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Chapter 1: Introduction 3

Meta-analysis may be broadly defined as the quantitative review and synthesis
of the results of related but independent studies [1]. When several studies have het-
erogeneous or even conflicting conclusions, a meta-analysis can be used to estimate
an average effect or identify a subset of studies associated with a beneficial effect
[1]. Although meta-analysis is widely used in epidemiology and evidence-based
medicine today, a meta-analysis regarding a medical treatment was not published
until 1955. The term ’meta-analysis’ was introduced in 1976 [2], and since then
its application has rapidly grown. In the medical world the increase began in
the 1980’s [3]. The foundation of the Cochrane Collaboration (in 1993), an inter-
national network of health care professionals who prepare and regularly update
systematic reviews, facilitated the conduct of meta-analyses in all areas of health
care. Most meta-analyses within the field of medical research have been conducted
on randomized controlled trials, epidemiologic studies or diagnostic tests [4]. In
this thesis we focus on the meta-analysis of diagnostic tests.

In recent years, the need for systematic reviews and synthesis of published ev-
idence on the accuracy of diagnostic tests has increased [5, 6]. The main objective
of a diagnostic review is to summarize the evidence regarding the accuracy of a test
or instrument [7]. Many studies may have too small numbers of patients to give
precise estimates or are too selected to allow a general applicability. This means
that the conclusion regarding the diagnostic accuracy of test may differ among
studies. The meta-analytic approach may overcome this problem by combining
studies evaluating the same diagnostic technology. The information from such
reviews is a key element in clinical and health policy decision making regarding
the use of diagnostic tests; it is also essential for guiding the process of technology
development and evaluation in diagnostic medicine [6].

1.1 Measures of Diagnostic test accuracy

In diagnostic accuracy studies the true disease status of patients is determined
using a reference standard. Often it is assumed that the disease status is classified
without error, the reference being a gold standard. Test errors can be charac-
terized by various measures [8]. The two most commonly reported measures are
sensitivity, the probability that a test result is positive in patients with the disease
of interest, and specificity, the probability that a test result is negative in patients
without the disease of interest. For a quantitative test, an alternative to reporting
a single pair of sensitivity and specificity estimates is to report a range of pairs
obtained by varying the threshold criterion [8]. Such a range of pairs is often
presented as a receiver operating characteristic (ROC) curve (see section 1.2 for
more discussion on ROC curves). Other measures of diagnostic accuracy are the
diagnostic likelihood ratio, defined as the ratio of the probability of a particular
test result in people with the disease to the probability of the same test result
in people without the disease; positive predictive value, defined as the proportion
of patients with positive test results who are correctly diagnosed; and negative
predictive value, defined as the proportion of patients with negative test results
who are correctly diagnosed.
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1.2 Summary Receiver Operating Characteristic
(ROC) curve

In studies of quantitative diagnostic tests and a dichotomous reference standard
(disease present / absent), the relation between sensitivity and specificity can
be represented by the receiver operating characteristic (ROC) curve. The ROC
curve is a monotone increasing function on the unit square. It starts at the point
(0,0), corresponding to a sensitivity of 0% and a specificity of 100%, and ends at
the point (1,1), corresponding to a sensitivity of 100% and a specificity of 0%.
It is made by calculating the pairs of sensitivity and specificity corresponding
to all possible positivity thresholds of the diagnostic test. In study reports the
whole ROC curve is almost never presented, and the usual situation is that per
study in the meta-analysis only one or sometimes a few pairs of sensitivity and
specificity, corresponding with one or more points on the study specific ROC curve,
are available. A key goal in the synthesis of such studies is to derive summary
measures of test performance. In particular the goal is often to produce a summary
ROC curve that shows the trade-off between sensitivity and specificity as the
threshold for positivity varies along some explicit or latent scale. For the last ten
or fifteen years, the standard method to obtain such a summary ROC curve is the
SROC method of Littenberg and Mosses [9, 10].

1.3 Meta-analytic approaches for diagnostic accu-
racy studies

Statistical methods for meta-analysis of diagnostic test evaluations depend on the
type of data available from the different studies. The test results in the primary
studies can be presented in two categories, in more than two categories or on
a continuous scale. In this thesis we focused on the case where test results are
presented in two categories (one threshold) or a few categories (more than one
threshold).

In the last decades statistical methods were developed to meta-analyse such
kind of data. When the objective is to pool sensitivity and/or specificity, the
easiest and most straightforward approach is taking the average across studies,
possibly with a weight depending on the within-study sample sizes or standard
errors. This approach assumes that the only source of variation is sampling error.
In such cases the homogeneity assumption across studies is satisfied, leading to
what is called a fixed effect analysis. However, as many authors pointed out (for
example [8, 11]) this approach is almost never appropriate, for many reasons. Even
with the more sophisticated random effects approaches (see for example Chapter
2), pooling sensitivities and specificities separately is appropriate if and only if
the correlation between sensitivity and specificity is negligible, which is usually
not the case. One of the reasons is that different studies may use different test
cutoff points (thresholds), implicitly or explicitly, and this needs to be taken into
account. The effect of shifting the threshold can be more conveniently shown by
a summary ROC curve [9, 10]. Littenberg and Moses, and Moses et al. [9, 10]
were the first to introduce a summary ROC curve approach, which is usually
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referred as the SROC method. They accounted for sampling error and threshold
values; however in practice other sources of variation can contribute as well to
the between-studies variability, for example the difference in patient selection and
clinical setting, the type of test used, problems in the verification of test results,
or any combination of these factors [8, 11]. Possibly some of the heterogeneity
can be explained by using meta-regression: an extension of meta-analysis which
examines the relationship with one or more study level characteristics (covariates)
through regression modeling. But mostly not all heterogeneity can be explained by
covariates and hence a random effects model should be used that allows between-
studies heterogeneity beyond what is explained by covariates [12, 13]. The SROC
method has several drawbacks as pointed out by different authors (for example
[5, 14]). In this thesis we introduce meta-analytic approaches that address these
shortcomings. We follow the general approach described in van Houwelingen et al.
[15] and van Houwelingen et al. [16]. Our models can be fitted using General(ized)
Linear Mixed Model programs of widely used statistical packages, for example
SAS (NL)MIXED, R/S-Plus (n)lme or STATA GLLAMM. We also consider the
extension of the models with study level covariates and the extension to the case
where we have more than one point per study.

1.4 Aims and outline of the thesis

The aim of this thesis is to develop new statistical methods, improve existing ones
and compare their performances through simulation. In the simulation studies
we consider different scenarios by varying different parameters such as number of
studies included in the meta-analysis, within-study size, and probability of test
positivity. Chapters 2 to 5 consider meta-analysis where one pair of sensitivity
and specificity is available, and in chapter 6 we focus on meta-analyses with more
than one point per study.

In the second chapter we study pooling sensitivities or specificities separately,
or in general a proportion, using a random effects meta-analysis approach. Ap-
proximate normal and exact binomial likelihood approaches are considered for the
within-study distribution of the observed data. The two approaches are compared
through a simulation study, in terms of bias, mean-squared error, and coverage
probabilities (Wald type and profile likelihood).

In chapter three, a bivariate random effects approach to meta-analysis of sensi-
tivity and specificity is discussed for the case where one point per study is available.
Several results can be derived from the fitted model. Noticeably, with different
assumptions, it leads to different possible ROC curves. Also study specific ROC
curves can be derived through a random intercept model using the empirical Bayes
estimates. For the within-study distribution of the observed data, both approxi-
mate normal and exact binomial likelihood approaches are discussed.

In the fourth chapter, we consider three random effects approaches that can be
seen as extensions of the SROC method of Littenberg and Moses [9, 10]: random
intercept, normal-normal bivariate and normal-binomial bivariate random effects
approach. We compare the three methods through an extensive simulation in or-
der to give guidelines for practitioners.
Chapter five discusses the extension of the bivariate approach with covariates at
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the hand of a case study. We show how the bivariate approach can be used to
study the effect of study level characteristics on different outcome measures, such
as sensitivity and specificity and SROC curve. We also show how to compare
differences of the study level characteristics on diagnostic test accuracy, for any
given outcome measure.

The sixth chapter extends the bivariate approach to the situation where there
is more than one point per study. We propose a multivariate random effects model
to analyze meta-analysis data with a fixed number of thresholds across studies.
The method can be fitted in standard statistical packages such as SAS.

A general discussion of the thesis is given in chapter seven. We discuss the
advantages of the approaches over the standard (SROC curve) approaches and
their limitations.
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Abstract

Objective: When studies report proportions such as sensitivity or specificity, it is
customary to meta-analyze them using the DerSimonian and Laird random effects
model. This method approximates the within-study variability of the proportion
by a normal distribution, which may lead to bias for several reasons. Alternatively
an exact likelihood approach based on the binomial within-study distribution can
be used. This method can easily be performed in standard statistical packages.
We investigate the performance of the standard method and the alternative ap-
proach.
Study Design and Setting: We compare the two approaches through a sim-
ulation study, in terms of bias, means squared error and coverage probabilities.
We varied the size of the overall sensitivity or specificity, the between-studies vari-
ance, the within-study sample sizes and the number of studies. The methods are
illustrated using a published meta-analysis data set.
Results: The exact likelihood approach performs always better than the ap-
proximate approach and gives unbiased estimates. The coverage probability, in
particular for the profile likelihood, is also reasonably acceptable. In contrast,
the approximate approach gives huge bias with very poor coverage probability in
many cases.
Conclusion: The exact likelihood approach is the method of preference and
should be used whenever feasible.

2.1 Introduction

In this paper we consider meta-analysis of proportions. Very frequently occur-
ring examples of proportions being meta-analyzed are sensitivity or specificity of
a diagnostic test. Therefore this article is written from a diagnostic research per-
spective, though the results apply to meta-analysis of proportions in general, such
as prevalences or incidences.

Meta-analytic methods for a diagnostic test depend on the type of data that
is available from the different studies. In most medical articles, the commonly
reported measures of diagnostic test accuracy are sensitivity and/or specificity.
Alternatively, other measures such as diagnostic odds ratio, predictive values, area
under the receiver operating characteristic (ROC) curve, are reported.

Statistical methods to pool the results of diagnostic test measures from differ-
ent studies lay on different assumptions. For example it might be assumed that
the observed differences between individual study results are only due to sampling
variation, leading to what is called a fixed effect analysis. When an estimate of the
sensitivity or specificity is reported in a single study, the simplest method to get
a summary measure is to calculate the average sensitivity and/or specificity, pos-
sibly with weights depending on the within-study sample sizes or standard errors.
However, this approach is usually inappropriate because it is likely that variability
beyond chance can be attributed to between-study differences [1, 2]. Some of the
between-study variability could be accounted for using explanatory variables in a
regression analysis. But mostly not all heterogeneity can be explained and a ran-
dom effects model is used in the statistical analysis, which allows between-studies
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heterogeneity [3, 4].
In the last decade many random effects methods have been developed to relax

the fixed effect assumptions in meta-analysis [5, 6, 7, 8] of diagnostic tests [9, 10].
Some of these methods enable analyzing sensitivity and specificity jointly. How-
ever, in the medical literature numerous meta-analyses are published in which one
is interested in meta-analyzing only sensitivity or specificity, and in this paper we
concentrate on this situation. Then the standard way of analysis is with the DerSi-
monian and Laird [6] random effects model. It is not well known that this method
can be heavily biased when it is applied to proportions, such as specificities or
sensitivities, though some authors have mentioned this [5, 11, 12]. Chang et al
[11] have proposed a method that repairs the bias. However, this article has been
cited only once since the year 2001, showing that in practice this method is not
used. It might be due to the difficulty to perform the method easily in standard
statistical packages. The reason for the standard method being biased is that the
binomial within-study likelihood of the sensitivity or specificity is approximated
using a normal likelihood. It is well known that this approximation can be bad
if the proportion is close to one or zero, and/or the sample size is small. So bias
can be expected if this is the case in a meta-analysis. However, even if the nor-
mal approximation would be good enough for ordinary applications, bias could
be introduced since the use of the normal approximation in meta-analysis ignores
the correlation between the estimated proportion and its variance. We come back
to this point in the next section. Nowadays standard statistical packages allow
for fitting generalized linear mixed models (GizedLMM). This makes it very easy
to use the exact binomial within-study distribution of the estimated sensitivity or
specificity instead of a normal approximation of it. In this article we call the latter
the approximate method and the former the exact method.

The purpose of this article is to compare the performance of the two modeling
approaches, approximate and exact, through a simulation study. In Section 2.2
both methods are discussed. In Section 2.3 we describe the design of the simu-
lation study and in Section 2.4 we present the results. In Section 2.5 we apply
the methods on real meta-analysis data. We end with a discussion in Section
2.6. We used SAS software (version 9.1) to simulate the data and to estimate the
parameters for the models discussed in Section 2.2.

2.2 Random Effects Model

In a situation where the interest is to meta-analyze sensitivities or specificities sepa-
rately, the commonly used method is the DerSimonian and Laird [6] random effects
model. In the remainder of this paper we will talk about meta-analyzing sensitiv-
ities, but all the results apply to specificities as well. In fact, the results apply to
any meta-analysis where the target parameter is a proportion or probability and
each study contributes a sample size and a number of ”successes”. Unlike a fixed
effect model, a random effects model allows that sensitivities vary across studies
beyond that expected from within-study sampling variability alone. More specif-
ically, the true logit sensitivities, ηi, defined as ln(sensitivity/(1 − sensitivity)),
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are assumed to follow a normal distribution:

ηi ∼ N(η, τ2)

Here i denotes the number of study, η the true mean logit sensitivity. The
parameter τ2 is called the between-studies variance and it describes the variability
between the true logit sensitivities of the different studies. The within-study sam-
pling variability could be modeled by using the approximate normal likelihood or
the exact binomial likelihood for the observed number of positive test results.

2.2.1 Approximate method

This is the standard method in practice. Different transformations of the ob-
served proportion, such as the probit, log(−log)) or the arcsine could be used and
approximated by a normal distribution. In this paper we have chosen the logit
transformation, since it is the predominant choice in practice. If mi is the total
number of subjects with the disease of study i, and xi is the observed number of
true positive test results in the group with the disease, then the observed logit
sensitivity, η̂i = ln(xi/(mi−xi)) is assumed to follow an approximate normal dis-
tribution with mean ηi, and within-study variance calculated from the observed
data:

η̂i ∼ N(ηi, σ̂
2
i ) with σ̂2

i =
1
xi

+
1

mi − xi

If xi or mi − xi is zero the logit sensitivity and the within-study variance
will be undefined. To avoid this problem 0.5 should be added to xi and mi − xi

for all studies, including those with no zero [13, 14]. The effect of adding 0.5
may bias the results [14]. Further, usually there is a high correlation between η̂i

and σ̂2
i . The correlation is positive if η is positive and negative if η is negative,

leading to a bias towards zero in the estimate of the overall logit-sensitivity, or a
bias towards 0.5 in the estimate of the overall sensitivity. This is because both
the mean and the variance of η̂i are determined by the same parameter. The
effect of this correlation in a random effects meta-analysis was discussed by several
authors [5, 11, 12]. Though they suggested a correction to reduce the bias in the
estimate of η due to this correlation, Chang et al [11] mentioned that the estimated
between-studies variance remained still biased even if we let grow the number of
studies included. Using the approximate normal likelihood for the within logit
sensitivity, the model is a linear random effects model and the parameters can be
estimated by standard likelihood procedures using a Linear Mixed Model (LMM)
program, which is available in many standard statistical packages. For example,
in SAS the procedure MIXED, in S-Plus/R the function lme can be used. As
discussed by Turner et al [15] three methods, maximum likelihood (ML), restricted
(residual) maximum likelihood (REML) and the method of moments proposed by
DerSimonian and Laird, are available to estimate the random effects model. They
differ mainly on the estimation of the between-studies variance, in which ML gives
a downward bias. In the biomedical literature, usually the method of moments
proposed by DerSimonian and Laird or the REML estimator is used for estimating
the heterogeneity parameter [16]. The REML estimator is the iterative equivalent
of the DerSimonian and Laird estimator and gives very similar results [6]. In this
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paper we used the REML method, which can be specified in the method option of
the MIXED or lme procedures.

2.2.2 Exact method

Here we use the fact that the observed number of true positive test results xi

follows a binomial distribution:

xi ∼ binomial(πi, mi)

where πi = 1/(1 + e−ηi) and mi is the total number of subjects with the disease
of study i. In this case there is no need to add 0.5 even if a zero count is encoun-
tered and there is no problem anymore of correlation between the observed values
and their variance because there is no more need of calculating the η̂i and its
within-study variance, σ̂2

η from the observed data and approximating by a normal
distribution. Now the variance is inherent from the binomial distribution. In the
approximate method, the distribution of xi is basically approximated by a normal
distribution with mean miπ and variance miπ(1−π), which is estimated by a nor-
mal distribution with mean miπ̂ and variance miπ̂(1− π̂). Clearly the estimated
mean and variance are correlated, and, since the variance estimate is treated as a
fixed and known number, this correlation is not modeled, which causes bias in the
approximate method.

Now the model is a GizedLMM and the parameters can be estimated by
standard likelihood procedures. The practical disadvantage is that software is
much more scarce and not yet available in all statistical packages. We used the
NLMIXED procedure from the SAS package [17]. It is also possible to use the
recently included GLIMMIX procedure in the SAS package, which is still experi-
mental in SAS version 9.1. The GLIMMIX procedure allows more random effects
but it has the disadvantage that it uses an approximation instead of the true log
likelihood. In contrast, although the number of random effects that can be prac-
tically managed is limited, NLMIXED uses very accurate integrating techniques
to calculate the true likelihood. Unlike the MIXED procedure, the NLMIXED
procedure only implements ML. This is because the analog to the REML method
in NLMIXED would involve a high dimensional integral over all of the fixed effects
parameters and this integral is typically not available in closed form [17]. Hence
we used the ML method for the exact approach.

The exact binomial likelihood approach as used here leads to a logistic regres-
sion model with a random intercept, and is therefore analogous to the ’individual
patient data methods (IPD)’ as used by Turner et al [15]. They consider meta-
analysis of treatment effect log odds ratios and used the MLwiN software [18] to
fit the model. In contrast to NLMIXED, this program uses an approximation of
the likelihood instead of the true one. Turner et al [15] also suggested the use of
bootstrapping techniques to estimate τ2, but this approach is not implemented in
NLMIXED and was not incorporated in our simulation study. In the appendix we
have given the syntax needed to fit the models following the approximate and the
exact methods.



23

Chapter 2: Random Effects Meta-analysis of Proportions 15

2.3 Simulation Study

A simulation study was carried out to compare the performance of the two meth-
ods, approximate and exact, discussed in Section 2.2. We investigated the effect of
the number of studies included in the meta-analysis, the mean within-study sample
size, the between-study variability and the true median sensitivity. The data were
simulated in two steps. First, the true logit sensitivity, ηi, was simulated from
a normal distribution with a given mean logit sensitivity η and between-studies
variance τ2. Secondly, the within-study data were simulated from a binomial dis-
tribution with a probability πi = 1/(1 + e−ηi) and within-study sample size mi.
In practice the mi’s vary across studies included in the meta-analysis. In some
meta-analyses the range of the size of studies is as big as 1500 or more (for example
[19, 20]). To accommodate this variation, the mi’s were generated from a normal
distribution and rounded to the nearest integer. Two different vales were consid-
ered for the mean mi (standard deviation): 40 (30) and 500 (450). The minimum
study size was set to be 10, that is, if the generated mi was less than 10 then it was
taken to be 10. Consequently 40 and 500 are no more the means for the simulated
sample sizes but the medians and the realized standard deviation becomes a bit
smaller than 30 and 450 respectively. We considered 12 different situations and
for each situation we did the simulation assuming a different number of studies
(10, 25, 50, 100) included in the meta-analysis at a time, i.e. we simulated 48
scenarios in total. All values assigned to the parameters in the different scenarios
were based on real data sets from the medical literature (for example [21, 22, 23]).
An overview of the simulated scenarios is given in Table 2.1.

Table 2.1: The different scenarios used in the simulation study. Each subset of
4 scenarios corresponds to 10, 25, 50 and 100 studies in the meta-analysis. The
corresponding true median sensitivity for 0.41, 1.11 and 2.57 are 0.60, 0.75 and
0.93 respectively.

Scenario η τ2 m Standard deviation of m
1-4 0.41 0.3 40 30
5-8 0.41 0.3 500 450
9-12 0.41 1.0 40 30
13-16 0.41 1.0 500 450
17-20 1.11 0.3 40 30
21-24 1.11 0.3 500 450
25-28 1.11 1.0 40 30
29-32 1.11 1.0 500 450
33-36 2.57 0.3 40 30
37-40 2.57 0.3 500 450
41-44 2.57 1.0 40 30
45-48 2.57 1.0 500 450

Each scenario was replicated 1000 times and the simulated data sets were ana-
lyzed according to the approximate and exact approach using the SAS procedures
MIXED and NLMIXED respectively. We concentrated on the estimation of the
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mean logit sensitivity η and between-study variance τ2. The estimated results
were compared using bias (difference between the mean estimate and the true
value of the parameter), mean squared error (MSE) and coverage probability of
the 95% confidence interval (the frequency in which the true value falls in the
confidence interval). In meta-analysis, mostly Wald type confidence intervals are
used. For η, the Wald type confidence interval is η̂± 1.96 ∗ se(η̂). A disadvantage
of this confidence interval might be that when the number of studies is small, the
standard error of η̂ is underestimated due to the fact that the uncertainty in the
estimate of τ2 is not accounted for. This problem may be solved using a profile
likelihood based confidence interval [24], which is also discussed by several authors
in the context of meta-analysis (for example, [8, 25, 26, 27, 28]). Turner et al
[15] also discussed a bootstrapping technique to provide confidence intervals for η
and τ2. This method is directly available in the MLWin software [18]. Recently,
Knapp et al [16] proposed a new approach for a confidence interval of the hetero-
geneity parameter. In this article we restricted to the Wald and profile likelihood
approaches.

The profile log likelihood of η is defined as pl(η) = maxτ2 l(η, τ2) where l(η, τ2)
is the log likelihood for η and τ2. The 95% profile likelihood CI for η is then given
by all values that satisfy pl(η) > pl(η̂) − 1.92 (1.92 is the 95% percentile of the
χ2

1 distribution (3.84) divided by two). The Wald-type CI for τ2 was calculated
through a logarithmic transformation as τ̂2exp(±1.96SE(τ̂2)/τ̂2). In a similar way
as for η, we also calculated a profile likelihood CI for τ2. The profile likelihood for
both approaches is based on ML only, because the likelihood ratio test statistics
computed directly from REML for the fixed effect parameter may not be valid
[29, 30]. This type of CI cannot be automatically done in NLMIXED and needs
some extra programming. For example, to find the profile likelihood CI of η, first
the model is fitted in NLMIXED, and the ML value while estimating both η and
τ2 is saved. The value of the profile likelihood for a given η-value is calculated
by running NLMIXED keeping η fixed to this value. Then the two η-values with
profile likelihood equal to ML − 1.92 were found iteratively using the bisection
method, using a self-written macro.

2.4 Simulation Results

The results from the simulations are presented in Figure 2.1(a), 2.1(b), 2.2(a) and
2.2(b), and Table 2.2. Figure 2.1(a) and 2.1(b) shows the biases and MSEs for
the mean logit sensitivity η. It can be seen from Figure 2.1(a) that the exact
likelihood approach yields estimates of η that are quite unbiased regardless of the
different scenarios; i.e. the expected value of the estimated η using the exact
method is almost equal to the true value, and always closer to the true value than
the approximate likelihood method. The bias in the approximate method varies
considerably with the within-study sample size and true mean logit sensitivity. It
increases dramatically when the within-study sample size is smaller and the true
median sensitivity is larger. For example, when the median within-study sample
size is 40 and the median sensitivity is 0.93, the estimated logit sensitivity is biased
downward by about 35% or more regardless of the true between-studies variance
and the number of studies included. Concerning the effect of between-studies vari-
ances, the larger the between-studies variance the more the approximate method
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underestimates logit sensitivity. However, the number of studies included in the
meta-analysis does not make much difference on the bias.

The MSEs in Figure 2.1(b) are corrected for the number of studies included in
the meta-analysis by N/100, i.e. the vertical axis in Figure 2.1(b) is MSE*N/100.
Comparing the two approaches in terms of the MSEs, the approximate method
tends to be worse (larger MSE) for the scenarios with small within-study sam-
ple size and medium median sensitivity, or large median sensitivity, in which case
the difference in the MSEs between the two methods increases with the number
of studies included in the meta-analysis. The constant MSE*N/100 in the figure
indicate the fact that the MSE, before multiplying by N/100, decreases with the
number of studies included in the meta-analysis regardless of the methods used
and the different scenarios.

The coverage probabilities based on the Wald type confidence intervals and
the profile likelihood confidence intervals are presented in Table 2.2. Regardless of
the method used to construct the confidence intervals, the exact method performs
better than the approximate almost always. When N=10, the coverage proba-
bilities of the approximate method are particularly bad for larger sensitivity and
small within-study sample size. The coverage probabilities of the exact method
are quite reasonable except for the Wald type confidence interval. The intervals
based on the profile likelihoods give a valuable improvement upon the Wald type
intervals. When N ≥ 25, not much difference is observed between the two meth-
ods of constructing the confidence interval: Wald and profile likelihood. In this
case the profile likelihood intervals improve the coverage probability only slightly.
In all scenarios the profile likelihood confidence interval of the exact method be-
haves very satisfactorily. Generally, the approximate likelihood method performed
only slightly worse than the exact in the case of small sensitivity (0.60). For the
scenarios with large sensitivity (0.93), the coverage percentages are dramatically
bad. For some scenarios the coverage dropped down to even 0 percent. For the
intermediate value of the sensitivity the approximate method is considerably worse
than the exact method when the within-study sample size is small.

Table 2.2: Coverage probabilities for η and τ2 using approximate and exact methods.

True parameter values η τ2

Approximate Exact Approximate Exact
N1 η τ2 n2 Wald PL3 Wald PL Wald PL Wald PL

10 0.41 0.30 40 0.91 0.93 0.91 0.93 1.00 0.94 0.99 0.96
500 0.91 0.92 0.89 0.92 0.93 0.92 0.90 0.92

1.00 40 0.93 0.94 0.92 0.94 0.94 0.88 0.94 0.92
500 0.91 0.93 0.90 0.93 0.93 0.93 0.92 0.94

1.11 0.30 40 0.90 0.92 0.91 0.93 0.99 0.95 0.98 0.96
500 0.89 0.91 0.88 0.91 0.92 0.91 0.89 0.91

1.00 40 0.90 0.92 0.92 0.93 0.96 0.88 0.94 0.91
500 0.92 0.93 0.91 0.93 0.93 0.92 0.91 0.94

2.57 0.30 40 0.70 0.79 0.93 0.94 0.84 0.96 0.88 0.96
500 0.90 0.91 0.90 0.93 0.95 0.92 0.92 0.92

1.00 40 0.67 0.75 0.90 0.92 0.96 0.80 0.98 0.95
500 0.90 0.92 0.90 0.92 0.93 0.91 0.90 0.92

1number of studies included in the meta-analysis
2median within-study sample size
3profile likelihood
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25 0.41 0.30 40 0.92 0.93 0.93 0.93 0.97 0.89 0.96 0.93
500 0.94 0.94 0.94 0.94 0.95 0.94 0.93 0.95

1.00 40 0.94 0.95 0.95 0.96 0.92 0.89 0.95 0.95
500 0.93 0.93 0.92 0.93 0.94 0.94 0.93 0.94

1.11 0.30 40 0.87 0.90 0.94 0.95 0.99 0.87 0.98 0.93
500 0.92 0.93 0.91 0.92 0.93 0.93 0.93 0.93

1.00 40 0.88 0.90 0.92 0.93 0.87 0.84 0.92 0.92
500 0.93 0.94 0.95 0.95 0.93 0.93 0.93 0.94

2.57 0.30 40 0.34 0.43 0.93 0.94 0.93 0.82 0.97 0.96
500 0.90 0.91 0.92 0.93 0.94 0.93 0.93 0.94

1.00 40 0.39 0.46 0.94 0.94 0.80 0.64 0.96 0.94
500 0.91 0.91 0.93 0.94 0.93 0.93 0.93 0.93

50 0.41 0.30 40 0.94 0.94 0.95 0.95 0.93 0.88 0.96 0.94
500 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.94

1.00 40 0.94 0.94 0.95 0.95 0.82 0.80 0.95 0.95
500 0.95 0.95 0.94 0.94 0.93 0.93 0.94 0.94

1.11 0.30 40 0.79 0.81 0.94 0.94 0.91 0.84 0.95 0.94
500 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.95

1.00 40 0.82 0.83 0.95 0.95 0.78 0.74 0.95 0.95
500 0.94 0.95 0.94 0.95 0.94 0.93 0.95 0.96

2.57 0.30 40 0.06 0.09 0.96 0.96 0.97 0.62 0.97 0.94
500 0.87 0.87 0.93 0.93 0.93 0.93 0.94 0.95

1.00 40 0.10 0.14 0.94 0.94 0.46 0.40 0.95 0.94
500 0.88 0.88 0.95 0.95 0.92 0.92 0.94 0.94

100 0.41 0.30 40 0.90 0.91 0.94 0.95 0.84 0.81 0.95 0.94
500 0.95 0.95 0.95 0.95 0.93 0.93 0.94 0.94

1.00 40 0.92 0.92 0.94 0.94 0.71 0.68 0.95 0.95
500 0.95 0.95 0.95 0.95 0.92 0.92 0.94 0.94

1.11 0.30 40 0.66 0.67 0.95 0.95 0.80 0.74 0.95 0.94
500 0.92 0.92 0.95 0.95 0.93 0.93 0.94 0.94

1.00 40 0.70 0.71 0.94 0.94 0.58 0.55 0.95 0.95
500 0.93 0.93 0.93 0.93 0.92 0.92 0.94 0.95

2.57 0.30 40 0.00 0.00 0.95 0.95 0.64 0.36 0.97 0.95
500 0.79 0.80 0.95 0.95 0.93 0.92 0.94 0.94

1.00 40 0.00 0.01 0.95 0.95 0.15 0.13 0.94 0.94
500 0.82 0.82 0.95 0.95 0.89 0.89 0.96 0.96

Similarly, the estimation of the between-studies variance is investigated using
the bias, MSE and coverage probabilities. The simulation results are presented in
Figure 2.2(a) and 2.2(b) and Table 2.2. Broadly speaking, the results are analo-
gous to the estimates of the mean logit sensitivity. From Figure 2.2(a) it appears
that the exact method always performs better than the approximate method in
terms of bias, especially in the scenarios with intermediate and high value of the
sensitivity. In scenarios with a larger number of studies (50-100) the exact method
is practically unbiased, but when the number of studies included is small and the
true between-study variance is large the exact method underestimates the between-
study variance by about 10%. The pattern of the simulation results for the MSEs
(Figure 2.2(b)) is also similar to that of the mean logit sensitivity.

The coverage probabilities are presented in Table 2.2. In some scenarios the
Wald based coverage probabilities are greater than the nominal level. For N = 10,
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(a) bias against the number of studies included in the meta-analysis

(b) MSE*N/100 against the number of studies included in the meta-analysis

Figure 2.1: Simulation results for η. The bias (Figure 2.1(a)) and MSE (Figure
2.1(b)) are given for the approximate likelihood method, gray lines, and the exact
likelihood method, black lines. The true between-studies variance and median
within-study sample size are given at the top of each plot.
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the difference between the exact and approximate method is not large. In most
scenarios the profile likelihood based intervals have better coverage than the Wald
based. Overall, the profile likelihood based interval of the exact method behaves
the best. For N ≥ 25, the Wald based confidence intervals of the approximate
method behave worse than those of the exact method, in particular if the within-
study sample size is small and the value of τ2 is large. The profile likelihood method
improves the coverage probabilities a little bit for the approximate method, but
still they are very bad in many scenarios. For the exact method, the Wald based
confidence intervals are already quite good, and they are improved by the profile
likelihood method.

In summary, the approximate likelihood method gives a biased estimate for η
and τ2, even a considerably large bias when the true median within-study sample
size is smaller and median sensitivity is larger. This result is in consistent with
the findings of Sidik and Jonkman [31] who reported that τ2 is underestimated
when the approximate method using ML or REML estimation techniques is ap-
plied. Other authors [5, 32] also noted the downward bias in the estimation of
the between-studies variance. The coverage probabilities for η and τ2 of the ap-
proximate method are also far from the nominal value in the same region. On
the contrary, the exact method gives unbiased estimates for η with a reasonable
coverage probability, in particular for the profile likelihood method. It also gives
unbiased estimates for τ2 except when the true between-studies variance is large
and the number of studies is small, in that case there is a slight downward bias.
This might be due to the fact that the maximum likelihood estimate of the vari-
ance parameter is biased for small sample sizes even in the simple independently
and identically distributed observations. The coverage probabilities, in particular
the ones based on the profile likelihood, are reasonably acceptable.

2.5 Data Example

To illustrate the methods discussed in this article, we re-analyzed the data of a
published meta-analysis [33]. Patwardhan et al [33] present data from fifteen stud-
ies to assess the operating characteristics of positron emission tomography (PET)
by using fluorine 18 fluorodexyglucose (FDG). They performed a literature search
in the MEDLINE, CINAHL, and HealthSTAR databases published between 1989
and 2003. Articles were selected if FDG PET was performed with a dedicated
scanner and the resolution was specified, if standard criteria were used for the di-
agnosis of Alzheimer disease, if at least 12 human subjects with Alzheimer disease
were enrolled in the study, if clinical diagnosis or histopathologic findings were
used as the reference standard, and if sufficient data were provided to construct
a 2x2 table. Out of the fifteen studies only nine of them allowed to construct a
2x2 table with reasonable certainty and they believed these studies were suitable
for meta-analysis. The authors pooled sensitivity and specificity separately using
a random effects model in Meta-Test (version 6.0) software. We also re-analyzed
only the nine studies. The data and the SAS code are given in the Appendix.

Sensitivity and specificity were pooled separately using both the approximate
and exact likelihood method. Some studies had zero counts and therefore we added
0.5 in each of the 2x2 tables to avoid undefined values for the approximate like-
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(a) bias against the number of studies included in the meta-analysis

(b) MSE*N/100 against the number of studies included in the meta-analysis

Figure 2.2: Simulation results for τ2. The bias (Figure 2.2(a)) and MSE (Figure
2.2(b)) are given for the approximate likelihood method, gray lines and the exact
likelihood method, black lines. The true between-studies variance and median
within-study sample size are given at the top of each plot.
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Table 2.3: Parameter estimates (standard error) and Wald type confidence inter-
vals based on the normal approximation and profile likelihood based confidence
interval.

95% Confidence Intervals
Parameter Estimate (s.e.) Wald Profile likelihood
Approximate likelihood method
logit(sensitivity) 1.71(0.33) [1.07, 2.34] [1.12, 2.52]
Sensitivity 0.85(0.04) [0.74, 0.91] [0.76, 0.93]
τ2
logit(sensitivity) 0.37(0.35) [0.06, 2.39] [0.01, 2.08]

logit(specificity) 1.61(0.33) [0.96, 2.26] [1.03, 2.46]
Specificity 0.83(0.05) [0.72, 0.91] [0.74, 0.92]
τ2
logit(specificity) 0.29(0.36) [0.03, 3.24] [0.10, 2.13]

Exact likelihood method
logit(sensitivity) 2.20(0.44) [1.34, 3.06] [1.40, 3.40]
Sensitivity 0.90(0.04) [0.79, 0.96] [0.80, 0.97]
τ2
logit(sensitivity) 0.97(0.80) [0.19, 4.93] [0.17, 5.28]

logit(specificity) 2.27(0.49) [1.31, 3.23] [1.35, 3.59]
Specificity 0.91(0.04) [0.79, 0.96] [0.79, 0.97]
τ2
logit(specificity) 1.23(1.01) [0.24, 6.17] [0.21, 6.59]

lihood method. The parameter estimates (standard error) and the corresponding
95% Wald type and profile likelihood based confidence intervals are tabulated in
Table 2.3.

The magnitudes of the parameter estimates from the exact likelihood are
larger than from the approximate likelihood method. Back transforming the esti-
mates, the median sensitivities are 85.1% and 90.0%, and the median specificities
are 84.0% and 90.6% for the approximate and exact likelihood methods, respec-
tively. That is, the estimates from the approximate method are lower for the
median sensitivity by 4.9% and for the median specificity by 6.6% compared to
the exact method. The differences between the two methods for the estimates of
the between-studies variances are considerable as well. The estimated between-
studies variances for the logit sensitivity are 0.48 and 0.97 using the approximate
and exact method, respectively. For the logit specificity the estimates are 0.42 and
1.23, respectively. Comparing the confidence intervals based on Wald and profile
likelihood for logit sensitivity, η and logit specificity, ξ, the profile likelihood inter-
vals are wider, which is expected since the profile likelihood takes into account the
uncertainty in the between-studies variance. Also the confidence intervals from the
exact method are wider compared to the approximate methods for the variance
parameters. In summary, the parameter estimates from the practical data exam-
ple follow the same pattern as the simulation study, i.e. the approximate method
gives lower estimates compared to the exact method for a given parameter. Fur-
thermore, the example shows that the differences between the approximate and
exact method in practice are not negligible.
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2.6 Discussion

In numerous medical articles sensitivities or specificities, or more generally propor-
tions are analyzed, nowadays almost invariably with the DerSimonian and Laird
[6] random effects model. This model uses a normal distribution for the logit trans-
formed true probabilities. Alternatively, one could assume a beta distribution for
the true probabilities. Then the model can be fitted in a statistical package such as
EGRET. However this model is not used in practice, may be due to the fact that
many statistical packages allow only a normal distribution for the random effects.
We restricted in this article to the standard method of DerSimonian and Laird.
Instead of the usual logit transformation of the observed data, other transforma-
tions such as the probit, log(−log), arcsine could be used, and implemented in
the same program. We do not expect that the results of this paper would change
substantially if another transformation was used and approximated by a normal
distribution. The reason is, that there will always be a correlation between the
estimate and the within-study variance as they are determined by the same pa-
rameter, which, if not accounted for in the model, may lead to biased parameter
estimates [11]. Hence we restricted to the standard logit transformation.

In this paper we compared the use of the approximate normal within-study
likelihood, which is used in practice, with the alternative exact binomial likeli-
hood. Calculation of the exact binomial likelihood involves an approximation of
the integral. In NLMIXED the method of Gaussian quadrature is used, with the
number of quadrature points to be specified by the user or automatically by SAS.
The larger that number is chosen, the better the approximation, but at the cost
of more computational time. For example, Carlin et al [34] have shown that for
binary outcome longitudinal data a reasonably large number of quadrature points
(that is 20) is required to ensure convergence on model parameter estimates. In
our data example, to study the impact of the number of quadrature points we
fitted the model for varying number of quadrature points. It turned out the esti-
mates (standard error) of sensitivity and specificity did not change for a number
of quadrature points greater than or equal to 10 and 15 respectively. We used 20
quadrature points for our simulation study.

Our simulations have shown that the approximate method yields biased esti-
mates for the overall sensitivity or specificity as well as for the between-studies
variance, the bias being especially considerable in cases with smaller within-study
sample sizes, larger between-studies variance and larger values of the overall sensi-
tivity, as is frequently reported in diagnostic tests. In these cases also the coverage
percentages of the confidence intervals are far off the nominal values. Consider-
ing possible bias in analyzing log odds ratios is beyond the scope of this paper.
However, we expect that in analyzing log odds ratios the bias might be less of
a problem, since it might be at least partly cancel out. The bad performance
of the approximate method is mainly caused by the fact that it does not adjust
for the correlation between the estimate of the sensitivity or specificity and its
standard error. Also the addition of 0.5 when there is a zero count adds to the
bias [14, 35, 36]. Although it was mentioned in the literature that the standard
random effects method could be biased when the parameter to be estimated is a
proportion [5, 11, 12], it is still generally used. A possible explanation is that there
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were no practically feasible methods available that address this bias. However, the
implementation of procedures for the generalized linear mixed model in standard
packages has made it practically feasible nowadays to use the exact within-study
distribution of the estimated sensitivity or specificity. To carry out the exact
method, the sample size and the number of positive test results is needed. In
practice, these quantities will always be available, though sometimes indirectly.
For instance, if only the estimated proportion and its standard error are given, the
sample size and number of positive results can be easily calculated. In this paper
we have compared the exact method with the standard method through an ex-
tensive simulation study. We accounted for possibly important factors such as the
number of studies included in the meta-analysis, the magnitude of the mean logit
sensitivity, the between-studies variance and the within studies sample size. We
have shown that in all scenarios studied the exact method outperformed the ap-
proximate method with respect to bias of the estimated mean logit sensitivity and
coverage percentages of the corresponding confidence interval. The exact method
yielded unbiased estimates of the logit sensitivity in all scenarios with reasonable
coverage percentages of the Wald confidence interval, with the exception of the
scenarios where the number of studies in the meta-analysis is small. Mostly the
coverage probabilities were slightly lower than the nominal value. This could be
due to the fact that the standard Wald method does not adjust for the between-
studies variance being estimated. A profile likelihood based confidence interval,
which allows for the uncertainty in the estimated between-studies variance, ap-
peared to improve the coverage percentage to an acceptable level close enough to
the nominal level. The Wald type confidence interval can be automatically done
in SAS. For the profile likelihood method, some extra programming is needed. A
SAS macro is available from the authors on request.

Concerning estimation of the between-studies variance we have shown that the
approximate method yielded underestimates in all scenarios studied, with bias of
considerable magnitude and coverage probabilities far from the nominal level in
many cases. The exact method always outperformed the approximate method,
although there was some bias left for cases where the number of studies in the
meta-analysis was small and a coverage percentage of the Wald type confidence
interval a bit less than 0.90 for some scenarios, which could be corrected using pro-
file likelihood. In the spirit of REML estimation, a possible improvement might
be to multiply the estimate by k/(k − 1), where k is the number of studies in the
meta-analysis. Another possibility might be the use of a bootstrapping technique
similar to Turner et al [15], which is directly available in the MLWin software [18].

We did some further simulations when the true parameters were simulated
from a skewed distribution where most of the proportions are close to 1. We used
Fernandez and Steel’s [37] approach to introduce skewness into a unimodal nor-
mal distribution. In most cases the exact method outperformed the approximate
method, with only slight bias (∼= 0.10) for the exact method left for scenarios with
highly skewed true distribution and small within-study size. The coverage prob-
ability from the exact method was also better than the approximate method in
most cases and close to the nominal level, especially when we used profile likelihood
based confidence interval (results not presented and available from the authors on
request).
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Though we focused in this paper on sensitivities or specificities, the results
apply more generally to meta-analyzing proportions, such as prevalences or inci-
dences of a disease. The proportions can also be corrected for important covariates,
using the same generalized linear mixed model programs.

In a situation when two end points, for example, sensitivity and specificity, are
presented in a study and when there is a need to incorporate the correlation that
might exist between these two measures, a bivariate meta-analysis approach can
be used [8, 10, 25]. Reitsma et al [10] assume the within-study error distribution
of sensitivity and specificity to follow a normal distribution. However an exact
binomial likelihood can also be implemented in generalized linear mixed model
programs [38], for example, SAS NLMIXED or S-Plus / R nlme. Although we
did no simulations for the bivariate model, it is very likely that the results of the
univariate meta-analysis carry over to the bivariate case.

In this article the models were fitted using classical likelihood methods. An
alternative would be to use a Bayesian hierarchical modeling approach [34, 39],
which can be carried out using the publicly available software Win BUGS [40].

Our overall conclusion from this paper is that in many cases the standard
approximate method falls short and that the exact method should be used, prefer-
ably accompanied by profile likelihood based confidence intervals, whenever that
is feasible in practice.



34

26 Meta-analysis of Diagnostic Test Evaluation Data

Appendix

In this appendix the SAS syntax is given to estimate the parameters using approx-
imate and exact likelihood methods for the meta-analysis data used in Section 2.5.
The data is given in the table below. The SAS code for the MIXED and NLMIXED
procedure is given to pool sensitivity, but it can also be used to pool specificity.

Study TP(xi) FN FP TN mi logitsens est

15 33 6 5 35 39 1.640 0.184
17 18 6 5 10 24 1.046 0.208
19 20 13 0 41 33 0.418 0.123
20 19 0 0 19 19 3.664 2.051
22 44 6 10 19 50 1.924 0.176
24 18 3 1 9 21 1.665 0.340
25 27 1 4 21 28 2.909 0.703
29 21 0 1 9 21 3.761 2.047
30 18 1 1 20 19 2.512 0.721

The meaning of the variables that are used in the table and SAS code below are the
following:
study = a number given for a study
xi = number of patients with true positive test result
mi = within-study sample size in the diseased group
logitsens = observed logit sensitivity (=ln((xi+0.5)/(mi-xi+0.5))
est4= estimated within-study variance of logit sensitivity = 1/(xi+0.5)+1/(mi-xi+0.5))
0.5 is added in each of the two by two tables when we calculate logitsens and est to avoid
undefined values.

/* Approximate likelihood method using SAS procedure MIXED*/

proc mixed data = d method = REML;

class study;

model logitsens = / intercept Solution cl df=1000; /*df=1000

is specified to get Wald type confidence interval instead of the t*/

random intercept / subject = study ;

repeated /group = study;

/*dataest is the name of the data set that contains only the variable

called est and 10 lines. The first value is a starting value for

the between-studies variance. The next nine values are the estimated

within-study variances (=1/(xi+0.5) + 1/(mi-xi+0.5)). eqcons is used

to specify that the within-study variance are assumed to be known*/

parms / parmsdata = dataest eqcons= 2 to 10;

run;

/* The Exact approach using the SAS procedure NLMIXED*/

proc nlmixed data=d df = 1000;

parms mtlnsens=2.0 vtlnsens=0.8; /*Initial values*/

pi = 1/(1+exp(-tlnsens));

/*tlnsens=is the unknown true logit sensitivity*/

model xi~binomial(mi,pi);

random tlnsens ~ normal(mtlnsens , vtlnsens) subject=study;

run;

4This is the prescribed name by SAS of the variable that contains the variances.
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Abstract

Meta-analysis of ROC-curve data is often done with fixed effects models, which
suffer many shortcomings. Some random effects models have been proposed to
execute a meta-analysis of ROC-curve data, but these models are not often used
in practice. Straightforward modeling techniques for multivariate random effects
meta-analysis of ROC-curve data are needed. The first aim of this paper is to
present a practical method that addresses the drawbacks of the fixed effects SROC
method of Littenberg and Moses. Sensitivities and specificities are analysed simul-
taneously using a bivariate random effects model. The second aim is to show that
other summary ROC curves can also be derived from the bivariate model through
different characterisations of the estimated bivariate normal distribution. Thereby
we show that the bivariate random effects approach not only extends the SROC
approach, but provides a unifying framework for other approaches as well.

The authors bring the statistical meta-analysis of ROC curve data back into a
framework of relatively standard multivariate meta-analysis with random effects.
The analyses can be easily carried out in standard statistical software. The syntax
needed for the software package SAS (Proc NLMIXED) that is used throughout
this paper is given in the appendix.

3.1 Introduction

For a thorough assessment of the effectiveness of a specific treatment it is common
to execute a meta-analysis of randomised clinical trials reported in the literature.
The same is done for the assessment of the characteristics of a diagnostic test to
distinguish patients having a certain disease from patients not having that disease.
Meta-analyses to assess the reliability, accuracy and impact of diagnostic tests are
essential to guide optimal test selection and the appropriate interpretation of test
results [1]. However, the designs of test accuracy evaluations differ from the de-
signs of studies that evaluate the effectiveness of treatments, which means that
different criteria are needed when assessing study quality and potential for bias.
Additionally, often each evaluation of diagnostic tests reports a pair of related
summary statistics (for example sensitivity and specificity) rather than a single
statistic, requiring alternative statistical methods for pooling study results [1].
Receiver Operating Characteristic (ROC) curves are used in studies of diagnostic
accuracy to depict the pattern of sensitivities and specificities observed when the
performance of the test is evaluated at several different diagnostic thresholds.

In the last 15 years, several methods for meta-analysis of diagnostic tests have
become available [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The proposed methods depend
on the type of data that are available. Some [6, 8] are designed to be used when
individual patient data of the studies are available. Others are applicable when
each study provides an estimate of the area under the ROC curve [12]. Still others
are applicable to the situation where per study only one estimated pair of sensi-
tivity and specificity (corresponding to possibly different diagnostic thresholds) is
available. In this article we focus on this last situation, which is by far the most
common in practice. For this situation the aim of the meta-analysis is to estimate
the overall ROC curve of the (continuous) diagnostic marker.
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Probably the most well known and most commonly used method in practice
is the Summary ROC (SROC) method proposed by Littenberg and Moses [2] and
Moses et al. [3]. They plotted the difference versus the sum of the logit(true pos-
itive rate) and logit(false positive rate) from each study. Then they fitted three
types of regression lines (robust, unweighted and weighted) to these points. Fi-
nally they transformed the line to ROC space.

Although frequently used, the SROC method has a number of serious short-
comings. The first aim of this article is to present an approach that extends the
SROC method, addresses its drawbacks and is still easily carried out in practice
using familiar statistical packages like SAS. The method follows the general mul-
tivariate approach as described in van Houwelingen et al. [13] and Arends et al.
[14, 15]. The second aim of this paper is to show how other summary ROC curves
(regression lines in the logit space) can be derived from the bivariate model, such
as the logit(true positive rate) on logit (false positive rate), logit (false positive
rate) on logit(true positive rate), the first principal component, or the curve cor-
responding to the method of Rutter and Gatsonis [9].

In Section 3.2 we introduce two data sets that will be used as examples. In
Section 3.3 we give an overview of the SROC method and we briefly discuss its
shortcomings. In Section 3.4 we briefly discuss other methods proposed in the lit-
erature. In Section 3.5 the new approach is presented. In Section 3.6 the methods
are applied on the two example data sets and the results are presented. We use
the SAS procedures Proc Mixed and Proc NLMixed for the analyses and give the
syntax in the Appendix. Finally we end with a discussion in Section 3.7.

3.2 Data examples

To illustrate the methods discussed in this paper, we apply them to two meta-
analysis data sets, one relatively small (29 studies) data set and one large data set
(149 studies).

Example 1: FNAC of the Breast [16]

Giard and Hermans [16] present 29 studies evaluating the accuracy of fine-needle
aspiration cytologic examination (FNAC) of the breast to assess presence or ab-
sence of breast cancer. FNAC provides a non-operative way of obtaining cells for
establishment of the nature of a breast lump and therefore plays a pivotal role in
the preoperative diagnostic process [16, 17, 18, 19]. The sensitivity and specificity
of FNAC were determined for each study. Sensitivity was defined as the prob-
ability of a malignant or suspect test result in patients with cancer. Specificity
was defined as the probability of absence of abnormal cells in the patients without
cancer [16]. Table 3.1 shows the frequencies of the FNAC outcomes given the final
diagnosis of benign or malignant breast disease.

Table 3.1: Example 1: data from clinical studies on patients with a breast mass who
underwent a fine-needle aspiration cytological examination (FNAC). Patients are cross-
classified according to their final diagnosis (benign or malignant breast disease) and their
FNAC result.
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FNAC results for Patients with
benign disease malignant disease

Study FP (Y0) TN Total (n0) TP (Y1) FN Total (n1)

1 70 939 1009 979 89 1068
2 3 163 166 51 22 73
3 55 894 949 1569 152 1721
4 25 259 284 35 15 50
5 4 121 125 59 12 71
6 18 216 234 56 4 60
7 602 3117 3719 329 39 368
8 10 213 223 125 17 142
9 88 499 587 211 63 274
10 0 31 31 49 1 50
11 26 643 669 336 178 514
12 147 746 893 210 42 252
13 5 25 30 16 3 19
14 16 356 372 258 53 311
15 9 107 116 56 18 74
16 16 112 128 162 28 190
17 6 112 118 116 13 129
18 99 145 244 65 12 77
19 5 78 83 94 10 104
20 0 70 70 26 4 30
21 28 136 164 1318 249 1567
22 55 539 594 569 120 689
23 1 287 288 46 16 62
24 13 76 89 64 6 70
25 1 104 105 39 4 43
26 16 426 442 132 20 152
27 17 161 178 470 22 492
28 25 200 225 28 4 32
29 43 22 65 42 3 45

In Table 3.1, Y1 is the number of patients with a malignant or suspect test
result in the patients with cancer. The total number of patients with cancer is
n1. Y0 is the number of patients with a malignant or suspect test result in the n0

patients without cancer. The true positive rate TPR, or sensitivity, is estimated for
a study by Y1/n1, and the false positive rate FPR, which is 1 minus the specificity,
by Y0/n0. See Figure 3.1(a) for a plot of the estimated TPRs against the estimated
FPRs and Figure 3.1(c) for the estimated TPRs and FPRs on the logit scale.

The estimated TPRs and FPRs vary considerably across studies. Also, the
proportions of patients with benign or malignant disease according to the final
diagnosis differed substantially. At the time of publication (1992), no reasonable
methods to summarize diagnostic test data across several studies were available.
In this paper we use the data to fit the standard fixed effects SROC model as well
as the proposed random effects models.
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(a) (b)

(c) (d)

Figure 3.1: Observed sensitivity against (1-specificity) of data reported across 29
studies that were originally meta-analyzed by Giard and Hermans [16] (left side of
picture) and across 149 studies that were originally meta-analysed by Heijenbrok-
Kal et al. [20] (right side of picture) on the original scale and on logit transformed
scale.
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Example 2: Imaging tests for coronary artery disease [20]

Heijenbrok-Kal [20] searched PubMed from January 1990 through May 2003 for
meta-analytic studies on the diagnostic performance of imaging tests for coronary
artery disease. In all meta-analyses included in her paper, angiography is the
reference standard and the source numbers of true and false positives and true and
false negatives are reported. Duplicate source studies are excluded. This resulted
in a total of 246 patient series including 24,761 patients who underwent one of
eight different imaging technologies for coronary artery disease. The coronary
tests showed little difference in diagnostic performance.
To illustrate our approach we choose from the 246 source studies only those in
which the performance of an exercise or stress echo was investigated. This resulted
in 149 studies including 13,303 patients. In Figure 3.1(b) a plot is given of the
estimated TPRs against the estimated FPRs and Figure 3.1(d) represents the
estimated TPRs and FPRs on the logit scale.

3.3 The standard SROC method

The starting point of a meta-analysis of ROC curve data is a number of studies
providing information on a continuous diagnostic marker or variable M . In the
different studies possibly different thresholds for M are used to obtain a dichoto-
mous diagnostic test. The data provided by each study are the number of patients
with a positive test result (y1) and the total number of patients (n1) in the group
with the disease, and the number of patients with a positive test result (y0) and
the total number of patients (n0) in the group without the disease. The aim is to
estimate the overall ROC curve of the diagnostic marker M based on the available
data from the different studies. The standard method used in practice is the SROC
method of Littenberg and Moses [2], which proceeds as follows. The underlying
model assumes that there exists a transformation of the continuous diagnostic
variable M such that the transformed test, X, follows a logistic distribution both
in the population without the disease and in the population with the disease. In
other words, it is assumed that the transformation that makes the distribution of
M logistic in the non-diseased (which always exists) makes the distribution simul-
taneously logistic for those with the disease. We assume that the transformation
is done such that large values of X correspond with the diseased population.

The cumulative distribution of X in the healthy and the diseased populations
is given by

Pr(X < x|healthy) =
ex

1 + ex
andPr(X < x|disease) =

e−α+βx

1 + e−α+βx
(3.1)

for some values of α ≥ 0 and β > 0. The difference between the mean value in the
population with the disease and without the disease is α/β, and the ratio between
the standard deviation of the diseased and the healthy population is 1/β. Thus
0 < β < 1 corresponds with a higher variance in the population with the disease
and β > 1 with a smaller variance. Figure 3.2 gives a graphical illustration with
the interpretation of α and β, where clearly 0 < β < 1.



44

36 Meta-analysis of Diagnostic Test Evaluation Data

Figure 3.2: Graphical illustration with interpretation of α and β

If λ denotes the threshold X-value for the test being declared positive, then
according to (3.1) the probability of a false positive result is 1 − eλ/(1 + eλ) and
hence logit(FPR) = −λ. Similarly we have logit(TPR) = α−βλ. In the following
we will use the notation:

ξ = logit(FPR) = −λ
η = logit(TPR) = α− βλ

This implies the linear relationship

η = α + βξ (3.2)

Following Rutter and Gatsonis [9], α can be called the accuracy parameter
and β the scale or asymmetry parameter. If β = 1, the resulting ROC curve is
symmetric (with respect to the minus 45 diagonal), otherwise it is asymmetric.
In the SROC approach of Littenberg & Moses the relation (3.2) is written as

η − ξ = α′ + β′(η + ξ)

with α′ = 2α/(β + 1) (with α′ ≥ 0) and β′ = (β − 1)/(β + 1) (with −1 < β′ < 1).
If D and S are the estimated values of η − ξ and η + ξ from a study (to avoid
division by zero, 0.5 is added to all numbers in the 2x2 table of a study), then
approximately

D = α′ + β′S (3.3)

and the values of α′ and β′ are estimated by a simple weighted or unweighted
linear regression. The weights are chosen proportional to the inverse variance of
D. D is interpreted as the log odds ratio of a positive test result for diseased
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individuals relative to healthy individuals, and is often called the diagnostic odds
ratio. Its estimated variance is

1
y0 + 0.5

+
1

n0 − y0 + 0.5
+

1
y1 + 0.5

+
1

n1 − y1 + 0.5
(3.4)

The summary ROC curve is obtained by transforming the estimate of (3.3)
to the ROC space. A value of β′ 6= 0 indicates that the curve is asymmetric.
The advantage of the SROC method, which explains its popularity, is that it is
very simple to understand and can be carried out in any statistical package. De-
spite this important advantage of simplicity, a number of critical comments can
be made.

First of all, the SROC method is a fixed effects method, i.e. it assumes that
the values of α and β do not vary across studies. Thus variation is due only to the
threshold effect and within-study sampling variability. However, in many practical
cases it is likely that there is between-studies variation beyond those sources. Study
characteristics such as technical aspects of the diagnostic test, patient selection,
study settings, experience of readers etc. are among the potential contributors to
between-study variation in the estimates of diagnostic performance [9]. Modern
meta-analytical methods take possible variation across studies into account by in-
troducing random effects [13, 21, 22, 23, 24]. If there is between-study variation,
a fixed effects model can give biased estimates and typically underestimates stan-
dard errors [21, 25].

Second, the independent variable S in the regression equation (3.3) is mea-
sured with measurement error, which should be taken into account. As a result,
regression to the mean [26] and attenuation due to measurement errors [27] could
seriously bias the slope of the regression line [13]. Thus, not taking into account
the measurement error in S leads to bias in β′ (in general towards zero) and α′

and therefore also in β (in general towards one) and α [24].
Third, D and S are correlated within a study, positively or negatively depend-

ing on the study. In the standard fixed effects SROC model this correlation is
ignored. Although probably the correlation is usually small in practice, the con-
sequence of ignoring it is not obvious.

Fourth, it is reasonable that the different studies should be somehow weighed
in the analysis, in particular if the studies vary substantially in size. If there is
both between- and within-study variation then weighing by the inverse of within-
study variances, as is done in the weighted SROC approach, will not be optimal.

Finally, to avoid undefined log odds, log odds ratios and their variances, quite
arbitrarily 0.5 is added to the numbers in the fourfold tables of the trials. As
Moses et al. [3] showed, the effect of this adjustment can be surprisingly large.
Adding 0.5 to all cells tends to push an estimated ROC curve away from the desir-
able northwest corner of ROC space. The standard SROC method has to do this
because it does not use the true binomial distribution of the number of positive
test results within a group. It would be preferable to not use this artificial and
arbitrary correction.

In Section 3.5 we present a method that does not have the described disadvan-
tages of the SROC method and can still be carried out easily in standard statistical
packages. In addition, we show how other summary ROC curves (regression lines
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in the logit space) can be derived from our method. But first we discuss in Section
3.4 some other methods proposed in the literature.

3.4 Other methods proposed in the literature

Kardaun and Kardaun [28] also assume model (3.1) and exploit the linear rela-
tionship ηi = α + βξi where i = 1, . . . , k denotes the number of the study. Using
straightforward approximate likelihood methods all k+2 parameters (including the
ξi’s) are estimated. The estimation method is called approximate likelihood, since,
instead of the exact likelihood based on the true conditional distribution of the
estimated ξ (called ξ̂ ) and η (called η̂ ) given ξ and η, an approximate likelihood
based on the familiar normal approximations ξ̂ ∼= N(ξ, 1/y0 + 1/(n0 − y0)) and
η̂ ∼= N(η, 1/y1+1/(n1−y1)) is used. The drawbacks of the method of Kardaun and
Kardaun [28] are, first, that the number of estimated parameters is proportional
to the number of trials, hence standard likelihood theory does not apply [29]. For
instance, consistency of the estimates when the number of studies tends to infin-
ity is not guaranteed. Second, their computer-intensive method based on profile
likelihood is not very practical. Third, it is a fixed effects model, and fourth, the
arbitrary value of 0.5 is added to avoid undefined log odds and their variances;
thus the first and last drawbacks mentioned in the previous section for the SROC
method still apply.

Recently Rutter and Gatsonis [9] proposed a hierarchical Bayesian regression
approach, that does not have the drawbacks mentioned in the previous section for
the SROC method. They assumed the following model. Let πi0 be the true FPR
in the non-diseased and πi1 be the true TPR in the diseased populations. Then
Y0 ∼ Binomial(n0, πi0) and Y1 ∼ Binomial(n1, πi1). Defining ξi = logit(πi0) and
ηi = logit(πi1), the following relationship is assumed to hold between ξi and ηi :

ξi = (θi + αiX0)e−βX0

ηi = (θi + αiX1)e−βX1
(3.5)

where X0 and X1 are chosen to be -1/2 and +1/2 respectively. This implies the
linear relationship

ηi = αie
−β/2 + e−βξi (3.6)

For equation (3.6), α is called the accuracy parameter, because it measures the
difference between TPR and FPR, and β is called the scale parameter. With this
parameterisation, if β 6= 0 the ROC curve is asymmetric.
The between-studies variation is modelled by assuming that αi and θi are inde-
pendent and normally distributed:

(
αi

θi

)
= N

( (
ᾱ
θ̄

) (
σ2

α 0
0 σ2

θ

) )
(3.7)

To compute a summary ROC curve, Rutter and Gatsonis [9] plug in the es-
timates for ᾱ and β into the linear relation (3.6) and transform it into the ROC
space. The method allows for between-study variation by modeling the accu-
racy parameter α with a random effect. A practical disadvantage is that Rutter
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and Gatsonis [9] compute the estimates in a Bayesian way using Markov Chain
Monte Carlo (MCMC) simulation with the BUGS software, which is rather com-
plicated. MCMC estimation requires programming, simulation, evaluation of con-
vergence and model adequacy, and synthesis of simulation results. Implementation
of MCMC simulation entails non-trivial analysis tasks including evaluation of con-
vergence and the adequacy of prior distributions, and these tasks require statistical
expertise. As the authors mention, this is a high price that has to be paid for the
advantages of the hierarchical SROC model. Furthermore, Rutter and Gatsonis
[9] use a relatively complicated parameterisation, which can make it difficult for
the meta-analyst to fully understand what (s)he is doing. Macaskill [30] shows
how the model of Rutter and Gatsonis can be fitted in a non-Bayesian way using
the SAS NLMixed program for generalized linear mixed models. This makes the
model of Rutter and Gatsonis model much more practical.

Recently a straightforward random effects extension of the method of Litten-
berg and Moses [2] has been used in some medical applications [31, 32, 33], using
the STATA program Metareg [34]. This method is as follows. Let ηi and ξi again
denote the true logit(TPR) and logit(FPR) for study i. Let Di = ηi − ξi be the
true log odds ratio and Si = ηi + ξi. The corresponding estimates are given by ξ̂i,
η̂i, D̂i, and Ŝi respectively. Then the model is:

D̂i = αi + βŜi + εi (3.8)

with εi
∼= N(0, 1

y0+0.5 + 1
n0−y0+0.5 + 1

y1+0.5 + 1
n1−y1+0.5 ) and αi

∼= N(ᾱ, σ2
α).

In this model, all studies have a common slope β , but the intercepts vary
randomly between-studies according to a normal distribution. The overall ROC
line is η = ᾱ+βξ, where the individual study lines vary randomly around this line
with between-studies standard deviation σα. This is the standard random effects
meta-regression model and there are many statistical packages in which this model
can be fitted, such as SAS, STATA and R/S-Plus.

Measurement error of D̂i is correctly accounted for, but the measurement error
in Ŝi is still neglected. Another drawback for sparse data sets is that it is not
possible to use the underlying binomial distributions for D̂i and Ŝi instead of the
normal approximations.

3.5 Alternative approach

In numerous medical articles sensitivities or specificities are meta-analysed sepa-
rately by the standard random effects model of DerSimonian and Laird [21]. The
method we propose is a direct extension of this approach. We analyse sensitivities
and specificities simultaneously using a two-dimensional random effects model. We
will show that the model implies a linear relationship between η and ξ, and can be
seen as an extension of the SROC method of Littenberg and Moses [2]. In Section
3.5.1 we introduce our model. In Section 3.5.2 we discuss several types of sum-
mary ROC curves. In Section 3.5.3 we discuss the relation with the approach of
Rutter and Gatsonis [9]. Throughout we follow a two-level hierarchical modelling
approach, explicitly modelling the within and between-studies variability.
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3.5.1 The bivariate model

The standard way of meta-analysing false positive rates of a diagnostic test in the
medical literature is the DerSimonian and Laird [21] random effects model:

ξi
∼= N(ξ̄, σ2

ξ ) with ξ̂i
∼= N(ξi,

1
x0

+
1

n0 − x0
)

Here ξ̂i and ξi are the observed and true logit(FPR)of study i, respectively.
Note the well-known formula for the standard error of an estimated log odds. The
parameter ξ̄ describes the overall mean logit false positive rate and σ2

ξ describes the
between-studies variance in true logit false positive rates. Similarly, true positive
rates are analyzed using the model:

ηi
∼= N(η̄, σ2

η) with η̂i
∼= N(ηi,

1
x1

+
1

n1 − x1
)

The straightforward generalisation is to assume a bivariate normal model for the
the pair (ξi, ηi):

(
ξi

ηi

)
∼= N

( (
ξ̄
η̄

)
,

(
σ2

ξ σξη

σξη σ2
η

) )
(3.9)

Note that this model implies the standard univariate random effects meta-
analysis model for the ξi and ηi separately, but now allows that ξi and ηi are
correlated. This model fits in the framework of bivariate meta-analysis as originally
introduced by van Houwelingen et al. [35]. Later on McIntosh [36] and Arends
et al. [14] used this model to investigate the relationship between baseline risk
and size of treatment effect in clinical trials meta-analysis. In van Houwelingen
et al. [13] bivariate meta-analysis was generalized to multivariate meta-analysis
and it was shown how standard General Linear Mixed Model programs can be
used to fit these models. An example of a tri-variate meta-analysis is given by
Arends et al. [15]. The most simple characterisation of the overall accuracy of
the diagnostic test would be to take the estimated ξ̄ and η̄ and transform them
to the ROC space. A more extensive description would be to characterise the
bivariate normal distribution by a line and transform that line to the ROC space.
Note that the bivariate normal distribution implies a linear association between ξi

and ηi. However, as will be discussed in the next section, different lines might be
employed, leading to different summary ROC curves. For example, the regression
line of ηi on ξi could be used. Standard normal distribution theory tells that the
regression line of ηi on ξi has intercept α and slope β given by

α = η̄ − σξη

σ2
ξ

ξ̄ and β =
σξη

σ2
ξ

(3.10)

The residual variance of the regression, given by σ2
η|ξ = σ2

η−
σ2

ξη

σ2
ξ

, describes the
variation in the true sensitivities between-studies that have the same specificity.
In Section 3.5.2 we discuss some alternative summary ROC curves.

Similarly, as in the above univariate models for meta-analysing specificities and
sensitivities separately, we model the within-study sampling variability using the



49

Chapter 3: Bivariate Random Effects Meta-analysis of ROC curves 41

fact that the estimated logit transformed FPR, ξ̂i, and TPR, η̂i, are independent
and approximately normally distributed:

ξ̂i|ξi
∼= N(ξi,

1
x0

+
1

n0 − x0
) and η̂i|ηi

∼= N(ηi,
1
x1

+
1

n1 − x1
) (3.11)

If one or more of the denominators are close to zero, 0.5 should be added to the
denominators, as in (3.4). The equations (3.9) and (3.11) together specify a general
linear mixed model (GLMM), and the parameters can be estimated by (restricted)
maximum likelihood using a GLMM program. Subsequently the intercept α and
the slope β of a summary line can be calculated, using for instance (3.10) or one of
the formulas given in the next subsection if another type of summary ROC curve
is preferred. Standard errors of α and β can be calculated with the delta method.
Many statistical packages provide a GLMM program. We used Proc Mixed from
the SAS package. The syntax is given in the appendix. Proc Mixed does not give
estimates and standard errors of user defined derived parameters, thus we have
to calculate the estimates of α and β by hand, though the calculations are very
simple. SAS users can avoid these hand calculations, since the model can also be
fitted in Proc NLMixed. This program provides estimates and standard errors of
user defined derived parameters. The syntax needed for Proc NLMixed is given
in the appendix. Another possibility in Proc NLMixed is to reparameterise the
model in such a way that one immediately gets the estimates and standard errors
for the parameters of interest.

We call the GLMM approach the approximate likelihood approach, because an
approximate (normal) model denoted by equation (3.11) is used for the within-
study sampling variability. The practical advantage is that the model remains
a GLMM, for which much software is available. The approximate likelihood ap-
proach works well for larger data sets [13]. As a rule of thumb, the requirement
’all denominators in equation (3.11) larger than or equal to 5’ might be adopted,
though this is probably too severe.

In our model the first drawback of the SROC method as mentioned in Section
3.3, that it is a fixed effects model, no longer applies. Also the model does not
suffer from the second, third and fourth drawbacks. The problem of measurement
error (the second drawback) is avoided by assuming a distribution for ξi. In gen-
eral there are two ways of dealing with measurement error, the structural and the
functional approach [13]. Our approach is in the spirit of the structural approach,
similar to Arends et al. [14, 15] and van Houwelingen et al. [13], which has the
important advantage that the parameters can be estimated by straightforward
likelihood methods.

The third drawback does not apply, because ξ̂i and η̂i are independent within-
studies. Even if we would formulate the model in terms of D and S, as is done in
the standard SROC method, then there would be no problem since the correlation
can be easily modelled in the GLMM. The fourth drawback does not apply since
the likelihood method implicitly uses the ”correct” weighting based on within- as
well as between-study variation. The fifth drawback, i.e. arbitrary adding 0.5 to
the numbers in the fourfold table to avoid undefined log odds, still applies since
we assumed an approximate within-study model. If we want to address this draw-
back as well, the true distribution of ξ̂i = Y0i/n0i and η̂i = Y1i/n1i should be
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used. Given the true FPRi = (1 + exp(−ξi))−1 and TPRi = (1 + exp(−ηi))−1

of study i, the observed test positive numbers Y0i in the healthy group and Y1i in
the diseased group follow binomial distributions:

Y0i|n0i
∼= Binomial(n0i, FPRi); Y1i|n1i

∼= Binomial(n1i, TPRi) (3.12)

The equations (3.9) and (3.12) together now specify a Generalized Linear Mixed
Model. This model has the advantage that the fifth drawback no longer applies,
but a practical disadvantage is that software for GizedLMMs is not available in
many packages. We again used Proc NLMixed of SAS. A syntax example is given
in the appendix. We call this the exact likelihood approach, since the likelihood
is based on the exact (i.e. binomial) within-study distribution of the data.

3.5.2 Choice of summary ROC curve

Above we have seen that a summary ROC curve can be obtained through a char-
acterisation of the estimated bivariate normal distribution given by (3.9). One
possibility is to take the regression line of ηi on ξi, as we did above. However,
there are other possibilities as well. For example, we could take the regression line
of ξi on ηi. We now discuss this and other possible choices.

1. The regression line of ηi on ξi:

η = η̄ +
σξη

σ2
ξ

(ξ − ξ̄) (3.13)

This summary line estimates the mean logit transformed sensitivity given a
specific value for the logit transformed 1- specificity. When transformed to
the ROC space, the summary ROC curve estimates the median TPR given
a specific value for the FPR.

2. The regression line of ξi on ηi :

ξ = ξ̄ +
σξη

σ2
η

(η − η̄)

which is equivalent to:

η = η̄ +
σ2

η

σξη
(ξ − ξ̄) (3.14)

There is no a priori reason to regress ηi on ξi instead of the other way
around. Therefore an alternative summary line is obtained by regressing
ξi on ηi. This summary line characterises the mean logit transformed 1-
specificity given a specific value for the logit transformed sensitivity. When
transformed to the ROC space, the summary ROC curve characterises the
median FPR given a specific value for the TPR.

3. The regression line of Di on Si :
Let Di = ηi − ξi and Si = ηi + ξi, as in the classical SROC method. From
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(3.9) it follows that the covariance of D and S is equal to σ2
η − σ2

ξ and the
variance of S is equal to σ2

η + σ2
ξ + 2σξη. The regression line therefore is

D = D̄ +
σ2

η − σ2
ξ

σ2
η + σ2

ξ + 2σξη
(S − S̄)

The popularity of this summary line is possibly explained by the fact that
it has an appealing interpretation. Given S, which can be interpreted as a
proxy for the positivity criterion of the diagnostic test, this regression line
estimates D, which can be interpreted as the diagnostic log odds ratio.
In terms of η and ξ the regression line is

η = η̄ +
σ2

η + σξη

σ2
ξ + σξη

(ξ − ξ̄) (3.15)

This method is a kind of compromise between the vertical way of looking
in the first method (median TPR given a specific value for the FPR) and
the horizontal way of looking in the second method (median FPR given a
specific value for the TPR), since its slope lies between the slopes in (3.13)
and (3.14).

4. The Rutter and Gatsonis [9] summary ROC curve:
Their method leads to the summary line (see Section 3.5.3)

η = η̄ +
ση

σξ
(ξ − ξ̄) (3.16)

This line can also be interpreted as a sort of compromise between the regres-
sion of ηi on ξi and that of ξi on ηi, since the slope is equal to the geometric
mean of the slopes of the two regression lines in (3.13) and (3.14).

5. The major axis method:
The last possibility we mention is to characterize the bivariate normal dis-
tribution between ξ and η by the major axis that runs through the extreme
points of the contour ellipses (defined by points having the same density) of
the estimated bivariate distribution. This results in the summary line [37]

η = η̄ +
σ2

η − σ2
ξ +

√
(σ2

η − σ2
ξ )2 + 4σ2

ξη

2σξη
(ξ − ξ̄) (3.17)

In fact, taking this line is analogous to summarizing a two dimensional dis-
tribution by its first principal component.
The summary ROC curves of methods 3-5 are symmetric in ξ and η; that
is, if the labels of diseased and non-diseased test results and disease status
are interchanged, the summary ROC curve does not change. For all of the
mentioned summary lines, standard errors for the slope, intercept and for η
at a given value for ξ can be calculated using the delta method. Confidence
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intervals for the slope and intercept, and a confidence band for the summary
line, are calculated using standard methods. A confidence band for the sum-
mary ROC curve is obtained by transforming the confidence band of the
summary line. No extra programming or hand calculations are needed if a
program like SAS Proc NLMIXED is used that allows user defined derived
parameters.

3.5.3 Relationship with model of Rutter and Gatsonis

From (3.5) and (3.7) it follows that the model of Rutter & Gatsonis can be written
as

(
ξi

ηi

)
∼ N

( (
(θ̄ + X0ᾱ)e−X0β

(θ̄ + X1ᾱ)e−X1β

)
, Ψ

)

where Ψ =
(

(σ2
θ + X2

0σ2
α)e−2X0β (σ2

θ + X0X1σ
2
α)e−(X0+X1)β

(σ2
θ + X0X1σ

2
α)e−(X0+X1)β (σ2

θ + X2
1σ2

α)e−2X1β

)

This specifies a bivariate normal distribution for (ξi, ηi), just as we do in (3.9).
Note that the number of parameters is the same, too. Thus the two models are es-
sentially the same, only the parameterisation is different. Rutter and Gatsonis [9]
choose X0 = −1/2 and X1 = 1/2 and do not discuss other choices. One can check
that their labeling leads to the summary line given by (3.16), with slope ση/σξ.
All other choices such that X0 = −X1 also lead to ση/σξ. Alternative choices for
X0 and X1 lead to other summary lines. For instance, the choice X0 = 0 and
X1 = 1 leads to the η on ξ regression line given by (3.13). The choice X0 = 1 and
X1 = 0 leads to the ξ on η regression given by (3.14). One can show that it is
not possible to specify X0 and X1 such that it leads to the D on S regression line
(3.15).

We conclude that our bivariate model is in principle identical to that of Rutter
and Gatsonis [9]. A minor difference is the different parametrization. Another
minor difference is that the slope in the Rutter and Gatsonis model is e−β , and
this it is restricted to be positive. We do not restrict the slope in our model, al-
though in practice negative slope estimates will typically not occur. An important
practical difference is that Rutter and Gatsonis follow a laborious Bayesian estima-
tion approach, while our method can be carried out conveniently using standard
statistical packages. Furthermore, we think our method is easier to understand,
since it simply assumes a standard random effects model for the sensitivities and
specificities simultaneously.

3.6 Results

3.6.1 The bivariate model

Example 1: FNAC of the Breast [16]

We fitted the bivariate model as described in Section 3.5.1 on the data of the
29 studies of the meta-analysis of Giard et al.[16]. The estimates of the means
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Table 3.2: First data example: FNAC of the breast [16]. In the upper part esti-
mates are given of the random intercept model (Section 3.5.1), using approximate
as well as exact likelihood. In the lower part the parameter estimates are given for
the five different choices of the summary ROC curves discussed in Section 3.5.2.

Parameter Approximate likelihood Exact likelihood
Estimate (se) Estimate (se)

η̄ 1.774 (0.114) 1.839 (0.119)
ξ̄ -2.384 (0.201) -2.547 (0.225)
σ2

η 0.286 (0.093) 0.316 (0.104)
σ2

ξ 0.990 (0.313) 1.297 (0.411)
σξη 0.146 (0.132) 0.141 (0.155)
Type of SROC Approximate likelihood Exact likelihood

α(se) β(se) α(se) β(se)
1. η on ξ 2.126 (0.32) 0.148 (0.13) 2.115 (0.32) 0.108 (0.12)
2. ξ on η 6.431 (3.95) 1.954 (1.65) 7.560 (6.13) 2.246 (2.39)
3. D on S 2.680 (0.37) 0.380 (0.15) 2.647 (0.37) 0.318 (0.14)
4. Rutter & Gats. 3.054 (0.31) 0.537 (0.12) 3.096 (0.32) 0.494 (0.11)
5. Major axis 2.249 (0.42) 0.199 (0.17) 2.196 (0.41) 0.141 (0.15)

and variances of ηi and ξi resulting from the approximate and exact likelihood
approach are presented in the upper part of Table 3.2. Based on these estimates,
the results for the five different choices of the summary ROC curve (Section 3.5.2)
are presented in the lower part of Table 3.2. In Figure 3.3 the different ROC
curves are depicted, in the logit-logit space as well as in the ROC space. Also the
95% coverage regions are given. These regions are based on the fitted bivariate
distribution and estimate the area that contains approximately 95% of the true
pairs of (logit(FPR), logit(TPR)) and (FPR, TPR) respectively.

From Table 3.2 and Figure 3.3 it is clear that the results of the exact and
approximate approach are similar in this data example. The exact approach results
in a somewhat more favourable average sensitivity and specificity. This was to be
expected beforehand for two reasons. First, as mentioned in Section 3.3, adding
0.5 to the numbers in the fourfold table, as is done in the approximate approach,
results in estimated mean sensitivity and specificity that are biased downwards,
pushing the ROC curve away from the left upper corner. Second, as shown by
Chang et al. [38], even if it is not needed to add 0.5, the estimates of the mean
sensitivity and specificity are still somewhat biased towards 0.5. This is due to the
fact that the approximate approach does not account for the correlation between
the logit(TPR) and its variance, and between the logit(FPR) and its variance.
From Table 3.2 and Figure 3.3 it is clear that the difference among the different
types of the summary ROC curve is substantial, especially for the first two choices
′η on ξ′ and ′ξ on η’. As one can see on the basis of the formulas for the slopes
given in Section 3.5.2, the first two types (′η on ξ′ and ′ξ on η’) give a kind of lower
and upper bound for the estimated summary ROC curves, and types 3 to 5 lie
between these two curves. In fact, the slopes of choices 3 to 5 could be considered
different kinds of ’weighted averages’ of the slopes of methods 1 and 2. In this
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(a) (b)

(c)

Figure 3.3: SROC curves for the five different choices of the summary ROC curve,
as a graphical illustration of Table 3.2. The curves are presented in logit-logit space
(Figure 3.3(a)) as well as in the ROC space (Figure 3.3(b)). Also the 95% coverage
regions are given as an ellipse in Figure 3.3(a) and a ’triangle’ in Figure 3.3(b). The
solid lines present the results of the approximate likelihood, the grey dashed lines
present the results of the exact likelihood. The lines in 3.3(a) and 3.3(b) represents
for the ’ξ on η’, ’R&G’, ’D on S’, ’Major Axis’ and ’η on ξ’ in decreasing order
of slope (from the right top to bottom). In Figure 3.3(c) the SROC curves of the
random intercept model (solid lines) versus the fixed Littenberg & Moses model
(grey dashed lines) are given together with their confidence intervals.
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Table 3.3: Second data example: Imaging tests for coronary artery disease [20]. In
the upper part estimates are given of the random intercept model (Section 3.5.1),
using approximate as well as exact likelihood. In the lower part the parameter
estimates are given for the five different choices of the summary ROC curves
discussed in Section 3.5.2.

Parameter Approximate likelihood Exact likelihood
Estimate (se) Estimate (se)

η̄ 1.257 (0.057) 1.339 (0.061)
ξ̄ -1.560 (0.071) -1.851 (0.085)
σ2

η 0.333 (0.057) 0.406 (0.066)
σ2

ξ 0.337 (0.074) 0.585 (0.117)
σξη 0.182 (0.049) 0.272 (0.065)
Type of SROC Approximate likelihood Exact likelihood

α(se) β(se) α(se) β(se)
1. η on ξ 2.098 (0.21) 0.540 (0.13) 2.199 (0.18) 0.465 (0.10)
2. ξ on η 4.106 (0.69) 1.827 (0.45) 4.102 (0.58) 1.493 (0.31)
3. D on S 2.802 (0.26) 0.991 (0.17) 2.802 (0.23) 0.791 (0.12)
4. Rutter & Gats. 2.805 (0.21) 0.993 (0.13) 2.880 (0.19) 0.833 (0.10)
5. Major axis 2.796 (0.37) 0.987 (0.24) 2.677 (0.28) 0.723 (0.15)

example the curves for approaches 3, 4 and 5 lie closer to the regression of η on
ξ, but in general that is not the case. Results depend on the variances of ξi and
ηi, and the covariance between them. The more similar the variances of ξi and ηi

are, the more similar will be the results of approaches 3-5.
For all summary ROC curves given in Figure 3.3(a) and 3.3(b) a 95% confidence

band can be calculated. As an example, we have drawn in Figure 3.3(c) the ′D on
S′ summary ROC curve together with its 95% confidence band. From all 5 types
of summary ROC curves, this ′D on S′ summary ROC curve should be most
comparable to the standard summary ROC curve from the Littenberg&Moses[2]
(L&M) approach, which also estimates the regression of D on S. To compare the
two, we have also drawn the L&M summary curve and its confidence band in Figure
3.3(c). The L&M summary ROC curve has a slope that is considerably steeper
than our ′D on S′ curve, leading to larger estimated sensitivities if the specificity
is small, and smaller estimated sensitivities if the specificity is large. This is not
a general pattern, as will be seen from the second data example. Furthermore, it
is seen that the L&M approach grossly underestimates the variability in the data,
leading to a much too narrow confidence band. This is due to the fact that the
L&M approach is based on a fixed effects model, which erroneously assumes that
there is no between-studies variability.

Example 2: Imaging tests for coronary artery disease [20]

We fitted the bivariate model of Section 3.5.1 on the data of the 149 studies
included in the meta-analysis of Heijenbrok-Kal et al. [20]. The estimates of the
means and variances of ηi and ξi based on the approximate and exact likelihood



56

48 Meta-analysis of Diagnostic Test Evaluation Data

approach are presented in the first part of Table 3.3. Based on these estimates, the
results for the five different choices of the summary ROC curve (Section 3.5.2) are
presented in the lower part of Table 3.3. In Figure 3.4(a) and 3.4(b) the different
summary ROC curves are given for the exact and the approximate approach, in
the logit-logit space as well as in the original ROC space.

In this example the results of the approximate and exact likelihood approach
are also similar. In the approximate likelihood approach the variances of ξ and
η are almost equal, which results in very little differences among methods 3 to
5. For the exact likelihood approach the difference between the two variances is
somewhat larger, leading to somewhat larger differences between the methods 3
to 5. Notice that in Figure 3.4 considerably more than 5 percent of the studies
fall outside the 95% coverage region. However, this is expected since the coverage
ellipse describes the variation between the true pairs of sensitivity and specificity,
while the points in the plot represent the estimates (observed) pairs of sensitivity
and specificity. The observed points, of course, should show more variation due to
within-study sampling variability. In Figure 3.4(c) we compare again our ′D on S′

summary ROC with the standard L&M one. In contrast to the previous example,
now the slope of the L&M ROC is smaller than that of our ′D on S′ curve. Again
it is clear that L&M method leads to smaller standard errors.

3.7 Discussion

Meta-analysis of diagnostic tests requires statistical techniques that analyse pairs
of related summary statistics (e.g. sensitivity and specificity) rather than a single
statistic. In the literature numerous meta-analyses are published in which one
is interested in meta-analysing only sensitivities or only specificities. For these
situations the standard method of analysis is the DerSimonian-Laird univariate
random effects model. The method we propose in this article is a direct extension
of that approach. We analyse sensitivities and specificities simultaneously using
a two-dimensional random effects model. Our method could also be seen as an
extension of the approach of Littenberg and Moses[2]. Their model implies a linear
relationship between the logit transformed sensitivity and specificity, which can
be transformed into ROC space to obtain a summary ROC curve. Despite its
many drawbacks, their approach still seems to be the most popular method for
meta-analysis of diagnostic accuracy data where pairs of sensitivity and specificity
per study are available. This is probably due to the fact that the method is very
easy to carry out in practice. In this article we have shown that the bivariate
meta-analysis model addresses all its shortcomings.

The method of Rutter and Gatsonis[9] is also an appropriate alternative for the
Littenberg and Moses method and recently it was pointed out how this method
can be performed in a non-Bayesian way using standard statistical software[30].
We have shown that their model is essential the same as ours, only the param-
eterisation is different and it leads to a special type of summary ROC. In our
opinion the way their model is less straightforward and more difficult to under-
stand. The way we present the bivariate model fits into the standard framework
of multivariate meta-analysis[13, 25, 35, 39] thereby bringing the meta-analysis of
this kind of diagnostic back into mainstream meta-analysis methods, which can
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(a) (b)

(c)

Figure 3.4: Second data-example of Heijenbrok-Kal et al. ROC curves for the five
different choices of the summary ROC curve, as a graphical illustration of Table
3.3. The curves are presented in logit-logit space (Figure 3.4(a)) as well as in
the ROC space (Figure 3.4(b)). Also the 95% coverage regions are given as an
ellipse in Figure 3.4(a) and a ’triangle’ in Figure 3.4(b). The solid lines present
the results of the approximate likelihood, the grey dashed lines present the results
of the exact likelihood. The lines in 3.4(a) and 3.4(b) represents for the ’ξ on η’,
’R&G’, ’D on S’, ’Major Axis’ and ’η on ξ’ in decreasing order of slope (from the
right top to bottom). In Figure 3.4(c) the SROC curves of our random intercept
model (solid lines) versus the fixed Littenberg & Moses model (grey dashed lines)
are given together with their confidence intervals.
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be fitted straightforwardly in standard statistical software. The SAS syntax we
used for the examples is given in the appendix to make the method easily accessi-
ble to meta-analysists. The approach presented in this paper is straightforwardly
extended with covariates. In a General Linear Mixed Model program like Proc
Mixed both the mean logit(FPR) and mean logit(TPR) can be allowed to depend
on covariates. If a Generalized Linear Mixed Model program such as SAS Proc
NLMixed is used, there are many more possibilities, depending on how the model
is parameterized.

Our contribution in this paper has been to compare different types of sum-
mary ROC curves by showing how they are all related to our bivariate model. We
discussed 5 types of summary ROC curves, each of which has its own interpreta-
tion and properties. In the Littenberg and Moses approach, the choice is made
explicitly as the regression of D on S. In the approach of Rutter & Gatsonis[9],
the choice is implicitly made, and we pointed out that it is a kind of geometric
mean between the regression line of logit(TPR) on logit(FPR) and the regression
line of logit(FPR) on logit(TPR). Thus the two methods estimate different sum-
mary curves and the resulting curves are therefore in principle not the same. If
one wants to describe the median sensitivity of studies with a fixed value of the
specificity, one can choose the regression of ηi on ξi, but if one prefers to describe
the median specificity with a fixed sensitivity, one can choose the regression of ξi

on ηi. The other three summary ROC curves are compromises between these two
options.

Notice that in our approach no assumptions about individual study curves have
to be made. For example, the method does not require an underlying continuous
diagnostic test, and hence it can also be applied to intrinsically dichotomous tests.
Our bivariate random effects model simply leads to a description of the distri-
bution of the pairs (ξi, ηi). The summary ROC curve is just a one-dimensional
representation of this distribution and cannot be interpreted as a kind of average
curve or a curve typical for the study specific ROC curves. It can have a shape
that is very different from the study specific shapes. The different kinds of sum-
mary ROC curves discussed in Section 3.5.2 are still interpretable, even if the test
is intrinsically dichotomous. E.g. the regression of ηi on ξi simply describes the
median sensitivity of studies with a fixed value of the specificity.

We fitted our models with standard software based on straightforward likeli-
hood methods. In our examples this approach worked well, although sometimes
some convergence problems were met. In our two clinical data examples these con-
vergence problems were addressed by specifying better starting values. However,
we can imagine that, especially for small meta-analyses, this could be more of a
problem. An alternative is to fit the models in a Bayesian way. This can be done
using the free available software program WinBugs [40]. The Bayesian approach
has the advantage of being more flexible; for instance, one can assume non-normal
parametric distributions for logit(TPR) and logit(FPR). Also in applications with
a relatively small number of studies, the Bayesian method might perform better,
since the standard likelihood is based on large sample theory. A disadvantage is
that it is more time consuming and is less easily done by non-statisticians.

The bivariate model we proposed in this paper can be fitted using approxi-
mate or exact likelihood. Using approximate likelihood has the advantage that a
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General Linear Mixed Model program can be used, which is widely available. The
exact likelihood method can only be used if one has an appropriate Gneralized
Linear Mixed Model program available. Unfortunately these programs are still
rather scarce. Simulation studies are needed to compare the two approaches.
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Appendix

In this appendix we provide the SAS syntax needed to reproduce the results given
in Table 3.2 and 3.3. First we describe the data format that is needed. We have
two records per study, one for the diseased and one for the healthy group, as in
the following table.

study group n npos disease healthy y est

. . . . . . . 0.20

. . . . . . . 0.10

. . . . . . . 0.20
1 1 1009 70 0 1 -2.58974 0.01525
1 2 1068 979 1 0 -2.58974 0.01219
2 3 166 3 0 1 -3.84405 0.29183
2 4 73 51 1 0 -3.84405 0.06386
3 5 949 25 0 1 -2.77988 0.01914
...

...
...

...
...

...
...

...

The meaning of the variables is:
study = number of the study
group = unique identifier for the diseased and healthy group
n = number per group
npos = number with positive diagnostic test
disease = 0 for healthy group, = 1 for diseased group
healthy = 1 for healthy group, = 0 for diseased group
y = ln(npos/(n-npos))
est = 1/(npos+0.5) + 1/(n-npos+0.5)
The first three lines have only a non-missing value for the variable est. These three
values serve as starting values for the variances and covariance of ξi and ηi. The
following syntax produces the approximate likelihood results given in the upper
part of Table 3.2.

proc mixed cl method=ml data=giardcol; *call procedure; cl asks for confidence

intervals of covariance parameters;

class study d group; *study, d and group are classification variables;

model y=disease healthy/noint s cl covb ddf=1000,1000; *model with indicator

variables disease and healthy as explanatory variables

for log odds. Covb asks for covariance matrix of fixed

effects parameters;

random disease healthy/subject=study type=un s; *indicators of diseased and

healthy group are random effects, possibly correlated

within-study and independent between-studies, covariance

matrix is unstructured. Print empirical Bayes estimates ’s’;

parms/parmsdata=giardcol eqcons=4 to 61; *data file giardcol.sd2 contains the

variable ’est’ with starting values for the three

covariance parameters of the random effects together with

the 58 within study-group variances. The latter are

assumed to be known and should be kept fixed;

repeated/group=group; *each group in a study (diseased and healthy) has its own

within-study arm variance; within-study estimation errors

are independent;

run;
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The different summary ROC curves have to be calculated by hand based on the
output of the program. The same results can also be obtained with SAS Proc
NLmixed. The advantage is that the parameters of the summary ROC curves can
be specified as derived parameters. The syntax is as follows.

proc nlmixed data=giardcol; * call procedure;

parms meaneta=1.8 meanksi=-2.4 vareta=0.3 varksi=1 covksieta=0.15 ; *choose

starting values for means, variances and covariance;

model y~normal(eta*disease+ksi*healthy,est); *log odds y are alternately

normally distributed around eta and ksi; disease

and healthy are indicator variables, ’est’ contains

the within-study variances;

random ksi eta~normal([meanksi,meaneta],[varksi,covksieta,vareta]) subject=study;

* the shrunk parameters ksi and eta are normally

distributed around their common means, with between

study variances varksi and vareta and covariance covksieta;

estimate ’eta on ksi: beta’ covksieta/varksi; *estimate slope of ksi on eta

regression line;

estimate ’eta on ksi: alpha’ meaneta-covksieta/varksi*meanksi; *estimate

intercept of eta on ksi regression line;

estimate ’ksi on eta: beta’ vareta/covksieta; *estimate slope of ksi on

eta regression line;

estimate ’ksi on eta: alpha’ meaneta-vareta/covksieta*meanksi; *estimate

intercept of ksi on eta regression line;

estimate ’D on S: beta’ (vareta+covksieta)/(varksi+covksieta); *estimate

slope of D on S regression line;

estimate ’D on S: alpha’ meaneta-(vareta+covksieta)/(varksi+covksieta)*meanksi;

*estimate intercept of D on S regression line;

estimate ’R&G: beta’ (vareta**0.5)/(varksi**0.5); *estimate slope of R&G

regression line;

estimate ’R&G: alpha’ meaneta-(vareta**0.5)/(varksi**0.5)*meanksi; *estimate

intercept of R&G regression line;

estimate ’major axis: beta’ (vareta-varksi+((vareta-varksi)**2+4*covksieta**2)

*0.5)/(2*covksieta); *estimate slope of major axis regression line;

estimate ’major axis: alpha’ meaneta-(vareta-varksi+((vareta-varksi)**2+

4*covksieta**2)**0.5)/(2*covksieta)*meanksi; * estimate intercept of

major axis regression line;

run;

The following syntax reproduces the right half (exact likelihood) of Table 3.2.

proc nlmixed data=giardcol; *call procedure;

parms meaneta=1.8 meanksi=-2.4 vareta=0.3 varksi=1 covksieta=0.15 ; *choose

starting values for means, variances and covariance;

pi = 1/(1+exp(-(eta*disease+ksi*healthy))); *calculating the ’true’ TPR

and FPR (pi);

model npos~binomial(n,pi); *the positive numbers in both groups follow

binomial distributions;

random ksi eta ~ normal([meanksi,meaneta],[varksi,covksieta,vareta])

subject=study; *the shrunk parameters ksi and eta are normally

distributed around their common means, with between

study variances varksi and vareta and covariance covksieta;

estimate ’eta on ksi: beta’ covksieta/varksi; *estimate slope of eta

on ksi regression line;

estimate ’eta on ksi: alpha’ meaneta-covksieta/varksi*meanksi; *estimate

intercept of eta on ksi regression line;

estimate ’ksi on eta: beta’ vareta/covksieta; *estimate slope of ksi

on eta regression line;

estimate ’ksi on eta: alpha’ meaneta-vareta/covksieta*meanksi; *estimate
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intercept of ksi on eta regression line;

estimate ’D on S: beta’ (vareta+covksieta)/(varksi+covksieta); *estimate

slope of D on S regression line;

estimate ’D on S: alpha’ meaneta-(vareta+covksieta)/(varksi+covksieta)

*meanksi; *estimate intercept of D on S regression line;

estimate ’R&G: beta’ (vareta**0.5)/(varksi**0.5); *estimate slope of

R&G regression line;

estimate ’R&G: alpha’ meaneta-(vareta**0.5)/(varksi**0.5)*meanksi;

*estimate intercept of R&G regression line;

estimate ’major axis: beta’ (vareta-varksi+((vareta-varksi)**2 +

4*covksieta**2)**0.5)/(2*covksieta); *estimate slope of major

axis regression line;

estimate ’major axis: alpha’ meaneta-(vareta-varksi+((vareta-varksi)**2

+ 4*covksieta**2)**0.5)/(2*covksieta)*meanksi; *estimate intercept of

major axis regression line;

run;
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Abstract

The summary ROC method of Littenberg and Moses (L&M) has many shortcom-
ings and recently improvements upon it were proposed. In this paper we consider
three recently introduced refinements of the L&M SROC that aim to meet its
shortcomings. All the three methods assume a linear relationship between the dif-
ference and sum of the logit transformed true and false positive rates. The first one
is based on a random intercept linear meta-regression model (RI). The other two
are based on the bivariate normal random effects meta-analysis model but with a
different within-study model of sensitivity and specificity: the approximate normal
distribution (normal-normal model (NN)) or the binomial distribution (binomial-
normal model (BN)). We evaluate the performances of the three methods in a
simulation study. The parameters to be compared are the associated intercept,
slope and residual variance, using bias, mean squared error and coverage probabili-
ties. We varied the overall sensitivity and specificity, the between-studies variance,
the within-study sample size and the number of studies. The methods are illus-
trated using published meta-analysis data.

In general the BN method performed better than the RI and NN method. It
always gave unbiased estimates of the intercept and slope parameter. The cov-
erage probabilities were also reasonably acceptable, unless the number of studies
was very small. In contrast the RI and NN methods could produce large biases
with poor coverage probabilities, especially when sample sizes of individual studies
were small or when sensitivities or specificities were close to 1. Although this was
rare in our simulations, the bivariate methods can suffer from non-convergence
mostly due to the correlation being close to ±1.

4.1 Introduction

In meta-analysis of diagnostic test accuracy studies often summary ROC curves
are presented. When test results are presented by one two-by-two table per study,
the SROC method of Littenberg and Moses (L&M) and Moses et al. [1, 2] has
been used for long as the standard method in practice to construct a summary
ROC curve. Their approach is based on a simple regression of the difference of
logit(sensitivity) and logit(1-specificity) on the sum of the two, and is easily car-
ried out in any statistical package. However, as pointed out by several authors
[3, 4, 5], it has serious shortcomings. First, it does not account for the within-
and between-studies variability in an appropriate way. Second, it assumes that
the predictor variable is measured error free. Third, it does not account for the
within-study correlation between the response and the predictor variable. Fourth,
it needs a correction factor when there is a zero cell count. Therefore more appro-
priate methods have been proposed, among them the hierarchical SROC method
[5] and the SROC curves based on the random effects bivariate approach [3, 4]. In
this article we consider three refinements of the L&M SROC method that over-
come some or all of its shortcomings and compare their performances through a
simulation study.

The first refinement is the random intercept meta-regression approach, which
has been introduced recently in practice (see for example [6, 7, 8]). It appropri-



68

60 Meta-analysis of Diagnostic Test Evaluation Data

ately deals with the within- and between-studies variability and therefore meets
the first of the above mentioned shortcomings. It is an obvious improvement upon
the L&M method and in this paper we will refer to it as the random intercept (RI)
SROC approach. It can be easily carried out in practice using one of the widely
available random coefficients regression programs. One of the potential disadvan-
tages of the RI method is that it treats the predictor variable in the regression as
error free, which might lead to bias in the slope of the regression line [9, 10]. No
research has been done to investigate if this is serious in practice.

The other two refinements stem from the bivariate random effects model pro-
posed for the joint analysis of pairs of sensitivities and specificities [3]. Arends et
al. [4] discuss five different possible choices of SROC curves based on the bivari-
ate random effects model. In this paper we consider the L&M type SROC. The
difference between the two refinements is the way they handle the within-study
distribution of sensitivity and specificity. This can be done in two ways, by an
approximate normal distribution [3, 4] or by a binomial distribution [4, 11]. In
this paper we will refer to these methods as the normal-normal bivariate random
effects (NN) and the binomial-normal bivariate random effects (BN) SROC ap-
proach, respectively. Compared to the RI method, the NN and BN method are
more complicated and less easily carried out in practice. The NN can be carried
out in linear mixed model programs in which certain options are implemented.
The BN model can be fitted in a generalized linear mixed model programs.

Recently, Hamza et al. [12] compared, in an extensive simulation study, the
approximate normal with the binomial within-study models in the univariate case
where either only sensitivities or only specificities were meta-analyzed, and con-
cluded that the binomial distribution, in many cases, gives substantially less bias
in the estimate of the overall sensitivity or specificity. Chu and Cole [13] and Riley
et al. [14], in (limited) simulation studies, showed that these results also hold for
the bivariate case. However, these results do not immediately carry over to SROC
curves, because the biases in the estimates of the mean sensitivity and specificity
could cancel out. Therefore the aim of this article is to compare by a simulation
study the performances of the RI, NN and BN SROC approaches to estimate a
SROC curve. We investigated the effect of, 1. the number of studies included in
the meta-analysis, 2. the within-study sample size, 3. the between-studies vari-
ability and 4. the true median sensitivity and specificity.

In Section 4.2 we shortly review the L&M method and introduce the three
different random effects models to be compared. In Section 4.3 we describe the
design of the simulation study and in Section 4.4 the simulation results. In Section
4.5 we illustrate the methods using published meta-analysis data. We end with a
discussion in Section 4.6.

4.2 Method

The methods in this paper assume the setting where each study presents per
group, diseased or non-diseased, the number of test positive and test negative
subjects. Alternatively a pair of sensitivity and specificity with standard errors
and the number of diseased and non-diseased subjects might be given. Let x1

denote the number of true positives, n1 the total number of diseased subjects, x0
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the number of false positives and n0 the total number of non-diseased subjects.
Then the observed sensitivity and the observed specificity are given by x1/n1 and
(n0 − x0)/n0 respectively.

4.2.1 Standard L&M approach

The standard SROC method of Littenberg and Moses [1, 2] estimates the following
simple regression model:

D̂i = α + βŜi + ei (4.1)

Here i denotes the number of the study. D̂i and Ŝi are calculated as the difference
and the sum of logit(sensitivity) = ln(x1i/(n1i−x1i)) and logit(1−specificity) =
ln(x0i/(n0i − x0i)), respectively, and ei is the random residual error. D is the log
of the diagnostic odds ratio as it is the logarithm of the odds of a positive test
result among diseased individuals relative to the odds of positivity among healthy
individuals. Therefore it is considered to be a measure of the discriminative power
of the test in the ith study. S can be considered as a measure of test positivity
as it directly depends on the choice of the threshold. The parameter α is called
the accuracy parameter, as it is the log diagnostic odds ratio at the point where
S = 0 (where sensitivity is equal to specificity). The interpretation of β is less
straightforward than α. It measures the asymmetry of the ROC curve. If β = 0
the curve is symmetric and the overall common odds ratio is given by eα. For a
detailed discussion of the interpretation of these parameters we refer to [15].

Model (4.1) is estimated using weighted or unweighted least squares. The
weighted analysis assumes that ei ∼ N(0, φse2

i ) where sei is the estimated standard
error of the log odds ratio of study i, D̂i, considered as known. φ is a dispersion
parameter meant to capture between-studies heterogeneity. Note that this is less
appropriate since it is multiplicative instead of additive. In pratice φ is often
assumed to be one and then the method reduces to a fixed effects approach. The
unweighted analysis assumes ei ∼ N(0, σ2), where σ2 is estimated from the data.
An obvious disadvantage is that it does not take into account the differences in
sample size between-studies. In fact, the term σ2 stands for a mix of within-study
variation, different between-studies, and between-studies variation, and does not
explicitly separate these two sources of variation. Thus both the weighted as
the unweighted variant do not adequately model the within and between-studies
variation, but were motivated by the fact that the model could be fit by ordinary
linear regression programs. Arends et al. [4] and Rutter et al. [5] also discuss
several other shortcomings of the SROC method. The RI approach discussed
in Section 4.2.2 appropriately assumes ei ∼ N(0, σ2 + se2

i ). This is an obvious
improvement upon both variants of the L&M method and hence we did not include
the L&M method in the simulation study.

4.2.2 RI SROC approach

A straightforward improvement upon L&M’s method is provided by the standard
random effects meta-regression model as developed in the last decade, see for
instance [16, 17]. This method has recently been applied in the medical literature
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(for example [7, 18, 19]). The model can be written as a random intercept model
as follows.

D̂i = αi + βŜi + ei with αi ∼ N(ᾱ, σ2
α) (4.2)

The variance of σ2
α quantifies the variability between-studies having the same

threshold. The observed log diagnostic odds ratio, D̂i, is assumed to follow a nor-
mal distribution with mean αi+βŜi and within-study variance calculated from the
data as σ̂2

Di = 1/x1i +1/(n1i−x1i)+1/x0i +1/(n0i−x0i). The σ̂2
Di’s are assumed

to be known, an assumption that might be less appropriate when the sample size is
small. Often this within-study variance is correlated with the estimated parameter
D̂i, which can lead to bias in the parameter estimates [16, 20, 21]. Since model
(4.2) is a simple linear random effects model, the parameters can be estimated
using a linear mixed model program.
Continuity Correction: When a zero count is encountered in one or more of
the cells, D̂i and its variance are undefined, and hence a continuity correction has
to be added to the numbers in the fourfold table for the RI and NN methods.
Sweeting et al. [22] discussed different (constant) correction factors. In this paper
we added 0.5, the usual correction factor in practice, throughout all simulations,
except for some selected scenarios where also 0.1 was considered to see the effect
of it.

4.2.3 Bivariate Random Effects approach

Among others, Reitsma et al. [3] and Arends et al. [4] advocated the bivariate
approach to meta-analyze sensitivity and specificity jointly, incorporating the cor-
relation that might exist between these two measures. The model can be given
as: (

ξi

ηi

)
∼ N

( (
ξ̄
η̄

)
,

(
σ2

ξ σξη

σξη σ2
η

) )
(4.3)

Here ξi is the true logit(1 − specificity) and ηi is the true logit(sensitivity)
of studies i. σ2

ξ and σ2
η are the between-studies variances of ξi and ηi respec-

tively and σξη is the between-studies covariance between ξi and ηi. The mean
logit(1 − specificity) and logit(sensitivity) over studies are given by ξ̄ and η̄.
Note that, since sensitivity and specificity tend to be negatively correlated, ξi and
ηi tend to be positively correlated. Without loss of generality, one can also model
logit(specificity) instead of logit(1− specificity) (for example see [3]).

The bivariate method leads to an estimate of the two-dimensional distribution
of the underlying true sensitivities and specificities. A summary ROC curve can
be considered just as the curve corresponding to a line that characterizes the es-
timated bivariate normal distribution. Arends et al. [4] discussed five choices for
such a line, one of them being the regression line of Di = ηi − ξi on Si = ηi + ξi.
For this choice, the bivariate method can be seen as a direct extension of the L&M
or RI SROC approach. Unlike these two methods, that assume Si to be error
free, the bivariate approach accounts for error in Si. In this paper we consider
the regression line of D on S and equivalently model (4.3) can be re-written as
follows:
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(
Si

Di

)
∼ N

( (
S̄
D̄

)
,

(
σ2

S σSD

σSD σ2
D

) )
(4.4)

The parameters for the regression line Di = αi + βSi can be derived from (4.4) as

β =
σSD

σ2
S

, ᾱ = D̄ − σSD

σ2
S

S̄ and σ2
α = σ2

D − σ2
SD

σ2
S

The standard error of these parameters can be calculated using the Delta
method. The model is completed by modeling the within-study variability. In
this paper we considered two distributions to model the within-study variability,
the normal and the binomial.

NN SROC approach

This method approximates the within-study distribution of the observed data by
a bivariate normal distribution

(
Ŝi

D̂i

)
∼ N

( (
Si

Di

)
,

(
σ̂2

S σ̂SD

σ̂SD σ̂2
D

) )
(4.5)

with σ̂2
S = σ̂2

D = 1
x0i

+ 1
n0i−x0i

+ 1
x1i

+ 1
n1i−x1i

and σ̂SD = 1
x1i

+ 1
n1i−x1i

− 1
x0i
− 1

n0i−x0i
.

Note that the within-study correlation is accounted for in (4.5) and the covariance
matrix is assumed to be known, as usually done in meta-analysis. Model (4.4 &
4.5) together specify a linear random effects model and the parameters can be
estimated by likelihood methods in a linear mixed model program.

BN SROC approach

Chu and Cole [13] and Arends et al. [4] used the binomial distribution for the
within-study variability. Now the within-study distribution of D̂i and Ŝi is implic-
itly modeled by specifying:

x1i ∼ binomial(n1i, π1i) and x0i ∼ binomial(n0i, π0i) (4.6)

with π1i = e0.5∗(Si+Di)

1+e0.5∗(Si+Di)
and π0i = e0.5∗(Si−Di)

1+e0.5∗(Si−Di)
. Now the model is a gener-

alized linear mixed model and a practical disadvantage is that software for these
models is scarce and not yet available in many statistical packages. Apart from
the parametrization, the model of Rutter and Gatsonis [5] is identical to the BN
[4, 11]. However, as shown by Arends et al. [4], their method estimates another
type of SROC curve than the one considered in this paper. Chu and Cole [13]
and Hamza et al. [12] showed the advantage of using a binomial distribution
over the normal distribution in estimating the (logit transformed) sensitivity and
specificity, and their between-studies variances. They showed that approximating
the within-study variability by a normal distribution leads to a downward bias
in η (sensitivity) and ξ(specificity) and their between-studies variances in many
cases. However, this does not necessarily mean the BN outperforms the other two
methods on estimating the SROC curve. The reason is that still the estimate of
D̄ = η̄ − ξ̄ could be approximately unbiased, i.e. the biases may cancel out at
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least partially since they are in the same direction, and also for the β, which is the
ratio of (co)variance parameters. If so, in practice the RI or NN method might be
preferable due to their simplicity for fitting them.

4.3 Simulation Study

4.3.1 Data Simulation

First the true ηi and ξi were simulated from a bivariate normal distribution, with
specified true values for η̄, ξ̄, σ2

η and σ2
ξ , and correlation between ξ and η(ρξη).

The choices of the true values were based on real meta-analysis data sets from the
medical literature (for example [23, 24, 25]). Most often the estimated sensitivities
and specificities in the real data sets run from 0.50 to 0.98 and we assigned three
pairs of values representing the situations where both sensitivity and specificity
are large, where both are small and where one is small and the other large. The
different true values in the simulations are given in Table 4.1.

Table 4.1: Different scenarios used in the simulation
(ξ̄, η̄) (MSPa, MSEb) (σ2

ξ , σ2
η) ρξη ni(sd) N

(-2.20, 2.94) (0.90, 0.95) (0.5, 0.5) 0.2 40(30) 10
(-0.85, 2.94) (0.70, 0.95) (1.2, 1.2) 0.5 500(450) 25
(-0.85, 0.62) (0.70, 0.62) (0.5, 1.2) 50

100

aMedian specificity
bMedian sensitivity

Secondly, the within-study number of positive test results for the diseased and
non-diseased cases were simulated from binomial distributions with probabilities
π1i = 1/(1 + e−ηi) and π0i = 1/(1 + e−ξi) and within-study sample sizes n1i

for the diseased and n0i for the non-diseased subjects. In practice the ni’s vary
across studies included in the meta-analysis. In some meta-analyses the range of
the within-study size (both in diseased and non-diseased or treated and control
group) is as big as 3000 or more, see for example references [18, 25, 26]. To
represent this variation, the n0i’s and n1i’s were generated independently from
a normal distribution and rounded to the nearest integer. As shown in Table
4.1, two different values, 40(30) and 500(450), were considered for the mean ni’s
(standard deviation). If a sample size less than 10 was drawn, its value was set to
10. The latter makes 40 and 500 no more the means of the simulated sample sizes,
but the medians, and the realized standard deviation becomes a bit smaller than
30 and 450 respectively. We considered every possible combination of the initial
values given in Table 4.1, in total 144 scenarios. Besides, a large (0.9) and zero
correlation (ρξη) was considered for some selected scenarios.
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4.3.2 Estimation of the simulated data and Comparison of
methods

The simulation was replicated 1000 times for each scenario. The RI and NN models
were fitted using restricted maximum likelihood (REML) in SAS Proc MIXED,
and the BN model was fitted using ordinary maximum likelihood (ML) in SAS
Proc NLMIXED. If one of the three models did not converge for a given simulated
data set, then this data set was dropped and the simulation was continued until
we got 1000 data sets for which all the three models converged. We concentrated
on the estimation of the mean log diagnostic odds ratio (D̄ = α + βS̄), slope
(β) and residual variance (σ2

D|S). Note that the regression line of D on S can
be written as D = D̄ + β(S − S̄). The three methods were compared using bias
(difference between the mean estimate and the true parameter), mean squared
error (MSE) and coverage probability of the 95% confidence interval (the frequency
in which the true value falls in the interval). The coverage probabilities were
calculated using Wald type confidence intervals based on the normal distribution.
A disadvantage of this type of confidence interval might be that when the number
of studies is small, the standard errors are underestimated due to the fact that
the uncertainty in the estimate of the covariance matrix is not accounted for.
Using a t-distribution instead of the standard normal might solve the problem
to some extent. However, the t-distribution again is only approximate, and the
appropriate number of degrees of freedom needs to be estimated from the data
instead of using k− 1, where k is the number of studies. Furthermore, estimating
the degrees of freedom is rather complex especially for the derived parameters.
Another alternative would be to use the profile likelihood [27] which takes into
account the uncertainty on the estimated covariance matrix. Here we restricted
to the Wald type confidence interval. For example, the 95% confidence interval
of β is β̂ ± 1.96se(β̂). The 95% confidence interval for the residual variance is
constructed using the log transformation, i.e. the confidence interval is given by
σ̂2

αexp(±1.96se(σ̂2
α)/σ̂2

α).

4.4 Simulation Results

The simulation results for the possible combinations of parameter values from
Table 4.1 were collected and investigated for the possible effects of the different
factors on the results of the three different approaches discussed in Section 4.2.
Generally speaking, the biases and coverage probabilities did not vary largely with
the true between-studies variances and the correlation of sensitivity and specificity
compared to the other factors such as the median within-study size and true me-
dian value of sensitivity and specificity. The results of the selected scenarios with
correlation 0 and 0.9 also lead to similar results. Hence we only present the re-
sults for the 24 scenario’s with σ2

ξ = 0.5, σ2
η = 1.2 and ρξη= 0.2. The results for

the whole set of scenarios are available from the authors on request. The bias,
coverage probability and MSE for the mean log diagnostic odds ratio, slope and
residual variance are given in Tables 4.2, 4.3 and 4.4 respectively. Our conclusions
also did not change when a correction factor of 0.1 instead of 0.5 was used for the
RI and NN methods.
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Table 4.2 shows the bias, coverage probability and MSE of the mean log diag-
nostic odds ratio from the three different modeling approaches. Most often the BN
method gives quite unbiased estimates even when the number of studies was small,
and reasonably acceptable coverage probabilities, except for N=10, in which case
the Wald type confidence interval may not be appropriate. In almost all scenarios
it is better than the RI and NN methods in terms of bias and coverage proba-
bility. It also usually gives the smallest MSEs, except for some scenarios where
the MSE is slightly in favor of the RI and NN methods. The RI as well as the
NN methods always underestimate the mean log diagnostic odds ratio, often by
a substantial amount. The coverage probabilities from the RI and NN methods
are mostly considerably lower than the nominal level, and sometimes go almost
to zero. When the within-study sample size is small and in particular if also the
median sensitivity or specificity is large, use of both RI and NN methods is more
problematic in terms of bias and coverage probabilities. In most scenarios, the
performance of the RI method is better compared to the NN method, although
the difference is mostly only small. As expected, the bias and coverage probability
from the RI and NN methods are better for larger within-studies sample size.

The bias, coverage probability and MSE for the slope parameter are tabulated
in Table 4.3. Like for the mean log diagnostic odds ratio the BN method per-
forms reasonably well in terms of bias and coverage probability regardless of the
scenario. The coverage probabilities are not satisfactory when N=10. The RI and
NN methods perform well only when the within-study size is large. The cover-
age probabilities for these scenarios are comparable with the corresponding results
from the BN method. When the within-study size is small and the median sensi-
tivity or specificity is large these methods, especially the NN method, are highly
biased. For these scenarios the coverage probabilities from the RI and NN meth-
ods are far from the nominal level, and even worse when the number of studies is
100. Overall, the performances of both RI and NN methods in terms of bias and
coverage probability are similar. Comparing the MSE from the three approaches,
the RI method gives the smallest value most often. The NN method performs
worst in terms of the MSE. As expected, the bias and coverage probability from
the RI and NN methods are better for larger within-studies sample size.

The residual variance is the important parameter to characterize the amount
of heterogeneity between-studies having the same value for the threshold S. The
bias, coverage probabilities and MSE from the three methods are tabulated in
Table 4.4. In all scenarios the residual variance is underestimated by all methods.
Comparing the three methods, the BN largely performs the best both in terms
of bias and coverage probability. However, some bias is still left when the num-
ber of studies is 25 or less. When N=10, the results from all the three methods
are not satisfactory. The coverage of the BN method, although better than for
the RI and NN methods, is not satisfactory for a small number of studies. It is
smaller than the nominal level for the large within-study sample size, and larger
than the nominal level (close to 100%) for the small within-study sample size.
The BN method also gives the smallest MSE most often compared to the RI and
NN methods. Bias and coverage probability of the RI and NN methods is bad in
many scenarios, in particular if the within sample size is small. Overall, there is
no important difference in performance between the RI and NN methods.
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Table 4.5: Parameter estimates (standard error) and 95% confidence interval for
the MR imaging techniques data.

Parameter Method
RI NN BN

D̄ 4.411(0.276) 4.129(0.248) 4.675(0.271)
[3.870, 4.952] [3.643, 4.615] [4.143, 5.207]

β -0.277(0.283) -0.476(0.990) -0.668(0.508)
[-0.832, 0.279] [-2.417, 1.464] [-1.664, 0.328]

σ2
D|S 1.290(0.541) 1.032(0.478) 1.038(0.561)

[0.567, 2.937] [0.416, 2.559] [0.359, 2.995]

4.5 Data Example

To illustrate the methods discussed in this article we re-analyzed the data of a
published meta-analysis [19]. Oei et al. [19] present data from 29 studies on the
diagnostic performance of magnetic resonance imaging (MRI) of the menisci and
cruciate ligaments to assess the effect of study design characteristics and magnetic
field strength performances. For illustration of the methods discussed in Section
4.2, we used the meta-analysis data presented for the medial meniscal tears, which
includes 27 studies. The mean number of diseased and non-diseased patients are
66.4 and 58.9 respectively. It has zero counts and therefore 0.5 is added to each
of the two by two table to avoid undefined values when the RI and NN methods
are applied. The three random effects methods discussed in Section 4.2 are fitted
and the parameter estimates (standard errors) and the 95% confidence intervals are
tabulated in Table 4.5. The syntax needed to fit the BN method in SAS Procedure
NLMIXED is given in the appendix, and for the RI and NN it is available from
the authors on request.

As shown in Table 4.5, the results from the three methods differ substantially.
In the simulation study we showed that the RI and NN methods underestimate
the average log diagnostic odds ratio D̄ regardless of the scenario used. The
estimates in this example from the RI and NN methods are lower by 0.484 and
0.617 respectively compared to the BN method. The estimated slopes resulting
from the RI and NN methods are also lower than the BN method by 0.391 and
0.192 respectively. Notice that the standard error of the slope of the RI method
is remarkably low compared to the other two methods. This is in agreement with
the results of the simulation where the RI method gave the smallest MSE. These
conclusions are not changed if we analyze the data after removing the two outlying
cases (with a within-study size of 32 and 69) in Figure 4.1. In the data example,
some other sources of bias and variation may exist and should be assessed and
addressed. This is out of the scope of this article. The estimates are transformed
into the ROC space and the ROC curves for the three approaches with the 95%
coverage regions from the bivariate approaches are given in Figure 4.1. The ROC
curves cross each other due to the different estimates of the slope parameter. The
differences in the ROC curves are not negligible, in particular when the specificity
is greater than 0.90. For example the estimated sensitivity when specificity is
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Figure 4.1: ROC curves from the three approaches for the MRI data. The circles
are proportional to the sample size of individual studies.

0.95 from the RI, NN and BN methods respectively are 0.86, 0.87 and 0.92. The
simulation study from Section 4.3 indicates that the BN method is likely the best.
This is in agreement with Figure 4.1, where the BN method seems to fit well,
especially in the area where 1-specificity is smaller than 0.10. There are also small
differences in the estimated residual variance. In summary, the estimated SROC
curves from the three different methods differ substantially and the patterns are
in agreement with the results of the simulation study.

4.6 Discussion

When in a meta-analysis one pair of sensitivity and specificity is available per
study, the SROC method of Littenberg and Moses [1, 2] has been used for more
than a decade to estimate a summary ROC curve. This method has several short-
comings and recently more appropriate methods have been introduced. In this
paper we compared the performance of three of these methods, the RI, NN and
BN method, through an extended simulation study. We took into account possi-
ble important factors such as the number of studies included in the meta-analysis,
the within-studies sample size, the order of magnitude of sensitivity and speci-
ficity, and the between-studies variances and covariance (correlation). We have
shown that in almost all studied scenarios the BN method outperformed the RI
and NN methods in terms of bias and coverage probability for all the parameters
of the summary ROC curve. However, the differences were not always practically
relevant, in particular when the within sample sizes were large. Unexpectedly,
in many cases the simple RI method outperformed the more sophisticated NN
method. Largely speaking, at least if the number of studies in the meta-analysis is



80

72 Meta-analysis of Diagnostic Test Evaluation Data

larger (N ≥ 10), we advise the medical researcher to use the BN method whenever
feasible. If the BN method is not readily available to the medical researcher we
advise to have a closer look at our simulation results to make a choice between
the RI and NN method, which will be then in most cases the simple RI. In the
small numbers of studies case (N = 10) the results of the comparisons were less
straightforward. The BN was still the best in terms of bias, but was outperformed
in a number of scenarios by the other methods, mostly the RI method, in terms of
coverage probability or mean squared error. In particular for the slope parameter,
the RI was better than the BN method in mean squared error. The explanation
is that by taking into account the measurement error in S, the bivariate methods
reduce the bias of the slope parameter on the expense of increasing the variabil-
ity [9, 10]. The smaller standard error of the estimated slope of the RI method
leads to a smaller MSE in spite of its larger bias. The Wald type confidence in-
tervals that we used for the BN method did not always have satisfactory coverage
probabilities when N=10 and hence caution should be taken on using this type of
confidence intervals when N is small. The coverage probability could be improved
by some kind of degrees of freedom correction or by using profile likelihood. When
N=10, none of the three methods gave satisfactory results for the residual vari-
ance in terms of bias and coverage probability. In the spirit of REML estimation
a possible improvement for the BN method that might be further investigated is
to multiply the estimates by N/(N −2). However no one does this in practice and
it is beyond the scope of this paper to evaluate the performance of such correction
factor.

All three methods can be carried in widely available statistical packages, also
extended with covariates. The RI and NN methods can be fitted using a linear
mixed model program, which is provided by many statistical packages now. We
used the SAS procedure MIXED. Practically speaking, the RI method would be
the most attractive, because it is most easy to understand and can be carried out
also in meta-regression programs, which are widely available. The BN method
has to be fitted in a generalized linear mixed model program, which are relatively
scarce. We used SAS Proc NLMIXED. Other possibilities would have been for
instance R/S-Plus nlme or the GLLAMM package of Stata. Numerically speak-
ing, the BN approach is the most complicated. Maximizing the likelihood involves
the numerical calculation of an integral. In NLMIXED the method of Gaussian
quadrature is used to approximate the integral, with the number of quadrature
points to be specified by the user or automatically by SAS. The larger the number
is chosen, the better the approximation but at the cost of more computational
time. In practice we would advise to choose it rather high, for instance 50 or
larger. In our simulations we had to keep it rather low. To study the impact
of the number of quadrature points we took a sample from our simulated data
sets and fitted the BN method on these data sets with varying number of quadra-
ture points. It turned out that estimates and standard errors hardly changed
when the number of quadrature points was greater than 10. Hence we used 10
quadrature points throughout the simulation study. Besides fitting generalized
linear mixed models can suffer from non-convergence problems, especially when
the sample size is small. In our simulations the overall non-convergence rate was
approximately 3.5%, and mostly the problem happened when N = 10(≈ 10%). In
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general in case of non-convergence, there are many different options to try in SAS
Proc NLMIXED [28]. For example, one can change the initial values by using a
grid search specification to obtain a set of good feasible starting values or specify
the minimum number of iterations or change the optimization technique. For a
detailed discussion of different choices of quadrature options, optimization meth-
ods and convergence criteria in NLMIXED we refer to the extensive manual [28].
However, for the bivariate meta-analysis models the problem is mostly in the data
itself. NLMIXED reported non-convergence mostly because of the covariance ma-
trix not being positive definite, caused by the maximum likelihood estimator of the
between-studies correlation being one. We do not have a clear-cut opinion about
what is best to do in that situation, and some further research for this situation is
needed. One possibility is to check that the program has correctly converged to a
ML estimate with correlation 1, and just work with the results. Another possibil-
ity is to study the results of the scenarios of our simulation study that are most
close to the application data set. If the NN and/or the RI perform well in these
scenarios, one of these can be chosen. However, mostly the convergence problem
is also shared by the NN method. Alternatively the BN model could be fitted fol-
lowing a Bayesian approach, for instance using the publicly available WinBUGS
software [29]. For more discussion of the problems associated with estimating the
between-studies correlation we also refer to Riley et al. [14].
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Appendix (SAS syntax)

In this section we present the SAS syntax used to fit the BN methods discussed
in Section 4.2.3. First, we read in the original data which include the first author,
publication year, true positive (TP), false positive (FP), true negative (TN) and
false negative (FN).

data mrimage ;
input author $ Pub_year study TP FP TN FN ;
nd = TP + FN ; *number of patients in the diseased group (nd);
nnd = FP + TN ; *number of patients in the non-diseased group (nnd);
datalines;
Boere 1991 1 58 6 63 2
Fischer 1991 2 270 33 170 10

. . . . . . .

. . . . . . .

. . . . . . .
Elvenes 2000 27 15 6 20 0

run;
data BN ; * Data step to re-arrange the data for the BN method;

set mrimage;
/*Disease status indicators; dis= diseased, ndis=non-diseased*/

dis= 1; ndis=0; y = TP ; n = nd; output;
dis= 0; ndis=1; y = FP ; n = nnd; output;

run;
proc nlmixed data = BN df=1000 qpoints = 10 ;

parms malpha = 2.3 beta = 0.2 mS=0.5 valpha=0.7 vS=0.7 ;
Di = ai + beta*Si;
theta = exp(0.5*(Si + Di*(dis - ndis)));
pi = theta/ (1 + theta);
model y ~ binomial(n, pi);
random ai si~ normal([malpha, mS], [valpha,0,vS]) subject=study;

run;
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Abstract

Objective: The bivariate random effects (BRE) meta-analysis of diagnostic tests
has been discussed and applied by many authors without adjusting for covari-
ates. At the hand of a case-study we extended the BRE method to investigate
the effect of covariates on sensitivity, specificity and, in particular, on diagnostic
performance as characterized by a summary ROC curve.
Study design and setting: A two-by-two table is available for 149 studies on the
diagnostic performance of three echo-tests (dobutamine-echo, dipyridamole-echo
and exercise-echo test) for the diagnosis of coronary artery disease. We allow the
overall specificity and sensitivity to depend on the covariates, and the covariance
structure to depend on the type of tests. Drawing conclusion on the effect of co-
variates on sensitivity and specificity is straightforward but not on ROC curves.
Results: The overall sensitivity and specificity from the three tests are statisti-
cally significantly different. Exercise-echo is highly sensitive followed by dobutamine-
echo. Dipyridamole-echo is highly specific over the whole range of publication
years. The results on the diagnostic performance depend on the type of summary
ROC curve. In all cases the summary ROC curves of the tests could be assumed
ordered, having the same shape.
Conclusion: The BRE meta-regression is a convenient and appropriate tool to
investigate the effect of covariates on sensitivity and specificity separately, and on
the diagnostic performance of tests as measured by the choice of summary ROC
curves.

5.1 Introduction

Meta-analysis of diagnostic tests aims to combine estimates of diagnostic test ac-
curacy measures across related studies. Researchers who investigate the efficacy
of diagnostic test accuracy often present sensitivity and specificity or the corre-
sponding two-by-two table. Besides, study level covariates are often presented,
for example publication year or subtype of the diagnostic tests. In practice such
data are analyzed mostly using the summary receiver operating characteristics
(SROC) method of Moses et al. [1, 2], which analyses sensitivities and specificities
jointly, or using the random effects method of DerSimonian and Laird [3], which
analyses sensitivities and specificities separately. The latter approach takes into
account the heterogeneity across studies, but does not take into account the re-
lation between sensitivity and specificity. The SROC method has a number of
serious shortcomings, as pointed out for instance by Arends et al. [4] and Rutter
et al. [5]. Recently more sophisticated methods, which meet these shortcomings,
have been proposed in the literature [4, 5, 6].

Reitsma et al. [6] and Arends et al. [4] advocate the bivariate random-effects
method, which has many potential advantages over the SROC method and the uni-
variate random effects methods. Harbord et al. [7] and Arends et al. [4] showed
that the model of Rutter and Gatsonis [5] is in fact another parameterization of
the bivariate model. These authors primarily discussed fitting the bivariate model
without covariates, and only mentioned the possibility to extend the model by
allowing sensitivity and specificity to depend on covariates. Adjusting for covari-
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ates may be important to correct for differences in the characteristics of studies
[8] or to evaluate if diagnostic technologies depend on one or more characteristics
of the studies involved. Although it is straightforward to extend the model with
covariates and parameters that describe how sensitivity and specificity separately
depend on covariates, the analysis is not trivial since in practice mostly the main
question is how the relation between sensitivity and specificity, as expressed by
an ROC curve, is influenced by covariates. In this paper we present a case study
of a meta-analysis data set analyzed with the bivariate random effects model,
where the focus is on the effect of covariates, in particular on how to investigate
their effect on the summary ROC curve. The meta-analysis concerns 149 studies,
each providing a two-by-two table of a non-invasive imaging test to detect coro-
nary artery disease. There are three different types of tests and the interest is in
differences in diagnostic performance between them, possibly adjusted for other
covariates. The models can be fitted with standard statistical packages. We used
the SAS package.

In Section 5.2 we describe the meta-analysis data, in Section 5.3 the bivariate
model with covariates is discussed, in Section 5.4 we describe the analyses and the
results, and Section 5.5 contains the discussion.

5.2 Data: Imaging tests for coronary artery dis-
ease

In this paper we used the meta-analysis data of Heijenbrok-Kal [9]. She searched
PubMed from January 1990 through May 2003 for meta-analytic studies on the
diagnostic performance of non-invasive imaging test for the diagnosis of coronary
artery disease. Articles in the English language were included if they met the
following criteria: the diagnostic performance of imaging tests for coronary artery
disease was studied, coronary angiography was used as the reference standard, the
absolute number of true positive, false negative, true negative and false positive
results of the source studies were available or derivable from the meta-analysis
and the meta-analytic study was published after 1990. Only data on imaging tests
that were still in use were collected.

The data included study level covariates such as publication year, type of
diagnostic test used, mean age, and percentage of men. The meta-analysis data
set of Heijenbrok-Kal [9] consisted of a total of 246 patient series including 24,761
patients who underwent nine different types of imaging tests for coronary artery
disease. In this paper we focus on the comparison of the diagnostic performance
of the three echo tests, i.e. the dobutamine-echo, the dipyridamole-echo and the
exercise-echo test, using a subset of 149 studies. The data are presented in Figure
5.1(a) and 5.1(b). In Figure 5.1(a) the observed sensitivity is plotted against
one minus the observed specificity, and in Figure 5.1(b) the logit-transformed
sensitivity is plotted against the logit-transformed 1-specificity.
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(a) (b)

Figure 5.1: 5.1(a) Sensitivity against (1-Specificity), and 5.1(b) logit(Sensitivity)
against logit(1-Specificity)

5.3 The bivariate random effects meta-regression
model

Reitsma et al. [6] and Arends et al. [4] discussed the bivariate approach to
meta-analyzing sensitivity and specificity jointly, incorporating the correlation
that might exist between these two measures. Their approach preserves the two-
dimensional nature of the original data and they fitted models without covariates.
After a brief introduction to the standard bivariate model we show in this section
how it is extended with covariates.

5.3.1 The bivariate model without covariates

Let x1i and n1i be the number of subjects with a positive test result and the
total number of subjects in the group with the disease of study i, respectively,
and let x0i and n0i be the number of subjects with a positive test result and the
total number of subjects in the group without the disease, respectively. Then
the observed sensitivity is x1i/n1i and the observed specificity is (n0i − x0i)/n0i.
Although other transformations such as the log(-log) or the probit might be used,
it is common practice to transform the data with the logit transformation. We
denote the observed logit(1-specificity) and logit(sensitivity) of study i by ξ̂i and
η̂i , respectively. The corresponding true study specific logit(1-specificity) and
logit(sensitivity) are denoted by ξi and ηi, respectively.

Between-Studies model:

The standard bivariate model as discussed in [6] and [4] assumes a bivariate normal
distribution for(ξi, ηi):

(
ξi

ηi

)
∼ N

( (
ξ̄
η̄

)
,

(
σ2

ξ σξη

σξη σ2
η

) )
(5.1)



90

82 Meta-analysis of Diagnostic Test Evaluation Data

Note that the model is the straightforward generalization of the well known uni-
variate random effects meta-analysis model of DerSimonian and Laird [3]. With-
out loss of generality, one can also model logit(specificity) instead of logit(1 −
specificity) (for example [6]). The within-study variability is modeled using an
approximate normal distribution [6, 4] or the binomial distribution [4, 7, 10].

Approximate normal within-studies model:

Here the observed logit(1-specificity), ξ̂i and the observed logit(sensitivity), η̂i, are
assumed to be independent and to follow a normal distribution with mean ξi and
ηi and variances that are calculated from the data. As usual, these variances are
assumed to be known in the maximum likelihood parameter estimation procedure,
an assumption that might be less appropriate when the study sample sizes are
small.

ξ̂i ∼ N(ξi,
1

x0i
+ 1

n0i−x0i
)

η̂i ∼ N(ηi,
1

x1i
+ 1

n1i−x1i
)

(5.2)

If for any study i one of the denominators in the variances is zero, a correction
factor, usually 0.5, should be added to all denominators in all studies [2, 11] to
avoid undefined values.

Binomial within-studies model:

Arends et al., Harbord et al. and Chu and Cole [4, 7, 10] discuss the use of
the binomial distribution for the observed numbers of positive test results. Then
the approximate within-study distribution in (5.2) is replaced by the binomial
distribution:

x0i ∼ binomial( eξi

1+eξi
, n0i)

x1i ∼ binomial( eηi

1+eηi
, n1i)

(5.3)

Here eξi

1+eξi
and eηi

1+eηi
are the probabilities of false and true positive test results

respectively, and ξi and ηi are the true logit transformed (1-specificity) and sensi-
tivity from (5.1).

The bivariate models given by (5.1-5.3) can be fitted using general(ized) linear
mixed model procedures in standard statistical packages, such as the SAS proce-
dures (NL)MIXED or the R/S-Plus programs (n)lme. Hamza et al. [12], Hamza et
al. [13] and Chu and Cole [10] compared in extensive simulation experiments the
binomial and approximate normal within-study models, and showed that in gen-
eral the performance of the binomial within-study model is much better. Hence,
in this paper, we only report the results of the binomial within-study model.

Summary ROC curves:

In meta-analysis of this type of diagnostic test data it is customary to present
summary ROC curves. A summary ROC curve can be obtained by characterizing
the estimated bivariate normal distribution in (5.1) by a line. Transformation
of this line from the logit scale to the probability scale then gives a summary
ROC curve. Arends et al. [4] discussed five choices for such a line. The most
straightforward choice may be the regression line of η on ξ, which is given by:
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y = i + γx with γ =
σξη

σ2
ξ

and i = η̄ − γξ̄ (5.4)

where y and x are logit(sensitivity) and logit(1-specificity). In the spirit of the
popular method of Littenberg and Moses [1, 2] another choice might be the D
on S regression line, where D and S are defined as D = η − ξ and S = η + ξ
respectively. Then the summary line is given by

y = i + γx with γ =
σ2

η + σξη

σ2
ξ + σξη

and i = η̄ − γξ̄ (5.5)

where y and x have similar definition as in (5.4).
This ROC curve is popular because of the interpretation of the variables and

parameters involved. D is the diagnostic log odds ratio, and S is a measure for
test positivity directly related to the threshold. The intercept i is the diagnostic
odds ratio if sensitivity is equal to specificity, or the common diagnostic odds ratio
if γ = 0. The slope γ is interpreted as an asymmetry parameter; if it is zero,
the summary ROC curve is symmetric around the line on which sensitivity and
specificity are equal.

In this paper we restrict the analyses to these two choices, but the analyses
could be done in the same way for the other summary ROC curves as well.

5.3.2 Extension with covariates

In this section we discuss the extension with covariates. To study the effect
of covariates on specificity and sensitivity, and also on ROC curves, the model
can be extended by replacing ξ̄ and η̄ in (5.1) by a linear combination of study
level covariates. For example, we can replace the ξ̄ by α0 +

∑p
r=1 αrYr and η̄

by β0 +
∑q

r=1 βrZr, where the Y ’s and Z’s are covariates measured at group
(diseased or non-diseased) or at study level. Of course, some or all of the Y ’s
might be identical to some or all of the Z’s. In the present case-study we choose
the covariates Y and Z to be identical. Without loss of generality we can always
write the model as

(
ξi

ηi

)
∼ N

( (
α0 + α1X1 + . . . + αpXp

β0 + β1X1 + . . . + βpXp

)
,

(
σ2

ξ σξη

σξη σ2
η

) )
(5.6)

Here the Xi’s are measured on group level. If a covariate is not available for either
specificity or sensitivity, or if one wants to use a covariate only for either specificity
or sensitivity, the corresponding αi or βi is fixed to zero. Again the model can be
fitted with a general(ized) linear mixed model program, and standard likelihood
ratio or Wald tests can be used to test hypotheses for the regression coefficients.

Summary ROC curves now depend on the covariates too. For example, the η
on ξ or the D on S summary line is obtained by replacing ξ̄ and η̄ in (5.4 or 5.5)
by their linear predictors:

y = (β0 − γα0) + (β1 − γα1)X1 + . . . + (βp − γαp)Xp + γx (5.7)
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with

γ =
σξη

σ2
ξ

or γ =
σ2

η + σξη

σ2
ξ + σξη

The covariance matrix in (5.6) can also be allowed to depend on the covariates.
For instance, in our example we allow the covariance matrix Σ to depend on the
three types of the diagnostic test (k = 1, 2, 3):

Σk =
(

σ2
ξk σξηk

σξηk σ2
ηk

)

Note that the slope, γ, in all the choices of regression lines is not any more con-
stant across the tests, and it is therefore denoted by γk. If the covariance matrix
does not depend on the type of test, the lines corresponding to the different covari-
ate values are parallel, and the corresponding summary ROC curves do not cross.
A higher intercept then means a uniformly higher sensitivity given the specificity
and hence a higher area under the summary ROC curve. If the covariance matrix
depends on k then the summary ROC curves corresponding to different test types
possibly cross and a higher intercept does not necessarily correspond with a higher
area under the ROC curve. Note that if the covariance matrix does not depend
on k, the summary ROC curves do not cross regardless of the choice of type of
summary ROC curve. This is also true for the other types of summary ROC curves
not considered here. It is remarkable that if the covariance matrix depends on k,
it is possible that the curves do not cross for one choice, but can cross for another
choice. From (5.7) we see that a necessary and sufficient condition for the η on ξ
regression lines being parallel is that

σξηk = γσ2
ξk (5.8)

with γ not depending on k, while it is clear that this is not sufficient for the D on
S regression lines being parallel. For this it follows from the second part of (5.7)
that

σξηk = (γσ2
ξk − σ2

ηk)/(1− γ) (5.9)

Of course, it is much more easy to draw conclusions on the effect of covariates
on the summary ROC curve if the curves corresponding to different covariate
patterns do not cross. To test this null hypothesis, either (5.8) or (5.9) should be
tested, depending on the choice of the type of summary ROC curve. In practice
however, it is easier to test the hypothesis that the whole covariance matrix

∑
k

does not depend on k. If it depends on k, still the lines might be parallel and we
need to test more specifically (5.8) or (5.9).

5.4 Analyses and results

In this section we analyse the data of our example. We start with investigating
how the overall sensitivity and specificity are associated with type of diagnostic
test and year of publication. Next we will investigate the effect of these covariates
on the summary ROC curves.
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5.4.1 Sensitivity and Specificity

In our data set we have three different diagnostic tests: dobutamine-echo, dipyridamole-
echo and exercise-echo, which can be represented through two dummy variables
Z1 and Z2. Here Z1 is 1 if the test is the dipyridamole-echo, else Z1 is 0; Z2 is 1 if
the test is exercise-echo, else Z2 is 0. Furthermore we have the year of publication
(Yr) as a continuous covariate. Let k =1 (dobutamine-echo), = 2 (dipyridamole-
echo) and = 3 (exercise-echo) denote the different diagnostic tests, and let i be
the number of the study within a diagnostic test group. We start with fitting the
following saturated model.

(
ξik

ηik

)
∼ N

( (
ξ̄
η̄

)
,

(
σ2

ξk σξηk

σξηk σ2
ηk

) )
(5.10)

with
ξ̄ = α0 + α1Z1i + α2Z2i + α3Y ri + α4Z1iY ri + α5Z2iY ri

η̄ = β0 + β1Z1i + β2Z2i + β3Y ri + β4Z1iY ri + β5Z2iY ri

Note that the model allows for possible interaction between publication year
and diagnostic test and also allows the covariance matrix to be different for the
different diagnostic tests. The model was fitted with SAS Proc NLMIXED. The
syntax is given in the appendix. In the spirit of the general guidelines for mixed
model building given by Verbeeke and Molenberghs [14] (chapter 9) we first try to
simplify the covariance structure. By the likelihood ratio test we tested the null
hypothesis that the covariance matrix does not depend on the diagnostic test k.
The result was χ2 = 2.6 on df = 6, P = 0.857, so it is reasonable to assume that
the covariance matrix is constant. Further reduction of the covariance structure
does not make sense. Next in the model with constant covariance matrix the
interactions between diagnostic test and publication year were tested. The result
of the global test on all interaction terms is significant ( χ2 = 10.2 on df = 4, P =
0.037). The interaction with respect to the sensitivity was not significant (LR χ2

= 2.4 on df = 2, P = 0.301), while it was significant for the specificity (LR χ2 = 7.3
on df = 2, P = 0.026). In SAS Proc NLMIXED, also Wald tests can conveniently
be carried out using the ’contrast ’ statement. These tests resulted in very similar
p-values. As a final model we fitted a model with only the interaction between
test and publication year for the specificity. The estimated parameters are given
in Table 5.1 and the figures for estimated sensitivity and specificity plotted against
publication year are given in Figure 5.2(a) and 5.2(b).

We can draw the following conclusions. With respect to the sensitivity, there
are differences between the diagnostic tests (P < 0.0001, global Wald test). The
exercise-echo has the highest sensitivity, followed by the dobutamine- and dipyridamole-
echo. More specifically, there is no significant difference between the exercise-echo
and the dobutamine-echo (95% CI on the logit scale: -0.09 to 0.52), but the dif-
ference between the dipyridamole-echo and the dobutamine-echo and between the
exercise-echo and the dipyridamole-echo are very significant, with 95% confidence
intervals (-0.78, -0.27) and (-1.05,-0.42), respectively. The association of year of
publication with the sensitivity is small and far from statistically significant (p-
value = 0.899). This is also illustrated in Figure (5.2(a)) where all the three tests
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Table 5.1: Parameter estimates of logit specificity and sensitivity assuming there
is no interaction term for sensitivity and assuming a constant covariance matrix.

Parameter logit(1-Spec.) Spec.1 logit(1-Sens.) Sens.
Constant -1.747(0.225) 0.834(0.014) 1.457(0.132) 0.813(0.012)
Dip. -1.181(0.335) 0.925(0.010) -0.522(0.129) 0.720(0.020)
Exc. -0.651(0.381) 0.795(0.024) 0.212(0.153) 0.843(0.017)
Yr 0.031(0.040) 0.003(0.020)
Dip*Yr 0.067(0.060)
Exc*Yr 0.213(0.076)
σ2

ξ 0.322(0.078)
σξη 0.162(0.049)
σ2

η 0.318(0.055)

have almost constant sensitivity over the publication years.
With respect to the specificity, there is a statistically significant interaction be-

tween diagnostic test and year of publication (P= 0.021). Averaged over the three
tests, the effect of publication year on specificity is very significantly negative (P <
0.0001), with 95% confidence interval (-0.185, -0.064). Averaged over the range of
publication years, there are significant differences between the three tests (global
Wald test P < 0.0001). More specifically, there is no significant difference between
logit(1-specificity) of exercise- and dobutamine-echo (95% CI for difference -0.091
to 0.614). However, there is a significant difference between logit(1-specificity) of
dipyridamole- and exercise-echo (95% CI for difference -1.564 to -0.746), and be-
tween dipyridamole- and dobutamine-echo (95% CI for difference -1.247 to -0.539).
Equivalently for the average publication year, we can conclude that dipyridamole-
echo is highly specific followed by dobutamine- and exercise-echo consecutively.
Figure (5.2(b)) illustrates the changes in specificity of the three tests over the
publication years.

(a) (b)

Figure 5.2: 5.2(a) Sensitivity against publication year, and 5.2(b) Specificity
against publication year
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5.4.2 Summary ROC curve

As shown in Section 5.4.1, the test on equality of the covariance matrices was far
from significant and hence we can assume that they are equal. However, to show
how one can proceed if the covariance matrices turn out to be different, we proceed
the analyses assuming unequal covariance matrices.

The η on ξ type summary ROC curve:

To investigate the effect of the covariates on summary ROC curves, we start again
with the model given by (5.10). The resulting η on ξ regression line is given by
(5.7) with slope γk = σξηk/σ2

ξk depending on the diagnostic test k. The effect of
covariates on the summary ROC curves is much easier to judge and to describe if
the slope parameter is the same for all diagnostic tests, i.e. if (5.8) holds. Therefore
we fit the following model.

(
ξik

ηik

)
∼ N

( (
ξ̄
η̄

)
,

(
σ2

ξk γσ2
ξk

γσ2
ξk σ2

ηk

) )
(5.11)

where ξ̄ and η̄ are as in (5.10). Note that in this model the ratio of the covariance
between ξ and η and the variance of ξ, γ, is independent of k, hence the regression
lines of the three diagnostic tests have the same slope. The likelihood ratio test
comparing this model with (5.10) gives LR χ2 = 0.4 on df = 2, P = 0.82, so it is
reasonable to adopt this model. The results are given in Table 5.2.

The parameters for the regression line of η on ξ are calculated by (5.7). The

Table 5.2: Parameter estimates of logit specificity and sensitivity for the regression
line of η on ξ assuming a constant slope prameter.

logit(1-specificity) (se) logit(sensitivity) (se)
Intercept -1.688(0.214) 1.618(0.200)
Dipyridamole -1.269(0.330) -0.789(0.237)
Exercise -0.700(0.418) 0.209(0.335)
Publication year 0.021(0.038) -0.029(0.036)
Dipyridamole*Pub year 0.088(0.059) 0.060(0.044)
Exercise*Pub year 0.213(0.085) -0.009(0.069)
Covariance parameter estimates for the 3 tests assuming the slope is constant

Dobutamine Dipyridamole Exercise
σ2

ξ 0.247(0.088) 0.289(0.162) 0.472(0.186)
σ2

η 0.328(0.080) 0.256(0.081) 0.358(0.127)
Slope 0.526(0.158)

standard errors can be calculated using the delta-method, and hypotheses can be
tested with Wald tests. In SAS Proc NLMIXED this can conveniently be done
with the ’estimate’ and ’contrast ’ statements. The estimated parameters of the
regression line are given in Table 5.3.
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Table 5.3: Parameter estimates of the η on ξ regression line assuming a constant
slope parameter with and without interaction between tests and year of publica-
tion.

Parameter Based on model (5.11) Based on model (5.12)
Estimate(se) P-value Estimate(se) P-value

Intercept 2.506(0.341) <.0001 2.377(0.327) <.0001
Dipyridamole -0.122(0.321) 0.705 -0.140(0.178) 0.431
Exercise 0.577(0.357) 0.109 0.115(0.167) 0.494
Publication year -0.040(0.036) 0.278 -0.039(0.026) 0.136
Dipyridamole*Pub year 0.014(0.049) 0.772
Exercise*Pub year -0.120(0.078) 0.123
Slope 0.526(0.158) 0.001 0.445(0.141) 0.002

The Wald test on the two interaction terms with publication year gave a p-value
= 0.168, so the following final model was fitted.

(
ξik

ηik

)
∼ N

( (
ξ̄
η̄∗

)
,

(
σ2

ξk γσ2
ξk

γσ2
ξk σ2

ηk

) )
(5.12)

where ξ̄ is as in (5.10) and η̄∗ is replaced by

η̄∗ = β0 + β1Z1i + β2Z2i + β3Y ri + γα4Z1iY ri + γα5Z2iY ri

As an alternative to the aforementioned Wald test, one can also compare model
(5.11) and (5.12) using the LR test. This gives a similar result (χ2= 3.6 on df=2
and p-value=0.165). The summary ROC based estimate on this model is given in
the right half of Table 5.3. The Wald test on β1− γα1 = β2− γα2 = 0 shows that
there are no significant differences between the three diagnostic tests (p-value =
0.550). The estimated summary ROC curves are shown in Figure 5.3. The exercise
echo gives the highest area under the ROC curve followed by dobutamine-echo,
though the differences are not statistically significant. The publication year has
no significant effect on the summary ROC curves.

The D on S type summary ROC curve:

The same analyses can be done if the D on S regression line is chosen to obtain a
summary ROC curve. We start again with the model in (5.10) and compare with
the model in (5.13) which assumes that the D on S regression lines corresponding
to the three tests are parallel.

(
ξik

ηik

)
∼ N

( (
ξ̄
η̄

)
,

(
σ2

ξk ψ

ψ σ2
ηk

) )
(5.13)

with

ψ =
σ2

ηk − γσ2
ξk

γ − 1
where γ is the slope after rewriting the D on S regression in terms of η and ξ.
This model can also be fitted in SAS Proc NLMIXED (the SAS syntax is available
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Figure 5.3: ROC curves based on the regression line of η on ξ, for the mean
publication year

from the authors on request). Comparing this model with model (5.10), where
the regression lines may be non-parallel using the likelihood ratio test results in a
large p-value (χ2 = 1.2 on df = 2, P= 0.549). To test the interaction terms for
the diagnostic tests with publication year, on the D on S regression line we fitted
the following model:

(
ξik

ηik

)
∼ N

( (
ξ̄
η̄†

)
,

(
σ2

ξk ψ

ψ σ2
ηk

) )
(5.14)

where
η̄† = β0 + β1Z1i + β2Z2i + β3Y ri + γα4Z1iY ri + γα5Z2iY ri

Note that when the estimated γ ≈ 1, there might be a convergence problem on
fitting model (5.13) and (5.14) due to the 1/(γ−1) in the covariance structure. In
such cases, it is possible to reparametrize, for example by taking the bivariate nor-
mal distribution for the true Si and Di and directly fit the models in NLMIXED
in a similar way as model (5.11) and (5.12). Transforming the regression param-
eters of the D on S regression into η on ξ can easily be done using the estimate
statement in NLMIXED.

The likelihood ratio test comparing model (5.13) and (5.14) gives a p-value not
far from significant result (χ2 = 5.1 on df = 2 and P=0.078). Hence we adopted
model (5.13) as our final model. The results are shown in Table 5.4. From
the table it is seen that the interaction between exercise and publication year is
significant, implying that which diagnostic test is preferable depends on publi-
cation year. For example, exercise echo has the highest accuracy approximately
until 1992 than dipyridamole echo and until 1994 than dobutamine echo. For
the average publication year, there is no significant difference among the three
tests(p-value=0.772), but there might be significant differences at different year of
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Table 5.4: Parameter estimates of the D on S regression line assuming a constant
slope parameter and with interaction between tests and year of publication. The
estimates are given after rearranging terms in terms of η(ξ)

Parameter Estimate(se) P-value
Intercept 3.370(0.456) <.0001
Dipyridamole 0.515(0.435) 0.237
Exercise 0.898(0.474) 0.059
Publication year -0.049(0.047) 0.294
Dipyridamole*Pub year -0.031(0.067) 0.643
Exercise*Pub year -0.223(0.102) 0.029
Slope 1.039(0.217) <.0001

publication. Probably clinically most relevant are the differences in the most re-
cent years covered by the meta-analysis, for example in the year 1999. The overall
test on differences between the three diagnostic tests are not far from significant
in this given year (p-value = 0.084). Looking at the differences between the dif-
ferent pairs we can say that, for any given value of specificity, the logit sensitivity
of the dobutamine test is 1.111(se = 0.543, p-value=0.041) higher than that of
the exercise test, and the logit sensitivity of the dipyridamole is 1.345(se = 0.614,
p-value=0.029) higher than that of the exercise test, while the dobutamine and
dipyridamole are not statistically significantly different (estimated difference 0.234,
se = 0.347, p-value=0.499). The resulting summary ROC curves for publication
year 1999 are given in Figure 5.4.

Figure 5.4: ROC curves based on the regression line of D on S, for publication
year 1999



99

Chapter 5: Bivariate Random Effects Meta-regression 91

5.5 Discussion

Despite its shortcomings, the SROC method of Littenberg and Moses[1, 2] has
been the standard method in practice for more than a decade to estimate a sum-
mary ROC curve in diagnostic test meta-analysis. Recently the bivariate random
effects meta-analysis model [15] was advocated to be used for this type of data
[4, 6] and we expect that it will soon replace the SROC method as the standard
method in practice.

The bivariate approach has many advantages over the traditional SROC. It
handles properly the within and between-study correlation that might exist be-
tween specificity and sensitivity or D and S, it takes into account the measurement
error in S or ξ in the sprit of structural approach to measurement error [16, 17]
and the possible heterogeneity across studies. By using the binomial distribution
for the measurement error model, one can also avoid the bias due to addition of
a correction factor in case of a zero count [4, 7, 12]. The bivariate approach is
flexible to produce different summary outcome measures, such as sensitivity, speci-
ficity, diagnostic odds ratio, likelihood ratio and SROC curves. It can easily be
fitted in many standard statistical packages. So far no examples have been pub-
lished in the literature where the bivariate approach is extended with covariates for
the meta-analysis of diagnostic tests. In this paper we apply the bivariate meta-
regression approach to compare three different imaging tests for coronary artery
disease [9], adjusted for other covariates. We used the bivariate meta-regression ap-
proach for two purposes. Firstly we wanted to compare sensitivity and specificity
of the different diagnostic tests in a bivariate meta-regression model. Secondly
we wanted to compare the diagnostic accuracies of the tests through the use of
summary ROC curves. In principle the first goal can also be met by carrying out
the standard univariate random effects regression approach on sensitivities and
specificities separately. However, sensitivity and specificity are often negatively
correlated within-studies, and ignoring this correlation would be inappropriate or
suboptimal [4, 5, 6, 18]. The bivariate model takes into account both the within
and between-study correlation and is more advantageous, over the univariate, as
the within and between-study covariances are larger. If there are studies with miss-
ing sensitivity or specificity, and the missing data is not completely random, the
univariate regressions might be biased, while the bivariate regression is still valid.
Even if one is interested only in one of the outcomes, sensitivity or specificity,
Riley et al. [19, 20] pointed out that the bivariate approach ’borrows strength’
across outcomes and thus may increase the precision of the results.

The second aim of our analysis was to compare the diagnostic accuracy of the
three diagnostic tests through the use of summary ROC curves. As pointed out
by Arends et al. [4], there are several possible choices for a summary ROC curve.
They mentioned 5 choices: the regression of η on ξ, the regression of ξ on η, the
D on S regression, the major axis of the bivariate normal distribution and the
one of Rutter and Gatsonis [5], which has slope ση/σξ. All lines pass through the
centre of the bivariate normal distribution (ξ, η), but have different slopes and of
course different intercepts. The resulting summary ROC curves can be substan-
tially different, and, if there is only one pair of specificity and sensitivity per study
available, it is unidentifiable from the data which one resembles most the ROC
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curves of the individual studies. In this paper we have chosen to work with the
η on ξ and the D on S summary ROC’s, but the same analyses can be done for
the other choices as well. The comparison of different diagnostic tests is greatly
simplified if it is reasonable to assume that their covariance matrices are the same.
Then summary ROC’s are ordered and do not cross, independent of the choice of
the type of summary ROC. In our application, the test on equality of the covari-
ance matrices was far from significant, so we could have assumed that they are
equal. Instead, just to show how one can proceed if the covariance matrices turn
out to be different, we did the analyses not assuming equal covariance matrices.
Then the choice of type of summary ROC really matters. It can happen for in-
stance that the summary ROC’s cross for one type, and do not cross for another
type. In that case the results of the comparison of the diagnostic tests can be
substantially different. However we think that usually in practice equality of the
covariance matrices will be a reasonable assumption. One has to realise, however,
that even then still the conclusions on differences in diagnostic performance as
measured by the summary ROC curve may depend on the choice of the summary
ROC curve type. For instance, it can happen that there are no differences for one
choice, while there are non-negligible differences for another choice. Only if the
effect of the covariates on ξ̄ is zero the differences do not depend on the choice of
the summary ROC curve.

In our case study we could assume that slope parameters were equal, thereby
reducing the comparison to comparing the intercepts. However, if the slope pa-
rameters of the diagnostic tests are significantly different, the comparison is less
straightforward. One possibility then is to focus on a specific value of the speci-
ficity, and then to compare the sensitivities or vice versa. Another possibility
would be to compare the tests using the (partial)area under the ROC curve (see
references, [21, 22] for example on how to calculate area under the curve and their
standard errors).

The bivariate approach using maximum likelihood estimation can give con-
vergence problems when the number of studies is small or when there is a large
correlation between the two outcome measures. The problem can be more pro-
nounced for the bivariate meta-regression, in particular when the covariance is
allowed to depend on covariates. In this application we were not bothered by
convergence problems, as long as the starting values were chosen appropriately.
In SAS there are different options to avoid the non-convergence to some extent
[23]. For example, when we use the procedure NLMIXED, we can change the
initial values by using a grid search specification to obtain a set of good feasible
starting values, or change the optimization technique. An alternative would be to
use a Bayesian hierarchical modeling approach which can be carried out using the
publicly available software WINBUGS [24].
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Appendix (SAS syntax)

In this section we present the SAS syntax used to fit the bivariate random effects
method with covariates. We used the NLMIXED procedure and the meta-analysis
data described in Section 5.2. The data set is re-arranged in a vertical order and
is given below.

TEST Yr Study TP FN TN FP dob dip ex y n
echo-dip 3 101 18 8 4 0 0 1 0 18a 26a

echo-dip 3 101 18 8 4 0 0 1 0 0b 4b

...
...

...
...

...
...

...
...

...
...

...
...

echo-dob 1 124 44 7 18 1 1 0 0 44 51
echo-dob 1 124 44 7 18 1 1 0 0 1 19
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
echo-ex 7 275 151 43 22 28 0 0 1 151 194
echo-ex 7 275 151 43 22 28 0 0 1 28 50

The variables are defined as:
Yr = publication year - 1990
Study = a number given for a study
dob = dobutamine-echo; dip = dipyridamole-echo; ex = exercise-echo
y = number of patients with atrue positive (TP) bfalse positive (FP) results
n = total number of patients in the group awith the disease (TP + FN) and
bwithout the disease (FP + TN)

SAS Syntax for Model 5.10

A bivariate model with covariates assuming the covariance matrix depends on the
type of diagnostic test used, and also includes the interaction between publication
year and diagnostic tests used. The parameter names used in the syntax stand
for: a0 & bo = constant, a1 & b1 = Dipyridamole-echo, a2 & b2 = Exercise-echo,
a3 & b3 = Publication year, a4 & b4 = Dipyridamole-echo*Publication year, a5
& b5 = Exercise-echo*Publication year. The a’s belong to logit(1-specificity) and
the b’s to logit(sensitivity).

proc nlmixed data = exbiv qpoints=20 miniter=60; /*call for procedure*/
parms a0=-1.57 a1=-0.95 a2=0.09 a3=0.04 a4=0 a5=0

b0=1.47 b1=-0.53 b2=0.22 b3=0.04 b4=0 b5=0
sx0=0.3 sx1=0.4 sx2=0.7 c0=0.1 c1=0.2 c2=0.2
se0=0.3 se1=0.3 se2=0.4; /*starting values*/

/*txi is the true logit(1-specificity) and teta is the true logit(sensitivity)*/
theta = exp(txi*ndis + teta*dis );
pi = theta / (1 + theta); /*calculate pi from true xi’s and eta’s*/

/*y is the false positives and true positives in one column*/
model y ~ binomial(n, pi) ;

random txi teta ~ normal ([a0+a1*dip+a2*ex+a3*Yr+a4*Yr*dip+a5*Yr*ex,
b0+b1*dip+b2*ex+b3*Yr+b4*Yr*dip+b5*Yr*ex],

/*the covariance matrix which depends on the type of diagnostic tests*/
[sx0*dob+sx1*dip+sx2*ex, c0*dob+c1*dip+c2*ex,



102

94 Meta-analysis of Diagnostic Test Evaluation Data

se0*dob+se1*dip+se2*ex]) subject=study ;
/*contrast statements to test the interaction terms*/

contrast ’no interaction pubyr and test wrt spec’ a4,a5;
contrast ’no interaction pubyr and test wrt sens’ b4,b5;
contrast ’no interaction pubyr and test’ a4, a5, b4,b5;

run;
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Abstract

Bivariate random effects meta-analysis of diagnostic tests is becoming a well estab-
lished approach when studies present one two-by-two table or one pair of sensitivity
and specificity. When studies present multiple thresholds for test positivity, usu-
ally meta-analysts reduce the data to a two-by-two table or take one threshold
value at a time and apply the well developed meta-analytic approaches. However,
this approach does not fully exploit the data. In this paper we generalize the
bivariate random effects approach to the situation where test results are presented
with equal number of k thresholds for test positivity, resulting in a 2 by (k + 1)
table per study. The model can be fitted with standard likelihood procedures in
statistical packages such as SAS (Proc NLMIXED).We follow a multivariate ran-
dom effects approach; i.e., we assume that each study estimates a study specific
ROC curve that can be viewed as randomly sampled from the population of all
ROC curves of such studies. In contrast to the bivariate case, where nothing can be
said about the shape of study specific ROC curves without additional untestable
assumptions, the multivariate model can be used to describe study specific ROC
curves. The models are easily extended with study level covariates. The method
is illustrated using published meta-analysis data.

6.1 Introduction

Meta-analysis of diagnostic accuracy studies depends on the type of data that is
available from different studies. The most frequently reported measures of diag-
nostic test accuracy are sensitivity and specificity or a two by two table, i.e. with a
single threshold value. Meta-analytic methodologies for such kind of data has been
developed to summarize sensitivity and specificity separately or jointly in a fixed
or random effects context, for example [1, 2, 3, 4, 5, 6]. In recent years the bivari-
ate random effects meta-analysis of diagnostic tests has become a well established
approach, which can easily be fitted in many statistical packages [1, 2]. The bi-
variate approach has many advantages over separate random effects meta-analysis
of sensitivity and specificity and the traditional summary receiver operating char-
acteristics (SROC) method of Littenberg and Moses [1, 2, 4]. Besides it is flexible
to derive different outcome measures, such as overall sensitivity and/or specificity,
diagnostic odds ratio and SROC curves, from the estimated parameters.

In this article we consider the situation where diagnostic test results are pre-
sented using more than one threshold, i.e. outcome is reported in more than
two categories. One straightforward approach often followed in practice is to
dichotomize the test results into two categories and apply the well developed bi-
variate methods separately for each of the thresholds. When data is presented for
many thresholds, a ROC can be calculated per study, and meta-analytic methods
have been developed to derive a SROC from them [7, 8, 9]. Poon [10] discusses a
latent normal distribution model for analysing ordinal responses with applications
in meta-analysis. This model also can be applied to multiple threshold diagnos-
tic meta-analysis data. Specifically for diagnostic accuracy studies, Dukic et al.
[11] discussed both ordinal regression and hierarchical approaches based on latent
variable modeling.
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The above approaches are no direct extensions of the nowadays popular bivari-
ate meta-analysis approach for the one threshold case. The aim of this article is
to generalize this approach to the situation where test results are presented using
more than one threshold or in more than two categories. Not necessarily in all
studies the same number of categories is presented, however, in this article we
restrict to the case where the number of categories is equal across studies. Our
approach can easily be implemented in standard statistical packages. In Section
6.2 we briefly revised the bivariate random effects approach, in Section 6.3 we in-
troduce the multivariate approach to meta-analyse studies that report test results
with more than one thresholds, in Section 6.4 we illustrate the methods using a
published meta-analysis data and Section 6.5 contains the discussion.

6.2 The Bivariate Random Effects (BREM) Ap-
proach

For the situation where each study presents one pair of sensitivity and specificity
with corresponding standard errors, the bivariate meta-analysis approach [12] has
become a well established method [1, 2, 13]. The approach preserves the two-
dimensional nature of the original data taking into account the between-studies
correlation of sensitivity and specificity. It can be seen as an improvement on
the method of Littenberg and Moses [4], which has been the standard method to
construct a SROC for more than a decade.

In this section first we will introduce the bivariate random effects model (BREM)
in its standard form. Subsequently we will derive another form of the model, which
starts from a model for study specific ROCs and has a different parametrization.
This formulation of the model is the natural one to generalize to the case where we
have two or more pairs of specificity and sensitivity per study. This formulation
also sheds more light on the interpretation of SROCs, which is problematic in the
case where only one pair of sensitivity and specificity is available. This issue seems
to have been overlooked in the literature.

For study i, denote ξi = logit(1 − specificityi) and ηi = logit(sensitivityi).
Let x1i be the number of true positives, n1i the total number of diseased subjects,
x0i the number of false positives and n0i the total number of non-diseased sub-
jects. Then the observed sensitivity and specificity for a given study i are x1i/n1i

and (n0i − x0i)/n0i respectively. Note that sensitivity and specificity tend to be
negatively correlated because of explicit or implicit differences in the thresholds.
Therefore ξi and ηi will tend to be positively correlated. The between-studies
model [1] is given by:

(
ξi

ηi

)
∼ N

( (
ξ̄
η̄

) (
σ2

ξ σξη

σξη σ2
η

) )
(6.1)

The bivariate distribution of true logit transformed sensitivities and 1-specificities
can be characterized by different lines. Back transforming such a line by taking
the inverse logits gives a SROC. Since there are several reasonable choices for lines
characterizing a bivariate normal distribution, several types of SROCs are pos-
sible. For example, a straightforward choice would be the regression of η on ξ.
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Table 6.1: Different choices of summary lines as resulting from the BREM: y =
α + βx where y = logit(sensitivity) and x = logit(1− specificity). R&G denotes
the SROC as resulting from the method of Rutter and Gatsonis [6]

Parameter Type of regression line
η on ξ ξ on η D on S R & G Major Axis

β
σξη

σ2
ξ

σ2
η

σξη

σ2
η + σξη

σ2
ξ + σξη

ση

σξ

σ2
η − σ2

ξ +
√

(σ2
η − σ2

ξ)2 + 4σ2
ξη

2σξη

α η̄ − βξ̄

However, since the roles of ξ and η are interchangeable, the regression line of ξ
on η is an evenly reasonable choice. The method of Littenberg and Moses chooses
the regression line of D = η − ξ on S = η + ξ. Table 6.1 gives an overview of 5
different choices as distinguished by Arends et al. [2].

The different SROCs can be vastly different in applications, see for instance
Arends et al. [2] and the examples in Section 6.4. The BREM approach as
introduced by Reitsma et al. [1] and discussed by Arends et al. [2] does not
assume anything about study specific curves. The method simply leads to an
estimated underlying bivariate distribution of the true sensitivities and specificities
as reported by the different studies included in the meta-analysis. This means
that the chosen SROC does not necessarily correspond with the true curves of
the studies. The true study specific curves might have a substantially different
shape, and the SROC cannot be interpreted as a kind of average or overall ROC
representative for the ROCs of the different studies. There might even be no
study specific curves at all, in case the diagnostic test cannot be thought of as a
continuous test. However, this does not mean that the analysis does not make sense
in this case, since the existence of study specific ROC curves is not assumed by the
method. In the remainder of this section we introduce a new formulation of the
BREM, which starts with the study specific ROCs. This will make clear under
which extra assumption the BREM describes the distribution of study specific
ROCs and the calculated SROC can be considered to be a real overall SROC.

Suppose that in the (η, ξ) space the study specific ROC curves are straight
lines with a common slope β. The lines of the different studies then only differ in
level, characterised by the intercept αi for study i:

ηi = αi + βξi (6.2)

We assume that the αi’s are normally distributed with mean ᾱ and variance
σ2

α. The observations consist of an estimate (ξ̂i, η̂i) of one pair (ξi, ηi) per study.
To be able to estimate the parameters, we have to assume a model that describes
how these pairs arise across studies. A straightforward assumption is that the ξi

values are drawn from a normal distribution with mean ξ̄ and variance σ2
ξ . This

leads to the following marginal model for (ξi, ηi):

(
ξi

ηi

)
∼ N

( (
ξ̄

α + βη̄

) (
σ2

ξ σαξ + βσ2
ξ

σαξ + βσ2
ξ σ2

α + β2σ2
ξ + 2βσαξ

) )
(6.3)
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This model is just the same as (6.1), only with a different parametrization.
However, the number of parameters is one more, which means that one of them
is unidentifiable. To make the model identifiable, we need a further assumption
on how the ξi’s in the different studies are selected. For instance we could assume
that σαξ is zero. This means that the individual investigators, in selecting their
ξi value, are not lead by the level of their line. However it is perfectly conceivable
that an investigator who happens to have a ROC that is relatively low, tends to
choose a relatively high value for his ξi if a high sensitivity is preferred, or just a
relatively low value of ξi if high specificity is preferred.

If we assume that the correlation between αi and ξi is zero, it is easy to see
that β is given by the slope of the regression line of η on ξ. In this case the η on
ξ type SROC is the true SROC in the sense that it really can be interpreted as
such. In the (ξ, η) space it is just the average line over the population of studies,
in the ROC space it can be interpreted as a kind of median ROC.

Another assumption could be that the correlation between η and α is zero.
This means that we assume σαξ = −σ2

α/β, and it is easily seen that β = −σ2
α/σαξ,

the slope of the regression of ξ on η. Thus under this assumption the ξ on η type
SROC is the real one.

More general, we could assume that some linear combination aξ + bη of ξ and
η is not correlated to α, for some value of a and b. We have already seen that if
a = 1 and b = 0, the η on ξ type SROC is the correct one. If a = 0 and b = 1, then
the ξ on η type is the correct one. If we assume a = b = 1, then one can check
easily that β is equal to the slope of the regression of D = η − ξ on S = η + ξ,
and the Littenberg & Moses type SROC is the correct one. It is also easy to check
that the assumption a = β and b = 1 leads to the Rutter & Gatsonis type SROC.

We conclude that in the situation where we have only one pair of sensitivity
and specificity per study a calculated SROC can only be interpreted as a real
overall ROC under an untestable assumption. This changes as soon as more pairs
of sensitivity and specificity are available per study.

The within-study variability can be modeled using an approximate normal
distribution [2, 1] or a binomial distribution [2, 13, 14]. Hamza et al. [15] compared
in extensive simulation experiments the binomial and approximate normal within-
study models, and showed that in general the performance of the binomial within-
study model is much better. Chu and Cole [14] also showed similar results using a
selected number of simulations. Therefore in this paper we restrict to the binomial
within-study model. For the approximate approach we refer to [1, 2].

The within-studies model is based on the binomial distribution of the number
of false positive (x0i) and true positive (x1i) test results. More specifically we
assume:

x0i ∼ binomial( eξi

1+eξi
, n0i)

x1i ∼ binomial( eαi+βξi

1+eαi+βξi
, n1i)

(6.4)

The ξi and ηi = αi + βξi are the true logit transformed (1-specificity) and
sensitivity from (6.2). The bivariate model given by (6.2-6.4) can be fitted using
generalized linear mixed model procedures in standard statistical packages, such
as the SAS procedure NLMIXED, STATA gllamm or the R/S-Plus program nlme.
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6.3 Multivariate Random Effects Meta-analysis (
MREM)

In this section we consider studies where a single test is administered and the re-
sults are reported using J−1 thresholds or, equivalently, with J ordered categories.
Let the number of non-diseased and diseased patients with test result in category
j from the ith study be given by x0ij and x1ij , respectively. The total number of
non-diseased and diseased patients for study i is denoted by n0i =

∑

j

x0ij and

n1i =
∑

j

x1ij , respectively.

6.3.1 The Model

Let the true logit transformed 1−specificity and sensitivity for a given threshold
j be denoted by ξij and ηij respectively, where ξij ’s and ηij ’s are ordered in the j
index. We assume a hierarchical model that is a direct generalization of model 6.2-
6.3. In contrast to the one threshold case (bivariate approach), when we have more
than one threshold (multiple points per study), the SROC curve is identifiable.
The between and within-studies models are given as follows:

Between-studies model:

1. Model for the relation between ξij and ηij :
Within a study we assume a linear relation with common slope β and study
specific intercept αi.

ηij = αi + βξij with αi ∼ N(ᾱ, σ2
α) (6.5)

2. Model for the ξij ’s:

ξij = ξ̄j + ∆i + δij (6.6)

Here ξ̄j is the mean ξij over studies, ∆i represents the study specific sys-
tematic deviation of the ξij ’s from the overall means ξ̄j , δij represents the
random residual deviation. The ∆i’s can be assumed to follow some para-
metric or non-parametric distribution. In this article we assume a normal
distribution given by ∆i ∼ N(0, σ2

∆). The δij ’s are assumed to be indepen-
dent and follow a normal distribution, δij ∼ N(0, σ2

δ ). Furthermore, the δij ’s
are assumed to be independent of the ∆i and αi. The covariance between
αi and ∆i is denoted by σα∆. A negative σα∆ for instance would mean
that in studies with a relatively small αi the ξij tend to be chosen relatively
high. The above assumptions (in 6.5 & 6.6) lead to the following marginal
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between-studies model:



αi

ξi1

...

...
ξi,J−1



∼ N







ᾱ
ξ̄1

...

...
ξ̄J−1




,




σ2
α σα∆ . . . . . . σα∆

σα∆ σ2
∆ + σ2

δ σ2
∆ . . . σ2

∆
... σ2

∆

. . . . . .
...

...
...

. . . . . . σ2
∆

σα∆ σ2
∆ . . . σ2

∆ σ2
∆ + σ2

δ







(6.7)
Note that the covariance structure for the ξij ’s is of compound symmetry.
However, another choice such as Toeplitz, auto-regressive or unstructured
might be chosen as well.

Within-study model:

Given (αi, β, ξi1, . . . , ξi,J−1), the observed number of subjects in the non-diseased
(x0i1, . . . ,x0iJ) and diseased (x1i1, . . . ,x1iJ) groups have independent multinomial
distributions with parameters (π0i1, . . . , π0iJ) and (π1i1, . . . , π1iJ), where

π0ij =





exp{ξij}
1+exp{ξij} , for j = 1

exp{ξij}
1+exp{ξij} −

exp{ξi,j−1}
1+exp{ξi,j−1} , for j = 2, . . . , J − 1

1− exp{ξi,j−1}
1+exp{ξi,j−1} , for j = J

(6.8)

π1ij =





exp{ηij}
1+exp{ηij} , for j = 1

exp{ηij}
1+exp{ηij} −

exp{ηi,j−1}
1+exp{ηi,j−1} , for j = 2, . . . , J − 1

1− exp{ηi,j−1}
1+exp{ηi,j−1} , for j = J

(6.9)

The probability density function (pdf) given the π0ij ’s and π1ij ’s of the observa-
tions of the ith study is given by:

f(x0ij , x1ij |n0i, n1i, π0ij , π1ij) =
n0i!n1i!∏J

j=1 x0ij !x1ij !

J∏

j=1

π
x0ij

0ij π
x1ij

1ij (6.10)

Inference on the parameters is obtained through the standard likelihood method
based on the marginal density for the data, which is calculated by integrating out
the random effects B = (α, ξ1, . . . , ξJ−1)′. Then the contribution of the ith study
to the likelihood is

L(θ|x0ij , x1ij) =
∫

f(x0ij , x1ij |n0i, n1i, π0ij , π1ij)g(B)dB (6.11)

As seen from 6.7, we assumed a multivariate normal distribution for the random
effects. However, the density g(B) can also be assumed to belong to some other
parametric family of distributions [16].
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Fitting the model:

1. We fitted the model using Proc NLMIXED of SAS. This procedure does
not support directly the multinomial distribution. However, the procedure
allows a user specified log-likelihood function. This is easily done for the
multinomial distribution. In the appendix the syntax for an example is given.
The NLMIXED procedure calculates the likelihood function by numerical
integration, using adaptive Gaussian quadrature.

2. NLMIXED allows user specified likelihoods, but many other programs do
not. Usually the binomial distribution is supported, therefore we also men-
tion another possibility to fit the model in Generalized Mixed Model pro-
grams. The trick is to write the multinomial pdf as a sequence of conditional
univariate pdf’s, i.e. the pdf of (xDi1, . . . , xDiJ) is expressed as:

p(xDi1)p(xDi2|xDi1) . . . p(xDi,J−1|xDi1, . . . , xDi,J−2)

where D is the disease status, 0 or 1. These conditional distributions are all
binomial [17] and given by:

x0ij |x0i1, . . . , x0i,j−1 ∼ binomial

(
n0i −

j−1∑
r=1

x0ir,
π0ij

1−
j−1∑
r=1

π0ir

)

x1ij |x1i1, . . . , x1i,j−1 ∼ binomial

(
n1i −

j−1∑
r=1

x1ir,
π1ij

1−
j−1∑
r=1

π1ir

) (6.12)

where π0ij and π1ij are calculated as in (6.8 & 6.9) with j = 1, . . . , J − 1.

6.4 Data Examples

To illustrate the methods discussed in this article, we apply them to two published
meta-analysis data-sets. One is relatively large (29 studies) with three test result
categories (2 thresholds) and one more test result categories for those who do not
have satisfactory specimen for diagnosis (see Section 6.4.1 for the detail). The
second data is small (10 studies) with five test result categories (4 thresholds).
Here our objective is to fit the models discussed in 6.2 and 6.3, and to derive the
SROC curves.

6.4.1 Example 1: Fine-needle aspiration cytologic examina-
tion

Giard and Hermans [18] present 29 studies evaluating the accuracy of fine-needle
aspiration cytologic examination (FNAC) of the breast to assess the presence of
breast cancer. FNAC provides a non-operative way of obtaining cells for the es-
tablishment of the nature of a breast lump and therefore plays a pivotal role in
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Table 6.2: Two-by-four contingency table for study i for relating the FNAC out-
come to the final diagnosis of breast lesion (The FNAC data is given in the Ap-
pendix).

FNAC outcome Malignant Suspect Benign Unsatisfactory Total
Final diagnosis
Malignant x1i1 x1i2 x1i3 x1i4 n1i

Benign x0i1 x0i2 x0i3 x0i4 n0i

the preoperative diagnostic process [18, 19]. The selected FNAC results were clas-
sified in the following four cytologic categories: definitely malignant, suspect for
malignancy, benign, and unsatisfactory specimen for diagnosis (acellular aspira-
tion)(Table 6.2).

The authors [18] determined the sensitivity and specificity of FNAC for each
study by reducing the two-by-four table into a two-by-two table. They classified
malignant and suspect test results as test result positive, and benign and unsatis-
factory as test result negative. Here, following this classification, we applied first
the BREM introduced in Section 6.2. The estimated means(standard error) were
ξ̄ = −2.547(0.226) and η̄ = 1.839(0.119), and the covariance parameters were es-
timated as σ2

ξ = 1.306(0.416), σξη = 0.139(0.156) and σ2
η = 0.317(0.105). From

these estimates, the 5 different types of SROCs were calculated and depicted in
Figure 6.1. The corresponding intercepts and slopes, and area under the curve
(AUC) are given in Table 6.3. Notice that there are relatively large differences
between these curves. As argued in Section 6.2, from the BREM the right SROC
is not identifiable. The different curves correspond with assuming correlation of αi

and ξij (ραξ) 0.000, -0.976, -0.400, -0.620 and -0.085 respectively for types 1 to 5
mentioned in Table 6.1. Note that when the absolute correlation increases the test
accuracy as expressed by the AUC increases. However the choice of the correlation
remains questionable and one should be careful because it is not identifiable from
the data without extra assumptions.

In the FNAC data set the last category is for those who do not have satisfac-
tory specimen for diagnosis. Following the authors, we merged this group with
the benign group, which resulted in a two by three table. Using this classification
we fitted the MREM method discussed in Section 6.3. The estimated mean ξj ’s
were ξ̄1 = −7.084(0.408) and ξ̄2 = −2.548(0.260), and the estimated variances and
covariances were σ2

α = 0.363(0.117), σα∆ = −0.045(0.143), σ∆ = −0.042(0.443)
and σ2

δ = 1.841(0.615). The test for the significance of the covariance between
αi and ξi in the MREM approach is not significant (likelihood ratio χ2

1
∼= 1.00

, p-value ∼= 0.317), and hence there is no indication for the choice of the ξi’s to
depend on the level of individual curves. The estimates for the intercept and slope,
and AUC are given in Table 6.3. Based on these estimates and the estimated ξ̄j ’s,
the estimates of the η̄j ’s are simply calculated using the formula η̄j = α + βξ̄j .
The SROC from the MREM is depicted in Figure 6.1. Comparing the estimated
SROC curves from the two approaches, one can see that the BREM approach
underestimates or overestimates the SROC curves depending on the choice of the
type of SROC. This can be seen clearly from the AUC of the SROC curves in
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Table 6.3: Parameter estimates (standard errors) and AUC of the SROC curves
from the BREM and MREM approaches for the FNAC data

Type of SROC α β AUC
BREM
η on ξ 2.110(0.321) 0.107(0.118) 0.882
ξ on η 7.636(6.307) 2.276(2.463) 0.955
D on S 2.643(0.371) 0.316(0.137) 0.918
Rutter and Gatsonis 3.094(0.319) 0.493(0.112) 0.935
Major axis 2.191(0.406) 0.138(0.153) 0.889
MREM 2.368(0.135) 0.224(0.016) 0.902

Figure 6.1: SROC curves from the five choices of BREM approach and MREM
approach for the FNAC data set

Table 6.3. Of course, if we had chosen another cut point for the BREM, we would
have ended up with a different SROC estimate for each of the choices.

In contrast to the BREM, the MREM provides estimates of the study specific
ROCs. The program that we used, NLMIXED from SAS, gives the empirical Bayes
estimates of the study specific random intercept αi, which enables to draw study
specific SROC curves. We give the study specific ROCs from the MREM approach
in Figure 6.2. Of course, the BREM can also provide study specific curves, but
only if an untestable assumption on the correlation between αi and ξi is made.

6.4.2 Example 2: CAGE in screening for alcoholism

The CAGE questionnaire is a combination of four questions (resulting in a score
from of 0 to 4) that can be used for the screening of patients for alcoholism. Aert-
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Figure 6.2: SROC curve (black line) with 29 study specific curves (gray lines) from
the MREM approach for the FNAC data set

geerts et al. [20] performed a diagnostic meta-analysis of all published studies to
evaluate the diagnostic value of the CAGE questionnaire. In total they present 10
studies published between January 1974 to December 2001, of which 5 were carried
out in primary care populations and 5 in non-primary. In this data example we
also include the study level covariate whether or not the patients are from primary
care. If study is carried out in a primary care population then z1 is assigned 1 else
z1 is 0.

In most cases a CAGE score of ≥ 2 is considered to indicate an alcohol
problem. For the illustration of the BREM method discussed in Section 6.2 we
therefore use the threshold of ≥ 2 as test positive. Now the mean structure in
(6.1) or (6.3) is replaced by ξ̄ = a0 + a1z1 and η̄ = b0 + b1z1. The summary
lines in the logit-logit space are then y = α + γz1 + βxb with α = b0 − a0β,
γ = (b1 − a1β)z1 and β is given by the different choices given in Table 6.1.
The estimates(standard error) were a0 = −2.135(0.390), a1 = −0.160(0.547),
b0 = 0.982(0.393) and b1 = −0.084(0.552). The covariance parameters were es-
timated as σ2

ξ = 0.647(0.344), σξη = 0.543(0.302) and σ2
η = 0.671(0.363). The

resulting estimates of the 5 lines are given in Table 6.4 and the corresponding
SROCs are depicted in Figure 6.3. Unlike the FNAC data example, the differ-
ences among the SROC curves are small.

The two-by-five tables from the CAGE meta-analysis were also analyzed using
the MREM approach discussed in Section 6.3. Here the between-studies model
in (6.5) can be rewritten as ηij = αi + βξij + γz1 to adjust for the covariate
z1. In fact the ξij can also be adjusted for study level covariates, but we did
not do that in this example. The estimated mean ξij ’s were -5.171(0.297), -
3.689(0.257), -2.221(0.240) and -1.054(0.233). The estimated variances and co-
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Table 6.4: Parameter estimates (standard errors) and AUC (for non-primary care
patients (non-PC), and for primary care patients (PC)) of the SROC curves from
the BREM and MREM approaches for the CAGE data-set

Type of AUC AUC
SROC α β γ non− PC PC
BREM
η on ξ 2.775(0.712) 0.840(0.316) 0.050(0.389) 0.886 0.890
ξ on η 3.618(0.827) 1.235(0.364) 0.113(0.479) 0.902 0.908
D on S 3.160(0.710) 1.020(0.314) 0.079(0.419) 0.895 0.900
R & G 3.156(0.657) 1.019(0.286) 0.079(0.417) 0.895 0.900
Major Axis 3.165(0.776) 1.023(0.347) 0.079(0.420) 0.895 0.900
MREM 2.537(0.312) 0.795(0.047) 0.207(0.382) 0.849 0.888

variances were σ2
α = 0.392(0.211), σα∆ = −0.217(0.178), σ∆ = 0.463(0.226) and

σ2
δ = 0.036(0.022). The test for the correlation between the random intercept, αi

and ξi is not significant (χ2 = 2.1, p-value=0.147). Therefore there is no indi-
cation for the choice of the ξi’s to depend on the level of individual curves. The
estimated SROC parameters are given in Table 6.4.

As shown in Figure 6.3 and the AUCs from Table 6.4 the bivariate approach
seems to over estimate the SROC curve, for any of the 5 choices of the type of the
SROC. Again this would possibly be changed if we choose another cut-off point
for positivity on the screening test for alcoholism.

6.5 Discussion

The summary ROC curve has been introduced as a way to assess the diagnostic
accuracy of a diagnostic test in a meta-analysis [4, 5, 21, 7, 22]. For the most
frequent situation, when one point per study is presented, the medical (and sta-
tistical) articles seem to have overlooked the problems inherent to SROCs based
on studies with only one point. Although recent developments in the area have
shown that the bivariate random effects meta-analysis approach has important
advantages over the standard SROC approach of Littenberg and Moses [4, 1, 2],
the problem of identifiability and therefore interpretability of the resulting SROC
remains. When studies present more than one point per study, commonly the test
results are reduced to two categories and meta-analysed using a well established
approach such as the BREM, which is a suboptimal approach. In our data ex-
amples we illustrated this by considering a single cut-off value and applying the
BREM approach. The results from the two data examples showed that differences
between the estimated SROC curves based on the BREM approach can be large,
as in the first example, or relatively small, as in the second example. The sizes
of the differences depend on the values of the three covariance parameters. The η
on ξ and ξ on η curves are always most extreme in the sense that the other three
lie between them. Therefore a necessary and sufficient condition for the 5 differ-
ent curves to be equal is the correlation being one, which is not very probable in
practical situations. Equality of the variances of ξi and ηi is a sufficient condition
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Figure 6.3: SROC curves from the five choices of BREM approach and MREM
approach for the CAGE data set

for equality of the SROCs from the three intermediate approaches (D on S, Rutter
and Gatsonis, and major axis). In the first example the variances differ a factor 4
and the correlation is relatively small (0.22). In the second example the variances
are almost equal and the correlation is relatively large (0.82). This explains why
the differences are large in the first and small in the second example.

In this article we generalized the BREM approach for one threshold to the
situation where more than one point per study is available and the number of
thresholds is equal across studies. In our opinion, the MREM approach is easily
comprehensible and has several advantages. First, data of the full 2 by k table
is used without losing any information by dichotomizing the test results. Second,
different outcome measures can be derived from the fitted model, such as SROC
curves and overall sensitivity and/or specificity for any choice of the threshold.
Third, in contrast to the BREM approach, the summary ROC and the study spe-
cific curves are identifiable. Fourth, the model is symmetric in the ξij ’s and ηij ’s.
Interchanging their role leads to the same model. Fifth, it is straightforward to
include study level covariates. They can be added directly to the intercept and
slope of the SROC, and also to the threshold values. Sixth, the MREM can be
fitted in standard statistical packages without extra programming. In equation
(6.7), we specified compound symmetry for the covariance structure of the ξij ’s.
However, one can also choose another, possibly richer structure and simplify it
using the likelihood ratio test.

A disadvantage in practice is that fitting the MREM can be complicated by
convergence problems. We used NLMIXED from SAS, and in all the practical
examples that we tried we could reach convergence. However, we noticed that
the program is very sensitive to having good starting values. In our experience,
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good starting values are provided by first fitting the BREMs according to all
possible cut-off values. In NLMIXED there are different options to overcome non-
convergence. For a detailed discussion on what to do in case of non-convergence,
we refer to the SAS/STAT manual [23]. Alternatively, a Bayesian method can be
used to fit the MREM, for instance in the publicly available WinBUGS software
[24].

Related work was done by Dukic and Gatsonis [11]. They used ordinal re-
gression and a hierarchical approach based on latent variable modeling. To our
knowledge their approach is rarely used in practice, probably due to the complex-
ity inherent in fitting the models. The difference between Dukic and Gatsonis
model and the MREM is mainly in the modeling of the ξij ’s. They treated them
all as fixed parameters, while we modeled them using the standard multivariate
meta-analysis model [12]. The motivation for this is to reduce the number of pa-
rameters and to correct for the measurement errors in the ξ̂ij ’s. Similarly, Poon
[10] has done a related work for the meta-analysis of ordinal clinical trial data.
They followed a latent normal distribution modeling approach. Similar Dukic et
al., Poon put a constraint on the latent continuous variable of the control group;
i.e. it is assumed to be fixed.

In this paper we focused on random intercept approach when test results are
presented with equal number of threshold. However the assumption that the study
specific ROC curves lines are parallel around the SROC curve can be relaxed by
allowing the fixed slope parameter to be random. In our examples we were not able
to get convergence using the NLMIXED procedure. A Bayesian approach might
be used, but this is beyond the scope of this article. Secondly, in practice test
results can possibly be presented with different number of threshold. While the
MREM method analyse a 2 by k table with equal number of threshold, it should
also be generalized to the situation where there are unequal number of thresholds.
Besides that, to see how the MREM approach performs for small number of studies
and small within-study sample size a simulation study could be considered.
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Appendix

SAS syntax to fit the MREM model by writing the likelihood in the SAS procedure
NLMIXED

proc nlmixed data = cage df=1000 miniter=15 qpoints=5;
parms ma=2.6 b=0.8 mxi1=-5.2 mxi2=-3.7 mxi3=-2.2 mxi4=-1.0

va=0.4 cavdi=-0.2 vdi=0.5 vdij=0.02 ;
eta1 = a + b*xi1 ;
eta2 = a + b*xi2 ;
eta3 = a + b*xi3 ;
eta4 = a + b*xi4 ;

p01 = 1/(1+exp(-(xi1)));
p02 = 1/(1+exp(-(xi2))) - 1/(1+exp(-(xi1))) ;
p03 = 1/(1+exp(-(xi3))) - 1/(1+exp(-(xi2))) ;
p04 = 1/(1+exp(-(xi4))) - 1/(1+exp(-(xi3))) ;
p05 = 1 - 1/(1+exp(-(xi4))) ;
p11 = 1/(1+exp(-(eta1)));
p12 = 1/(1+exp(-(eta2))) - 1/(1+exp(-(eta1))) ;
p13 = 1/(1+exp(-(eta3))) - 1/(1+exp(-(eta2))) ;
p14 = 1/(1+exp(-(eta4))) - 1/(1+exp(-(eta3))) ;
p15 = 1 - 1/(1+exp(-(eta4))) ;

if (p01^=0 and p02^=0 and p03^=0 and p04^=0 and p05^=0
and p11^=0 and p12^=0 and p13^=0 and p14^=0 and p15^=0) then
ll = n01*log(p01)+ n02*log(p02)+n03*log(p03)+n04*log(p04)+n05*log(p05)+

n11*log(p11)+ n12*log(p12)+n13*log(p13)+n14*log(p14)+n15*log(p15) ;
else ll = -1**100 ;

model n11 ~ general(ll) ;
random a xi1 xi2 xi3 xi4 ~ normal([ma, mxi1, mxi2, mxi3, mxi4],

[va,
cavdi, vdi + vdij,
cavdi, vdi, vdi + vdij,
cavdi, vdi, vdi, vdi + vdij,
cavdi, vdi, vdi, vdi , vdi + vdij ])

subject = study out = cagerand ;
run ;

Data from clinical studies on patients with a breast mass who underwent a fine-
needle aspiration cytologic examination (FNAC) (where M=Malignant, S=Suspect,
B=Benign and U=Unsatisfactory).

FNAC result for patients with
malignant disease benign disease

Author year M S B U M S B U
Linsk 1972 823 156 56 33 1 69 805 134
Furnival 1975 51 0 5 17 2 1 121 42
Zajdela 1975 1526 43 63 89 3 52 846 48
Wilson 1978 19 16 9 6 2 23 164 95
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Thomas 1978 49 10 4 8 0 4 92 29
Duguid 1979 50 6 2 2 0 18 181 35
Kline 1979 240 89 35 4 0 602 2810 307
Gardecki 1980 109 16 6 11 0 10 146 67
Strawbridge 1981 141 70 24 39 3 85 326 173
Shabot 1982 46 3 0 1 0 0 29 2
Azzarelli 1983 262 74 65 113 3 23 381 262
Bell 1983 119 91 27 15 0 147 615 131
Norton 1984 8 8 1 2 0 5 9 16
Dixon 1984 222 36 24 29 0 16 275 81
Aretz 1984 26 30 14 4 0 9 93 14
Ulanow 1984 137 25 19 9 1 15 100 12
Wanebo 1984 93 23 1 12 0 6 102 10
Wollenberg 1985 52 13 11 1 0 99 132 13
Somers 1985 81 13 5 5 0 5 37 41
Lannin 1986 23 3 2 2 0 0 63 7
Eisenberg 1986 1050 268 72 177 0 28 68 68
Barrows 1986 481 88 48 72 2 53 338 201
Watson 1987 37 9 13 3 1 0 200 87
Hammond 1987 59 5 4 2 1 12 61 15
Dundas 1988 18 21 2 2 0 1 72 32
Smith 1988 110 22 8 12 0 16 307 119
Palombini 1988 446 24 15 7 0 17 151 10
Langmuir 1989 13 15 1 3 0 25 167 33
Wilkinson 1989 29 13 3 0 0 43 21 1
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During the last decade advanced statistical methodology for meta-analysis of
clinical trials has been introduced and discussed in the medical and statistical
literature (for example, [1, 2]). In diagnostic studies, despite the introduction of
some advanced methods [3, 4, 5], traditional fixed effect methods (for example
[6, 7]) still have been used predominantly. That could be due to the fact that
the new methods are complex and not readily implemented in standard software.
In contrast, the volume of published diagnostic studies has expanded and the
interest in meta-analysis of these studies has been rapidly growing. The aim of this
thesis is to contribute to the statistical methodology for meta-analysis of diagnostic
accuracy studies and to present new methods that address the drawbacks of the
traditionally used methods in the medical literature.

The general(ized) mixed model as a framework for meta-analysis

In our opinion, an important contribution of this thesis is that we have presented
methods that fit into the framework of the general or generalized mixed model.
For instance, the normal-normal model for separate meta-analysis of sensitivities
or specificities is a very simple special case of the general linear mixed model.
Specifying a binomial within-study distribution instead of assuming a normal dis-
tribution makes it a generalized linear mixed model. Within the general(ized)
linear mixed model, the bivariate approach for jointly analyzing pairs of sensitiv-
ities and specificities is a natural and straightforward extension of the univariate
models. In our opinion, the use of the general(ized) linear mixed model as the
statistical framework brings the meta-analysis of diagnostic data from a bundle
of ad hoc methods back into the mainstream of statistical methods. The advent
of powerful general(ized) mixed model software has made the use of these new
methods practically feasible. All the approaches discussed in this thesis have the
big advantage of being carried out in a widely available statistical packages, such
as SAS, R/S-Plus and STATA. In this thesis we have illustrated our methods using
the SAS software.

Binomial versus approximate normal within-study distribution

Traditionally in meta-analysis the within-study distribution of summary statistics
is approximated by a normal distribution. For binary outcome, an alternative is
to specify a binomial within-study likelihood. In practice this almost never done.
In this thesis we advocate the use of the binomial within-study distribution. It
removes the correlation between the estimated proportion and its standard error,
which often leads to bias in the traditional approach. As shown in our simulation
studies, the binomial-normal model often works much better than the approximate
normal-normal model. In the case that a normal within-study approximation is
employed and the numbers of events are relatively small, there is a need to add
a more or less arbitrary correction to estimates and/or standard errors. There
is quite a lot of literature on how to deal with small or zero numbers of events
in meta-analysis and how to modify the formula for the standard errors, see for
instance [8]. However, no ad hoc corrections are needed anymore when the bi-
nomial distribution is employed. A practical but temporary disadvantage of the
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binomial-normal method is that at the moment software for the generalized linear
mixed model is still less widely available than for the general linear mixed model.

Small number of studies

As usual, the random effects parameters were assumed to follow a normal distri-
bution in all our models. For the univariate and bivariate approaches, the impact
of misspecification of the normality assumption was studied and it turned out the
binomial-normal models are fairly robust if the number of studies is large. When
the number of studies is small, bias is left in the estimated parameters. We think
that relaxing the stringent normality assumption might eliminate some or all of
the bias. For the between-studies covariance parameters, even if the underlying
true distribution is normal, the maximum likelihood method underestimates the
parameters if the number of studies available is small. We expect that a correction
factor inline with the restricted maximum likelihood method may overcome this
shortcoming.

Another problem in case of a small number of studies is that the construction
of Wald type confidence intervals for the maximum likelihood estimates is often
not appropriate. One of the reasons could be the fact that the uncertainty in
the between-studies covariance parameters is not taken into account. A possible
solution might be to use profile likelihood based confidence intervals [9], which
is also discussed by several authors in the context of meta-analysis (for example
[1, 10, 11]). The simulation study for the meta-analysis of proportions (chapter
2) revealed a large improvement of the coverage probability by using profile like-
lihood instead of Wald type confidence interval. We believe this result can also
hold for the bivariate and multivariate approaches. Where the profile likelihood
based confidence is hard to implement in practice, other alternatives [12, 13] such
as bootstrapping technique, could be implemented.

Interpretation of summary ROC curves

The statistical methodology for diagnostic studies depends on the available data
from each study. In most cases diagnostic test accuracy findings are presented
in a two-by-two table or, equivalently, by estimates of sensitivity and specificity
with their corresponding standard errors. In this case traditionally the method of
Littenberg and Moses [6] and Moses et al. [7] has been used to estimate a sum-
mary ROC curve. However, this method has many drawbacks. In our opinion, the
bivariate approach presented in chapter 3 is a much more principled and elegant
method avoiding these drawbacks. Based on this model, several summary ROC
curves can be defined. We presented five different reasonable choices, two being
based on the two regression lines of the estimated bivariate normal distribution
of logit(sensitivity) and logit(1− specificity), one based on the regression of the
difference between logit(sensitivity) and logit(1− specificity) on the sum of the
two (i.e. the SROC of Littenberg & Moses), the Rutter and Gatsonis [3] summary
ROC curve and the one based on the major axis of the estimated bivariate normal
distribution. In our opinion, a summary ROC curve is nothing more than a curve
based on a characterization of the underlying bivariate normal distribution by a
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line. Our examples showed that the different choices can lead to substantially dif-
ferent summary ROC curves. Thus a summary ROC curve cannot be interpreted
as a kind of average of the study specific ROC curves and its shape does not nec-
essarily look like a typical study specific ROC curve. This seems to be completely
overlooked in the statistical and medical literature. The ”true” summary ROC
curve is unidentifiable. Only under an untestable assumption on how the reported
pair of sensitivity and specificity is selected in the individual studies, the calcu-
lated summary ROC curve can be interpreted as an estimate of the true one.

When studies present more than one point per study, commonly the test re-
sults are reduced to two categories and meta-analyzed using a well established
approach such as the bivariate. However, this is suboptimal. In this thesis we
proposed an alternative multivariate approach that fits the available data directly.
As discussed in chapter 6, the multivariate approach has several advantages, one
of them being that the data of the full 2-by-k table is used without losing any
information by dichotomizing the test results. More importantly, in contrast to
the bivariate approach, the summary ROC curve and the study specific curves are
identifiable. Moreover, it is straightforward to include study level covariates, both
to the intercept and slope of the summary ROC curve. In our opinion, using as
many points as are available per study should be strongly encouraged.

Further research

Some possible issues needing further investigation could be noted. First, as we dis-
cussed in chapter 3, when the diagnostic outcome measure of interest is a SROC
curve, several different SROC curves can be derived based on the bivariate ran-
dom effects approach. However, each of these choices is based on an untestable
assumption. Therefore further research is needed on what is the most reasonable
choice in a certain situation. Second, the multivariate approach (chapter 6) was
limited to an equal number of thresholds across studies. In practice however, the
number of thresholds often differs between-studies. Therefore there is a need to
generalize our method to this more complicated situation. Third, more research
could be done on methods that relax the normality assumption of the random
effects parameters. For example, methods based on the functional approach in the
sprit of Carroll et al. [14] , which assumes no distribution, could be developed, or
methods in the spirit of the penalized Gaussian mixture distribution model [15]
as implemented in the context of meta-analysis of clinical trials [16]. Fourth, in
this thesis hardly any attention is paid to checking goodness-of-fit of our models.
More research on goodness-of-fit methods would be welcome. Fifth, in this the-
sis we assumed a single diagnostic test was investigated per study. In practice,
there are also studies in which multiple tests are compared. Then the results on
different diagnostic tests are correlated within-studies, and methods are needed
that account for this dependence. Sixth, throughout the thesis standard likeli-
hood methods were implemented to fit our models. However, all models could
be fitted using a Bayesian approach as well, for instance using the publicly avail-
able software package WinBUGS [17]. Research on comparing these approaches
would be welcome, especially for cases where the number of studies included in
the meta-analysis is small. Finally, studies of diagnostic accuracy are subject to
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different sources of bias and variation. The variation can be due to sampling er-
ror, clinical and methodological diversity. We believe that most of the sources of
variation are accounted for by the random effects in the methods proposed in this
thesis. However, the different sources of biases, such as verification bias, error in
the reference, spectrum bias and publication bias, are not considered. These biases
may hinder the validity of the statistical analysis and question the applicability of
results. Therefore the consequences of the different sources of biases in the pooled
estimates should be investigated.
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Summary

Meta-analysis may be broadly defined as the quantitative review and synthesis
of the results of related but independent studies. Statistical methodologies for
meta-analysis of diagnostic studies depend on the available data from each study;
most commonly a two-by-two table or sensitivity and specificity with the total
number of subjects in the diseased and non-diseased groups are available. Some
other types of data, ordinal or continuous data, also reported. In this thesis we
consider studies that present a two-by-two table (chapter 2 - chapter 5) or a two-
by-k table (chapter 6). Despite the availability of few advanced methods, often
diagnostic studies are meta-analyzed using fixed effects approach. In this thesis we
introduce random effects approaches for meta-analyses of diagnostic studies, and
the inference is based on straightforward likelihood technique. All the approaches
discussed have the advantage that they can be fitted in standard statistical pack-
ages.

Chapter 1 is a general introduction of the thesis. We introduce general terms
and the traditionally used statistical methodologies for meta-analysis of diagnostic
accuracy studies. Besides, the aims and outlines of the thesis are stated.

When the interest of meta-analysis is to pool proportions, such as sensitivity,
specificity, incidence or prevalence, the normal-normal random effects approach has
been used to take into account the heterogeneity across studies. This approach
has shortcomings and an alternative exact likelihood (binomial-normal) random
effects approach is discussed in chapter 2. Using extensive simulations, we showed
that the binomial-normal random effects approach gives unbiased estimates with
reasonably acceptable coverage probability compared to the normal-normal ran-
dom effects approach. When the number of studies included is small, we also
showed that profile likelihood based confidence intervals are superior over Wald
type confidence intervals. Besides, the simulation shows the binomial-normal ap-
proach is fairly robust against misspecification of the normality assumption if the
number of studies included is relatively large.

Most often, sensitivity and specificity are negatively correlated because of ex-
plicit and implicit differences in the threshold. Separate pooling of sensitivity and
specificity is not appropriate unless the correlation between these parameters is
zero. The bivariate random effects method discussed in chapter 3 incorporates
the correlation that might exist between sensitivity and specificity. Two possible
assumptions for the within-study distribution were discussed: approximate nor-
mal and binomial. The bivariate approach is flexible to derive different choices
of outcome measures, such as sensitivity, specificity and summary ROC curves.
Under an additional assumption the model gives individual study specific ROC
curves as well. One important point that needs considerable attention is that
different possible SROC curves can be derived from the bivariate approach based
on different untestable assumptions. We discussed five possible choices; two being
based on the two regression lines of the estimated bivariate normal distribution of
logit(sensitivity) and logit(1-specificity), one based on the regression of the differ-
ence between logit(sensitivity) and logit(1- specificity) on the sum of the two (i.e.
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the SROC of Littenberg & Moses), the Rutter and Gatsonis summary ROC curve
and the one based on the major axis of the estimated bivariate normal distribution.
Huge differences among the SROC curves of the different choices were observed,
especially when there is a large difference among the estimated between-studies
covariance and variances.

Despite all the shortcomings the SROC method of Littenberg and Moses has
been used as a standard method for the last ten or fifteen years. A possible im-
provement of their method is assuming the test accuracy parameter to be study
specific (random). Another alternative could be to use the SROC curve derived
from the normal-normal or binomial-normal bivariate random effects approach.
We discussed the pros and cons of these methods in chapter 4. The three meth-
ods were compared through an extensive simulation study. The simulation study
revealed that the binomial-normal SROC method performs better than the other
two methods in terms of bias and coverage probability. When the average size
of studies is large, much difference was not found between the methods, though
the performance of the binomial-normal bivariate approach was better. Compar-
ing the normal-normal and the univariate approaches, the latter was preferred
in most cases and we recommend a close watch of our simulation results if the
binomial-normal bivariate approach is not readily implemented in practice.

The primary studies can also report study level covariates in addition to the
two-by-two table. In such cases investigating the effects of covariates on sensitiv-
ity, specificity and the summary ROC curves through meta-regression may be of
interest. In chapter 5 we discussed the bivariate random effects meta-regression
approach with a case study at hand. We allowed both mean and covariance struc-
ture to depend on three types of diagnostic tests to be compared. Summarizing
sensitivity and specificity, and comparing the significance difference of different
tests in terms of these outcome measures is straightforward. However, comparing
SROC curves of the different diagnostic tests is not trivial especially when the
slope depends on the type of test used. We discussed different ways to compare
the test results when there is slope-test dependence.

In chapter 6 we discussed statistical methods for the case where test results
are presented with an equal number of multiple thresholds. The usual method is
to dichotomize the data and apply the standard methods, which is suboptimal.
We discussed a multivariate random effects approach that uses the full account of
the 2-by-k table. One important characteristic of this approach is that the SROC
curve is identifiable. Besides, the model can be fitted in standard statistical pack-
ages and study level covariates can be added in a straight forward manner.

In Chapter 7 we discussed the main findings of the thesis, limitations and
recommendations for further study.
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Meta-analyse kan in het algemeen worden gedefinieerd als een kwantitatieve samen-
vatting en samenvoeging van resultaten van de resultaten van gerelateerde maar
onderling onafhankelijke studies. Statistische methoden voor meta-analyse van
diagnostische studies zijn afhankelijk van de beschikbare data van elke studie.
Meestal zijn in diagnostische studies de sensitiviteit en specificiteit beschikbaar
samen met het totaal aantal zieke en gezonde personen in de studie. Dit wordt
ook wel weergegeven in zogenaamde 2-bij-2 kruistabellen. Andere type data, zoals
ordinale of continue data, worden ook wel eens gerapporteerd. In dit proefschrift
beschouwen we studies die een 2-bij-2 kruistabel (hoodstuk 2 t/m hoofdstuk 5)
of een 2-bij-k kruistabel (hoofdstuk 6) weergeven. Ondanks de beschikbaarheid
van een paar geavanceerde methoden, wordt een meta-analyse van diagnostis-
che studies meestal gedaan met het zg. vaste-effecten model. In dit proefschrift
introduceren we random-effecten modellen voor meta-analyses van diagnostische
studies en zijn de gevolgtrekkingen gebaseerd op likelihood-schattingsmethoden.
Alle modellen die worden besproken hebben als voordeel dat ze kunnen worden
gebruikt in standaard statistische paketten.

Hoofdstuk 1 bevat een algemene introductie van het proefschrift. We introduc-
eren hier de meest gebruikte meta-analyse termen en beschrijven de gebruikelijke
statistische methoden voor meta-analyse van diagnostische studies. Bovendien
worden de doelen en hoofdlijnen van het proefschrift weergegeven.

Als men in een meta-analyse voornamelijk is genteresseerd in het samenvoegen
van proporties, zoals sensitiviteit, specificiteit, incidentie of prevalentie, dan wordt
het normaal-normaal random-effecten model gebruikt om rekening te houden met
heterogeniteit tussen studies. Dit model heeft allerlei nadelen en een alternatief
random-effecten model dat is gebaseerd op exacte likelihood (binomiaal-normaal)
wordt besproken in Hoofdstuk 2. Op grond van een uitgebreide simulatie-studie
laten we zien dat het binomiaal-normaal random effecten model zuivere schattin-
gen geeft met redelijk acceptabele coverage kansen vergeleken met het normaal-
normaal random effecten model.

Als het aantal studies in de meta-analyse klein is, tonen we aan dat betrouw-
baarheidsintervallen gebaseerd op profile likelihood superieur zijn aan betrouw-
baarheidsintervallen gebaseerd op de Wald toets. Bovendien laat de simulati-
estudie zien dat als het aantal studies in de meta-analyse relatief groot is, het
binomiale-normale model redelijk robuust is tegen misspecificatie van de nor-
maliteitsassumptie.

Sensitiviteit en specificiteit zijn meestal negatief gecorreleerd vanwege explici-
ete en impliciete verschillen in de gebruikte dremelwaarde. Het afzonderlijk poolen
van sensitiviteit en specificiteit is niet geschikt, tenzij de correlatie tussen deze twee
parameters nul is. Het bivariate random effecten model dat in Hoofdstuk 3 wordt
besproken, houdt rekening met de correlatie die er zou kunnen zijn tussen de sensi-
tiviteit en specificiteit. Twee mogelijke assumpties voor de binnen-studie verdeling
worden besproken: de benaderende normale en de binomiale assumptie. Het bi-
variate model is flexibel zodat men kan kiezen uit verschillende uitkomstmaten
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zoals sensitiviteit, specificiteit en samenvattende ROC curven. Onder een extra
aanname kan het model ook individuele studie-specifieke ROC curven geven. Een
belangrijk punt dat extra aandacht verdient, is dat verschillende SROC curven
kunnen worden afgeleid van de bivariate benadering, die allemaal zijn gebaseerd
op verschillende niet-testbare assumpties. We bespreken vijf mogelijke keuzes,
twee zijn gebaseerd op de twee regressielijnen van de geschatte bivariate normale
verdeling van logit(sensitiviteit) en logit(1-specificiteit), n gebaseerd op de regressie
van het verschil tussen logit(sensitiviteit) en logit(1-specificiteit) op de som van
de twee (SROC model van Littenberg & Moses), de Rutter & Gatsonis samen-
vattende ROC curve en de lijn die gebaseerd is op de hoofd-as van de geschatte
bivariate normale verdeling. We zien grote verschillen tussen de SROC curven van
deze verschillende keuzes, vooral als er een groot verschil is tussen de geschatte
tussen-studie covarianties en varianties.

Ondanks alle nadelen is de SROC methode van Littenberg en Moses al tien of
vijftien jaar de standaard methode. Een mogelijke verbetering van hun methode
is om de parameter die de accuratesse van de test weergeeft als studie-specifiek (of
random) te veronderstellen. Een ander alternatief kan zijn om de SROC curve te
gebruiken die volgt uit het normaal-normaal of binomiaal-normaal bivariaat ran-
dom effecten model. We bespreken de voordelen en nadelen van deze methoden
in Hoofdstuk 4. De drie methoden worden onderling vergeleken door middel van
een uitgebreide simulatie studie. De simulatie studie laat zien dat de binomiaal-
normaal SROC methode het beter doet dan de andere twee methoden op grond
van hun bias en coverage kansen. Als de gemiddelde grootte van de studies in
de meta-analyse groot is, wordt er niet veel verschil tussen de methoden gevon-
den, ook al is de binomiaal-normaal methode beter. Bij het vergelijken van de
normaal-normaal en de univariate modellen bleek de laatste in de meeste gevallen
de voorkeur te hebben en bevelen we aan om goed te kijken naar de resultaten
van onze simulatie studie als het binomiale-normale bivariate model niet redelijk
eenvoudig te implementeren is in de praktijk.

De individuele studies in de meta-analyse kunnen naast de standaard 2-bij-2
kruistabel ook covariaten op studie-niveau rapporteren. In zulke gevallen kan het
interessant zijn om door middel van meta-regressie te onderzoeken wat voor ef-
fecten deze covariaten hebben op sensitiviteit, specificiteit en de samenvattende
ROC curves. In Hoofdstuk 5 bespreken we het bivariate random effecten meta-
regressie model aan de hand van een praktisch voorbeeld. We laten in ons model
toe dat zowel de gemiddelde als de covariantie structuur af mogen hangen van
drie typen van diagnostische tests die worden vergeleken. Het samenvatten van
sensitiviteit en specificiteit, en het vergelijken van de verschillen in significantie
van de verschillende tests in termen van deze uitkomstmaten is eenvoudig. Het is
echter niet triviaal om de SROC curven van de verschillende diagnostische tests
te vergelijken. Dit is vooral moeilijk als de helling afhankelijk is van de type test
die wordt gebruikt. We bespreken verschillende manieren om de testresultaten te
vergelijken als er een afhankelijkheid is tussen de helling en de test.

In Hoofdstuk 6 bespreken we statistische methoden voor de situatie waarin
testresultaten worden gepresenteerd voor meerdere, maar wel een gelijk aantal
drempelwaarden. De gebruikelijke methode is om de data te dichotomiseren en
standaard methoden te gebruiken, maar dit is suboptimaal. We stellen voor om
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een multivariaat random effecten methode te gebruiken dat de volledige informatie
van de 2-bij-k kruistabellen benut. Een belangrijk kenmerk van deze methode is
dat de SROC curve identificeerbaar is. Bovendien kan het model worden gefit in
standaard statistische paketten en kunnen op een eenvoudige manier covariaten
op studieniveau worden toegevoegd.

In Hoofdstuk 7 bespreken we de belangrijkste bevingingen van dit proefschrift,
evenals de beperkingen er van en doen we aanbevelingen voor vervolgonderzoek.
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