations. In addition to the penalty, one could utilize the large amount
of information on gene interaction on the web. We use a simple framework in order to
combine prior knowledge and the observed data in one network estimation procedure. To
demonstrate the procedure, two applications are provided. In the first application, a prior
set of connections is built using one particular publication, reporting the discovery of a
number of gene modules. The second application uses text mining algorithms in order to
retrieve gene-to-gene information.

Chapter 8 discusses a correction for low and zero counts in contingency tables. Ad-
justments are required because only relying on the observed data will result in unreliable
estimates, or estimation will be impossible. The cell counts are corrected by a linear shrink-
age procedure. The corrected counts are calculated as weighted averages of the observed
counts and a prior. An optimal value for the penalty parameter is obtained using an ad-
justed Akaike information criterion (AIC). The procedure is demonstrated by way of series
of 2 x 2 tables, that are part of a meta study. If a suitable prior is applied, correcting of
trial counts can be recommended using pseudo-Bayes estimation. Further evaluation of
the method is done by a series of simulations.

The last chapter of this thesis provides an overview of the main findings and points
of discussion on a chapter level. In addition, shrinkage estimators are discussed from
a broader perspective. New questions and possible approaches for future research are
provided.
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Samenvatting

Centraal in deze thesis staan slecht geconditioneerde problemen, in een hoogdimensionale
context. Het betreft hier doorgaans situaties waarin het aantal variabelen het aantal obser-
vaties (ver) overstijgt. Om toch uitspraken te kunnen doen op basis van de beschikbare
data, zijn extra maatregelen vereist. Hiervoor zijn verschillende oplossingen voorhanden.
Te denken valt aan variabelenselectie op basis van een van de meer klassieke methoden,
of variabelenextractie, bijvoorbeeld met behulp van principale componenten analyse. In
dit werk vertrouwen we echter volledig op een derde optie, de toepassing van een pe-
nalty. De gebruikelijke verliesfunctie wordt aangevuld met een penalty. Deze zorgt voor
een tegenbeweging bij het optimaliseren van de parameters, zodat nu de balans wordt
gezocht tussen de fitaanpassing aan de data (de fit) en de bias die geintroduceerd wordt
door de penalty. Omdat de penalty de modelcomplexiteit omlaag brengt, is het resultaat
een beter geconditioneerd probleem, wat het stabiel schatten van de parameters van een
model mogelijk maakt.

Een globaal onderscheid is gemaakt naar twee type penalty’s, de size penalty en de
roughness penalty. De eerste penaliseert de grootte van een vector van parameters en
krimpt deze richting nul of een andere vooraf vastgestelde waarde. Deze penalty wordt
veel toegepast binnen regressie. De roughness penalty is vooral terug te vinden in de niet-
parametrische setting en kan gebruikt worden voor het schatten van een curve door een
serie datapunten. Een gladde curve (smoothness) wordt bereikt door de verschillen tussen
naburige coéfficienten te bestraffen. De invloed van de penalty, en dus de smoothness, is
te variéren met behulp van een extra parameter. Het optimale gewicht van de penalty,
of in andere woorden de optimale balans tussen de fit en modelcomplexiteit, kan gezocht
worden met behulp van verschillende hulpmiddelen. Meest gebruikt hiervoor zijn infor-
matiecriteria of kruisvalidatie.

Hoofdstuk 1 biedt een beknopte introductie in slecht geconditioneerde problemen en
gepenaliseerd schatten. In de daarop volgende hoofdstukken komen verschillende toe-
passingen aan bod waarbij in alle gevallen een penalty toegepast wordt om tot een goed
resultaat te komen.

In de hoofdstukken 2 en 3 wordt gekeken naar instrumentele data. Belangrijke infor-
matie in dergelijke data vormt doorgaans de positie en hoogte van de aanwezige pieken.
De in veel gevallen aanwezige basislijn is hierbij storend en dient gecorrigeerd te wor-
den. In hoofdstuk 2 wordt een methode voor basislijn correctie van eendimensionale data
gepresenteerd. De voorgestelde methode gaat uit van een mengselmodel met twee com-
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ponenten: een voor de basislijn inclusief ruis en een voor de pieken. Door uit te gaan van
een normale verdeling voor eerste component kan een gladde lijn geschat worden. De
schatter wordt verkregen met behulp van P-splines. Typische toepassingen zijn te vinden
in de chromatografie en de spectroscopie. Beide technieken worden veelvuldig gebruikt
voor de identificatie van stoffen en het onderscheiden van individuele bestanddelen bin-
nen een mengsel.

Hoofdstuk 3 bespreekt een uitbereiding van de methode zoals gepresenteerd in hoofd-
stuk 2, naar twee dimensies. Dit komt neer op het schatten van een vlak in plaats van een
curve. De basisconfiguratie is als in hoofdstuk 2: een mengselmodel met twee componen-
ten en P-splines voor de basislijn. Om het schatten in twee dimensies mogelijk te maken
worden P-splines met tensorproducten gebruikt, zodat associaties in beide richtingen op-
genomen worden. De besproken toepassing komt uit de femtochemie, waarbij gekeken
wordt naar trillingen van moleculen op een tijdschaal van femtoseconden (10™'® s). Inhe-
rent aan dit experiment zijn artefacten in de data en dienen verwijdert te worden voor een
optimale interpretatie van de experimentele resultaten.

In de literatuur is veel onderzoek te vinden omtrent het goed schatten van een ba-
sislijn. Met name voor de in hoofdstuk 2 besproken eendimensionale data zijn dan ook
verscheidene alternatieve methoden beschikbaar. Echter Het voordeel van de hier voor-
gestelde procedure is dat de basislijn als statistisch model wordt beschouwd. Waarvan
ruis en onzekerheden expliciet onderdeel van zijn. Hiernaast wordt de curve geschat met
behulp van P-splines, wat zorgt voor een aanmerkelijke reductie van de omvang van het
te schatten model.

Voor de signaaldata besproken in de hoofdstukken 2 en 3 is het schatten van een ba-
sislijn een mogelijk noodzakelijke voorbehandeling. Piek analyse is een volgende stap
en deconvolutie is hiervoor een veelgebruikt instrument. De veronderstelling is dat de
geobserveerde data het resultaat is van een convolutie van een ingangssignaal met een
impulsresponsfunctie. Het ingangssignaal is het werkelijke onderliggende effect, maar
dat vervolgens verstoord is door de impulsrespons. Het doel is om het ingangssignaal
zo accuraat mogelijk te schatten. Wanneer de data slechts een beperkt aantal pieken ver-
toont, dan zal het te schatten ingangssignaal ook slechts enkele spikes tonen en spreken
we van ijle deconvolutie. Hoofdstuk 4 bespreekt de ijle deconvolutie van eendimensio-
nale signalen met behulp van een zogenaamde Lo-norm penalty. Omdat in veel gevallen
zowel het ingangssignaal als de impulsrespons onbekend zijn, moeten deze beide geschat
worden. Uit de getoonde toepassingen blijkt dat het voorgestelde recept zeer goed werkt.
Het geschatte signaal is ijl, terwijl de aanwezige pieken, in combinatie met de geschatte
impulsrespons, het signaal accuraat kunnen reproduceren.

Hoofdstuk 5 is wederom een uitbreiding van het voorgaande hoofdstuk en ook hier
betreft het de gang van een dimensie naar twee dimensies. De toepassing komt uit de mi-
croscopie. Tevens wordt het schatten van de impulsrespons mogelijk voor alle unimodale
vormen. Deconvolutie in twee dimensies wordt aangepakt door de data te vectorizeren.
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In hoofdstuk 6 wordt een schijnbaar volledig ander thema besproken, namelijk het
classificeren van reeksen tweedimensionale, min of meer ronde, vormen. Echter, doordat
de vormen getransformeerd worden van het Cartesiaans stelsel naar polaire codrdinaten,
zijn we terug bij de analyse van signalen. Een drietal toepassingen wordt besproken. Het
onderscheiden van een aandoening bij kinderen die zich uit in afwijkingen in de schedel-
vorm, het correct indelen van verschillende soorten diatomeeén en een paleontologishe
toepassing waarbij het gaat om het onderscheiden van fossielen van knaagdieren.

Voor het classificeren kan gebruik gemaakt worden van signaalregressie met een bi-
naire uitkomst. Na de transformatie wordt de data samengevat met gebruik van P-splines.
Dit heeft het voordeel dat datapunten met onderling ongelijke afstanden samengevat wor-
den op een laagdimensionaal raster van splines. Door de penalty worden ruis en kleine
gebreken eenvoudig gladgestreken. De splinebasis en de penalty zijn aangepast aan het
circulaire karakter van de data. Eventuele verschillen in de oriéntatie van de vormen kun-
nen simpel gecorrigeerd worden door middel van rotatie. Elegant aan het voorgestelde
model is dat de analyse van vormen onderbrengt binnen het gegeneraliseerd lineair mo-
del (GLM). De geschatte coéfficienten zijn eenvoudig te interpreteren en door ze te pre-
senteren langs de originele vorm, zijn de sterkst discriminerende gebieden eenvoudig aan
te wijzen. Een logische uitbreiding van het model is het analyseren van driedimensionale
vormen. Afhankelijk van de te analyseren vorm kan hierbij gebruik gemaakt worden van
bijvoorbeeld cilinder- of bolcodrdinaten.

Centraal in hoofdstuk 7 staat het schatten van een netwerk van genen. Gebleken is dat
de activiteit van genen te koppelen is aan ziektebeelden. Ook wordt verondersteld dat ge-
nen niet individueel opereren, maar clusters vormen, waarbinnen zij elkaar beinvloeden.
De clusters kunnen gepresenteerd worden als een netwerk. Voor het schatten van de net-
werkstructuur kan gebruik gemaakt worden van parti€le correlaties. Echter, omdat het
aantal genen vaak vele malen groter is dan de omvang van de getrokken groep, is een
dergelijke dataset een duidelijk voorbeeld van een slecht geconditioneerd probleem. Het
gebruik van een penalty is hierbij een van de mogelijkheden om toch een netwerk struc-
tuur te kunnen schatten. Een aantal mogelijke penalty’s worden besproken en een drietal
wordt nader bekeken met behulp van simulatie. Hierbij blijkt dat de adaptieve lasso het
beste presteert. Veel informatie uit eerder onderzoek op het gebied van de genetica wordt
opgeslagen in online databanken. Met deze gegevens kunnen bestaande netwerk struc-
turen getoetst worden, of kunnen op basis van deze voorkennis bepaalde relaties meer of
minder gepenaliseerd worden.

In het tweede deel van hoofdstuk 7 presenteren we een eenvoudige methode om de
a priori-kennis te combineren met de data. De methode wordt geillustreerd aan de hand
van een tweetal voorbeelden. In de eerste toepassing wordt een prior gemaakt met behulp
van een text mining algoritme. In het tweede voorbeeld wordt uitgegaan van bevindingen
van een eerdere publicatie.

Hoofdstuk 8 behandelt geen hoogdimensionale data, maar reeksen kruistabellen
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waarbij in sommige cellen zeer weinig of geen observaties aanwezig zijn. In dergelijke
gevallen is het lastig zo niet onmogelijk om uitspraken te doen op basis van de data. De
gepresenteerde oplossing corrigeert de lage tellingen op het niveau van de individuele cel-
len. De voorgestelde correcties zijn verkregen op basis van een reeks tabellen, onderdeel
van bijvoorbeeld een meta analyse.

De verwachtte tellingen per cel, gegeven de meta studie, kunnen op verschillende
wijze berekend worden. Het krimpen richtingde voorgestelde correctie is een lineaire
procedure, waarbij de optimale balans tussen data en correctie vastgesteld wordt met be-
hulp van een aangepast informatie criterium van Akaike. Simulaties tonen aan dat op het
niveau van individuele studies het toepassen van de correctie tot bevredigende resultaten
leidt.

In het laatste hoofdstuk, wordt nogmaals stilgestaan bij de voornaamste bevindingen
uit voorgaande hoofdstukken. Tevens worden penalty’s beschouwd vanuit verschillende
gezichtspunten. Ook worden nieuwe vragen opgeworpen, die een reeks handvatten vor-
men voor nader onderzoek en mogelijk nieuwe toepassingen.
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Over de auteur

De auteur van dit proefschrift werd geboren op 7 juni 1981 te Woerden. Hij groeide op in
Nieuwveen en volgde middelbaar onderwijs aan het Groene Hart Lyceum te Alphen aan
den Rijn. Vervolgens bezocht hij het ROC Utrecht waar hij, gedreven door zijn belang-
stelling voor techniek, koos voor de richting motorvoertuigentechniek. Na het behalen
van dit diploma werkte hij als monteur, maar besloot al snel om terug te keren naar de
schoolbanken.

Een jaar hoger beroepsonderwijs werd opgevolgd door de opleiding Sociologie aan
de Universiteit Utrecht. Tijdens deze studie onstond de interesse in statistiek. Met het
behalen van het bachelordiploma, werd hij in 2006 aangenomen bij de master Methods
and Statistics of the Social and Behavioural Sciences. Na het succesvol afronden van deze
studie start de auteur in 2008 een promotietraject bij de afdelingen Bioinformatica en Bio-
statistiek van het Erasmus Medisch Centrum te Rotterdam. Ondanks omzwervingen is de
belangstelling voor techniek gebleven, wat onder andere tot uitdrukking komt in het on-
derzoek omtrent signaaldata en statistische vraagstukken binnen de analytische chemie.

Momenteel werkt de auteur aan analysemethoden voor rontgendiffractiedata, binnen
een gezamenlijk project van de afdeling Biostatistiek van het Erasmus Medisch Centrum
Rotterdam en het departement Technische Materiaalwetenschappen van de Technische
Universiteit Delft.
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Karolina, Baoyue en Siti. En mijn huidige kamergenoten Kazem en Nicole. Hierbij valt ook
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Mijn dank gaat ook uit naar Amarante Bottger, Niek van der Pers, Rob Delhez en
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Ik maak ook graag van de gelegenheid gebruik om een aantal mensen te bedanken
die niet zozeer rechtstreeks bij mijn promotietraject betrokken zijn geweest, maar elders
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op de route belangrijk zijn geweest of nog zijn. Vrienden uit de studietijd in Utrecht:
Theo, Ellen, Ditza, Ismini en Liesbeth, jullie hebben deze tijd gemaakt tot iets waar ik met
plezier op terug kijk. Nijs, jij bent, via mijn studentenbaan bij jou op de afdeling Methoden
en Statistiek, tenslotte mede ‘schuldig’ aan het feit ik in de statistiek ben beland. Marco
Fransen, het is plots lang geleden dat ik regelmatig bij jou over de vloer kwam, maar je
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Johan de Rooi
Rotterdam, september 2013
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