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Chapler 1 

1. Ischemic preconditioning 

In order to sustain nomml function, the heart is dependent on an adequate delivery of oxygen 
and substrates to Ihe heart to meet the energy demands of the contracting muscle. Myocardial ischemia 
can be defined as "an imbalance between the amount of oxygen and substrates supplied to the heart and 
the amount needed to perfoml normal function" (1]. Ischemic heart disease is one of the major causes 
of death in the world [2,3] including developing countries [4]. Depending on factors like the amount of 
collateral flow, myocardial necrosis develops after 10-20 min of ischemia [5]. 'Ischemic preconditioning', 
one of the 'New Ischemic Syndromes' [6,71. refers to the mechanism that short periods of (nonlethal) 
ischemia and reperfusion protect the heart from injury during a subsequent prolonged period of ischemia. 
It was first described in 1986 by Murry et al. [8] (Figure 1). In dog hearts, these investigators showed 
that infarct size resulting from 40·min coronary artery occlusion was reduced by 75% when ischemia 
was preceded by four cycles of 5 min coronary artery occlusion and reperfusion (Figure 1). 

Ischemic control 

---11-40 min 4 days 

Preconditioned 

~If-
4x5min 

Figure I. &hematic depiction of the infarct·size limiting effect of ischemic preconditiolling as origil/ofly proposed by Murry 
et 01. (1986). III this piolJeerillg stlldy. infarct size (dark area III the heart) expressed as a perceiJloge of the area at risk (grey 
area in the heart) amounfed to 2fJOA, after 40 miIJ coronary artery oce/usion (black bar) and 4 days reper/lls/OII ill all /11 vim dog 
model (top panel). However. whell 40 mill corolJary artery oce/llSiolJ was preceded by fOlfr cycles of S·mill occlusioll IS-mill 
reperjilSio/J (4 x S min). inforct·size lim reduced 10 7% oflhe area al risk (7S% in/arc/·size reductioIJ; lower panel). They tenned 
this phenomellolJ 'preconditiollillg with ischemia~ (Adaptedfrom Gho [9) wilh pemlissiolJ) 

After early reperfusion, preconditioning probably is the strongest foml of endogenous protection 
against ischemic injury. It should be kept in mind that preconditioning only delays the development of 
infarction. Hence, preconditioning is only effective during temporary occlusions and not during 
pemmnent or prolonged occlusion (> 60~90 min). The window of protection from preconditioning is 
bimodal. Classic preconditioning (also called the first window of protection, FWOP) lasts only for 1-3 
hours after which protection weans off; a second window of protection (SWOP) reappears 24 hours after 
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Generaf introductioll 

preconditioning lasting 12-72 hours [10]. To date, ischemic preconditioning has been shown to exist in 
all laboratory animals studied (11 and in other tissues than the heart (II]. Moreover, short ischemia 
preconditions not only the tissue within but also outside its perfusion territory (remote preconditioning). 
Remote intracardiac (12J and organ [9,13] ischemic preconditioning protect the heart against sustained 
ischemia. Apart from reduced infarct size, preconditioning also reduces contractile dysfunctioning [14], 
arrhythmias [15,16], and apoptosis (programmed cell death) [17,18], depending on the animal model 
studied. Reduced contractile dysfunctioning in preconditioned hearts most likely reflects reduced infarct 
size [19-22] since ischemic preconditioning does not reduce stunning [22-24]. 

2. i\'lechsnlsm of Ischemic preconditioning 

Many studies have attempted to elucidate the mechanism of ischemic preconditioning for 
pham13cological exploitation in humans. The mechanism of ischemic preconditioning includes: 1) 
triggers, 2) mediators, and 3) end-effectors (Figure 2). The mechanisms of protection of the FWOP and 
the SWOP are most likely not the same. The FWOP does not involve stunning [25,26], recruitment of 
collateral vessels [8], and protein synthesis [27] whereas protein synthesis (e.g., heat shock proteins) is 
important in the S\VOP. This thesis will exclusively deal with classic preconditioning (FWOP). Common 
to all proposed end-effectors of ischemic preconditioning is that they intervene in the sequence of events 
which lead to the irreversible loss of transmembrane ion gradients resulting in membrane rupture. The 
events leading to cell death include: I) inhibition of Na+/K+ ATPase activity by ATP depletion and 
extrusion of protons produced in anaerobic glycolysis by Na+/H+ exchange; these two events lead to Na+­
overload, and 2) exchange ofNa+ for Ca2+ by the Na+ICa2+ exchanger leading to calcium overload and 
membrane rupture (cf. [28]). Ischemic preconditioning is accompanied by attenuation of the rise in 
intracellular Na+ and Ca2+ [29,30]. 

2.1. Triggers o/ischemic preconditioning 

Protection by preconditioning is receptor mediated. Humoral factors released during 
preconditioning ischemia trigger protection by binding to their respective receptors. These 
paracrine/autocrine factors include adenosine [31-33], catecholamines [34,35), bradykinin [36], 
acetylcholine [37], opioids [38-40], endothelin [41,42], and angiotensin II [43] (Figure 2). However, 
probably only adenosine, bradykinin, and opioids are released in sufficient quantities during transient 
ischemia to activate their receptors. The importance of each receptor may vary between species. 
Furthermore, bradykinin is more important during short preconditioning ischemia periods whereas 
adenosine is more important during preconditioning ischemia of longer durations [44]. Goto et al. [36} 
proposed the threshold hypothesis based on the great redundancy in receptor systems triggering 
preconditioning. All receptor systems involved in preconditioning couple to G-proteins and 
phospholipases to activate protein kinase C (PKC), which may phosphorylate an unknown end-effector. 
A threshold ofPKC activation must be reached to achieve protection (see Chapter 3, Figure 1). Thus, 
signals from different receptors converge at PKC to reach the threshold activation of the kinase necessary 
to induce protection. Above the threshold, preconditioning is a graded phenomenon [44]. 
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Chapter 1 

2.2. Afediators a/ischemic preconditioning 

As indicated in the previous section, PKC has been proposed to be the mediator of ischemic 

preconditioning. The PKC hypothesis [45,46] states that receptor signals converge at PKC, which is 

activated by translocation (of specific isoenzymes) from the cytosol to the sarcolemma. This explains 

the 'memory' of ischemic preconditioning (ca. 2 hours) because PKC is already activated at the beginning 

of long ischemia providing protection by phosphorylation of end-effector protein(s) [47]. Preconditioning 

can be mimicked by PKC activators and abolished by PKC inhibitors [45,46,48-50]. However, PKC 

activation does not seem to be involved in larger species like the dog (51] and the pig [52,53]. The major 

-problem in these studies is the poor selectivity of the PKC activators/inhibitors. Furthemlore, PKC 

consisls of many isoenzymes [54], which may 1) be differently affected by ischemic preconditioning, 

and 2) may have a different time-frame of activation, which makes the assay for PKC rather difficult. 

Furthennore. the lack of isofonn- and cell-specific PKC assays hampers research in this area [55]. 

Immunohistochemical [50] and quantitative Western blot analysis [561 revealed that translocation of 

either PKC-a, -&, or -E isofomlS mediate ischemic preconditioning of rat hearts. 

Recent evidence suggest that also tyrosine kinases are involved in the signalling cascade of 

ischemic preconditioning [16,57~62], either downstream [57,60]. upstream [57], or parallel to PKC [61 J. 
In line with the involvement of killases in preconditioning, inhibition of phosphatases protects rabbit 

hearts from infarction [63,64]. 

Activation G-proteln coupled receptors: 

Triggers A,lA, M-2 AT-l B-2 Ii u-l 

Mediators 

End-effectors 

("""""00) (aceI)<d>o'ine) (angiot""'o) (b",dyldoo) (opk;"') (ca'echoI.) 

Protein Kinase C 
(PKC) 

----Tyrosine Klnases 

----
MAP Klnases 

Phosphorylation/activation of end-effector(s): 

Carbohydrate K+-ATP/other mFoFt-ATPase ecto 5'-nucteoUdase 
metabolism \on-channels ----Cardioproteclion 

Figure 2. Triggers, mediators, and end-effectors proposed to playa role in the mechanism of ischemic preconditioning. 

2.3. End-effectors of ischemic preconditioning 

2.3.1.loJl channels 

The sarcolemmal K.up channel has been proposed as the final end-effector in ischemic 
preconditioning [65]. KATP channel openers mimic and KATP channel inhibitors abolish ischemic 
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preconditioning [66·69]. Once activated by PKC, opening of the sarcolemmal KATP chatmel shortens the 

action potential duration and hence, depresses contraction which may protect the heart. However, action 

potential duration can be dissociated from cardioprotection by preconditioning {70,71]. Moreover, KATP 
channel openers and ischemic preconditioning effectively reduce ischemic injury in nonbeating 

cardiomyocytes, which lack action potentials [72-74]. Alternatively, opening of KATP channels in the 

inner lllitochondriallllelllbrane by PKC may explain the cardioprotective effects observed with ischemic 

preconditioning [75-77J. The role ofKATP channels in preconditioning of rabbit and rat hearts [78-80] 

is controversial but may be related to the type of anesthesia used. However, the observation that 

expression of recombinant cardiac KATP channel proteins confers protection against 

hypoxialreoxygenation injury in cells [81,82] may indicate that KATP channel opening may be a valuable 

tool to phamtacologically protect ischemic myocardium (note: nicoralldil, a KATP channel opener, is now 

available to treat angina). 

Gottlieb et al. [17J and Karwatowska-Prokopczuk et a!. [83J suggested that the vacllolarprotoJl 
ATPase (VPATPasej may be a target of PKC in mediating preconditioning. In their hypothesis, 
preconditioning activates VPATPase-mediated proton efflux (via PKC) resulting in less acidosis and 

apoptosis {17]. During ischemia, less acidosis by activated VPATPase may reduce Na+ overload via 
Na+II'I+ exchange and consequently Ca2+ overload via Na+/Ca2

+ exchange {83]. Reduced anaerobic 

glycolysis and proton production, often observed with preconditioning-induced protection against no­

flow ischemia {84], may also contribute to this mechanism. 

It has been proposed that ischemic preconditioning is mediated by activation of the Na -+If-['" 
exchanger and/or the Na + -K'12Ct cotransporlel' during global ischemia, reducing proton overload 
[85,86]. This hypothesis is in sharp contrast to the substantial body of evidence indicating that 

phannacological inhibition ofNa + Ilt exchange during ischemia is protective whereas stimulation of the 

exchanger is detrimental [86·96]. Preconditioning protection has been dissociated from Na+llt exchange 
activity [89,92,93,95]. Moreover, inhibition of Na+llt exchange appears additive to the protection 

afforded by ischemic preconditioning [89,95]. Thus, these results argue against the hypothesis' that 

ischemic preconditioning is mediated by modulating Na+/H+ exchange activity. 

2.3.2. mFoFJ"ATPase 
Within seconds after the onset of ischemia and the cessation of the electrochemical gradient 

across the inner mitochondrial membrane, the mitochondrial ATP-synthase changes into an ATPase 

(mF,FJ-ATPase). Most ofthe ATP hydrolyzed during global ischemia is due to mF,FJ-ATPase activity 
[97]. Preconditioning-induced inhibition of the mF oFt-ATPase during ischemia has been proposed to 
result in an improved energy balance [84]. The few studies conducted this far have obtained results in 

favour [98] and against [99-I01] this hypothesis. 

2.3.3. 5'-llucleotidase 
Kitakaze's group reported that ischemic preconditioning increases ecto-5'-nucleotidase activity 

and therefore adenosine production, which protects the heart [102]. They observed more adenosine in 

coronary sinus blood of preconditioned dog hearts [102]. However, most other studies using 

microdialysis techniques [103·105] or analysis of coronary effluent of isolated hearts ([105], see also 
Chapter 6, Figure 4a) showed that adenosine production is actually decreased during long ischemia and 

not increased. Moreover, ecto-5'-nucleotidase activity is unrelated to infarct size in the canine heart 
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[106,107]. These observations make it vcry unlikely that preconditioning is mediated by increased ecto· 

5'-nucleotidase activity and adenosine production during ischemia. 

2.3.4. Carbohydrate metabolism 

The role of preconditioning on glycolysis/glycogenolysis during ischemia, as well as its 

relationship with ischemic injury, is unclear. Anaerobic glycolysis supports cell function by means of 

ATP production, but accumulated glycolytic end·products (e.g., lactate, and protons originating from 

ATP hydrolysis [108]) may detennine the extent of ischemic damage; consequently, many studies have 

attempted to relate the beneficial effects of ischemic preconditioning to cardiac glycogen content or 

glycolytic rates. 

Ischemic preconditioning of the heart reduces its preischemic glycogen content and slows 

glycogen utilization during stop·f1ow ischemia resulting in less intracellular lactate accumulation 

[8,29,30,84,99,109-116]. Wolfe et a!. [117] correlated the decrease in infarct size caused by 

preconditioning with glycogen depletion before sustained ischemia and with the attenuation of 

intracellular acidosis during ischemia. Moreover,loss of the protective effect parallelled the time course 

of glycogen recovery before sustained ischemia [117) and increasing preconditioning ischemia time 

resulted in glycogen depletion and infarct·size reduction, both described by an exponential declining 

curve [114]. The glycogen hypothesis states that reduced preischemic glycogen in preconditioned hearts 

is protective insofar as it reduces glycolytic rates and consequently glycolytic catabolite accumulation 

during subsequent prolonged ischemia, despite reduced ATP production. This would lead to less 

intracellular overload of sodium and calcium [29,30] and preservation of membrane integrity. The 

advanced technique of l3C~NlvIR allows to follow myocardial glycogen within one heart throughout the 

experiment. Both the l3C·NMR studies of Weiss et al. [118] and our results [119] indicate that 

preconditioning depresses glycogenolysis during ischemia by reducing glycogen phosphorylase activity 

[118]. However, others observed no relationship between functional recovery after prolonged ischemia 

and preischemic glycogen levels [120,121], or glycogen depletion during ischemia [122,123]. 

In contrast to no-flow ischemia, improved uptake and metabolism of glucose by the heart during 

10w~f1ow ischemia reduces myocardial injury [28,124·132], a notion known as the glucose hypothesis 

[133]. Furtitennore, glycolysis·frOln.glucose seems more effective than glycogenolysis in protecting 

hearts against myocardial ischemia [125,134]. The reason for the superiority of glycolysis over 

glycogenolysis in reducing ischemic injury is not clear either. Compartmentation of the cytoplasm with 

respect to intem1cdiary metabolism has been suggested by several studies. In porcine carotid artery rings) 

separate pathways for glycolysis and glycogenolysis exist [135,136]. These studies indicate that under 

aerobic conditions, glycogenolysis provides substrate for oxidative phosphorylation, which is related to 

isometric tcnsion development whereas lactate derived from glycolysis is related to the Na+/K+·ATPase. 

Howevcr, in situations of decreased oxygen consumption like ischemia [135] and phenytoin treatment 

[136], mixing of pathways occurs and hence, lactate also originates from glycogen in these conditions. 

13C·NMR studies applied to vascular smooth muscle cells reach the same conclusions [137,138]. 

Although glycolysis and glycogenolysis were both active during aerobic perfusion, no lactate was 

derived from glycogen [137]; when oxidative metabolism was blocked by cyanide, mixing of both 

pathways occurred. Provision oflhe exogenous substrates acetate and pyruvate changed glycolysis and 

glycogenolysis independently [138], consistent with different regulation and compartmentation of these 

pathways. This is in line with recent data obtained in aerobic perfused rat hearts [139,140] showing that 
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glycogen is preferentially oxidized, hardly contributing to lactate production. In heart as in vascular 

tissue, glycogen contributes significantly to anaerobic ATP production in situations of severe ischemia 

[28]. Evidence from several studies indicates that glycolysis is preferentially used to support ionic 

homeostasis in cardiac cells, providing ATP for ATP-dependent ion pumps such as the KAll' channels 

[l41,142J, the sarcoplasmatic reticulum Ca2'-ATPase [l43J, and the Na'/K' -ATPase [144J. Thismay be 
related to the association of key glycolytic enzymes to ion pumps inside the cell [142,145]. Thus, ifthe 

accumulation of the potentially toxic products of anaerobic glycolysis is prevented by sustaining a 

moderate flow to the heart, sustained glycolysis-from-glucose during ischemia may support ionic 

homeostasis (read: less Ca2
+ overload) and thereby reduce ischemic injury. Not many studies examined 

preconditioning-induced protection against low-flow ischemia. So far, only our studies (Chapters 6 and 

7) and that of Janier et al. [146] indicated that preconditioning protection against underperfusion may 

be mediated by increased glucose uptake during ischemia. 

3. Aim and organization of this thesis 

3.1. Aim of this thesis 

This thesis investigates the mechanism of ischemic preconditioning with respect to adenosine 

as a trigger and myocardial carbohydrate metabolism as the end-effector of preconditioning protection 

(Figure 2). We hypothesize that: 

(1) Adenosine, released during preconditioning ischemia, triggers ischemic preconditioning by 

binding to the adenosine Al and/or A3 receptors located 011 the myocardial membrane; 
(2) Stimulation of adenosine receptors finally will result in modification of myocardial 

carbohydrate metabolism during ischemia. Specifically, we hypothesized that adenosine receptor 

activation will result in: (i) an increase in myocardial glucose uptake and metabolism, which may be 
beneficial during low-flow ischemia, and (ii) inhibition of detrimental glycogen breakdown. 

In order to answer these questions, we used the isolated Langendorff perfused rat heart as 
experimental model. This model allowed us to carefully monitor biochemical parameters relevant to our 

research questions with classical biochemistry and NMR spectroscopy. In addition, we also studied 

humans undergoing pacing stress testing. 

3.2. Organization of this thesis 

In Chapter 2, an overview of myocardial energy metabolism is given with special emphasis on 

nucleotide catabolism giving rise to the fonnation of adenosine, and myocardial carbohydrate 

metabolism. In Chapter 3, we review some controversies in the very active field of research of ischemic 

preconditioning. Chapter 4 deals with the effect ofischemic preconditioning on myocardial carbohydrate 

metabolism during no-flow ischemia. In Chapter 5, we assessed the effectiveness of acadesine, a drug 

enhancing endogenous adenosine accumulation, in reducing ischemic injury in humans undergoing 

pacing stress testing. In Chapter 6, we investigated whether ischemic preconditioning protected against 

severe low-flow ischemia, a model more relevant to clinical practice. In addition, we assessed the 
contribution of pro glycogen, a stable intennediated in (macro)glycogen synthesis, to glycogenolytic flux 
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and reduced injury. The hypothesis that ischemic preconditioning is mediated by increased exogenous 

glucose use during low-flow ischemia, an event triggered by adenosine, is the subject of Chapter 7. In 

Chapter 8, we investigated whether adenosine Al receptor activation is involved in preconditioning of 

rat hearts. \Ve also assessed whether ischemic preconditioning is mediated by reduced glycogenolysis 

during ischemia (the glycogen hypothesis). Chapter 9 deals with the effectiveness of adenosine Al and 

AJ agonists in reducing apoptosis and contractile dysfunction arising from underperfusion. Finally, a 

general discussion and the main conclusions of the studies presented in this thesis will be given in 

Chapter 10. 
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Chapter 2 

1. Regulation of myocardial fuclmetabolism 

In biological systems, free energy is needed to drive exogenous reactions like muscle 

contraction, active transport of ions and macromolecules, and biosynthesis [1]. Free energy obtained 

from the oxidation of foodstuffs is transferred to adenosine triphosphate (A TP) in a series of reactions 

called energy metabolism (Figure 1). Thus, ATP is used by the cell as an immediate donor of free energy, 

thereby sustaining nomlal homeostasis. 

1.1. Normoxia 

In normoxic myocytes, ATP utilization and production are tightly coupled. A TP is synthesized 

for 90% by oxidative phosphorylation in the mitochondria and for 10% by anaerobic glycolysis [1,2]. 

Depending on factors like the nutritional and exercise state, free fhtty acids (FF A; predominantly oleic 

acid and palmitic acid), the carbohydrates glucose and lactate, and to a lesser extent ketone bodies and 

amino acids compete as substrates in energy metabolism [3·7]. 

Regulation ofFFA uptake and oxidation [8] is mainly detennined by their arterial concentration 

[9]. Thus, after a high fat meal or during ischemia·induced high catecholamine activity [10], conditions 

that stimulate lipolysis, plasma FFA levels increase [II] with concomitantly higher rates of oxidation 

(7]. The uptake of glucose into the cell is regulated by factors like plasma glucose levels and 

(neuro)humoral activity. Insulin enhances cellular glucose uptake by stimulating the GLUT4 transporter, 

and the glycolytic enzymes hexokinase (HK) and glycogen synthase [12]. Also, growth homlOne, 

epinephrine, cortisol [2], increased heart work, and tissue hypoxia (see next paragraph) stimulate glucose 

uptake and utilization. Myocardial carbohydrate and FFA oxidation are inter·related by the so·called 

glucose-fatty acid cycle [2,13]. High rates of fhtty acid oxidation inhibit glucose uptake, lactate uptake, 

and glucose oxidation [2,13·15] through changes in the levels of: 1) cytosolic citrate (which inhibits 

phosphofmctokinase; PFK), 2) mitochondrial acetyl-CoA and NADH (which regulate pynlVate 

dehydrogenase; PDH), and 3) cytosolic maionyl·CoA [7,16,17]. Inversely, high circulating levels of 

glucose and insulin inhibit adipose tissue lipolysis resulting in low plasma FF A levels and removal of 

the inhibition of glycolysis by high rates ofFFA oxidation. Also, glucose may directly inhibit fatty acid 

oxidation [18] via acetyl·CoA carboxylase and 5'·AMP·activated protein kinase (8,19]. 

The regulation of myocardial energy metabolism has been dealt with by many authors (3,4,6. 

8,17]. In the classic biochemical view, metabolic control of the flux through a pathway is exerted at 

discrete sites called flux·generating steps or regulatory reactions [20,21]. These rate-limiting steps in a 

linear reaction sequence are non·equilibriulll reactions saturated by pathway substrate and subjected to 

allosteric control. For example, rate limiting steps are the reactions catalyzed by PFK and HK (for the 

glycolytic pathway), and 2·oxoglutarate dehydrogenase and citrate synthase (for the Krebs cycle) 

[21,22]. This rather static and dogmatic view of metabolic control (see [23]) has been challenged by the 

more dynamic 'metabolic control theory' [24·28]. According to this theory, metabolic control of a flux 

is not determined by unique enzymes but is rather distributed over several steps in many metabolic 

sequences. The participation of each enzyme in the control of a flux through a pathway is described by 

the 'flux control coefficient' of that enzyme. Metabolic control analysis applied to normoxically beating 

isolated rat hearts [29] revealed that glucose uptake and phosphorylation dominated (75%) the control 

of glycolytic flux. FurthemlOre, control varied with changing conditions. 
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Figllre 1. Schemalicm.en.iell. 0/ myocardial energy metabolism. The heart primarily /lses giucose and/ree latty acids (FF A) 
as substrales. Myocardial energy metabolism call be dMded illlo three slages: /) The /omlatioll 0/ acetyl·CoAfrom pyntmle 
and/ree/alt), acids, 2) thejomwtioll o/NADH alld FADH} ililhe Iricarboxylicacid cycle (TCA cycle), and 3) the oxidatioll oj 
NADH and FADH} in the eleclron transport chain (respiralor), elwin), whichfinally will result ill built up of the proton gradient 
across the inlier mitochondrial membrane alld subseqllel/I gel/era/ioll 0/ ATP by actioll o/the mitochondrial F J"j·ATPase. 
Pynll'ate Is /onned in the cytosol jrom the jollowing carbohydrate sources: 1) circulatillg lactate (lact.), 2) blood glucose 
(glycolysis) and 3) ill/racel/ular glycogen (glycogenolysis). Extracellular glucose is taken lip byac/ioll of specific glucose 
trallSporters (GLUT) and GLUT4) in the plasma membrane alld is direclly phosphorylated to glucose 6·phosphate (G·6·P) by 
hexokinase (HK), which lraps glucose into the cell. Ischemia and insulin reslilt In the trallslocatioll (and possibly also 
aclimlion) ojGLUT transporters from Ihe cytosol illto the sarco/emmal membral/e. Glucose 6·phospbate can be usedJor either 
glycogen sylllhesis (via glycogen sYlllhase) or the Jonllalloll of pymmte ill a series oj reacliolls called glyco/ysis. An important 
regulalOf}' slep ill glycolysis is calalyzed by the enzyme p/Jophojnrctokinase (PFK). Under anaerobic cOlldiliolls (ischemia), 
pymmte is reduced by NAD}! /0 jonll lactale In a react/oil catalyzed by lactate dehydrogenase (LDH). NAD+, needed ill the 
glycolYlic reaclioll calalyzed by glyceraldehyde 3·ph05phate dehydrogenase (GAPDH). is generated in the reductioll oj pynn'ate 
to /actale alld slls/aills Ihe cOlltillued opera/ioll oj glycolysis ill anaerobic condWolls, Glycogell, a dense alld readily mobilized 
storage jOnJJ oj glucose. Is present ill the cytosol ill the fortll of granules. Thus, glycogell sen'es as Q resen'oir oj glucose ill 
conditions oj se\'ere ischemia (nollow Ischemia) or suddelJ challges ill work load. Under aerobic conditions, pyntmte is 
cOluwted to acetyl·CoA by pymvale dehydrogenase (PDlI) ill the mitochondrion, II has been proposed that ATP produced in 
glycolysis is comparlmentalized alld maillly used to dril'e ATP·dependellt ion pumps supporting membrane illtegrify. Fally acids 
are predomi/lalllly supplied by FF A·albumin ill blood alld II/trace/luiar triglyceride (TG) slores. alice iI/side the cell,jally acids 
billd to fhe heart·type fatly acid·billding proleins (FABP) and are transported to the mitochondrionjor COlH'ersioll to fOlly acyl· 
CoA (FA·CoA) by Qcyl·CoA synthase. Faffy acyl·CoA is Irallsjerred into the mitochondria by the camitine slll/ltle, which 
COliS isis of a comple:.; oj enzymes named camilille palmitoy/trallsferase /, camiline:acylcamitille trans/ocase, alld can/ftille 
palmitoyltrallsjerase 2. III each cycle of the mitocholJdrlal poxidalioll (pox), long chaill acyl·CoA is s/wrlelled by 2 carbOIl 
aloms to produce acetyl·CoA. Helice, Jatty acids CUll only be oxidized In COlllrast to giucose residues, which call also be 
allaerobically degraded. Acetyl·CoA from both carhohydrale alld Jalty acid sources ellters the TCA cycle resulting ill the 
J017lwlioIJ oj 3 NADH alld I FADHlo which are reduced ill the respiralorychainloj017l1 ATP with the use of oxygen. ATP 
obtained jrom the oxidation oj these subs/rates is maillfy used 10 delh'er collfraclile work 
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1.2.1schemia 

Depending on the degree of residual flow during ischemia, oxidative phosphorylation and Krebs 

cycle activity are almost completely inhibited [30] due to a lack of oxygen as electron acceptor and 

subsequent rise in mitochondrial NADHINAD+ and FADH/FAD ratios, respectively. Anaerobic 

glycolysis is accelerated to deliver ATP [2] due to an increase in the number of GLUT transporters in 

the sarcolemmal membrane [31,32J and by relief of feed~back inhibition by citrate fonned during FFA 

oxidation. Substrate metabolism during ischemia depends on the degree of residual flow; only exogenous 
glucose (low~flow ischemia) and endogenous glycogen can be utilized by the severely ischemic heart 

(Figure 1). The end-products of anaerobic glycolysis are lactate and protons resulting from glycolytic 

ATP tum over [33] (Figure I). However, anaerobic ATP production is insufficient to meet the energy 

demands of the contracting heart and cellular homeostasis is disturbed as ischemia is continued [34]. 

Thus, myocardial ischemia results in a depletion of high energy phosphates and glycogen stores, an 

increase in ADP, inorganic phosphate (Pi)' and creatine (Cr), and accumulation of lactate and protons 

[35,36]. If myocardial blood flow to the heart is not restored in time (e.g., by means of thrombolytic 

therapy), myocardial necrosis (via oncosis or apoptosis) will finally develop. 

Glycolytic flux during ischemia may be mainly detennined by PFK and, during more severe 

ischemia, by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) due to accumulation of glycolytic 

metabolites [2,37]. However, crossover analysis of glycolytic intennediates showed that glycolytic rate 
during low-flow ischemia is mainly detennined by the rate of glucose delivery (substrate supply) and 

not by enzyme inhibition [38]. Furthennore, although absolute glucose delivery is decreased during 

ischemia, the capacity to extract glucose is greatly increased [7,38,39]. 
High rates ofFFA oxidation occur during reperfusion following ischemia [8,40,41], diabetes [42] 

and most ischemic heart diseases [11,43]. Also, glucose intolerance has been observed in patients after 
cardiac infarction [44]. It has been proposed that shifting substrate utilization away from FFA 

metabolism and toward glucose metabolism may be an effective strategy to reduce ischemic injury and 

to treat ischemic heart disease [7,17,39,45-48]. The mechanism has been proposed to involve I) 

increased glycolysis-from-glucose during ischemia supporting membrane integrity and ionic homeostasis 

([7,39]; see also Chapter 1),2) increased coupling of glycolysis and glucose oxidation resulting in less 

production of protons [17,48], and 3) replenishment of moiety-conserved cycles [49]. A shift in energy 
metabolism can for instance be achieved by provision of glucose-insulin-potassium [49-53] or 

pharmacological intervention [17,481, a notion known as 'metabolic therapy' or 'metabolic management 

of ischemic heart disease' [19,49,54-57]. 

2. Adenine nucleotide metabolism 

2.1. Enzymatic machillel), 

Figure 2 depicts in a schematic way how the high energy phosphate ATP breaks down to purines, 

including the important regulatory metabolite adenosine. Figure 3 shows the pathways present in heart 

conceming energy metabolism. During nomloxia, ATP is produced from ADP in the mitochondria by 

oxidative phosphorylation. The triphosphate is transported to the cytoplasm via the adenine nucleotide 

-22-



Myocardial energy metabolism 

transiocator, and subsequently shuttled to creatine. Creatine phosphate, in tum, produces ATP, which 
is needed for contraction. Under physiological conditions the purine-producing enzymes are hardly 
active. The enzymes involved include Sr-nucleotidases, which convert AMP and IMP to adenosine and 
inosine, respectively (enzymatic reactions 7, Figure 3), and adenosine deaminase, for the breakdown of 
adenosine to inosine (reaction 9, Figure 3). \Ve suppose that man lacks cardiac inosine kinase activity, 
based on our observations in rat heart [58]. \Ve showed that human heart contains purine nucleoside 
phosphorylase that converts inosine to hypoxanthine (reaction 11), but not its pyrimidine counterpart, 
responsible for conversion of uri dine to uracil [59}. The latter contrasts findings in rat heart {591. The 
activity of xanthine oxidoreductase (reactions 12) is minimal in the human heart, but several other 
species show appreciable activity of this enzyme [581. Human heart may contain an inactive fonn of the 
enzyme (see section 2.2). 

We speculate that during nonnoxia AMP is not dephosphoryJated (adenosine pathway), but 
converted to IMP by AMP deaminase (reaction 4; IMP pathway), or to ADP by adenylate kinase 
(reactions 2). Thus, the myocytes would conserve their nucleotide pool, save energy for contraction, and 
maintain the equilibrium between energy supply and energy demand. However, during hypoxia/ischemia 
and increased heart work, increased Pi inhibits AMP deaminase and hence, the adenosine pathway 
becomes more important (60,61]. Thus, in nomloxic tissue, purine catabolism predominantly foHows 
the IMP pathway, which conserves adenine nucleotide pools via salvage pathways. Switching to the 
adenosine pathway during ischemia would be advantageous since adenosine acts as a retaliatory 
metabolite (negative feedback modulator) restoring the imbalance between oxygen demand and supply 
(see section 3). Moreover, hydrolysis of AMP to adenosine reduces ischemic injury by improving the 
free energy of ATP hydrolysis (via increased PCr), which might delay or prevent calcium overload (62]. 
Only a small fraction of adenosine produced during ischemia will be exported out of the celJ by way of 
(facilitated) diffusion, the remainder is directly recycled to AMP in the purine salvage pathways or bound 
to S-adenosylhomocystein 

NH, NH, NH, NH, OH OH OH OH 

purine ----? purine ----? purine ----? purine ----? purine ----? purine ----? purine ----? purine - OH 

ribose ribose ribose ribose ribose OH OH 

p-p-p pop P 

ATP ADP AMP adenosIne Inosine hypoxanUne xanthIne urate 

nucleotide purine 

FigilTe 2. Schematic representation of adellille lIucfeotides alld purines. Because of the energy COllta/ned ill their phosphate 
bonds, ATP and ADP are called "high-energy phosphates "; also creatille phosphate falls ill this category. Oflhe compoullds 
depicted, ATP and adenosine seem to be the most important inlhe heart: The triphosphate fuels the contractile apparatus, 
whereas ode/lOs/lie regulates \'arlo/IS processes via receptors /1/ Ihe cell membrane. The purine lIucleatides ATP, ADP, IMP al/d 
AMP are negal/wly charged and do 1I0t readily cross lhe ceUlI/embrane ill cOl/trast to the lIoll-phosphOl}'lated purines. 
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Animal studies show that during aging the catabolic pathways become more prominent [63J. For 

adenine nucleotide synthesis, the following pathways are available: i) direct phosphorylation of 

adenosine by adenosine kinase (reaction 8); ii) salvage of purines by hypoxanthine guanine 
phosphoribosyltransferase (reaction 10); iii) de novo synthesis from small molecules, such as glutamine 

(see Figure 3); iv) adenine phosphorylation by adenine phosphoribosyltransferase (reaction 3). 

Phosphorylation of adenosine by adenosine kinase is presumably the fastest. The purine salvage pathway 

is relatively slow and becomes even slower during aging [64]. De novo synthesis of nucleotides is the 

slowest and is energetically more costly than salvage synthesis. It is unlikely that adenine salvage 

contributes significantly to human·heart adenine nucleotide synthesis, because tissue and plasma levels 

of adenine are very low. 

2.2. Cellular distribution of enzymes, ;IB'olved in energy metabolism 

The enzymes involved in purine metabolism are less active in human than in rat heart, but crucial 

pathways of intracellular adenosine production and rephosphorylation are comparable [65J. The catabolic 

pathway through adenosine deaminase and nucleoside phosphorylase takes mainly place in vascular 

endothelium and pericytes, both in humans and various other species [59,65,66]. Furthennore, AMP 

deaminase capacity is low in human heart and cultured human umbilical vein endothelial cells, and 

adenosine produced in the latter cells is inmlediately recycled via adenosine kinase [65,67]. 

The localization of xanthine oxidoreductase in myocardium is dependent on the animal species 

studied; the enzyme is present in dogs and rats but absent in rabbits and pigs [581. Xanthine 
oxidoreductase seems absent from human myocardium [58,68]. Its localisation in the endothelium is 

controversial. In human umbilical vein endothelial cells, xanthine oxidoreductase activity is minimal [67] 

while it is present in capillary endothelial cells and vascular smooth muscle cells of human myocardium 

[69]. A recent study shows that xanthine oxidoreductase is present not only in the cytoplasm but also on 

the outer surface of human endothelial and epithelial cells in culture [70] and also is involved in the 

generation of nitric oxide during ischemia independent of nitric oxide synthase activity [71,721. Because 

myocytes do not produce large amounts of hypoxanthine via nucleoside phosphorylase, hypoxanthine 
from endothelial cells has to be transported to the myocytes before incorporation into IMP by 

hypoxanthine guanine phosphoribosyltransferase. 

Thus, the degradation of purines beyond adenosine occurs mainly in the vascular endothelium 

[73] and the metabolism to xanthine and urate is species dependent with high xanthine oxidoreductase 

activity in rat, mouse, and guinea pig and low activity in rabbits and humans [58]. 

2.3. Subceffular enzyme location 

Creatine kinase has a bimodal localizatioll, Le., mitochondrial and cytoplasmic. Adenylate 

kinase, which catalyzes the reaction AMP + ATP -.=> 2 ADP, is also present in the mitochondria and the 
cytosolic compartment. AMP dephosphorylation takes place by 5'-nucleotidases in the plasma membrane 

and the cytoplasm [74]. Two soluble fomlS exist: the AMP- and IMP·preferring 5'-nucleotidases. The 

altemative pathway, AMP deamination, is very active in skeletal muscle; however, substantial activity 

is also present in the supematant fraction of human- and rat-heart homogenate [75]. In addition, this 

compartment of the cell contains the other enzymes involved in purine catabolism [75]. Also adenosine 
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kinase, responsible for rephosphorylation of adenosine, is present in the cytoplasm [75]. Thus, the major 
part of purine catabolism takes place in the soluble compartment of the cell. 

Cr ~ ATP 

I' ( '.'\.' 
CrP ~ ADP 8.AMP 

'.~ /. ~ 
adenine -+ AMP -----+ IMP ~no~th~ PRPP 

3 1 If 8 4 1 1) '" glulamlne 

ado ---> ina 10 ZMP 

',,1 '" hx acadeslne 

12 1 
xan 

12 1 
urate 

Figure 3. Scheme deplcti/lg ellzymalic reactiolls illm/wd i/l myocardial energy metabolism. During Ischemia breakdown 
becomes predominallt. This results ill the end prodllctllrate (uric acid) in rat heart, alld the purine hypoxanthine ill human 
heart. The laller lacks the enz)7l1e necessary for hypoxanthine to urate cOln-erslOIl (.rallthille oxidoreductase). but may contain 
all Isozyme oJ this enzyme reacting wilh NADH and producing superoxide. I = creatine kinase. 2 = adenylate kinase 
(myokinase). 3 = adenine phosphorlbosyltra11SJerase, 4 = AMP deaminase. 5 = adenyiosuccinate synthase, 6 = 
adenyiosllccillate lyase, 7 = 5'-IIllc/eotidases, 8 = adenosine killase. 9 = adellosine deaminase, 10 = hypoxanthine gllanille 
phosphoribosy/trallsferase. } } = pllrlne nucleoside phospho1}'/ase. } 2 = xanthine oxidoreductase. 11/ addflion, mriolls ATP 
splillillg enzymes (ATPases) are responslblefor ATP breakdown. Abbreviations; ado. adenosine; Cr. crealille; CrP, creatine 
phosphate; IlX, hypoxanthine; Ino, inosine; PRPP. -5-phosphoribosyl-1-pyrophosphate; S-AMP, S-adeny/os/lccillate; xal/. 
xanthine; ZMP=AICA riholide. 17le adenosine raising dnlg acadesine Is comoerted to ZMP when taken lip III cells. 

2.4. Enzyme regulation 

The size of the cardiac AMP pool depends on the breakdown of the high-energy phosphates ATP 
and ADP, as well as on the conversion of AMP to adenosine or IMP. Adenine nucleotide breakdown 
takes place when the supply of ATP cannot meet the tissue demand, for example during ischemia or 
hypoxia. AMP breakdown is dependent on the activity of the cytosolic enzymes 5'-nucleotidase and 
AMP deaminase. The AMP·preferring 5'-nucleotidase is activated by ADP, the IMP-preferring fomI by 
ADP or ATP; both fomls are inhibited by inorganic phosphate. OUf earlier work on porcine heart 
suggests that the myocardial energy charge regulates AMP deaminase. AMP deaminase is also inhibited 
by inorganic phosphate [60,6IJ. In rat heart, AMP deaminase activity is several fold higher than 5'· 
nucleotidase activity (75,76] but the affinity for inorganic phosphate inhibition is lower in the former 
enzyme (60,61]. This explains why the IMP pathway is dominant during nomloxia but is inhibited during 
ischemia when inorganic phosphate levels rise, which results in adenosine production. Membrane 
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phospholipids, in addition to ATP, activate cardiac AMP deaminase [77]. 

2.5. High-ellergy phosphates and purines as markers a/ischemia 

De Jong et al. [78] reviewed the use of ATP, phosphocreatine and purine measurements to 

characterize the metabolic status of the heart. These assays could predict rejection of transplants. In 

biopsies and plasma samples, high-perfonnance liquid chromatography offers the possibility to estimate 

these compounds with a high degree of accuracy and sensitivity [79,80]. Nuclear magnetic resonance 

spectroscopy has the advantage of non-invasive assessment of high-energy phosphates, inorganic 

phosphate and pH, but this technique is insensitive and expensive. The application of magnetic resonance 

spectroscopy in clinical cardiology is still in its infancy. 

Smolenski et aI. have demonstrated release of adenylate degradation products from the human 

myocardium during open heart surgery [81]; also uridine, a breakdown product of pyrimidine 

metabolism, accumulated under these conditions [59]. In patients undergoing percutaneous transluminal 

coronary angioplasty, coronary sinus adenosine is a more sensitive indicator of ischemia than lactate, 

hypoxanthine, and uric acid [82]. The cumulative release of purines during low-flow ischemia may serve 

as a marker for the degree ofischemic injury as it is related to the functional recovery upon reperfusion 

in isolated rat hearts (see Chapters 6 and 9). 

3. Adenosine receptors and cardiovascular function 

3.1. Adenosine receptor classification alld distribution 

Adenosine receptors belong to the family ofPI-purinergic receptors [83-851; they are G-protein 

coupled receptors with 7 hydrophobic, membrane-spanning domains (Table 1). AdenosinelP I-purinergic 

receptors can be further divided into AI' AlA' Ala, and A3 receptors according to the IlWHAR Committee 

on Receptor Nomenclature and Drug Classification [83,841. AI and AJ receptors mediate inhibition of 

adenylate cyclase via a guanine nucleotide binding inhibitory protein (G(,o) whereas A2 receptors couple 

to guanine nucleotide binding stimulatory protein (Gs), which stimulates adenyl ate cyclase and cAMP 

fonnation (Table 1). However, adenosine receptors couple to more signal transduction pathways (Figure 

4). 
Adenosine receptors are especially abundant in the central nervous system; in lesser numbers, 

they are found in many other tissues including the heart [85]. Adenosine AI receptors are located 011 

cardiomyocytes and vascular smooth muscle cells whereas A2 receptors are present on the endothelial 

and vascular smooth muscle cells (Figure 4). The density (Bm.,) of the Al receptor is higher in atrial than 

ventricular tissue [86]. Transcripts of the newly discovered A3 receptor have been found in rat [87], chick 

[88], and human [89] hearts. The A3 receptor is present on ventricular myocytes and not on atrial tissue 

[90]. Furthennore, in contrast to the Al receptor, there is no evidence of the presence of the A3 receptor 

in SA and AV nodes [91]. 
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Table 1. Properties of cardiovascular adenosine receptor subtypes 

G protein coupling 

Effectors 

Molecular weight (kD) 

K,-adenosine (aM; rat) 

~-adenosine (aM; human) 

K, CCPA (aM; rat) 

K, IB-MECA (aM; rat) 

K, 8-SPT (aM; rat) 

Physiological effects 

AI 

G/Go 

ACI, PLCT, IKT, 1",1, lKATI'T 

37 

0.1-10 

30 

0.4 

54 

2,600 

- anti-adrenergic action 
- ischemic preconditioning 
- glycolysis T 1 
- negative chronotropy 
- negative dromotropy 
- negative inotropy 

Subtype 

A2A/B 

G, 

AClGCT, PLCT, lKATI'T 

45/36 

1000-10,000 

? 

3900 

56 

15,300 

- vasodilatation 
- platelet adherence/aggregation 

to endothelium 1 
- adherence activated neutrophils 

to endothelium and O2- releasel 

A3 

GiG. 

ACI, PLCT, lKATI'T 

36 

? 

700 

? 

1.1 

=10,000 

- ischemic preconditioning 

AC=adenylate cyclase; GC=guanylate cyclase; PLC=phospholipase C; IK=inwardly-rectifying potassium channel current; lKATP=ATP-sensitive potassium 
channel current; Ie.. =L-type calcium channel current; G/Go=inhibitory G protein; Gs=stimulatory G protein; CCPA=2-ch!oro-J.f-cyclopentyladenosine; 8-
SPT=8-(p-sulfophenyl) theophylline; IB-MECA=N'-(3-iodobenzyl)-adenosine-5'-N-methyl-uronamide. 
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3.2. Physiological effects of adenosine 

The ATP catabolite adenosine is released in response to a decrease in the oxygen supply/demand 

ratio occurring during ischemia and exercise [92], and by this mechanism signals changes in myocardial 

energy metabolism [73,93]. The cardiovascular actions of adenosine are aimed at restoring oxygen 

supply/demand balance ([94]; Table I) and homeostasis, matching energy consumption (AI' A) effects) 

with energy delivery (A2 effects). Adenosine induces vasodilatation, results in negative chronotropic and 

dromotropic effects, reduces atrial contractility, attenuates the stimulatory actions of catecholamines in 

ventricular tissue, inhibits norepinephrine release from stimulated sympathetic nerve fibers, and 

attenuates vascular ischemic injury [73,94-96] (Table I). Therefore, adenosine has been termed a 

"retaliatory metabolite" [97,98]. The half-life of adenosine in human blood is 0.6 seconds [99] since it 

is actively metabolized in endothelial cells and blood platelets. Synthetic adenosine AI agonists exhibit 

substantially longer half-lives in blood dependent on the size of the 1V-substituent [100,101]. In the 
clinical setting, adenosine is used to tenninate supraventricular tachycardia and as a diagnostic tool for 

the evaluation of various tachyarrhythmias [102]. Furthermore, adenosine is used as a coronary 
vasodilator during 20ITI_scintigraphy. 

3.2.1. Adenosine AJ and A; receptors 

In the heart, adenosine AI-mediated effects, via G j , can be divided into cAMP-independent 

(direct) effects and cAMP-dependent (indirect) effects [94,103-105] (Figure 4), Direct effects, which 

occur only in atrial tissue, are mediated by Gilo·mediated stimulation of the acetylcholine/adenosine­

regulated outward potassium current (lKACb/Ado) [104] leading to action potential shortening and 

membrane hyperpolarization in the SA and A V nodes, and atrial tissue. Stimulation of IKAcwAdo by 
adenosine depresses SA and AV node activity resulting in negative chronotropy and dromotropy, 

respectively. In atrial myocytes, adenosine AI activation results in direct negative inotropic effects (106] 

via slight inhibition of the nonstimulated, basal inward calcium current (lca) and/or via action potential 
shortening and membrane hyperpolarization [73,107,108]. No direct effects of adenosine occur in 

ventricular tissues as they lack IKACWAdo channels. In ventricular and atrial myocytes, indirect effects of 
adenosine are mediated by depression of catecholamine stimulated lea and In (transient inward current) 

[104] via inhibition of cAMP [109, II 0]. Thus, in ventricular tissue, adenosine AI-mediated effects are 

anti-adrenergic, opposing the positive chronotropic, dromotropic, and inotropic effects ofp-adrenergic 

receptor stimulation. Hence, indirect affects of adenosine can only be demonstrated during p-adrenergic 
stimulation when cAMP levels are increased [111,112]. A recent study indicated that the anti-adrenegic 

action of adenosine is more complex and consists of two components [113]. The first short-ternl and 

PKC-independent component is only expressed in the presence of elevated interstitial adenosine levels 

and hence, is reversible upon normalization of these levels. The sustained anti-adrenergic effect of 

adenosine persists when the adenosine concentration has returned to baseline levels and is induced via 

activation ofthe adenosine AI receptor and subsequent persistent activation ofPKC [113]. FurthemlOre, 

adenosine inhibits norepinephrine release from stimulated sympathetic nerve fibers in the heart [114. 

116]. Like the AI receptor, the adenosine A) receptor also inhibits adenylate cyclase [87,117]. 

Other effects of adenosine A/A) receptors, through G-proteins. include 1) stimulation of 

phospholipase C resulting in inositol-l ,4,5,-triphosphate accumulation and activation ofPKC [85,118-

123], and 2) activation of atrial and ventricular KATP channels, either directly [124,125] or indirectly via 
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Flgllre 4. II/Ils/ra/ioll of/he fonna/ion of adenosine alld receptor-effector coupling system. All imbalance between tissue oxygen 
demand and supply leads /0 ATP breakdown alld accumulatioll of adenosine (ADO) with ill ischemic cardiolllyocyles. Adenosine 
prodlicedfrollllhe hydrolysis ofS-adenosyllwlllocysteine (SAil) by action ofSAH-hydrolase in the cellular methylatioll cycle 
collfributes to adenosille production dllring nom/Oxia [I37} bllt is negligible dwillg ischemia [73}. AdelfosineCTOsses the cell 
membrane via the lIucleoside transporter (1Il; facilitated diffusion) to enter Ihe interstitial space. Adenosine is also produced 
e:dracellularly frolll adenine nucleotides releasedfrom neIlr01JS, cardiac lIIyocytes, endothelial cells. platelets, alld nelltrophlls, 
byac/ion of ecto-5'-1I11c1eolidases (5'N1) located 011 the surface membralles of man)' cells. During ischemia, adenosille derived 
from lIIyocytes is lIIaillly produced from intracellular AMP breakdown (el/do-5'N!) whereas )'asclllar adenosine is mainly fomled 
from e.tlracellular AMP melabolism (ecto-5'NT) [I38,139}. 11re quantity of adenosine prodlfCed ex/racel/Illarly by the 
elldothelium is less Ihall that produced illtracel/lllarly /n cardlomyocytes {139}. Interstitial adellosine is maillly /akellllp by 
elldothelial cells \'ia the lIucleoside trallsporter where it is further catabolized; some adellosine may directly reach Ihe lumen 
of the micTOl'asculafllre through clefts withill the endothelial cell layer. 
III the inlerslitial space, adellosine can bind its A, alld AJ receptors located Oil the myocardial membrane. Adenosine Al 
receptors are located all Ihe vascular endothelillm and smooth muscle cel/s. The elldotheliulII is all acti~'e barrier [0 [he 
equilibration o/plasma alld illterstilial adenosine concentratiolls due to its high capacity to metabolize adenosine [73,UO}. 
11,e adenosine gradient between plasma alld interslilial compartments (l:8 illllormO.lic perfused hearts) is almost completely 
reduced dun'ng ischemia [141-144} when adenosine transport alld breakdown ill endothelial cells aresafurated. Most adenosine 
fomled dllring ischemia originales/rom Ihe myocardial adenine IIIIc1eolide pool [U5}. 
The electro physiological and contractile effects of stimulation of adenosine AI and AJ receptors by adenosine are mediated via 
an inhibitory G protein (G,,). /11 supraventricular tisSlle. a direct (cAJ.{P-indepelldent) effect o/G,." slll1l11lalloll by Ihe adenosille­
AI-receptor comple.t is an increase ill the illwardly-rectijyingpotassium channel C/lrrellt (IIO.C1.'W resulting ill hyperpolarization 
and aclion potential durat/on shortening. Another direct effect of A/A J receptors Is acljmtioll of Ihe ATP-sensj{jl'e potassium 
chanllel current (IKjr&. III atrial and ventricular cel/s, indirect (cAMP-dependent) or anli-adrenergic effect 0/ adellos/Jle A, 
receptors is alfributable to depressloll of increased cAMP lel'els and stimulated L-Iype Ca l

+ channels (Ie) and trallsient illward 
currents (IrJ by catecholamines (catecholamincs Increase and adenosine decreases adellylale cyclase fAC) aCIMty). Other 
effecls of adenosine A/A] receptors areslimulation of phospholipase C, which results infonnatioll inositol-1.4,5,·triphosphate 
accumulation and actlm/lon of protein kinase C (PKC). Adenosine Al receptors mediate l'asodilala/ioll directly via opening 
ofK.mchannels (Alii subtype) or indirectly (Al4 subtype) via a stimulatory G-proteitr (GJ alld release of nitric oxide (NO). I,.. 
lime- and vollage-depel/dent inward currenl aclimted by hyperpolarization (pacemaker current). GC, guanylate cyclase. 
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PKC [126-129]. Moreover, the cardioprotective effects of adenosine AliA) receptor stimulation are 

abolished by KATl' channels blockers [130-135], suggesting a link between the channel and these 

receptors. The physiological role of the coupling of adenosine receptors with the IKATl' is unclear since 

adenosine activation of the channel may not occur under physiological conditions when ATP levels are 

high. However, when ATP levels fall during ischemia and the channel closes, KATP channel opening by 

adenosine may be involved in adenosine-mediated cardiopotection (see Chapter 1). This probably 

explains why adenosine minimally affects action potentials in intact, nonnoxic myocytes [136]. The 

effect of adenosine on glucose metabolism is controversial (Chapters 3 and 7). FurthemlOre, both 

adenosine AI and A) receptors trigger ischemic preconditioning (Chapters 7-9). 

3.2.2. Adellosille A} receptor 
Besides the well-documented vasodilatatory actions mediated by endothelial and vascular 

smooth muscle cell adenosine A}NB receptors [92] in most vascular beds, adenosine has also anti­

inflammatory (AlA receptors on neutropbils) and anti-thrombogenic (A2A receptors on platelets) actions, 

reducing vascular injury during ischemialreperfusion [94,146-150] (Table I). Moreover, adenosine is 

involved in the angiogenic effect observed during ischemia [94,151]. Activation of mast cells is mediated 

by its adenosine A2B receptors and plays a role in inflammatory and allergic disorders like asthma [85]. 

It has been proposed that two kinds of adenosine receptors mediate the coronary vasoactivity of 

adenosine [152,153]. AlA receptors coupled to adenylate cyclase/guanylate cyclase may mediate early 

vasorelaxation via nitric oxide production [154,155] whereas the other receptor (A2B) induces 

vasodilatation via direct activation ofKATP channels (Figure 4). Adenosine induces vasoconstriction of 
the renal glomerular afferent arteriole (anti-diuretic action) and the placental circulation. 

3.3. Acades;lle, all adenos;lIe regulating agellt 

The nucleoside analogue acadesine (AIeA riboside, 5·amino-l-p-D-ribofuranosyl-imidazole-4-
carboxamide), like dipyridamole, belongs to the class of therapeutic drugs called 'adenosine regulating 

agents' [156,157]. When taken up by cells. acadesine is converted by adenosine kinase to its naturally 

occurring 5'monophosphate called ZMP or AICA ribotide; ZMP is further metabolized to IMP (Figure 

3). Originally, acadesine was advocated as an ATP precursor increasing the replenishment of myocardial 

adenine nucleotides during postischemic reperfusion, which would result in improved contractile 

recovery [158]. However, the cardioprotective properties of this compound are unrelated to 

replenishment of myocardial ATP levels during ischemiaJreperfusion [159-165]. Acadesine increased 

IMP but failed to increase AMP and ATP in these studies, which is probably due to ZMP-mediated 
inhibition ofadenylosuccinate lyase [166] (Figure 3). Alternatively, acadesine may serve as an event­

specific and site-specific agent that raises endogenous adenosine levels in ischemic tissues only. The 

mechanism may involve inhibition of adenosine deaminase and adenosine kinase in (ischemic) tissue 

where the activities of ATP catabolizing enzymes are very active; furthermore, the acadesine metabolite 

ZMP inhibits AMP deaminase (see [156.157]). Acadesine does not affect nucleoside transport. 

Acadesine raises intravascular [164,167] and tissue [163-165] adenosine. The drug shows limited oral 

bioavailability and has a half life of 1.4 hours in man [156,157]. 

In different animal models of ischemia, acadesine has been shown to elicit cardioprotection 

[159,163-165,167-172] although other studies reported no beneficial effects [161, 162,173] or, iu an early 
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study, even worsened functional recovery (1741 after treatment with this drug, Acadesine improves the 

infarct-size limiting effects of ischemic preconditioning by lowering the threshold and extending the 

window of preconditioning protection [175-177], Some of the negative studies may be explained by the 

use of relative short periods of (non lethal) ischemia [1611, and acadesine dosage [174] and timing of 

administration [161,173] (for review, see [157]), Cardioprotection by acadesine is abolished in the 

presence of nonselective blockers of adenosine receptors [164,172], Thus, cardioprotection by acadesine 

may be mediated by increased intravascular and interstitial adenosine levels in ischemic tissue, 

Acadesille extends the window of protection afforded by ischemic preconditioning by an adenosine 

receptor-dependent mechanism [176,177], TIle advantage of acadesine in comparison to other 'adenosine 

regulating agents' Jike dipyridamole is its ability to raise adenosine in ischemic tissue only, without 

hemodynamic side-effects [164], Acadesine-induced cardioprotection may be merely mediated by 

increased vascular adenosine (A2 receptor) instead of interstitial adenosine (A/A) receptor) {17S], 

Acadesine acts as an antithrombotic agent by decreasing neutrophil-myocyte adhesion and platelet 

activation via an adenosine-mediated mechanism [14S,179,ISO], 

The efficacy of acadesine in patients undergoing coronary artery bypass surgery has been 

evaluated in three placebo-controlled, double-blind, multicenter studies [ISI-IS31. In these studies, 0,05 

(low-dose group) or 0.1 mg,kg-I,milf l (high-dose group) intravenous acadesine was initiated IS min 

before the induction of anesthesia and continued for 7 hours thereafter, In addition,S pg/ml acadesine 

was given as adjunct to the cardioplegic solution_ The first small study involved lIS patients at four U,S, 

academical medical centers [lSI], High- and low-dose acadesine did not reduce perioperative myocardial 

ischemia as judged by electrocardiography, transesophageaJ Doppler criteria, and creatine-kinase MB 

(CK-MB) fraction although a trend towards reduced ischemia was observed with acadesine. A larger 

(n=633) multicenter study in the U.S. [IS3] also failed to show beneficial effects of high- or low-dose 

acadesine on the prespecified outcome measures for perioperative myocardial infarction (ECG Q wave, 

CK-MB elevation, or autopsy evidence). However, post-hoc analysis using more specific measures of 

myocardial inf.'1rctioll revealed beneficial effects of acadesine in the high-dose group only compared to 

placebo. An intemational study (n=S21) involving medical centers in Europe and Canada [IS2] did not 

find differences for the prespecified primary outcome measures of myocardial infarction between 

patients treated with high-dose acadesine or placebo, Further stratification of acadesine-treated patients 

showed a reduced incidence of myocardial infarction in high-risk patients (odds ratio=0.44; P=O.015) 

but not in low-risk patients (odds ratio=1.12; P=O.665). The studies indicated further that acadesine is 

safe for patients since no adverse effects (e,g., blood pressure) were observed with administration of the 

dmg. The efficacy of acadesine in olher procedures like percutaneous transluminal coronary angioplasty 

(PTCA) has hardly been examined (see Chapter 5). 

4. Myocardial (pro)glycogen 

The theory that glycogen consists of two separate fomls dates back to 1934, when \VilIstatter 

and Rohdewald (IS41 reported the existence oflyo-glycogen and desmo-glycogen in various mammalial 

tissues, According to their theory, Iyo-glycogen was protein-free and dissolvable in dilute trichloroacetic 

acid (TCA) whereas desmo-glycogen was protein-bound and TCA insoluble, The desmo-glycogen 

containing protein precipitant of the TeA treated tissues could be extracted by alkali. More than 25 years 
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later, Roe et al. [1851 reported that the two fomls of glycogen were artefacts of the extraction procedure 

due to inadequate homogenization in cold TeA. In the period between these two reports, evidence has 

been presented that both subfractions of glycogen behave differently when SUbjected to changing 

physiological conditions, a subject reviewed by Stetten and Stetten [1861. In heart muscle and other 

tissues, fasting [187M 1901, growthMhormone administration [188M 1901, epinephrine/norepinephrine 

injection, insulin administration or adrenalectomy/ hypophysoectomy [187-189], muscle work [191], and 

thyroxine injections [1921 result in changes in macroglycogen (lyoMglycogen) whereas proglycogen 

(desmoMglycogen) remains more or less constant. When rats were exposed to prolonged anoxia (3.5 h), 

both macroglycogen and proglycogen fractions decreased, however, the decrease in the latter fraction 

was less pronounced [193]. In anoxic dog heart, macroglycogen decreased and proglycogen increased 
(194]. After about 4.5 h, however, proglycogen levels also started to decrease. Furthennore, a link 

between the resistance to anoxia and the amount of macro glycogen was observed [194]. 

The notion that glycogen consists in two fonns has been take up again [195,1961. Not the 

absence or presence of protein distinguishes both forms [184], but merely the proportion protein relative 

to carbohydrate does [197]. Acid-extractable macroglycogen (Mr 104 kDa) contains 0.35% by weight 

of protein and acidMprecitable glycogen (Mr400 kDa) contains 10% by weight of protein. The latter low 

molecular mass form of macroglycogen is called proglycogen and is a stable intemlediate in 

macroglycogen synthesis [197,1981. 

An important step in the rediscovery ofWillstattcr's and Rohdewald's lyoMglycogen and desmoM 

glycogen [1841, and the new insights in how glycogen is synthesized, started with the discovery that 
glycogen contains covalently bound protein [199,200]. From this time, more knowledge about the 

biogenesis of glycogen on the protein primer callcd glycogen in has been obtained, a subject extensively 

reviewed [195,200M 203]. The first step in this process consists of the covalent attachment of glucose to 

a tyrosine residue (Tyr 194) 011 the Mr 37 kDa primer glycogenin [196], of which the amino-acid 

sequence has been detennined [2041. The glucose residue is added autocatalytically to Tyr 194 from 

UDPglucose (195]. Thereafter, glycogen synthase and glycogen in fonn a 1:1 complex so that the Mg2-1-
dependent autoglycosylation reaction can proceed to foml malto-octaosylglycogenin using UDPglucose 

[195,205-209]. From this point, the combined action of glycogen synthase and branching enzyme, using 

UDPglucose, lead to the fonnation of pro glycogen [198]. Based on the observation that NH/mainly 

blocks macroglycogen synthesis in brain astrocyles, it was concludcd that two distinct (glucose 6-

phosphate activated) enzymes catalyze the fonnation of proglycogen and macroglycogen called 

proglycogen synthase and macroglycogen synthase, respectively [197]. Furthermore, proglycogen 
synthase seems to be the rate-limiting step in glycogen synthesis which provide further evidence that 

different processes control the fomlation and breakdown of macroglycogen and proglycogen. Both the 
fommtion of the protein primer glycogen in, which will detennine how much glycogen a cell can store, 

and the regulation of pro glycogen synthase, provide new ways to understand carbohydrate metabolism. 

Thesc new insights also explain the observation done in 1934 [1841 that glycogen consists of acid­

insoluble (desmo)gtycogcn and acidMinsoluble (lyo)glycogen. FurthemlOre, observations done in the 50's 

(186-191,193,194] correspond to recently obtained results [210-212] that glycogen oscillates between 
macrogtycogen and proglycogen whereas breakdown ofproglycogell only occurs under more stringent 

conditions [194,195,211]. 

-32-



Myocardial energy metabolism 

References 

[I] Rolfe OF, BrO\vn GC. Cellular energy utilization and mole(ular origin of standard metabolic rate in manunals. Physiol 
Rev 1997;77:731-758. 

[2] Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart 
muscle. Annu Rev PhysioI1974;36:413-459, 

[3] Camici P, Fenannini E, Opie LH. Myocardial metabolism in ischcmic heart disease: basic principles and application 
to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217-238, 

[4] Opie LH. Cardiac metabolism - emergence, decline, and resurgence. Part I. Cardiovasc Res 1992;26:721-733. 
[5] Schonekess BO. Competition between lactate and falty acids as sources of ATP in the isolated working rat heart,} 

Mol Cell CardioI1997;29:2725-2733. 
[6] Taegtmeyer H, Energy metabolism of the heart: From basic concepts to clinical applications, Curr Probl Cardiol 

1994;19;59-113. 
(7) Opie LH. The Heart - Physiology and Metabolism. (2 ed.) New York: Raven Press, 1991. 
[8) Lopaschuk GO, Belke DO, Gamble}, Itoi T, Schonekess DO. Regulation offatty acid oxidation in the mammalian 

heart in health and disease. Biochim Diophys Acta 1994;1213:263-276. 
[9] Opie LH. Metabolism of the heart in health and disease, I. Am Heart J 1968;76:685-698. 
[10] Valori C, Thomas M, Shillingford}, Free noradrenaline and adrenaline excretion in relation to clinical syndromes 

following myocardial infarction. Am 1 CardioI1967;20:605-617. 
[11] Oliver MF, Kurien VA, Greenwood nv. Relation between serum-free-fatty acids and arrhythmias and death after 

acute myocardial infarction. Lancet 1968;i:710-714. 
[12) Drownsey RW, Doone AN, Allard MF. Actions of insulin on the mammalian heart: metabolism, pathology and 

biochemical mechanisms. Cardiovasc Res 1997;34:3-24. 
[13] Randle Pl, Garland PD, Hales CN, Newsholme BA. The glucose-fatty acid cycle. Its role in insulin sensitivity and the 

metabolic disturbances of diabetes mellitus. Lancet 1963;i:728S-7289. 
[14] Lopaschuk GO, Wambolt RB, Barr RL, An imbalance between glycolysis and glucose oxidation is a possible 

explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J 
Pharmacol Exp Ther 1993;264:135-144. 

[15] Newsholme EA, Randle Pl. Regulation of glucose uptake by muscle. 7. Effects of fatly acids, ketone bodies and 
pyruvate, and ofalJoxan·diabetes, starvation, hypophysectomy and adrenalectomy, on the concentrations of hexose 
phosphates, nucleotides and inorganic phosphate in perfused rat heart. Biochem J 1964;93:641-651. 

{16J Dyck JR, Barr Al, Barr RL, Kolattukudy PE, Lopaschuk GO. Characterization of cardiac malonyl-CoA decarboxylase 
and its putative role in regulating fatty acid oxidation, Am 1 Physiol 1998;275:H2122-2129. 

[17] Stanley WC, Lopaschuk GO, Hall JL, McConnack lG. Regulation of myocardial carbohydrate metabolism under 
nomlal and ischaemic conditions. Potential for phamlacological interventions. Cardiovasc Res 1997;33:243-257. 

[18] Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart, 
Biochem J 1980;186:701-711. 

[19] Lopaschuk GD. Alterations in fatty acid oxidation during reperfusion of the heart after myocardial ischemia. Am 1 
Cardiol 1997;80: IIA-16A. 

(20] Newsholme EA, Crabtree B. Theoretical principles in the approaches to control of metabolic pathways and their 
application to glycolysis in muscle. J Mol Cell Cardiol 1979; II :839-856. 

(21) Newsholme EA. Use of enzyme activity measurements in studies on the biochemistry of exercise. Int J Sports Med 
1980;1:100-102, 

[22J Randle Pl, England PJ, Denton RM. Control of the tricarboxylate cycle and its interactions with glycolysis during 
acetate utilization in rat heart. Biochem 1 1970;117:677-695. 

(23] Srere P. Complexities of metabolic regulation. Trends Diochem Sci 1994;19:519-520. 
[24) Heinrich R, Rapoport T A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and 

a general procedure to identify interaction sites with an effector. Eur J Diochem 1974;42:97-105. 
(25J Heinrich R, Rapoport TA. A linear steady-stale treatment of enzymatic chains. General properties, control and effector 

strength. Eur 1 Diochem 1974;42:89-95. 
[26] Ainscow BK, Brand MD. Top·down control analysis of systems with more than one common intemlediate. Eur J 

DiochemI995;231:579-586. 
[27) Hofmeyr J-HS. Metabolic regulation: a control analytic perspective. J Dioenerg Diomembr 1995;27:479-490, 
[28) Kaeser H, Bums lA. The control afflux: 21 years on. Diochem Soc Trans 1995;23:341-366. 
[29] Kashiwaya Y, Sato K, Tsuchiya N, et al. Control of glucose utilization in working perfused rat heart.} Diol Chern 

1994;269:25502-25514. 
PO] King LM, Boucher F, Opie Lli. Coronary flow and glucose delivery as detemlinants of contracture in the ischemic 

myocardium. J Mol Cell CardioI1995;27:701-720. 
{31J Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC, 3rd. Ischemia induces translocation of the insulin­

responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994;89:793-798. 
[32] Young LH, Renfu Y, Russell R, et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-I 

glucose transporters to the sarcolemma in vi\'o. Circulation 1997;95:415·422. 

-33-



Chapter 2 

[33] Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell 
Cardiol 1991 ;23:1077-1086. 

[34J Hearse OJ. Myocardial protection during ischemia and reperfusion. Mol Cell Biochem 1998;186:177-184. 
[35] Jennings RB, Murry CE, Steenbergen C, Jr., Reimer KA. Development of cell injury in sustained acute ischemia. 

Circulation 1990;82:Il2-12. 
[36J Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med 1991;42:225-246 .. 
[37J Rovetto MJ, Lamberton WF, Neely JR. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 

1975;37:742-751. 
[38] King LM, Opie LIt Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with 

a residual coronary flow. Cardiovasc Res 1998;39:381-392. 
[39J King LM, Opie LH. Glucose and glycogen utilisation in myocardial ischemia - changes in metabolism and 

consequences for the myocyte. Mol Cell Biochem 1998;180:3-26. 
[40] Lopaschuk GO, Saddik M. The relative contribution of glucose and fatty acids to A TP production in hearts reperfused 

following ischemia. Mol Cell Biochem 1992;116:111-116. 
[41} Lopaschuk GD, Spafford MA, Davies NJ, Wali SR. Glucose and palmitate oxidation in isolated working rat hearts 

reperfused after a period of transient global ischemia. Circ Res 1990;66:546-553. 
[42] Stanley WC, Lopaschuk GO, McComlack JG. Regulation of energy substrate metabolism in the diabetic heart. 

Cardiovasc Res 1997;34:25-33. 
[43J Mueller HS, Ayres SM. Metabolic response of the heart in acute myocardial infarction in man. Am J Cardiol 

1978;42:363-371, 
{44] Sowton E. Cardiac infarction and the glucose-tolerance test. Br Med J 1962;Jan 13:84-86. 
[451 Opie LH. Hypothesis: Glycolytic ratcs control cell viability in ischemia. J Appl CardioI1988;3:407-414. 
[46] Opie LH. Myocardial ischemia - metabolic pathways and implications of increased glycolysis. Cardiovasc Drugs Ther 

1990;4:777-790. 
[47J Opic LII, Glucose and the metabolism of ischaemic myocardium. Lancet 1995:345: 1520-1521. 
{48] Lopaschuk GO, Stanley We. Glucose metabolism in the ischemic heart. Circulation 1997;95:313-315. 
[49] Taegtmeyer H, Goodwin GW, Doens! T, Frazier OH. Substrate metabolism as a determinant for pos!ischemic 

functional recovery of the heart. Am J Cardiol 1997;80:3A-lOA. 
{50J Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acutc myocardial infarction: an 

ovetview of randomized placebo-controlled trials. Circulation 1997;96: 1152-1156. 
[51] Apstein CS. Glucose-insulin-potassium for acute myocardial infarction: remarkable results from a new prospectivc, 

randomized trial [editorial]. Circulation 1998:98:2223-2226. 
[52} Dlaz R, Paolasso EA, Piegas LS, et a1. Metabolic modulation of acute myocardial infarction. The ECLA (ESludios 

Cardiologicos Latinoamerica) Collaborative Group_ Circulation 1998;98:2227-2234. 
[53] Apstein CS, Taegtmeyer H. Glucose-insulin-potassium in acute myocardial infarction: the time has come fora large, 

prospective trial. Circulation 1997;96:1074-1077. 
[54] Desideri A, Celegon L. Mctabolic management of ischemic heart disease: clinical data with trimetazidine. Am J 

CardioI1998;82:50K-53K. 
[55] Lopaschuk GO. Treating ischemic heart disease by phamlacologically improving cardiac energy metabolism. Am J 

CardioI1998:82:14K-17K. 
[56] Taegtmeyer H, de Villalobos DH. Metabolic support for the postischaemic heart. Lancet 1995;345:1552-1555, 
[57] Taegtmeyer H, King LM, Jones BE. Energy substrate metabolism, myocardial ischemia, and targets for 

phannacolherapy. Am J CardioI1998:82:54K-60K. 
[58] de Jong JW, van der Meer P, Nieukoop AS, HuizerT, Stroevc RJ, Bos E. Xanthine oxidoreductase activity in perfused 

hearts of various species, including humans. Cire Res 1990;67:770-773. 
(59] Smolenski RT, de Jong JW, Janssen M, et al. Formation and breakdown of uri dine in ischemic hearts of rats and 

humans. J Mol Cell CardioI1993;25:67-74. 
[60] Chen W, Gueron M. Al>.IP degradation in the perfused rat heart during 2-deoxy-D-glucose perfusion and anoxia. Part 

II: The determination of the degradation pathways using an adenosine deaminase inhibitor. J Mol Cell Cardiol 
1996;28:2175-2182, 

[61 J Chen W, Hocrter J, Gueron M. A comparison of AMP degradation in the perfused rat heart during 2-deoxy-D-glucose 
perfusion and anoxia. Part I: The release of adenosine and inosine. J Mol Cell CardioI1996;28:2163-2174. 

[62J Kroll K, Kinzie OJ, Gustafson LA. Open-system kinetics of myocardial phosphoenergetics during coronary 
underperfusion. Am J Physiol 1997;272:H2563-2576. 

[63) Janssen M, de Jong JW, Pasini E, Ferrari R. Myocardial xanthine oxidoreductase activity in hypertensive and 
hypercholesterolemic rats. Cardioscience 1993;4:25-29. 

[64] Finelli C, Guarnieri C, Muscari C, Ventura C, Caldarera CM. Incorporation of[uC]hypoxanthine into cardiac adenine 
nucleotides: efiect of aging and post-ischemic reperfusion. Biochim Biophys Acta 1993; 1180:262-266. 

[65] Kochan Z, Smolenski RT, Yacoub MH, Seymour A-L. Nucleotide and adenosine metabolism in different cell types 
of human and rat heart. J Mol Cell Cardiol 1994:26:1497-1503. 

[66] Schrader WP, West CA. Localization of adenosine deaminase and adenosine deaminase complexing protein in mbbit 
heart. Implications for adenosine metabolism. Circ Res 1990;66:754-762. 

[67] Smolenski RT, Kochan Z, McDouall R, Page C, Seymour A-L, Yacoub MIl. Endothelial nucleotide catabolism and 

·34· 



Myocardial energy metabolism 

adenosine production. Cardiovasc Res 1994;28:100-104. 
[68J Samesto A, LinderN, Raivio KO. Organ distribution and mole<:ular fomls of human xanthine dehydrogenase/xanthine 

oxidase protein. Lab Invest 1996;74:48-56. 
[69J Hellsten-Westing Y. InmlUnohistochemicallocalization of xanthine oxidase in human cardiac and skeletal muscle. 

Histochemistry 1993;100:215-222. 
[70] Rouquette M, Page S, Bryant R, et al. Xanthine oxidoreductase is asymmetrically localised on the outer surface of 

human endothelial and epithelial cells in culture. FEBS Lett 1998;426:397-401. 
[7IJ Zhang Z, Naughton 0, Winyard PG, Benjamin N, Blake DR, Symons MeR. Generation of nitric oxide by a nitrite 

reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide 
synthase activity. Biochem Biophys Res Commun 1998;249:767-772. 

[72] Zhang Z, Blake DR, Stevens CR, et al. A reappraisal ofxanthlne dehydrogenase and oxidase in hypoxic reperfusion 
injury: the role ofNADH as an electron donor. Free Radic Res 1998;28:151-164. 

[73J Olsson RA, Pearson ro. Cardiovascularpurinoceptors. Physiol Rev 1990;70:761-845. 
[74] Skladanowski AC, Smolenski RT, Tavenier M, de Jong JW, Yacoub MH, Seymour A-ML. Soluble forms of 5'­

nucleotidase in rat and human heart. Am J Physiol 1996;270:HI493-1500. 
[75] Tavenier M, Skladanowski AC, De Abreu RA, de Jong JW. Kinetics of adenyl ate metabolism in human and rat 

myocardium. Biochim Biophys Acta 1995;1244:351-356. 
[76] Zorer-Shani E, Kessler-Icekson G, Sperling O. Pathways of adenine nucleotide calabolism in primary rat 

cardiomyocyte cultures. J Mol Cell CardioI1988;20:23-33. 
[77J Tanfani F, Kossowska E, Purzycka-Preis J, et al. The interaction of phospholipid bilayers with pig heart AMP 

deaminase: Fourier-transfoml infrared spectroscopic and kinetic studies. Biochem J 1993;291:921-926. 
[78] de Jong JW, HuizerT, Janssen M, Krams R, Tavenier M, Verdouw PD. High-energy phosphates and theircatabolites. 

In: Piper HM, Preusse CJ, eds. Ischemia-reperfusion in cardiac surgery. Dordrecht: Kluwer Acad Publ, 1993:295-315. 
(79J Hannsen E, de Tombe PP, de long JW. Simultaneous detemlination of myocardial adenine nucleotides and creatine 

phosphate by high-performance liquid chromatography. J Chromatogr 1982;230:131·136. 
[80J Harmsen E, de Jong J\V, Serruys PW. Hypoxanthine production by ischemic heart demonstrated by high pressure 

liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 1981; 115:73-84. 
[81 J Smolenski RT, Skladanowski AC, Perko M, Zydowo MM. Adenylate degradation products release from the human 

myocardium during open heart surgery. Clin Chim Acta 1989;182:63.73. 
[82] Bardenheuer HJ, Fabry A, H5fling B, Peter K. Adenosine: a sensitive marker of myocardial ischaemia in man. 

Cardiovasc Res 1994;28:656-662. 
[83] Fredholm BB, Abbracchio MP, Bumstock G, et al. Nomenclature and classification ofpurinoceptors. Phannacol Rev 

1994;46: 143-156. 
[84] Fredholm BB, Abbmcchio MP, Bumstock G, et al. Towards a revised nomenclature for PI and Pz receptors. Trends 

Pharmacol Sci 1997;\8:79-82. 
[85] Rale\'ic V, Bumstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998;50:413·492. 
[86] Linden J, Patel A, Sadek S. elJl]Aminobenzyladenosine, a new radioligand with improved specific binding to 

adenosine receptors in heart. Circ Res 1985;56:279-284. 
[87J Zhou Q-Y, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O. Molecular cloning and characterization of an adenosine 

receptor: the A3 adenosine receptor. Proc Nail Acad Sci USA 1992;89:7432-7436. 
[88] Wang J, Drake L, Sajjadi F, Firestein OS, Mullane KM, Bullough DA. Dual activation of adenosine Al and A) 

receptors mediates preconditioning of isolated cardiac myocytcs. Eur J Pharmacol 1997;320:241-248. 
[89] Sajjadi FG, Firestein GS. eDNA cloning and sequence analysis ofthe human A)adenosine receptor. Biochim Biophys 

Acta 1993;1179:105-107. 
[90] Strickler J, Jacobson KA, Liang BT. Direct preconditioning of cultured chick ventricular myocytes. Novel functions 

of cardiac adenosine Al> and AJ reccptors. J Clin Invest 1996;98: 1773-1779. 
[91) Meester BJ, Shankley NP, Welsh NJ, Wood J, Meijler FL, Black JW. Phamlacological classification of adenosine 

receptors in the sinoatrial and atrioventricular nodes ofthe guinea-pig. Br J Phamlacoi 1998;124:685-692. 
[92] Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807·813. 
[93] Bardenheuer H, Schrader J. Supply-Io-demand ratio for oxygen detemlines formation of adenosine by the heart. Am 

J PhysioI1986;250:11173-180. 
[94J Mubag\\'a K, Mullane K, Flameng W. Role of adenosine in the heart and circulation. Cardiovasc Res 1996;32:797· 

813. 
[95] Schrader J. Adenosine. A homeostatic metabolite in cardiac energy metabolism. Circulation 1990;81:389-391. 
[96] Berne RM. Adenosine· a cardioprotectivc and therapeutic agent. Cardiovasc Res 1993;27:2. 
{97] Newby AC. Adenosine and the concept of'retaliatory metabolites'. Trends Biochem Sci 1984;Feb:42-44. 
[98J Newby AC, Worku Y, Meghji P, Nakazawa M, Skladanowski AC. Adenosine: A retaliatory metabolite or not? News 

Physiol Sci 1990;5:67·70. 
[99} Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol 

1989;256:C799-806. 
{100J MathOt RAA, Appel S, van Schaick EA, Soudijn W, AP I, DanhofM. High-perfonnance liquid chromatography of 

the adenosine Al agonist N6-cyclopentyladenosine and the Al anlagonisl8-cyclopentyltheophylline and its application 
in a pharmacokinetic study in rats. J Chromatogr 1993;620: 113-120. 

-35-



Chapter 2 

[lOIJ 

[l02J 

[101J 
[l04J 

[l05J 
[106J 

[l07J 

[108J 

[109J 

[1I0J 

[lIIJ 

[1I2J 

[II3J 

[l14J 

[115J 
[1I6J 
[II7J 

[1I8J 

[l19J 

[120J 

[121J 

[122J 

[123J 

[l24J 

[l25J 

[126J 

[127J 

[128J 

[l29J 

[130J 

[I3IJ 

[l32J 

[l33J 

Pavan B. AP I. Processing of adenosine receptor agonists in rat and human whole blood. Biochem Pharmacal 
1998;56: 1625-1632. 
Shen WoK. Kurachi Y. Mechanisms of aden os me-mediated actions on cellular and clinical cardiac electrophysiology. 
Mayo Clio Peoc 1995;70:274.291. 
Bclardinelli L, Linden J. Berne RM. The cardiac effects of adenosine. Prog Cardiov8sC Dis 1989;32:73-97. 
Lerman DB, Be1ardinelli L. Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation 
1991 ;83:1499-1509. 
Liang ST. Adenosine receptors and cardiovascular function. Trends Cardiovasc Med 1992;2:100-108. 
Dobson JG, Jr. Adenosine reduces catecholamine contractile responses in oxygenated and hypoxic atria. Am J Physiol 
1983;245:11468-474. 
Schrader J, Rubio R, Berne RM. Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a 
possible effect on Calt influx. J Mol Cell Cardiol 1975;7:427-433. 
Visentin S, Wu SoN, Belardinelli L. Adenosine-induced changes in atrial action potential: contribution ofCa and K 
currents. Am J Physiol 1990j258:H 1070-1 078, 
Schrader J, lIaddy FJ, Gerlach E. Rekase of adenosine, inosine and hypoxanthine from the isolated guinea pig heart 
during hypoxia, flow-autoregulation and reactive hyperemia, PflUgers Arch 1977;369: 1-6, 
LaMonica DA, FrohloffN, Dobson JO, Jr. Adenosine inhibition of catecholamine-stimulated cardiac membrane 
adenylate cyclase, Am J PhysioI1985j248:H737-744, 
Romano FD, MacDonald SG, Dobson JG, Jr, Adenosine receptor coupling to adenylate cyclase of rat ventricular 
myocyte membranes, Am J Physiol 1989;257:HI088·1095, 
Romano FD, Naimi TS, Dobson JG, Jr, Adenosine attenuation of catecholamine-enhanced contractility of rat heart 
in vivo, Am J Physiol 199Ij260:HI635·1639. 
Perlini S, Khoury EP, Norton GR, et al. Adenosine mediates sustained adrenergic desensitization in the rat heart via 
activation of protein kinase C, Circ Res 1998;83:761-771, 
Richardt G, Waas W, KranzhOfer R, Mayer E, Schomig A, Adenosine inhibits exocytotic release of endogenous 
noradrenaline in rat heart: a protecth'e mechanism in early myocardial ischemia, Circ Res 1987;61:117-123. 
Wakade AR, Wakade TD, Inhibition of noradrenaline release by adenosine. J Physiol (Lond) 1978;282:35-49. 
Fredholm BB. Adenosine receptors in the central nervous system, News Physiol Sci 1995;10:122·128. 
van Galen PJ, van Bergen AH, Gallo-Rodriguez C, et al. A binding site model and structure-activity relationships for 
the rat A) adenosine receptor. Mol Phamlacol 1994;45:1101-1111. 
Ramkumar V, Stiles GL, Beaven MA, Ali H, The A) adenosine rcceptor is the unique adenosine receptor which 
facilitates relcase of allergic mediators in mast cells, J Bioi Chem 1993;268:16887-16890. 
Henry P, Demolombe S, Puce-at M, Escande D. Adenosine Al stimulation activates delta-protein kinase C in rat 
ventricular myocytes. Circ Res 1996;78:161-165. 
Marala RD, Mustafa SI. Adenosine Al receptor-induced upregulation of protein kinase C~ role ofpcrtussis toxin­
sensitive G protein(s), Am J PhysioI1995;269:HI619-1624. 
Marala RD, Mustafa SI. Modulation of protein kinase C by adenosine: involvement of adenosine Al receptor-pertussis 
toxin sensitive nucleotide binding protein system, Mol Cell Biochem 1995; 149/150:51-58. 
Gerwins P, Fredholm BB. ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via 
the fonnation ofinositoll,4,5·trisphosphate in a smooth muscle cell line, J Bioi Chern 1992j267:16081-16087. 
Gelwins P, Fredholm DB. Activation of adenosine Al and bradykinin receptors increases protein kinase C and 
phospholipase D activity in smooth muscle cells. Naunyn Schmiedeberg's Arch Phannacol 1995;351: 186-193. 
Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to Al rcccptors by G 
proteins in rat ventricular myocytes, Am J Physiol 1990;259:H820-826, 
[to H, Vereecke J, Carmeliel E, Mode of regulation by G protein of the ATP-sensith'e K+ channcl in guinea-pig 
ventricular cell membrane, J Physiol (Lond) 1994;478: 101-107, 
Speechly·Dick ME, Grover Gl, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C 
and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. 
Cire Res 1995;77:1030-1035. 
Liang DT, Protein kinase C-mediated preconditioning of cardiac myocytes: role of adenosine receptor and KATI' 
channel. Am J PhysioI1997;273:11847·853. 
Light PE, Sabir AA, Allen BO, Walsh MP, French R}, Protein kinase C-induced changes in the stoichiometry of ATP 
binding activate cardiac ATP·sensitive K+ channels, A possible mechanistic link to ischemic preconditioning. Cire 
Res 1996;79:399-406. 
Liang BT, Protein kinase Codependent activation of KATP channel cnhances adenosine-induced cardioprotection. 
Biochem J 1998;336:337-343, 
Yao Z, Gross GJ. Glibenc1amide antagonizes adenosine Al receptor-mediated cardioprotcction in stunned canine 
myocardium, Circulation 1993;88:235-244, 
Auchampach JA, Gross OJ, Adenosine Al receptors, KATP channels, and ischemic preconditioning in dogs. Am J 
PhysioI1993;264:HI327-1336. 
Liang BT. Direct preconditioning of cardiac ventricular myocytes via adenosine Al receptor and KATP channel. Am 
J PhysioI1996;271:HI769-1777. 
Van Winkle DM, Chien GL, WolffRA, Soifer BE, Kuzume K, Davis RF, Cardioprotection provided by adenosine 

-36-



[134] 

[135] 

[136] 

[137] 

[138] 

[139] 

[140] 

[141] 

[142] 

[143] 

[144] 

[145] 

[146] 

[147] 
[148] 

[149] 

[150] 

[151] 

[152] 

[l53J 

[154] 

[155] 

[156] 

[157] 

[158] 

[159] 

[160] 

[161] 

[162] 

[163] 

Myocardial e1lergy metabolism 

receptor activation is abolished by blockade of the KA1P channel. Am J Physiol 1994;266:H829·839. 
Groyer GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating 
preconditioning in the dog heart and their possible interaction with adenosine At-receptors. Circulation 1992;86: 1310-
1316. 
Tracey WR, Magee W. Masamune H, Oleynek JJ, Hill RJ. Selective activation of adenosine Al receptors with N6·(3· 
chlorobenzyl)-5'-N-methylcarboxamidoadenosine (CB· .MECA) provides cardioprotection via KA IT channel activation. 
Cardiovasc Res 1998;40:138-145. 
Isenberg G, Belardinelli L. Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian 
ventricular myocytes. Circ Res 1984;55:309-325. 
Achterberg PW, de Tombe PP, Ilarmsen E, de Jong JW. Myocardial S-adenosy1homocysteine hydrolase is important 
for adenosine production during nomlOxia. Biochim Biophys Acta 1985;840:393-400. 
Meghji P, Holmquist CA. Newby AC. Adcnosine fonnation and release from neonatal-rat heart cells in culture. 
Biochem J 1985;229:799·805. 
Borsl MM. Schrader J. Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation 
of adenosine. Cire Res 1991;68:797·806. 
Nees S, Herzog V. Becker BF, Bock M, Des Rosiers C, Gerlach E. The coronary endothelium: a highly active 
metabolic barrier for adenosine. Basic Res Cardiol 1985;80:515-529. 
Matherne GP, Headrick JP, Coleman SD, Berne ru.1. Interstitial transudate purines in nomloxic and hypoxic immature 
and mature rabbit hearts. Pediatr Res 1990;28:348-353. 
Headrick JP. Matherne GP, Berr SS, Berne RM. Effects of graded perfusion and isovolumie work on epicardial and 
venous adenosine and eytosolic metabolism. J Mol Cell Cardiol 1991 ;23:309-324. 
Headrick JP, Matherne GP, Berr SS, Han DC, Berne RM. Metabolic correlates of adenosine formation in stimulated 
guinea pig heart. Am J Physiol 1991;260:HI65-172. 
Harrison OJ, Willis RJ, Headrick JP. Extracellular adenosine levels and cellular energy metabolism in ischemically 
preconditioned rat heart. Cardiovasc Res 1998;40:74-87. 
Raatikainen MJ, Peuhkurinen IU, Hassinen IE. Contribution of endothelium and cardiomyocytes to hypoxia-induced 
adenosine release. J Mol Cell Cardiol 1994;26: 1069-1080. 
Kitakaze M, Hori M, Sato H, et al. Endogenous adenosine inhibits platelet aggregation during myocardial ischemia 
in dogs. Cire Res 1991;69: 1402-1408. 
Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 1992;85:893·904. 
Bullough DA, Magill MI, Firestein OS, Mullane Kl\.f. Adenosine activates A2 receptors to inhibit neutrophil adhesion 
and injury to isolated cardiac myoeytes. J Immunol 1995; I 55:2579-2586. 
Cronstein BN. Daguma L, Nichols D, HutchisonN, Williams M. The adenosine/neutrophil paradox resolved: human 
neutrophils possess both At and A1 receptors that promote chemotaxis and inhibit Or generation. respectively. J Clin 
Invest 1990;85: 1150-1 157. 
Schrier OJ, Imre Kl\.f. The effects of adenosine agonisis on human neutrophil function. J Immunol 1986;137:3284-
3289. 
Meininger CJ, Schelling ME, Granger HJ. Adenosine and hypoxia stimulate proliferation and migration of endothelial 
cells. Am J PhysioI1988;255:H554-562. 
Furukawa S, Satoh K, Taira N. Opening of ATP-sensitive K+ channels responsible for adenosine A1 receptor-mediated 
vasodepression does not involve a pertussis toxin-sensitive G protein. Eur J Phamlacoi 1993;236:255·262. 
Niiya K, Uchida S, Tsuji T, Olsson RA. Glibenclamide reduces the coronary vasoactivity of adenosine receptor 
agonists. J Phamlacol Exp Ther 1994;271: 14-19. 
Vials A, Bumstock G. ArPurinoceptor-mcdiated relaxation in the guinea-pig coronary vasculature; a role for nitric 
oxide. Dr J PharmacoI1993;109:424·429. 
Zanzinger J, Bassenge E. Coronary vasodilation to acetylcholine, adenosine and bradykinin in dogs: effects of 
inhibition of NO-synthesis and captopri!. Eur Heart J 1993;14 Suppl 1:/64-168. 
Mullane K. Acadesine: the prototype adenosine regulating agent for reducing myocardial ischaemic injury. Cardiovasc 
Res 1993;27:43-47. 
Mullane K, Bullough D, Shapiro D. From academic vision to clinical reality: A case study of acadesine. Trends 
Cardiovasc Med 1993;3:227-234. 
Swain JL, Hines JJ, Sabina RL, Holmes EW. Accelerated repletion of ATP and GTP pools in postischemic canine 
myocardium using a precursor of purine de novo synthesis. Cire Res 1982;51: 102-105. 
Mitsos SE, Jolly SR, Lucchesi BR. Protective effects of AICAriboside in the globally ischemic isolated cat heart. 
Pharmacology 1985;31:121-131. 
Glower DD. Spratt JA, Ne\\10n JR, Wolfe JA, Rankin JS, Swain JL. Dissociation between early recovery ofregioDal 
'function and purine nucleotide content in postischaemic myocardium in the conscious dog. Cardiovasc Res 
1987;21 :328-336. 
Mentzer RM, Jr., Ely SW, Lasley RD, Berne RM:. The acute effects of AICAR on purine nucleotide metabolism and 
postischemic cardiac function. J Thomc Cardiovase Surg 1988;95:286·293. 
Ambrosio G, Jacobus WE, Mitchell MC, Litl MR, Becker LC. Effects of ATP precursors on ATP and free ADP 
content and functional recovery of post ischemic hearts. Am J Physiol 1989;256:H560-566. 
Galiiianes M, Bullough D, Mullane Kl\.1, Hearse DJ. Sustained protection by acadesine against ischemia- and 

-37-



Chapter 2 

[164J 

[165J 

[l66J 

[167J 

[168J 

[169J 

[l70J 

[171J 

[I72J 

[173J 

[174J 

[175J 

[176J 

[I77J 

[178J 

[179J 

[l80J 

[l81J 

[182J 

[183J 

[184J 

[185J 

[l86J 
[l87J 

[188J 
[189J 

[190J 

[191] 
[192J 

[193J 

[l94J 

reperfusion-induced injury. Studies in the transplanted rat heart. Circulation 1992;86:589·597. 
Hon M. Kitakaze M, Takashima S, et al. AICA riboside improves myocardial ischemia in coronary microembolizalion 
in dogs. Am J PhysioI1994;267:HI483-1495. 
Galiiiancs M, Zhai X, Bullough D, Mullane KM, Hearse DJ. Protection against injury during ischemia and reperfusion 
by acadesine derivatives GP·I·468 and GP-t-668. Studies in the transplanted rat heart. J Thorne Cardiovasc Surg 
1995;110:752-761. 
Sabina RL, Kemsline KH, Boyd RL, Holmes EW, Swain JL. Metabolism of 5-amino-4-imidazolecarboxamide 
riboside in cardiac and skeletal muscle. Effects on purine nucleotide synthesis. J Bioi Chem 1982;257:10178·10183. 
Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium 
by AICA riboside. Effects on flow, granulocytes, and injury. Circulation 1989;80:1400-1411. 
Galinanes M, Mullane KM, Bu][ough D, Hearse DJ. Acadesine and myocardial protection. Studies of time of 
administration and dose-response relations in the rat. Circulation 1992;86:598-608. 
Kingma!G, Jr., Simard D, Rouleau JR. Timelyadminislration of AICA riboside reduces reperfusion injury in rabbits. 
Cardiovasc Res 1994;28:1003-1007. 
Bolling SF, Groh l\iA. Mattson AM, Grinage RA. Gallagher KP. Acadesine (AICA-riboside) improves postischemic 
cardiac recovery. Ann Thorac Surg 1992;54:93-98. 
Young MA, Mullane KM. Progressive cardiac dysfunction wilh repeated pacing-induced ischemia: protection by 
AICA-riboside. Am J Physiol .1991;261:HI570-1577. 
Gruver El, Toupin D, Smith TW, Marsh ro. Acadesine improves tolerance 10 ischemic injury in rat cardiac myocytes. 
J Mol Cell CardioI1994;26:1187-1195. 
Dorion M, Rouleau J, Kingma JG, Jr. Failure of AICA riboside to limit infarct size during acute myocardial infarction 
in rabbits. J Cardiovasc PhamlacoI1992;19:69-77. 
Hoffmeister HM, Mauser M, Schaper W. Effect of adenosine and AICAR on ATP content and regional contractile 
function in reperfused canine myocardium. Basic Res Cardiol 1985;80:445-458. 
Tsuchida A, Liu GS, Mullane K, Downey JM. Acadesine lowers temporal threshold for the myocardial infarct size 
limiting effect of preconditioning. Cardiovasc Res 1993;27:116-120. 
Tsuchida A, Yang X-M, Burckhartt B, Mullane KM, Cohen MY, Downey IM. Acadesine extends the window of 
protection afforded by ischaemic preconditioning. Cardiovasc Res 1994;28:379-383. 
Burckhartt B, Yang X-M, Tsuchida A, Mullane KM, DO\\lIJ.ey 111, Cohen MY. Acadesine extends the window of 
protection afforded by ischaemic preconditioning in conscious rabbits. Cardiovasc Res 1995;29:653-657. 
Mullane K, Bullough D. Harnessing an endogenous cardioprolective mechanism: cellular sources and sites of action 
of adenosine. J Mol Cell Cardiol 1995;27: 1041-1054. 
Bullough DA. Zhang C, Montag A, Mullane KM. Young MA. Adenosine·mediated inhibition of platelet aggregation 
by acadesine. A novel antithrombotic mechanism in vitro and in vivo. J Clin Invest 1994;94: 1524-1532. 
Young MA, Henry C, Wong S, Bullough D, Mullane K. Acadesine reduces the frequency of coronary artery 
reocclusion following rt-PA induced thrombolysis in the dog. Thromb Haemost 1995:74:1348-1352. 
Leung JM, Stanley T, 3rd, Mathew J. el al. An initial multicenter. randomized controlled trial on the safety and 
efficacy ofacadcsine in patients undergoing coronary artery bypass graft surgery. SPI Research Group. Anesth Analg 
1994;78:420-434. 
Menasche P, Jamieson WR, Flameng W, Davies MK. Acadesine: a new drug thai may improve myocardial protection 
in coronary artery bypass grafting. Results of the first international multicenter study. Multinational Acadesine Study 
Group. J Thorac Cardiovasc Surg 1995:110;1096-1106. 
Anonymous. Effects of acadesine on the incidence of myocardial infarction and adverse cardiac outcomes after 
coronary artery bypass graft surgery. Multicenter Study of Penoperative Ischemia (McSPI) Research Group. 
Anesthesiology 1995;83:658·673. 
Willstatter R. Rohdewald M. Uber den Zustand des Glykogens in def Leber, im Muskel und in Leukocyten (Zur 
Kenntnis der Proteinbindung physiologisch wichtiger Stoffel. Hoppe-Seyler's Z Physiol Chem 1934;225:103·124. 
Roe JH, Bailey JM, Gray RR. Robinson IN. Complete removal of glycogen from tissues by extraction with cold 
trichloroacetic acid solution. J Bioi Chem 1961;236:1244-1246. 
Stetten D, Jr., Stetten MR. Glycogen metabolism. Physiol Rev 1960;505-537. 
Bloom WL, Russell JA. Effects of epinephrine and of norepinephrine on carbohydrate metabolism in the rat. Am J 
Physio! 1955;183:356·363. 
Russell JA, Bloom WL. Extractable and residual glycogen in tissues of the rat. Am J Physio! 1955;183:345-355. 
Russell JA. Bloom W. Hormona! control of glycogen in the heart and other tissues in rals. Endocrinology 1956;58:83-
94, 
Adrouny GA, Russell JA. Eftects of growth homlOne and nutritional status on cardiac glycogen in the rat. Am J 
PhysioI1956;59:241-251. 
Bloom WL, Knowlton GC. Muscle glycogen fractions during stimulation. Am J Physio! 1953;173:545-546. 
Chilson OP, Sacks J. Effect of hyperthyroidism on distribution of adenosine phosphates and glycogen in liver. Proc 
Soc Exp Bioi Med 1959;101:331-332. 
Cordier D, Dessaux O. Variations du taux des divcrses fomles du glycogene cardiaque sous !'influence d'une anoxie 
de longue durer. J Physio! (Paris) 1952;44:703-707. 
Merrick A W, Meyer DK. Glycogen fractions of cardiac muscle in the nomlal and anoxic heart. Am J Physio! 

-38-



Myocardial ellergy metabolism 

1954;177:441-443. 
[1951 Alonso MD, Lomako J, Lomako WM, Whelan WJ. A new look at the biogenesis of glycogen. FASEB J 1995;9:1126-

1137. 
(196] Rodriguez IR, Whelan WJ. A novel glycosyl-amino acid linkage: rabbit-muscle glycogen is covalently linked to a 

protcin via tyrosine. Biochem Biophys Res Commun 1985;132:829-836. 
[197) Lomako J, Lomako WM, Whelan WJ, Dombro RS, Neary H, Norenberg MD. Glycogen synthesis in the astrocyte: 

from glycogenin to proglycogen to glycogen. FASEB J 1993;7:1386-1393. 
[198) Lomako J, Lomako WM, Whelan WJ. Proglycogen: a low-molecular-weight fonn of muscle glycogen. FEBS Lett 

1991;279:223-228. 
[199] Krisman CR, Barengo R. A precursor of glycogcn biosynthesis: alpha-I,4-glucan-protein. Eur J Biochem 

1975;52:117-123. 
[200] Whelan WI. On the origin of primer for glycogen synthesis. Trends Biochem Sci 1976; I: 13-15. 
[20 I] Whelan WJ. The initiation of glycogen synthesis. BioEssays 1986;5: 136-140. 
[202J Smythe C, Cohen P. The discovery of glycogen ill and the priming mechanism for glycogen biogenesis. Eur J Biochem 

1991 ;200:625-631. 
[203] Calder Pc. Glycogen structure and biogenesis. Int J Biochem 1991;23:1335-1352. 
{204] Campbell DG, Cohen P. The amino acid sequence of rabbit skeletal muscle glycogenin. Eur J Biochem 1989;185:119-

125. 
[205] Lomako J, Lomako WM, Whelan WJ. A self-glucosylating protein is the primer for rabbit muscle glycogen 

biosynthesis. FASEB J 1988;2:3097-3103. 
{206] Lomako 1, Lomako WM, Whelan WJ. The nature of the primer for glycogen synthesis in muscle. FEBS Lett 

1990;268:8-12. 
[207J Lomako J, Lomako WM, Whelan WJ. Substrate spedficityofthe autocatalytic protein that primes glycogen synthesis. 

FEBS Letl 1990;264:13-16. 
[208] Lomako J, Lomako WM, Whelan WJ. 111e biogenesis of glycogen: nature of the carbohydrate in the protein primer. 

Biochem Int 1990;21 :251-260. 
(2091 Pitcher J, Smythe C, Cohen P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen 

biogenesis in rabbit skeletal muscle. Eur J Biochem 1988;176:391-395. 
[210] Botker HE, Randsbaek F, Hansen SO, Thomassen A, Nielsen IT. Superiority of acid extractable glycogen for 

detection of metabolic changes during myocardial ischaemia. J Mol Cell Cardiol 1995;27: 1325-1332. 
[211] de Jong JW, Cargnoni A, Bradamante S, et al. Intemlittent v continuous ischemia decelerates adenylate breakdown 

and prevents norepinephrine release ill reperfused rabbit heart. J Mol Cell CardioI1995;27:659-671. 
[212] Cargnolli A, Ceconi C, Curello S, Benigno M, de JOllg JW, Ferrari R. Relation between energy metabolism, 

glycolysis, noradrenaline release and duration of ischemia. Mol Cell Biochem 1996; 160-161: 187-194. 

-39-





3 

Controversies in preconditioning 

lW. de Jongl, R. de Jonge1
, A. Marchesani', M. Janssen\ S. Bradamante' 

I Cardiochemical Laboratory, Thoraxcelltel', COEUR, Erasmus UlIiwrsity Rollerdam, The 

Netherlallds; }CNR-Cellfro Sillies; e Slereochimica Specia/i Sis/emf Orgallici, Ulliversilil di Alilallo, 

Milall, Italy 

Cardiovasc Dmgs Ther 1996; 10: 767-773 

-41-



Chapter 3 

Abstract 

Preconditioning is an effective means of protecting the heart against prolonged ischemia by 

pretreating it with a minor insult, and the present paper reviews various controversies in this highly 

active field of research. In many models, adenosine plays a role by triggering the activation of protein 

kinase C. It may work in conjunction with other agents, such as bradykinin, but the putative role of 

noradrenaline is uncertain. Regulation of the enzyme producing adenosine (Le., 5'-nucleotidase) has been 

reported during preconditioning but, as its activity does not seem to be associated with infarct size, it is 

unlikely that the hydrolase plays a pivotal role. Controversial data have been published on the 

involvement of mitochondrial ATPase, which may be ascribed to the poor time resolution of the 

experiments described; however, we do not believe that either acidosis or tissue ATP are important 

factors in triggering preconditioning. The role of glycolysis in the preconditioning effect remains to be 

firmly established; opposite mechanisms are activated in low-flow and stop-flow protocols. Although 
species differences regarding preconditioning exist, they seem to be more of a quantitative than a 

qualitative nature. The phenomenon could be clinically relevant because evidence is accumulating that 

preconditioning may take place during bypass surgery and coronary angioplasty if longer balloon­

occlusion times are used. 

1. Introduction 

Ischemic preconditioning makes use of a mild stress in order to activate endogenous defence 

mechanisms and so enable protection from further major stress. All of the protocols described in the 

literature lead to a first time-window of protection lasting 60-120 min [IJ. Originally, Murry et al. [2J 

used the limitation of infarct size as the criterion establishing the efficacy of an intervention, but 

subsequent studies have adapted a host of other variables to assess reduction of cell damage, including 

contractile, morphological, electrophysiological and biochemical parameters. This article reviews 

various controversies in this highly active field of research. 

2. Adenosine and catecholamines 

In ischemic preconditioning, endogenous adenosine protects the heart by stimulating the 
adenosine AI-receptor. However, comparison between the cardioprotection induced by exogenous 

adenosine and that induced by preconditioning shows that discrepancies exist regarding the time frame 

[3J and exlenl of prole eli on [4J. Golo el al. [5J proposed Ihal a Ihreshold level of prole in kinase C (PKC) 
stimulation must be reached before cardiac protection by ischemic preconditioning takes place (Figure 

I), and that adenosine and bradykinin released during preconditioning could play major roles in 

triggering protection by stimulating the kinase, provided that the activity exceeds the threshold [5J. 

Others have suggested that components such as norepinephrine [6] playa role in reaching the threshold, 

and Downey's group has reported that hypoxia also preconditions rabbit myocardium via adenosine and 

catecholamine release [7J. In line with this observation, ischemic preconditioning failed to limit infarct 

size in a study of rabbit hearts depleted of norepinephrine [8]. Using a similar approach, \Veselchouch 
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et al. [9] found no evidence that catecholamines are involved in preconditioning in the rat model. In the 

same species, Hu and Nattel [10] reported that stimulation of «I~adrenoceptors causes ischemic 

preconditioning, but recently Moolman et al. [11] have found no evidence of such a mechanism. In 

agreement with other observations [12], our own data [13] show that short periods of ischemia, such as 

those used during preconditioning, do not lead to norepinephrine release into the effluent of isolated 

rabbit hearts. Furthennore, as reported recently by Seyfarth et al. [14], preconditioning suppresses 

norepinephrine release after a long ischemic period. These authors suggested that transient ischemia may 

have a protective effect on neural tissue by reducing norepinephrine-induced damage during extended 
periods of myocardial ischemia. We believe that this is a more likely mechanism than protection induced 

by high catecholamine levels. Taken together, the above observations suggest that a combination of 

agents mediate ischemic preconditioning, and further investigation is clearly needed to evaluate the 

potential interrelated actions of adenosine and norepinephrine. 

liliiii Narepi D Brady ~ Adena 

1 Cycle 1 Cycle/HOE 4 Cycles/HOE 

Figure 1. HypotlJeticalllJreshold ofprolein killase C (PKC) slimulatiolllhal/lIIlst be reached before cardiac protection lakes 
place by Ischemic preconditioning (PC). Olle cycle of preconditioning produces substanlial amounls of adenosine (Adello) and 
bradykinin (Brad>~, III addition 10 lIorepinepllTille (Norepi), which is enol/gh to simulale PKC. If the secol/d compol/ellt;s abselll 
due 10 brady B}-receptor blockade with HOE 140, exira cycles are needed to produce enough agonistfor PKC stimulalion alld 
preconditionillg. (After Goto et al. (51. with penllfssiol/.) 

3. Hydrolase, 

3.1. 5'~lIflc/eotidase 

After investigating the relationship between adrenoceptors and preconditioning, Kitakaze's 

group reported that S'~nucleotidase activity increases during «I~adrenoceptor stimulation (IS]; they also 

reported increases in Sr~nucleotidase and therefore adenosine production after preconditioning [16]. This 

latter finding conflicts with results obtained by other groups [13,17]_ The older methodology used by 

Kitakaze et al. to measure phosphatase is aspecific and poorly documented [IS,16]; although przyklenk 

et al. [18} reported an increase in S'-nucleotidase activity, they did not find any association with infarct 

size. It is thus unlikely that S'~nucleotidase triggers preconditioning in the dog heart. 
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3.2. Mitochondrial ATPase 

Within seconds after the onset of ischemia and the cessation of the electrochemical gradient 

across the inner mitochondrial membrane, the mitochondrial ATP·synthase changes into an ATPase 
(mF,Fo·ATPase). As reviewed by Rouslin [19], inhibition studies with oligomycine show that most of 

the ATP hydrolyzed during global ischemia is due to mFIFo·ATPase activity. The binding of ATPase 

inhibitor (IFI) to the ATPase leads to reduced ATP hydrolysis. IFI is an unidirectional inhibitor whose 

binding is reversible upon the resumption of oxidative metabolism. Protonic inhibition of the complex 

prevents ATP squandering by InF,Fo·ATPase activity in ischemic heart cells, probably by means of IF, 

binding. 
Various groups have examined whether ATPase inhibition may explain the improved energy 

balance observed in preconditioned hearts (e.g., [2]). In rat hearts perfused according to Langendorff, 

preconditioning induced greater ATPase inhibition and less high-energy phosphate depletion during 

sustained global ischemia [20J. However, Vander Heide et al. [21] concluded that altered mF lFo·ATPase 

activity in regionally ischemic dog hearts is not responsible for the energy·sparing effect of ischemic 
preconditioning. These results are surprising since species with fast heart rates, such as the rat, have less 

IF I inhibitor protein than those with slow heart rates, such as the dog [19]. However, we would like to 

point out that Vander Heide et al. [21] only measured ATPase activity after the last 5-min reperfusion 

period of the preconditioning protocol, and so the possibility remains that the inhibition of ATPase in 
preconditioned hearts became faster or stronger during the sustained ischemic period in their study. 

Recent data complicate this issue even further. Kobara et al. [22] observed greater ATPase 

activity during global ischemia and reperfusion in isolated and preconditioned rat hearts thall in controls. 
Furthennore, the degree of ATP depletion during ischemia was no different between preconditioned and 

control hearts, whereas ATP levels recovered better during reperfusion in preconditioned hearts. The 

authors concluded that the preservation of ATPase (and adenine nucleotide translocase) activities may 

be responsible for the improved restoration of high-energy phosphates. 
Although a proper ATP level is crucial for cell homeostasis, it is dissociated from postischemic 

function [23]. We have no reason to believe that the concentration of ATP is an important factor in 

eliciting preconditioning. 

4. Glycolysis 

The role of preconditioning on glycolysis/glycogenolysis during ischemia, as well as its 

relationship to ischemic injury is controversial. Anaerobic glycolysis supports cell function by means 

of ATP production, but accumulated glycolytic end products (lactate, sugar and triose phosphates, 

protons originating from ATP hydrolysis [23]) may detemline the extent of ischemic damage. 

Consequently, many studies have attempted to relate the beneficial effects of ischemic preconditioning 

to cardiac glycogen content or glycolytic rates. 

4. I. Low-jlow ischemia 

Preconditioning before low-flow ischemia increases ischemic glycolytic flux and decreases 
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cardiac injury [24J. These observations agree well with the results of studies showing that enhanced 

glycolysis and maintained glycolytic ATP production by various means lead to reduced damage and 

improved fUllction upon reperfusion [25,26]. During low-flow hypoxia in rat hearts, glucose prevents 

the loss of sarcolenunal integrity and contractile function [27]. 

One may pose the question: Why does anaerobic glycolytic flux protect the myocardium subject 

to hypoxia/low-flow ischemia? The answer seems to be that the ATP derived from anaerobic glycolysis 

is preferentially used for membrane-ion pumps and the preservation ofceH integrity. During moderate 

ischemia, anaerobic glycolysis is stimulated (the Pasteur effect) whereas, during severe ischemia, this 

effect is inhibited by the accuillulation of lactate and protons, and glycolysis ceases [28]. During low­

flow ischemia, lactate and protons are continuously washed out of the ischemic heart, thus preventing 

their accumulation in tissue and the consequent inhibition of anaerobic glycolysis. Therefore, if the 

accumulation oftlIe potentially toxic products of glycolysis is prevented by sustaining a moderate flow 
to the heart, glycolysis can be maintained and glycolytic ATP Jllay preserve cell-membrane integrity and 

reduce Ca2+-overload during reperfusion. 

We believe that the maintenance of glycolysis during low-flow ischemia prevents myocardial 

injury [28J. SO far, only one study [24] has reported that ischemic preconditioning increases glycolytic 

flux and reduces ischemic cell damage. More research is necessary to clarify the important relationship 

between preconditioning and glycolysis during low-flow ischemia. 

4.2. Sfop-jlow ischemia 

Unlike low-flow ischemia, ischemic preconditioning causes a decrease in glycolytic flux during 

stop-flow global [29J and regional [2,30J ischemia in both isolated [29J and in-vivo [2,30J models_ Other 
strategies aiming at decreased glycolytic flux during regional stop-flow ischemia also induce less 

ischemic injury [31]. 
Several groups, including Wolfe et al. (30], assume that the beneficial effects of preconditioning 

are related to the reduced lactate accumulation and proton production that are the result of lower 
glycolytic rates, despite reduced ATP production. However, Vander Heide et al. {32J dissociated 

glycogen depletion and the reduction in lactate accumulation and anaerobic glycolytic flux from 

ischemic damage. Our own N1vIR studies also demonstrate cardioprotection by preconditioning in 

isolated rat hearts without any effects on pH [33], leading us to believe that acidosis is not a key factor 

in either fUllctional recovery or ischemic injury [29]. 
Ischemic preconditioning of the heart reduces its preischemic glycogen content. Wolfe et al. {3~] 

correlated the decrease in infarct size caused by preconditioning with glycogen depletion before 

sustained ischemia, and with the attenuation of intracellular acidosis during ischemia. A longer period 

of preconditioning ischemia leads to glycogen depletion and a reduction in infarct size, which are both 

described by an exponential declining curve (34]. However, the hypothesis that diminished glycogen 

stores per se limit glycolysis, catabolite accumulation and cell damage is not supported by other results: 

Myocardial glycogen loading induced by fasting improves the functional recovery of ischemic rat hearts 

[35J, and, in a retrospective study, the preischemic glycogen content of rat hearts was correlated with the 

time of day but not Jlostischemic functional recovery (36]. The question remains as to whether reduced 

glycolytic flux and accumulated glycolytic products mediate or are secondary to preconditioning, but 

we do not believe that either lactate or proton accumulation is important in this respect. 
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4.3. Glycolysis and adenosine 

Since adenosine has been implicated in ischemic preconditioning, a number of authors have 

studied its role 011 glycolytic flux. Various groups (37,38J have shown that by binding to the AI-receptor, 

adenosine increases glycolytic flux and induces cardioproteclion in isolated rabbit and rat hearts 

subjected to ischemia and hypoxia, respectively, whereas others have found that it reduces glycolysis 

and improves functional recovery after ischemia in isolated working rat hearts perfused with glucose and 

palmitate «(39]; see also [40]). These divergent results could be due to the models studied (low-flow vs. 

no-flow ischemia), the use of different substrates (glucose vs. glucose/fatty acids), and/or differences 

between species. 

S. Species differences 

Although several groups have shown that the rat heart behaves differently from the hearts of 

other species, the isolated, perfused rat-heart model is quite often used to study preconditioning. It is 
generally believed that endogenous adenosine does not mediate preconditioning in this species but, as 

recently pointed out by Headrick [41], the relatively high adenosine levels in rat heart during 

preconditioning require an increase in (allt)agonist receptor concentration. \Ve refer to the discussion by 

przyklenk and Kloner [42] on the species (and model) dependency of the arrhythmic component. The 

same group [43] could not find any translocation ofPKC after ischemic preconditioning, and this failure 

to reproduce the original observation in rabbit heart [44] may have been due to species differences. 

Questions can be raised about the abundant use of inhibitors and activators (often declared to 

be specific or selective on rather shaky grounds) to probe the proteins involved. The involvement ofKATP 

channels in the preconditioning oflarger animals seems clear but may not be essential in rabbits and rats 

(for review, see [45]). A pertussis toxin-sensitive G-protein may playa central role in ischemic 

preconditioning across a broad range of species [10], but major differences may exist in relation to the 

role of protein kinase C (46]. The involvement of the inhibitory G-protein in the arrhythmic component 

of preconditioning is also controversial. Nevertheless, some of these discrepancies may be due to the 

details of the experimentaimodels studied (10]. 

6. Evidence for preconditioning in human heart 

6.1. Preinfarction angina 

Ischemic preconditioning clearly exists in many species, and possibly in humans. The 

phenomenon has been investigated during (retrospective) clinical studies, coronary angioplasty, cardiac 

surgery, and in vitro. In recent clinical trials, it has been found that preinfarction angina seems to 

decrease creatine kinase release, in-hospital deaths, arrhythmias, left-ventricular function, and infarct 

size [42,47]. OUani et al. [48] used ventriculographically obtained regional wall motion as a means of 

indirectly detennining infarct size and found that this was less in patients with prodromal angina pectoris 

occurring at rest 24 hours before the infarct than in patients without previous angina, although the two 
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groups had the same area at risk and in both collaterals were absent. However, as indicated in a recent 

review by Andreotti et a1. [491, controversies still exist that might be explained by the use of 

thrombolysis, the baseline characteristics of the study population, the presence of multivessel disease, 
infarcted area, collaterals and the period(s) of angina before infarction. For instance, studies in the period 

before the use ofthrombolytics have shown that preinfarction angina has negative effects [50J. a finding 

that correlates with the observation that preconditioning exerts an effect only if reperfusion takes place 

within a certain time frame. Andreotti et a1. [49] partly explained these discrepancies by the different 

definitions of pre infarction angina used. Furthennore, in a prospective study, they [49J observed that the 
infarct size~limiting effect of pre infarction angina was merely related to faster coronary thrombolysis. 

6.2. Percutaneolls trans/liminal coroJlal)' allgiop/asty 

Deutsch et al. [51] claim that a 90~second coronary occlusion induces preconditioning in 

humans, basing their conclusions partly on the drop in lactate uptake in 7 out of 12 patients in whom 

electrophysiological changes during angioplasty were investigated. Jenkins et a1. [451 have pointed out 

that the pretreatment of patients with dipyridamole may potentiate the effect of preconditioning by 

increasing myocardial adenosine levels. 
In a larger patient population (n=28), we measured the myocardial release of lactate and 

hypoxanthine (an ATP catabolite) immediately after four balloon inflations lasting 60~90 s. The arterio­

venous difference in both metabolites did not change significantly as a result of the repeated occlusions 
(Figure 2). The biochemical markers used provided no evidence for preconditioning during coronary 

angioplasty [52]. We believe that the angioplasty times of balloon inflations, often lasting less than 2 

minutes, are insufficient to induce ischemic preconditioning in humans (see also [45]). In this respect, 

it is interesting to note that studies using balloon inflations lasting 2 minutes or more (e.g., [53~55]) have 

demonstrated improved tolerance to myocardial ischemia after repetitive coronary occlusions. The 

exception seems to be a study described later [56]. Further evidence that ischemic preconditioning occurs 

during angioplasty and is mediated by adenosine AI-receptor activation and KATP channel opening has 

recently been obtained: Adenosine AI~receptor blockade by bamiphylline [55] and aminophylline [56], 
as well as the administration of the selective KATP channel blocker glibcncJamide [54], prevent ischemic 

preconditioning occurring during repetitive balloon occlusions. 

6.3. Coranm), arIel), b)pass graft surgel), 

During both nonnothcnnic and hypothem1ic intermittent aortic crossclamping in coronary artery 

bypass graft surgery, the release of lactate and inorganic phosphate has been found to be greater during 

the first than during subsequent reperfusion periods {57]. Yellon's group was the first to report that an 

ischemic preconditioning protocol slowed the rate of ATP depletion during 10 minutes of crosscJamping 

fibrillation [58], but less ATP depletion in preconditioned hearts gives only indirect evidence of 

myocardial protection because ischemic cell damage and myocardial function were not reported. It 

should be noted that the amounts of creatine kinase~MB and lactate released by the ischemic 

myocardium were no different between the groups, although there was a tendency to lower values in 

preconditioned hearts. The role of adenosine in ischemic preconditioning has also been studied in the 

setting of bypass surgery, and it has been found that its presurgery infusion improved intraoperative and 
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postoperative hemodynamic function and reduced ischemic cell damage (59J. 
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Figure 2. Lactate and h}poXal/lhil/e release after coronary' angiop/asty. III 28 patients ulldergoillg angioplasty of the left 
anterior descending coronary artery, arterial alld corollary sillus blood sampJes were taken immediately afterocc/usiolls Jasting 
60-90 s. 11!ey were rapidly deproteillized with acid alld were assayed enzymatically (Iaclale) or by HPLC (hypoxanthine). 
Arterio- \'eIIOUS differences are presented means ± S.E.M. 

6.4. Isolated trabeculae and cultured myocytes 

Yellon's group [60,61] exposed human atrial trabeculae to 90 min of hypoxic substrate-free 

superfusion. and demonstrated that preconditioning prior to the sustained ischemic period improved 

fUllctional recovery. This preconditioning effect could be blocked by an adenosine AI-antagonist, a PKC 
antagonist, and a KATP channel blocker. An adenosine AI-agonist, a KATP channel opener and a PKC 
activator mimicked the effect of ischemic preconditioning, whereas the effects of the KATP channel 

opener and the PKC activator could be blocked by the KATP channel blocker glibenclamide. Ikonomidis 

et at. [62] have demonstrated that the inh'lrct size-limiting effect of ischemic preconditioning also exists 
in human cultured ventricular cardiomyocytes. 

7. Discussion 

A number of endogenous compounds are candidate triggers of preconditioning: These ,are 

adenosine, bradykinin, and noradrenaline, which may work in conjunction to reach a threshold. Although 

we doubt the importance of catecholamines in this respect, we would like to point out that all of these 

metabolites activate intracellular signalling pathways via receptors linked to GTP-binding proteins and 
phospholipasesj protein kinase(s) could be stimulated, and thus lead to the phosphorylation of putative 

target proteins [5). As reviewed elsewhere in this issue [46], these include regulatory proteins of the KATP 

channels and the expression of heat-shock proteins (for second time window of protection), although, 
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as outlined earlier, we do not believe that 5'-nucleotidase belongs to this class of possible targets. 

However, we do consider the possibility that the adenosine released during short periods of ischemia and 

reperfusion activates PKC, which in tum phosphorylates a glycolytic key enzyme and thus increases 
glycolytic flux [24,38). The present data do not allow any fiml statement to be made regarding the 

preconditioning role of (the translocation of) PKC in all species. Although there is growing evidence that 

the human heart can be preconditioned, there is stilt a lack of cmcial infoffilation on the subcellular 
pathways involved (e.g., with PKC). 
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Chapter 4 

Abstract 

Objective: We assessed the effects of ischemic preconditioning on heart recovery and metabolic 

indices of damage following global ischemia and reperfusion, in relationship to post-ischemic lactate 

release. Methods: Three groups of Langendorffrat hearts were studied: I) A control group of 40 min 

global ischemia and 45 min reperfusion; 2) preconditioning by 5 min global ischemia and 15 min 

reperfusion prior to sustained ischemia and reperfusion; 3) Preconditioning by three episodes of brief 

ischemia-reperfusion prior to sustained ischemia. Results: Repetitive episodes of brief ischemia­

reperfusion were associated with increased reactive hyperemia, decreased release of purines and 

prostaglandin6-keto F 1<1.' lower tissue glycogen but no change in lactate washout. After 40 min ischemia, 

release oflactate was 173±17, 196±6 and 149±9 pmol/g in groups 1,2 and 3, respectively (P<O.Ol, 
group 2 vs. group 3). Preconditioning had no effect on ischemic arrest but had divergent effects on the 

development and the magnitude of ischemic contracture: delay and attenuation in group 2 but enhanced 
onset in group 3. Preconditioning provided a dose-dependent protection from the increase in left 

ventricular end-diastolic pressure, reduced the reperfusion release of purine metabolites and of creatine 

kinase, but neither improved systolic function nor prevented arrhythmia. 6-Keto F 1<1. production was 

87±13, 132±19 and 241±3 5 pmol/g in groups 1,2,3, respectively (P<O.OI group I vs. group 3). 
Conclusions: We conclude that when subjected to prolonged global ischemia, preconditioned isolated 
rat hearts develop less post-ischemic contracture, lose less purine nucleosides and creatine kinase 

activity. In addition, preconditioning leads to increased production ofprostacyclin. Differences among 

preconditioning protocols in lactate production seem to be related to the ischemic contracture 

development, but may not play an ultimate role in attenuation of myocardial damage or improvement 

of post ischemic recovery. 

1. Introduction 

Preconditioning the myocardium by brief periods of ischemia-reperfusion confers a substantial 

protection during a subsequent, prolonged ischemic period. In different experimental models of regional 

ischemia, beneficial aspects of preconditioning include: attenuation of structural damage [1,2], reduction 

of infarct size [3,4], prevention of arrhythmia during either ischemia or reperfusion [5-7] and improved 

functional recovery [8]. Apparently, preconditioning constitutes a process of adaptation to low-energy 

states, and is indeed present in various models such as globally ischemic [9-12], hypoxic [13] or rapidly 
paced hearts [14J. 

Murry et a!. [2] proposed a causal relationship between reduced tissue lactate accumulation and 

the benefits of preconditioning. Yet, there is considerable controversy conceming the role of anaerobic 

glycolysis in perpetuation versus attenuation of ischemic damage [15] in globally ischemic hearts. The 

purpose of our study was to assess the effects of ischemic preconditioning on heart recovery and 

biochemical indices of damage following no-flow global ischemia and reperfusioll, in relation to lactate 

production during the ischemic state. 
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2. Methods 

2.1. Preparation 

Fed, male Wistar rats received 500 U heparin i.p. and were anesthetized with i.p. pentobarbital 

sodium 6 mgtlOO g body weight. The hearts were rapidly excised and cooled in ice-cold saline until 

contraction stopped. Then, hearts were mounted on a Langendorff apparatus and perfused with 

oxygenated (95% °1, 5% CO2), bicarbonate-buffered (pH 7.4), modified Tyrode solution (composition 

illlluuoUl: NaC1128, KCI4.7, CaCl, 1.35, NaHCO, 20.2, NaH,PO, 0.42, MgCl, 1.05, glucose 10) with 

a perfusion pressure of 60 nunHg. A stiffened latex balloon of ellipsoid fonn was specially prepared to 

suit the dimensions of rat left ventricular cavity in order to minimize the artifacts induced by 

poslischemic contracture on pressure measurements [16]. The balloon was inflated until left ventricular 

end-diastolic pressure approached 4 mmHg. Systolic pressure of at least 70 nm1Hg was required for 

inclusion. The pulmonary artery was cannulated with a 14-gauge catheter for sampling of coronary 

venous effluent. The O2 content was detennined in aortic and venous samples with a Radiometer ABL3 

gas analyser. A bipolar electrogram was obtained between the aortic cannula and a platinum electrode, 

inserted into the right ventricular epicardiulll. A pacing electrodc was positioned on the right atrial 

appendage. An overdrive atrial pacing (300-330 bpm) was instituted using a Grass S9 stimulator. The 

whole system was heated by water jacketing and the heart temperature was strictly maintained in the 

range 36.5-37.5°C with the aid of an Ellab Teflon thermistor probe, placed in the right atrial cavity_ 

Measurements of coronary flow were obtained volumetrically and with a Skalar extracorporeal 

electromagnetic flow-meter positioned above the aortic cannula. Coronary flow, heart temperature, 

electrogram, coronary perfusion pressure and left ventricular pressure with its derivative (dP/dt) were 

continuously recorded on a Graphtec Linearcorder F WR 370 I. 

2.2. Protocol 

Experiments were carried out in three groups (n = 6-7): 1) An ischemic control group- 50 min 

of baseline perfusion, 40 min no-flow global ischemia and 45 min of reperfusion; 2) A one-cycle 

ischemic preconditioning group-30 min baseline perfusion, 5 min ischemia with 15 min reperfusion 

followed by 40 min ischemia and 45 min reperfusion; 3) A repetitive, three cycle, ischemic 

preconditioning group- 20 min baseline perfusion, three rounds of 5 min ischemia followed by 10, 10 

and 15 min reperfusion respectively, and then 40 min sustained ischemia with 45 min reperfusion. 

The hearts were paced at the same rate during the whole experiment. The time intervals from 

onset of ischemia to cessation of effective mechanical contracture (dcveloped pressure <0.5 mmHg) and 

failure of the conductive system were recorded. Functional asscssment and measurement of myocardial 

oxygen consumption wcre done at baseline, inunediately before long-tenn ischemia and after 30 and 45 

min ofpostischcmic reperfusion. Spontaneous heart rate was obtaincd at baseline and after reperfusion 

measurements, allowing 3 min recovery from the overdrive suppression. Coronary effiuent was collected 

at baseline, before long-tenn ischemia and continuously during the various reperfusion periods (at 

minute I, 2-3, 4-5, 5- 10, 10-15, 15-30, 30-45). At the end of the experiments, the hearts were freeze­

clamped, and stored in liquid nitrogen. Additional hearts (n = 5 per group), treated according to protocols 

1-3, were freeze-clamped just prior to induction ofsustailled ischemia, for detemlination of tissue lactate 

·55· 



Chapter 4 

and glycogen. 

2.3. Biochemical assays 

Nucleosides and oxypurines (adenosine, inosine, hypoxanthine, xanthine, urate) were detemlined 

in coronary effiuent samples by HPLC [17]. Lactate in the effluent was measured enzymatically (Sigma 

Diagnostics, procedure no. 735). Creatine kinase activity was assayed at 37°C by the N-acetylcysteine 

activated DGKCh Mcthod (Merck Diagnostica). The stable mctabolite ofprostacyclin (6-keto PGF1a) 

was detemlined with the DuPont 3[H]-radioimmunoassay kit. Glycogen in tissue homogenate was 

determined according to Huijing [18]. One 1111 homogenate was neutralized with 5M NaOH and used for 

glycogen detcnnination, with rabbit liver glycogen (Boehringer Mannhcim GmbH) as a standard. The 

homogenate was centrifuged, the clear supematant fraction was used for lactate detennination according 

to Gutmann and Wahlefeld [19]. Mcasurement of dry weight was perfonned as previously described 

[20). 

2.3. Statistics 

All biochemical data were calculated per gram dry weight. Data, presented as mcan ± S.E.M., 

were compared by analysis of variance, with repeated measures or with Duncan grouping. Intcr-group 

comparison of postischemic measurements was perfomlcd in its absolute fonn or after correction for 

individual baseline, as appropriate. Statistical significance was accepted at P<O.05. 

3. Results 

The experimental groups were well balanced in their baseline characteristics, except for a 

difference in coronary flow between the two preconditioning groups (Table 1). 

Table I. Baseline parameters of the experinlental groups 

Group n Weight HR PR CF LVEDP LVDP +dP/dt",,-, -dP/dtmo~ !>.fV01 

(g) (bpm) (bpm) (mUminlg) (mmHg) (mmHg) (mmHgfs) (mmHgfs) (mllminlg) 

7 24S±5 262±17 316±4 62±4 I±I 85±S 2340±120 1560±180 O.67±O.O7 

2 7 26I±S 270±24 307±3 73±S* O±I 88±5 2400±JOO lS00±80 O.80±0.O6 

3 6 2S0±8 274±24 314±5 57±4 O±I 92±4 2620±80 1660.:1:60 O.70±0.O6 
HR, spontaneous heart rate; PR, pacing rate; eFt coronary flow (per gram dry weight); LVEDP, left ventricularend·diastolic 
pressure; LVDPt left ventricular developed pressure; ±dP/dt=-" the positive and negative peaks of the first derivative of the left 
ventricular pressure; MVOI • myocardial oxygen consumption (per gram dry weight); bpm, beats per minute. * P<O.OS vs. group 
3. 
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3.1. Effects oj s/lOrl-lerm ischemia 

The eITects of repetitive ischemia all coronary flow (in group 3) are presented in Figure 1. The 

reflow at the first minute of reperfusion was increased after each consequent cycle while the 'plateau' 

coronary flow decreased. Preconditioning impaired the cardiac function (Table 2): The average decrease 

in left ventricular developed pressure following short-tenn ischemia-reperfusion in preconditioning 

groups 2 and 3 was 15% and 20%, respectively. The changes in myocardial oxygen consumption were 

less pronounced. Short-tenn ischemia resulted in a substantial washout of lactate, prostacyclin and purine 

metabolites in the coronary effluent, a process taking place within 5 min from the onset ofreperfusion, 

Trace amounts of creatine kinase were detected in the first minute of reperfusion but not later. The 

release of prostacyclin, purines metabolites and creatine kinase decreased with repeated ischemia­

reperfusion while the release oflactate remained stable (Table 3). Tissue glycogen stores, measured prior 

to sustained ischemia, were reduced by three, but not by one episode, of short term ischemia-reperfusion, 

Tissue lactate in the preconditioned hearts was not significantly diITerent from the control (Table 4), 

• - 1 cycle of short· term Ischemia 
and Reperfusion (group 2) 

• - 3 cycles ofshort·tenn Ischemia 
and Reperfusion (group 3) 

t ,l\ 
------"---~---~;--

0~~ __ L-~-L~ __ l--L~~L-~ 
5 10 0 5 10 0 5 10 15 o 

Reperfusion Reperfusion Reperfusion 
I II III 

Time (min) 

Figure 1, The effects of repetiti~'e short-temJ ischemia with reperfllsio/J 011 coyonal)' jlow ill Langendoiff rat heart. 17le first 
mblllte,jlow iI/creased progressively (t-P<O.OOI ill repeated measures A},'OVA). VIe illcrease ill peak hyperemicjlowwas 11011-
significant, while the cOl"Onal)'jlolV at 10 min repeal/sion progressil'efy decreased in comparisollto baseline (tP<O.OOI). The 
brokenlille ilIlistrates the mean cOl'Onol)'jloll't/uring repeljllsionjolloll'illga single episode of5 mill ischemfa il/ group 2. Note 
the similarit), to the first reperfilsioll. but the marked difference from the coyonGI)' jlOIV in the third repeliti\'e repe/jusion in 
group 3. 17Ie COro/IUI)'jlOW ill the control group remailledat 99±4% of the baseline mIlle (lIotsho1\'I1). 
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Table 2. Functional parameters before and after 40 min ischemia and reperfusion 

Group 

2 

3 

n 

7 

7 

6 

LYEDP 
(mmHg) 

3±1 

2±1 

O±I' 

Post 40 Olin ischemia and reperfusion 

2 

3 

7 

5 

5 

20±2 

13±3 

8±2§ 

LVDP +dP/d/",.., 
(% of baseline) (% of baseline) 

98±3 99±4) 

85±3· 81±5 

80±6t 81±6 

73±8 72±7 

80±8 78±S 

73±4 77±3 

-dP/d/m>., 
(% of baseline) 

93±4) 

75±4 

73±5 

n±7 

76±7 

73±4 

MVOl 

(% of baseline) 

97±3 

95±6 

83±6 

79±3 

84±11 

84±11 

LVEDP, left ventricular end-diastolic pressure; LYDP, left ventricular developed pressure; ±dP/d/r;-.a" the positive and negath'e 
peaks of the first derivative of the left ventricular pressure; MY02, myocardial oxygen consumption. Results of ANDY A with 
Duncan intergroup comparisons: ·P<0.05; tP<O.OI vs. group I; tP<O.OI vs. groups 2 and 3; §P<O.OI vs. group 1, Note; Two 
hearts from group 2 and one heart from group 3 did not regain regular rhythm after sustained ischemia. 

Table 3. Efiects of repeated short-ternl ischemia and reperfusion on the metabolic markers of ischemic damage 

Condition Purines 6-Keto POPI« Lactate Creatine kinase 
(pmollminlg) (pmolfg) (pmolfminlg) (pmolfg) (pmolfminlg) (umolfg) (Ulmin/g) 

Baseline 0.07.0.01 4,8±1.4 3,7±O,6 I.HO.l 

Rep, Cycle min I Total min I Total minI Total min 1 

First 0.61.0.08 2,36±O,28· 78±16 198±21t 41±4 78±2 2,3±O.2t 

Second O.6S±O.04 1.70±O.l5 79±19 169±34 54±4 77±8 2.0±0.2 

Third 0.57.0.04 1.47.0.13 31±6 101±22 53±5 77±8 1,6±O.5 

Yalues at reperfusion (Rep) constitute the release at the first minute and the total ofthe first 5 min, except creatine kinase, which 
was negligible after min I. Statistical comparisons between repenusion periods 1-3: • P<O,02; t P<O.05 (ANaYA for repeated 
measures). Purines include purine nucleosides and oxypurines (adenosine, inosine, hypoxanthine, xanthine. umte). Data 
expressed per gram dry weight. 

Table 4. Tissue lactate and glycogen prior to sustained ischemia 

Group 

2 

3 

Lactate 
(/lmoYg) 

3.3±2,O 

14.3±8.& 

l4,8±7.9 

Glycogen 
(mglg) 

J8.9±1.0 

16,0±1.7 

6,9±1.4· 

Data expressed per gram dry weight. +P<O.OI vs. groups I and 2. 
Note the large variation in lactate levels within each group. There 
were no differences between the groups (ANaYA, J>o=(J,57). 
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3.2. Ischemic arrest and contracture 

Electromechanical dissociation often preceded the failure of electrical activation of the 

ventricles. Preconditioning was not associated with allY change in the time of arrest of the contractile or 

electrical activity (Figure 2). The two protocols of preconditioning had divergent effects on the 

development and the magnitude ofischemic contracture during sustained ischemia (Figure 3). In group 

2, the onset of contracture was delayed and its magnitude diminished significantly. Repetitive 

preconditioning (group 3) resulted in earlier development of contracture. 

Cont~adile Failure 

.. 
2nd d"gr"''' A-V bloxk 

3.d degrree A-V block 

Ventricular Standstill 

, , ! 

o 
Ischemia duration (min) 

Figure 2. The effect a/ischemic preconditioning Oil Ihe del'elopmellt a/ischemic arrest ill alrially paced hearts. Open bars, 
ischemic an'esllimes (mill, meall±S.E.M.) ill controls (group I); hatched bars, a single roulld o/ischemic precondf/iollillg 
(group 2); solid bars, repealed roullds ofpreconciitiollillg (group 3). Note lilal contractilefai/llre preceded electrical arrest 
(velltricular statulstiff) ollly ill some a/the hearts alld therefore individual data are sh01l'1I (open circles, group I; x, group 2; 
solid circles, group 3). 

f 
0- Ischemic Control (group 1) 
• - 1 cyclc of I~hemie Preconditioning(group 2) 
• _ 3 cycles ofIschemie Preconditioning (group 3) 

60 

~ 60 

i 40 

30 .. 
0 a 
0 20 

] 10 

0 10 20 30 40 
Ischemia duration (min) 

Figure 3. f:tJects a/ischemic preconditioning ollthede)'elopmeJlt and lime-course of ischemic COlltrac/ure in globally ischemic 
isolated rat heart. I7le data poillts alollg each lille represent the time of onset, peak conlracfllre alld its magnitude after 20, 30 
alld 40 lIIill ischemia. ·P<0.05, tP<O.OI in ANOVA/or lime 0/01lsetl's. groups I alld 3, respecti)'!'ly. tP<0.05 III ANOVA/or 
time of peak contracture ),S. group 2. §P<O.05 for the peak pressure l'S. group 2. After the peak. there was a significant decay 
o/pressure wilh time (P<O.OOI il/ repeated measures ANOVA), a borderlille group effect (P=O.067) and a lion-significant time 
group interactioll. The 'gro/lp effect' arosefrom a differellce betweell groups I alld 2 (-;'P<O.OI, ··P<0.05 ill olle-Way ANOVA 
for contrac/llre at 20, 30 mill ischemia, respectil·el>~. 
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3.3. Reper/usion after /ongMterm ischemia 

There was no significant effect of preconditioning on the coronary flow in comparison with 

controls (Figure 4). The flow at minute 1 was greater in group 2 than in group 3, but afterwards it did 
not differ among the groups. 

Ventricular tachycardia or ventricular fibrillation appeared in all the hearts, approximately within 
I min of reperfusion. Persistent arthythmia was seen in three preconditioned hearts but Ilone of the 

controls (NS). The duration of transient arrhythmia did not differ between the experimental groups 

(l6.9±3.7, 16.0±4.1 and 9.0± 5.3 min in groups 1,2 and 3, respectively). The spontaneous rate eventually 

recovered to 95±8, 88±7, 91±7% of baseline, respectively (P=NS). 

Postischemic recovery of function usually stabilized after 30 min of reperfusion. Prolonged 

arrhythmia delayed the functional recovery, and therefore only measurements at min 45 were 

accomplished in several hearts. Preconditioning attenuated the increase in left ventricular end·diastolic 
pressure after prolonged global ischemia. No significant differences were noted in the recovery of the 

developed pressure or myocardial oxygen consumption (Table 2). The amounts of lactate, prostacyclin, 

purine metabolites and creatine kinase released following 40 min global ischemia. are compared in Table 

5. The metabolite and enzyme release was unrelated to the coronary flow. Lactate release was differently 
affected by the preconditioning protocols: it was higher in group 2 than in group 3 (both nonM 

signiflcantly different from controls, Figure 5) The timeMcourse of reperfusion release of inosine and 

adenosine is given in Figure 6, and that of creatine kinase in Figure 7. Preconditioning was clearly 

associated with reduced loss of purine necleosides and creatine kinase. This effect was morc pronounced 

in the group with repetitive preconditioning (group 3). Prostacyclin metabolite was measured only during 

minutes 1-5 ofreperfusion, since our previous experiments indicated that the washout is nearly complete 
at that time. The release of6-keto PGF1a was enhanced by ischemic preconditioning and the effect was 

related to the number of the prece.ding short·tenn episodes of ischemia: the increase was slight after a 

single episode but marked after repetitive cycles of shortMtenn ischemia-reperfusion (Table 5). The 

amount of glycogen, remaining in the tissue at the end of the experiment, was low (3.7±0.3 mglg) in 

ischemic controls and even lower in preconditioned hearts. We calculated the cumulative amount of 

lactate and of purine metabolites released after various ischemias during the whole experiment. The 

amount of purines lost during all periods of ischemia-reperfusion was equal in the three groups. The 

overall lactate release was inversely related to the residual glycogen (Table 6). 

Table S. Effects of ischemic preconditioning on the washout of mel abo lites following 40 min global ischemia 

Group 

2 

3 

Lactate 
(jlmollg) 

I 73±17 

I 96±6* 

149±9 

6-keto PGF1" 

(pmollg) 

87±13 

132±I9 

241±35t 

Purines Creatine kinase 
(jlmollg) (U/g) 

12.7±O.8) 203±44§ 

9,4±0.5 128±22 

7.6±O.6 111±26 
The lime periods for calculating the 'postischemic' washout were detemlined from the time-course of release and were minutes 
IM5 for 6-keto POP 1<>' minutes 1·15 for lactate, minutes I M30 for purines and the whole reperfusion period for creatine kinase. 
Purines comprise purine nucleosides and oxypurines (adenosine, inosine, hypoxanthine, xanthine, urate). Data are expressed 
per gram dry weight. Results of ANOVA with Duncan intergroup comparisons: *P<O.05. group 3; tP<O.OI vs. group I; 
tP<O.O I vs. groups 2 and 3; §P<O.05 vs. group 3. 
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Table 6. Residual tissue glycogen in relation to overall lactate release 

Group 

2 

3 

Glycogen 
(mg/g) 

3.7±0.3· 

2.6±O.2 

2.3±O.3 

Tolallaclate release Total purine release 
(pmol/g) (nmollg) 

298±27t 12.8±1.0 

432±8 12,7±0,6 

480±33 12,9±O,5 

Tolallactatelpurine release, sum of the quantities found in effiuent following various episodes of short 
and long-tenn ischemia. Data expressed per gram dry weight. • P<O.OI vs, group 3; tP<O.O I vs, groups 
2 and 3. 
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1 • ,S 100 

] 90 
.c 80 '0 
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• 60 
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'" 50 

~ 40 
30 o - Ischemic Control (group 1) e 

8 
oL' 

0 

• - 1 cycle of Ischemic Preconditioning (group 2) 
• - 3 cycles of Ischemic Preconditioning (group 3) 

15 45 30 
Rcpcrfusion (min) 

Figllre 4. The effect of ischemic preconditioning on coronary flow at reperfusioll following sustained global ischemia ill fhe 
isolaled rat heart, The time points constitute the middle of eacll period of conlilll/o/iS colleetiOlt, See Table J for baseline volues 
of coronary flow. *P<O,OJ between groups 2 alld 3. 

• - 1 cycle ofls~hemic Preconditioning (group 2) 
! 

1:0 IschemicC<>ntrol(groupl) ;,1 
• - 3 cycles ofIsehemic Prewnditioning (group 3) 
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~ 
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Figure 5, Release oflac/atefolloIl1'lIg 40 mill global ischemia: comparison between conlrols alld the ischemic preconditionillg 
grOllps. 11,e lime poinls identify the middle of each period of continllous collection of/he corollary effiuelli. 17,e release ill all 
groups and intergroup differences were mosl prollolillced ill thejirs/mimlte ofrepelfusioll (group 2 differentjrom J al/d 3; 
*P<0.005 ill ANOVA). All differellces betweell/he groups disappeared after 3 min of repel fils ion. Corollary e.DZllellf lac/ale 
rellln/ed 10 baselil/e levels within 10 to 15 mil/ (gdw, gram dry weight), 
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4. Discussion 

In isolated hearts, preconditioning manifests by reduced infarct size [4] and prevention of 

arrhythmias during coronary occlusion and reperfusion [7]. Protection in rat hearts, undergoing no-flow 

global ischemia was shown by Cave and Hearse [9], using preconditioning with 5 min of both ischemia 

and reperfusion, in the isolated working rat heart model. They found a functional benefit with 

nonnothennic global ischemia up to 25 min, and with hypothemlic ischemia up to 160 min duration, but 

no sparing of tissue high energy phosphates. Volovsek et al. [10] preconditioned rat hearts by repetitive 

episodes of either 2 or 5 min ischemia, thereby improving functional recovery and reducing lactate and 

enzyme release after 20 min ischemia. Other authors [11,13,21] had similar findings with 

preconditioning in the Langendorffmodel, using one or more episodes of 5 min ischemia and 5-10 min 

reperfusion intervals. 

Our results indicate protection by preconditioning manifested by reduction of adenine nucleotide 

catabolism, reduced leakage of creatine kinase and attenuation of post ischemic increase in end-diastolic 

pressure. However, other components of ischemia-reperfusion damage like systolic function, reperfusion 

arrhythmias and myocardial oxygen consumption were not significantly affected. 

4.1. CoroJlalyflow 

Reversible ischemia increases coronary resistance and impairs vasodilator responsiveness [22]. 

In our study, the hyperemic flow increased with successive bouts ofbriefischemia (Figure I). There was 

no attenuation ofno-reflow following sustained ischeniia, as described by Asimakis et al. [11]. In their 

study, the inner-layer underperfusion ought to be attributed to an excessive end-diastolic pressure in the 

ischemic controls. We used lower basal balloon pressures. Postischemic diastolic pressures were also 

lower, permitting a substantially better reflow. We did not find a relationship between the metabolites 

detennined in the coronary effluent and the coronary flow. It may only be postulated that a complex 

relationship between the products of the cyclooxygenase pathway, adenosine, endothelium-derived 

(nitric oxide, endothelin) as well as mechanical factors regulate the vascular tone in the preconditioned 

heart. 

4.2. Ischemic arrest 

Rapid induction of cardiac arrest prior to the onset of ischemia pennits the maintenance of higher 

energy levels during ischemia, delays the rise in [Ca2
+inJ and the development of ischemic contracture, 

and leads to a better recovery upon reperfusion [23,24]. Some authors [2,25] suggested that contractile 

failure might occur earlier in preconditioned hearts. In our study, preconditioning had no prominent 

effect on atrioventricular conduction, contractile failure or ventricular electrical arrest. Therefore, early 

arrest of electrical or mechanical activity is neither necessary, nor does it contribute to the protective 

effect ofprecollditioning in globally ischemic isolated rat heart. 
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Figure 6. Release ofpurille metabolites following 40 min global ischemia: inosine and adenosine. Adenosine was found ill the 
corOl/ary effluel/t ill much smaller qualltities thal/ il/osille alld oXYPllrilles (1I0t showlI). Adenosine peaked substalltially later 
thall inosine. Preconditioning progressi\'ely aflenllated purine release (see Table 4 for statistical comparison; gdw, gram dry 
weight). 
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Figure 7. Release of creatine kinase followillg 40 mill global ischemia. Creatine killase remailled elevated during the whole 
reper/lls/o11 period alld showed high variabiUty between the lzearts ill the time course of release alld the tolal aClivity lost. Vie 
loss of creatine kinase tended to be lesser ill preconditioned hearts, achie\'illg statistical significance ill group 3 (see Table 4; 
gdw, gram dry weight). 
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4.3. Reperfilsiol1 tachyarrhythmia 

Reperfusion tachyarrhythmia occurred in all the hearts (following 40 min global ischemia). The 

lack of the anti-arrhythmic effect of preconditioning in our global ischemic setting is in disagreement 

with the well-documented antiarrhythmic effect of preconditioning in regionally ischemic hearts [5,7]. 

The ability of the myocardium to generate arrhythmias at reperfusion is considered to indicate tissue 

viability, is usually highest with ischemia of 5-20 min and declines afterwards [26]. Reperfusion 

arrhythmogenesis is related to the size of the ischemic zone: the incidence of ventricular fibrillation 

increased to 100% when the ischemic region was enlarged to above 45% of the ventricle [27]. Therefore, 

an antiarrhythmic effect of preconditioning, manifested during regional ischemia or reperfusion, will not 

necessarily suffice to protect globally ischemic hearts. Our further studies in global ischemia suggest that 

preconditioning does not attenuate, but altcrs the tcmporal relationship ofrcperfusion tachyarrhytlmlias 
[28]. 

4.4. Cardiac fimclioll 

The ability of preconditioning to improvc postischemic function is a mattcr of controversy. 
Regional contractility was not preserved following preconditioning and 60 min ischemia in dogs [29]. 

A markedly reduced extent of necrosis following long-tenn global ischemia was not associated with 

improved post-ischemic functional recovery in isolated rabbit hearts [30]. However. as mentioned above, 

shtdies in rats usually demonstrate functional protection by preconditioning. Our experiments utilized 

atrial overdrive pacing to standardize the heart rate during assessment of contractile perfommnce. 

Postischemic diastolic dysfunction was attenuated without improvement of systolic contraction. Neither 

developed pressure, nor spontaneous heart rate. or oxygen consumption were significantly affected 

(Table 2). 
The shorter reperfusion intervals used by other authors in the course of preconditioning could 

be responsible for their better fUllctional results. Short reperfusion after brief ischemia is associated with 

a greater degrec of stunning than in this study. The energy demand of preischemic myocardium may 
govem ATP breakdown during subsequent ischemia and thus affect the outcome of preconditioning [31]. 

In the current study, the recovery of developed pressure was remarkably good. Prolonged ischemic 

episodes, as used here, damage many of the hearts beyond their ability to recover in the working heart 

system. The extent of damage is underestimated by measuring the isovolumic pressure development in 

the non-ejecting Langendorffmodel of heart perfusion. Because of these limitations, the beneficial effect 

on systolic function could be inadequately expressed. 

4.5. Relationship with ischemic lactate production 

Neely and Grotyohann [32] improved ischemic tolerance of isolated rat hearts by anoxic 

glycogen depletion. However, these findings could not be reproduced in rabbit hearts [33]. The role of 

glycolysis in attenuating ischemic damage was re-emphasized in studies involving global ischemia 

[15,24]. 

In open-chest dogs [2,34] and in isolated rat hearts [10,11], protection after repetitive 

preconditioning coincided with reduced glycogen stores and diminished lactate accumulation in totally 
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ischemic myocardium. In contrast, preconditioned isolated rabbit hearts undergoing low~flow ischemia 

were protected in association with enhanced glycolysis and greater lactate production [12]. 

In our study, ischemic lactate production was represented by cumulative reperfusion release of 

lactate. This may underestimate tissue lactate accumulation during ischemia and does not account for 

glycolysis and lactate metabolism taking place at reperfusion. We believe our approach is valid since: 
a) Our hearts were not immersed and no lactate loss occured to the surrounding medium; b) It may be 

assumed that no differences existed between the groups in the ratio of lactate to pymvate + alanine 

during global ischemia [I2]; c) The time course ofiactate release on reperfusion (Figure 5) indicates a 

washout from the previously ischemic tissue; d) Lactate remaining in tissue after prolonged reperfusion 

in this model is negligible in comparison to the ischemic levels [35]. 

Preconditioning per se did not necessarily lead to reduced lactate release (Figure 5 and Table 5). 
A combination of two factors may explain a somewhat increased lactate washout in group 2: a) 

Substantial glycogen replenishment occured during the first reperfusion period; b) Although still 

controversial [36], adenosine released during preconditioning ischemia might be responsible for 

stimulating the glycolytic flux afterwards [37,38]. Repeated brief ischemia (in group 3) depleted tissue 
glycogen stores (Table 4) thereby reducing the rate of anaerobic glycolysis during the subsequent 

prolonged ischemia. 
Thus, we compared two protocols of preconditioning, significantly different (and divergent 

relative to control) in their rate of lactate release. Both preconditioning groups appeared to have 

beneficial effects on post ischemic diastolic pressure and enzyme release. Three rounds of short-tenn 

global ischemia-reperfusion provided more protection than a single event. This concurred with treatment~ 

induced depression of myocardial function. However, the beneficial effects of preconditioning on 

myocardial salvage cannot be explained entirely as a result of reduced oxygen consumption prior to 
sustained ischemia (Table 2, see also [39,40)). Indeed, "prestunning" seems to decrease myocardial 

oxygen consumption less than it impairs function [41,42]. 

These data suggest that the reduction of the ischemic damage in preconditioned hearts is not 

necessarily dependent on the effect of preconditioning on myocardial energy consumption or ischemic 

lactate production. Apparently, there was still not as much protection as others have seen. Therefore the 

present study suggests that it is possible to observe a protective effect of ischemic preconditioning in the 

absence of a decrease in anaerobic glycolysis, but the magnitude of the protective effect is less than in 

protocols that reduce energy consumption, lactate production and acid accumulation. 

4.6. Ischemic cOlltracture 

Ischemic contracture development was markedly different between the preconditioning groups: 

it was attenuated in group 2 but appeared earlier in group 3 (Figure 2). Earlier onset of contracture was 

reported in rat hearts preconditioned by 5 min ischemia or hypoxia and 10 or 5 min reperfusion [11,13]. 
Janier and co~authors [12] reported attenuation of contracture during low~flow ischemia in rabbit hearts 

preconditioned by 3 min ischemia and 12 min reperfusion. 
The onset of contracture is associated with ATP depletion and actin~myosin rigor bond fomlation 

[I5]. Contracture development in preconditioned hearts may be related to their glycolytic flux. The 

apparent disagreement between the findings obtained in various studies may be reconciled, if we assume 

that the effect of repeated ischemia on contracture is mediated by glycolysis, and is dependent on the 
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model, the number ofshort~tenn ischemic episodes and the duration of the reperfusion intervals. 

The elevated left ventricular diastolic pressure at later stages of ischemia and at reperfusion, 

behaves differently from early ischemic contracture. This post~ischemic contracture reflects diastolic 

functional impainnent, generally attributable to cytosolic free Ca2
+ overload [24,43]. Preconditioning 

apparently constitutes an effective method for alleviation of ischemia~reperfusion associated calcium 

overload [21]. 

4.7. Adenosine alld total purine 

Adenosine and total purine loss was attenuated in the preconditioned hearts, indicating decreased 

nucleoside breakdown during sustained ischemia (Figure 6). This confinns previous observations in 
rabbit hearts [31J and probably indicates a more favorable myocardial energy state following 

preconditioning [44]. On the other hand, the pattem in rat contrasts the marked increase in adenosine and 

5'~nucteotidase activity in preconditioned canine hearts [45]. Several investigators have already shown 

that preconditioning in rats, in contrast to rabbits and dogs, is not mediated by adenosine (4,46J. 

4.8. Prostacyclin release 

To the best of our knowledge, the effect ofpreconditiolling on the cardiac release ofprostacyclin 
has not yet been reported. Hearts synthesize and release various eicosanoids during and following 

ischemia, even of short duration (47~49]. Prostacyclin is the main metabolite of arachidonic acid, 

produced under these circumstances [50J. Early synthesis of prostaglandins by the anoxic/ischemic heart 

is apparent prior to the development of damage and probably constitutes a compensatory response 

(51,521. Endogenous prostaglandins seem to be involved in both reactive hyperemia following brief 

ischemia [48] and in endothelium-dependent vasoconstriction [53]. The involvement of products of the 

cyclooxygenase pathway in prevention of ischemic arrhythmias, similarly to exogenous I1oprost, 

suggests participation of prostacyclin in preconditioning [14]. Other investigators, also using 
cyclooxygenase inhibitors in preconditioning experiments, could not confirm a role for prostaglandins 

in limiting infarct size or arrhythmia [54]. The present study (Tables 3 and 5) provides evidence that: a) 

Cardiac adaptation to repeated short~tenn ischemia involves a decrease in prostacyclin production; b) 
The protection during and following prolonged ischemia coincides with an enhanced prostacyclin 

release. Our data do not prove a link behveen prostacyclin and the protection afforded by ischemic 

preconditioning. We believe that the effects of preconditioning on prostaglandin synthesis warrant 

further investigations, since these mediators may be involved in attenuation of microvascular stunning 

[55] and other fonns ofcardioprotection. 

4.9. COl/clusions 

In this model of protracted global ischemia in isolated rat hearts, preconditioning leads to an 

augmented prostacyclin release after sustained ischemia. Preconditioning is manifested by a decrease 

in postischemic contracture and biochemical evidence of myocardial salvage, but not necessarily by 

prevention of arrhythmia or improved systolic contraction. Anaerobic glycolysis appears to be necessary 

for attenuation of ischemic contracture; however, it may not play an ultimate role in the effect of 
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preconditioning on myocardial damage or post-ischemic recovery. 
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Chapter 5 

Abstract 

Objective: Acadesine, an adenosine regulating agcnt, attenuates the adverse effects of ischemia 

on ventricular function in animals. This study examined its influence on pacing-induced ischemia in 47 

patients undergoing coronary angiography. Methods: After 15 min of recovery from control pacing, an 

infusion ofacadesine (5,10,20,50 mglkg i.v.) was conmlenced and after a further 15 min the protocol 
was repeated with the infusion continued. Results: At higher doses, minor beneficial effects on ejection 

fraction and myocardial lactate metabolism were observed. Hemodynamics were unaffected. Systemic 

lactate rose in relation to acadesine, up to 60% (P<O.OOI vs. placebo). Conclusion: The data may 

indicate that acadesine stimulates anaerobic glycolysis in man. 

1. Introduction 

In experimental models, acadesine (5-amino-4-imidazole carboxamide riboside), an adenosine 

regulating'agent,limits the deleterious effects of ischemia on left ventricular function (1]. Acadesine 

appears to act by increasing myocardial adenosine concentrations (2], which may then improve regional 

perfusion, contractility and metabolism [3]. Its actions are unusual in being event- and site-specific. The 

dmg is thought to be only effective in ischemic myocardium, and phannacologically inert, rcndering it 
a potential therapeutic agent in ischemic heart disease. \Vhen studied in man (4], acadesine does not 

produce the undesirable systemic effects of adenosine. 

Although the effects ofacadesille in regional as opposed to global myocardial ischemia have not 
been wholly consistent, acadesine attenuated the decrease in left ventricular wall thickening provoked 

by atrial pacing in a model of circumflex coronary artcry stenosis (5]. Encouraged by the experimental 

evidence, we investigated the effect of acadesine on left ventricular function, and myocardial lactate 

metabolism, in relation to pacing stress in coronary patients. 

2. Materials and methods 

2.1. Patients 

The study group was drawn from patients undergoing cardiac catheterization for the 

investigation of suspected coronary artery disease, with >50% stenosis in at least one coronary artery. 

Patients with unstable angina, acute myocardial infarction, left main coronary artery stenosis, diabetes 

mellitus, or chronic renal failure, were excluded. 

2.2. Protocol 

All medications were discontinued :?:48 h prior to the study. Cardiac catheterization was 

performed through the femoral artery and vein. Heparin (5000 U) was administered intravenously. 

Following angiography of the left and right coronary arteries, a dual tip micromanometer pigtail catheter 

was positioned in the left ventricle and a bipolar coronary sinus catheter was introduced. Baseline left 

-72-



Acadesille alld myocardial ischemia 

ventricular angiography was perfomled and left ventricular and aortic pressures and pressure~derived 

indices were measured, Atrial pacing commenced at 10 beats/min above the spontaneous heart rate, with 

increments of 10 beats/min at 2~min intervals, Pacing end-points were a rate of 180 beats/min, angina, 

or atrioventricular block. Measurements were recorded during maximal pacing and ventricular 

angiography was repeated immediately on cessation of pacing, After 15 min rest, an Lv. infusion of 

placebo (0.28% NaCI) or acadesine (5, 10, 20 or 50 mglkg) was commenced in a randomized, double­

blind fashion. After a further 15 min, with acadesine infusion continued, an identical protocol was 

followed, Coronary sinus and femoral arterial blood samples were taken before, during and after 

maximal pacing and during recovery. 

2.3. Assessment offimctioll and hemodynamics 

Global and regional left ventricular function was evaluated as described elsewhere [6J. Left 

ventricular parameters were measured using the micromanometer catheter [7J. The following indices 

were computed: Peak left ventricular pressure, its derivatives and the time constants for early relaxation 

[8). 

2.4. Lactate measurement 

Blood samples of approx. 1.5 011 were collected and processed as described [9J. In deproteinized 

samples, lactate was assayed in duplicate with lactate oxidase and peroxidase on a Merck ELAN 

analyzer. 

2.5. StaNstical analysis 

The effect ofacadesine on pacing-induced changes (infusion vs. pre-infusion) was assessed by 

analysis of variance to detect differences between dosage groups. A paired Student's t-test was then 

applied or linear regression analysis was used to examine the dose-response relationship. Mean values 

are reported ± S.E.M. Statistical significance was accepted at the 5% level. 

3. Results 

3.1. Demographics, drug tolerance 

The inclusion criteria were met by 47 patients, including eight females, who all provided 

infonned consent. Their median age was 58 years (range: 38~70 years). Acadesille was well tolerated and 

there were no adverse clinical events. 

3.2. Atrial pacing 

In all the groups, the maximal heart rates achieved during the second pacing period were similar 

to those in the first (approx. 150 beats/min). 
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3.3. EjectioJlji'aclioll alld hemodynamics 

The left ventricular ejection fraction before pacing was 63±2%. Atrial pacing induced a small 

decline in ejection fraction (Table 1). During the second pacing period, following acadesine infusion, 

this decline was attenuated, significantly so at the 20 mglkg dose (pacing 2: decrease from 61 to 60% 

vs. pacing 1: decrease from 63 to 58%, P=0.036; see Table I). TIle parameters of left ventricular function 

were not influenced by acadesine at rest, at maximal pacing (Table 1), or during recovery. Differences 

observed between the first and second stress tests were <5%. 

Table I. Effect of acadesine on ventricular function and hemodynamics during atrial stress testing 

Variable Acadesine (mglkg) 

placebo 5 10 20 50 
left ventricular pressure (mmHg) (It I 27±5 135±5 124±5 152±8 136±8 

(2) 132±6 132±6 123±5 143±8 127±11 

LVEDpb (mmHg) (I) 10.3 13±2 9±2 13±2 7±2 

(2) 9±1 12±2 9±2 11±2 10.3 

LVdP/drb (mmHgls) (I) 1783±153 t728±144 1711±t30 179(}±}27 20IO±163 

(2) 1775±161 17()(}±15(} 1711±W3 1684±85 J84t±221 

Tau 1 (ms) (I) 45±5 49±5 43±3 52±4 39±2 

(2) 46±4 5(}±5 43±3 53±4 40.2 
ejection fraction (%) (I, pre) 66±4 57±4 66±4 63±S 65±2 

(1, post) 62±3 S4±3 62±5 58±6 63±3 

(2, pre) 66±3 56±3 65±5 61±6 6S±2 

(2, poSl) 63±4 55±4 63±5 60.5 63±3 

a Measurements were made during fust (I no acadesine) and second (2 with acadesine) pacing periods at maximal pacing, 
except for ejection fraction, where data were obtained before (pre) and inmlcdiately after maximal pacing (post). Means ± 
S.E.M., n=9-W. b L VEDP and LVdP/dt = left ventricular end-diastolic pressure and its peak first derivative, respectively. 

3.4. Lactate metabolism 

In general, arterial and coronary sinus lactate levels were higher in relation to acadesine infusion 

(Table 2). For instance, the rise in arterial lactate dUrillg the post-pacing recovery period varied between 

the groups (P<O.OOl, analysis of variance) and lactate levels following the higher doses ofacadesine, 

20 and 50 mg/kg, were greater than control (both P<O.OOI). Regression analysis confimled an 

incremental effect ofacadesine at these doses (20 mglkg; P=0.026, 50 mglkg: P=0.01) suggesting dose­

dependency. 

The arteria-venous lactate data during the first pacing stress test showed that ischemia was 

induced: Lactate uptake before pacing, O.l3±0.03 mmoVI (n=39), decreased both during (-0.01±0.04 

nunoVI) and inunediately post-pacing (-0.08±O.06 mmol/I), with retum to lactate uptake during recovery 

(O.09±O.05 mmoUl). Arterio-venous lactate tended to increase during pacing in relation to acadesine, but 

this did not reach significance (Table 2). However, when the effects of low dose (0-10 mglkg) and high 

dose acadesine (20-50 mglkg) on arteriovenous lactate were compared, there were differences throughout 

the pacing protocol. The acadesine-induced decline in lactate production was significant during maximal 
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pacing and recovery. Arteriovenolls differences during pacing were: Low dose, O.09±O.03 11l1110VJ vs. 

high dose, O.17±O.08 nmlOVI; P=O.016, n=27 and 12, respectively; those during recovery were: Low 

dose, O.06±O.04 1111110]/] vs. high dose, 0.23±O.061111110V]; J'ooO.O] 9. 

Table 2. Effect ofacadesine on blood lactate and arteriovenous differences 

Group Phase Lactate (mmolfl) 

4 acadcsine + acadesine 

arterial cs· arterial-CS arterial CS arterial·CS 

placebo pre·pacing 0.76±O.09 0.63±0.OS O.13±O.OS 0.79±0.07 0.S6±O.OS 0.23±O.OS 

(n"9-10) max. pacing 0.7S:l:.0.08 0.76±0.04 0.00±0.07 0.72±O.06 0.64±O.06 O.06±O.OS 

post-pacing 0.68±0.06 0.8I±O.08 -0. 13±O. 10 O.76±O.07 0.73±0.08 0.02±0.09 

recovery 0.70±0.08 0.60±0.04 O.lI±0.07 0.81±0.07 0.54±0.06 0.27±0.06 

5 mglkg pre-pacing 0.8I±O.11 0.68±O.11 0.I3±O.06 0.84±O.12 0.74±O.11 0.II±O.06 

(n~IO) max. pacing 0.77±0.09 0.73±O.1I 0.04±O.08 O.SO±O.IO 0.S4±O.12 -0.04±O.09 

post·pacing 0.79±O.O9 0.8S±0.14 -0.06±0.12 0.88±0.12 0.87±0.16 0.01±0.13 

rccovcry 0.8S±0.12 0.73±O.10 0.12±O.08 0.86±O.12 0.76±O.12 0.09±O.09 

to mglkg pre-pacing 0.82±O.17 0.S2±O.16 0.25±0.08 0.84±O.16 0.49±O.13 0.36±O.11 

(n"7-9) max. pacing 0.77±0.14 0.56:1:.0.16 O.l4±0.06 0.79.1O.l3 0.S7±0.14 O.l9.1O.OS 

post-pacing 0.80±0.13 0.58±O.l3 0.16±0.08 0.84±0.16 0.56±O.12 0.21±O.l2 

recovery 0.84±O.14 0,48±O.11 0.32±O.09 0.9I±O.16 0.53±O.l6 0.35±O.07 

20 mglkg pre-pacing 0.80±0.16 0.82±O.16 0.0I±O.09 0.9S±0.14 0.74±0.16 0.19±0.09 

(n=6-8) max. pacing 0.80±0.l4 0.94±O.lO -0.13±O.09 t.03±O.IS 1.04±O.IS 0.08±O.07 

post-pacing 0.83±0.12 1.16±O.l2 -0.30±0.16 1.02±O.13 1.19±O.l8 -O.OSiO.IS 

recovery 0.87±O.13 0.97±O.to -0.08±O.14 1.t2±O.lS 1.02±O.18 0.20±0.08 

50 mglkg pre-pacing 0.67±0.06 0.S9±0.OS O.11±0.03 0.S4±0.13 0.79±0.11 0.13±O.l2 

(n"5-7) max. pacing 0.6S±0.08 0.88±O.l7 -0.17±0.12 1.l0±O.J4 1.10:1:.0.\4 O.l1±0.20 

post-pacing 0.70±0.09 0.87±O.11 -0.06±0.16 1.18±O.13 L12±O.lO 0.20±0.\4 

recovery 0.76±O.09 0.S7±O.l4 -0.07±0.IS 1.23±O.11 1.09±O.1O 0.2S±O.11 

After an atrial pacing stress test, the acadesine infusion started and pacing was repeated. Means ± S.E.M. aCS coronary sinus. 

4. Disclission 

4.1. Cardiac fUl/ction and metabolism 

This is the first report of the effects of acadesine on both left ventricular function and lactate 

metabolism in relation to myocardial ischemia in man. The decline in left ventricular ejection fraction 

provoked by pacing stress in patients with coronary artery disease tended to be less in the presence of 

acadesine (Table I). This was small, but significant at a dose of 20 mglkg. Further, myocardial lactate 

uptake during and after pacing tended to be increased with a high dose as opposed to low dose acadesine 

(Table 2). The Jatter is in line with canine data [to]. Left ventricular hemodynamics were not affected 
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(Table I), confimling that acadesine was free of negative inotropic actions. The data suggest that 

acadesine exerted an anti-ischemic effect on the heart, in line with results obtained in patients undergoing 

coronary artery bypass graft surgery [11]. 

The 20 mg/kg dose appeared to be associated with a larger effect on left ventricular function than 

50 mglkg (Table 1). Also in animal models of myocardial ischemia, the protective effects ofacadesine 

diminished at higher doses [1,12]. This concentration dependent effect of acadesine remains to be 

explained. Although the precise cellular events underlying the effects of acadesine and adenosine arc as 

yet undetennined, a G-protein and KATP channels may be involved. \Vhether the ribose moiety in 

acadesine plays a role is unknown; ribose is a cardioprotectant, stimulating adenine nucleotide synthesis 

[13]. 

4.2. Peripheral lactate 

Systemic lactate levels rose with acadesine, particularly at higher doses (Table 2). The effect of 

acadesine on arterial and coronary sinus lactate concentrations may be explained by increased glycolysis, 

in that it is well established that adenosine stimulates glucose uptake [14]. Although reports to the 

contrary exist [15], many studies show that adenosine promotes glycolysis (e.g., [16]). Species and tissue 

differences in the capacity to accumulate the phosphorylation product of acadesine and differences in 
target enzymes sensitive to this product probably detennine the effect of the drug on glycolysis [171. In 

rat skeletal muscle, acadesine activates glycogen phosphorylase and glycogenolysis [18]. Since skeletal 

muscle is a major contributor to body mass, it could well be the source of the increases in arterial lactate 

concentrations seen with acadesine. 

4.3. COl/elusions 

In summary, in this study of pacing-induced ischemia in patients with coronary artery disease 

and stable angina, we found small protective effects on left ventricular function and myocardial lactate 

metabolism. We speculate that the rise in systemic lactate is due to acadesine-induced increases in 

adenosine, which could stimulate glucose uptake and its catabolism. 
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Chapter 6 

Abstract 

Objective: Few, and those controversial, have been published on ischemic preconditioning 

followed by 10w~f1ow ischemia. The aim of this study was to assess whether ischemic preconditioning: 

I) confers protection against severe underperfusion, and 2) is mediated by mobilization of pro glycogen, 

resulting in increased anaerobic glycolysis and reduced myocardial injury. Methods: Isolated rat hearts 

were retrogradely perfused and subjected to either 25 min low-flow ischemia (0.6 mUmin) followed by 

30 min reperfusion (Ie; n=5), or the same protocol preceded by two cycles of5 min no-flow ischemia 

and 5 min reperfusion (PC; n=7). Additionally, hearts (n=52) were freeze-clamped at different time 

points throughout the protocol. Results: Preconditioning improved functional recovery (developed force 

x heart rate in PC hearts: 54 vs. 21% in IC hearts; P<O.OI) and reduced ischemic damage (cumulative 

release of creatine kinase during reperfusion: 93 vs. 215 Ulg dry wt; P<0.05). During ischemia and 

reperfusion, release of adenosine and the sum of purines was smaller in PC hearts (P<0.05), while lactate 

release was similar in the two groups. PC reduced both macro glycogen and proglycogen by ca. 60% 
(P<O.OI) resulting in constant glycogen levels during low-flow ischemia. In contrast, in IC hearts, both 

fractions decreased by ca. 60% during ullderperfusion (P<O.O I). Conclusions: These results demonstrate 

that: I) ischemic preconditioning reduces injury due to severe flow reduction, and 2) preconditioning 

reduced glycogenolysis without affecting anaerobic glycolysis, suggesting increased glucose uptake. 

1. Introduction 

Short periods of ischemia and reperfusion render the heart more tolerant to a subsequent 

sustained period of ischemia, a phenomenon tenned 'ischemic preconditioning' [IJ. Most research has 

focused on preconditioning-induced protection against a period of sustained no-flow ischemia, whereas 

only a few studies examined low-flow ischemia, probably more relevant as a clinical model. There is 

ample evidence that ischemic preconditioning protects against no-flow ischemia. However, whether 

preconditioning confers protection against low-flow ischemia or hypoxia is the subject of controversy: 
both positive [2,3] and negative results [4,5] have been reported. Residual flow during prolonged 

ischemia may lead to washout of adenosine from the interstitium and, consequently, loss of protection 

[4]. This is in line with the observation that adenosine AI receptors must be occupied both during 

preconditioning ischemia (initiation) and prolonged ischemia (mediation) in order to induce protection 
[6]. To our knowledge, however, the release of potentially protective adenosine during low-flow 
ischemia in preconditioned hearts has never been studied. 

We have recently reviewed the controversial role of glycolysis in ischemic preconditioning [7]. 

During no-flow ischemia, ischemic preconditioning decreases glycolytic flux, reSUlting in reduced 

accumulation oflactatc and protons, despite reduced ATP production. On the other hand, an increased 

glycolytic flux during low-flow ischemia reduces cell injury [8,9]. Using rabbit hearts, Janier et al. [2] 

attributed the protective effect of ischemic preconditioning on myocardial injury resulting from low-flow 

ischemia to increased glycolytic flux. Furthennore, a high endogenous glycogen content has been 

reported to be beneficial [10] or detrimental [11] to hearts subjected to no-flow ischemia. The role of 

glycogen in preconditioning-induced protection against low-flow ischemia is unclear. Tissue glycogen 

consists of two fOffilS: classical macroglycogen and 'proglycogen' [12,13]. Proglycogen is a stable 
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illtemlediate in macroglycogen synthesis [13,14]. In myocardium, proglycogen levels remain relatively 

constant whereas macroglycogen fonns a more labile fraction, decreasing during hypoxia/ischemia 
[15,16]. We recently confimled in rabbit hearts that macroglycogen breakdown stops at proglycogen 

during continued ischemia [17]. However, intennittellt ischemia resulted in a fall in both proglycogen 

and macro glycogen (17]. Therefore, depending on the physiological situation, glycogen seems to 

oscillate between macroglycogen and proglycogen, while further breakdown of pro glycogen only occurs 

under special conditions, such as repeated ischemia and reperfusion, Thus, the pUI1)ose of this study was 

to assess the role of anaerobic glycolysis and (pro)glycogen in preconditioning-induced protection 

against low-flow ischemia. We examined whether ischemic preconditioning protects against severe 

underperfusion. Since macroglycogen and proglycogen foml separate entities with different metabolic 

activiliy, we examined their response to low-flow ischemia during preconditioning. We hypothesized 

that ischemic preconditioning mobilizes proglycogen during low-flow ischemia supporting 

glycogenolytic flux and reducing myocardial injury. The results show that preconditioning confers 

protection against low-flow ischemia possibly by reducing glycogenolysis and increasing glycolysis 

during underperfusion. Part of this research has been published in abstract fonn [18], 

2. Materials Bnd Methods 

All animals were treated in comfonllation with the guiding principles in the care and use of 

animals as approved by the American Physiological Society, The Animal Welfare Conunittee, Erasmus 

University Rotterdam, approved the protocol. 

2.1. Exclusion criteria 

During stabilization, hearts were excluded if they met one of the following criteria: 1) unstable 

contractile function, 2) coronary flows outside the range of 10-J8 mllmin, 3) severe arrhythmias, 4) 

myocardial temperature outside the range 37 - 39°C. 

2.2. Isolated heart preparation 

Fed, male Wistar rats (WaglRij inbred, weighing 280-330 g) were obtained from Harlan-CPB, 
Zeist, The Netherlands. They received a commercial rat chow (Hope FamIs AM II, Woerdell, The 

Netherlands) and tap water ad libitum, After anesthesia with an intraperitoneal injection of 0.7 ml sodium 

pentobarbital (Nemblltalt>, 60 mglml) supplemented with 0.1 ml heparin (Thromboliqlline~, 5000 

I.U.lml), hearts were rapidly excised and arrested in saline (0-4 °C) until beating ceased, Excess tissue 

was removed, and the hearts were cannulated via the ascending aorta, for retrograde perfusion using a 

non-recirculating modified Krebs-Henseleit buffer containing (mll1olll): NaCI 118, KC15.6, CaCI2 2.4, 
MgCI2 1.2, NaHCO) 20, Na2HP04 1,2 and D-glucose 10. Before use, the buffer was filtered through a 

45-pIl1 porosity filter to remove any particulate matter, and equilibrated with 5% CO/95% °2, to give 
a pH of about 7.4 at 3rc. Myocardial temperature was kept at 37°C with a water-jacketed heart 

chamber and buffer reservoir, and regulated with an electric heating coil positioned around the aortie 

inlet line. The temperature of the outer ventricular wall was monitored with a thennocouple (A-F6, Ellab 
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AfS, Roedovre, Denmark). Global, no-flow ischemia was induced by clamping the aortic line; low-flow 

ischemia was achieved using a perfusion pump (MV-MS3, Ismatec, Zurich, Switzerland) operating at 

a flow rate of 0.6 mVmin. 

Coronary flow was measured by timed collection of the pulmonary artery effiuent. The hearts 

were allowed to beat spontaneously. Cardiac contractile function was estimated with a small hook 

inserted into the apex and connected to a force transducer (F5A-2, Konigsberg Instruments, Pasadena, 

CA). The heart was pre-loaded with an initial resting tension of 4 g. Systolic tension and diastolic tension 

were continuously displayed on a paper recorder. Developed tension was calculated as systolic tension 

minus diastolic tension. Cardiac contractile function was expressed as rate-force product (RFP), the 

product of developed tension and heart rate. RFP at the end of reperfusion was compared to the 

preischemic value after the 20-min stabilization period and expressed as percent recovery of RFP. 

Perfusion pressure was measured by a disposable pressure transducer (Braun Melsungen, Austria) and 

kept constant at 75 nunHg. 

2.3. E;rperimelltal protocol 

After initial isolation and surgical preparation, all hearts were perfused with modified Krebs­

Henseleit buffer and allowed to equilibrate for 20 min. Thereafter, hearts were randomly assigned to one 

of the following groups: a preconditioning group (PC; n=7) and an ischemic control group (IC; n=5). 

After stabilization, IC hearts were perfused for an additional 20-min period of nomlOxic perfusion; PC 

hearts were assigned to undergo two 5-min episodes of no-flow ischemia, each interrupted by 5 min of 

reperfusion. Thereafter, PC and IC groups were subjected to 25 min of low-flow ischemia (0.6 mVmin) 

followed by a reperfusion period of30 min and freeze-clamping (Figure I), In addition, PC and Ie hearts 

(n=7 each) were freeze-clamped using Wollenberger clamps pre-cooled with liquid nitrogen before and 

after sustained ischemia (Figure t). Furthenllore, hearts were freeze-clamped after 1 min (n=5) and 20 

min (n=6) of nonnoxic perfusion. They were weighed and stored in liquid nitrogen until assayed. 

PC 

IC 

0' 20' 40' 
( 

65' 

continuous sampling 

95' 

• 

c:::::J .. 
fBI 

~ 

Normal flow conditions 

No-flow ischemia 

Low-flow ischemia (O.6 mUmln) 

Freeze-clamping 

Figure 1. Erperimenlal protocols. After al/il/ilial20 mil/ s(abf/izalioll period, preconditioned hearts (PC) IInderwent two cycles 
of 5-mil/ stop:fJow ischemia al/d reper/usion; ischemic control hearts (IC) were per/usedJor all additiollal 20 mill. Thereafter, 
both PC alld IC hearts were e."<posed to 25 min oJlow:fJow ischemia (0.6 mlllllill) by lise oj a per/usioll pump, alld reper/used 
for 30 mill. /11 parallel experiments, hearts were freeze-clamped at different time points throughout the pr%coi as illdicated 
by the arroll's. Durillg ischemia alld reper/usiol/, corollary per/usate samples were cOlltimlOl/slyco!/ected at 1-, 5-, alld 10-mill 
il/termls, depending all the changes e.r;pec/ed. Prior to ischemia, several 1-min samples were takell. 
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2.4. Biochemical assays 

2.4.1. Tisslle determinations. 
Freeze-clamped hearts were ground under liquid nitrogen using pestle and mortar. A sample was 

taken for dry weight detennination and the remaining part was treated with 4% HCI04 [19]. A part of the 

homogenate was sonicated for 4 x 20 s on ice and neutnllized with 5 M NaOH. After centrifugation 

(3200 x g) orthe remaining part, the precipitate was dissolved in 10 ml 0.1 M KOH; an aliquot of the 

supematant fraction was neutralized with 5 M NaOH for glycogen detennination, another aliquot (500 

pl) was neutralized with 6 M KOHl 2 M K1C03 for HPLC analysis of high-energy phosphates. Glycogen 

fractions were detenllined in the homogenate (total glycogen), the supematant fraction (macroglycogen), 

and the pellet fraction (proglycogen). After treatment with amyloglucosidase, glucose was assayed 

spectrophotometric ally according to Huijing [20J and Keppler and Decker [21 J. 

2.4.2. Analysis of corOlIO!)' e.Olllent alld tissue high-energy phosphates. 
During ischemia and reperfusion, coronary perfusate samples were continuously collected at 1-, 

5-, or 10-min intervals, depending on the changes expected. Prior to ischemia, several I-min samples 

were taken. Within 12 h, lactate and creatine kinase in the samples (0_4°C) were determined 

enzymatically with an Elan auto-analyzer (Eppelldorf, Merck, Amsterdam, The Netherlands) according 

to Sigma procedure #735 (St. Louis, MO, USA). The rest of the samples were stored at _80°C until 

further analysis. Purines in coronary perfusate samples and tissue ATP and creatine phosphate (CrP) 

were determined by reversed phase high-perfonnance liquid chromatography (HPLC) according to 
Smolenski et al. [22]. Briefly, a CIS column (Hypersil ODS 3 pm, 150 x 4.6 mill, Alltech, Deerfield, IL, 

USA) was employed combined with a CIS guard column (Hypersil ODS 5 pill, 7.5 x 4.6 nun). For 

purines, the system configuration consisted of a Waters 510 pump, a cooled Waters 712 WISP 

autosampler, a Spectra Focus forward optical scanning detector (Spectra-Physics, San Jose, CA, USA) 

and a Waters Millenium 2010 data system (Waters, Milford, MA, USA). ATP and CrP were detemlined 

using an AS3000 cooled autosampler, a SCM 1000 vacuum membrane degasser, a P2000 gradient pump, 

and PCIODO software (Thenno Separation Products, Riviera Beach, FL, USA) in combination with the 

above mentioned scanning detector. Peaks were detected at 254 nm (hypoxanthine, xanthine, inosine, 

adenosine, ATP), at 280 nm (uric acid) and at 214 11m (CrP). Purines, ATP and CrP were identified based 
on their retention times, co-elution with standards and their 254/280 ratios. 

2.5. Statistics 

The data are expressed as Illeans ± S.E.M., with n = Humber of hearts. Hemodynamic and 

metabolic data were analyzed using two-way repeated measures ANOV A with one repeating factor and 

one grouping factor. Summary measures were constructed for postischemic release of creatine kinase 
[23]: for each heart the cumulative enzyme release was detennined. Student's unpaired I-test was used 

for comparisons between groups; when data were not normally distributed or groups had unequal 

variances, the Mann-\Vhitney rank sum test was used. Values of P<O.05 (two-tailed test) were regarded 

as significant. 
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Figllre 2. Changes ill rate-force product (A) and resting lensioll (B). After 20 mill stabilization, preconditioned hearts (PC) were 
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3. Results 

3.1. Function 

Figure 2 presents time-dependent changes in rate-force product and resting tension, reflecting 
ventricular systolic and diastolic functioning, respectively. During the 20-min stabilization period, RFP, 

resting tension, heart rate (283±13 beats/min) and coronary flow (13±0.5 mllmin) were similar in PC and 

IC hearts. With the short periods of preconditioning ischemia, RFP rapidly fell to 0 in the PC group while 

RFP recovered to 81 and 64% after the first and second episode of ischemia, respectively (Figure 2A). 

The resting tension of PC hearts was not significantly affected by the short periods of preconditioning 

ischemia (Figure 2B). After the onset of low-flow ischemia, RFP fell rapidly to 0 in both PC and IC 
hearts. At the end of sustained ischemia, resting tension had almost doubled in both control and 

preconditioned hearts. With reperfusion, recovery of RFP was more than double in PC hearts (P<O.05 

vs. IC). During reperfusion, PC abolished the large increase in resting tension observed in IC hearts 

(P<O.05). 

3.2. Tissue Necrosis 

Release of creatine kinase in the coronary effluent was used to detect membrane damage due to 

tissue necrosis. The short periods of preconditioning ischemia resulted in a small release of creatine 

kinase while little release could be detected in both groups during low-flow ischemia (Figure 3A). 
Substantial release took place during reperfusioll. Cumulative release of creatine kinase during 

reperfusion was half in PC hearts (P<O.05) compared to IC hearts (see inset Figure 3A). 

3.3. Metabolite Release 

3.3.1. Lactate. 
The relcase of lactate in the coronary effluent was taken as a measure of anaerobic glycolysis 

both from endogenous (glycogen) and exogenous (glucose) sources. The brief periods of no-flow 

ischemia resulted in a large efflux of lactate in the PC group (Figure 3B). However, during low~flow 

ischemia and reperfusion, lactate release was similar in PC and IC hearts. 

3.3.2. Purines. 
Purines in the coronary effluent reflect ATP catabolism during ischemia and, hence, the energy 

status of the cell. Release of adenosine and total purines (adenosine + inosine + hypoxanthine + xanthine 

+ urate) is depicted in Figure 4. Similar to lactate release, preconditioning ischemia resulted in a 

substantial overflow ofpurillcs. Release of adenosine (Figure 4A) was more than twofold higher during 

reperfusioll compared to low-flow ischemia in both PC and IC hearts, that of purines (Figure 4B) ca: 1.5-

fold. Relcase of adenosine was more than five times less in PC hearts compared to IC hearts, both during 
low·f1ow ischemia (P<O.05) and during reperfusion (P<O.OI). Similarly, preconditioning resulted in 2.5 

times less purine release during low-flow ischemia (P<O.OI) and during reperfusion (P<O.05) than 

control hearts, indicating less myocardial injury [24]. The release of the individual purines followed a 

pattem similar to that of adenosine. 
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3.4. Tissue Aletabolites 

3.4.1. Glycogel/. 

The contents of proglycogen and macroglycogen as well as total glycogen (proglycogen + 
macroglycogen) in hearts freeze-clamped at different time points are presented in Figure 5. 

Preconditioning ischemia depleted both proglycogen and macroglycogen by ca, 60% (Figure SA), 

Consequently, preischemic pro- and macroglycogen content in PC hearts was approximately half that 
in IC hearts (proglycogen: P<O.O I; macroglycogen: P<O.05). No significant breakdown of pro glycogen 

and macroglycogen was observed in PC hearts during low-flow ischemia. In contrast, pro- and 

macroglycogen decreased ca. 60% in IC hearts during underperfusion. Post ischemic pro- and 

macroglycogell content as well as partial recovery during reperfusion was similar in PC and IC hearts. 

With reperfusiol1, there was a similar recovery of pro glycogen and macroglycogen in both experimental 

groups. Total glycogen (Figure 58) mimicked the pattern of both subfractions: following 

preconditioning, there was a 60% reduction in total glycogen (P<O.OI), and no significant glycogenolysis 
during underperfusion. Preischemic total glycogen contcnt in PC hearts was approximately half that in 

IC hearts (P<O.OI). Total glycogen decreased by 62% in IC hearts during low-flow ischemia. 

Postischemic total glycogen content as well as partial recovery during reperfusion was similar in PC and 

IC hearts. 

3.4.2. High energy phosphates. 

ATP levels in freeze-clamped hearts were not statistically different between preconditioned and 

control hearts pre-ischemia (PC: 12.2±2.9 vs. IC: 9.6±4.0 pmoUg dry weighO, post-ischemia (PC: 

JO.I±1.9 vs. IC: 8.3±3.2pmol/g dry weight), and afier reperfbsion (PC: 14.1±3.S vs. IC: 11.9±4.2 

flmol/g dry weight). The sallle was true for CrP values prior to ischemia (PC: JS.3±2.9 vs. IC: 13.2±4.1 
Jlmolig dry weight), post-ischemia (PC: 9.8±1.5 vs. IC: 8.8±2.0 pmol/g dry weight), and afier 

reperfusioll (PC: 22.2±S.3 vs.IC: 27.9±4.7 Jlmollg dry weight). 

4. Discllssion 

This study shows that two successive 5-min bouts of ischemia reduce injury due to severe 

underperfusion. Preconditioning protection was demonstrated by reduced leakage of creatine kinase, 

improved recovery of rate-force product, abolishment of the postischemic increase in resting tension, 
and reduced catabolism of adenine nucleotides. The fact that the bulk of purines was released upon 

reperfusion indicates that during severe flow reduction, purines are only partly washed out. 

Preconditioning reduced glycogenolysis without affecting anaerobic glycolysis compared to ischemic 

control hearts. 

4.1. Preconditioning-induced protection againsl/ow-jlow ischemia 

Controversy exists as to whether ischemic preconditioning protects against prolonged low-flow 

ischemia. The improvement in functional recovery after ischemia observed in preconditioned hearts 

probably reflects the reduction in lethal cell injury, manifest by reduced release of creatine kinase (cr. 

-87-



Chapter 6 

[25]). Reduced myocardial injury after prolonged low-flow ischemia has been demonstrated in ischemic 

preconditioned rat [3] and rabbit [2] hearts. In contrast to these results, contractile status did not improve 

in preconditioned rat hearts subjected to nonnal-flow hypoxia [4] or global,low-flow ischemia [5]. 
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4.2. Tissue high-el/ergy phosphates 

ATP and CrP levels in freeze-clamped hearts were not different between preconditioned and 

control hearts preischemia, postischemia, and after reperfusion. Thus, reduced release of purine 

compounds in preconditioned hearts was not reflected by tissue ATP levels. Furthennore, a relation 

between functional recovery and tissue ATP levels (cf. [26]) was not observed in this study. 

4.3. AdeJ/osiJ/e and ischemic preconditioning 

Adenosine both initiates [27J and mediates [6] ischemic preconditioning. This means that 

adenosine receptors must also be occupied during the prolonged ischemic period to induce the protective 

effect [6J. Cave et al. [28J obtained similar results in isolated rat cardiomyocytes; they argued that if 

preconditioning requires the accumulation of a protective substance within the ischemic myocardium, 

residual flow would prevent the acculllulation of such a substance and, hence, protection would be lost. 

In nonnoxic perfused hearts, a ca. 1:8 concentration gradient exists between coronary venous 

and interstitial adenosine levels [29-32], reflecting the function of the endothelium as an active metabolic 

barrier. However, the gradient is reduced during adrenergic stimulation [31], hypoxia [29,32] and 
reductions in coronary flow [30]. In guinea-pig hearts, the venous-to-epicardial adenosine ratio decreases 

from 1:25 during nonnal perfusion to 1:3 during ischemia at 10% of baseline flow. This is probably 

caused by the saturation in the endothelial uptake of adenosine in stressed hearts [29]. Thus, in our study, 

venous adenosine levels during ullderperfusion (average values amounted to 0.56 and 3.61 JiM in 

preconditioned and control hearts, respectively) might only slightly underestimate those in the 

interstitium. Interstitial adenosine levels reflect adenosine AI receptor activation, and Kd values of 0.5 

nM (33] and 3 nM [34], using different radioligands, have been reported for this receptor in adult rat 

hearts. Consequently, in our study, interstitial adenosine levels in preconditioned hearts were high 
enough to occupy the receptor during underperfusion mediating myocardial protection [6]. Therefore, 

since there could be a critical flow where Illost endogenous adenosine is washed out rapidly and 

protection is lost, divergent literature data concerning preconditioning-induced protection against low­

flow ischemia could result from differences in the degree ofunderperfusion. To allow for comparison 

of data and due to the limited studies on preconditioning protection against low-flow ischemia, we 

adopted a model used by Perchenet and Kreher [3J. In this model, a modified Krebs-Henseleit buffer 

relatively high in calcium and a hook inserted into the apex of the heart to measure contractile function 

are used. Functional recoveries presented in this study correspond to those obtained by Perchenet and 

Kreher (3). 

4.4. Carbohydrate metabolism 

Proglycogen synthase seems to be the rate-limiting step in glycogen synthesis (13,14], providing 

evidence that different processes control the fommtion and breakdown of macro glycogen and 

proglycogell. Ischemic stress mainly reduces macroglycogen [15,16,35], while proglycogen is reduced 

under more special conditions like intennittent ischemia [17J and prolonging ischemia to several hours 
[36]. We f.1i1ed to confinn ollr hypothesis that ischemic preconditioning increased anaerobic glycolysis 

during low-flow ischemia by mobilizing 'inert' proglycogen. Both fractions decreased in response to 
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ischemic stress in PC and IC hearts, hut with a different timing. In PC hearts, both fractions decreased 

after the short periods of preconditioning ischemia resulting in virtual cessation of glycogenolytic 

activity during low-flow ischemia. This is in line with other studies showing glycogen depletion by 

preconditioning ischemia and reduced glycogenolyis during subsequent prolonged ischemia [II ,37,38]. 

In IC hearts, both glycogen fractions significantly decreased during the low-flow ischemic period, This 

contrasts our previous observation in rabbit hearts, where proglycogen levels only decreased in response 

to intermittent ischemia and reperfusion [17]. The fact that macroglycogen levels were already low 

compared to proglycogen levels prior to sustained ischemia could indicate significant macroglycogen 

depletion during the stabilization phase. This could be due to the fact that we did not use insulin. 

Differences between various studies could also be related to species differences in the metabolic activity 

of both glycogen subfractions, 
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4.5. Lactate and ischemic preconditioning 

In our model of low-flow ischemia, we observed no difference in lactate release during ischemia 

and reperfusion between PC and IC hearts. This contrasts reduced anaerobic glycolysis commonly 

observed in preconditioned hearts subjected to no-flow ischemia [11,39]. 

Although lactate release was similar in control and preconditioning hearts, the latter did not 

show significant glycogenolysis during underperfusion, contrasting control data. Thus, interestingly, this 

study suggests that ischemic preconditioning-induced protection against low-flow ischemia is associated 

with reduced glycogenolysis and increased glycolysis-from-glucose during ischemia without altering 

total glycolytic flux. Cave et al. [4] also observed equal lactate release during hypoxia and reoxygenation 

between preconditioned and control groups. Janier et al. [2] showed increased lactate release caused by 

increased glucose uptake in ischemic preconditioned hearts subjected to low-flow hypoxia. Our data 

strongly suggest that ischemic preconditioning is associated with an increase in exogenous glucose 

utilization (and reduced glycogenolysis; cf. [40]) rather than by an increase in anaerobic glycolytic flux. 

A separate study to detennine the contribution of glycogen and exogenous glucose to glycolytic flux 

during low-flow ischemia continued that ischemic preconditioning increased exogenous glucose use 

without increasing total glycolytic flux [41] (see also Chapter 7). 

4.6. Glycogen lIS. glucose 

The above results fit the 'glucose hypothesis' proposed by Opie (42]: increased glycolysis during 

myocardial ischemia decreases ischemic injury. Similarly, Runnman et al. [43] showed that cardiac 

dysfunction during hypoxia and reperfusion is related to exogenous glucose utilization, but not total 

glycolytic flux. 

Iuline with data obtained in aerobic perfused rat hearts [44], Goodwin et a!. [45] showed that 

glycogen is preferentially oxidized in epinephrine stimulated hearts; glycogen hardly contributed to 

lactate production in this study. However, the relative contribution of glycogen to anaerobic ATP 

production during low-flow ischemia (0.2 mllmin) amounts to 46% [9]. 

4.7. Conclusio1ls 

This study shows that ischemic preconditioning reduces injury due to a subsequent period of 

low-flow ischemia (0.6 mVmin). Purine release peaked during reperfusion, and adenosine AI receptors 

were presumably sufficiently occupied during low-flow ischemia to mediate cardioprotection [6]. Our 

results suggest that preconditioning protects against low-flow ischemia via a shift from endogenous to 

exogenous glucose utilization without increasing anaerobic glycolysis. In preconditioned hearts, the link 
between adenosine AI receptor activation, the shift to exogenous glucose use, and reduced myocardial 

injury remains to be detennined. 
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Abstract 

Objective: Glycolysis-from-glucose may be more beneficial than glycogenolysis in protecting 
hearts against ischemia. \Ve tested the hypothesis that ischemic preconditioning is mediated by increased 

exogenous glucose use during low-flow ischemia, an effect triggered by adenosine Al receptor 

activation. I\Iethods: Langendorff rat hearts were subjected to 25 min low-flow ischemia (0.6 mllmin) 

and 30 min reperfusion. Prior to underperfusion, hearts (n:=:6 per group) were subjected to two cycles of 

either preconditioning ischemia (PC), infusion of the adenosine Al agonist 2-chloro-AP­

cyclopentyladenosine (CCPA; 0.25 pmoUI), or PC in the presence of the adenosine antagonist 8-(p­

sulfophenyl)theophylline (SPT; 50 pllloUI). Glycolysis-from-glucose during underperfusion was 

measured using D-[2-3H]glucose. Results: At the end ofreperfusion, recovery of rate-force product was 

enhanced in the PC and CCPA groups (62 and 67% of preis chemic value) compared to the ischemic 

control hearts (IC, 32%; P<O.05), whereas protection was abolished in the SPT hearts (20%; P<0.05 vs. 

PC). PC illlproved total glycolysis-froill-glucose during underperfusion by 31% (P<O.05 vs. IC); SPT 
abolished this increase. CCPA reduced total lactate release and glucose uptake during ischemia by 47% 

and 61 %, respectively (P<O.05 vs. IC). Abolishment of the preconditioning-associated increase in 

glucose uptake during underperfusion, by switching to a low glucose buffer, resulted in a loss of 

functional protection. Conclusions: This study strongly suggests that increased exogenous glucose 

utilization during low-flow ischemia mediates ischemic preconditioning without increasing total 
anaerobic glycolytic flux. Although adenosine Al receptor activation reduces ischemic injury, it does not 

facilitate the increased glucose uptake observed with ischemic preconditioning, suggesting a different 

mechanism of protection. 

1. Introduction 

Opie [I] proposed the 'glucose hypothesis': enhanced uptake and metabolism of glucose during 

myocardial ischemia delays cellular damage. Many animal studies confinned this hypothesis by showing 

that improved uptake and metabolism of exogenous glucose by the underperfused (ischemic) 
myocardium is associated with reduced diastolic and systolic dysfullction [2-4] and less release of 

cytosolic marker enzymes [3]. Beneficial effects of glucose-insulin-potassium infusions, stimulating 

glucose uptake, have been reported iu patients after bypass graft surgery [5], after acute myocardial 
infarction [6,7J, or during pacing stress testing [8]. Furthennore, glycolysis-from-glucose seems more 

effective than glycogenolysis in protecting hearts against myocardial ischemia [2,9]. The latter study 

showed that protection against the adverse effects of myocardial ischemia is more related to exogenous 

glucose utilization than to total glycolytic flux (glycolysis pillS glycogenolysis). The protective effect 

of increased glucose uptake during ischemia supports the notion that glycolytically derived ATP 
maintains ionic homeostasis during ischemia and reperfusion [10-12]. The role of carbohydrate 

metabolism in the phenomenon of ' ischemic preconditioning' [13] is rather controversial [14]. However, 

the above mentioned results suggest that if ischemic preconditioning increases the rate of glycolysis­

from-glucose during low-flow ischemia, this would reduce ischemic injury. We recently showed that 

preconditioning protection against severe underperfusion is associated with reduced glycogenolysis 

without affecting anaerobic glycolysis [15]. 
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Triggers, identified to playa role in the mechanism of ischemic preconditioning, include 

adenosine, bradykinin, and catecholamines. Presumably, adenosine is the most important. Released 

during preconditioning ischemia, adenosine exerts its effects by binding to the adenosine Al receptor 

located on the myocardial plasma membrane. However, the end-effector involved in the mechanism of 

preconditioning is unclear. The nucleoside has been shown to influence myocardial carbohydrate 

metabolism. Adenosine decreases glycolysis during nonnoxia [16J, during low-flow ischemia [17,18], 

during no-flow ischemia [19,20], and during reperfusion following low-flow [18] or no-flow [16] 

ischemia. In contrast, increased glycolysis has been reported during normoxia [21] and low-flow 

ischemia (22]. Thus, adenosine could trigger the changes in carbohydrate metabolism observed in 

ischemically preconditioned hearts. 

\Ve hypothesized that a shift from endogenous carbohydrate to more advantageous exogenous 

glucose use during low-flow ischemia mediates preconditioning. Furthennore, we speculate that 

preconditioning effects on carbohydrate metabolism occur via adenosine Al receptor activation. 

Although hardly studied [IS], we used a model of preconditioning protection against low-flow ischemia, 

which we believe is clinically more relevant than the routinely used stop-flow set up. Part of this research 

has been published in abstract Conn [23,24]. 

2, Methods 

All animals were treated in confonnity with the guiding principles in the care and use of animals 

as approved by the American Physiological Society. The Animal Welfare Committee, Erasmus 

University Rotterdam, approved the protocol. 

2.1. Exclusion criteria 

During stabilization, hearts were excluded if they met one of the following criteria: 1) unstable 

contractile function, 2) coronary flows outside the range of 9-19 mUmin, 3) severe arrhythmias, 4) 

myocardial temperature outside the range 37-39°C. 

2.2. Isolated heart preparation 

Fed, male Wistar rats (Wag/Rij inbred, weighing 280-330 g) were obtained from Harlan-CPB 

(Zeist, The Netherlands). They received a commercial rat chow (Hope Famls AM II, Woerden, The 

Netherlands) and tap water ad libitum. After anesthesia with an intraperitoneal injection of 0.6 ml sodium 

pentobarbital (Nembutalt:>, 60 mglml) supplemented with 0.1 ml heparin (Thromboliquine~, 5000 IU/ml), 

hearts were rapidly excised and arrested in saline (O°C) until beating ceased. Excess tissue W(lS removed, 

and the hearts were catlliulated within 1 min via the ascending aorta, for retrograde perfusion using a 

non-recirculating modified Krebs-Henseleit buffer containing (mmoUI): NaCl118, KCI5.6, CaCl 2 2.4, 

MgCl, 1.2, NaHCO, 20, Na,HPO, 1.2 and D-glucose 10, Insulin (Sigma, St. Louis, MO, USA; from 

bovine pancreas, I UII) was added to the buffer. Before lise, the buffcr was filtered through a 45-pm 

porosity filter to remove any particulate matter, and equilibrated with 5% CO/95% °2, to give a pH of 

about 7.4 at 3rc. Myocardial tcmperature was kept at 37°C with a water-jacketed heart chamber and 
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buffer reservoir, and regulated with an electric heating coil positioned around the aortic inlet line. The 

temperature of the outer ventricular wall was monitored with a themlocouple (A-F6, Ellab AlS, 
Roedovre, Denmark). Global, no-flow ischemia was induced by clamping the aortic line; low-flow 

ischemia was achieved using a perfusion pump (MV-MS3, Ismatec, Zurich, Switzerland) operating at 

a flow rate of 0.6 ml/min. 

Coronary flow was measured by timed collection of the pulmonary artery effluent. The hearts 

were allowed to beat spontaneously, unless otherwise indicated. Cardiac contractile function of 

isometrically beating hearts was estimated with a force-transducer (F5A-2, Konigsberg Instruments, 

Pasadena, Calif., USA) connected to the apex of the heart {2, 15]. The heart was pre-loaded with an initial 

resting tension of2.5 g. Systolic tension and diastolic tension were continuously displayed 011 a recorder 

(Gould signal conditioner and Gould WindoGrafTM recorder, Valley Vie,v, 01-1, USA). Developed 

tension was calculated as systolic tension minlls diastolic tension. Cardiac contractile fUBction was 

expressed as rate-force product (RFP), the product of heart rate and developed tension. RFP at the end 

ofreperfusion was compared to the preischemic value after the 20-min stabilisation period and expressed 

as percentage recovery ofRFP. Perfusion pressure was measured with a disposable pressure transducer 

(Braun Melsungen, Melsungen, Austria) and kept constant at 65 1l111lHg. 

2.3. ExperimeJltal protocol 

After initial isolation and surgical preparation, all hearts were perfused with the modified Krebs­

Henseleit buffer and allowed to equilibrate for 20 min followed by a 20-min treatment period. Thereafter, 

hearts were subjected to 25 min of low-flow ischemia (0.6 ml/min) followed by a reperfusion period of 

30 min. The 20-min treatment period prior to low-flow ischemia consisted of: 1) nomloxic perfusion (IC 

group; n==6); 2) preconditioning using two 5-min episodes of no-flow ischemia each intemlpted by 5 min 

of reperfusion (PC group; n=6); 3) preconditioning with two 5-min infusions of 0.25 Jlmolll of the 

selective adenosine AI receptor agonist 2-chloro-}/'i-cyclopentyladenosine (CCPA group; n=6), 

interspersed by two 5-min periods of dmg-free perfusion; 4) PC in the presence of 50 JlmoUI of the non­

selective adenosine antagonist 8-(p-sulfophenyl)theophyiline (SPT group; n=6) initiated 2 min prior to 

transient ischemia; and 5) PC followed by low-flow ischemia where the buffer was switched to one 

containing low glucose (5 mmolll) and no insulin (LG group; n=6); during reperfusion the nonnal high­

glucose and insulin containing buffer was used. 

[n addition, a set ofCCPA treated hearts was paced at 350 beats per minute (Grass 89 stimulator, 
Quincy, MA, USA) to investigate whether preconditioning effects of CCPA were due to negative 

chronotropic and dromotropic effects of this selective AI agonist (CCPAp group; n=6). These hearts were 

paced throughout the protocol except during ischemia. 

2.4. Glycolytic flux and glycogenolysis 

The glycolytic flux from glucose during low-flow ischemia was quantitated by measuring 31-120 
production from D-[2)H]glucose in the reversible reaction catalyzed by glucose 6-phosphate isomerase 

{25,26]. Briefly, [2)I-I)glucose and 3H20 in the coronary effluent samples were separated on 2 x 0.8 cm 

columns of Dowex I (IX2-400; Sigma), equilibrated withpotassiul11 tetraborate. Before use, the columns 

were washed with H2O. A 0.5 ml sample of the coronary effluent collected during low-flow ischemia was 

-98-



Precollditiollillg and glucose metabolism 

added to the column and eluted into scintilJation vials with 1.2 ml H20. The samples, collected in 101111 
scintiJIation mixture, were counted in a p-counter. For calculating glycolysis, JH20 counts were corrected 

for the small amount (3%) of (2)H]g!ucose not retained by the column. During ischemia, we assumed 

glucose uptake and phosphorylation to equal the anaerobic glycolytic flux from glucose giving rise to 

lactate. In fact, in isolated rat hearts, cross-over analysis of glycolytic intennediates [27] showed that the 

glycolytic flux in low-flow ischemia is detenllined by the rate of glucose delivery and subsequent 

transport into the cell and not by enzyme inhibition along the glycolytic pathway as previously suggested 

[26]. In line with these results, calculation of flux-control coefficients in isolated rat hearts [28] also 

showed that glucose uptake and phosphorylation dominated the control of glucose flux. 

Anaerobic glycogenolysis during low-flow ischemia was estimated from the lactate in excess 

of that accounted for by glycolytic flux [4]. Lactate washout, glycolysis, and glycogenolysis were 

expressed as pmo! 6-carbon (C6) units. Total glycogenolysis during 25 min underperfusion was 

calculated from the total lactate washout (lactate efflux during ischemia + first 2 min of reperfusion) 

min/ls the total glycolytic flux. We assumed that all glucose taken up during severe underperfusion was 

converted to lactate. However, a small part of exogenous glucose is oxidized during Undef]lerfusion 

«3% [4]); hence, this method only slightly overestimates the actual contribution of glycolysis to total 

lactate production. InCOf]loration of labelled glucose into the glycogen pool and subsequent release of 

JH20 is unlikely to occur during underperfusion when substantial glycogen breakdown occurs with tittle 

synthesis and amounts less than 5% in nonnoxic rats [25] and in hypoxic perfused rabbit intraventricular 

septum [9]. 

Anaerobic ATP production from both endogenous and exogenous glucose sources was calculated 

assuming 2 mol ATP per mol glucose taken up, and 3 mol ATP per mol glycosyl units of glycogen 

broken down. 

2.5. Analysis of corollmy effluent 

During ischemia and reperfusion, coronary perfusate samples were continuously collected at 2-, 

3-, 5-, or to-min intervals, depending on the changes expected. Prior to ischemia, several I-min samples 

were taken. Lactate in the samples (O°C) was detennilled enzymatically with an Elan auto-analyzer 

(Eppendorf, Merck, Amsterdam, The Netherlands) according to Sigma procedure 735. 

2.6. Chemicals 

D-[2-'H]glucose (17.0 Cilnmlol) was supplied by Amersh.m (UK). The dwgs 2-chloro-N"­

cyclopentyladenosine and 8-(p-sulfophenyl)theophylline were obtained from RBI (Natick, MA, USA). 

Freshly prepared SPT was directly dissolved in the Krebs-Henseleit buffer. A stock solution ofCCPA, 

dissolved in deionized water, was further diluted in the buffer. Stock solutions ofCCPA were discarded 

after two days storage at 4°C. 

2.7. Statistical analYSis 

The data are expressed as means ± S.E.M., with n = number of hearts. Summary measures were 

constructed for hemodynamic parameters and carbohydrate fluxes according to published 
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recommendations [29]: Recovery ofrate~force product was expressed as a percentage of baseline value; 

from the recording of resting tension, the magnitude of peak contracture during ischemia was compared 

between groups (statistics presented in Figure IB). The sum of carbohydrate fluxes during low~flow 

ischcmia was calculated as described in the Methods section. One~way analysis of variance with 

subsequent Student~Newman~Keuls post-hoc tests were used for comparisons between groups. Ifvalues 

were not nonnally distributed or variances between groups were unequal, Kruskal-Wallis ANOV A on 

ranks was used. Values of P<0.05 (two~tailed test) were regarded as significant. 

3. Results 

3.1. Contractile fimcfioll 

Figure I presents time· dependent changes in rate~force product and resting tension, reflecting 

ventricular systolic and diastolic functioning, respectively. Rate-force product, resting-tension, and 

coronary flow were not different between groups after the 20·min stabilization period. Mean coronary 

flow amountcd to 13.5±0.5 mllmin after stabilization. Rate-force product rapidly fell to zero during the 

short bouts of preconditioning ischemia in the PC, SPT, and LO groups. After transient ischemia, rate~ 

force product recovered to 75% in PC and LG groups and to 65% in SPT hearts. Infusion of CCPA 

resulted in a 79% decline in myocardial function, mainly due to the negative dromotropic and 

chronotropic effects of the drug. Rate-force product of all groups of hearts fell to 0 within 5 min after 

the onset oflow-flow ischemia. Low-flow ischemia amounted to 4% of baseline flow. Recovery of rate· 

force product expressed as a percentage of baseline (Figure 2) was improved in PC and CCPA hearts 

(62±6% and 67±7%, respcctively) compared to control hearts (32±9%; P<O.05). SPT and LO abolished 

preconditioning protection (20±l2% and 30±7% recovery; P<O.05 vs. PC). Pacing (CCPAp) prevented 

the decline in ratc~force product during CCPA infusion but did not diminish the protection by CCPA 

against prolonged ischemia (68±5%; P<0.05 vs. IC; Figures I and 2). 

No functional recovery was observed (0%) in a set of ischemic control hearts suppli~d with low 

glucose (5 mM) during underperfusion (IC-Iow glucose group; 11=4, data not shown). 

Prior to underperfusion, resting tension was not significantly affected by any of the interventions. 

During low-flow ischemia, resting tension gradually increased towards a maximum at 25 min of 

ischemia (indicated as peak ischemic contracture, statistics in Figure IB) except in CCPA and CCPAp 

hearts where contracture was suppressed. Peak ischemic contracture was lower in CCPA (0.2±0.2 g) 

hearts compared to PC (6.0±0.7 g), IC (6.0±1.4 g), SPT (3.6±1.3 g), and LG (9.7±0.9 g) groups (P<O.OS). 
Peak ischemic contracture was also lower in CCPAp hearts (1.7±O.S g; P<O.05 vs. PC, IC, LG). It was 

similar in PC, IC, and SPT hearts. LO resulted in a greater peak contracture compared to all other groups 

(P<O.OS). 

3.2. Lactate 

The release of lactate in the coronary effiuent was taken as a measure of anaerobic glycolysis 

both from exogenous (glucose) and endogenous (glycogen) sources. In PC, SPT and LO hearts, the short 
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Figure 1. Challges ill rale-/orce product (A) and resti1lg tellsion (B). After 20 mill stabilizatioll, hearts were preconditioned wilh 
two 5-mill periods of the foffowing inten'ell/iolls fltterspersed by tll'O 5-min periods off/onnaf peifusioll,' no-jlow ischemia (PC), 
infusioll of 0.25 Jlmolll oflheseleclb-e adel/osine AI agonist 2-chlorQ-/'I-cyclopelltyladenosine (CCPA), or PC in the presence 
50 Jll1Io/ll of the n01I-selectiw adenosine antagonist 8-{p-su/fophellyl)theophyllille (SPT). giwlI 2 mill prior (0 transient 
ischemia. Conlrol hearts (IC) IIl1dem'ellt all et/ra 20-mill period of lIomlOxic peifllsioll following stabilizatio/J, A group ofCCPA 
hearts was paced to prel'ellt the fall i1l rate-force product during dnlg illfllsioll (CCPAp), Thereafter, 01/ hearts were efposed 
to 25 mill o/lolI'-jloll' ischemia (0.6 milmlll) and 30 mill of reperfusion. III one group of PC hearts during 10w-jlolV ischemia, 
the perfusioll buffer was switched at the slart of ischemia to olle comaining low glucose (5 ml1lo/I/) and 110 illsufill (LG). 
Pre/realmellf wil/J ischemia or CCPA impro\'ed recOlwy o/rale-force product compared to conlrol hearts whereas protectioll 
was abolished ill LG alld SPT hearts. Peak ischemic COlltraC/llfe was significantly lower;n CCPA hearts compared to COlltrols 
whereas contractllre was increased ill LG hearts, Figure IB,' ·P<0.05 vs. all olhergroups; #P<0.05 vs. PC.IC. alld LG (olle­
way ANOVA), Means ±S.E.M. (1/=6), For clarity reasons, error bars are ollly presellledfor IC hearts; error barsfor tlte other 
groups were the same order o/magnitude as Ihose ill con/ml hear/so Summary statistics error bars for rate-force product and 
resliJlg tellsion are gh'ell ill Figllre 2 alld in Ihe results section, respec/i~'ely, 
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bouts of no-flow ischemia induced a large efflux of lactate (Figure 3). Lactate release during ischemia 

and rcperfusion was similar in the PC, IC, SPT, and LG groups; CCPA pretreatment resulted in reduced 

lactate efflux during underperfusion and repcrfusion. The sum of lactate released during low-flow 

ischemia and reperfusion is depicted in Figure 4. Total lactate released during low-flow ischemia was 

not different between groups except for CCPA which reduced lactate release by 47% (P<O.05 vs. all 

groups). Reduced lactate release during underperfusion was also observed in paced CePA hearts (Figure 

3). Hence, less lactate production in CCPA pre-treated hearts was not due to reduced preischemic 

contractility (see Figure lA). 
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Figllre 2, Summary of the reco~'ery of rate-force product obtained from (he lime-dependent changes ill myocardial fimclion 
depicted ill Figure IA. See legend to Figllre I for protocol explanation. An extra grO/lp 0fCCPA-trea(ed hearts was paced 
throughollf the experiment (CCPAp; 11=6) except during low-flow ischemia. Recove/)' o/rate-force product expressed as a 
percentage ofbaselinc \'aluc was significantly improved in PC, CCPA, mid CCPAp hearls compared 10 cOI/(rols. Tbe supply 
0/ low glucose during IIl1derperfilSion or SPT d/lrblg pretrealme"t to ischemic preconditioned hearts abolished protectioll 
completely, ·P<O.05 vs, PC, CCPA, and CCPAp (one-way ANOVA), 

3.3, Glycolysis-from-glucose alld glycogenolysis 

Glucose uptake and phosphorylation was monitored using [2_3H]glucose present in the perfusion 

medium during low-flow ischemia, Anaerobic glycolysis-from-glucose during underperfusion (Figure 

5) reached a plateau after about 15 min of ischcmia (at 52.5 min), Figure 4 presents the sum of 

glycolysis-from-glucose during ischemia. PC increased glycolysis from exogenous glucose by 31% 

(P<O.05 vs. IC) whereas CCPA reduced this flux by 61% (P<O.05 vs. IC). Iucreased total glycolysis in 

PC hearts was mainly due to increases during the first 15 min of ischemia whereas CCPA reduced 

glycolysis throughout the ischemic period (Figure 5). Total glycogen breakdown during low-flow 

ischemia was estimated from the lactate in excess of that accounted for by glycolytic flux-from-glucose 

(Figure 4). Estimated glycogen breakdown was not different between groups but tended to be lower in 

PC hearts. 
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Figure 4. Total lactate release, 1010/ g/ycolysis-Jrom·glucose, and estimaled 10/01 glycogen breakdown during 25 mill of 
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for protocol explanatioll. TOla/lactate release was 110/ different beMeel/ groups except for CCPA·treated hearls, wMch 
depressed lactate release by 47% compared 10 conlrol hear/so PC increased and CCPA decreased glycolysis from exogenous 
glucose compared to controls. ·P<O.05 vs. all other groups (one· way ANOVAj. 
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3.4, ATP production 

Total ATP production during 25 min low-flow ischemia from the anaerobic breakdown of 

glucose and glycogen (Figure 6) was calculated based on the total fluxes from glucose and glycogen 

during ischemia presented in Figure 4, PC increased ATP production from exogenous glucose by 31 % 
compared to controls (P<0.05) whereas CCPA reduced glycolytic ATP by 61% (P<0.05 vs. lC). ATP 

production from endogenous glycogen during ischemia was similar in all experimental groups, 

4. Discussion 

4.1. Carbohydrate metabolism during ischemia 

Values of glucose utilization and calculated glycogen breakdown (Figure 4) in this study 

correspond to those obtained in a study using a similar level ofunderperfusion [4]. Furthennore, the 

present results using direct quantitation of glucose flux (Figure 5) and indirect calculation of glycogen 

breakdown confinn a previous study of our group that assessed glycogen in freeze-clamped hearts [15]. 

In that study, glycogen breakdown was reduced in preconditioned hearts during underperfusion despite 

similar lactate production, suggesting increased glycolysis-from-glucose. Although not significant in the 

present study. calculated glycogen breakdown was less than half in PC hearts compared to IC. 

Ischemic preconditioning increased glycolysis early during ischemia compared to controls 

(Figure 5). This corresponds to the observation of Runnman et al. {9] that the cardioprotective effects 

of increased glucose flux occurred early during hypoxia, To exclude the possibility that increased 

glycolysis-from-glucose during underperfusion is just an epiphenomenon of ischemic preconditioning, 

we reduced glycolysis-from-glucose during ischemia in preconditioned hearts by switching to a buffer 

with lower glucose and zero insulin (note: glucose supply to the ullderperfused ischemic heart is the rate­

limiting step in glycolytic flux from glucose [27]). This resulted in a reduction of glycolysis to values 

similar to the control group, The fact that these hearts did not show improved contractile recovery upon 

rcperfusion with nomml buffer suggests that ischemic preconditioning~induced protection against 

underperfusion is mediated by increased glycolytic flux early during ischemia. A study in isolated rabbit 

hearts reached similar conclusions [30]. FurthemlOre, we observed no functional recovery (0%) in a set 

of ischemic control hearts supplied with low glucose (5 mM) during underperfusion (IC·low glucose 
group; data not shown). Thus, this confinns the hypothesis that 1) glycolytic flux controls myocardial 

viability during underperfllsioll (please, compare IC vs. IC-Iow glucose and PC vs. LG), and 2) suggests 

that ischemic preconditioning is mediated by increased glycolysis during low-flow ischemia (please, 

compare PC vs. IC and LG vs, IC-Iow glucose). Beneficial effects of increased glycolytic flux by various 

means during underperfusion/hypoxia have been well documented in animal experiments [2-4] and also 

in clinical trials [7,31]. Vanoverschelde et aJ. [32] observed a linear relation between glucose uptake 

during ischemia and functional recovery after reperfusion in isolated rabbit hearts, We add to these 

observations that the mechanism of protection by ischemic preconditioning against low-flow ischemia 

may involve increased glucose uptake, 

·104· 



I 
0> 
X 
c 
'E 
~ 
c 
~ 

o· 
"0 
E 
3 
.~ 
"8 
"" (9 

0.75 

0.5 

0.25 

0 

42.5 47.5 52.5 

Time (min) 

Preconditioning and glucose metabolism 

57.5 62.5 

Figure 5. Glycolytic fllL'( (from glucose) dun'llg Imderperjllsion as eslimaled from the release of tritiated water from labelled 
g/r(cose. See legend 10 Figure 1 for protocol explanation. Glycolysis-from-glucose was increased ill PC hearts dllring the firsl 
15 mill of ischemia compared to colllrol hearts. This increase was abolished in the SPTand LG groups. CCPA trealment 
resulted ill depressed glucose uptake Ihrougholilihe period ofunderperfllsioll. Sallie lime scale as olher figllres. 

In our study, total anaerobic glycolysis (lactate production) was similar in preconditioned and 

control hearts (Figure 3) in Hne with other reports [15,33J. This contrasts with 1l0Mflow ischemic models 

of ischemic preconditioning where lactate production is reduced [34]. However, in the latter BCMNMR 

study, glucose utilization actually increased in preconditioned hearts during the first five min of ischemia 

despite reduced glycogenolysis and lactate production. 

Contrary to our expectations, pretreatment with CCPA protected contractile function despite 

reduced lactate production (Figure 3) and reduced glycolysisMfrom-glucose during underperfusion 

(Figure 5). This was not due to the negative chronotropic effect associated with CCPA infusion since less 

ischemic lactate production was also observed in paced CCPA hearts (Figure 3). Other studies described 

similar effects of adenosine infusion on lactate production [lSM20] and on glycolysis-fromMglucose [IS] 

during low-flow or no-flow ischemia. However, increased lactate production [35] and glycolysisMfrom­

glucose (22J with adenosine treatment have also been observed during 10wMflow ischemia. These 

discrepancies on the effects of adenosine on glycolysis during ischemia may be related to the 

preischemic metabolic status of the heart [16]. Thus, although glucose uptake may mediate ischemic 

preconditioning in this study, the beneficial effect ofCCPA on mechanical recovery was associated with 

depressed glucose flux. This could indicate that the observed increase in glucose uptake in ischemic 

preconditioned hearts is not mediated by adenosine AI receptor activation. However, care should be 

taken since opposite effects of the adenosine AI agonist }fMcyclohexyladenosine and adenosine itself on 

glycolysis have been reported [J 6]. In that study, adenosine pretreatment decreases glycolysis whereas 

adenosine combined with brief ischemia increases glycolysis. Moreover, ~Mcyclohexyladenosine, a 

compound similar to CCPA, also decreases glycolysis, in line with the results presented in this report 

[16]. Thus, it is possible that adenosine released during brief ischemia mediates the increase in 
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glycolysis-from-glucose during underperfusion in this study (Figure 5). The fact that the effects of 

ischemic preconditioning on mechanical recovery and increased glucose uptake during ischemia were 

abolished when the nonspecific adenosine antagonist SPT was present during the pretreatment supports 

this notion. Paradoxically, in the present study, CCPA induced pronounced cardioprotective effects (no 

ischemic contracture and improved functional recovery) despite depressed glycolysis-from-glucose. We 

do not have an suitable explanation for this observation. Myocardial protection against ischemia and 

reperfusion induced by pretreatment with ischemia or CCPA may involve different mechanisms. 

Ischemic preconditioning is a highly redundant phenomenon: it can take place by many alternative routes 

of which increasing glycolysis-from-glucose during low-flow ischemia may be one. 

4.2. RecovelJI offimcliol1 

Most ischemic preconditioning experiments have examined no-flow ischemia after pretreatment 

and consistently shown increased protection. In clinical practice, it is more likely that low-flow 

conditions will prevail, due to partial coronary occlusion and/or collaterals present. However, ischemic 

preconditioning-induced protection against low-flow ischemia is rather controversial. The few studies 

conducted so far have obtained both positive [15,30,36-38] and negative results [33]. In line with a recent 

report of our group [IS}, ischemic preconditioning protected against contractile dysfunctioning arising 

from severe underperfusion in the present study (Figures I and 2). We showed before that 

preconditioning also reduces irreversible injury after low-flow ischemia [15]. Furthermore, ischemic 

preconditioning exists in species having collateral flow. We [15] and others [33] have suggested that 

there could be a critical flow above which preconditioning effects are lost. 

Pharmacological preconditioning with CCPA, a selective adenosine Al agonist, effectively 

mimicked ischemic preconditioning by improving contractile recovery after low-flow ischemia whereas 

protection was abolished in hearts ischemically preconditioned in the presence of the non-selective 

adenosine antagonist 3PT. We showed before, using the same drugs, that the adenosine Al receptor is 

involved in protection by ischemic preconditioning in a no-flow ischemic model [39]. This sharply 

contrasts reports that adenosine is not involved in ischemic preconditioning of the rat heart (for reviews, 

see [40,41 ]). The protective effect of pretreatment with CCPA was not due to negative chronotropic and 

dromotropic effects of the drug since pacing, which kept myocardial contractility constant during drug 

infusion, did not abolish protection by CCP A. Moreover, the different metabolic response in CCPA­

treated hearts is unlikely to be the cause of incomplete washout prior to ischemia and consequent 

negative chronotropic effects during ischemia since the time from onset ischemia to complete contractile 

arrest was not statistically different between groups (IC: 7.2±4.1 min; PC: 3.5±0.5 min; LO: 5.3±1.7 min; 

CCPA: 4.l±1.2 min; 3PT: 2A±OA min; CCPAp: 7.6±3.9 min). Furthennore, in a previous study [39], 

we showed that the effects ofCCPA are also independent of changes in coronary flow since in that study 

flow was held constant. CCPA infusion did not result in negative inotropic effects (see CCPAp group 

in Figure lA). Adenosine Al receptors have been shown to couple to KATP channels yia O-proteins in 

membrane patches of rat ventricular myocytes [42], which could lead to negative inotropic effects. 

However, in intact guinea pig ventricular myocytes, adenosine does not affect potassium membrane 

current [43) in line with our observation that CCPA induced negative chronotropic/dromotropic effects 

without affecting the inotropic state (Figure lA). With some exceptions, most rat-heart studies using 

adenosine or adenosine antagonists have failed to mimic or abolish preconditioning, respectively. 
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However, the relatively high adenosine levels in this species may require increased antagonist 

concentrations (44). The fact that the endothelium fonns an active barrier for the transport of adenosine 

to the interstitium and the especially high activities of adenosine degrading enzymes in the rat heart may 

limit the efficacy of exogenous adenosine administration. In this respect, it is interesting to note that 

studies using adenosine AI agollists, like the one used in this investigation, have obtained positive results 

in rat hearts [44,45J. 
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Figure 6. ATP production durillg 25 mill IOIl'-flow ischemlafrom both anaerobic breakdown of exogenolls glllcose(black bars) 
alld endogenous glycogen (open bars). Values were calculated from the totai glycolytic flux and the estimated total glycogen 
breakdown during ulldetpeifusion as depicted ill Figllre 4. See legend [0 Figure 1 for protocol explanation. PC i/lcreased and 
CCPA decreased ATP production from exogenous glucose; ATP producliolJjrom glycogen durillg IIllderpeifllSiolJ was /10/ 
dijJerelll belll'eell grO/lps. ·P<O.05 \'s. all other groups (olle-way ANOVA). 

4.3. Possible mechanisms of action 

The cause orthe increase in exogenous glucose utilization in preconditioned hearts was not the 

subject of this study. However, transient ischemia may result in translocation of heart GLUT4 glucose 

transporters [46]. The fact that preconditioning increased glucose uptake especially during early ischemia 

in this study could indicate that glucose transporters were already/more rapidly translocated to the 

sarcolemma due to the short antecedent ischemia. However, this explanation seems unlikely since in the 

presence of insulin, glucose uptake is not a rate-limiting step in glucose metabolism [28]. Alternatively, 

preconditioning Itlay affect key glycolytic enzymes inhibiting glycogenolysis [34] and stimulating 

glycolysis. Moreover, the reason for the superiority of glycolysis over glycogenolysis in reducing 

ischemic injury is unclear, but sustained glycolysis-rrom-glucose during ischemia may support ionic 

homeostasis and thereby reduce ischemic injury [10-12]. 

In summary, this study strongly suggests that ischemic preconditioning is mediated by enhanced 

utilization of exogenous glucose during low-flow ischemia without increasing total anaerobic glycolytic 

flux. Adenosine AI receptor stimulation attenuated ischemic injury in rat hearts but did not mediate the 
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increase in glucose utilization observed in ischemically preconditioned hearts. Therefore. ischemic and 

pharmacological preconditioning may involve different pathways. 

Acknowledgements 

We gratefully acknowledge the support of the Netherlands Heart Foundation (NHS 94.043) and 

the Tmst Fund of the Erasmus University Rotterdam, The Netherlands. 

References 

[\] Opie LH. Hypothesis: Glycolytic rates control cell viability in ischemia. J AppJ Cardiol 1988;3:407-414. 
[2] Owen P, Dennis S, Opie LH. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat 

hearts. Circ Res 1990;66:344-354. 
[3} EbeTli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS. Protective effect of increased glycolytic substrate 

against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion 
and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991;68:466-481. 

[4] King LM, Boucher F, Opie LH. Coronary flow and glucose delivery as detenninants of contracture in the ischemic 
myoeardium. J Mol Cell Cardiol 1995;27:701-720. 

[5] Coleman GM, Gradinac S, Taegtmeyer H, Sweeney M, Frazier OH. Eft1cacy of metabolic support with glucose­
insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. Circulation 1989;80:191-96. 

[6] Rogers WJ, Stanley A W, Jr., BreinigJB, etal. Reduction of hospital mortality rate of acute myocardial infarction with 
glucose-insulin-potassium infusion. Am Heart J 1976;92:441-454. 

[7] Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous 
insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effeets on mortality all year. 
J Am Coli CardioI1995;26:57-65. 

[8] Thomassen A, Nielsen TT, Bagger JP, Henningsen P. Antianginal and cardiac metabolic effects of low-dose glucose 
infusion during pacing in patients with and without coronary artery disease. Am Heart J 1989;118:25-32. 

(9] Runnman EM, Lamp ST, Weiss IN. Enhanced utilization of exogenous glucose improves cardiac function in hypoxic 
rabbit ventricle without increasing total glycolytic flux. J Clin InvesI1990;86:1222-1233. 

[10] Weiss J, IIiltbrand B. Functional compartmentalion of glycolytic versus oxidative metabolism in isolated rabbit heart. 
J Clin In"estI985;75:436-447. 

[II] Weiss lN, Lamp ST. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Oen 
PhysioI1989;94:911-935. 

[12] Cross HR, Radda GK, Clarke K. The role of Na+/K' ATPase activity during low flow ischemia in preventing 
myocardial injury: a IIp, DNa and uRb NMR spectroscopic study. Magn Reson Med 1995;34:673-685. 

[13] Murry CE, Jennings RD, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic 
myocardium. Circulation 1986;74: 1124-1136. 

[14] de Jong JW, de Jonge R, Marchesani A, Janssen M, Bradamanle S. Controversies in preconditioning. Cardiovasc 
Drugs Ther 1997;10:767-773. 

[15] de Jonge R, Bradamante S, Speleman L, de Jong JW. Carbohydrates and purines in underperfused hearts, protected 
by ischemic preconditioning. J Mol Cell CardioI1998;30:699-708. 

(16] Finegan BA, Gandhi M, Lopaschuk GO, Clanachan AS. Antecedent ischemia reverses effecls of adenosine on 
glycolysis and mechanical function of working hearts. AnI J PhysioI1996;271:H2116-2125. 

[17} Lasley RD, Mentzer RM, Jr. Adenosine improves recovery of poslischemic myocardial function via an adenosine Al 
receptor mechanism. Am J PhysioI1992;263:HI460-1465. 

[18] Finegan BA, Lopaschuk GO, Coulson CS, Clanachan AS. Adenosine alters glucose use during ischemia and 
reperfusion in isolated rat hearts. Circulation 1993;87:900-908. 

[19J Vander Heide RS, Reimer KA, Jennings RB. Adenosine slows ischaemic metabolism in canine myocardium in vitro: 
relationship to ischaemic preconditioning. Cardiovasc Res 1993;27:669-673. 

[20] Fralix T A, Murphy E, London RE, Steenbergen C. Protective effects of adenosine in the perfused rat heart: changes 
in metabolism and intracellular ion homeostasis. Am J PhysioI1993;264:C986-994. 

[21] Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer MI, Jr. Adenosine stimulates glycolytic flux in 
isolated perfused rat hearts by AI-adenosine receptors. Am J PhysioI1989;257:H1952-1957. 

-108-



Preconditioning and glucose metabolism 

[22] Janicr MF, Yanoverscheldel-LJ, Bergmann SR_ Adenosine protects ischemic and reperfused myocardium by receptor­
mediated mechanisms. Am 1 PhysioI1993;264:H163-170. 

[23] de longe R, delong JW. Ischemic preconditioning increases exogenous glucose utilization during low-flow ischemia 
without increasing anaerobic glycolytic flux. Circulation 1997;96:1-72 (Abstr). 

[24] de Jonge R. de long JW. Adenosine analogs and preconditioning: Effect on carbohydrate metabolism. J Mol Cell 
CardioI1998;30:AI52 (Abstr). 

[25] Katz l, Dunn A. Glucose-2-t as a tracer for glucose metabolism. Biochemistry 1967;6:1-5. 
[26] Rovetto MJ, Lamberton WF, Neely JR. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 

1975;37:742-751. 
[27] King LM, Opie LH. Glucose delivery is a major detcnninant of glucose utilisation in the ischemic myocardium with 

a residual coronary flow. Cardiovasc Res 1998;39:381-392. 
[28] Kashiwaya Y, Sato K. Tsuchiya N, et al. Control of glucose utilization in working perfused rat heart. 1 Bioi Chem 

1994;269:25502-25514. 
[29] Matthews IN, Altman DG, Campbell MJ. Royston P. Analysis of serial measurements in medical research. Br Med 

J 1990;300:230-235. 
[30] Janier MF. Yanoverschelde J-L, Bergmann SR. Ischemic preconditioning stimulates anaerobic glycolysis in the 

isolated rabbit heart. Am J PhysioI1994;267:HI353-1360. 
(31) Dlaz R, Paolasso EA, Piegas LS, et aJ. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios 

Cardiologieos Latinoamerica) Collaborative Group. Circulation 1998;98:2227-2234. 
[32] Vanoverschelde l-Ll, Janier MF. Bakke lE, Marshall DR, Bergmann SR. Rate of glycolysis during ischemia 

determines extent of ischemic injury and functional recovery afier reperfusion. Am J Physiol 1994;267:H 1785-1794. 
[33] Cave AC, Silvemlan AS, Apstein CS. Ischemic preconditioning does not protect against contractile dysfunction in 

the presence of residual flow: studies in the isolated, blood-perfused rat heart. Circulation 1997;96:3087-3093. 
(34) Weiss RG, de Albuquerque CP, Vandegaer K, Chacko YP, Gerstenblith G. Attenuated glycogenolysis reduces 

glycolytic catabolite accumulation during ischemia in preconditioned rat hearts. Circ Res 1996;79:435-446. 
[35] Lasley RD, Mentzer RM, Jr. Adenosine increases lactate release and delays onset of contracture during global low 

flow ischaemia. Cardio\'asc Res 1993;27:96-101. 
[36} Perchenet L, Kreher P. Mechanical and electrophysiological efiecis of preconditioning in isolated ischemic/reperfused 

rat hearts. 1 Cardiovasc Phamlacol 1995;26:831-840. 
[37) Perchenet L, Rochetaing A, Gallois V, Kreher P. Electrophysiologieal approach of the role ofNa+fI-( exchange in low­

flow global ischemia and in ischemic preconditioning. Can J Physiol PhamlacoI1997;75:120-127. 
{38) Bouchard J-F, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischaemic injury. 

Cardiovasc Res 1998;37:82-90. 
[39J Bradamante S, de longe R, de long JW. Adenosine agonist mimics ischemic preconditioning. J Mol Cell Cardiol 

1997;29:A67 (Abslr). 
(40) Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS. Ischaemic preconditioning: present position and 

future directions. Cardiovasc Res 1998;37:21-33. 
[41] przyklenk K. Kloner RA. Ischemic preconditioning: exploring the paradox. Prog Cardiovasc Dis 1998;40:517-547. 
(42) Kirsch GE, Codina J, Bimbaumer L, Brown AM. Coupling of ATP-sensitive Kt channels to Al receptors by G 

proteins in rat ventricular myocytes. Am J Physiol 1990;259:H820-826. 
[43] Isenberg G, Belardinelli L. Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian 

ventricular myocytes. Cire Res 1984;55:309-325. 
{44] Headrick 1P. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine. 

J Mol Cell CardioI1996;28:1227-1240. 
[45] Liu Y, Downey 1M. Ischemic preconditioning protects against infarction in rat heart. Am J PhysiolI992;263:HII07-

1112. 
[46] Sun D, Nguyen N. DeGrado TR, Schwaiger M, Brosius FC, 3rd. Ischemia induces translocation of the insulin­

responsive glucose transporter GLUT410 the plasma membrane of cardiac myocytes. Circulation 1994;89:793-798. 

-109-





Role of adenosine and glycogen in ischemic 

preconditioning of rat hearts 

R. de Jonge', J.W. de Jong', D. Giacometti', S. Bradamante' 

8 

ICardiochemical LaboratOJY. Thoraxceliter, COEUR, Erasmus University Rollerdam, The 

Netherlallds; ]CNR~Cell(ro Simes; e Slereochimica Specia/i Sistemi Orgallici, Ulliversita di Milallo, 

Milan, Italy 

Submitted 

·Ill· 



Chapter 8 

Abstract 

Objective: Adenosine is important in ischemic preconditioning in many species, but its role in 

the rat heart has been questioned. Furthermore, cardioprotection by ischemic preconditioning is 

suggested to be mediated by glycogen depletion, resulting in attenuation of glycolytic catabolite 

accumulation and the development of intracellular acidosis during sustained ischemia (the glycogen 

hypothesis). We tested whether ischemic preconditioning is mediated by reduced glycogenolysis during 

ischemia, an event triggered by adenosine Al receptor (AA,R) activation. Methods: Hearts (n=40) were 

studied with 31p_ and 13C-NMR spectroscopy, using the Langendorffperfusion technique (5.5 mM [1-

13C]-glucose, 10 UII insulin). They were subjected to either ischemic preconditioning (4 cycles of2 min 

ischemia and 3 min reperfusion, PC), PC in the presence of 50 pM adenosine antagonist, 8-(p­
sulfophenyl)-theophylline (SPT), or intermittent infusion of 0.25 pM AAIR agonist, 2-chloro-lt­

cyclopentyladenosine (CCPA). Results: Administration ofCCPA and SPT neither affected pH nor high­

energy phosphates. Recovery of heart rate x pressure product was improved in hearts treated with 

preconditioning (33±13%) or CCPA (58±14%) compared with the SPT and ischemic control groups, 

which both failed to recover (P<O.05). CCPA administration induced a 58% increase in preischemic DC_ 

glycogen (P<O.05 vs. all groups). In the PC and SPT groups. BC-glycogen decreased by 25 and 47%. 

respectively (P<O.05) due to the short bouts of ischemia, resulting in lower preischemic glycogen 

compared to ischemic control and CCPA hearts (P<0.05). The rate of 13C-glycogen utilization during the 

first 15 min of ischemia (in }lmol/min.g wwt) was similar in IC (0.42±0.03), PC (0.30±0.04), and CCPA 

(O.38±O.05) hearts. but was reduced in SPT hearts (0.24±O.05; P<O.05). The changes in BC-glycogen 

were similar to those detemlined ill freeze-clamped hearts. Conclusions: This study strongly suggests 

that in rat hearts, adenosine is involved in ischemic preconditioning. However, protection is unrelated 

to preischemic glycogen levels and glycogenolysis during ischemia. 

1. Introduction 

Ischemic preconditioning [1] occurs in many animal species, and most likely also in humans [2]. 

Many substances like adenosine, bradykinin, and catecholamines released during preconditioning 

ischemia may trigger protection [3]. Of these substances, adenosine is probably the most important one. 

Adenosine triggers and mediates preconditioning by stimulating the adenosine AI receptor [4J. located 

mainly on myocytes. Recently, also the adenosine A3 receptor has been implicated in preconditioning 

protection [5-7]. Evidence of adenosine-mediated preconditioning has been obtained in most animal 

species including rabbits [4.71. dogs [81. mice [9.101. chick [11.121. and pigs [13.141. and recently also 

in humans [6,15,16]. However, the role of adenosine in mediating cardioprotection in rat hearts is 

controversial and both results against [17-20] or in support [21,22J of a role of adenosine in 

preconditioning of rat hearts have been published. This study examined whether the adenosine Al 

receptor is involved in protection induced by ischemic preconditioning in the rat heart. 

Glycogen depletion by preconditioning ischemia results in less accumulation of glycolytic end­

products during ischemia; it has been proposed to mediate protection [23]. Moreover, loss of the 

protective effect parallelled the time course of glycogen recovery before sustained ischemia [23] and 

increased preconditioning ischemia time resulted in glycogen depletion and infarct-size reduction, both 
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described by an exponential declining curve (24]. Both data supporting (25] or rejecting [26-28] this 

glycogen hypothesis have been published. The study of Weiss et al. (29] and our results (30], which both 
used the advanced technique of I3C_N1vlR to follow myocardial glycogen within one heart throughout 

the experiment, indicate that preconditioning depresses glycogenolysis during ischemia. Interestingly, 

adenosine has been shown to influence carbohydrate metabolism during nonlloxia (31-33], low-flow 

ischemia [34-361, and no-flow ischemia [37,38]. Thus, this study examined whether ischemic 

preconditioning is mediated by reduced preischemic glycogen and glycogenolysis during ischemia, an 

event triggered by adenosine AI receptor (AA,R) activation. We used both the selective adenosine Al 

agonist 2-chloro-iV-cyclopentyladenosine and the non-selective adenosine antagonist 8-(p-sulfophenyl)­

theophylline in isolated perfused rat hearts to verifY whether we could mimic or abolish ischemic 

preconditioning, respectively. High energy phosphates and myocardial glycogen were measured with 
31p_ and I3C_NMR, respectively. This study shows that adenosine is involved in preconditioning ofrat 

hearts and that neither preischemic glycogen nor glycogen depletion during ischemia are related to 

preconditioning-induced cardioprotection. Part of this research has been published in abstract fonn (30]. 

2. Materials and 1\'1ethods 

2.1. Materials 

The following DC-enriched materials were used: (1_I3C]glucose, [2-IJCJribose (99%, Cambridge 

Isotope laboratories, Inc.). The synthetic drugs 2-chloro-~-cyclopentyladenosine (CCPA) and 8-(p­

sulfophenyl)-theophylline (SPT) were obtained from RBI (Natick, MA, USA). 

2.2. Heart perfusioll 

Fed, male Sprague-Dawley rats of 250-300 g were stunned and bled. The heart was rapidly 

isolated and arrested in ice-cold perfusion fluid. The aorta was cannulated and the heart was 

Langendorff-perfused at constant pressure (70 mm Hg) for 20 min in order to allow coronary flow to be 
measured. This value (9-11 mVmin) was applied to the subsequent 10 min constant flow perfusion 

period. The perfusion medium was a modified Krebs-Henseleit solution (composition in IllmoVl): NaCI 

137; KCI5.4; MgCl, 1.2; CaCI, 1.8; NaH,PO, 0.46; NaHCO, 12; a-D-glueose 5.5 (or [l-1lClglueose), 
with 10 U/I insulin and saturated at 37°C with 02-C02 (95-5%); pH 7.4. To minimize temperature 

changes during ischemia, the hearts were immersed in 37°C perfusate, controlled by a Bruker 

temperature controller accessory. Myocardial function (heart rate (HRJ, developed pressure [dPJ, and 

rate-pressure product [RPPJ) was assessed using a pressure transducer COlUlected to an intraventricular 

balloon filled to give an end-diastolic pressure of 4·8 111m Hg. 

2.3. Jlp alld JJC NAiR spectroscopy 

The heart was inserted in a broad-band 20-mlll probe of a Bruker AMX 500 wide-bore NMR 

spectrometer operating at 11.74 T. Field homogeneity was optimized by shimming the water proton 

signal using the decoupling coil. 31p N1vlR spectra were obtained at 202.4 MHz with a 60° pulse 0[20 
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Jisec, and a 2-sec delay using blocks of60-90- 150 transients corresponding to 2-3-5 min of accumulation 

time. Relative metabolite quantification was obtained as already reported [39,40] and the results 

expressed as a percentage of the baseline value (100%). Intracellular pH was calculated from the 

chemical shift (0) of Pi relative to phosphocreatine (PCr) using the equation pH = 6.77 - log (0 

-5.78)/(3.27 - 0). Zero ppm was assigned to PCr. The validity of this equation has been checked for our 

experimental condition [41 J. 
lH.decoupled DC spectra were obtained at 125.72 MHz using the MLEV-16 sequence. Free 

induction decays were collected in 2K data points and zero-filled to 8K, using blocks of 100-150·250 

transients corresponding to 2-3-5 min of accumulation time. The pulse width was 23 Jisec (60°) and the 

recycling time t.1 sec. A line broadening of25 Hz was introduced before Fourier transfonnation. The 

chemical shifts are reported in relation to tetramethylsilane, using P-CI glucose at 97 ppm as the internal 

reference standard. A capillary tube filled with a solution containing 100 nmlOVI [2-13C]ribose was used 

as the external standard. Metabolite concentrations were measured by integrating the areas under the 

individual peaks and were expressed as a percentage of the baseline value (100%) at 30 min of 

stabilization. Corrections from the nuclear Overhauser effect and partial saturation effects were 

performed. Absolute concentrations were calculated using the 100 mmolll [2· 13C]ribose solution. 

2.4. Experimental protocol 

The protocol is shown in Figure 1. The hearts were randomly assigned to four groups: IC , PC, 

CCPA and 8PT, which all underwent 30 min stop-flow ischemia and 30 min reperfusion. Pretreatment 
consisted of (for )lp_NMR and I3C-NMR: n=4-6 per group): 

I) Group IC, ischemic control: 42 min stabilization. 
2) Group PC, ischemic preconditioned: 30 min stabilization, 4 cycles of 2 min ischemia and 3 min 

reperfusion. 
3) Group CCPA, adenosine Al agonist treated: 30 min stabilization, four cycles of2min CCPA (0.25 

JIM) and 3 min nomlai perfusion. 
4) Group 8PT, adenosine antagonist treated: 30 min stabilization, 4 cycles of2 min ischemia and 3 min 

reperfusion. SPT (50 JIM) was added to the perfusion medium 2 min before and during intenllittent 

ischemia-reperfusion. 
The hearts were weighed at the end of the experiment. Reperfusion was perfonned at constant pressure 

(70 mm Hg) for 10 min and continued at constant flow. 5.5 mM [I-DC]-glucose was present throughout 

the protocol in 13C_NMR experiments. 

2.5. Biochemical analysis 

Total glycogen in freeze-clamped hearts was deternlined as previously described [42]. 

2.6. Statistical analysis 

The values are expressed as means ± S.E.M. ANOVA and Student-Newman-Keuls I-test were 

used for evaluating their statistical significance. P values <0.05 were considered statistically significant. 

NS, not statistically significant. 
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Figure 1. E'(perimelltal protocols. All hearts were subjected to 30 min 1I0f/OW Ischemia and 30 min reper/usion. Hearts (11=4-6 
per group ill Jlp_ and HC_NAlR experiments) were preconditioned with either fOIlT cycles of 2 mill iscllemla and 3 min 
reperjilsion (PC group) or four 2-/1Iln illjilsions of 0.25 pM adenosine A, receptor agonist 2-cllforo-l't-cyclopelltyladenosillc 
(CCPA group),folloll'ed by 3 mill dntg-free perjilsion.ln one group of ischemic preconditioned hearts, 50 pM of the adenosine 
olltagonist 8-(p-su/[opheny/)theophyllinc (SPT group) was present ill/he perfusion mediulll 2 mill before alld during illtenllilfellt 
ischemia. IlIlJC-NAlR experiments, 5.5 111M [IYCj-glllcose was present ill the petjilsioJl bujJer throughout Ihe protocol. Becallse 
PC Morts were perjilsed with labeled gizlcose during preconditioning, Ihe ischemic COlltrol hearts (IC group) received a 42 mill 
stabilization period to ensure Ihat hearts receil'ed equal amounts of labeled glucose before ischemia. I" parallel experiments, 
hearts wereJreeze·clamped a/ different lime-poinls throughout the protocol (/1=3-5 per group; indicated with • .) 

3. Results 

3.1. Contractile /tille/ion 

Figure 2 presents the time-dependent changes in rate-pressure product, a reflection of ventricular 
systolic fimctioning. \Vith the short periods of intennittent ischemia in the PC and SPT groups, RPP rapidly 
feU to near zero values. RPP recovered to 90% in the PC hearts and to 100% in the SPT hearts (NS vs. Ie) 
after the fourth 2-min period of ischemia, TIle first 2-min infusion period of CCPA induced a 47% decrease 

in contractility which did not recover during the first 3-min period ofCCPA-free perfusion. The subsequent 
cycles ofCCPA infusion further decreased RPP 10 a preisohemic valne of23% (P<O.05 vs. PC. SPT. CCPA). 
\Vith the onset of prolonged no-flow ischemia. RPP fell to zero within 5 min in all groups. Upon reperfusion 
after long ischemia, functional recovery was significantly improved in PC (33±13%) and CCPA (58±14%) 
hearts compared to IC (O±O%; P<O.05). SPT abolished preconditioning protection (O.4±O.4%; P<O.05 vs. PC). 

3.2. Glycogen 

The time.dependent changes in BC-glycogen are presented in Figure 3a. TIle presence of 10 Ull 
insulin in the perfusion medium induced a marked increase in total glycogen with the concurrent 
incorporation oflabeled glucose residues, as monitored in the BC spectra by the growth of the signal at 100.6 
ppm. TIle BC-glycogen signal leveled off after 30 min of nonnoxic perfusion. Short intennittent ischemia 
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resulted in a 25% decrease in llC-glycogen in PC hearts (P<O.05 vs. IC). This decrease was not abolished by 
SPT; preischemic glycogen was 53% of the value after stabilization in SPT hearts (P<O.05 vs. IC). CCPA 
induced a 58% increase in BC-glycogen resulting in significantly higher preischemic glycogen levels 

compared to IC hearts (P<O.05 vs. IC). Changes in HC·glycogen reflectcd those of total glycogen determincd 
in freeze·clamped hearts dtrring parallel experiments (Figure 3b): Short intermittent ischemia decreased total 
glycogen by 40% in PC hearts and by 25% in SPT hearts whereas CCPA infusion increased total glycogen 
by 65%. HC-glycogen utilization was delayed during the first 2-5 min of prolonged ischemia in PC and CCP A 
groups (Figure 3a), this delay was not blocked by SPT. BC·glycogen utilization during the first 15 min of 
prolonged ischemia (in pmolfmin.g wwt) was similar in PC (OJO±O.04), IC (0.42±O.03), and CCPA 
(OJ8±O.05) hearts, but was lower in SPT hearts (O.24±O.05; P<O.05 ys. IC; Figure 3a). At the end of ischemia, 
DC-glycogen was almost completely exhausted in PC, IC and SPT groups, whereas it was still 64% of the 

value after stabilization in CCPA treated hearts. In CCPA hearts, freeze-clamped at the end of sustained 
ischemia, total glycogen was 87% ofthe 2·min stabilization value (Figure 3b). Upon reperfusion, only PC and 
CCPA hearts reswned tJC-glycogen synthesis compared to IC and SPT groups (P<O.05; Figure 3a). TIlls was 
partly reflected in total glycogen values detennined after reperfusion (Figure 3b): glycogen was higher in PC 

hearts compared to all other groups (P<O.05). 

150 
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-0- CCPA 

~ 

'" "-' -D- IG 

'0 r -A- PC => 
"0 100 • e -,- SPT 
0.. 

l'! : I T IT· => 
'" '" 50 

· 'IMJ. l'! 
0.. T 

* '\ : -0:: , .. - . e-e-(;-'-e 0 L 
' -~-~-~-w-~~ - - -0- =0 , 

-30 ·20 ·10 0 10 20 30 40 50 60 70 

Time (min) 
Figure 2. Changes ill rate·pressure prodllct. Recol'l!ry of rate-force prodllct at the elld of reperjllsion following Ischemia lI'as 
improved ill CCPA and PC hearts compared to SPT alld Ie groups. #P<O.05 v IC, Pc, SPT; *P<O.05 vIC, SPT. For abbreviations 
alld protocol, see Figllre /. 

3.3. High energy phosphates 

Intermittent ischemia and reperfusion induced cyclic variations in PCr and Pi in PC and SPT groups 
(Figures 4 band c, respectively). However, pre-ischemic per was not different between groups; pre· ischemic 
P; was higher in SPThearts (P<O.05 YS, IC, PC, CePA), ATP levels (Figure 4a) and pH (Figure 4d) were not 

affected by any of the treatments prior to ischemia. 
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Figure 3. JJC-Iabelillg alld mobiliza/iolJ oj glycogen (A) alld /0/0/ glycogen in hearts Jreeze-clamped a/ different lime-poinls 
throughout the pr%col (B). Preischemic glycogellll'as ullrelated to jill1C(iOllal reCOI'ef}'. 2111ill = 2 min 1/onnoxic peiflLsiolJ (B); 
·P<O.05 v IC, pc, SPT: #P<O.05 v CCPA, IC; +P<O.05 vIC, SPT,Jp<O.05 l'Ie. Forabbrcl'iotlolls alld pr%col, see Figure I. 
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The fall in ATP during prolonged ischemia was similar in all groups (Figure 4a); at the end of 

ischemia, ATP levels were depleted in aU hearts. During early ischemia, PCr levels decreased more slowly 

in CCPA hearts (P<O.05 vs. IC) although PCr depletion was similar in aU groups at the end of ischemia. 

During ischemia, Pi rose similarly in all groups. Ischemic acidification was similar in all groups but tended 

to be less in IC hearts. 

Upon reperfusion, recovery of A TP, PCr, and pH was sinlilar in all groups. At the end of reperfusion, 

recovery of Pi was worse in PC hearts (P<O.05 \'5. IC). 
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Fig/lre 4. Changes ill ATP (A), C'Y('(lfille phosphate (PCr; E), inorganic phosphate (PI; C). al/d pH (D). *P<O.05 \'s. Ie. For 
abbrel'ialiolls and protocol. see Figure 1. 

4. Disclission 

4.1, Adenosine is iI/mired ill preconditioning a/rat hearts 

In this study we show that ischemic preconditioning ofrat hearts can be mimicked by pre-treatment 

with the selective adenosine Al agonist CCPA (Figure 2), CCPA treatment resulted in marked negative 

chronotropic and dromotropic effects, which resulted in a reduction in preischenlic contractility (Figure 2), 

However, we showed earlier [43J (see also Chapter 7) that these contractile side-effects of CCP~ were 
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unrelated to its cardioprotective effects since cardioprotection was also observed in paced CCPA treated 
hearts. Furthennore, ischemic preconditioning could be abolished by the non-selective adenosine antagonist 
SPT. From the.se observations we can conclude that adenosine is involved in preconditioning of rat hearts. This 
is in contrast to several studies that showed no involvement of adenosine in ischemic preconditioning of rat 
hearts (see introduction). There could be several reasons for this discrepancy. First, interstitial adenosine is 
much higher in the rat than for instance the rabbit, which may require higher adenosine antagonist 
concentrations [21]. Second, the high activity of adenosine degrading enzymes in the rat coronary endotheliwll 
[44], the hamer fimction of the endothelium for the transport of adenosine to the interstitium[45], and the short 
half-life of adenosine in blood [46] may lead to suboptimal activation of the adenosine AI receptor located on 
the myocardial membrane. Interestingly, studies using selective adenosine agonists, which exhibit substantially 
longer half-lives than adenosine [47], could mimic ischemic preconditioning [21,48]. Third, the use of 
selective adenosine AI antagonists or non-selective xanthine derivatives like SPT, which weakly bind the 
adenosine A3 receptor in rat hearts [49,50], do not abolish the adenosine A) receptor mediated component of 
ischemic preconditioning. 

4.2. Role of glycogen ill ischemic preconditioning 

In this study, we tested whether ischemic preconditioning is mediated by reducing preischemic 
glycogen and glycogenolysis during ischemia, resulting in attenuation of glycolytic catabolite accumulation 
and the development of intracellular acidosis, a notion knmvn as the 'glycogen hypothesis of ischemic 
preconditioning' [23,51]. Furthennore, we assessed whether reduced glycogen depletion during ischemia is 
mediated by adenosine AI receptor activation, an important trigger of ischemic preconditioning. The results 
of our study show that preischemic glycogen is wtrelated to preconditioning protection since both high (CCPA 
group) and low (pC group) preischemic glycogen (Figure 3) are associated with improved fimctional recovery 
(Figure 2). A comparison of the PC and IC hearts shows that glycogenolysis during early ischemia (fIrst 5 
min) was attenuated in PC hearts, in line with other reports [25,27,29,51]. CCPA also reduced glycogenolysis 
during early ischemia (Figure 3). However, although SPT abolished preconditioning protection, it did not 
abolish reduced glycogen utilization during the fust 5 min of ischemia (Figure 3). I)C-glycogen utilization 
dming the fIrst 15 min of sustained ischemia was not different between PC, Ie, and CCPA groups, and was 
even reduced in SPT hearts (Figure 3a). Analysis of glycogen in freeze-clamped hearts (Figure 3b) showed 
that total glycogen depletion during 30 min ischemia was reduced in PC (0.61 mglg wwt) and SPT (0.77 mglg 

wwt) hearts compared 10IC (1.84 mglg wwt) and CCPA (1.75 mglg wwt) hearts. Thus, preischennc glycogen 
and ischemic glycogenolysis can be dissociated from the degree of protection. Moreover also against the 
glycogen hypothesis is our observation that preischemic glycogen is not necessarily related to the rate of its 
depletion during ischemia. Other studies also have failed to observe a relation between fWlctional recovery 
after prolonged ischemia and preischemic glycogen levels [26-28] or glycogen depletion during ischemia [27]. 
Furthennore, we did not find any differences between groups in the degree of acidosis during ischemia (Figure 
4d) in line with the glycogen data. TIlis contrasts many studies showing reduced accumulation of glycolytic 
end-products (lactate, protons, sugar phosphates) in preconditioned hearts during ischemia [26,28,29,51-53]. 
Soares et a!. [28] and Schaefer et al. [54] showed that although preischemic glycogen content relates to pH 
during ischemia, it is unrelated to functional recovery upon reperfusion. Moreover, several groups [55,56] 
were also unable to fmd a relation between preconditioning protection and reduced acidosis during ischemia 
in line with the present study. \Ve also found the rate of high-energy phosphates depletion (Figures 4a and b) 
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during ischemia to be similar in all groups. In conclusion, the results of this study provide evidence that 

preconditioning protection against sustained ischemia is not mediated by I) reduced glycogen utilization and 
consequent attenuation of glycolytic catabolite accumulation, and 2) reduced rate of high. energy phosphates 
depletion (slowing of energy metabolism) as originally proposed by MtuT)' et a1. [51]. Hence, both correlations 
merely represent epiphenomena of ischemic preconditioning. However, \ve did not calculate the 
phosphorylation potentiai. It is possible that the phosphorylation potential was improved in preconditioned 

hearts in our study as has been previously shown [56], 

Rather to our surprise, CCPA infusion increased glycogen synthesis resulting in higher preischemic 

tissue glycogen content compared to the other groups (Figures 3a and b). TIlls may be due to stimulation of 
glycogen synthesis and inhibition of glycogen breakdown by the dmg, Finegan et a1. [32] showed that both 
adenosine and N·cyc1ohexyladenosine. a compound similar to CCPA, reduce glycolysis during nonnoxia. 
Due to the high preischemic glycogen levels in CCPA hearts, glycogen was not severely depleted during 
ischemia in CCPA hearts: the postischemic glycogen content was still 87% of the stabilization value in freeze­
clamped hearts while it was much lower in the other groups (Figure 3b). Cross et al. [571 showed that although 
preischemic glycogen is unrelated to functional recovery after ischemia, glycogen depletion and cessation of 
glycolytic ATP production during ischemia is detrimental to the heart, These authors hypothesized that with 
inhibition of glycolytic ATP production, the Na+/Kt -ATPase can no longer function and continued Na+M 

exchange will finally lead to Na+ and cit overload. and myocardial injury. TIms, one of the mechanisms of 
CCPA-induced cardioprotection may be prevention of glycogen depletion and cessation of glycolytic flux 
during ischemia. 

Not many studies have examined the effect of adenosine preconditioning directly on ischemic 
glycogenolysis, Adenosine prior to no-flow ischemia reduced ischemic lactate accumulation [371, We recently 
showed that CCPA pretreatment inhibited anaerobic glycolysis and glycolysis-iTom-glucose during low-flow 

ischemia [43] (see also Chapter 7), in line with other reports [34,58], In ischemic dog hearts, adenosine did 
not significantly affeet the mte of glycogen depletion as determined in transmural biopsies [38], In the present 
study, CePA mimicked PC in the initial delay (fust 5 min) in ischemic glycogenolysis (Figure 3a). However. 
delayed glycogenolysis in preconditioned hearts was not blocked by the adenosine antagonists 8PT (Figure 
3a), Moreover, overall glycogen depletion during 30 min no-flow ischemia was higher in CCPA and Ie hearts 

compared to 8PT and PC groups (Figures 3a and b). 
In conclusion, adenosine mediates protection by ischemic preconditioning in rat hearts, However. 

glycogen depletion prior to ischemia and reduced glycogenolysis during ischemia are not causually related 

to preconditioning protection, 
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Chapter 9 

Abstract 

Objective: Apart from infarct-size reduction and improved functional recovery, ischemic 

preconditioning (IPC) has been recently shown also to reduce apoptotic cell death in rat hearts. 

Moreover, the role of adenosine receptors in IPC in this species is controversial. Our study in rat hearts, 

examined whether activation of adenosine Al (AA[R) or A) (AA)R) receptors improved functional 

recovery and reduced apoptosis resulting from low-flow ischemia. Methods: Prior to 30 min low-flow 

ischemia (0.6 mVmin; 6% of baseline flow), Langendorffrat hearts were preconditioned with two 5-min 

cycles of a) ischemia (PC; n=7), b) infusion of250 nM AA[R agonist 2-chloro-}f-cyc!opentyladenosine 

(CCPA; n""6), or c) infusion of 50 nM AA)R agonist If-(3-iodobenzyl)-adenosille-5'-N-methyl­

uronamide (IB-MECA; n=8). Results: IB-MECA did not affect contractile function whereas CCPA 

infusion reduced the rate-force product by 83%. Recovery of function was improved in PC (71±3%), 

CCPA (68±6%) and IE-MECA (68±4%) groups compared to control hearts (46±5%; P<O.05). 
Cumulative release of total purines during ischemiafreperfusion was approx. 50% lower in PC, CCPA 
and IB-MECA groups compared to controls (P<0.05) and was significantly correlated to the percentage 

functional recovery (R2=0.55; P<0.05). The number ofcytosolic histone-associated-DNA fragments, a 

hallmark of apoptosis and measured by ELISA, was small and not different between groups after 30 min 

reperfusion. However, CCPA (0.6±O.l absorbance units) and MECA (0.7±0.1 units; P<0.05 vs. PC) 

decreased apoplosis after 150 min reperfusion compared to PC (l.4±O.3 units) and control (1.2±O.1 units) 

hearts. Lactate production was reduced by 54% in CCPA-treated hearts (P<O.05 vs. controls). 

Conclusions: This study shows that adenosine triggers protection of function in preconditioned rat hearts 

via both the A[ and A) receptor. In clinical practice, phamlacological stimulation of AA)R may be 

advantageous over AAIR activation due to a lack of contractile side-effects. In contrast to ischemic 
preconditioning, phamlacological stimulation of adenosine A[ or A) receptors reduced apoptosis. 

Furthermore, total purine release may serve as a marker of the degree of functional protection. 

1. Introduction 

Ischemic preconditioning refers to the paradoxical mechanism that short, pre-emptive periods 

of ischemia protect the heart from a subsequent period of prolonged ischemia [I]. This phenomenon 

seems to occur in nil vertebrates [2] including humans [3,4]. Of the humoral factors released during its 

induction that may trigger the event (cf. (5J), adenosine is one of the Illost important. In most animal 

species and humans [6-9], adenosine's cardioprotective effects are mediated via adenosine Al receptors 

located on the myocardial membrane. The recently discovered adenosine A) receptor has also been 

implicated in preconditioning of chick [10-12], rabbit [13-19], and human {9] hearts. However, adenosine 

mediated cardioprotection is believed to play no role in rat hearts (e.g., [20,21 J). In contrast, we [22] and 

others [23,24] observed beneficial effects of adenosine AI receptor stimulation in this species. To the best 

of our knowledge, no study has examined before the role ofthe adenosine A) receptor in preconditioning 

of rat hearts. 
Ischemiafreperfusion injury includes both apoptolic and necrotic myocyte cell death [25-28]. In 

contrast to necrosis, apoptosis is an active energy-consuming process orchestrated by a genetic program. 

Apoptotic cell death is often called programmed cell death to distinguish it from necrotic or accidental 
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cell death (oncosis). Apart from reduced ventricular arrhythmias, infarct size, and contractile 

dysfunctioning, ischemic preconditioning has also been shown to reduce apoptosis in vitro [29J and in 

vivo [30]. No data exist as to whether ischemic preconditioning effects on apoptosis are also mimicked 

by stimulation of adenosine A/A) receptors prior to ischemia. Furthennore, the relative contribution of 

apoptosis and necrosis to cell death foHowing 10wMflow ischemia and reperfusion in isolated hearts is 

poorly described. Thus, this study examined the effectiveness of both adenosine AI and A) receptor 

stimulation in reducing contractile dysfunction and apoptosis in rat hearts after 10wMflow ischemia and 

reperfusion. This study shows for the first time that the adenosine A3 receptor, in addition to the AI 

receptor, is involved in preconditioning of rat hearts. Although the degree of apoptosis was low, 

phannacological preconditioning reduced its occurrence. 

2. Methods 

AH animals were treated in confonnation with the guiding principles in the care and use of 

animals as approved by the American Physiological Society. The Animal Welfare Committee, Erasmus 

University Rotterdam, approved the protocol. 

2. I. E;'(c/usioJl criteria 

During stabilization, hearts were excluded if they met one of the foHowing criteria: I) unstable 

contractile function, 2) coronary flows outside the range of 9M 19 ml/min, 3) severe arrhythmias, 4) 

myocardial temperature outside the range 37M39°C. 

2.2. Isolated heart preparation 

Fed, male \vistar rats (Wag/Rij inbred, weighing 280~330 g) were obtained from HarlanMCPB 

(Zeist, The Netherlands). They received a conmlercial rat chow (Hope Famls AM II, Woerden, The 
Netherlands) and tap water ad libitum. After anesthesia with an intraperitoneal injection of 0.6 ml sodium 

pentobarbital (Nembutal tJ
, 60 mg/ml) supplemented with 0.1 mt heparin (Thromboliquinet>, 5000 IU/ml), 

hearts were rapidly excised and arrested in saline (O°C) until beating ceased. Excess tissue was removed, 

and the hearts were cannulated within 1 min via the ascending aorta, for retrograde perfusion using a 

nonMrecirculating Krebs~Henseleit buffer containing (in mmolll): NaCI 118, KC14.7, CaCI2 1.25, MgS04 

1.2, NaHCO, 25, KH,PO, 1.2 and D-glucose II. Insulin (Sigma, St. Louis, MO, VSA; I VII) was added 

to the buffer. Before lise, the buffer was filtered through a 45M!im porosity filter to remove any particulate 

matter, and equilibrated with 5% CO/95% °2, to give a pH of about 7.4 at 37°C. Myocardial 

temperature was kept at 37°C with a waterMjacketed heart chamber and buffer reservoir, and regulated 

with an electric heating coil positioned around the aortic inlet line. The temperature of the outer 
ventricular wall was monitored with a Ihenllocouple (AMF6, Ellab AlS, Roedovre, Denmark). Global, no­

flow ischemia was induced by clamping the aortic line; 10wMflow ischemia was achieved using a 

perfusion pump (MV -MS3, Ismatec, Zurich, Switzerland) operating at a flow rate of 0.6 ml/min. 

Coronary flow was measured by timed collection of the pulmonary artery effiuent. The hearts 

were allowed to beat spontaneously. Cardiac contractile function was estimated with a force transducer 
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(LVS-50GA, Kyowa Electronic Instnlluenls, Tokyo, Japan) connected 10 the apex ofthe heart [22,31]. 

The heart was pre-loaded with an initial resting tension of2 g. Systolic tension and diastolic tension were 

continuously displayed on a recorder (Gould signal conditioner and Gould WindoGra{Th1 recorder, Valley 

View, OH, USA). Developed tension was calculated as systolic tension minlls diastolic tension. Cardiac 

contractile function was expressed as rate-force product (RFP), the product of heart rate and developed 

tension. RFP was expressed as a percentage of baseline function (20 min stabilization). Perfusion 

pressure wa~ measured with a disposable pressure transducer (Braun Melsungen, Melsungen, Austria) 

and kept constant at 65 mmHg. 

2.3. Experimental Protocol 

After initial isolation and surgical preparation, all hearts were perfused with the modified Krebs­

Henseleit buffer and allowed to equilibrate for 20 min followed by a 20-min treatment period. Thereafter, 

hearts were subjected to 30 min oflow-flow ischemia (0.6 mllmin) followed by a reperfusion period of 

30 min. The 20-min treatment period prior to low-flow ischemia consisted of (Figure 1): I) nonnoxic 

perfusion (IC group; n=7); 2) preconditioning using two 5-min episodes of no-flow ischemia each 

interrupted by 5 min ofreperfusion (PC group; n=7); 3) preconditioning with two 5-min infusions of250 

nM of the selective adenosine A, receptor agonist 2-chloro.!t-cyclopentyladenosine (CCPA group; n=6), 

interspersed by two 5-mill periods of dnlg~free perfusion; and 4) preconditioning with two 5-min 

infusions of 50 11M of the selective adenosine A) receptor agonist !t-(3-iodobenzyl)-adenosine~5'-N­
methyl-uronamide (IB·MECA; n=8), interspersed by two 5-min periods of drug-free perfusion. The used 

concentrations of CCPA and IB-MECA were based on their binding activities for (brain) adenosine 

receptors as indicated by the supplier (CCPA: K;A, ~ OAIIM vs, K;A, = 3900 JIM; lB-MECA: K;A3 ~ 

1.1 nM vs. K;A/A2 = 50-60 11M). After 30 min reperfusion, a part of the heart was flash frozen in liquid 

nitrogen. In a parallel study, hearts were also freeze-clamped after 150 min reperfusion for detemlination 

of the degree ofapoptosis (n=4 per group). 

2.4. Analysis of coronal), ejJ111ellt 

During ischemia and reperfusion, coronary perfusate samples were continuously caHected at 2-, 

3~, 5-, or lO·min intervals, depending on the changes expected. Prior to ischemia, several I-min samples 

were taken. Lactate in the Sal1ll)les, kept at O°C, was detemlined enzymatically with an Elan auto­

analyzer (Eppendorf, Merck, Amsterdam, The Netherlands) according to Sigma procedure 735. The 

remainder of the samples was stored at ~80°C until further analysis. Purines in coronary perfusate 

samples were detennilled by reversed phase high-perfomlancc liquid chromatography (HPLC) according 

to Smolenski et al. [32]. Briefly, a CIS column (Hypersil ODS 3 pm, 150 x 4.6 nml, Alltech, Deerfield, 

III., USA) was employed combined with a CIS guard column (Hypersil ODS 5 pm, 7.5 x 4.6 mill). The 

system configuration consisted of an AS3000 cooled autosampler, an SCM I 000 vacuum membrane 

degasser, a P2000 gradient pump, a Spectra Focus forward optical scailling detector, and PCIOOO 

software (Spectra. Physics, San Jose, CA, USA). Peaks were detected at 254 nm (hypoxanthine, xanthine, 

inosine, adenosine) and at 280 nm (uric acid). Perfusate purines were identified based on their co-elution 

with standards, retention times, and their 254/280 ratios. 
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Figure 1, Diagram sltowillg the different experimental protocols. Each experiment storIed with a 20-min stabilization period 
followed by a 20-milltrealment period. 17lereafier, hearts were subjected to 30 mill of low {lOll' ischemia (0.6 mil mill) followed 
by a repeifusioll period of 30 mill. 171e 20'milllreatme'" pedod prior /0 low{low ischemia consisted oll) 110mJOxic peifllsioll 
(IG group); 2) preconditionillg IIS/lIg two 5-mill episodes ofllo-flow ischemia each illtem/pled by 5 mill ofrepeifusion (PC 
group); 3) precolldiliollillg with two 5-min illfusiolls of adenosine A/receptor agollisl 2-cllforo-!t-cyc!opelllyladellosille (GCPA 
group), interspersed by 1\\'0 5·min periods of dntg-free pet/usion; 4) preconditioning with 1\\'0 5'mill illjllSiolls of adel/osille A J 

agollist N'-(J-;odobellzylj-adellosille-5'.N.melhyl.//rollomide (IB·MEGA group). interspersed by two 5-lIIi1/ periods oj dmg-free 
perjilsioll. 

2.5. Sandwich enzyme immulloassay 

Quantization of DNA fragmentation into cytosolic mononucleosomes and oligonucleosomes was 

done with an ELISA kit (CeJl Death Detection ELISAPLUs
; Boehringer Mannheim, Gemlany). This test 

quantifies histone-associated DNA fragments in a sandwich-enzyme-immunoassay using mouse 

monoclonal antibodies directed against DNA and histones, respectively. At the end ofreperfusion, atria 

were removed and ventricles were frozen in liquid nitrogen and stored at -55°e. Hearts were ground 

under liquid nitrogen using pestle and mortar. From the total homogenate. 50 mg was added to 800 pI 

lysis buffer supplied with the kit and incubated for 30 min at room temperature (ca, 20°C). After 

incubation, the homogenate was centrifuged at 13000g for 20 min, The supernatant fraction was further 

diluted 12-fold iu phosphate-buffered saline (in nnnoUI: NaCI 137, KCl2.7, Na,HP04 8.1, KH,P04 1.5; 

pH 7.4) and used as antigen in the ELISA which was perfornled according to the manufacturer's 

instmctions. Duplicate values of the double absorbance measurements (405 - 492 nm) were averaged 

from which the negative control (incubation buffer in stead of sample solution) was substracted. 

2.6. Chemicals 

CCPA and lB-MECA were obtained from RBI (Natick, Mass., USA). Stock solutions (l 00 I'M) 

of CePA in deionized water and IB-MECA in dimethylsulfoxide were diluted 400 and 2000 times, 

respectively, in the perfusion medium. Stock solutions were kept at -55°c' 

2,7, Statistical analysis 
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The data are expressed as means ± S.E.M., with n = number of hearts. Summary measures were 

constmcted for contractile parameters, lactate release, and total purine release [33]. Recovery of rate­

force product was expressed as a percentage of baseline value. The sum of lactate and total purines 

produced during ischemia was calculated as the cumulative release in the venous effluent during 30 min 

underperfusion and the first 5 min of reperfusion. One-way or two-way analysis of variance with 

subsequent Student-Newman-Keuls post-hoc tests were used for comparisons between groups. Ifvalues 

were not nonnalty distributed or variances between groups were unequal, Kruskal- Wallis ANOV A on 

ranks was used. Values of P<0.05 (two-tailed test) were regarded as significant. 

3. Results 

3.1. Contractile junction alld corol/my flow 

After 20 min stabilization, there were no differences between groups in rate-force product (mean 

and SEM of all groups: 4510±224 glmin) or coronary flow rate (1O±1 mllmin). Infusion ofIB-MECA 

did not significantly affect preischernic rate-force product (Figure 2) but increased coronary flow up to 

70 % (Figure 3). In contrast, CCPA reduced rate-force product by 83% (Figure 2) mainly due to a 

reduction in heart rate; coronary flow increased during the first infusion (76%) but was reduced 20 % 

vs. pre-drug value during the second infusion (Figure 3). In the PC group, rate-force product rapidly fell 

to zero during transient ischemia and recovered to 79% after the second period of reperfusion (Figure 

2). Contractile function fell to 0 within 5 min in all groups at the start of prolonged ischemia. After 30 
min reperfusion, rate-force product was improved in PC (71±3%), CCPA (68±6%), and MECA (68±4%) 

groups compared to controls (46±5%; P<0.05). Early during reperfusion after prolonged ischemia, the 

extent of reactive hyperemia was similar in all groups (Figure 3). Coronary flow recovered to nonnal 

values after 30 min reperfusion (coronary flow data for 100 min nomlOxic perfusion not shown) and was 

not different between groups. Resting tension did not sigTlificantly change throughout the protocol in any 

of the groups. 

3.2. Metabolite release 

The appearance of purines in the coronary effiuent reflects ATP catabolism during ischemia and, 

hence, the energy status of the cell. Figure 4 depicts the release of total purines (adenosine + inosine + 
hypoxanthine + xanthine + urate) throughout the protocol. Cumulative release of total purines (in Im101/g 

wwt) during long ischemia and reperfusion was approx. 50% lower in PC (672±184), CCPA (486±165) 

and IB-MECA (690±I09) hearts compared to controls (I330±184; P<O.05). 
Lactate released in the coronary effiuent was taken as measure of all aerobic glycolysis from both 

endogenous glycogen and exogenous glucose sources. Lactate produced during prolonged 

underperfusion was not different between IC, PC, and IB-MECA groups (Figure 5). The sum oflactate 

released during underperfusion and reperfusion (in 110101/g wwt) was not different between IC 

(44.5±4.4), PC (40.3±4.5), and IB-MECA (36.6±5.7) groups but was halved in CCPA treated hearts 

(19.4±2.3; P<O.05 vs. all other groups). 
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Figure 1. 
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3.3. Relationship betweelljullctional recove,y and cumulative purine release during ischemia 

To detemline whether purine release during ischemia can serve as a marker for the degree of 

ischemic injury, we correlated recovery of function at the end ofreperfusion with the cumulative release 

of total purines during prolonged ischemia (Pigure 6). There was a significant inverse correlation 

between both variables (R2~0.55; P<0.05). 

3.4. Apoplosis 

The number of cytoplasmic histone-associated-DNA-fragments (mono- and oligonucleosomes), 

a hallmark of apoptosis, was dctennined by ELISA. Fragmentation of DNA was similar in PC (0.9±0.1 

arbitrary absorbance units), CCPA (0.6±0.1 units), lB-MECA (0.8±0.1 units), and IC (0.7±O.l units) 

hearts after 30 min reperfusion (Figure 7). Apoptosis was higher after 150 min reperfusion compared to 

30 min reperfusion (P=0.001). Pharmacological preconditioning with CCPA (0.6±O.I) and ffi-MECA 

(0.7±0.1; P<0.05 vs. PC) decreased apoptosis compared to PC (1.4±0.3) and IC (1.2±O.l). The degree 

of apoptosis appears to be small in hearts subjected to low-flow ischemia and reperfusion since 

fragmentation in control hearts perfused normoxically for 2 min (NC (2 min); 0.2 units; n=l) or 100 min 

(NC (100 min); O.4±O.l units; n=2) were only 2-4 times lower compared to hearts subjected to ischemia 

and reperfusion. 

-f':.- CCPA -J..- MECA 

~ 

1 140 

Ol 120 
C 
'E 100 

Ischemia I :0 
Reperfusion 

-'0 80 
E 
-S 60 
If) 
Q) 40 c 
·c 
::> 
"-

20 

ro 0 -0 
I- 40 50 60 70 80 90 100 

Time (min) 

Figure 4. Release ojtotal purines (adellosine + illosine + hypoxanthine + xanthine + urate) ill the corollary efjluent. Both 
phanllacological alld ischemic precollditioning redl/ced the cllmll/atil'e amO/lnt oj total purilles re/easeti dl/ring ischemia and 
reperjllsiol/ compared to COlltrol hearts (P<O.05). For abbrel'iations alld protocol, see Figure I. 
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4. Discussion 

4.1. Role a/the adenosine receptor ill preconditioning of rat hearts 

This is the first study indicating that adenosine A) receptors are also involved in protection by 

ischemic preconditioning in rat hearts. FurthemlOre, in this study we confiml earlier observations of our 

group [34J that CCPA, a selective adenosine AI agonist, reduces ischemic injury in rat hearts. Infusion 

of the selective adenosine A) agonist IB-MECA prior to ischemia, resulted in a similar degree of 

myocardial protection to adenosine AI receptor stimulation with CCPA (Figure 2), in line with published 

reports [9,12,16J. The absence of any contractile side-effects during infusion of 50 nM IB-MECA 

indicates that this dose did not activate the adenosine AI receptor. Thus, both adenosine AI and A) 

receptors trigger preconditioning protection by endogenous adenosine. However, Hill et al. [19] recently 

concluded that the adenosine component of ischemic preconditioning is preferentially mediated by the 

AI receptor since adenosine binds this receptor with a greater affinity than the A) receptor in rabbit hearts 

(KiA[ = 28 nM:; K,A) = 532 nM). Whether both receptors are maximally activated in ischemic 

preconditioning of rat hearts is unclear since the affinity of adenosine for the adenosine A) receptor has 

not been detemlined yet in this species. However, higher interstitial adenosine levels during 

preconditioning ischemia ('""7 JIM) have been reported in the rat than in other species [23J which makes 

it likely that both adenosine AI and AJ receptors are maximally activated during ischemic 

preconditioning, co-operating in its induction [15]. 
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The observation in the present study that both adenosine AI and A) receptors trigger 

preconditioning protection in rat hearts is in contrast to other studies that were unable to mimic or abolish 

ischemic preconditioning with adenosine and adenosine antagonists, respectively [20,21 J. The inability 
to abolish ischemic preconditioning with adenosine antagonists could be related to the fact that I} 

interstitial adenosine levels during preconditioning are very high in the rat compared to other species 

which may require increased antagonist concentration [23J, and 2} the use of selective AI antagonists, 

which do not abolish the Aj mediated component of ischemic preconditioning. We showed before that 

50 pM 8-sulfophenyltheophylline, a non-selective adenosine antagonist, abolished protection by 

ischemic preconditioning in rat hearts ([34]; see also Chapter 8). Administration of exogenous adenosine 

in rats may be limited by the instability of this compound and the high activities of adenosine.degrading 

enzymes in the coronary endothelium, making the coronary endothelium an active barrier for adenosine 
transport. This is probably the reason why only studies using selective agonists of the AI receptor, instead 

of the natural ligand adenosine, have demonstrated protection against ischemic injury [23,24,35]. 

Infusion of lB-MECA did not affect contractility in contrast to the large (83%) decrease 

observed with administration ofCCPA (Figure 2). in line with data obtained in conscious rabbits [18]. 

Earlier, we showed that the cardioprotective effects of adenosine AI receptor activation are unrelated to 

the negative chronotropic and dromotropic side-effects of these drugs [34]. Activation of the adenosine 

A) receptor induces hypotension by mast cell degranulation in rats in vivo [18,36]. In humans and dogs, 

however, mast cell activation is probably mediated by the adenosine Alb receptor, not the A) receptor 

[37,38]. In contrast, the A) receptor of these species has anti-inflammatory effects by inhibiting 
eosinophil migration (chemotaxis) [38,391, neutrophil degranulation [40], and TNFa release by 

macrophages [41]. Thus, although both adenosine AI and A) receptor activation protect against ischemic 

injury, agonists of the latter may be more promising as cardioprotective agents in the clinical setting due 

to a lack of hemodynamic side effects, anti-inflanunatory effects, and a more sustained duration of 

protection than AI agonists [12]. FurthemlOre, selective adenosine A) agonists have been reported to 

protect against both infarction and stunning [18] in contrast to ischemic preconditioning, which only 

reduces infarct-size. This may be a major advantage of selective A) agonists since myocardial stunning 

is often a greater problem after bypass surgery than infarction, which has a low incidence with current 

surgical techniques. 

4.2. Purine metabolism 

Based on the observation that ischemic preconditioning reduces interstitial purine accumulation 

during regional ischemia in dog hearts, Van \Vylen [42] suggested that ischemic preconditioning 

improves energy balance and consequently reduces ATP hydrolysis during ischemia. We previously also 

observed reduced purine release in the coronary effiuent of preconditioned rat hearts during low-flow 

ischemia [22]. In the present study we extend this finding, demonstrating that also hearts protected by 
adenosine Al and AJ agonists show reduced purine release during ischemia and reperfusion (Figure 4). 

Goto et at. [43J concluded that decreased purine release is an epiphenomenon of ischemic 

preconditioning and cannot be relied upon to serve as a marker of protection by preconditioning. 

However, these authors only examined purine release during short preconditioning ischemia and not 

during long ischemia. The present study strongly suggests that reduced myocardial purine production 

during ischemia is correlated to the functional recovery at the end of reperfusion, serving as a marker 
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for the degree of ischemic injury (Figure 6), 
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Figure 6. Negative correlation beMeell % fill/etiol/al reco\'ery at the end of repeifusion alld the clfmuiati\'e 011101/111 of 10101 
purines (adenosine + inosine + hypoxanthille + xanthille + llrate) released dr/ring prolonged ischemia al/d reperji/sioll. For 
abbrevialiolls and protocol. see Figure I. 

4.3. Carbohydrate metabolism 

This study shows that CCPA decreases lactate production during ullderperfusion (Figure 5) 

compared to the other groups, confinning earlier findings [34,44]. Paced CCPA hearts also showed 

reduced lactate production during low-flow ischemia (data not shown). Thus, reduced contractility 

caused by CCPA infusion (Figure 2) was unrelated to less lactate production during subsequent ischemia. 

We previously suggested that ischemic preconditioning is mediated by increased glucose uptake during 

ullderperfusion without increasing total anaerobic glycolytic flux and that CCPA-induced protection may 

involve a different mechanism as it decreased glycolysis [34], Cardioprotection induced by adenosine 

Al agonists has been suggested to involve reduced proton production from glucose metabolism reducing 

Ca2
+ overload [24]. To our knowledge, this is the first report on the effect of adenosine AJ receptor 

stimulation on anaerobic glycolysis. Infusion of IB-MECA prior to underperfusion did not result in 

reduced anaerobic glycolysis during ischemia as observed with CCPA, 

4.4, Apoplosis 

Necrosis and apoptosis are two distinct fomls oflethal cell injury resulting from ischemia [25-

28]. This is the first study reporting the effects of adenosine analogs on the degree of apoptosis occurring 

during ischemia and reperfusion. Although ischemic preconditioning improved contractile functioning 

after ischemialreperfusion, it did not reduce the degree of apoptosis compared to ischemic control hearts 

(Figure 7). This is in contrasts to a study in rat hearts in vivo [30] in which both infarct size and apoptosis 

decreased after ischemic preconditioning. Although we did not assess infarct size in the present study. 
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we showed before that ischemic preconditioning reduces necrosis after 25 min low~flow ischemia as 

assessed by reduced leakage of creatine kinase [22]. Moreover, less purine release in preconditioned 

hearts (Figure 4) also reflects reduced ischemic injury. Thus, we believe that improved functional 

recovery in preconditioned hearts in the present study for a large part results from a reduction in lethal 

cell injury. In contrast to ischemic preconditioning, both adenosine AI and A) agonists decreased 

apoptosis. Thus, our study provides evidence for the first time that adenosine analogs may reduce both 

apoptosis and necrosis (oncosis). In our study, the degree of apoptosis after low~flow ischemia and 

reperfusion appears low since values were only 2-4 limes higher than in rat hearts perfused nonnoxically 

(NC 2 and 100 min; Figure 7). This could be related to the severity of ischemia. In regional ischemic rat 

hearts in vivo, the degree of apoptosis in ischemic control hearts [30], determined with the same 

commercial ELISA kit as used in the present study, was ca. 15 times higher in the ischemic vs. the 

nonischemic region. Therefore, the inability of preconditioning protocols to reduce apoptosis in our study 

may relate to its low incidence after low-flow ischemia and reperfusion. Future studies need to clarify 

the contribution of apoptosis and necrosis to various fonns and degrees of ischemic injury. 
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Figllre 7. Nllmber of cylosolic histone-associated DNA fragments. a hallmark of apoptosis. measllred by ELISA (absorbance: 
A405 -A492 11m) after 30 min and 150 mill ofreperfusion. The degree of apoplosis is low; plw11Iwcoiogical preconditioning 
decreased opoptosis. NC (2 1IIi1l)=2 min ofllonl/oxic perfusion 01l1y; NC (/00 min)=100 mill ofllormoxic perjilsi01l; *P<O.05 
\'s. Pc. For other abbrevialiolls alldprotocol, see Figure 1. 

4.5. Validity o/the model 

Whether we may extrapolate our observation concerning cardioprotection by adenosine A) 
receptor activation in the isolated rat heart to the human situation is unclear. Adenosine A) receptors have 

been reported to be present in rat [451. rabbit [171. chick [101. and human [461 hearts. However. the rat 
may not be the model of choice to study the cardioprotective properties ofthe adenosine A3 receptor, due 

to the high divergence from other species, including humans {47]. The fact that both adenosine AI 
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[9,48,49] and AJ [9] receptors have been implicated in preconditioning of human [8,47,48] and animal 

hearts indicates that myocardial protection triggered by adenosine receptor activation is a central feature 

in all species. Our study clearly demonstrates that the rat heart forllls no exception to this rule, 

contrasting other suggestions [20,21]. Thus, although species differences with regard to the adenosine­

mediated component of ischemic preconditioning exist, they seem to be more of a quantitative than a 

qualitative nature. 

4.6. Conclusion 

The present study demonstrates that adenosine AI and AJ receptors are implicated in 

preconditioning of rat hearts. Furthennore, purine release may be used as a marker of the degree of 

ischemic injury. The degree of apoptosis was low in hearts subjected to 30 min undcrperfusion and 

reperfusion and was reduced by phannacological preconditioning. Adenosine A3 agonists may represent 

a new, potentially useful therapeutic class of agents for providing cardioprotection as they lack 

cardiovascular side effects associated with AI receptor activation. 
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Chapter 10 

With the discovery of ischemic preconditioning in 1986 by Murry and coworkers [1,2J, many 

studies have been conducted to elucidate the mechanism of its protective action. An overview of the 

current status of preconditioning research is given in Chapter 1. 

This thesis examines the protective effect of ischemic preconditioning in relation to adenosine 

as the trigger and myocardial carbohydrate metabolism as the end-effector of the event. We hypothesized 

that: 

(1) Adenosine, released during preconditioning ischemia, triggers ischemic preconditioning by 

binding to the adenosine Al and/or A) receptors located on the myocardial membrane; 

(2) Stimulation of adenosine receptors finally will result in modification of myocardial 

carbohydrate metabolism during ischemia. Specifically, we hypothesized that adenosine receptor 

activation will result in: (i) an increase in myocardial glucose uptake and metabolism which may be 

beneficial during low-flow ischemia, and (ii) inhibition of detrimental glycogen breakdown. 

1. Ischemic preconditioning 

1.1. Preconditioning protection against no-jlow alld low-flow ischemia 

In this thesis, we demonstrate that both ischemic and pharmacological preconditioning reduce 

contractile dysHmctiol1ing and irreversible injury arising from both no-flow (Chapters 4 and 8) and 

severe low-flow ischemia (Chapters 6, 7, and 9). Most ischemic preconditioning experiments have 

focussed on zero-flow after the pretreatment. There is no doubt that ischemic preconditioning protects 

against no-flow ischemia in many species; however, few studies have examined low-flow ischemia. In 

clinical practice, it is more likely that low-flow conditions will prevail, due to partial coronary occlusion 

and/or coJlaterals present. Indeed, sophisticated analyses of residual flow to the infarcted territory in 

patients with acute myocardial infarction demonstrated this region is affected by low-flow, not no-flow 

ischemia [3,4]. Also, during cross-clamping of the aorta in coronary artery bypass graft surgery, the 

induced global ischemia is not total but rather of the low-flow type due to residual flow from 

extracardiac sources [5J. 
Preconditioning-induced protection against low-flow ischemia is rather controversial. Some 

authors [6,7] suggest that ischemic preconditioning may not be able to protect against injury arising from 

underperfusion/hypoxia. However, other studies, in line with our own results, showed that ischemic 
preconditioning reduced injury resulting from severe underperfusion [8-11]. Adenosine Al receptors, the 

most popular candidate of mediating preconditioning protection, must be occupied both during 

preconditioning ischemia (initiation) and prolonged ischemia (mediation) to induce the protective effect 

[12J. Therefore, residual flow during prolonged ischemia may lead to washout of adenosine from the 

interstitium and consequently loss of protection. Against this argument is our'observation that coronary 

venous adenosine levels during low-flow ischemia were in the pM range (mean values amounted to 0.56 

pM and 3.61 pM in preconditioned and control hearts, respectively; see Chapter 6) whereas the ~ value 

of adenosine Al receptor activation lies in the nM range [13,14]. Coronary venous adenosine levels 

during underperfusion reflect interstitial adenosine levels because the concentration gradient between 

both compartments present during nonnoxia is almost completely reduced during underperfusion due 

to the saturation in the endothelial uptake of adenosine in stressed hearts [15-17]. A recent study using 
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the microdialysis technique showed that interstitial adenosine levels during no-flow ischemia were 

similar to those in the coronary venous effiuent during early reperfusion [18]. Thus, interstitial adenosine 
levels (a reflection of adenosine AI receptor activation) during severe underperfusion are probably high 

enough to occupy the adenosine AI receptor, mediating preconditioning protection [12]. Against the 

washout hypothesis is also the observation that ischemic preconditioning exists in species having 

collateral flow [1]. It is possible that there could be a critical flow above which preconditioning effects 

are lost. It is important to keep in mind that fundamental differences exist between no-flow and low-flow 

ischemia, especially with respect to carbohydrate metabolism (see section 3). An important difference 

between both fomls of ischemia is that during underperfusion washout of metabolic end-products may 

occur as we have shown in Chapter 6. 

In the experimental model of acute hibernation, prolonged hypoperfusion is preceded by short 
no-flow ischemia without reperfusion [19,20]. This is akin to the human situation of hibernating 

myocardium where hypoperfusion is preceded by an acute ischemic insult. Because ischemic 

preconditioning not necessarily requires internlittent reperfusion [21,22], preconditioning and hibernation 

may be linked. 

1.2. Presumed redundant pathways in preconditioning 

Although there is ample evidence that preconditioning can take place by many alternative 

(receptor) routes [23], it is surprising that inhibition of one pathway often abolishes preconditioning 

completely. Goto et al. [23] proposed that protein kinase C (PKC) must be stimulated beyond a threshold 

level before cardiac protection by ischemic preconditioning takes place. In this model, adenosine, 

bradykinin and norepinephrine released during preconditioning ischemia trigger protection by 

stimulating PKC, provided that the threshold activity of the kinase is exceeded. Blockade of a single of 

these 'receptor routes' results in the abolition ofischemic preconditioning, as has been shown by many 

studies (see, e.g., Goto et a!. [23]). In this thesis, we demonstrated that 8-SPT completely blocked the 

protective effect of ischemic preconditioning (Chapters 7 and 8). This contrasts sharply with the 
redundancy of vasodilator systems in the coronary circulation. Thus, in chronically instrumented dogs, 

neither adenosine receptor blockade with 8-phenyltheophylline [24] nor the KATP channel blocker 

glibenclamide [25] prevented exercise-induced increases in coronary blood flow, when either blocker 

was administered alone. In contrast, when both vasodilator mechanisms were blocked simultaneously 

[26], the increase in coronary blood flow was markedlY attenuated, indicating that endogenous adenosine 

and KATP channels playa synergistic role in maintaining coronary vasodilation in exercising dogs. Thus, 

when a single vasodilator mechanism is blocked, another mechanism can act to compensate and mediate 

the active coronary hyperemia during exercise. 

1.3. Does preconditioning protect against necrosis mId apoptosis? 

Jnline with the first report on the infarct-size limiting effect ofischemic preconditioning in dogs 

(1] (see also Chapter I, Figure I), we demonstrated that both ischemic and pharmacological 

preconditioning improved contractile function in isolated rat hearts subjected to ischemia. Improved 

functional recovery in these hearts most likely reflects reduced infarct-size since release of CK, a 

'marker' enzyme of myocardial necrosis, was also reduced in these hearts (Chapter 6, Figure 3a). 
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Moreover, total purine release, a marker of the degree of ischemic injury, was also lower in ischemically 

or phanllacologically preconditioned hearts (Chapter 6, Figure 4; Chapter 9, Figures 4 and 6). Other 

studies have indicated that reduced contractile dysfunctioning in ischemically preconditioned hearts 

indeed reflects reduced infarct~size rather than reduced stunning [27-29]. 

Recently, it was discovered that cell loss during ischemialreperfusion not only consists of 

necrosis but also apoptosis [30-33]. In contrast to necrosis, apoptosis is an active energy-consuming 

process orchestrated by a genetic program not leading to an inflammatory reaction and fomlatioll of scar 
tissue. Apoptosis counterbalances cell proliferation and is involved in the remodeling of tissue in fetal 

development (organogenesis) and the removal of unwanted or damaged cells. Deregulated apoptosis due 

to an imbalance between survival factors and death promoting factors plays a role in the pathogenesis 

of many diseases [34~36]. Apoptosis can be inhibited (e.g., in cancer, autoimmune diseases, and viral 

infections) or excessive (e.g., in aids and neurodegenarative diseases) and is also involved in 

cardiovascular diseases like heart failure, ischemic heart disease, and atherosclerosis [34]. Necrosis 

(accidental cell death or oncosis) and apoptosis (programmed cell death) most likely are two independent 
and distinct pathways of ischemia-induced cell loss (30,37]. The relative contribution of apoptosis and 

necrosis to cell death following ischemia and reperfusion is poorly described. 

In Chapter 9, we demonstrate that the degree of apoptosis was low after 30 min of low-flow 

ischemia and 30 or 150 min ofreperfusion (Figure 7). Furthennore, ischemic preconditioning did not 

reduce apoptosis in contrast to earlier observations in vitro [38] and in vivo [39]. Whether 

pharrnacological'preconditioning mimetics' like KAlP"channel openers and adenosine analogs also reduce 

apoptosis is hardly studied. The results presented in Chapter 9 (Figure 7) indicate that adenosine analogs 

might be more effective than ischemic preconditioning in reducing apoptosis. 

2. Does adenosine trigger ischemic preconditioning? 

2.1. Adenosine receptors are involved ill ischemic preconditioning 

In this thesis, we demonstrate that adenosine triggers ischemic preconditioning of rat hearts. 

Adenosine exerts its cardioprotective action by binding to the adenosine AI and A3 receptors located on 
the myocardial plasma membrane. Thus, pretreating hearts with either the AI-selective agonist CePA 

(Chapters 7-9) or the A,·selective agonist IB·MECA (Chapter 9) mimicked protection by ischemic 
preconditioning. Moreover, the non-selective adenosine antagonist 8-SPT could abolish the protective 
effect of ischemic preconditioning (Chapters 7 and 8). The evidence for the involvement of adenosine, 

acting on either AI or A3 receptors, in ischemic preconditioning is overwhelming and is highly conserved 

between species since adenosine receptor-mediated cardioprotection has also been observed in dogs 

[I,40,4IJ, pigs [21,42,43J, rabbits [44·5IJ, chick [52·54J, and humans [55·59J. Moreover, transgenic 
overexpression of the adenosine AI receptor in mice {60,61] or overexpression of the adenosine At and 

A3 receptors in chick myocytes [62] reduces ischemic injury. 

In Chapter 5, the effectiveness of the adenosine regulating agent acadesine, used as a 

preconditioning agent, was examined in patients undergoing pacing-induced ischemia. No beneficial 

effects of this drug were observed on ventricular function and hemodynamics (Chapter 5, Table 1). Our 
observations are in line with several clinical trials on the effectiveness of acadesine administrated to 
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patients just prior to and during coronary artery bypass surgery [63-65]. The limited success of this drug 

to protect patients against the deleterious effects of ischemia may have several reasons. First, acadesine 

might only raise vascular adenosine during ischemia and not interstitial adenosine [66]. The pronounced 

cardioprotective properties of preconditioning are related to adenosine Al receptor activation, which is 

located on the myocardial membrane and activated by interstitial adenosine (see Chapter 2, Figure 4). 

Second, since acadesine raises adenosine in ischemic tissues only, the severity of ischemia during 

coronary artery bypass surgery [63-65J or maximal pacing (Chapter 5) may be too low to increase 

adenosine and to protect the heart. This may explain the observation that acadesine only was effective 

in high-risk patients undergoing coronary artery bypass surgery [64]. 

In Chapter 9, we show that selective agonism of either the adenosine AI or A) receptor resulted 

in a similar degree of myocardial protection (Figure 2), in line with published reports [48,54,56]. 

However, from the results presented in that chapter, we cannot draw any conclusions concenting the 

relative contribution of the adenosine Al and A) receptor in the protective effect of ischemic 

preconditioning. A recent study in rabbit hearts [51) concluded that the adenosine component of ischemic 

preconditioning is preferentially mediated by the Al receptor since adenosine binds to this receptor with 

a greater affinity than to the A) receptor (~AI = 28 nM; ~A) = 532 nM). However, most likely 

adenosine AI and AJ receptors are both maximally activated during ischemic preconditioning co­

operating in its induction [47] since interstitial adenosine levels during preconditioning ischemia as well 

as during prolonged ischemia reach values in the micromolar range in dogs [67], rabbits and rats [18,681. 

CCPA infusion induced profound negative chronotropic effects resulting in a 79% decline in pre­

ischemic rate-force product (Chapter 7, Figure I). We demonstrated that CePA-induced cardioprotection 

is unrelated to its negative chronotropic and dromotropic effects (Chapter 7) as well as to changes in 

coronary flow (Chapter 8) during infusion of the drug. Cardioprotection by pretreatment with the 

adenosine A) receptor agonist IB-MECA did not lead to hemodynamic side-effects (Chapter 9, Figure 

2). Hence, this class of agents may be more beneficial for use in patients. 

In Chapters 6 (Figure 4) and 9 (Figures 4 and 6), we demonstrate that ischemic preconditioning 

reduces the release of adenosine and total purines during underperfusion in line with other reports 

measuring interstitial adenosine [18,67]. Reduced purine release during ischemia in preconditioned 

hearts was thought to reflect reduced ATP catabolism [2]. However, no differences in ATP levels 

between preconditioned and control hearts were observed in freeze-clamped hearts (Chapter 6) or in 

hearts subjected to 3Ip_NMR (Chapter 8, Figure 4a; see also [18]). The analysis of a relation between 

ATP catabolism in the ischemic heart and the amount of purines released may be hampered by the fact 

that small reductions in ATP may lead to a large release of purines. 

2.2. Does adenosine playa role il/ precondWollillg of rat hearts? 

In Chapters 7-9, we showed that adenosine Al and AJ receptors are involved in ischemic 

preconditioning of rat hearts. Phannacological stimulation of these receptors prior to ischemia with 

selective agonists directed at the Al (CCPA) or A) receptor (IB-MECA) mimicked ischemic 

preconditioning. Also, protection was abolished in hearts ischemically preconditioned in the presence 

of the nOJl~selective adenosine antagonist 8-SPT. Thus, we confiml observations in other species that 

adenosine is one of the most important triggers of ischemic preconditioning (see previous paragraph). 

However, the role of adenosine in preconditioning of rat hearts is controversial in contrast to all other 
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animal species studied. With some exceptions, most studies using adenosine or adenosine antagonists 

have failed to mimic or abolish preconditioning protection in the rat heart, respectively (see Tables I and 

2). This paradox may have several reasons. First, interstitial adenosine levels during preconditioning are 

high in the rat compared to other species (e.g., rat ~7 liM vs. rabbit ~2 JIM), which may require increased 

antagonist concentration [68]. Headrick [68] showed that IO I'M 8-SPT effectively abolished 
preconditioning protection in rabbits but not in rats. In the latter species, preconditioning protection 

could be abolished when the 8-SPT dose was increased to 50 JIM. We confirmed this observation 

(Chapters 7 and 8). Second, administration of exogenous adenosine in rats may be limited by the 

instability of this compound [69] and the high activities of adenosine-degrading enzymes in the rat 

coronary endothelium [70], making the coronary endothelium an active barrier for the transport of 

adenosine to the interstitium [71]. This is probably the reason why mostly studies using selective 

agonists of the AI receptor, in stead of the natural ligand adenosine, have demonstrated protection against 

ischemic injury in this species (Table 1). Note, the half-life of adenosine in human blood is very short 

(0.6 seconds [69]) compared to that of synthetic adenosine AI agonists, which exhibit substantially longer 

half-lives dependent on the size of the iV-substituent (e.g., cyclopentyladenosine: 15 min; 

cyclohexyladenosine: 250 min [72,73J). Third. the inability of adenosine antagonists to block ischemic 

preconditioning in rat hearts may reside in the use of selective AI antagonists, which do not abolish the 

Aj mediated component of ischemic preconditioning. Moreover, rat and rabbit A) receptors weakly bind 

xanthine derivatives like 8-SPT compared with human and sheep A3 receptors [74]. This makes it likely 

that in the rat, the use of non-selective xanthine-based adenosine antagonists like 8-SPT do not 

completely block the adenosine A)-mediated part of protection by ischemic preconditioning. Ofillterest 

is also the observation that in human pediatric myocytes there is a U-shaped dose response relationship 

between cellular damage after simulated ischemia and the concentration adenosine in the preincubation 

media [57J: only 10 and 50 JiM adenosine showed a significant protective effect against cellular damage 

while both higher and lower doses did not confer any protection. In conclusion, species differences in 

the adenosine-mediated component of ischemic preconditioning seem to be more of a quantitative than 

a qualitative nature. 

3. Myocardial carbohydrate metabolism: final end-effector of ischemic preconditioning? 

Alhough it is without doubt that preconditioning is receptor-mediated (see previous section), 
with a subcellular cascade of G-proteins, phospholipases and protein kinases, the end effector is still 

elusive [23]. Of the humoral factors released during preconditioning ischemia that may trigger the event 

(cf. Chapter I, Figure 2; Chapter 3, Figure 1; see also [23]), adenosine is one of the most important. 

These triggers are all coupled to G-proteins. It has been proposed that preconditioning through these G­

protein coupled receptors results in activation of PKC. Subsequent studies have shown that inhibition 

or stimulation ofPKC could abolish or mimic the protective effect, respectively. Once activated, PKC 

may phosphorylate many target proteins. It is still unknown which end effector(s) is (are) involved in 

ischemic preconditioning. Besides KArp channels, PKC may phosphorylate an unknown key~regulating 

enzyme of glycolysis. 
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Table 1. Preconditioning with adenosine receptor agonists and myocardial protection in rat hearts 

Reference Model ADO agonist Administration (A) of drug & Iscbemia (I) and Effect Result 
reperfusion (R) before Isc emia reperfusion (R) measure 
(min) (min) 

[75] Isolated heart ADO (100"M) 30A. no reperfusion 301-4SR TIC Mimics" 

(76] Isolated heart. regional I CCPA (0.5 pg) SA- lOR 301 - 120R IS Mllrucs'" 

[77,78] Isolated heart ADO 1'00 pM) lOA, no reperfusion 30] - 45R FR Mimics'" 
CHA 0.25pM) Mimics" 

(79] In situ. regional I ADO (IS mg) SA -lOR 901 -320R ]S Failed to mimic 

[SO] Isolated heart ADO (20 pM) 12A. no reperfusion 301 ~ lOR FR;TIC Mimics'" 

[81] Isolated heart ADOI'0~ SA~SR 401 - 30R FR Failed to mimic 
Exacerbates"'''' ~,bg Exacerbates ...... 

[S2] W oIking heart 
ADOt"1:ll 

SA ~SR 201 - 3SR FR;CK Failed to mimic 
ADO 50 Failed to mimic 
ADO 100pM) Failed to mimic 

[S3] Isolated heart ADO (20 pM) ?? 301 - 20R FR Mimics 

[84] Adult myocytes ADO (100
0

M) ISA, no reperfusion 1801 C] Mimics"'# 
CCPA(10 nM) Mimics"'# 

[85] Isolated heart ADO (100pM) ?? 301 - 4SR FR Mimics 

[86] Isolated heart. regional I ADO (10 pM) SA-SR 101 - lOR VT,VF Failed to mimic'" 

[68] Isolated heart CHA(OS "M) 6A- lOR 301 - 30R FR Mimics 

[87] Isolated ventricle ADO (125 pM) SA- lOR 30H - 60R FR Mimics 

[SS] Isolated heart ADO (125 pM) 2A-IOR 201 -40R FR Mimics'" 
CK Failed to mimic'" 

[S9] Isolated heart, regional I PIA (10.10 
- S"'IO-3M) lOA, no reperfusion 30] VT Failed to mimi~'" 

also during I VF Mimics'" t~lO' Ml 
VPB Mimics'" ~5"'10·9 M) 

[90] Working heart CHA(0.5pM) ? (prior to ischemia) 301 - 30R FR Mimics'" 

ADQ=adenosine; CCP A =2-Chloro-~ -cyclopentyladenosine; PIA =}f -(2-phenylisopropyl)-adenosine; I9schemia; H=h)lp<)xi~ R=reperfusion: IS---mfarct-size; FR=functionai recov~ TIC=tirne-
to-onset-of-ischemic contracture; VT=ventncular tachycardia; VF=ventricular fibrillation; VPB=ventricular premature beat; CK. creatine kinase release upon reperfusion: CI""Ce lular injury: 
CHA=~ -cyclohexyladenosine; "'''''Compared to controls (no preconditioning group present); "''''=lower FR compared to controls: #=effect not as large as lschenuc preconditioning. 



Table 2. Adenosine receptor antagonists and ischemic preconditioning in rat hearts 

Reference Model ADO antagonist Administration Ischemia. (I) and Effect Result 
(preconditionin

n 
protocolliscbemia (I)~ reperfusion (R) measure 

reperfusion (R) ) (min) 

[75] Isolated heart BW-AI433U (10 "M) + ADO (100 f,MJ, 30' before I 
+ PIA (l ,uM , 3 'before I 

301 ~ 45R TIC Abolishes'" 

[76] In situ. regional I PD 115,199 (3 mglkg) Lv. 5' before PC (3[5I-5R]) 301 - l20R IS Failed to abolish 

[77] Isolated heart DPCPX(5#M) + 100,uM ADO 10' before I 301 -45R FR Abolishes ADO 
protection 

[79] In situ. regional I 8~SPT (10 mglkg) bolus 2'" 6' before PC (3[31~5R]), IS' later 901-360R IS Failed to abolish 

[91] Isolated heart BW-A1433UJI0 ,uM) during PC (4[5I-5R]) 301 - 20R FR Abolishes 
CPDPX(5# ) Failed to abolish 

[81] Isolated heart BW-AI433U (10 #M) before and during PC [51-5R] 401 - 30R FR Failed to abolish 

[92] Isolated heart BW-AI433UJIO,uM) before PC [51 -lORt 301 -30R FR Failed to abolish 
CPDPX(5# ) before hypoxic PC 51-lOR] 30H~30R Failed to abolish 

[82] Working heart 8-SPT (10 #M) throughout experiment [5I-5R] 201 - 35R FR;CK Failed to abolish 

[83] Isolated heart BW-AI433U~0,uM) during PC (4[5I-5R]) 301 - 20R FR Abolishes 
CPDPX(5# Failed to abolish 

[84] Adult myocytes 8-SPT (100 #M) + 100,uM ADO 15' before and during I 1801 CI Abolishes 

[93] Isolated heart. 8-SPT (100 #M) + before, during PC (3[5I-5RJ, and fIrst 5 min of 1201 - 120R IS Failed to abolish 
regional I ttl-antagomst regional ischemia 

[85] Isolated heart DPCPX(S#M) + 100,uM ADO before I 301 -45R FR Abolishes 

[94] In situ. regional I 8-PT (10 mglkg) Lv. 10' before PC (21 - 3R) 51 - lOR VT,YF Failed to abolish 

[68] Isolated heart 8-SPT eO #i:1] during PC (61 -lOR) 301 - 30R FR Failed to abolish 
8-SPT 50,u Abolishes 

[87] Isolated ventricle 8-SPT (50 #M) 3' before and during ADO- 30H - 60R FR Abolishes ADO 
preconditioning (S'A - lO'R) protection 

[89] Isolated heart,regional I DPCPX (10' M) + PIA (l0-8M). 10' before I 301 VT,YF,VPB Abolishes 

PC=preconditioned; I=ischemi~ H=hypoxia: R=reperfusion; FR=functional recov~; VT=ventricular tachycar~ VF=ventricu1ar fIbrillation; VPB=ventricu1ar f:rem3ture beat; CK. creatine 
kinaSe release ~n reperfusion; TIC=tune--tQ-Onset-Qf-ischemic contracture: 8-SPT=S-~sulf~henYl) theophylline: 8-PT=8-phenyltheophylline; PDl15,199=N 2-{dimethY1amino)ethl~-N-
methyl-4-(2,3, .7 -:.tetr3.hydra-2,?-dioxo-l,3-dipropyl-l-purin-8-yl) benzosulfonamide; B -AI 33U=paraphenyl carboxyl substituted denvative of l.3-dipropyl-8-phenyIxantbine: DPC =8-
cyclopentyl-l.3-dipropyIxantbine. 



General disclfssion and conclusions 

3.1. The glycogen hypothesis: Is preconditioning mediated by preischemic glycogen depletion alld 

reduced glycolytic catabolite accumulation during ischemia? 

In this thesis, we show that irrespective of the type of ischemia studied (no~flow or 10w~f1ow), 

ischemic preconditioning reduces I) preischcmic glycogen and 2) glycogenolysis during subsequent 

prolonged ischemia (Chapter 6, Figure 5b; Chapter 7 J Figure 4; Chapter 8, Figure 3a). Preischcmic 

glycogen depletion is dependent on the preconditioning regimen used: 2 cycles of 5 min stop~f1ow 

ischemia and reperfusioll reduced total glycogen by 60% (Chapter 6, Figure 5b) whereas 4 cycles of 2 

min stop~f1ow ischemia and 3 min reperfusion reduced total glycogen by 40% (Chapter 8, Figure 3b). 

These observations are in line with other studies showing that ischemic preconditioning reduces 

glycogen breakdown during no~flow ischemia, therefore attenuating the accumulation of glycolytic end~ 

products (e.g. hexose 6~phosphates, lactate) and the development of intracellular acidosis [2,95,96]. The 
glycogen hypothesis states that reduced pre~ischemic glycogen in preconditioned hearts is protective 

insofar as it reduces glycolytic catabolite accumulation during ischemia, despite reduced ATP production 

[97-99]. However, several lines of evidence are against this hypothesis. First, pH during ischemia is 

unrelated to preconditioning protection. Although many studies showed reduced acidosis in 
preconditioned hearts [97,99-102], we demonstrated in Chapter 8 (Figure 4d) using 31 P~NMR that there 

is no relation between pH during ischemia and protection by preconditioning, in line with other reports 

[18,96,103-105]. Second, glycogen loading prior to ischemia reduces ischemic injury [106, I 07]. Third, 

the pre-ischemic glycogen content is correlated with the time of day but not post~ischemic functional 
recovery [108]. Fourth, although Weiss et al. [95] suggested that depressed glycogenolysis is responsible 

for the protective effect of ischemic preconditioning, others observed no relationship between functional 

recovery after prolonged ischemia and pre-ischemic glycogen levels (104) or glycogen depletion during 

ischemia [109]. \Ve demonstrated in Chapter 8 that reduced ischemic injury in hearts phannacologically 

preconditioned with CCPA was associated with the highest preischemic glycogen levels (Figures 3a and 

b). Furthermore, we observed no relation between glycogen depletion during ischemia and functional 

recovery in the various groups studied. In conclusion, reduced glycogen utilization and consequent 

reduced glycolytic catabolite accumulation during ischemia merely represent epiphenomena of ischemic 

preconditioning. 

3.2. Ischemic preconditioning is mediated by increased glycolysis-fl'Om-glucose during fowf/ow 

ischemia without increasing lalal glycolylic flux 

In contrast to no~f1ow ischemia [2,95J, total anaerobic glycolysis (read: lactate production) 

during low~flow ischemia is similar in preconditioned and control hearts (Chapter 6, Figure 3b; Chapter 

7, Figure 3; Chapter 9, Figure 5). Cave et al. [6] also observed equal lactate release during hypoxia and 

reoxygenation between preconditioned and control hearts. Since preconditioning reduced glycogenolysis 

during ischemia (see previous section), we argued that ischemic preconditioning protects against 
ulldcrperfusion by inducing a shift from endogenous to exogenous glucose utilization, without increasing 

total glycolytic flux. We examined this hypothesis more' closely in Chapter 7 by measuring glucose 

uptake during low-flow ischemia by the detrition rate of [2-3HJglucose. As hypothesized, preconditioning 

increased glycolysis-rrom-glucose during underperfusioll by 31 % (Chapter 7, Figures 4 and 5). Similarly, 

Janier et al. [8] showed both increased anaerobic glycolysis and glucose uptake in isolated rabbit hearts 
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subjected to 10w~f1ow hypoxia. Another interesting observation of our research was that increased 

glucose uptake in preconditioned hearts mainly occurred during the first 10 min of ischemia; glucose 

uptake was ca. twice higher in preconditioned hearts during early ischemia (Chapter 7, Figure 5). 

Similarly, Runnman et a!. [110] showed the importance of enhanced glucose utilization and reduced 

glycogenolysis in hypoxic rabbit ventricle without increasing total glycolytic flux. These authors also 

demonstrated that elevated glucose during hypoxia (read: increased glycolysis~from~glucose) was more 

beneficial during early than late hypoxia. To exclude the possibility that increased glucose uptake during 

low~f1ow ischemia is an epiphenomenon of ischemic preconditioning, we lowered the glucose 

concentration during underperfusion from 10 to 5 mM and omitted the insulin. This would result in 

reduced glycolysis-from~glucose since delivery of glucose (substrate supply) is the rate-limiting step of 

glycolysis in low-flow ischemia and not the extent of glycolytic enzyme inhibition [111,112], as we 

showed in Figure 5 of Chapter 7. Compared to nonnal glucose, the % functional recovery was 

proportionally decreased in preconditioned (from 62 to 30%) and control (from 32 to 0%) hearts supplied 

low glucose. From this we can conclude that I) ischemic preconditioning is mediated by increased 

glycolysis-from-glucose during underperfusion, and 2) glycolytic flux controls the extent of damage 

during low-flow ischemia. Our conclusions fit the 'glucose hypothesis' proposed by Opie [113-116] and 

an extensive body of literature data [Ill, 117-122] that enhanced glycolysis-from-glucose delays cell 

necrosis. Also, glycolysis is more effective than glycogenolysis in reducing ischemic injury [110,120]. 

It may appear clear that preconditioning-mediated increased glycolytic flux can only be beneficial in 

situations oflow-flow ischemia. 

The reasons for the protective effect of 'glucose for the heart' [122] may be related to the 

compartmentatioll of ATP in the cell. Glycolytically derived ATP supports ionic homeostasis during 

ischemia and reperfusion [123-126] preventing Ca2
+ overload and ischemic injury. 

3.3. Prog/ycogell 

Low molecular weight proglycogen is a stable intemlediate in the synthesis of classical 

macroglycogen [127]. Ischemia mainly reduces macro glycogen whereas proglycogen is reduced under 

more special situations like intermittent ischemia (128]. In Chapter 6, we tested the hypothesis that 

preconditioning increased anaerobic glycolysis during low-flow ischemia by mobilizing "inert" 

pro glycogen. This hypothesis was rejected based on the observations that 1) anaerobic glycolysis was 

not increased during ischemia in preconditioned hearts (Chapter 6, Figure 3b), and 2) both subfractions 

of glycogen decreased in response to ischemia (Figure Sa) in contrast to previous observations in rabbits 

[128]. Thus, both subfractions behaved similarly as the total glycogen fraction (macroglycogen + 
proglycogen). We showed that the proglycogen fraction of total glycogen is larger than the 

macroglycogen fraction (Figure 5a) in line with a recent report [129]. These authors showed that at 

higher total glycogen concentrations, the relative contribution of macroglycogen increases but never 

equals the proglycogen fraction. The physiological role of proglycogen still has to be detemlined. 

3.4. Are preconditioning-induced changes ill carbohydrate metabolism mediated by adenosine? 

The hypothesis that preconditioning effects on carbohydrate metabolism during underperfusion 

are mediated by the adenosine AI receptor is investigated in Chapter 7. Paradoxically, although increased 
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glucose uptake mediated ischemic preconditioning in this study (see section 3.2), reduced contractile 

dysfunctioning in CCPA pretreated hearts (Figures 1 and 2) was associated with a 47% reduction in 

lactate production (Figures 3 and 4) and a 61% reduction in glucose uptake (Figures 4 and 5). These 

observations were con tinned in Chapter 9 (Figures 2 and 5). From this one might conclude that ischemic 

preconditioning~induced effects on carbohydrate metabolism during underperfusion are not mediated 

by the adenosine Al receptor. However, the effect of adenosine on glycolysis during ischemia is related 

to the pre~ischemic metabolic status of the heart [130]. In that study, ~~cyclohexyladenosine, a 

compound similar to CCPA, also reduced glycolysis, in line with our study whereas adenosine had the 

opposite effect [130]. Thus, adenosine released during preconditioning ischemia may differently affect 

glycolysis compared to phanllacological preconditioning of hearts by Ilormoxic infusion of adenosine 

(analogs). The nOll-selective adenosine antagonist 8~SPT both blocked glycolysis~from-glucose and 

preconditioning protection in our study (Chapter 7; Figures 1,2,4, and 5), which supports the notion that 

ischemic preconditioning, via adenosine, is mediated by increased glycolysis~from"glucose. We cannot 

explain the paradoxical observation that CCPA induces protection despite depressed glucose uptake 

(Chapter 7, Figure 5) and anaerobic glycolysis (Chapter 7, Figure 3; Chapter 9, Figure 5). CCPA may 

induce cadioprotection by a different mechanism, and might be just another example of the great 

redundancy in routes by which ischemic preconditioning can take place (see also discussion section 1.2). 

4. Clinical relevance 

4.1. Is ischemic preconditioning an "healthy animal heart phenomenon "? 

Most studies have investigated the cellular basis of ischemic preconditioning in young, healthy 

animal hearts [131]. Since ischemic heart disease is often associated with hypertension, 

hypercholesterolemia, heart failure, increased age, and diabetes, one might ask whether studies in young 

healthy animal hearts can be extrapolated to the diseased (human) heart. Ischemic preconditioning may 

not occur in aged hearts [132,133] due to a decrease in noradrenalin release during transient ischemia 

[1321 and/or a decrease in adenosine receptor function [134]. Hypercholesterolemia but not 

atherosclerosis blocks precondilioning protection [131]. Preconditioning of hearts from animals with 

diabetes, a risk factor for ischemic heart disease, is controversial: both positive [11,135,1361 and 

negative [137,138] results have been published. This discrepancy in animal studies may be due to 
differences in 1) the type of ischemia used (no-flow vs. low~flow), 2) the duration and severity of the 

diabetic state, and 3) the substrates used [139]. Thus, hearts from animals with more severe and 

prolonged diabetes, supplied glucose and fatty acids, and/or subjected to low~flow ischemia are more 

prone to ischemic injury [139J. In contrast, mildly diabetic hearts supplied only glucose and subjected 

to no-flow ischemia are less sensitive to ischemic injury [139,140]. This may be related to the high rates 
of fatty acid oxidation and inhibition of glycolytic pathways in diabetic animals, which may be beneficial 

during no~flow ischemia but are detrimental during low~flow ischemia (see also section 3.3). Clinically, 

the diabetic heart is more sensitive to ischemic injury since diabetes mellitus is associated with increased 

cardiovascular mortality. Isolated human right atrial trabeculae from diabetes mellitus patients 

undergoing coronary artery bypass graft surgery (CABO) can be ischemically preconditioned [141]. In 

Chapter 3, we discussed the evidence for the existence of ischemic preconditioning in humans. Evidence 
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that the human heart can be preconditioned has been obtained I) in human trabeculae and cultured 

myocytes, 2) during coronary angiopiasty, 3) in patients with preinfarction angina, 4) in patients with 
'warm~up' or 'walk-through' angina, and 5) during cardiac surgery (see also [27,142,143]). 

Preconditioning in the fonn of two cycles of brief aortic cross~clamping prior to CABO [144,145] or 

aortic and mitral valve replacement surgery [146] provides the most direct evidence ofpreconditioning 

the human myocardium. Thus, it seems reasonable to assume that the human heart can be preconditioned. 

Moreover, the mechanism of preconditioning protection in human hearts is similar to that in animal 

hearts. Thus, preconditioning of human trabeculae [56,58,141,147-149] and human myocytes 

[57,150,151] involves adenosine AliA) receptor activation, a-I-adrenoreceptor activation, protein kinase 

C, and opening of KATP channels. However, whether preconditioning is of benefit to all patients is 

questionable and the application of preconditioning in humans needs further research. For instance, 
diabetic patients taking oral sulfonylurea hypoglycemic drugs are at increased risk of cardiovascular 

mortality and are not susceptible to ischemic preconditioning in contrast to diabetic patients not taking 
this type of agents [141]. This may be related to the non-specific action of sulfonylurea drugs, which 

apart from inhibition of pancreatic KATP channels also blunt the KATP channel-dependent component of 

ischemic preconditioning in the heart [152,153]. 

4.2. Adenosine 

Administration of adenosine to patients prior to CABO [55] or percutaneous transluminal 

coronary angioplasty (PTCA) [59] reduces myocardial injury. Although not strictly phamlacological 

preconditioning, adenosine given following aortic cross-clamping as well as just prior to removal of the 

cross-clamp [154] or adenosine added as adjunct to blood cardioplegia [155] resulted in improved post­

operative cardiac function and less use ofinotropic support, respectively, in humans undergoing CABG. 

Furthermore, adenosine is safe to administer during CABO [155,156]. Thus, phamtacological 

preconditioning with adenosine may provide a safe and effective strategy to attenuate ischemic injury 
in patients undergoing heart surgery. Preconditioning with adenosine seems more advantageous than 

ischemic preconditioning since 1) brief ischemia can induce arrhythmias, and 2) ischemic 

preconditioning does not reduce stunning in contrast to adenosine [155]. The efficacy of selective 

adenosine A/A) agonists as pharmacotherapy in humans needs to be tested. The use of selective 

adenosine A3 analogs may be useful in the clinical setting due to the absence of hemodynamic side~ 

effects. 
Preconditioning requires pretreatment to be effective and extends the development of infarction 

with ca. 1-2 hours. Therefore, it can be easily applied in the setting of planned ischemia such as in 

cardiac surgery. However, acute myocardial infarction due to rupture of atherosclerotic plaques is a 

sudden and unpredictable event. Whether patients at risk for acute myocardial infarction can be kept in 

a continued protected state using prophylactic treatment with phannacological preconditioning mimetics 

like adenosine or KATP channel openers (e.g., nicorandil), needs further investigation and provides a 

major challenge. In animals, tolerance develops and protection is lost in response to multiple ischemic 

episodes [157] or continued administration of adenosine Al agonists [158,159]. Thus, tolerance to 

chronic adenosine administration, probably due to downregulation/desensitization ofthe receptor, fonns 

a major problem for the phannacotherapeutic exploitation of adenosine in patients at risk for myocardial 

infarction. 
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In animal models, adenosine given at reperfusion after myocardial infarction reduces infarct size 

[160] probably via adenosine A2-mediated effects on the coronary vasculature (prevention ofno-reflow 

phenomenon, anti-inflammatory and anti-thrombotic actions). Whether adenosine in conjunction with 

reperfusion strategies can prevent 'reperfusion injury' is currently under investigation in two Phase II 

clinical trials (AMISTAD and ALIVE trials) [160]. 

4.3. Carbohydrate metabolism 

In this thesis, we showed that increased glycolysis-from-glucose during low-flow ischemia 

mediates ischemic preconditioning. This fits the notion that glucose is beneficial for the ischemic heart 

[113-116,122,161-165]. However, ischemic preconditioning fomls a rather difficult strategy to increase 

glucose use and to decrease fatty acid oxidation in the ischemic heart. Because myocardial ischemia in 

humans is of the low-flow type [3,4J. where glucose supply is the rate-limiting step in glycolysis-from­

glucose [112], it may be simpler to treat the ischemic heart with glucose. Thus, the concept of'metabolic 

therapy' or 'metabolic management of ischemic heart disease'[162,165-167] is based on shifting 

substrate utilization away from detrimental free fatty acid metabolism and toward beneficial glucose 

metabolism by provision of glucose-insulin-potassium (GIK) or phannacological intervention. A meta­

analysis [168,169J on the effect ofGIK therapy in patients with acute myocardial infarction showed a 

significant mortality reduction (28% to 48%, depending on the subgroup). The included trials were all 

conducted in the prethrombolytic era. One might argue that there is no need for such a metabolic therapy 
since the degree of mortality reduction with GIK is comparable to that currently achieved with 

thrombolytic therapy (GUSTO II b investigators, [170]). However, a recent clinical trial revealcd a 

relative mortality reduction of 66% in patients treatcd with GIK and reperfusion strategies as compared 

to patients who received reperfusion strategies alone [171,172]. Similarly, The Diabetes Mellitus Insulin­

Glucose Infusion in Acute Myocardial Infarction (DIGAMI) trial [173] showed a 29% to 58% 

(depending on the subgroup) reduction in mortality in patients treated with insulin and glucose. Thus. 

GIK initiated as soon as possible after suspected acute myocardial infarction (e.g., in the ambulance) may 

extend the time window in which successful salvage is possible with thrombolytic therapy or primary 

angiopiasty. 

5. Conclusions 

With reference to the aims of this thesis, the following conclusions can be drawn: 

• Ischemic preconditioning protects against the deleterious effects of no-flow and low-flow 

ischemia. 

• Both adenosine Al and AJ receptors are involved in ischemic preconditioning of rat hearts. 

• Preconditioning protection can be dissociated from reduced ischemic glycogenolysis and 
attenuated glycolytic catabolite accumulation. 

• Increased glycolysis-from-glucose during early low-flow ischemia mediates ischemic 

preconditioning. 

• Whether increased glucose uptake in preconditioned hearts is mediated by the adenosine Al 
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receptor is unclear. Cardioprotection by pre-treatment with a selective adenosine AI agonist may 

involve a different mechanism compared to ischemic preconditioning. 

6. Recommendations for future studies 

• A randomized clinical trial on the efficacy of adenosine (agonists) administrated prior to and 

during coronary artery bypass surgery or percutaneous coronary angioplasty should be initiated. 

• Further studies should examine the role ofthe adenosine A3 receptor in cardioprotection and the 

underlying signal transduction pathways. 

• Strategies to circumvent tachyphylaxis a11er chronic treatment with adenosine (analogs) should 

be explored for the benefit of patients at risk for myocardial infarction. 

• The controversial effects of adenosine (analogs) on glycolysis during ischemia need further 

investigation, especially in relation to the preischemic metabolic status of the heart. 

• The possible compartmental ion of glycolytic ATP and glycogenolytic ATP should be further 

explored. Is it possible that glycolytic ATP is beneficial and glycogenolytic A TP is detrimental 

to the ischemic myocardium? 

References 

[I] Murry CE, Jennings RD, Reimer KA. Preconditioning with ischemia: a delay of lelhal cell injury in ischemic 
myocardium. Circulation 1986;74:1124-1136. 

[2] Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays 
ultrastructural damage during a sustained ischemic episode. Cire Res 1990;66:913·931. 

[3] Christian TF, O'Connor MK. Schwartz RS, Gibbons RJ, Ritman EL. Technetium·99m MIDI to assess coronal)' 
collateral flow during acute myocardial infarction in two closed-chest animal models. J Nuel Med 1997;38: 1840·1846. 

{4] Milavelz JJ, Giebel DW, Christian TF. Schwartz RS, Holmes DR, Jr., Gibbons RJ. Time to therapy and salvage in 
myocardial infarction. J Am Coli CardioI1998;31:1246-1251. 

[5] Opie LII. The Heart· Physiology and Metabolism. (2 ed.) New York: Raven Press, 1991. 
[6] Cavc AC, 1I0rowitzGL, Apstein CS. Can ischemic preconditioning protect against hypoxia-induceddamagc? Studies 

of contractile function in isolated perfused rat hearts. J Mol Cell Cardiol 1994;26: 1471-1486, 
(7J Cave AC, Silverman AS, Apstein CS. Ischemic preconditioning does not protect against contractile dysfunction in 

the presence of residual flow: studies in the isolated, blood·perfused rat heart. Circulation 1997;96:3087-3093. 
[8] Janier MF, Vanoverschelde J-L, Bergmann SR. Ischemic preconditioning stimulates anaerobic glycolysis in thc 

isolated rabbit heart. Am J Physiol 1994;267:HI353-1360. 
[9} Perchenet L, Kreher P. Mechanicalande1e{lrophysio!ogicaldfe{tsofprecondi\ioning in isolated ischemic/reperfused 

rat hearts. J Cardiovasc PhamlacoI1995;26:831-840. 
[10] Perchenct L, Rochetaing A, Gallois Y, Kreher P. Electrophysiological approach ofthc role ofNa+/I-t exchange in low· 

flow global ischemia and in ischemic preconditioning. Can J Physiol Phamlacoi 1997;75: 120-127. 
[II] Bouchard J-F, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischaemic injury. 

Cardiovasc Res 1998;37:82·90. 
(12] 111Ornton JD, Thornton CS, DO\\lley JM. Effect of adenosine receptor blockade: prevcnting protective preconditioning 

depends on time of initiation. Am J PhysioI1993;265:11504-508. 
[13] Linden J, Patel A, Sadek S. [125I]Aminobenzyladenosine. a new radioligand with improved specific binding to 

adenosine receptors in heart. Circ Res 1985;56:279-284. 
[14] Martens D, Lohse MJ, Schwabe U. CH].8.cyc!opentyl.1,3.dipropylxanthine binding to Al adenosine receptors of 

intact rat ventricular myocytes. Circ Res 1988;63:613·620. 
{15] Matherne GP, Headrick JP, Coleman SD, Berne ru..f. Interstitial transudate purines in nomloxic and hypoxic immature 

and mature rabbit hearts. Pediatr Res 1990;28:348-353. 
[16] Headrick JP, Matherne GP, Berr SS, Berne ru..f. Effects of graded perfusion and isovolumic work on epicardial and 

venous adenosine and cytosoHc metabolism. J Mol Cell CardioI1991;23:309·324. 
[17] Headrick JP, Matherne GP, Berr SS, Han DC, Berne JU..1. l\,'ielabolic correlates of adenosine formation in stimulated 

-152-



General discussion and conclusiolls 

guinea pig heart. Am J Physiol 1991 ;260:HI65·172. 
[18] Harrison GJ, Willis RJ, Headrick JP. Extracellular adenosine le\'els and cellular energy metabolism in ischemically 

preconditioned rat heart. Cardiovasc Res 1998;40:74-87. 
[19] Ferrari R, Cargnoni A, Bernocchi P, et al. Metabolic adaptation during a sequence of no-flow and low-flow ischemia. 

A possible trigger for hibernation. Circulation 1996;94:2587-2596. 
(20) van Binsbergen XA, van Emous JG, Ferrari R, van Echteld CJA, Ruigrok nc. Metabolic and functional consequences 

of successive no-flow and sustained low-flow ischaemia; a Jlp ~IRS study in rat hearts. J Mol Cell Cardiol 
1996;28:2373-2381. 

[21] Koning MMO, Simonis LAJ, de Zeeuw S, Nieukoop S, Post S, Verdouw PD. Ischaemic preconditioning by partial 
occlusion without intemlittent reperfusion. Cardiovasc Res 1994;28:1146-1151. 

[22] SchulzR, PostH, Sakka S, Wallbridge DR, Heusch G. Intraischemic preconditioning. Increased tolerance to sustained 
low-flow ischemia by a brief episode of no-flow ischemia without intenniltent reperfusion. Circ Res 1995;76:942-950. 

[23J Goto M, Liu Y, Yang X-M, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic 
preconditioning in rabbit hearts. Cire Res 1995;77:611-621. 

{24J Bache RJ, Dai X-Z, Schwartz JS, Homans DC. Role of adenosine in coronary vasodilation during exercise. Cire Res 
1988:62:846-853. 

[25] Duncker OJ, van Zon NS, Altman JD, Pavek TJ, Bache RJ. Role ofK+ATP channels in coronary vasodilation during 
exercise. Cireulation 1993:88:1245-1253. 

[26] Duncker DJ, van Zon NS, Ishibashi Y, Bache RJ. Role ofK\TPchannels and adenosine in the regulation of coronary 
blood flow during exercise with nomlal and restricted coronary blood flow. J Clin Invest 1996;97:996-1009. 

[27] przyklenk K, Kloner RA. Ischemic preconditioning: exploring the paradox. Prog Cardiovase Dis 1998;40:517-547. 
[28J Rehring TF, BreW EC, Friese RS, Banerjee A, Harken AH. Cardiac preconditioning protects against irreversible injury 

rather than attenuating stunning. J Surg Res 1995;59:111-114. 
[29J przyklenk K, Kloner RA. Preconditioning: a balanced perspective [editorial}. Br Heart J 1995;74:575-577. 
[30J Kajstura J, Cheng W, Reiss K, el al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables 

ofinfarcl size in rats. Lab Im'esI1996;74:86-107. 
[31J Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit 

cardiomyocytes. J Clin Invest 1994;94:1621-1628. 
[32] Tanaka M, Ito II, Adachi S, et al. Hypoxia induces apoptosis with enhanced expression ofFas antigen messenger RNA 

in cultured neonatal rat cardiomyocytes. Cire Res 1994:75:426-433. 
[33] Fliss II, Gallinger D. Apoplosis in ischemic and reperfused rat myocardium. Cire Res 1996;79:949-956. 
[34} Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 

1998;82:1111-1129. 
[35] Thalle U, Dahanukar S. Apoptosis: clinical relevance and phamlacologicalmanipulation. Drugs 1997;54:511-532. 
[36J 1llOmpson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-1462. 
[37] TaimorG, LorenzH, Hofstaelter B, SchlUter H-D, Piper HM. Induction of necrosis but nol apoptosis after anoxia and 

reoxygenation in isolated adult cardiomyocytes of rat. Cardiovasc Res 1999;41: 147-156. 
[38J Gottlieb RA, Gruol DL, Zhu N, Engler RL. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton 

ATPase, and apoptosis. J Clin Invest 1996;97:2391-2398. 
[39] Piot CA, Padmanaban D, Uesel! PC, Sievers RE, Wolfe CL. Ischemic preconditioning decreases apoptosis in rat hearts 

in vivo. Circulation 1997;96:1598-1604. 
[40] Auchampach JA, Gross OJ. Adenosine Al receptors, KATP channels, and ischemic preconditioning in dogs. Am J 

Physiol 1993;264:H 1327-1336. 
[41J Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T. Ischemic preconditioning increases adenosine release 

and 5'-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. 
Circulation 1993;87:208-215. 

[42} Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: a graded phenomenon. Its relation to 
adenosine and bradykinin. Circulation 1998:98:1022-1029. 

[43] Vogt AM, Ando H, Arras M, Elsasser A. Lack of adenosine causes myocardial refractoriness. J Am Coli Cardiol 
1998;31:1134·1141. 

[44J Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA. Downey JM. Protection against infarction afforded 
by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 1991;84:350-356. 

[45} Liu OS. Richards SC, Olsson RA, Mullane K, Walsh RS, Downey 1M. Evidence thai the adenosine A) receptor may 
mediate the protection aflbrded by preconditioning in the isolated rabbit heart. Cardiovasc Res 1994;28: 1057-1061. 

[46} Armstrong S, Ganote CEo Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: 
evidence of A) receptor im'olvemenl. Cardiovasc Res 1994;28: 1049-1056. 

[47] Rice PJ. Amlstl'Ong SC, Ganote CEo Concentration-response relationships for adenosine agonists during 
preconditioning of rabbit cardiomyocytes. J Mol Cell Cardiol 1996;28:1355-1365. 

[48J Tracey WR, Magee W, Masamune H, et al. Selective adenosine AJ receptor stimulation reduces ischemic myocardial 
injury in the rabbit heart. Cardiovasc Res 1997;33:410-415. 

{49] Wang J, Drake L, Sajjadi F, Firestein GS, Mullane KM, Bullough DA. Dual activation of adenosine Al and AJ 
receptors mediates preconditioning of isolated cardiac myocytes. Eur J Phannacol 1997;320:241-248. 

[50] Auchampach JA, Rizvi A, Qiu Y, et al. Selective activation of AJ adenosine receptors with 11'-(3-

-153-



Chapter 10 

iodobenzyl)adenosine-5'-N-methyluronamide protects against myocardial stunning and infarction without 
hemodynamic changes in conscious rabbits. Circ Res 1997:80:800·809. 

[51} Hill RJ, Oleynek JJ, Magee W, Knight DR, Tracey WR. Relative importance of adenosine A1 and AJ receptors in 
mediating physiological or phamlacological protection from ischemic myocardial injury in the rabbit heart. J Mol Cell 
CardioI1998;30:579-585. 

(52] Strickler J, Jacobson KA, Liang BT. Direct preconditioning of cultured chick ventricular myocytes. Novel functions 
of cardiac adenosine A2.and A) receptors. J Clin Invest 1996;98:1773-1779. 

[53] Stambaugh K, Jacobson KA, JiangJ·L, Liang BT. A novel cardioprotective function of adenosine Al and A) receptors 
during prolonged simulated ischemia. Am J Physiol 1997;273:H501-505. 

[54] Liang DT. Jacobson KA. A physiological role of the adenosine AJreceptor: sustained cardioprotection. Pree Natl Acad 
Sci USA 1998:95:6995-6999. 

[55] Lee HT, LaFaro RJ, Reed GE. Pretreatment of human myocardium with adenosine during open heart surgeI)'. J Card 
Surg 1995;10:665·676. 

[56] Carr CS, Hill RJ, Masamune H, et al. Evidence for a role for both the adenosine Al and Aj receptors in protection of 
isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 1997;36:52-59. 

(57] Ikonomidis JS, Shirai T. Weisel RD, et al. Preconditioning cultured human pediatric myocytes requires adenosine and 
protein kinase C. Am J Physiol 1997;272:HI220-1230. 

[58] Cleveland JC, Jr., Meldrum DR, Rowland RT, Banerjee A, Harken AH. Adenosine preconditioning of human 
myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol 1997:29:175-182. 

[591 Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning of human myocardium with adenosine 
during coronal)' angioplasty. Circulation 1997;95:2500-2507. 

[60] Matherne GP, Linden J, Byford Mi, Gauthier NS, Headrick JP. Transgenic Al adenosine receptor overexpression 
increases myocardial resistance to ischemia. Proc Nat! Acad Sci USA 1997;94:6541-6546. 

[61 J Headrick JP, Gauthier NS, Berr SS, Morrison RR, Matherne GP. Transgenic Al adenosine receptor overexpression 
markedly improves myocardial energy state during ischemia-reperfusion. J Mol Cell Cardiol 1998;30: 1059-1064. 

[621 Dougherty C, Barucha J, Schofield PR, Jacobson KA, Liang BT. Cardiac myocytes rendered iSChemia resistant by 
expressing the human adenosine Al or AJ receptor. FASEB J 1998;12:1785-1792. 

[63] Leung JM, Stanley T, 3rd, Mathew J, et a!. An initial multicenter, randomized controlled trial on the safety and 
efficacy ofacadesine in patients undergoing coronal)' artery bypass graft surgeI)'. SPI Research Group. Aneslh Analg 
1994:78:420-434. 

[64] Menasche P, Jamieson WR, Flameng W, Davies MK. Acadesine: a new drug that may improve myocardial protection 
in coronal)' artery bypass grafting. Results of the first international multicenter study. Multinational Acadesine Study 
Group. J Thorac Cardiovasc Surg 1995;110:1096-1106. 

[65] Anonymous. Effects of acadesine on the incidence of myocardial infarction and adverse cardiac outcomes after 
coronary artery bypass graft surgeI)'. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. 
Anesthesiology 1995;83:658-673. 

[66] Mullane K, Bullough D. Harnessing an endogenous cardioprotective mechanism: cellular sources and sites of action 
of adenosine. J Mol Cell Cardiol 1995;27: 104 I -1054. 

[67J Van Wylen DGL. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during 
myocardial ischemia. Circulation 1994;89:2283-2289. 

[68] Headrick JP. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine. 
J Mol Cell CardioI1996;28:1227-1240. 

[691 Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol 
1989;256:C799-806. 

[70} Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev 1990;70:761·845. 
[71] Cambray AJ, Reiling eM, Van Wylen DGL. Interstitial fluid (ISF) adenosine during exogenous adenosine 

administration in the isolated rabbit heart. FASEB J 1998;12:A76 (Abstr). 
[72] Mathat RAA, Appel S, van Schaick EA, Soudijn W, AP I, DanhofM. High-performance liquid chromatography of 

the adenosine Al agonist N6·cyclopentyladenosine and the Al antagonist 8-cyclopentyhheophylline and its application 
in a pharmacokinetic study in rats. J Chromatogr 1993;620: 113·120. 

[73] Pavan B, AP I. Processing of adenosine receptor agonists in rat and human whole blood. Biochem Phamlacoi 
1998;56: 1625·1632. 

£74] Ralevic V, Bumstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998;50:413-492. 
£75] Lasley RD, Rhee JW, Van Wylen DG, Mentzer RM, Jr. Adenosine AI receptor mediated protection of the globally 

ischemic isolated rat heart. J Mol Cell Cardiol1990;22:39-47. 
[76] tiu Y, Downey JM. Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 1992;263:HI107-

1112. 
[77] Lasley RD. Mentzer RM, Jr. Adenosine improves recovel)' of post ischemic myocardial function via an adenosine Al 

receptor mechanism. Am J Physiol 1992;263:HI460-1465. 
[78] Lasley RD, Mentzer RM, Jr. Pertussis toxin blocks adenosine A I receptor mediated protection of the ischemic rat 

heart. J Mol Cell Cardiol 1993;25:815·821. 
(79} Li Y, Kloner RA. The cardioprotective effects of ischemic 'preconditioning' are not mediated by adenosine receptors 

in rat hearts. Circulation 1993;87:1642.1648. 

-154-



General discussioll alld cOl/clusions 

[80] Fralix: TA, l-.-furphy E, London RE, Steenbergen C. Protective effects of adenosine in the perfused rat heart: changes 
in metabolism and intracellular ion homeostasis. Am J PhysioI1993;264:C986-994. 

[81] Asimakis OK, Inners-McBride K, Conti YR. Attenuation ofpostischaemic dysfunction by ischaemic preconditioning 
is not mediated by adenosine in the isolated rat heart. Cardiovasc Res 1993;27: 1522-1530. 

[82J Cave AC, Collis CS, Downey JM, Hearse DJ. Improved functional recovery by ischaemic pre<:onditioning is not 
mediated by adenosine in the globally ischaemic isolated rat heart. Cardiovasc Res 1993;27:663-668. 

[83] Steenbergen C, Fralix TA, Murphy E. Role of increased cytosolic free calcium concentration in myocardial ischemic 
injury. Basic Res Cardio! 1993;88:456-470. 

[84] Ganote CE, Amlstrong S, Downey JM. Adenosine and Al selective agonists offer minimal protection against 
ischaemic injury to isolated ral cardiomyocytes. Cardiovasc Res 1993;27:1670-1676. 

[85] Lasley RD, Mentzer RM, Jr. Protcctive effects of adenosine in the reversibly injured heart. Ann Thorac Surg 
1995;60:843-846. 

[86J Bilinska M, Maczewski M, Beresewicz A. Donors of nitric oxide mimic effects of ischaemic preconditioning on 
reperfusion induced arrhythmias in isolated rat heart. Mol Cell Biochem 1996; 160-161 :265-271. 

[87] Cleveland JC, Jr., Wollmering MM, Meldrum DR, et al. Ischemic preconditioning in human and rat ventricle. Am 
J Physiol 1996;271:HI786-1794. 

[88] Meldrum DR, Cleveland Je, Jr., Sheridan BC, Rowland RT, Baneljee A, Harken AH. Differential effects of adenosine 
preconditioning on the postischemic rat myocardium. J Surg Res 1996;65:159-164. 

[89] Wainwright CL. Kang L, Ross S. Studies on the mechanism underlying the antifibril1atory effect ofthe AI-adenosine 
agonist, R-PIA, in rat isolated hcarts. Cardiovasc Drugs Ther 1997;11:669-678. 

[90] Ford WR. Clanachan AS, Lopaschuk 00, Schulz R, Jugdutt BI. Intrinsic ANO II type I receptor stimulation 
contributes to recovery of post ischemic mechanical function. Am J Physiol 1998;274:HI524-1531. 

[91 J Murphy E, Fralix T A, London RE, Stcenbergen C. Effects of adenosine antagonists on hexose uptake and 
prcconditioning in pcrfused rat heart. Am J PhysioI1993;265:CI146-1155. 

[92] Lasley RD, Anderson OM, Mentzer RM, Jr. Ischaemic and hypoxic preconditioning enhance postischaemic rccovery 
of function in the rat heart. Cardiovasc Res 1993;27:565-570. 

[93] Bugge E, Ytrehus K. Ischaemic pre<:onditioning is protein kinase C dependcnt but not through stimulation of alpha 
adrenergic or adenosine receptors in the isolated rat heart. Cardiovasc Res 1995;29:401-406. 

[94J Miura T, Ishimoto R, Sakamoto J, et a!. Suppression ofreperfusion arrhythmia by ischemic preconditioning in the 
rat: is it mediated by the adenosine receptor, prostaglandin, or bradykinin receptor? Basic Res Cardiol 1995;90:240-
246. 

[95] Weiss RO, de Albuquerque CP, Vandegaer K, Chacko VP, Gcrstenblith G. Attenuated glycogenolysis reduces 
glycolytic catabolite accumulation during ischcmia in preconditioned rat hearts. Cire Res 1996;79:435-446. 

[96J Schaefcr S, Carr U, Prussel E, Ramasamy R. Effects of glycogen depletion on ischemic injury in isolated rat hearts: 
insights into pre<:onditioning. Am J PhysioI1995;268:H935-944. 

[97] Wolfe CL, Sievers RE, Visseren FLJ, Donnelly TJ. Loss of myocardial protection after preconditioning correlates with 
the time course ofglycogen recovery within the preconditioned segment. Circulation 1993;87:881-892. 

[98] Barbosa V, Sievers RE, Zaugg CE, Wolfe CL. Preconditioning ischemia time determines the degree of glycogen 
depletion and infarct size reduction in rat hearts. Am Heart J 1996; 131 :224-230. 

[99J de Albuquerque CP, Gerstenblith G, Weiss RG. Importance of metabolic inhibition and cellular pH in mediating 
preconditioning contractile and metabolic effects in rat hearts. Circ Res 1994;74: 139-150. 

{100] Kida M, Fujiwara H, Ishida M, ct a!. Ischemic preconditioning preserves creatine phosphate and intracellular pH. 
Circulation 1991;84:2495-2503. 

[101] Asimakis GK, Inners-McBride K, Medellin G, Conti YR. Ischemic preconditioning attenuates acidosis and 
poslischemic dysfunction in isolated rat heart. Am J PhysioI1992;263:H887-894. 

(102) Steenbergen C, Perlman ME, London RE, Murphy E. Mechanism of preconditioning. Ionic alterations. Cire Res 
1993;72: 112-125. 

[103J Chen W, Wetsel W, Steenbergen C, Murphy E. Effect of ischemic preconditioning and PKC activation on 
acidification during ischemia in rat heart. J Mol Cell Cardiol 1996;28:871-880. 

{104] Soares PR, de Albuquerque CP, Chacko VP, Gerstcnblith G, Weiss RG. Role of preis chemic glycogen dcpletion in 
the improvemcnt of post ischemic metabolic and contractile recovery ofischemia-prcconditioned rat hearts. Circulation 
1997;96:975-983. 

[105] Cave AC, Garlick PB. Ischemic pre<:onditioning and intracellular pH: a IIp NMR study in the isolated rat hcart. Am 
J Physiol 1997;272:H544-552. 

[106] Schneider CA, Taegtmeycr H. Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the 
isolated working rat hcart. Circ Res 1991;68:1045-1050. 

{lO7] Doenst T, Guthrie PH, Chemnitius J-M, Ze<:h R, Taegtmeyer H. Fasting, lactate, and insulin improve ischemia 
tolerance in rat heart: a comparison with ischemic preconditioning. Am J Physiol 1996;270:HI607-1615. 

[108] Asimakis GK. Myocardial glycogen depletion cannot explain the cardioprotective effects ofischemic preconditioning 
in the rat heart. J Mol Cell CardioI1996;28:563-570. 

[109] King LM, Opie LH. Does preconditioning act by glycogen depletion in the isolated rat heart? J Mol Cell Cardiol 
1996;28:2]05-2321. 

[110] Runmnan EM, Lamp ST, Weiss IN. Enhanced utilization of exogenous glucose improves cardiac function in hypoxic 

-155-



Chapter 10 

[IIIJ 

[112J 

[113J 
[114J 
[115J 

[116J 
[l17J 

[l18J 

[119J 

[120J 

[121] 

[122J 
[123J 

[124J 

[125J 

[126J 

[127J 

(I28J 

[129J 

[130J 

[131J 

[132J 

[133J 

[134J 

[135J 

[136J 

[I37J 

[138J 

[ 139J 
[l40J 

(I41J 

[l42J 

rabbit ventricle without increasing total glycolytic flux. J Clin Invest 1990;86: 1222·1233. 
King LM, Boucher F. Opie LH. Coronary flow and glucose delivery as delemlinanls of contracture in the ischemic 
myocardium. J Mol Cell CardiolI995;27:701·nO. 
King LM, Gpie LH. Glucose delivery is a major detemlinant of glucose utilisation in the ischemic myocardium with 
a residual coronary flow. Cardiovasc Res 1998;39:381-392. 
Opie LH. Hypothesis: Glycolytic rates control cell viability in ischemia. J AppJ CardioI1988;3:407-414. 
Opic LIt The mechanism of myocyte death in ischaemia. Em Heart J 1993;14:31-33. 
Opie LH. Myocardial ischemia - metabolic palhwaysand implicalionsofincreased glycolysis. Cardiovasc Drugs Ther 
1990;4:777-790. 
Opie LH. Glucose and the metabolism ofischaemic myocardium. Lancet 1995;345:1520-1521. 
Apstein CS, Gravino FN, Haudenschild CC. Detenninants of a protective effect of glucose and insulin on the ischemic 
myocardium. Effects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia 
and reperfusion. Cire Res 1983;52:515-526. 
Bricknell OL, Opie LH. Effects of substrates on tissue metabolic changes in the isolated rat heart during 
underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Cire Res 1978;43:102-
115. 
Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS. Protective effect of increased glycolytic substrate 
against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion 
and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991;68:466-481. 
Owen P, Dennis S, Opie LH. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat 
hearts. Cire Res 1990;66:344-354. 
Vanoverschelde J-L, Janier MF, Bakke JE, Marshall DR, Bergmann SR. Rate of glycolysis during ischemia 
detemlines extent of ischemic injury and functional nxovery after reperfusion. Am J Physiol 1994;267:HI785-1794. 
Depre C, Vanoverschelde J-U, Taegtmeyer H. Glucose for the heart. Circulation 1999;99:578-588. 
Weiss J, Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. 
J Clin Invest 1985;75:436-447. 
Weiss]N, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac 
myocytes. Science 1987;238:67-69. 
Weiss IN, Lamp ST. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen 
PhysioI1989;94:911-935. 
Cross HR, Radda GK, Clarke K. The role of Na+IlC ATPase activity during low flow ischemia in preventing 
myocardial injury: a IIp, 21Na and s1Rb NMR spectroscopic study. Magn Reson Med 1995;34:673·685. 
Alonso lI.ID, LomakoJ, Lomako WM, Whelan WJ. A new look at the biogenesis ofgJycogen. FASEB J 1995;9:1126-
1137. 
de Jong JW, Cargnoni A, Bradamante S, et al. intemlitlent \' continuous ischemia decelerates adenylate breakdown 
and prevents norepinephrine release in reperfused rabbit heart. J Mol Cell Cardiol 1995;27:659-671. 
Adamo KB, Graham TE. Comparison of traditional measurements with macroglycogen and proglycogen analysis of 
muscle glycogen. J Appl Physiol 1998;84:908-913. 
Finegan BA, Gandhi M, Lopaschuk GD, Clanachan AS. Antecedent ischemia reverses effects of adenosine on 
glycolysis and mechanical function of working hearts. Am J Physiol 1996;271:H2116-2125. 
Perdinandy P, SziJvassy Z, Baxter GF. Adaptation to myocardial stress in disease states: is preconditioning a healthy 
heart phenomenon? Trends Phamlacol Sci 1998;19:223-229. 
Abete P, Ferrara N, Cioppa A, et al. Preconditioning does not prevent postischemic dysfunction in aging heart. J Am 
Coil CardioI1996;27:1777-1786. 
Abele P, Ferrara N, Cacciatore F, et al. Angina-induced protection against myocardial infarction in adult and elderly 
patients: nloss of preconditioning mechanism in the aging heart? J Am Coli CardioI1997;30:947-954. 
Gao E, Snyder DL, Johnson MD, Friedman E, Roberts J, Hor. ... itz J. The effect of age on adenosine AI receptor 
function in the rat heart. J Mol Cell CardioI1997j29:593-602. 
Liu Y, Thornton JO. Cohen MV, Downey JM, Schaffer SW. Streptozotocin-induced non-insulin-dependent diabetes 
protects the heart from infarction. Circulation 1993;88:1273-1278. 
Tatsumi T, Matoba S, Kobara M, et al. Energy metabolism after ischemic preconditioning in streptozotocin- induced 
diabetic rat hearts. J Am Coli Cardiol 1998;31:707-715. 
Tosaki A, Engelman DT, Engelman RM, Oas DK. The evolution of diabetic response to ischemialreperfusion and 
preconditioning in isolated working rat hearts. Cardiovasc Res 1996;31:526-536. 
Tosaki A, Pali T, Droy-Lefaix M-T. Effects of Ginkgo biloba extract and preconditioning on the diabetic rat 
myocardium. Diabetologia 1996;39:1255-1262. 
Pau Ison OJ. The diabetic heart is more sensitl\'e to ischemic injury. Cardiovasc Res 1997;34: 104-112. 
Feuvray D, Lopaschuk GD. Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity 
of the diabetic heart to ischemic injury is decreased. Cardiovasc Res 1997;34:113-120. 
Cleveland Je, Jr., Meldrum DR, Cain BS, Baneljee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent 
ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 1997;96:29-32. 
Jenkins DP, Steare SE, Yellon DM. Preconditioning the human myocardium: recent advances and aspirations for the 
development ofa new means of cardioprotection in clinical practice. Cardiovasc Drugs Ther 1995;9:739-747. 

·156· 



[143) 

[144] 
[145) 

[146] 

[147] 

[148] 

[149) 

[150) 

[151) 

[152] 

[153] 

[154] 

[ISS) 

[156] 

[157] 

[158) 

[159] 

[160) 
[161) 
[162] 

[163) 
[164] 

[165) 

[166) 

[167) 

[168) 

[169) 

[170] 

[171] 

[172] 

[173] 

Gel/eral discllssion alld conclusions 

VerdOllW PO, Gho BC, Duncker OJ. fschaemic preconditioning: is it clinically relevant? Eue Heart J 1995;16:1169-
1176. 
Yellon DM, Alkhulaifi Mi, Pugsley WB. Preconditioning the human myocardium. Lancet 1993;342:276-277. 
Alkhulaifi AM, Yellon O1"'f, Pugsley WB. Preconditioning the human heart during aorta-coronary bypass surgery. 
Eue J Cardiothorac Surg 1994;8:270-275. 
Lu E-X. Chen SoX, Yuan M-D, el al. Preconditioning improves myocardial preservation in patients undergoing open 
heart operations. Ann Thorae Surg 1997;64:1320-l324. 
Speechly-Dkk ~m, Grover GJ, Yellan DM. Does ischemic preconditioning in the human involve protein kinase C 
and the ATP-dependent K~ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. 
Circ Res 1995;77:1030-1035. 
Cleveland IC, Ir., Meldrum DR, Rowland RT, et a!. Ischcmic preconditioning of human myocardium: protein kinase 
C mediates a pennissive role for alphat-adrenoceptors. Am I Physiol 1997;273:H902-908. 
Walker OM, Walker JM, Pugsley WB, Pauison CW, Yellon OM. Preconditioning in isolated superfused human 
muscle. I Mol Cell CardioI1995;27:I349-I357. 
Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK. Preconditioning human ventricularcardiomyocytes with 
brief periods of simulated ischaemia. Cardiovasc Res 1994;28: 1285-1291. 
Cohen G, Shirai T, Weisel RD, et al. Optimal myocardial prcconditioning in a human model of ischemia and 
repcrfusion. Circulation 1998;98:11184-194. 
Engler RL, Yellon OM. Sulfonylurea KATP blockade in type II diabetes and preconditioning in cardiovascular disease. 
Time for reconsideration. Circulation 1996;94:2297-2301. 
Brady P A, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coli Cardiol 1998;31 :950-
956. 
Zarro DL, Palanzo DA, Sadr FS. Myocardial preconditioning using adenosine: review and clinical experience. 
Perfusion 1998; 13: 145-150. 
Mentzer RM, Jr., Rahko PS, Molina-Viamonte V, et a!. Safety, tolerance, and efficacy of adenosine as an additive to 
blood cardioplegia in humans during coronary artery bypass surgery. Am I Cardiol 1997;79:38-43. 
Fremes SE, Levy SL, Christakis GT, et a!. Phase 1 human trial of adenosine-potassium cardioplegia. Circulation 
1996;94:11370-375. 
Cohen MV, Yang X-M, Downey JM. Conscious rabbits become tolerant to multiple episodes of ischemic 
preconditioning. Circ Res 1994;74:998-1004. 
Tsuchida A, Thompson R, Olsson RA, Downey Ji\1, The anti-infarct effect of an adenosine At-sclective agonist is 
diminished after prolonged infusion as is the cardioprotecti\'e effect ofischaemic preconditioning in rabbit heart. I 
Mol Cell CardioI1994;26:303-311. 
Hashimi ~nv, Thornton JO, Downey JM, Cohen MV, Loss of myocardial protection from ischemic preconditioning 
following chronic exposure to R(-)-N6-(2-phenyJisopropyl)adcnosine is related to defect at the adenosine Al receptor, 
Mol Cell Biochem 1998;186:19-25. 
Granger CB. Adenosine for myocardial protection in acute myocardial infarction. Am I Cardiol 1997;79:44-48, 
Taegtmeyer H, de Villalobos DH, Metabolic support for the postischaemic heart, Lancet 1995;345: 1552-1555. 
Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH, Substrate metabolism as a determinant for postischemic 
functional recovery of the heart. Am J Cardiol 1997;80:3A-IOA. 
Lopaschuk GO, Stanley We. Glucose metabolism in the ischemic heart [editorial]. Circulation 1997;95:313-315, 
Lopaschuk GD, Wambolt RB, Barr RL, An imbalance betwecn glycolysis and glucose oxidation is a possible 
explanation for the detrimental eOhts of high levels of fatty acids during aerobic reperfusion of ischemic hearts, J 
Pharmacol Exp Ther 1993;264:135-144, 
Sianley WC, Lopaschuk GO, Hall JL, McConnack JG. Regulation of myocardial carbohydrate metabolism under 
nomlal and ischaemic conditions. Potential for phamlacologicaI interventions. Cardiovasc Res 1997;33:243-257. 
iaegtmeyer H, King LM, Jones BE, Energy substrate metabolism, myocardial ischemia, and targets for 
pharmacotherapy. Am J CardioI1998;82:54K-60K, 
Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism, Am J 
Cardiol 1998;82:14K·i7K. 
Fath·Ordoubadi F, Beall KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an 
overview of randomized placebo-controlled lrials, Circulation 1997;96:1152-1156. 
Apstein CS, TaegimeyerH, Glucose-insulin-potassium in acute myocardial infarction: the time has come for a large, 
prospective trial [editorial]. Circulation 1997;96:1074-1077, 
Anonymous. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute 
myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary 
Syndromes (GUSTO lIb) AngiopJasty Substudy Investigators. N Engl I Med 1997;336:1621-1628. 
Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction, The ECLA (Estudios 
Cardiologicos Latinoamerica) Collaborative Group, Circulation 1998;98:2227-2234, 
Apstein CS. Glucose-insulin-potassium foracule myocardial infarction: remarkable results from a new prospective, 
randomized trial {editorial]. Circulatioll 1998;98:2223-2226. 
Malmberg K, Ryd~n L, Efendic S, et a1. Randomized trial of insulin-glucose infusion followed by subcutaneous 
insulin treatment in diabetic patients with acute myocardial infarelion (DIGAMI study): effects on mortality at I year. 

-157-



Chapter 10 

J Am Coli CardioI1995;26:57·65. 

-158-



Summary 

Summary 

Prolonged and sustained myocardial ischemia due to (partial) coronary artery occlusion induces 

cell death and tissue infarction if the heart is not reperfused within time. In 1986, the paradoxical 

observation was done that brief periods of (nonlethal) ischemia and reperfusion render the heart more 

tolerant to a subsequent sustained period ofischemia, a phenomenon tenned 'ischemic preconditioning'. 

The delay of infarct size development produced by ischemic preconditioning is the most powerful 

endogenous form of cardioprotection described thus far. 

This thesis investigates the mechanism of ischemic preconditioning with respect to adenosine 

as a trigger and myocardial carbohydrate metabolism as the end~effector of preconditioning protection. 
We hypothesized that adenosine, released during brief preconditioning ischemia, induces cardio­

protection by changing myocardial carbohydrate metabolism during sustained ischemia. In order to 

answer these questions, we used the isolated Langendorffperfused rat heart as experimental model. This 

model allowed us to carefully monitor biochemical parameters relevant to our research questions with 

classical biochemistry and NMR spectroscopy. In addition, we also studied humans undergoing pacing 

stress testing. 

In Chapter 1, an overview of the current knowledge of the mechanism of ischemic 

preconditioning is given. The mechanism of ischemic preconditioning includes triggers, mediators, and 

end~effectors. Binding of substances, released during brief ischemia, like adenosine, bradykinin, and 

opioids to their G~protein.coupled receptors constitute the trigger for entrance to the preconditioned 

state. Stimulation of these receptors leads to activation of protein kinase C, tyrosine kinases, and mitogen 

activated protein kinases, which mediate the preconditioning response. Possible end-effectors activated 

by these kinases include the ATP-depelldent potassium channel and enzymes of myocardial carbohydrate 

metabolism. In Chapter 2, the myocardial energy metabolism is reviewed with special emphasis on 
myocardial nucleotide catabolism giving rise to the fonnation of adenosine, and carbohydrate 

metabolism. Moreover, the physiological role of the various adenosine receptor subtypes is discussed 

in this chapter. Chapter 3 reviews some of the controversies in the field of ischemic preconditioning. 
Discrepancies between no· flow and low-flow ischemia with respect to carbohydrate metabolism and 

species differences are discussed. Moreover, evidence for the existence of preconditioning in human 

hearts is presented. 

The relation between cardioprotection by preconditioning and myocardial lactate production 
during no~flow ischemia is addressed in Chapter 4. We tested the hypothesis that reduced lactate 

production during no-flow ischemia is causally related to ischemic preconditioning. The results show 

that preconditioning protects against no·flow ischemia as manifested by reduced leakage of the 'marker' 

enzyme creatine kinase, reduced adenine nucleotide catabolism, and attenuation of the postischemic 
increase in end-diastolic pressure; in contrast, preconditioning did not reduce arrhythmias. Furthermore, 

there was no relation between lactate production during no~flow ischemia and protection by 

preconditioning. 

In Chapter 5, we tested whether acadesine, a drug enhancing endogenous adenosine production, 

reduced ischemic injury in patients with coronary artery disease and stable angina undergoing pacing-
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induced ischemia, Acadesine given as an 'preconditioning agent' prior to and during pacing stress testing 

resulted in minor anti-ischemic effects in temlS of attenuation of the decline in ejection fraction and 

reduced production oflactate during pacing stress, The limited success of this dmg may be related to the 

fact that the severity of ischemia in these type of patients may be too low to increase adenosine because 

acadesine raises adenosine only in ischemic tissues, FurthemlOre, infusion of acadesine increased 

systemic lactate, which may be due to an acadesine-induced stimulation of glucose uptake and 

catabolism, 

There is ample evidence that ischemic preconditioning protects against no-flow ischemia, 

However, whether preconditioning confers protection against low-flow ischemia is subject of 

controversy, Because adenosine AI receptors must be occupied both during preconditioning ischemia 

(initiation) and prolonged ischemia (mediation) in order to induce protection, residual flow during 

prolonged ischemia may lead to washout of adenosine from the interstitium and, consequently, loss of 

protection, Whether ischemic preconditioning protects against low~flow ischemia (0,6% of baseline 

flow), a model more relevant to clinical practice, was investigated in Chapter 6. Moreover, we 

speculated that preconditioning mobilizes proglycogen, a stable intemlediate in macroglycogen 

synthesis, supporting glycogenolytic flux and reducing ischemic injury, Results show that ischemic 

preconditioning in the fonn of two cycles of 5 min ischemia and 5 min reperfusion reduces ischemic 

injury during subsequent prolonged low-flow ischemia evidenced by improved functional recovery, less 

postischemic contracture development, and reduced release of creatine kinase and purines, Venous and 

interstitial adenosine levels during underperfusion were probably high enough to occupy the receptor 

mediating myocardial protection in preconditioned hearts, Preconditioning did not differently affect the 

proglycogen fraction compared to control hearts, Moreover, in line with what was observed in Chapter 

5, lactate release was unrelated to ischemic preconditioning. Compared to control hearts, preconditioning 

reduced glycogenolysis during ischema while lactate release was similar, suggesting that preconditioning 

induces protection against low· flow ischemia via a shift from endogenous to exogenous glucose 

utilization, without increasing anaerobic glycolysis, 

Based on the results presented in Chapter 6, we hypothesized in Chapter 7 that ischemic 

preconditioning is mediated by increased glucose use during low-flow ischemia, an effect triggered by 

adenosine AI receptor activation, We quantitated glycolysis-from-glucose during low-flow ischemia 

using the stable radioisotope D-[2-3H]glucose, Compared to controls hearts) ischemic preconditioning 

improved functional recovery by 94% and increased glucose uptake almost twofold during early low­

flow ischemia whereas lactate release was unaffected, Blockade of glucose uptake during underperfusion 

abolished preconditioning protection completely, A non-selective antagonist at adenosine receptors 

blocked both the increase in glucose uptake and the improved functional recovery, observed in 

preconditioned hearts, Phannacological preconditioning with an adenosine AI agonist improved 

functional recovery by 110% but reduced lactate release and glucose uptake during ischemia by 47% and 

61 %, respectively, TIms, increased glycolysis-from-glucose during low-flow ischemia mediates ischemic 

preconditioning without increasing anaerobic glycolytic flux, Although adenosine AI receptor activation 

reduces ischemic injury, it does not facilitates the increased glucose uptake observed with ischemic 

preconditioning, suggesting a different mechanism of protection, 
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In Chapter 8, we tested the hypothesis that ischemic preconditioning is mediated by reduced 

glycogen depletion and less accumulation of glycolytic end-products during no-flow ischemia (the 

glycogen hypothesis). Furthennore, we hypothesized that reduced glycogen utilization in preconditioned 

hearts is mediated by adenosine AI receptor activation during brief ischemia. We used BC-NMR to 

follow myocardial glycogen within one heart throughout the experiment. The results show that in rat 

hearts, ischemic preconditioning is mediated by adenosine AI receptor activation because 

preconditioning protection could be mimicked with a selective adenosine Al agonist and abolished with 

a non-selective adenosine antagonist. However, glycogen depletion prior to ischemia and reduced 

glycogenolysis during ischemia are not causually related to preconditioning protection. 

Ischemialreperfusioll injury includes both apoptotic and necrotic myocyte cell death. Apart from 

infarct size reduction and improved functional recovery, ischemic preconditioning has been recently 

shown also to reduce apoptosis. Chapter 9 addressed the question whether activation of adenosine AI 

and A3 receptors prior to ischemia improved functional recovery and reduced apoptosis resulting from 

low-flow ischemia. This study shows that adenosine triggers protection of function in preconditioned 

hearts via both the adenosine AI and A3 receptor. Infusion of an adenosine A) agonist prior to ischemia 

did not aftect hemodynamics in contrast to the adenosine Al agonist. Thus, adenosine A3 agonists may 

represent a new, potentially useful therapeutic class of agents providing cardioprotection. 

Phannacological stimulation of adenosine Al and A) receptors, but not ischemic preconditioning, 

reduced apoptosis. 

Conclusions 

With reference to the aims of this thesis, the following conclusions can be drawn: 

• Ischemic preconditioning protects against the deleterious effects of no-flow and low-flow 

ischemia. 

• Both adenosine Al and A) receptors are involved in ischemic preconditioning of rat hearts. 

• Preconditioning protection can be dissociated from reduced ischemic glycogenolysis and 

attenuated glycolytic catabolite accumulation. 

• Increased glycolysis-from-glucose during early low-flow ischemia mediates ischemic 

preconditioning. 

• Whether increased glucose uptake in preconditioned hearts is mediated by the adenosine Al 

receptor is unclear. Cardioprotection by pre-treatment with a selective adenosine Al agonist may 

involve a different mechanism compared to ischemic preconditioning. 
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Samenmttillg 

SamcilvaUil1g 

Onvoldoende daorblaeding van de hartspier (ischemie) leidt tot eel schade en na vedaop van tijd 

zelfs tot celdood. Ischemic, dat optreedt tijdens 'Dotter' procedures, 'bypass' operaties, angina pectoris 

en bij atherosclerotische laesies (hartinfarct), varmt daarolll eel1 bedreiging voor het herstel van de 

patient. Echter, kartdurende periodes vall ischelllie-repcrfusie beschermen paradoxaal genocg het hart 

tegen een daaropvolgendc langere periode vall zuurstofgebrek. Dit fenomeen, ischemische 

preconditionering genaamd, is cen van de krachtigste methoden om het hart tegen ischemie te 

bcschennen. Het in dit proefschrift beschreven onderLoek richt zich op de rol die adenosine, eell stof die 

vrijkomt tijdeHs ischemie, en de koolhydraatstofwisseling speleH in het mechanisme van 

preconditionerillg. De hypothcse werd getoetst of adenosine, via de adenosine AI en A) receptoren, het 

cardiale kaolhydraatmetabolisme tijdens langdurige ischemie belnvloedt en daamlee de cardioprotectieve 

wcrking van ischemische preconditionering teweeg brengt. Om deze hypothese te toetsen hebben we 

gcbruik gemaakt van het gersoleerde, doorstroomde rattenhar! vol gens Langendorff. Dit model maakt 

het 1ll0geIijk om biochemische en fysiologische parameters, die relevant zijn v~~r dit onderzoek, Ie 

bestuderen door gebmik te maken van klassieke biochemische en kemspinresonantie (NMR) technieken. 

Ook werd een onderzoek verricht in hartpati(5nten, met eell mogelijke vemauwing van een van de 

kransslagaderen, waarin ischemie werd opgewekt door het hart elektrisch te stimuleren ('pacen '). 

In Hoofs/uk 1 wordt de huidige kelmis over het mcchanisrne van preconditionering salllcngevat. 

Het mechanisme van ischemische preconditionering omvat 'triggers" 'mediators' en de uiteindelijke 

'end-effectors'. Tijdens de korte periodes van ischemie en reperfusie komcn stoffen uit het hart vrij, 

zoals adenosine (een afbraakproduct van ATP), bradykinine en opiorden. Deze stoff en binden aan hun 

eigen specifieke G-eiwit gekoppelde receptoren in de hartmembraan. Stimulatie van deze receptoren leidt 

tot act~vering van bcpaalde signaaltrallsductie-ciwitten (kinases) in de hartcellen, waaronder eiwit kinase 

C en tyrosine kinases. Het is nog niet geheel duidelijk welke 'end-effectors' door deze killases worden 

gcactiveerd om het beschemlende effect van preconditionering te bewerkstclligen. Mogelijke kandidatell 

betreffen het ATP-aflmnkeJijke kaliumkanaal (KArp kanaal) en/of bepaalde enzymen van het 

koolhydraatlnetabolisme. 

Hoofds(uk 2 behandelt het myocardiale energiemetabolisme. De nadmk in dit hoofdstuk Iigt op 

de cardiale koolhydraatstofwisseling en het katabolisme van adenine nucleotiden tijdens ischemie, dat 

aanleiding geeft tot de vonning van de regulerende stofadellosine. Verder worden in dit hoofdstuk de 

verschillende typen cardiale adenosine receptoren en hun fYsiologische functie nader besproken. 

In Hoofdstuk 3 worden controverses in de literatuur naar het ollderzoek van ischcmische 

preconditionering samengevat. Er bestaan discrepanties tussen experimentele modellen die (een deel van) 

het hart vollcdig ('stop-flow') of gedceltelijk (,low-flow') ischemisch maken in het effect dat 

precollditionering heeft op het koolhydraatmetabolisme tijdens ischemie. Ook de verschiHen tussen 

diersoorten en het bewijs voor het optreden van precollditionering in mensellharten worden in dit 

hoofdstuk besproken. 

De mogelijk causale relatie tussen een venninderde lactaatproductie tijdens 'stop-flow' ischemie 

encrzijds en beschenning van het hart via ischemische preconditionering anderzijds, werd onderzocht 

in Hoofdstuk 4. De resultaten tonen aan dat ischcmische preconditionering een effectieve manier is om 
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het hart tegen stop-flow ischemie te beschenllcll wat blijkt uit cen venninderde afgifte van het 'marker' 

enzym creatine kinase tijdens reperfusie, een vemlinderde depietie van adenine nucleotiden tijdens 

ischemie en een geringere stijging van dc diastolische dmk tijdens reperfusie. Echter, de incidelltie van 

aritmieen was niet gereducccrd in gepreconditioneerde harten. Er bestond geen relatie tussell lactaat 

productie tijdens ischemie en cardioprotectie via preconditionering. 

In Hoofdstuk 5 werd getest of acadcsine, ccn dmg die de adenosine concentratie in hartweefsel 

zou doen stijgcn, eell anti-ischemische werking heeft in hartpatienten, waarin ischemie wordt opgewekt 

door het hart te ·pacen'. Toediening van acadesinc (preconditionering) leidde tot een geringe 

beschenlling tegen ischemie in termen van eell vemlillderde daling van de hartfunctie en minder 

lactaatproductie door het hart. Deze tclcurstellende resultaten zijn mogelijk Ie wijten aan dc gcringe mate 

van ischemie die tijdens 'pacen' wordt opgeroepen in deze graep van patientcn. Acadesine zorgt 

namelijk aileen voor een stijging van de adenosinespiegels in ischemisch weefsel. Een opmerkelijke 

bevinding was dat acadesinc de systemische lactaatspiegels deed stijgell. Dil is mogelijk te wijlen aan 

eell stimulatie van de glycolyse in skeletspieren door de dmg. 

Er is overtlligend bewijs dat ischemische preconditionering beschcnnt tegen 'stop-flow' 

ischemic in praefdieren. Of preconditioncring ook beschemlt tcgen 'low-flow' ischemie is 

controversieel. Om het hart te beschennen moeten adenosine Al reccptoren, die gelokaliseerd zijn op de 

hartmembraan, zowcl tijdens de korte periodes van ischemic als tijdens de lange periode van ischemic 

geactiveerd zijn. Het is daaram goed mogelijk dat tijdens 'low-flow' ischemie, adenosine wordt 

uilgewassen uit de interstiticle ruimte en zo continue activering van de receptor onmogelijk maakt en 

beschemling vcrloren gaat. In Hoofdsluk 6 toetsten we of ischemische prcconditionering inderdaad 

beschenllt tegen 'low-flow' ischemie (0.6% rcsiduale doorbloeding). Dit is van be lang omrlal ischemie 

die optreedt bij mensen vaak van het type 'low-flow' is door particle vernauwingen in kransslagaders 

of door het grate aantal collateralen. De hypothese werd getoetst of is chemise he preconditionering wordt 

veroorzaakt door stimulatie van de anaerobe glycolyse via mobilisatie van het normaal inerte 

praglycogeen, een stabiele intennediair in de synthese van macroglycogeen. Ischcmische 

prcconditionering resultcerde in een goede beschernling tcgcn 'low-flow' ischemie. Gepreconditioneerde 

hurten vertoonden een beter herstel van de hartfunctie en gaven minder creatinc kinase en purines af. De 

adenosil1econcentratie in de vel1euze circulatie tijdens 'low-flow' ischemie was hoog genoeg om de 

adenosine AI receptoren te activeren en preconditionering te bewerkstclligen. Lactaatpraductie tijdcns 

ischemie was niet verschillend tussen contrale cn gepreconditiolleerde harten. Aangezien ischemische 

prcconditionering leidde tot eell remming van de glycogenolyse tijdens ischcmie, suggereerde dit dat de 

glucose opname in gepreconditiolleerde harten was toegenomen. Ischemische preconditionering leiddc 

echter niet tot een andere mobilisatie van de proglycogeen fractie in vergclijking met contrale harten. 

Gebaseerd op de rcsultaten gepresenteerd in Hoofdstuk 6 wierpcn we in HoofdslUk 7 de 

hypothcse op dat ischcmische preconditionering, via activering van de adenosine Al receptor, wordt 

veraorzaakt door de glucosc opname tijdens 'low-flow' ischemie te bevorderen. We kwantificcerden de 

cardiale glucose opname tijdens ischemie door gebruik te maken van radioactief gelabeld glucose (D-[2-

)H]glllcose). Ischcmische preconditionerillg leidde tot een 94% beter herstel van de hartfunctie na 

ischemie vergelekcll met contrale harten. De glycolysc was bijna twec maal hoger in 
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gepreconditioneerde harten tijdens de eerste 10 min van 'low-flow' ischemie, terwijllactaatproductie 

niet verschillend was tussen gepreconditioneerde en controle harlen. Renuning van de glucose opname 

tijdens ischemie in gcpreconditionecrde harten deed de beschennende werking teniet. Wanneer eenl1iet­

selectieve renuner van de adenosine receptoren werd gegeven tijdens preconditonering, werden zowel 

de toegenomen glucose opname ais de cardioprotectieve eigenschappen vall preconditionering 

gebiokkeerd. Fannacologische precollditionering met cell selectieve adenosine A[ agonist, reslllteerde 

in cell 110% beter functicherstel na ischemie, 47% minder iactaatproductie en een 61 % lagere glucose 

opname lijdens ischemie ten opzichle vall de controle groep. In conclusie, ischeillische preconditioning 

beschennt het hart door een toename van de glucose exlractie tijdens ischemie zonder de totale anaerobe 

glycolyse Ie stimuleren. Paradoxaal genoeg beschennt stimulatie van de adenosine Al receptoren het hart 

tegen ischemie terwijl de glucose extractie en de totale anaerobe glycolyse stcrk geremd is, wat kan 

duidcn op een ander mechanisme van beschenning. 

De centrale vraag in Hoofdstllk 8 was of ischemische preconditionering wordt veroorzaakt door 

minder glycogeen afbraak tijdens 'no-flow' ischemie die leidt tot een geringere ophoping van 

glycolytische metabolieten (de zogenaamde glycogecnhypothcse van preconditiollcring). Daarbij wilden 

we bezien of eell gereduceerde glycogeen afbraak in geprecollditioneerde harten werd veroorzaakt door 
stimulatie van de adenosine A, receptor. Mel behulp van 13C_NMR konden we veranderingen in de 

glycogeenspiegels van elk hart gedurende het hele experiment volgen. Uit de rcsultaten blijkt dat 

stimulatie van de adenosine Al receptor in de hartmembraan, het rattenhart beschennt tegell lallgdurige 
ischemie: toediening van een seJectieve adenosine A, agonist voor ischemic bootste de beschennende 

werking van preconditionering na, terwijl eell niet-selectieve adenosine antagonist de cardioprotectieve 

werking van preceonditionering blokkeerde. Echler, depletie van glycogeen door preconditionering en 

eell rcmming van de glycogenolyse tijdens ischemie zijn epifenomenen van cardioprotectie door 

preconditionering. 

Ischcmie en reperfusie leidt tot celdood door zowel acute ccldood (oncose) en gepragrammeerde 

celdood (apoptose). Ischemische preconditionering is een effectieve strategie om de mate van acute 

celdood en contracliele disfunctie, die het gevolg zijn van ischemie, Ie reduceren. Zeer recentelijk heefi 

men aangetoond dat preconditionering ook de mate van apoptose, die optreedt tijdens ischemie­

reperfusie, kan reduceren. In Hoofdstllk 9 vroegen we ons af of famlacologische stimulatie van de 

cardiale adenosine Al receptor en de recent ontdekte A) receptor voorafgaand aan 'low-flow' ischemie, 

lcidt tot beter functieherstel cn minder apoptose. Het bleek dal cen adenosine A[ en een adenosine AJ 

agonist in gelijke mate beschenuing boden tegen de contractieJe disfunctie die optreedt tijdens ischemie­

repcrfusie. Stimulatie van de adenosine A3 receptor leidde echtcr niet tot hemodynamische bijwerkingen 

in tegenstelJing tot adenosine Al stimulatie. Adenosine A3 agonisten vonnen daarom een interessante, 

nieuwe klasse van cardiopratectieve drugs. Famlacalogische maar niet ischemische preconditionering 
resulteerde in minder apoptose na 2.5 uur reperfusie in vergelijking met contrale harten. 

worden: 
Op basis van de doelstellingen van dit onderzoek kunnen de volgende concillsies getrokkcn 

• Ischemische preconditionering beschermt tegen zowel 'no-flow' als 'low-flow' 
ischemie. 
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• Zowel de adenosine AI als adenosine A3 receptoren in de hartmembraan zijn betrokken 

bij het mechanisme van ischemische preconditionering. 

• Ischemische preconditionerillg wordt niet veroorzaakt door eell reductic in de 

glycogeenspiegels voor ischemie en een gereduceerde glycogenolyse tijdens ischemie. 

• Ischemische preconditionering wordt veroorzaakt door een toegenomen glucose opname 

tijdens vroege ischemie. 

• Of eell toegenomen glucose opname in gepreconditioneerde harten wordt vcroorzaakt 

door stimulatie van de adenosine AI receptor is onduideJijk. Bescherming van het hart 

tegen ischemic door toediening van een adenosine AI agonist (fannacologische 

preconditionering) loopt mogelijk via een ander mechanisme als ischemische 

preconditionering. 
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