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Hepatitis B virus

The hepatitis B virus (HBV) is a 42 nm viral particle and belongs to a family of closely related DNA 

viruses called the hepadnaviruses [1-2]. All the hepadnaviruses have similar hepatotropism and 

life cycles in their hosts [3]. It is an enveloped small circular, partially double stranded DNA 

virus.

The viral genome has a length of approximately 3200 base pairs that encodes four open 

reading frames (ORF). These are the pre-Surface (pre-S) and Surface (S) gene, the pre-Core 

(pre-C) and Core (C) gene, the X-gene and the Polymerase (P)-gene. The pre-S and pre-C 

genes are upstream regions of the S and C genes [2]. The viral envelope encoded by the S 

gene contains three distinct configurations synthesized in all infected persons, termed the 

large, middle and major envelope proteins, which are produced by beginning transcription 

at, respectively, the pre-S1, pre-S2 or the S gene. The pre-S1 and pre-S2 represent two of the 

more immunogenic portions of hepatitis B surface antigen (HBsAg) [4]. The development of 

cellular and humoral immunity to HBsAg is protective [5], and recombinant HBsAg provides 

the basis for the HBV vaccines currently available. The hepatitis B core antigen (HBcAg) is the 

nucleocapsid that encloses the viral DNA. When HBcAg-derived peptides are presented by 

MHC-molecules present on the surface of hepatocytes, they can initiate a cellular immune 

response that is important for viral clearance [6].

A signal sequence in the pre-C region of the genome is thought to guide the HBcAg precursor 

to the endoplasmic reticulum of the hepatocyte, where the hepatitis e antigen (HBeAg) 

polypeptide is produced by cleavage of the p25 precursor in its basic C-terminal region. 

Subsequently, it is exported from the liver and serves as marker of active viral replication [7]. 

HBeAg may act as a tolerogen, since its presence in the circulation has been associated with a 

diminished cellular immune response. This may be due to its close resemblance to HBcAg, the 

main target of the immune response [8-10]. 

The longest open reading frame of the HBV genome is the P-gene, which overlaps the other 

genes. The P-gene encodes the HBV DNA polymerase, which also serves a reverse-transcriptase 

function, since replication requires RNA intermediates.

The X-gene is the smallest HBV open reading frame and encodes two proteins that serve as 

transcriptional transactivators, enhancing the transcription as well as the replication of HBV. 

Hepatocytes are the primary replication site for HBV. Following receptor binding of HBV 

particles, the virions enter the hepatocyte and deliver their nucleocapsids to the cytoplasm. 

These then translocate to the nucleus of the hepatocyte, where the virus DNA is repaired and 

converted to covalent closed circular DNA (cccDNA). Host RNA polymerase then transcribes 

the cccDNA, and the resulting RNA’s are translated. Viral pregenomic RNA’s are packaged in 

the cytoplasm into core particles with one HBV polymerase protein. Within this complex DNA 

synthesis is started: a minus DNA strand will be formed and subsequently the plus strand is 

synthesized. Small, middle and large HBsAg transcripts are transported to the endoplasmic 
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reticulum to envelop the core particles. The enveloped virions are subsequently secreted via 

the vesicular transport system into serum. 

Hepatitis C virus

The genetically complex hepatitis C virus (HCV) is an RNA-virus, and has recently been classified 

as a Hepacivirus of the Flaviviridae family [11-12]. It is approximately 50 nm in diameter and 

the 9.6 kb single-stranded, positive sense RNA genome encodes a single polyprotein of about 

3010 aminoacids in length, which is processed by proteases into structural (S; at least three) and 

nonstructural (NS) (six) proteins.

HCV is classified into 6 major genotypes and several subtypes [13], having possible 

significance in both the route of transmission and the histological activity of viral hepatitis [14-

15]. A specific characteristic of the HCV is the high variability of its nucleotide sequence. The 

viral RNA-dependent RNA polymerase is mainly responsible for this inaccuracy, which leads to 

formation of quasispecies [12]. 

HCV attaches to the cell surface of hepatocytes mainly binding of HCV envelope protein E2 to 

CD81 expressed on hepatocytes, which is a putative HCV receptor that belongs to the tetraspanin 

family [16]. Attachment is followed by entry into the cell. HCV replicates in the cytoplasm of the 

hepatocytes. The virus is uncoated, exposing the positive-strand RNA genome. 

After translation, a single large polyprotein is produced, which is to be cleaved into S and NS 

proteins. The positive–strand serves as a template for generating a negative-strand RNA, which 

after binding to the NS proteins forms a replicating complex producing further positive-strand 

RNA. Subsequently, final viral assembly occurs in the Golgi-cisternae with a covering by a lipid 

envelope followed by secretion [17].

Figure 1. HBV replication in hepatocyte
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Immunopathogenesis of chronic hepatitis B and C

HBV and HCV are the two major causes of chronic liver inflammation wordwide [18, 19]. Both 

viruses are preferentially hepatotrophic, but not directly cytopathic. Aproximately 5 to 10 % of 

adults infected by HBV develop a chronic infection, whereas more than 70 % of patients become 

persistently infected with HCV. Chronic hepatitis B and C virus infection is a serious clinical 

problem because of its global distribution and serious complications [20, 21]. It is defined as 

persistence of HBV or HCV replication for more than 6 months after the initial acute infection. 

Inoculation with the virus causes hepatocellular inflammation and necrosis which ranges in 

severity from asymptomatic infection to severe symptomatic infection with progressive or even 

fatal illness. In patients who develop a chronic hepatitis B or C there is an increased risk of liver 

cirrhosis, portal hypertension and hepatocelluar carcinoma [22-23]. 

The T-cell response against HBV and HCV

It is still not clear why certain patients develop a chronic hepatitis B or C infection, while 

others clear these viruses after an acute infection. The inability to mount an efficient T-helper 

and cytotoxic T-cell responses against the virus is thought to play a key role in the course and 

outcome of hepatitis B or C in terms of liver damage and viral control resulting into chronicity. 

In patients with self-limited HBV-infection, the CD8+ cytotoxic response to viral antigens is 

strong and multispecific, whereas this response is weak or undetectable in chronically infected 

patients [24-30], except during acute exacerbations or interferon alpha-induced viral clearance 

[31, 32]. 

Despite a strong T-cell response to HBV during acute viral hepatitis very low levels of virus 

remain present in the circulation for several decades following complete resolution of disease 

[33]. In addition, HBV-specific cytotoxic T-lymphocytes (CTLs) remain present in the circulation 

Figure 2. HCV replication in hepatocyte
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suggesting that after clinical recovery equilibrium between HBV and the host immune system 

is established [34].

In contrast, chronically HCV infected patients do mount a polyclonal and multispecific CTL 

response to several HCV-encoded proteins [35-39], but probably not strong enough qualitatively 

and quantitatively. The establishment of a chronic HCV infection leads to a lower number of 

circulating and intrahepatic virus-specific CD8+ and CD4+ T-cell [40, 41] and to a defective CD8 

T-cell function [42], which is probably maintained by the prolonged exposure to viral antigens 

or immunosuppression, by viral gene products [43, 44]. 

It is thought that liver damage is the direct consequence of lysis of infected hepatocytes, 

mediated by a cellular response to epitopes of HBV and HCV proteins, presented on the surface 

on the hepatocyte. HLA class I restricted CD8 T-cells recognize HBV or HCV peptide fragments 

derived from intracellular processing and presented on the hepatocyte surface by class I 

molecules. 

This process leads to direct hepatocyte killing by the CD8 CTL, probably mediated by Fas 

Ligand- and/or perforin/granzyme-, pathways, resulting in apoptosis. However, recent studies 

suggest that CTLs may inhibit viral replication and inactivate HBV without killing the infected 

hepatocyte. In an HBV transgenic mouse model it has been clearly shown that HBV replication 

is completely abolished in the hepatocytes by secretion of the antiviral cytokines IFN gamma 

and TNF alpha by CTL [45-47]. 

Figure 3. A cytotoxic T-lymphocyte (CTL), by way of its TCR and CD8, can bind to MHC-I epitope on a virus-infected and cause 

apoptosis by way of perforins and granzymes. In addition, a Fas ligand (FasL) on the CTL can bind to a Fas molecule on the 

virus-infected cell and activate the enzymes that lead to apoptosis of the infected cell by means of destruction of its structural 

cytoskeleton proteins and by chromosomal degradation. 
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It has been postulated that the HBV and HCV specific immune response is too weak to eliminate 

the virus from all infected hepatocytes during a chronic infection, but sufficiently strong to 

cause persistent liver damage. The low level of virus specific CD8 T-cells in the circulation 

of chronically infected patients suggest that HBV- and HCV-specific CTLs are preferentially 

sequestered in the liver [48, 49]. As HBV and HCV are localized and replicate mainly in the liver, 

the immune effector response to these viruses is assumed to be compartmentalized in this 

organ. 

The innate immune response against HBV and HCV

The full development of an efficient antiviral adaptive immune response requires a proper 

activation of components of innate immune response. Natural killer (NK), NK-T cells and proper 

dendritic cells are all necessary both to control the virus replication immediately after infection, 

as well as to deliver the necessary signals that lead to activation of the adaptive response [50]. 

In a transgenic mouse model of HBV infection it has been found that in the early containment 

of acute HBV infection NK-T cell activation inhibits virus replication by the production of IFN 

gamma [51-53]. Furthermore, a rapid drop in viral replication was observed early after acute 

infection of chimpanzees when only resident NK and NK-T cells producing IFN gamma were 

present in the liver [54]. In a study of the incubation phase of acutely infected patients, an 

increase of circulating NK-cells was observed preceding the decline of HBV replication, and 

is followed by the appearance of HBV specific CD8 T-cells, when viral replication had already 

dropped [55]. 

The coexistence of HCV replication with the absence of liver inflammation in the first 4-

6 weeks after HCV infection is indicative for a minimal contribution of NK and NK-T cells to 

the acute phase fase of HCV-induced hepatitis, because IFN gamma production by these 

cells mediates the recruitment of inflammatory cells [56, 57]. Among the intrahepatic cellular 

infiltrates in chronic HCV patients, there is an enrichment of NK cells, NKT cells that may play an 

important role in maintaining chronic liver damage [58, 59]. 

Dendritic cells (DCs) comprise an essential component of the immune system. These cells are 

the most potent antigen presenting cells (APCs) capable of activating naive T cells and are crucial 

for triggering the antigen-specific immune response. DCs are the initators and modulators 

of the helper- and cytotoxic T-cell responses. In infected liver tissue, DCs are thought to be 

present in an immature state. These immature DCs can take up viral particles by phagocytosis. 

The antigens are processed to peptides following their internalization into DCs, resulting in 

the formation of MHC class I and MHC class II-peptide complexes expressed on the surface 

of DCs. Viruses, or virus-infected cells deliver signals that lead to a proper maturation of DCs 

and stimulate their migration to regional lymphoid organs, where they can induce the clonal 

expansion of antigen–specific lymphocytes.

Here, helper T-cells are activated and provide help (a.o. by cytokine secretion) for naive 

cytotoxic T-lymphocytes to differentiate into effector cells. These will then migrate to the target 
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organ to kill the virus-infected hepatocytes or to inhibit viral replication [60, 61]. A recent study 

indicated that DCs generated in vitro from monocytes of patients with chronic HBV-infection 

had impaired T-cell stimulatory capacity [62]. Similar findings have been reported for patients 

with chronic HCV-infection [63]. These findings suggest that alterations of DC function and/or 

maturation during a primary HBV or HCV infection could contribute to a delayed appearance of 

HBV or HCV specific CD8 T-cells after infection. 

Fine needle aspiration biopsy

Until now, studies of the intrahepatic cellular immune responses involved in viral clearance 

have been hampered by the difficulty of frequent sampling of the intrahepatic compartment 

in humans, especially to investigate the intrahepatic immune response during therapy. 

The cytological fine-needle aspiration biopsy (FNAB) procedure represents an a-traumatic 

alternative for the invasive tissue biopsy, and it can be used for frequent monitoring of the 

intrahepatic compartment. This technique was originally developed for the diagnosis of acute 

rejection after kidney transplantation [64] and has been used for monitoring rejection in liver 

transplants for many years [65-68]. Studies of the CD8 mediated T-cell response has been 

restricted to a few immuno-dominant epitopes HBV and HCV. In the present study we have 

introduced this technique for investigating the intrahepatic immune response during chronic 

HBV or HCV infections.

Immune modulating therapy in chronic hepatitis B and C

For treatment of chronic hepatitis B there are three approved drugs: alpha interferon, lamivudine 

and adefovir dipivoxil. Alpha-interferon acts primarily as an immunomodulator of the host 

immune system against viral infection [69]. It enhances expression of HLA class I antigens, and 

HBsAg on the hepatocytes, which will improve the NK cell and CTL mediated killing of infected 

hepatocytes [70]. In addition, it inhibits viral RNA pregenomic packaging into core particles and 

it blocks the entry and uncoating of the virus into uninfected hepatocytes [71]. Alpha interferon 

therapy can result in loss of serum HBeAg in 20 to 40% of the patients. This response is sustained 

in 80-90% of the patients resulting in loss of HBsAg in the years following completion of therapy 

[72, 73]. The main limitations of alpha interferon are the need for subcutaneous administration, 

the frequency of side effects and the limited efficacy. 

Lamivudine and adefovir dipivoxil, in contrast, are potent and effective inhibitors of HBV 

DNA polymerase activity resulting in suppression of HBV DNA, normalization of ALT levels and 

improvement of liver histology in the majority of patients [74, 75]. Both agents are administered 

orally and have few side effects. Suppression of HBV DNA and HBeAg seroconversion occurs 

between 15-40 % of patients [76-78]. However, relapse is common when therapy is discontinued. 

Persistence of ccc-DNA in the nuclei of the hepatocytes during therapy may be responsible for 

this relapse of viral replication [79]. It has been reported that both lamivudine and adefovir 

dipivoxil therapy may restore the CD4 and CD8 T-cell reactivity to HBeAg and HBcAg by a strong 
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HBV DNA reduction [80-81]. Lamivudine therapy restored the T-cell response in HBeAg+ chronic 

HBV patients till the sixth month of treatment, followed by a decline despite the differences in 

viral responsiveness to treatment [82]. 

For chronic hepatitis C, the only therapy available until recently was pegylated-interferon 

alpha treatment, which resulted in sustained remission in a minority of patients [83]. Two 

major multicenter studies have established that the combination interferon alpha and ribivirin 

markedly increased the sustained response rate in previously untreated chronic HCV patients 

[84-86]. Ribavirin, a nucleoside analogue, inhibits viral replication and is administered orally. 

However, monotherapy ribivirin has no significant effect on HCV replication, despite reducing 

the levels of liver enzymes [87].
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OBJECTIVES OF THE STUDY

To investigate the intrahepatic immune response in chronic hepatitis B and C patients, in 

relation to inflammatory liver injury, viral replication and spontaneous or treatment-induced 

viral control.
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ABSTRACT

Cytotoxic T lymphocytes (CTL) and Kupffer cells play an important role in the immune control 

of hepatitis B virus (HBV), but also may induce liver injury during infection. We investigated 

the intrahepatic immune response in liver biopsies of chronic HBV patients in relation to 

inflammatory liver injury and viral control. 

Forty-seven liver biopsies of chronic HBV patients with a varying degree of inflammation (ALT 

values) were selected. Acute hepatitis and normal liver specimens served as controls. Immune 

effector cells, cytotoxic effector molecules and cytokine producing cells were quantified after 

immunohistochemical staining in lobular and portal areas of the biopsies. 

Intralobular number of CD8+ T-lymphocytes was significantly decreased in biopsies of patients 

with high ALT (r=-0.54; p<0.001). Higher ALT-values were correlated with increased numbers of 

granzyme+ cells in portal areas (r=0.65; p<0.001) and higher numbers of intrabolular Fas-L+ 

cells (r=0.32; p=0.05). Fas-L was expressed on Kupffer- and lymphoid cells. More intralobular 

CD8+ T-lymphocytes were found in HBeAg- than in HBeAg+ patients (p=0.002). But IFN-γ and 

TNF-α producing cells were observed sporadically in chronic HBV patients. 

 In chronic HBV infection, low viral replication and HBeAg negativity is related to increased 

presence of intralobular CD8+ T-lymphocytes. Persistence of the virus may be due to the absence 

of cells producing anti-viral cytokines in the liver. Inflammatory liver injury during chronic HBV 

infection is probably not the result of increased numbers of infiltrating CD8+ T-lymphocytes, 

but of Fas-L expression by Kupffer cells and increased cytolytic activity of cells in portal areas.
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INTRODUCTION

Hepatitis B virus (HBV) is a non-cytopathic DNA virus that causes chronic hepatitis in 10% of 

infected adults. Chronic hepatitis may lead to liver cirrhosis or hepatocellular carcinoma [1]. 

Clearance of HBV during acute hepatitis is associated with a strong cytotoxic T lymphocyte 

(CTL) response to the viral proteins [2, 3]. This, together with the knowledge that adoptive 

transfer of virus-specific CD8+ T-lymphocytes can inhibit HBV-replication in HBV-transgenic 

mice [4], indicates that the CTL-response plays an important role in immune control of HBV. 

The mechanism by which CD8+ T-lymphocytes eliminate the virus from the liver is unclear. In 

general CTLs can inhibit viral infection by cytolysis of virus-infected cells through Fas-Ligand-

Fas interaction and the granzyme/perforin pathway or by secretion of antiviral cytokines. 

Experiments with HBV transgenic mice suggest that non-cytolytic mechanisms are responsible 

for HBV clearance [5]. In these mice, intrahepatic secretion of antiviral cytokines, such as IFN-γ 

and TNF-α by CTLs and Kupffer cells can interrupt the HBV life cycle without lysis of infected 

hepatocytes. The rapid reduction of HBV-DNA before hepatocellular damage in acute infections 

in chimpanzees [6] and humans [3] suggest that a similar non-cytolytic mechanism is, at least 

in part, responsible for inhibition of viral replication during natural infection. The liver injury 

following inhibition of viral replication during acute infection is thought to be the consequence 

of an inflammatory response which is mediated by antigen non-specific CD8+ T-lymphocytes, 

but initiated by HBV-specific CD8+ T-lymphocytes [7]. Currently, little is known about the 

mechanisms of immune control of HBV and liver damage during chronic infection with the 

virus. Although peripheral CTL responses are weak during chronic infection [8], hepatocellular 

injury, as reflected in elevated ALT-levels, is frequently observed. Recently, HBV-specific CD8+ 

T-lymphocytes have been demonstrated in the liver during chronic infection, but there was no 

relation between their number and the occurrence of hepatocellular injury nor with the extent 

of immune control of the virus [9]. The role of other possible effector cells, such as natural killer 

(NK) cells, and plasmacytoid dendritic cells, which are the principal IFN-α producers [10], in 

immune control and hepatocyte injury during HBV-infection is as yet unknown. Our aim was to 

investigate which intrahepatic immune effector cells and which immune effector mechanisms 

are related to immune control of HBV and liver damage during chronic HBV-infection. For this 

purpose, we quantitated immune effector cells (CD8+ T-lymphocyte, NK-cells and plasmacytoid 

dendritic cells) and cells expressing cytotoxic effector molecules (granzyme and Fas-Ligand) or 

antiviral cytokines (TNF-α and IFN-γ) in liver biopsies of patients chronically infected with HBV.
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MATERIAL AND METHODS

Patients and liver biopsy specimens

Liver biopsies of chronic hepatitis B patients (n=47) formed the basis of this study. The biopsies 

were diagnostic pretreatment biopsies from patients, which were HBsAg positive for more than 

6 months. Patients treated with any antiviral therapy were excluded. Patients with a co-infection 

of hepatitis C, hepatitis D and patients with a pre-core mutant in the HBV genome were also 

excluded. To obtain a wide range of inflammatory activity in the biopsies, chronic HBV patients 

with low to severe liver inflammation were included (range ALT 11-426)

Subsequently, the patients were stratified according to HBeAg positivity and negativity. 

In addition, liver biopsies of 3 patients with acute and fulminant HBV infection obtained after 

hepatectomy for transplantation and of 2 patients with acute non-viral hepatitis (aetiology 

unknown) were investigated. Normal liver tissue (n=4) was obtained during the resection of 

hepatic malignancies. Liver biopsies were performed in accordance with a standard protocol 

in which a 14-gauge Tru-Cut biopsy needle (diameter 2.1 mm) is used to puncture the right 

lobus of the liver. One part of the liver specimen was fixed in phosphate-buffered formaline 

and embedded in paraffin and a second part of the same specimen was collected in Histocon 

(Polysciences Inc, Warrington PA) and rapidly frozen in isopentane cooled in liquid nitrogen, 

and stored at -80°C. 

Virological assessments

HBsAg, HBeAg, anti-HBe, anti-HCV and anti-HDV were quantitatively determined by IMX (Abbot 

Laboratories, North Chicago, IL). HBV-DNA in sera was measured by Hybrid Capture II microplate 

assay, Digene Corporation, Gaithersburg, U.S.A. Analysis of pre-core mutants was performed by 

a ABI PRISM 3100 genetic analyser with a Big Dye Terminator v3.0 Cycle Sequencing kit (both 

from Applied Biosystems, Nieuwerkerk a/d IJssel, The Netherlands).

Antibodies 

CD8 (clone C8/14415) and CD68 (clone PG-M1) mAb were purchased from DAKO, Glostrup, 

Denmark. CD56 (clone N901) was obtained from Beckman Coulter, Hialeah FL. CD123 (clone 

Table 1. Patient characteristics with chronic hepatitis B at time of liver biopsy (n=47)

Variables

Age (years)* 32 (18-70)

Sex (male / female) 27 / 20

ALT (IU/L)* 44 (11-426)

HBV DNA (geq/L)*

HBeAg + / -
Race (Caucasian/Oriental/Black)

1.4E7 (1.0E3 - 9.8E9)
27 / 20
27 / 11 / 9

*median (range)
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Figure 1. Mean total numbers of CD8+ T-lymphocytes in portal areas (a) and mean density of CD8+ T-lymphocytes in lobuli (b) 

of individual liver biopsies of chronic HBV patients in relation to ALT (lines depicted mark the mean of 95% confident interval)
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9F5), and CD178 mAb (clone NOK1) were purchased from BD-Pharmingen, San Jose CA. 

CD178 (clone 5G51) was from Alexis Corporation, San Diego CA. Anti-granzyme mAb (clone 

B7) was kindly provided by professor C.E. Hack of the Central Laboratory of the Red Cross 

Blood Transfusion Service, Amsterdam, The Netherlands. MD-2, a mouse mAb specific for IFN-

γ and mAb 61E71, recognizing human TNF-α, were purchased from U-Cytech, Utrecht, The 

Netherlands.

Immunohistochemistry

The distribution of CD8 and CD68 positive cells in the liver was visualized in formalin-fixed, 

paraffin-embedded liver specimens. The liver sections were firstly deparaffinized with xylene 

(Lab Scan Ltd, Dublin, Ireland) and ethanol (Merck, Darmstadt, Germany) and thereafter 

antigen retrieval was performed by temperature-controlled incubation at 99°C in citrate buffer 

(pH 6.0) in a microwave oven for 15 minutes. Incubation with CD8 and CD68 mAb was done 

A

B

Figure 2. Liver biopsy sections immunohistochemically stained with CD8 mAb from chronic HBV patient with normal (A) and 

raised ALT (B) (× 400)



30

C
ha

p
te

r I
I

for 1 hour at room temperature. Slides were washed with TBS (Tris buffered saline) pH 7.3 

supplemented with 0.1% Tween-20. Detection of CD8 positive cells was performed with goat 

anti-mouse immunoglobulins (GAM, DAKO) for one hour followed by alkaline-phosphatase-

anti-alkaline phosphatase complex (APAAP, Serotec, UK). CD68 positive cells were detected by 

secondary biotinylated rabbit anti-mouse antibody (RAM-bio, DAKO), after incubation with 

avidin-biotin blocking solution (DAKO) followed by streptavidine-alkaline phosphatase (DAKO). 

Visualization was performed by incubation in Fast Blue salt / naphtol AS-BI phosphate solution 

supplemented with levamisole (all from Sigma-Aldrich Chemie, Steinheim, Germany). The liver 

specimens were counterstained with Nuclear Fast Red (Fluka Chemie, Buchs, Switzerland). 

Staining of CD56, CD178, CD123 and granzyme B was performed on frozen sections. The slides 

were fixed in 4% paraformaldehyde in phosphate-buffered saline pH 7.3. Unspecific antibody 

binding was prevented by preincubation with TBS supplemented with 10% normal goat serum 

and 10% normal human plasma. Sections were incubated with primary antibodies overnight. 

Detection of primary antibody was performed with the GAM-APAAP procedure. For cytokine 

detection cryostat sections were kept overnight at room temperature in a box with humidified 

atmosphere. Thereafter sections were air-dried for one hour and fixed for 10 minutes in fresh 

acetone, containing 0.02% H
2
O

2
. Slides were incubated overnight at 4°C with the primary 

antibodies and subsequently for 30 minutes at room temperature with RAM-bio and avidin-

biotin-HRP complexes, which were added together for 15 minutes. Histochemical revelation 
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Figure 3. Mean numbers of granzyme positive cells in portal areas in relation to ALT
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A

B

Figure 4. Consecutive liver biopsy sections immunohistochemically stained with Fas-L mAb (a) or CD68 mAb (b), showing that 

Fas-L is expressed predominantly on Kupffer cells (× 400)
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of HRP was performed with 3-amino-9-ethylcarbazole (AEC). Slides were counterstained 

with hematoxylin for 10 seconds and mounted in glycerol. Optimal dilutions of all antibodies 

were determined by preliminary experiments on tonsil sections, and on activated peripheral 

blood mononuclear cells (for CD178 antibodies). Negative controls were performed either 

by replacement of the primary mAb by an isotype matched control mAb or by leaving out 

the primary antibody. In each experiment positive control stainings were performed on tonsil 

tissue or activated mononuclear cells. Sections were examined only when tonsil tissue showed 

the expected staining pattern and when the negative control staining was negative.

Quantification and statistical analysis

The liver specimens were microscopically examined at 400 times magnification using a Zeiss 

Axioscop. In every specimen 4-5 fields were randomly selected in liver lobuli to count the 

positive cells, after which the mean was taken for analysis. In portal areas the total numbers of 

positive cells per infiltrate were counted in at least four infiltrates per section. In addition, the 

mean numbers of CD8+ T-lymphocytes per 10,000 µm2 in portal areas were calculated using a 

computer video-image analysis program (KS 400, Kontron Elektronic, GmbH, Eching, Germany). 

For each portal area, color video images of 512 × 512 pixels with a resolution of 0.4348 µm 

per pixel were recorded. All the results were counted by one investigator (T.J.T.) blinded for 

the virological and biochemical conditions of the patients. Data are expressed as mean ± 

standard deviation, unless otherwise indicated. Differences between groups were compared 
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Figure 5. Intralobular density of Fas-L expressing cells in individual liver biopsies in relation to ALT
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using the Mann-Whitney test. Spearman’s correlation coefficients (r
s
) were used to investigate 

correlations. Linear regression lines in various plots were calculated using the least-squares 

method after logarithmic transformation of both axes. A p-value of < 0.05 was considered 

statistically significant.
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Figure 6. Relation between density of intralobular CD8+ T-lymphocytes and HBeAg status (a) and HBV-DNA (b). ( Medians are 

indicated by a line)
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RESULTS

Characteristics of patients

The initial patient characteristics are presented in Table 1. Forty-seven biopsies of chronic HBV 

patients were investigated. The median age was 32 years (range 18-70); 57% of the patients 

were male. Fifty-seven percent (n=27) were HBeAg positive. The distribution of race was 27 

(57.4%) Caucasians, 11 (23.4%) Orientals and 9 (19.2%) Blacks.

Intrahepatic CD8+ T-lymphocytes in relation to hepatic inflammatory activity 

CD8+ T-lymphocytes were seen both in the portal areas and in the hepatic lobules. There was 

no correlation between the total numbers of the CD8+ T-lymphocytes in portal infiltrates and 

serum ALT values (r
s
=0.12; p=0.46) (Fig. 1a). Even when the density of CD8+ T-lymphocytes in 

portal areas (i.e. per 10,000 µm2) were calculated by video-image analysis, no correlation was 

found (r
s
=-0.29; p=0.06). However, an inverse correlation was found between the intralobular 

density of CD8+ T-lymphocytes and serum ALT values. Patients with high ALT values had 

lower numbers of CD8+ T-lymphocytes between the parenchymal cells (r
s
=-0.54; p<0.001) 

(Fig. 1b, Fig. 2). A significant correlation between serum ALT and HBV-DNA was found (r
s
=0.41; 

p=0.003).
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Figure 7. Density of CD8+ T-lymphocytes versus granzyme-positive cells intralobular (a) and numbers of CD8+ T-lymphocytes 

versus granzyme-positive cells in portal areas
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Cytotoxic effector molecules in relation to hepatic inflammatory activity

To investigate which mechanism might cause inflammatory liver injury observed in chronic 

HBV-patients, biopsy sections were stained for the cytotoxic granule protease granzyme B and 

for CD178 (Fas-Ligand) expression. Granzyme B positive cells were observed in the portal and 

lobular fields of the biopsies from chronic HBV patients. A significant positive correlation was 

observed between serum ALT and the numbers of granzyme B positive cells in portal infiltrates 

and serum ALT values (r
s
=0.65; p<0.001) (Fig. 3), but not with the density of granzyme B+ cells 

in the lobular fields (r
s
=0.23; p=0.15).

Expression of Fas-L was observed in all biopsies of chronic HBV patients, predominantly 

in lobular areas. In contrast, no expression of Fas-L was found in normal livers. Clone NOK-1 

confirmed the results obtained by clone 5G51. Fas-L-expressing cells were morphologically 

distinguishable as Kupffer cells and other lymphoid cells. Staining of two serial slides of one 

specimen with CD68 and anti-Fas-L confirmed Fas-L expression on Kupffer cells (Fig. 4). The 

density of Fas-L positive cells between the parenchymal cells was significantly higher in biopsies 

taken during episodes of increased inflammatory liver injury (r
s
=0.32; p=0.05) (Fig. 5).

Intrahepatic CD8+ T-lymphocytes in relation to viral replication

The relation between immune effector cells and viral control was studied in 47 biopsies. These 

biopsies were from 27 HBeAg positive patients and 20 HBeAg negative patients. The numbers 

of CD8+ T-lymphocytes in the portal areas were equal in the HBeAg positive and in the HBeAg 

negative groups. However, in the HBeAg negative patients the density of CD8+ T-lymphocytes 

in the intralobular areas was higher compared to HBeAg positive patients (p=0.002) (Fig. 6a). A 

inverse correlation was found between serum HBV-DNA and intralobular CD8+ T-lymphocytes 

(r
s
=-0.44; p=0.002) (Fig. 6b).

The immune effector molecules granzyme B and Fas-L revealed no correlation with HBeAg 

status (data not shown). In all patients the numbers of CD8+ T-lymphocytes (10 ± 5) and 

granzyme B positive cells (13 ± 9) in the hepatic lobules were equal (Fig. 7a), whereas the portal 

fields contained significantly more CD8+ T-lymphocytes (37 ± 19) than granzyme B positive 

cells (14 ± 8; p=0.001) (Fig. 7b). This suggests that all intralobular CD8+ T-lymphocytes have an 

activated cytolytic system, in contrast to those in portal infiltrates.

Other immune effector cells

NK/NKT (CD56 positive) cells were rare in all groups (< 5 per microscopic field), both in portal 

and lobular areas. The number of NK/NKT cells in biopsies of chronic HBV patients was equal to 

normal liver. No difference in numbers of NK/NKT cells was seen in the portal areas or hepatic 

lobules in patients with different ALT, HBeAg status or HBV-DNA (data not shown). 

Monocytes and macrophages, including Kupffer cells (CD68+ cells) were abundant and 

equally present among the groups with different ALT values. CD68 positive cells were mainly 

present within the sinusoids, but some CD68 positive cells were also found in the portal areas 
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(data not shown). Plasmacytoid dendritic cells (CD123 expression) were scarcely observed 

intralobularly (2.0 ± 1.5) and minimally enhanced in comparison with normal liver (0.6 ± 0.8). 

Expression of anti-viral cytokines

IFN-γ expression was sporadically present in all chronic HBV-infected patients (1.0 ± 2.7) 

positive cells per microscopic field). However, in fulminant HBV-infection (n=3), many IFN-γ 

positive cells were detected throughout the biopsy. In these biopsies the architecture of liver 

tissue was severely disturbed; thus lobular and portal area could not be differentiated. In two 

patients with acute non-viral hepatitis we also found a strong expression of IFN-γ, particularly 

in the portal areas. Cells expressing TNF-α were also scarce or absent in chronic patients (0.1 ± 

0.8 positive cells per microscopic field). In patients exhibiting IFN-γ positive cells, TNF-α positive 

cells were observed as well. Again, many TNF-α positive cells were observed in the acute viral 

hepatitis biopsies. Both patients with acute non-viral hepatitis revealed clearly positive cells 

too, but lower in number. They were particularly localized in the portal infiltrates. 

DISCUSSION

In this study we investigated the occurence of intrahepatic immune effector cells, cytotoxic 

effector molecules and IFN-γ and TNF-α expressing cells in relation to inflammatory liver injury 

and viral control during chronic hepatitis B infection. The presence of intralobular CD8+ T-

lymphocytes was most prominent in patients with normal to moderately elevated ALT and less 

noticable in patients with high ALT values. This result extends the observations by Maini et al, 

who reported that a patient chronically infected with HBV with high ALT had lower number 

of CD8+ T-lymphocytes intralobular in comparison to a patient with normal liver enzymes. 

By contrast, in patients with elevated liver enzymes the absolute numbers of intrahepatic 

HBV-specific CD8+ T-lymphocytes were similar to patients without liver damage (9). Together 

these observations indicate that increased numbers of HBV specific or non-specific CD8+ T-

lymphocytes infiltrating the liver parenchyma do not cause inflammatory liver injury during 

chronic HBV-infection. 

We found a higher density of intralobular CD8+ T-lymphocytes in patients with HBeAg-

negativity and low HBV-DNA. This may indicate CD8+ T-lymphocytes are important for immune 

control of viral replication. Although we have not determined whether the intralobular CD8+ 

T-lymphocytes were HBV specific, they were all in an activated state (Fig 7), probably capable of 

attacking virus-infected cells. 

Fas-L expression was found in all chronic HBV-biopsies, but was absent in normal livers. This 

is in agreement with the observations of Galle et al., who described the primary involvement 

of Fas-L in hepatitis B related hepatocellular damage [11]. In our study, Fas-L expression was 

not only found in portal infiltrates, but predominantly in the lobuli. The localization and 
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morphology of the Fas-L expression resembled to a Kupffer cell staining with CD68. Although 

human Kupffer cells were not known to express Fas-L, it has been reported that. IFN-γ treatment 

can induce Fas-L messenger RNA in Kupffer cells in rats [12]. In our study, Fas-L expression in the 

lobuli was clearly upregulated in biopsies taken during episodes of increased ALT, suggesting a 

causative role for Fas-L on Kupffer cells in hepatocyte damage. Data from other studies show an 

upregulation of Fas-L expression by the human immunodeficiency virus in human macrophages, 

which mediates apoptosis of uninfected T-lymphocytes, suggesting that this could be also the 

case in a chronic HBV infection [13-14]. In addition to increased intralobular Fas-L expression, 

a significant positive correllation between granzyme expression in portal infiltrates and 

inflammatory liver injury was found. Since numbers of CD8+ T-lymphocytes in portal infiltrates 

were not increased in patients with high ALT, this suggests that activation of cytotoxic capacity 

of CD8+ T-lymphocytes in infiltrates may be involved in inflammatory injury.

CD56 positive (NK/NKT) cells were rare in all our specimens. The number of these cells in the 

lobuli did not correlate with liver damage or viral control. This does not imply that NK/NKT cells 

do not play any role in the anti-viral immune response, but their role during chronic infection 

is probably limited. These cells may be important for viral control in an early phase of acute 

infection [6]. A previous study has described NK/NKT cells inhibiting HBV replication by secreting 

antiviral cytokines after activation by injection of α-galactosylceramide, a glycolipid antigen, in 

HBV transgenic mice [15] and it was recently reported that inhibition of HBV replication by 

activated NKT cells did not require recruitment of inflammatory cells to the liver [16]. 

By which mechanism the CD8+ T-lymphocytes control virus infection remains unclear. 

Studies using a transgenic mouse model of hepatitis B virus infection have demonstrated that 

virus-specific CD8+ T-lymphocytes can abolish HBV gene expression and replication in the liver 

by secretion of IFN- γ and TNF-α without killing the hepatocytes [4, 5, 6, 17]. We found only few 

IFN- γ and TNF-α producing cells in the biopsies taken during chronic HBV infection. This might 

be due to the insensitivity of the immunohistochemical detection method since cytokines are 

secreted and do not accumulate in the cell. However, we do not favour this explanation, since 

many IFN-γ and TNF-α-positive cells were observed in liver biopsies taken during acute HBV-

infection and clear expression was detected in liver biopsies from acute viral and non-viral 

hepatitis patients. These results suggest that cells producing high amounts of IFN-γ and TNF-α 

are not present during chronic HBV-infection. The failure of prominent intrahepatic cytokine 

production observed in this study could therefore explain the viral persistence, even in those 

patients in which replication was suppressed. This failure was not due to a resting state of 

intrahepatic CD8+ T-lymphocytes.

CD8+ T-lymphocytes and NK-cells, once activated use the same the same lytic pathway for 

mediating target cell death. The equal numbers of intralobular granzyme B positive cells and 

CD8+ T-lymphocytes suggest that these CD8+ T-lymphocytes were activated. We cannot exclude 

prior release by the granzyme-negative expression of lymphocytes due to cell activation, but it 
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is widely accepted that once lytic granules mobilization has been initiated in the effector cell, it 

reflects the activated status of a CD8 T-lymphocyte toward a target cell [18].

CD123 expressing plasmacytoid dendritic cells were hardly increased in chronic HBV liver 

biopsies compared to normal liver tissue indicating that these IFN-α producers are not implicated 

in control of HBV replication during chronic infection. Donaghy et al reported that increasing 

viral load was correlated with depletion of myeloid and plasmacytoid DCs in blood of patients 

with an HIV-1 infection. It was suggested that disease progression was due to the loss of both 

DC populations in HIV infection [19]. The important function of PDCs was clearly demonstrated 

by Cella et al who showed that human PDCs stimulated with influenza virus and CD40-Ligand 

in vitro could not only produced IFN-α, but also efficiently induce a Th1 response. [20]. Possibly, 

chronicity of HBV-infection may, in addition to absence of IFN-γ and TNF-α producing cells, be 

due to a paucity of IFN-α producing cells in the infected liver. 

In conclusion, low HBV replication and HBeAg negativity is associated with a larger number 

of intralobular CD8+ T-lymphocytes. Intralobular CD8+ T-lymphocytes were all activated cells 

and contained granzyme B, a marker of the lytic pathway, but did not produce high levels of 

cytokines. Increased Fas-L expression on Kupffer cells and increased cytolytic activity of cells in 

portal infiltrates among patients with severe liver inflammation appears to play a major role in 

the pathophysiology of liver injury during chronic HBV infection.
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ABSTRACT

Recognition of HBV-infected hepatocytes by CD8 T-lymphocytes is important for viral clearance. 

Expression of hepatitis B core antigen (HBcAg) in HBV-infected hepatocytes can trigger this 

antiviral T-cell response. The intrahepatic CD8 T-lymphocytes and HBcAg expression were 

investigated in relation to response to antiviral therapy. 

Forty chronic HBeAg-positive patients treated with either lamivudine (n=20) or interferon-

alpha (n=20) were investigated. Ten patients from each treatment group exhibited a response. 

Liver biopsies were carried out before and after therapy. CD8 T-lymphocytes and HBcAg 

expression were detected by immunohistochemistry. The number of pretreatment intrahepatic 

CD8 T-lymphocytes was significantly higher in responders (p=0.008). In responders baseline 

nuclear HBcAg expression tended to be lower (p=0.09). Cytoplasmic expression was not 

significantly different between responders and non-responders (p=0.46). The number of CD8 

T-lymphocytes correlated with cytoplasmic HBcAg (r
s
=0.31; p= 0.04); CD8 T-lymphocytes were 

situated in clusters of hepatocytes with cytoplasmic HBcAg. Longitudinal analysis showed a 

significant reduction of CD8 T-lymphocytes after treatment in responders (p<0.001). Multivariate 

analysis revealed pretreatment CD8 T-lymphocytes and age as independent prognostic factors 

for response (n=40). The number of pretreatment CD8 T-lymphocytes was the only independent 

prognostic indicator for response to interferon-alpha (p=0.03); it was of borderline significance 

for lamivudine therapy (p= 0.06).

It is concluded that the number of pretreatment intrahepatic CD8 T-lymphocytes is an 

important predictor of response to HBV therapy with either interferon-alpha or lamivudine. 

Response to therapy led to a significant reduction of intrahepatic CD8 T-lymphocytes. Co-

localisation of CD8 T-lymphocytes and HBcAg-positive hepatocytes suggests antiviral activity 

predominantly at the site of maximum HBV replication.
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INTRODUCTION

More than one-third of the global population has been infected with the hepatitis B virus 

(HBV) and approximately 350 million people are chronic carriers of HBV. These patients have 

an increased risk of developing liver cirrhosis and hepatocellular carcinoma [1]. Spontaneous 

remission with effective control of viral replication occurs in a small number of patients during 

the natural history of chronic HBV infection. These remissions are the desired result of antiviral 

treatment for chronic HBV. The drugs interferon-alpha and lamivudine are used to treat chronic 

HBV infection, but only a small number of patients (20-30%) achieve a sustained response to 

these antiviral agents [2, 3]. Recent studies provide substantial evidence that the host antiviral 

immune response, in particular the intrahepatic immune response, to HBV-antigens is the main 

determinant of the outcome of HBV infection [4]. Hepatitis B core antigen (HBcAg) in the infected 

liver is associated with active viral replication [5, 6]. During an active and ongoing hepatitis, 

HBcAg is localized predominantly in the cytoplasm of the infected hepatocyte. However, in 

patients with no or minimal inflammatory activity, HBcAg is found mainly in the nucleus. 

These findings have led to the hypothesis that infected hepatocytes with a cytoplasmic or 

membraneous HBcAg expression trigger CD8 T-lymphocytes, resulting in cytolysis of infected 

hepatocytes [7]. We investigated the predictive value of the number of CD8 T-lymphocytes 

and HBcAg expression in the liver in relation to response to antiviral therapy for chronic HBV 

patients. 

MATERIAL AND METHODS

Patients and controls

Forty patients with chronic hepatitis B (HBsAg, HBeAg and HBV-DNA positive for more than 6 

months) were studied. Twenty patients received interferon-alpha (Intron A, 10 MU thrice weekly 

subcutaneously for 32 weeks) and 20 patients received lamivudine therapy (100 mg/day po for 

11 to 169 weeks). To achieve optimal data on the mechanism of response to antiviral therapy 

for both regimens we selected a population with 50% response in both treatment groups. A 

control group comprised 5 healthy subjects without evidence of exposure to the HBV virus (i.e. 

HBsAg and anti-HB core negative). The definition of response consisted of HBeAg negativity 

and HBV-DNA levels below the detection limit (<1.0 E5 HBV-DNA copies/mL) at the end of 

therapy. All patients were negative for antibodies against human immune deficiency virus 

(HIV), hepatitis C and hepatitis D. A liver biopsy was obtained before therapy and at the end 

of treatment. The liver specimens were fixed in phosphate-buffered formalin and embedded 

in paraffin. The study was approved by the Medical Ethical Committee of the Erasmus Medical 

Center and written informed consent was obtained prior to therapy.
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Virological assessments

HBsAg, HBeAg, anti-HBe, anti-HIV, anti-HCV and anti-HDV were determined quantitatively by 

IMX (Abbott Laboratories, North Chicago, IL) according to the manufacturer’s instructions. HBV-

DNA level in sera was measured by Hybrid Capture II microplate assay (Digene Corporation, 

Gaithersburg, U.S.A.), as described by the manufacturer. 

Detection of CD8 T-lymphocytes and HBcAg in the liver

CD8 T-lymphocytes and HBcAg expression in hepatocytes were examined by 

immunohistochemical double stain with CD8 mAb (clone C8/14415) and rabbit anti-HBcAg 

from DAKO, Glostrup Denmark. The liver sections were first deparaffinized with xylene (Lab 

Scan Ltd, Dublin, Ireland) and ethanol (Merck, Darmstadt, Germany). The antigen retrieval was 

performed by temperature-controlled incubation at 99°C in citrate buffer (pH 6.0) in a microwave 

oven, followed by incubation with CD8 mAb. The liver specimens were incubated with goat 

anti-mouse immunoglobulins (GAM, DAKO), followed by alkaline-phosphatase-anti-alkaline 

phosphatase complex (APAAP, Serotec, UK). Subsequently, the specimens were incubated with 

rabbit anti-HBcAg. Hepatic HBcAg expression was detected by an immunoperoxidase kit (En 

Vision HRP system, DAKO). The order of revealing the two antigens was initial incubation with 

diaminobenzidine for the HBcAg expression and secondly with Fast Blue salt / naphtol AS-BI 

phosphate solution supplemented with levamisole (all from Sigma-Aldrich Chemie, Steinheim, 

Germany) for the visualization of CD8 T-lymphocytes. Negative controls were performed by 

replacement of the primary mAb by an isotype-matched control mAb.

Quantitation and statistical analysis

The liver specimens were examined microscopically (Zeiss Axioscop) at 400X. In every 

specimen 10 fields were selected at random in liver lobuli to count the CD8 T-lymphocytes 

and hepatocytes with HBV core expression (nuclear and cytoplasmatic). The mean of all counts 

was used for analysis. All results were counted by one investigator (T.J.T.), who was blinded 

for response and treatment regimen of the patients. Statistical analysis of differences between 

groups was performed with the Mann-Whitney U test. Pretreatment and posttreatment levels 

within each group were compared using the Wilcoxon signed rank test. Spearman’s correlation 

coefficients (r
s
) were used to investigate correlations. Univariate analysis was conducted to 

investigate the presence of covariation of response with baseline variables. Variables that 

were statistically significant (two sided, p<0.05) or exhibited a marginal association (p≤0.10) 

according to univariate analysis were subsequently introduced into multivariate analysis, 

which was assessed by logistic regression analysis. SPSS 9.0 for Windows (SPSS, Chicago, IL) 

was used for all statistical analysis. In all analyses a p- value of <0.05 was considered statistically 

significant. Data are expressed as median (range), unless indicated otherwise.
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RESULTS

Patient characteristics

Baseline characteristics of responders and non-responders are shown in Table 1. Responders 

had lower levels of hepatitis B virus DNA than non-responders. The distribution of gender, 

age, race and serum alanine aminotransferase levels and race was not significantly different 

between responders and non-responders.

Table 1. Baseline characteristics

All patients
(n=40)

Responders
(n=20)

Non-responders
(n=20)

p-value: response 
vs. non-response

Sex (male/female) 34 / 6 17 / 3 17 / 3 n.s.

Age (years)* 28 (16-64) 34 (15-64) 25 (16-61) 0.08

ALT (units/L)* 79(20-786) 84 (20-786) 76(31-244) 0.43

HBV-DNA (geq/mL)* 3.0 E8 
(6.6 E5-1.4 E10)

1.3 E8
(6.6 E5-3.5 E9)

5.4 E8
(1.5 E6-1.4 E10)

0.01

Race (C/ A/ B)** 29/ 9/ 2 17/ 2/ 1 12/ 7/ 1 n.s.

*   median (range)
** C=caucasians A=asians B= Africans

Pretreatment intrahepatic CD8 T-lymphocytes and HBcAg in relation to treatment response 

Pretreatment numbers of CD8 T-lymphocytes were significantly higher in responders than in 

non-responders (p=0.008) (Table 2). The number of hepatocytes with nuclear HBcAg expression 

tended to be lower in responders than in non-responders (p=0.09) (Table 2). No correlation 

was observed between the number of CD8 T-lymphocytes and nuclear expression of HBcAg 

in hepatocytes (r
s
=0.23; p=0.13). Median cytoplasmic expression of HBcAg was 2.5 (range 

0-29) in responders vs. 1.5 (range 0-21) in non-responders (p=0.46). A significant correlation 

between numbers of CD8 T-lymphocytes and hepatocytes with cytoplasmic expression of 

HBcAg was observed (r
s
=0.32; p=0.04). Furthermore, these CD8 T-lymphocytes were situated 

predominantly within the vicinity of hepatocytes with cytoplasmatic HBcAg expression. Nuclear 

and cytoplasmic HBcAg expression in relation to CD8 T-lymphocytes are shown in figure 1. 

Table 2. Expression of CD8 T-lymphocytes and HBcAg in pre-treatment biopsy

All patients
(n=40)

Responders
(n=20)

Non-responders
(n=20)

p-value: response 
vs. non-response

Number CD8 
T-lymphocytes*

12.0 (3-31) 15.5 (5-31)  9.5 (3-26) 0.008

Number nuclear HBcAg 
hepatocytes*

 8.0 (0-49)  4.0 (0-45) 12.5 ( 1-49) 0.09

Number cytoplasmic HBcAg 
hepatocytes*

 2.0 (0-33)  2.5 (0-33) 1.5 (0-21) 0.46  

median (range)
* per microscopic field 
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A

B

Figure 1. Immuno double-stain of HBcAg and CD8 T-lymphocytes (brown=HBcAg; CD8 T-lymphocytes=blue). Scattered 

nuclear expression of HBcAg and CD8 T-lymphocytes (original magnification × 200) (A). Clustered cytoplasmic expression of 

HBcAg (original magnification × 100) and co-localisation of cytoplasmic HBcAg and CD8 T-lymphocytes (inserted left, original 

magnification × 200) (B).
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Univariate analysis of the pretreatment co-variables of response - age (p=0.08), ALT level 

(p=0.43), HBV-DNA level (p=0.01), CD8 T-lymphocytes (p=0.008), nuclear HBcAg expression 

(p=0.09) and cytoplasmic HBcAg expression (p=0.46) - revealed only CD8 T-lymphocytes as 

a significant predictor of response (Table 1 and 2). In multivariate analysis, age (p=0.02) and 

pretreatment number of CD8 T-lymphocytes (p=0.007) emerged as independent variables 

of significance for response (Table 3). The predicted probability of subsequent response to 

antiviral therapy according to the regression modeling of the pretreatment numbers of CD8 

T-lymphocytes is shown in figure 2. Serum ALT did not emerge as predictor for response while 

CD8 T-lymphocytes was identified as a strong predictor. However, serum ALT and the quantity 

of CD8 T-lymphocytes did correlate significantly (r
s
=0.45, p=0.004), indicating that these two 

variables were both associated with active liver disease. 
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Figure 2. The predicted probability of subsequent response to therapy displayed as a function of the number of CD8 

T-lymphocytes per lobular field in biopsies taken before treatment. The curve is based on logistic regression modeling of 

pretreatment CD8 T-lymphocytes. Individual datapoints of responders and non-responders are depicted.

Table 3. Results of multivariate analysis (n=40)

Odds ratio 95% CI p-value

Age 1.08 1.01-1.15 0.02

CD8 T-lymphocytes 1.20 1.05-1.37 0.007

CI: confidence interval
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Alteration of intrahepatic CD8 T-lymphocytes and HBcAg during antiviral treatment 

Longitudinal analysis of pretreatment and posttreatment biopsies from the responders showed 

a significant reduction of CD8 T-lymphocytes (p<0.001) (Fig. 3a), while the numbers of CD8 T-

lymphocytes remained unchanged in the non-responders (p=0.71) (Fig. 3b). Nuclear expression 

(p<0.001) and cytoplasmic expression (p=0.003) of HBcAg in the hepatocytes decreased 

significantly in the responders (Fig 4a and Fig. 4b). In contrast, no significant reduction of nuclear 

(p=0.06) or cytoplasmic (p=0.97) expression of HBcAg was observed in the non-responders 

(Fig. 4c and Fig. 4d)

Interferon-alpha and lamivudine treatment: subgroup analysis for intrahepatic CD8 T-lymphocytes and 
HBcAg

Age, sex, race, and serum values for ALT and HBV-DNA did not differ across the treatment groups. 

Pretreatment densities of CD8 T-lymphocytes and HBcAg were also comparable between 

treatment groups and alteration during therapy did not differ significantly between patients 

treated with interferon-alpha and lamivudine (data not shown). The response rate 6 months 

after discontinuation of therapy was 70% for interferon-alpha and 10% for lamivudine. This 

difference in sustained response could be explained by a state of immune control induced by 

interferon-alpha, but not lamivudine. Therefore, we hypothesized that the immune modifying 

effect of interferon-alpha might have led to a different pattern in CD8 response than the 

predominantly antiviral effect of lamivudine. However, in both treatment groups pretreatment 

CD8 T-lymphocytes were higher in responders than in non-responders and during therapy a 
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Figure 3. Densities of intralobular CD8 T-lymphocytes in serial liver biopsy specimens before therapy and at the end of 

treatment of responders (A) and non-responders (B). Median and ranges are depicted at the top.
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Figure 4. Serial liver biopsy specimens before therapy and at the end of treatment of responders in relation to nuclear (A) and 

cytoplasmic expression (B) of HBcore and non-responders in relation to nuclear (C) and cytoplasmic expression (D) of HBcAg. 

Median and ranges are depicted at the top.
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similar reduction in CD8 T-lymphocytes was found for interferon-alpha and lamivudine treated 

patients: In interferon-alpha responders median CD8 T-lymphocyte number was 13.5 (range 

5-31) before treatment and 8.5 (range 5-11) after treatment (p=0.01); in non-responders the 

median number of CD8 T-lymphocytes remained about the same (pretreatment 7.5 (range 3-

15) vs. posttreatment 10.0 (range 5-21); p=0.56). In lamivudine responders median numbers of 

CD8 T-lymphocytes decreased from 19 (range 5-30) pretreatment to 9.5 (range 7-16) (p=0.01) 

posttreatment; in lamivudine non-responders median CD8 T-lymphocytes were comparable 

before and after treatment (pretreatment 11.5 (range 5-26) vs. posttreatment 9 (range 4-26); 

p=0.28). 

Univariate analysis for baseline characteristics of patients treated with interferon-alpha 

showed that the number pretreatment CD8 T-lymphocytes (p=0.03) was the only predictor 

of response. Age, HBV-DNA, serum ALT level, nuclear HBcAg and cytoplasmic HBcAg did not 

emerge as predictors of response. After multivariate analyses pretreatment CD8 T-lymphocytes 

remained the only independent prognostic indicator of response. In the lamivudine-

treated patients, univariate analysis did not yield any significant predictors of response. In 

the multivariate analysis age (p=0.05) and pretreatment CD8 T-lymphocytes (p=0.06) were 

borderline independent indicators of response. 

DISCUSSION

In the present study intrahepatic CD8 T-lymphocytes were strongly associated with response to 

antiviral therapy in two different ways. Firstly, the pretreatment number of intrahepatic CD8 T-

lymphocytes was higher in responders than in non-responders and, secondly, intrahepatic CD8 

T-lymphocytes decreased significantly during therapy in responders whereas they remained 

unchanged in non-responders. Both phenomena were found in patients treated with either 

interferon-alpha or lamivudine.

The importance of CD8 T-lymphocytes has been well documented in acute HBV infection 

where a strong CD8 T-lymphocyte response is associated with viral clearance [8, 9]. It is 

generally acknowledged that this CD8 T-lymphocyte response is antigen specific, present in the 

liver, and able to clear HBV infection by cytolytic and noncytolytic effector functions [10]. The 

CD8 T-lymphocytes are specific for a range of different epitopes within HBV core, polymerase 

and envelope proteins [11, 12]. In contrast to acute HBV infection, chronic HBV carriers exhibit 

a weak peripheral CD8 T-lymphocyte response [13, 14]. A recent study demonstrated the 

existence of HBV-specific CD8 T-lymphocytes in the liver of chronic HBV carriers, but there 

appeared no relation between their number and the occurrence of hepatocellular injury [15]. 

However, these authors observed that the total numbers of CD8 T-lymphocytes (either HBV-

specific or non-specific) was increased in liver biopsies of patients with hepatocellular injury, 

which is in agreement with the present observation that numbers of intrahepatic CD8 T-
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lymphocytes are positively correlated with ALT values. Since in their study the patients groups 

with high and low viremia strongly differed in ALT-values, no definitive conclusion could be 

drawn on the relation between total or HBV-specific CD8 T-lymphocytes and immune control 

of viral replication. Our study in which responders and non-responders did not differ in ALT-

value, allowed to investigate the relation between total intrahepatic CD8 T-lymphocytes and 

response to therapy independently of the extent of hepatocellular inflammation. We found 

that the total numbers of intrahepatic CD8 T-lymphocytes was higher in pre-treatment liver 

biopsies of responders as compared to non-responders. It remains to be established, however, 

whether this difference reflects as difference in the quantity of virus-specific T-lymphocytes. 

Also non-HBV specific bystander T-lymphocytes may contribute to clearance of the virus, e.g. 

by secretion of antiviral cytokines. In the current study we did not investigate the cytolytic and 

antiviral effector mechanisms expressed by CD8 T-lymphocytes, but previous studies have 

shown that CD8 T-lymphocytes can induce inflammatory liver injury by induction of apoptosis, 

mediated by Fas Ligand and cytolytic granzyme molecules [16, 17].

In the setting of antiviral treatment little is known about the intrahepatic response of CD8 T-

lymphocytes. It is possible that responders have a pre-existent T-cell response, which is unable 

to clear the virus completely. Viral clearance can be achieved either by boosting the immune 

response with an immunemodulator or by lowering the viral load. Additional factors such as 

HBV genotype and viral mutations may have an effect on the establishment of viral control. 

Several antiviral regimens are targeted to boost the HBV-specifc CD8 T-cell response, either by 

immune modulation or by inhibition of viral replication. For guidance of antiviral management, 

our results showed that the number of intrahepatic CD8 T-lymphocytes could be helpful to 

predict subsequent response to antiviral therapy. However, it should not be interpreted as proof 

that low numbers of CD8 T-lymphocytes have no prognostic value for response. Other strong 

predictors of response, such as serum ALT and HBV-DNA, should also be assessed to determine 

the optimum therapeutic regimens for chronic HBV patients [18, 19]. Furthermore, it should 

be mentioned that since the number of patients is relatively small, the factors found to be 

predictive of response by means of multivariate analysis can only be considered as probable.

Subgroup analysis revealed that the number of pretreatment intrahepatic CD8 T-lymphocytes 

was the only prognostic indicator for response to interferon-alpha therapy, while it emerged as a 

borderline independent indicator for response to lamivudine therapy. Interestingly, the 6-month 

response rate after discontinuation of therapy was 70% for interferon-treated patients and 10% 

for lamivudine-treated patients. This suggests that inhibition of viral replication by lamivudine 

alone does not result in HBV elimination and interferon-alpha-induced immune reactivity 

is required for complete control [20-22]. The quantity and response of intrahepatic CD8 T-

lymphocytes cannot explain this difference in response pattern, as these were similar for patients 

treated with lamivudine or interferon-alpha. In peripheral blood Marinos et al. compared T-cell 

responses in chronic HBV patients during interferon-alpha therapy and combined interferon-

alpha-lamivudine in patients who did not respond previously to interferon-alpha monotherapy. 
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They observed no difference in T-cell response during interferon-alpha monotherapy and 

during combination, and concluded that significant inhibition of viral replication by lamivudine 

did not restore the hyporesponsiveness in chronic HBV [23]. In contrast, Boni et al. reported 

that in chronic HBV patients undergoing lamivudine treatment, reduction in viral load allows 

repopulation of functionally active HBV specific CD8 T-lymphocytes in peripheral blood [24]. A 

possible explanation of these contradictory data could be a difference in duration of infection 

in both studies. To further dissect the difference in response mechanism between interferon-

alpha and nucleoside analogues we are currently investigating the function and HBV specificity 

of intrahepatic CD8 T-lymphocytes during therapy with antiviral agents.

The presence of HBcAg in the infected hepatocytes is associated with active replication. In 

our study serum HBV-DNA level correlated with nuclear (r
s
=0.45; p=0.004) but not cytoplasmic 

expression of HBcAg (r
s
=0.17; p=0.29). HBcAg expression is found predominantly in the nucleus 

of patients with minimal hepatitis activity, while HBcAg is prominent in the cytoplasm of 

patients with active and ongoing hepatitis [7, 25-27]. In our responders we not only observed 

a significant reduction of intrahepatic numbers of CD8 T-lymphocytes but also an almost 

complete dissappearance of HBcAg-infected hepatocytes at the end of therapy. Patients with 

predominant cytoplasmic HBcAg expression had higher levels of CD8 T-lymphocytes in the 

lobular fields (p=0.04). Moreover, these CD8 T-lymphocytes were situated predominantly in 

hepatocyte clusters with HBcAg expression in the cytoplasm. Both the combined reduction of 

CD8 T-lymphocytes and HBcAg-positive hepatocytes after successful antiviral therapy as well 

as the co-localisation of CD8 T-lymphocytes and HBcAg-positive hepatocytes within the liver 

parenchyma indicate that responders have higher numbers of intrahepatic CD8 T-lymphocytes 

able to exert antiviral activity at the site of maximum replication. An efficient immunological 

response will result in a lowering of the viral load and, consequently, CD8 T-lymphocytes 

numbers would fall with the decrease of HBcAg-infected hepatocytes. Further studies are 

needed to elucidate whether the CD8 T-lymphocytes present in the lobular fields at the end of 

therapy could be primarily HBV-specific. HBV-specific CD8 T-lymphocytes can persist long after 

recovery of HBV-infection, despite low levels of HBV DNA [28]. 

In conclusion, immunohistochemical analyses of a series of patients with chronic hepatitis 

B infection treated with antiviral therapy revealed that responders exhibit an increased 

pretreatment number of intrahepatic CD8 T-lymphocytes. The pretreatment number of 

intrahepatic CD8 T-cells was found to be an independent predictor of response for therapy with 

interferon-alpha or lamivudine. Co-localisation of intrahepatic CD8 T-lymphocytes and HBcAg-

infected hepatocytes suggests that CD8 T-lymphocytes are able to expand and exert antiviral 

activity at the site of maximum HBV replication in the liver. 
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ABSTRACT

Frequent analysis of the intrahepatic cellular immune response during chronic hepatitis B 

infection is not feasible with the liver tissue biopsy technique, due to its risk profile and patient 

discomfort. We investigated whether the relatively safe and patient-friendly cytological Fine-

Needle Aspiration Biopsy technique (FNAB) is suited for this purpose. FNABs taken during 

hepatitis flares in three chronic hepatitis B patients treated with IFN-α, showed significant 

increments of CD8+-lymphocytes compared with the FNABs taken before and after the 

flares. No increments were observed in peripheral blood. The increments of intrahepatic 

CD8+-lymphocytes detected by the FNAB were related to anti-viral immune reactivity, since 

they coincided with significant serum HBV-DNA level reductions and in two of three patients 

with HBeAg seroconversion. In conclusion, the FNAB-technique is suited to investigate the 

intrahepatic immune response during chronic hepatitis B infection on a frequent basis.
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INTRODUCTION

Hepatitis B virus (HBV) is a non-cytopathic DNA virus that causes chronic hepatitis in 10% 

of infected adults. Chronic hepatitis may ultimately lead to liver cirrhosis or hepatocellular 

carcinoma. Successful treatment regimens for chronic hepatitis B virus (HBV) infection consist 

of immune-modulation with interferon-α or direct inhibition of viral replication with nucleoside 

analogues. However, only part of the patients respond to these treatments with sustained 

control of the virus. It is at present unknown why some patients respond and others do not. 

During acute hepatitis the virus is thought to be eliminated by an HBV-specific cytotoxic T-

lymphocyte (CTL) response, which is detectable in peripheral blood [1, 2]. However, during 

chronic infection, few anti-viral CTLs can be detected in the circulation [3], since they are 

compartmentalized to the liver [4]. It has been hypothesized that differences in the intrahepatic 

immune response are responsible for differences in outcome of antiviral therapy [5].

Several investigators have correlated intrahepatic CD8 T-lymphocytes to liver inflammation 

in tissue biopsies obtained during acute and chronic hepatitis B infections [6-8]. However, 

studies with longitudinal analysis of the cellular immune response in the liver during de novo 

infection or treatment of chronic hepatitis B infection have not been performed yet, due to the 

invasiveness and related patient discomfort of the liver tissue biopsy. 

Since the early eighties, the cytological Fine-Needle Aspiration Biopsy (FNAB) has been used 

for monitoring rejection activity after liver transplantation [9]. Here, we investigated whether 

the FNAB technique is suited for monitoring the intrahepatic immune response during acute 

exacerbations of hepatitis during antiviral therapy for chronic HBV-infection. 

MATERIAL AND METHODS

Patients

FNABs from three chronic HBeAg+ HBV-infected patients, who had acute hepatitis exacerbations 

(defined as an increase of serum alanine transaminase (ALT) to above 10 times upper limit of 

normal) during a 12-month therapy with pegylated-interferon (100 µg s.c. per week) were 

investigated in this study. Patient 1 was a female and 33 years of age, patient 2 a male and 29 

years of age, patient 3 a male and 42 years of age. All three were included in a clinical study 

in which FNABs and peripheral blood specimens were obtained at the start of therapy and at 

weeks 2, 8 and 52 (end of therapy) to study the intrahepatic immune response. In addition, 

FNABs were performed during hepatitis flares. The study was approved by the local Medical 

Ethical Committee, and all subjects gave written informed consent. 
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FNAB-procedure

The FNABs were performed using a 25 Gauge needle (diameter 0.5 mm) and therefore much 

better tolerated than core biopsies (14 Gauge, 2.0 mm). The needle was inserted in the eighth 

or ninth right intercostal space without any anaesthesia. A syringe with culture medium was 

attached to the biopsy needle and a specimen was obtained from the liver through aspiration 

caused by negative pressure in the syringe by making a short to-and-fro movement. In addition, 

heparinized peripheral blood was obtained by venapunction. In total, two FNABs and one 

sample of peripheral blood were collected per visit. FNAB and blood cells were centrifuged 

on to glass slides using a cytocentrifuge. One cytospin preparation of each specimen was 

stained according to the May-Grünwald-Giemsa procedure. The FNABs were considered to be 

representative if the aspirate contained at least seven hepatocytes per 100 leucocytes [10, 11]. 

If both FNABs were representative, the specimen with the highest hepatocyte/leukocyte ratio 

was used in the study.

Immunocytochemistry

Cytospin specimens of FNAB and peripheral blood were immunocytochemically stained with 

mouse antibodies specific for CD4+ T-lymphocytes (clone SK3, B&D, San Jose, CA), CD8+ T-

lymphocytes (clone MEM-31, Monosan, Uden, the Netherlands), B-lymphocytes (CD19, clone 

HD-37, DAKO, Glostrup, Denmark), NK/NKT cell (CD56, clone N901 from Beckman Coulter, 

Hialeah, FL) and plasmacytoid dendritic cells (CD123, clone 9F5, from BD-Pharmingen, San 

Jose CA), as described in [12]. Briefly, the slides of FNAB and blood specimens were fixed in 

4% paraformaldehyde in phosphate-buffered saline pH 7.3. Unspecific antibody binding was 

reduced by preincubation with TBS (Tris-buffered saline; pH 7.3) supplemented with 10% normal 

goat serum and 10% normal human plasma. Sections were incubated with primary antibodies 

or with isotype-matched control antibodies overnight at 4°C, and afterwards washed with TBS 

supplemented with 0.1% Tween-20. Detection of positive cells was performed with goat anti-

mouse immunoglobulins (GAM, DAKO) for one hour followed by alkaline-phosphatase-anti-

alkaline phosphatase complex (APAAP, Serotec, Oxford, UK). Visualization was performed by 

incubation in Fast Blue salt / naphtol AS-BI phosphate solution supplemented with levamisole (all 

from Sigma-Aldrich Chemie, Steinheim, Germany). The slides were counterstained with Nuclear 

Fast Red (Fluka Chemie, Buchs, Switzerland). Numbers of positive cells in immunocytochemical 

stains were quantified per 1000 leucocytes. 

Virological assessment

Quantitative determination of HBV-DNA was performed by a TaqMan assay, which allowed the 

accurate determination down to 373 geq/ml in serum. The assay was calibrated using EUROHEP 

standards [13].
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RESULTS AND DISCUSSION 

Numbers of CD8+ T-lymphocytes are elevated in FNAB but not in peripheral blood during hepatitis 
exacerbations

The hepatitis flares during therapy in the three selected patients occurred at 17, 28 or 48 

weeks after start of therapy. In addition, patient 1 experienced a post-treatment flare at week 

73. As is shown in Figure 1A, the FNABs obtained during the hepatitis flares contained many 

lymphocytes. Figure 1B shows an immunocytochemical CD8-stain of a FNAB cytospin. 

Quantification of immunocytochemically stained leukocytes in FNAB- and peripheral blood 

cytospin preparations obtained during and after therapy from patient 1 showed that during 

hepatitis flares the relative numbers of CD8+ T-lymphocytes increased in the FNABs, but not 

in peripheral blood specimens (Figure 2). A comparable increase of CD8+ T-lymphocytes was 

observed during the hepatitis flares in the two other patients (Figure 3). In addition to the 

increase in CD8+ T-lymphocytes, an elevated number of CD4+ T-cells was observed in the FNAB 

taken during the hepatitis flare in patient 3 (Figure 3B). Such a clear CD4+ T-cell increase was not 

found in the other two patients. No increments of CD19+, CD56+ or CD123+ cells were observed 

during the hepatitis flares in any of the patients (data not shown). 

The intrahepatic cellular immune response detected by the FNAB-technique reflects anti-viral immune 
reactivity.

The increments of CD8+ T-lymphocytes in FNABs during the hepatitis flares coincided in all 

three patients with a reduction in HBV-DNA level of at least 2 logs (Figure 2 and 3A). As is shown 

in Figure 2, the CD8+ T-lymphocyte increment in the FNAB during the first flare in patient 1 

was followed by HBeAg seroconversion. Unfortunately, HBeAg reactivation was observed after 

A B

Figure 1. A: May-Grünwald-Giemsa-stained cytospin preparation of a FNAB obtained during a hepatitis flare containing many 

lymphocytes. The large cells are hepatocytes. B: Immunocytochemical CD8-stain (red) of a FNAB cytospin preparation obtained 

during a hepatitis flare.
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cessation of therapy. In patient 2 the hepatitis flare was not followed by HBeAg seroconversion, 

while in patient 3 it was followed by sustained seroconversion. Interestingly, this was the only 

patient which showed, in addition to an increase of CD8+ T-cells, also an increment of CD4+ 

T-helper cells in the FNAB during the flare. Apparently, elevations of intrahepatic lymphocytes 

detected by the FNAB-technique reflected anti-viral immune reactivity.

Until now about 450 FNABs have been performed in our center in liver transplant recipients 

and in patients with chronic liver diseases and no complications were observed. The reported 

patient discomfort was comparable to a venepuncture. Other investigators have reported 

similar results in liver transplant recipients [10]. 

In conclusion, our results show that the FNAB-technique allows investigation of the 

intrahepatic cellular immune activity during antiviral therapy of chronic hepatitis B infection 

at a regular basis. 
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Figure 2. Course of ALT (U/L), HBV-DNA (genome equivalents/mL), and HBeAg positivity (panel A), and of the number of 

CD8+ and CD4+ T-lymphocytes in FNAB and peripheral blood per 1000 leucocytes (panel B) in patient 1 during and after IFN-α 

therapy.
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Figure 3. A: Course of ALT (IU/L) and HBV-DNA (genome equivalents/mL) of patient 2 and 3 during IFN-α therapy. B: Numbers 

of CD8+ and CD4+ T-cells per 1000 leukocytes in FNAB and peripheral blood samples obtained during IFN-α therapy of patients 

2 and 3 (CD4 data were not obtained at weeks 0 and 2 in these patients).
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ABSTRACT

Background/Aim: To determine whether NK-cells and CD8+ T-lymphocytes contribute to HBV 

clearance during antiviral therapy, we performed a longitudinal analysis of intrahepatic immune 

cells during interferon-α therapy of chronic HBV patients using the FNAB technique. 

Methods: Twenty chronic HBeAg+ patients were treated with pegylated a-interferon 

combined with lamivudine or placebo for 52 weeks. FNAB and blood specimens were obtained 

at week 0, 2, 8 and 52. CD56+ cells, CD8+ T-lymphocytes, interferon gamma (IFNg) and granzyme 

B (GrB) were immunocytochemically quantified.

Results: The relative numbers of CD56+ cells and CD8+ T-lymphocytes were significantly 

higher in FNAB compared to blood at all time-points. About 55% of CD8+ T-lymphocytes in 

FNAB expressed GrB and about 9% IFNg. Responders (n=9) exhibited a significant increase in 

intrahepatic CD8+, CD8+GrB+, and CD8+IFNg+ T-lymphocytes and a decrease in intrahepatic 

CD56+ cells during the first weeks of therapy. In non-responders (n=11) no changes in CD8+ 

T-lymphocytes and an increase in intrahepatic CD56+ cells were observed during therapy. 

Conclusion: The intrahepatic CD8+ T-lymphocyte, but not the NK/NKT-cell response, is 

important for HBV clearance during interferon-α therapy, and the antiviral effect may be 

mediated by both cytolytic and non-cytolytic mechanisms. 
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INTRODUCTION

Hepatitis B virus (HBV) infection is a common disease in humans. It is estimated that more than 

a third of the world’s population has been infected and that about 350 million persons are 

persistent carriers of HBV [1]. Chronic hepatitis B may progress to cirrhosis, liver failure and 

hepatocellular carcinoma [2]. The pathogenetic mechanisms responsible for acute and chronic 

hepatitis B have only partly been clarified. Several studies have shown that the CD4+ and CD8+ 

T-lymphocyte responses to HBV antigens in peripheral blood are strong and multispecific 

in patients with acute hepatitis B [3-4], whereas these responses are weak or even absent in 

chronically infected patients [5-6]. Animal studies demonstrated that CD8+ T-lymphocytes are 

the main effector cells responsible for viral clearance during acute infection [7]. Experiments with 

HBV transgenic mice have shown that, in addition to causing viral hepatitis, HBV-specific CD8+ 

T-lymphocytes can inhibit viral replication by a non-cytolytic mechanism, mediated primarily 

by IFNγ synthesis [8]. Acute HBV infections in chimpanzees [9] and humans [4] revealed that 

non-cytolytic inhibition of viral replication also contributes to viral clearance during natural 

infections. 

Antiviral therapy with interferon-α (IFNα) can induce sustained response rates in between 25 

to 40 percent of chronic hepatitis B patients [10-13]. However, it remains unknown why only a 

part of the chronic HBV patients respond to IFNα therapy. No difference between responders 

and non-responders to IFNα therapy was observed in the HBV specific CD4+ T-lymphocyte 

response in the circulation [14]. During lamivudine therapy, frequencies of HBV-specific CD4+ 

and CD8+ T-lymphocytes rise transiently both in responders and non-responders to therapy 

[15]. 

The frequencies of HBV specific CD8+ T-lymphocytes in the circulation of chronically infected 

patients are very low. However, much higher numbers have been found in liver biopsies of 

patients with persistent infection, especially in patients with low viral load [16]. This suggests that 

intrahepatic CD8+ T-lymphocytes may contribute to control of HBV-replication in chronically 

infected patients. Frequent monitoring of the intrahepatic immune response in chronic HBV 

patients during antiviral therapy may clarify the intrahepatic cellular mechanisms involved in 

therapy-induced clearance. The core-needle biopsy is not suited for this purpose due to its risk 

of complications and pain. In contrast, the cytological fine-needle aspiration biopsy (FNAB) 

procedure represents a safe and atraumatic alternative. This technique was originally developed 

for the diagnosis of acute rejection after kidney- and liver transplantation [17-19]. Recently, we 

found that this technique is suited for the detection of intrahepatic cellular immune responses 

in patients with chronic viral hepatitis [20, 21]. 

The aim of the present study was to establish which type of intrahepatic cellular immune 

response contributes to the clearance of HBV during therapy with pegylated IFNα therapy in 

chronically infected patients. For this purpose we performed multiple FNABs during the course 

of therapy, and assessed whether alterations in intrahepatic CD56+ NK and NKT-cells, and in 
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CD8+ T-lymphocytes containing the cytotoxic protease granzyme B or the antiviral cytokine 

IFNg, were related to viral clearance.

PATIENTS AND METHODS

Patients 

Twenty HBeAg-positive chronic hepatitis B patients (fourteen men and six females) were 

included in this study. The study was a site-specific ancillary study of a global randomized 

controlled trial [22]. Only patients from our liver unit in Rotterdam were enrolled. The Medical 

Ethical Committee of the Erasmus MC approved the study and written informed consent was 

obtained from each patient who entered the study.

Patients with a co-infection of hepatitis C, hepatitis D and patients with a pre-core mutant 

in the HBV genome were excluded. The patients were randomized to receive either pegylated 

a-interferon 2b (Peg-IFNα; 100 mg sc per week) and lamivudine (100mg po per day) or Peg-IFNα 

and placebo, for a period of 52 weeks. After 32 weeks the dose of Peg-IFNα was reduced to 50 

mg per week. The criteria for treatment response in this study were HBeAg seroconversion (loss 

of serum HBeAg) and serum HBV DNA below 1.0 E5 genome equivalents per mL at the end of 

therapy. All other patients were defined as non-responders.

Fine needle aspiration biopsy procedure

In order to study the intrahepatic immune response we performed FNAB at the start of therapy 

and at weeks 2, 8 and 52 (end of therapy). Week 2 and 8 were chosen because IFN-induced 

immune reactivity, as indicated by flares, occurs most frequently during the first 12 weeks of 

therapy [23, 24]. In addition, FNABs were performed during all ALT-flares (ALT above 10 times 

upper limit of normal). The FNABs were performed using a 25 Gauge needle (diameter 0.5 

mm), as described in reference 21. In addition to the FNAB, peripheral blood (PB) was obtained 

by a venepuncture. Cytospin slides were made from the FNAB and blood specimens. One 

cytospins slide of each FNAB-specimen was stained according to the May-Grünwald-Giemsa 

procedure, and used to examine it’s content of hepatocytes. The FNABs were considered to be 

representative if the aspirate contained at least 7 hepatocytes per 100 inflammatory leucocytes 

according to a May-Grünwald- Giemsa stain [19, 25]. The other slides were stored at –20°C for 

immunocytochemistry.

Virological assessments

HBsAg, HBeAg, anti-HBe, anti-HCV and anti-HDV were quantitatively determined by IMX (Abbot 

Laboratories, North Chicago, IL). For the quantitative determination of HBV-DNA an in-house 

TaqMan assay was used. This assay allowed an accurate determination down to 373 geq/ml. 

The assay was calibrated using EUROHEP standards [26, 27]. Analysis of pre-core mutants 
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was performed by an ABI PRISM 3100 genetic analyzer with a Big Dye Terminator v3.0 Cycle 

Sequencing kit (both from Applied Biosystems, Nieuwerkerk a/d IJssel, The Netherlands).

Immunocytochemistry

Cytospin specimens of FNAB and peripheral blood were immunocytochemically double-stained 

with CD8 MoAb (CD8-FITC, clone DK25, DAKO, Glostrup, Denmark) and anti-granzyme B (GrB) 

MoAb (clone B7, kindly provided by professor C.E. Hack, CLB, Amsterdam, the Netherlands), or 

anti-IFNg MoAb (clone MD-2, U-Cytech, Utrecht, the Netherlands). Additionally, cytospins were 

single-stained for CD8+ T-lymphocytes (CD8, clone MEM-31, Monosan, Uden, The Netherlands), 

or NK/NKT cells (CD56, clone N901, Beckman Coulter, Hialeah, FL). Cytospin slides were fixed 

in 4% paraformaldehyde in phosphate-buffered saline (pH 7.3). For detection of intracellular 

IFNg, the cells were permeabilized with 0.1% saponine (Merck, Darmstadt, Germany) in Tris-

buffered saline pH 7.4 (TBS) for 15’ at room temperature, and saponine was added in all further 

incubation steps. Endogenous peroxidase activity was reduced by incubating the slides with 

citric acid phosphate (pH 5.8) supplemented with 0.05% hydrogen peroxide (Fluka Chemie, 

Buchs, Switzerland) and 0.1% sodium azide, and non-specific antibody binding was reduced by 

preincubation with TBS supplemented with 10% normal rabbit serum and 10% normal human 

plasma. Subsequently, sections were incubated with anti-GrB or anti-IFNg MoAb overnight. For 

detection of IFNg, endogenous biotin was blocked using the biotin-blocking system from DAKO, 

after which the slides were incubated with biotinylated rabbit anti-mouse immunoglobulins 

(RAM-bio, DAKO) followed by alkaline phosphatase (AP)-conjugated streptavidine (DAKO). 

GrB was detected with rabbit anti-mouse immunoglobulins (DAKO) and AP-anti-AP complex 

(APAAP, Serotec, Oxford, UK) [28]. Thereafter, the slides were consecutively incubated with 10% 

mouse serum (DAKO), with FITC-conjugated CD8 MoAb, and with peroxidase (PO)-conjugated 

rabbit anti-FITC immunoglobulins (DAKO). Binding of CD8 or CD56 MoAb in single-stains 

was detected with rabbit anti-mouse immunoglobulins and APAAP. Visualization of AP was 

performed by incubation in Fast Blue salt / naphtol AS-BI phosphate solution supplemented 

with levamisole (all from Sigma-Aldrich Chemie, Steinheim, Germany), giving a blue precipitate. 

Revelation of PO was performed with 3-amino-9-ethylcarbazole (AEC) giving a red precipitate. 

The optimal dilution of the anti-IFNg MoAb was established by titration on cytospins slides 

of peripheral blood mononuclear cells either or not activated by PMA and ionomycin in the 

presence of Brefeldin. The concentration giving maximal staining of stimulated cells and no 

staining of non-stimulated cells was used.

Quantification and statistical analysis

The cytospin slides of FNAB and PB specimens were examined microscopically at a 

magnification of 400x, and single CD8+ T-lymphocytes, CD8+GrB+, CD8+IFNg+, and CD56+ 

cells were quantified. The total number of leucocytes was assessed by counting the leucocytes 

in 6 microscopic fields of 400 × magnification, and multiplying the mean number per high-
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power fields with 104 (i.e. the total number of high-power fields in one cytospin). Countings 

were performed by one single investigator (T.J.T), who was blinded for response and treatment 

regimen of the patients. For analysis, CD8+, CD8+GrB+, CD8+IFNg+, and CD56+ cells were 

expressed per 1000 leucocytes. Mean numbers of CD8+ T-lymphocytes were calculated 

from the numbers obtained in three different slides stained for CD8 (i.e. the double-stains of 

CD8+GrB+, CD8+IFNg+ and the single-stain for CD8). When the intervariabilty exceeded 20% 

of the mean margin, recounts were done. Data of groups of patients are expressed as mean 

± SEM, unless otherwise indicated. Differences between responders and nonresponders, and 

differences between types of therapy were analyzed by the Mann-Whitney U test. Differences 

Table 1. Baseline characteristics of study patients

Characteristic (n=20) n (%)

Age (years) * 33 (19-57)

Male 14 (70)

Ethnicicty
 White
 Asian
 Other 

11 (55)
 8 (40)
 1  (5)

Route of transmission
 Perinatal
 Sexual
 Parenteral
 Unknown 

7 (35)
5 (25)
1  (5)
7 (35)

HBV DNA (geq/mL) * 1.5 E9 (1.6 E8- 9.1 E9)

ALT (IU/L) * 132 (47-394

Cirrhosis 3 (15)

Previous IFNα treatment 2 (10)

HBV: hepatitis B virus; ALT: alanine aminotransferase;  IFN:  interferon
*Median (range)

A B

Figure 1. Immunocytochemical double-stains of CD8 and GrB (A) (× 1000) and of CD8 and IFNg (B) (× 600) on FNAB cytospins. 
Single CD8+ T-lymphocytes are red/orange, and double stained CD8+ T-lymphocytes have an additional blue stain in the 
cytoplasm. 
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between paired samples were investigated by the Wilcoxon signed-rank test. A p-value of < 

0.05 was considered statistically significant.
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Figure 2. The numbers of CD8+ T-lymphocytes (A) and CD56+ cells (B) per 1000 leucocytes in FNAB versus peripheral blood. 

The relative numbers of CD8+ T-lymphocytes and CD56+ cells in FNAB were elevated compared to blood at each timepoint.
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RESULTS

Patient characteristics

Patient characteristics at baseline are shown in table 1. Eleven patients (55%) were randomized 

to Peg-IFNα plus lamivudine and 9 patients (45%) to Peg-IFNα plus placebo. All included patients 

completed the entire period of therapy. From all scheduled time-points FNABs were obtained 

successfully. A total of 5 flares were detected. In four of these 5 flares patients consented to 

undergo a FNAB. No complications or pain were observed during or after FNAB.
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Figure 3. Granzyme B and IFNg-expression in CD8+ T-lymphocytes in FNAB (A) and in peripheral blood (B). Depicted are the 

proportions of CD8+ T-lymphocytes expressing GrB or IFNg.
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CD8+ T-lymphocytes and NK/NKT-cells during therapy

Figure 1 shows immunocytochemical stains of FNAB cytospin slides for CD8 (red) and GrB (blue) 

(A), and for CD8 (red) and IFNg (blue) (B).

The proportions of CD8+ T-lymphocytes within the leucocytes were significantly elevated 

in the FNAB compared with PB at all time points (28 ± 1.8 vs. 16 ± 1.5, p=0.02) (figure 2A). 

Compared to baseline, a small increase in the relative numbers of CD8+ T-lymphocytes was 

observed in FNAB, but not in PB, at week 8 of therapy; however this difference just failed to 

reach statistical significance (week 0 vs. week 8: FNAB 25.8 ± 2.2 vs. 32.9 ± 2.7, p=0.08). As is 

shown in figure 3, both in FNAB and PB large proportions of CD8+ T-lymphocytes expressed 

GrB; these proportions tended to be higher in FNAB (median 55%, range 46% to 61%) than in 

PB (median 44%, range 38% to 47%, FNAB vs. PB; p=0.11). Much smaller proportions of CD8+ T-

lymphocytes expressed IFNg; also this proportion tended to higher in FNAB (median 9%, range 

7% to 12%) than in PB (median 5%, range 3% to 7%, FNAB vs. PB; p=0.14).

Both in FNAB and in PB the proportions of CD8+ T-lymphocytes expressing GrB or IFNg 

showed no statistical difference between different time-points of therapy. Similar to CD8+ 

T-lymphocytes, the relative numbers of CD56+ NK/NKT-cells were significantly higher in FNAB 

than in blood at all time point (7.0 ± 0.3 vs. 1.2 ± 0.2, p=0.03) (figure 2B). No differences were 

observed between the two therapy regimens regarding relative numbers of CD8+, CD8+GrB+, 
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Figure 4. Relative numbers of CD8+, CD8+GrB+ and CD8+IFNg+ T-cells in FNAB during a hepatitis flare in the patient with 

HBsAg seroconversion.
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CD8+IFNg+ T-lymphocytes, or CD56+ NK/NKT-cells during therapy (data not shown). Therefore 

the treatment groups were combined for further analysis. 

CD8+ T-lymphocytes in ALT-flares during therapy 

In all four patients who exhibited an exacerbation of inflammatory activity (ALT-flare) during 

therapy the relative numbers of CD8+ T-lymphocytes were elevated during the flare as 

Table 2. Baseline characteristics of responders versus nonresponders

Characteristic responders (n=9)
n (%)

non-responders (n=11)
n (%)

Age * 36 (19-45) 31 (21-57)

Male 7 (78) 7 (64)

Asians 4 (44) 4 (36)

HBV DNA (geq/mL) * 2.0 E9 (2.3 E8 - 9.1 E9) 1.2 E9 (1.6 E8 - 5.7 E9)

ALT (IU/L) * 164 (109-236) 86 (47-394)

Cirrhosis 3 (33) 0

Previous IFNα treatment 0 2 (18)

HBV: hepatitis B virus; ALT: alanine aminotransferase; IFN: interferon
* Median (range)
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Figure 5. The course of the relative numbers of total CD8+ T-lymphocytes, CD8+GrB+ T-lymphocytes and CD8+IFNg+ 

T-lymphocytes before, during and at the end of therapy in FNAB of responders (right panels) and non-responders (left panels). 

The values during therapy which are depicted are the peak value observed either at week 2 or week 8 of therapy. Means are 

depicted with bars. (* = baseline vs. peak: p <0.05) 
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compared to baseline (baseline vs. flare: 26.1 ± 3.8 vs. 44.4 ± 10.2, p=0.06). Both the numbers of 

CD8+GrB+ T-lymphocytes (baseline vs. flare: 16.5 ± 7.1 vs. 27.8 ± 6.8, p=0.07) and the number of 

CD8+IFNg+ T-lymphocytes (baseline vs. flare: 2.0 ±1.9 vs. 4.6 ± 2.3, p=0.06) showed an increase 

during the flares. No elevations of CD8+ T-lymphocytes in blood were detected during flares 

(data not shown). One patient exhibiting a flare became HBsAg-negative and produced anti-

HBs. This patient had the most vigorous CD8+ T-lymphocyte response (figure 4).

Clinical features in relation to response to therapy

Response to treatment was observed in 9 of the 20 patients (45%). Three of 9 (33%) patients 

treated with Peg-IFNα plus placebo responded to the therapy and 6 of 11 (55%) treated with 

combination therapy. One patient treated with combination therapy became negative for HBsAg 

(5%). Differences in pre-treatment characteristics between responders and non-responders are 

shown in table 2. The pre-treatment serum ALT was higher in the response group (p=0.05). Pre-

treatment HBV-DNA did not differ between responders and non-responders.

CD8+ T-lymphocytes in relation to response

During treatment responders exhibited a significant increase of total CD8+ T-lymphocytes in 

FNAB (baseline vs. peak 20.2 ± 2.2 vs. 36.2 ± 2.1, p=0.008), which was not observed in non-

responders (baseline vs. peak 28.4 ± 2.2 vs. 30.0 ± 2.6, p=0.64) (figure 5). During this increase 

of CD8+ T-lymphocytes in responders both CD8+GrB+ T-lymphocytes (baseline vs. peak 12.1 

± 2.1 vs. 23.3 ± 3.6, p=0.008) and of CD8+IFNg+ T-lymphocytes (baseline vs. peak 1.2 ± 0.6 vs. 

3.4 ± 0.7, p=0.07) were significantly elevated. In non-responders no increases of CD8+GrB+- 

(baseline vs. peak 15.4 ± 1.7 vs. 16.1 ± 2.1, p=0.93) and or CD8+IFNg+ T-lymphocytes (baseline 

vs. peak 2.8 ± 0.72 vs. 2.5 ± 0.54, p=0.96) were observed during therapy.
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Figure 6. Course of CD56+ cells before, during and at the end of therapy in FNAB of responders (right panel) and non-

responders (left panel). The values during therapy which are depicted are the values corresponding with the peak values of 

CD8+T-lymphocytes observed either at week 2 or week 8 of therapy. Means are depicted with bars. (* : baseline vs. peak: p 

<0.05).
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NK cell response in relation to response

The pre-treatment numbers of NK/NKT-cells in FNAB were significantly higher in responders 

compared to non-responders (9.7 ± 1.5 vs. 3.6 ± 0.9, p=0.004). During treatment, responders 

showed a decrease of NK/NKT-cells in FNAB (baseline vs. peak 9.7 ± 1.5 vs. 5.5 ± 2.8; p=0.02). In 

contrast, non-responders exhibited an increase of NK/NKT-cells in FNAB (baseline vs. peak 3.6 ± 

0.9 vs. 9.5 ± 2.3; p=0.003) (Figure 6).

DISCUSSION

This study is the first description of the longitudinal course of the intrahepatic cellular 

immune response during anti-viral therapy with IFNα of patients with chronic HBV-infection. 

We demonstrate that the FNAB-technique enables sequential monitoring of the intrahepatic 

inflammatory response during antiviral therapy. Two results show that the leukocytes in FNAB 

were indeed derived from the liver: First, by the higher relative numbers of CD8+ T-lymphocytes 

and CD56+ cells in FNAB-specimens compared to PB, which is in accordance with the high 

proportions of these cells among liver lymphocytes [29]. Secondly, the elevations of these 

immune cells in FNAB, but not in PB during hepatitis flares. 

Using this technique, we observed that the response to antiviral therapy with a Peg-IFNα-

based regimen was associated with significant increases of CD8+, CD8+GrB+, and CD8+IFNg+ 

T-lymphocytes, but not of CD56+ cells, in the liver. These results provide the first in vivo evidence 

that intrahepatic CD8+ T-lymphocyte reactivity is vital for successful antiviral therapy of chronic 

hepatitis B patients, and that both cytotoxic activity and secretion of antiviral cytokines are 

important for therapy-induced viral elimination. 

Published studies in patients with chronic HBV treated with IFNα monotherapy [14], lamivudine 

[15], or with combination therapy IFNα and lamivudine [30] all show that antiviral therapy 

enhances the frequencies of HBV-specific T-lymphocytes in the circulation. However, in these 

studies no differences in peripheral T-lymphocyte responses were found between responders 

and non-responders to therapy. The only immunological differences between responders and 

non-responders to anti-viral therapy in these studies were higher peaks in serum levels of IL-12 

and Th-1 cytokines in responders [30]. In accordance with this study, Cooksley et al recently 

reported in an abstract a stronger increase in the ratio of IFN-γ/IL-10 producing HBV-specific 

CD4+ T-cells producing in peripheral blood in responders compared to non-responders during 

therapy with adefovir dipivoxil [31]. Although we did not study IL-12 production and T-helper 

activity in our study, the increase of intrahepatic CD8+ T-lymphocytes, and especially of IFNg-

producing CD8+ T-lymphocytes, during therapy in the responders could be the result of IL-12 

promoting T-helper type 1 and CD8+ T-lymphocyte differentiation.

In our study, the total CD8+ T-lymphocyte elevations correlated with increases of the serum 

ALT flares (data not shown). This may be due to the intrahepatic accumulations of CD8+ T-
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lymphocytes containing GrB, which is a major effector molecule in the cytolytic elimination of 

HBV-infected hepatocytes [32]. In addition to the increase in CD8+ T-lymphocytes expressing 

GrB, response to treatment was also associated with an elevation of CD8+ T-lymphocytes 

expressing IFNg. This suggests that not only cytolytic, but also non-cytolytic mechanisms are 

involved in therapy-induced viral clearance of chronic HBV infection. 

Although we did not investigate whether the intrahepatic CD8+ T-lymphocytes were HBV-

specific, it is generally acknowledged that a proportion of the CD8+ T-lymphocytes present in 

the HBV-infected liver are HBV-specific, and that also bystander CD8+ T-lymphocytes contribute 

to the clearance of HBV [33]. A recent study showed that hepatocellular injury was associated 

with total numbers of intrahepatic CD8+ T-lymphocytes but not with HBV-specific CD8+ T-

lymphocytes [16]. 

The liver contains many NK and NKT-cells [29]. NK cells are believed to play an important 

role in the host defense in the earliest course of HBV infection [34], and increased numbers 

of circulating NK-cells have been observed immediately after HBV-infection [4]. Interestingly, 

in responders we observed higher relative numbers of CD56+ cells in pre-treatment FNAB 

as compared to non-responders. Since liver NK/NKT-cells are thought to be able to recruit T-

cells to the liver [29], the enhanced numbers in responders may have been responsible for 

the intrahepatic accumulation of CD8+ T-lymphocytes during therapy. After starting anti-viral 

therapy the numbers of CD56+ cells increased in non-responders, while they decreased in 

responders, suggesting that with or without lamivudine IFNα therapy stimulates the NK cell 

response in non-responders, while in responders the CD8+ T-lymphocyte response inhibits NK 

cell activation [35]. 

In conclusion, responders to Peg-IFNα-based antiviral therapy are characterized by a 

prominent intrahepatic CD8+ T-lymphocyte response. Elevations of both GrB+ and IFNg+ 

CD8+ T-lymphocytes indicate that cytolytic and noncytolytic mechanisms contribute to viral 

elimination.
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ABSTRACT

Infection of the liver with hepatitis C virus causes compartmentalization of CD8+ cytotoxic T-cells 

to the site of disease. These cells are thought to be involved in viral clearance during interferon 

therapy. The repetitive analysis of the intrahepatic immune response is hampered by the 

difficulty to obtain the intrahepatic T-cells. The fine needle aspiration biopsy (FNAB) technique 

was evaluated for its use to obtain liver-derived CD8+ T-cells in a minimally invasive way. In 

26 chronic HCV-patients who were evaluated for Peg-interferon and ribavirin combination 

therapy, pre-treatment FNABs and peripheral blood specimens were obtained simultaneously 

with liver tissue biopsies, and CD3+ and CD8+ T-cells were quantified by immunocytochemistry. 

The CD8+/CD3+ ratio was significantly higher in the FNABs than in peripheral blood (p<0.01), 

and similar to those in portal areas in the tissue biopsies. A significant correlation was observed 

between numbers of CD3+CD8+ T-lymphocytes in the FNABs and the numbers of CD8+ cells 

in the lobular fields or in the portal tracts of the liver tissue biopsies, but not with CD3+CD8+ 

T-lymphocytes in peripheral blood. Finally, the ratio of CD8+/CD3+ T-lymphocytes in FNABs was 

significantly higher in those patients who responded rapidly to therapy as compared to slow 

responders at 4 weeks of treatment (p=0.02). These findings demonstrate that the intrahepatic 

T-cell composition is reflected in FNABs, and that the FNAB-technique can be used for predicting 

early virological response to therapy of patients chronically infected with HCV.
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INTRODUCTION

In chronic hepatitis C infection, virus-specific T-cells are predominantly found in the liver and are 

almost absent in peripheral blood [1-2]. Intrahepatic localization of CD8+ hepatitis C virus (HCV) 

specific cytotoxic T-cells is thought to be crucial to control acute hepatitis C infection [3] and 

also augment inhibition of viral replication and clearance of infected hepatocytes when chronic 

hepatitis C patients are treated with interferon-α and ribavirin [4-6]. Both total as well as virus-

specific intrahepatic CD8+ T-cell numbers in pretreatment liver tissue biopsies as determined by 

respectively quantitative immunohistochemistry [7] or tested in vitro against target cells [4] are 

associated with virological response to interferon-α therapy. To study intrahepatic T-cell kinetics 

during acute or therapy of chronic infection, the cellular immune status in the liver should be 

monitored on a repetitive basis. The liver tissue biopsy technique is the golden standard for 

obtaining liver tissue. Unfortunately, the biopsy procedure is accompanied with considerable 

patient discomfort. Therefore we investigated the feasibility of a less invasive and traumatic 

fine-needle aspiration biopsy (FNAB) technique as a tool for monitoring the cellular immune 

status in the liver during chronic HCV-infection. Since the early eighties, the FNAB has been 

used for monitoring rejection activity after liver transplantation [8-9]. The FNAB is performed 

with a 25 Gauge needle (diameter 0.5mm) and therefore hardly traumatic. Our aim was to 

investigate whether intrahepatic T-cells as determined by quantitative immunohistochemistry 

(CD3+ and CD8+ cells) in liver tissue biopsies are reflected in FNABs, and whether intrahepatic 

T-cells assessed by FNAB could be used to predict response to interferon-α therapy.

METHODS

Patients

The study group consisted of patients from a single hospital, who were screened for participation 

in a multicenter clinical study in which the efficacy of treatment with Peg-interferon-α2a 180mcg 

per week (Pegasys, Roche, Basel, Switzerland) in combination with 1000-1200mg ribavirin 

(Copegus, Roche) was evaluated. A liver biopsy was part of the evaluation. Standard inclusion 

and exclusion criteria were used. In brief, all patients were interferon-naive, anti-HCV antibody 

positive and had detectable HCV RNA by PCR and elevated serum alanine aminotransferase 

levels (>30 U/l) for at least 6 months on at least two occasions. Patients with decompensated 

liver disease, co-infection with hepatitis B or human immunodeficiency virus, alcohol abuse 

or any other relevant comborbidity were excluded. Within two months after the liver biopsy, 

treatment was started when indicated according to the current treatment consensus [10]. The 

study was in accordance with the Helsinki Declaration of 1975 and approved by the in-house 

medical-ethical committee. All patients gave written informed consent for participation.
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Fine-needle aspiration and liver tissue biopsies 

Pre-treatment two FNABs were obtained. The full details of this procedure are described 

elsewhere [11-12]. Briefly, a mandarin containing 25-gauge needle (diameter 0.5 mm) is 

punctured in the 8th or 9th right intercostal space. After removal of the mandarin, liver cells are 

aspirated by negative pressure into a syringe filled with culture medium. Blood was collected in 

4 mL EDTA plasma tubes (Vacutainer Systems, Plymouth, England). FNABs and blood cells were 

centrifuged on to glass slides using a cytocentrifuge. One cytospin preparation of each specimen 

was stained according to the May-Grünwald-Giemsa procedure. FNABs were considered to be 

representative if the aspirate contained at least seven hepatocytes per 100 leukocytes. If both 

FNABs were representative, the specimen with the highest hepatocyte/leukocyte ratio was 

used in the study.

Directly after the FNAB procedure, a liver tissue biopsy was obtained percutaneously with 

a 14 Gauge Tru-cut needle. The liver specimen was fixed in phosphate-buffered formalin and 

embedded in paraffin. 

Immunocytochemistry fine-needle aspiration biopsies

CD3+ and CD8+ cells present on cytospin slides were visualized by an immunocytological 

double stain technique. The slides were fixed in 4% paraformaldehyde in phosphate-buffered 

saline pH 7.3. Subsequently, endogenous peroxidase was blocked by incubation with citric 

acid buffer pH 5.8 supplemented with 0.03%
 
hydrogen peroxide containing 0.2% (w/v) sodium 

azide for 15 seconds. To reduce aspecific antibody binding, slides were incubated with TBS 

supplemented with 10% normal rabbit serum (Life Technologies, Inc, Gaithersburg, USA) and 

10% normal human plasma (CLB). Subsequentially, the slides were incubated overnight at 4°C 

with CD8 mAb (clone C8/144B, DAKO, Glostrup, Denmark). Detection of primary antibody was 

performed with rabbit-anti-mouse immunoglobulins (RAM, DAKO) for one hour followed by 

alkaline-phosphatase-anti-alkaline phosphatase complex (APAAP, Serotec, Oxford, UK). 

At the end of day 2, the slides were incubated overnight with the second primary mAb CD3-

FITC (clone UCHT1, Immunotech, Marseille, France) at 4°C. At day 3, one hour incubation of 

rabbit-anti FITC-HRP (DAKO) was used to detect CD3. Visualization was performed by incubation 

of the slides firstly in Fast Blue salt / naphtol AS-BI followed by 3-amino-9-ethylcarbazole (AEC). 

Slides were counterstained with methylgreen 1% for 10 seconds and mounted in glycerol. 

Negative controls were either performed by replacement of the primary mAb by an isotype 

matched control mAb or by leaving out the primary antibody. 

Immunohistochemistry liver tissue biopsies 

The distribution of CD3+ and CD8+ cells in the liver was visualized in consecutive sections of 

formalin-fixed, paraffin-embedded liver specimens. The liver sections were firstly deparaffinized 

with xylene (Lab Scan Ltd, Dublin, Ireland) and ethanol (Merck, Darmstadt, Germany). Thereafter 

antigen retrieval was performed by a 15 minutes incubation at 99°C in citrate buffer (pH 6.0) 



90

C
ha

p
te

r V
I

A
 

B
C F

E
D

Fi
gu

re
 1

. I
m

m
un

oh
ist

oc
he

m
ica

l C
D8

 (A
) a

nd
 CD

3 (
B)

 st
ain

in
gs

 of
 lo

bu
lar

 fi
eld

s a
nd

 CD
8 (

C)
 an

d C
D3

 (D
) s

ta
in

in
gs

 of
 po

rta
l t

ra
ct

s i
n 

co
ns

ec
ut

ive
 sl

id
es

 of
 a 

fo
rm

ali
n-

fix
ed

 an
d p

ar
affi

n-
em

be
dd

ed
 liv

er
 

tis
su

e b
io

ps
y. 

Fin
e-

ne
ed

le 
as

pi
ra

tio
n 

bi
op

sy
 cy

to
sp

in
 pr

ep
ar

at
io

ns
 st

ain
ed

 w
ith

 M
ay

-G
ru

nw
ald

-G
iem

sa
 so

lu
tio

n 
(E

), 
or

 im
m

un
oc

yt
oc

he
m

ica
lly

 fo
r C

D3
 (r

ed
) a

nd
 CD

8 (
bl

ue
) (

F)
.



Monitoring intrahepatic CD8+ T-cells in chronic HCV infection 91

under intermittent microwave exposure. Overnight, the paraffin slides were incubated with 

CD3mAb (clone F7.2.38, DAKO) and CD8mAb (clone C8/14415, DAKO) at 4°C. Slides were washed 

with Tris-buffered saline (TBS) pH 7.3 supplemented with 0.1% Tween-20. CD3 expression 

was demonstrated by a goat anti-mouse Ig conjugated to a peroxidase labeled polymer (En 

Vision HRP system, DAKO) and CD8 antigen was detected with the RAM-APAAP procedure. 

Histochemical revelation was performed by incubation with diaminobenzidine (DAB) or Fast 

Blue salt / naphtol AS-BI phosphate. Negative controls were performed by replacement of the 

primary mAb by an isotype-matched control mAb. Slides were counterstained in case of DAB 

staining with Mayer’s solution (Merck) or in case of Fast Blue staining with nuclear Fast Red 

(Fluka Chemie, Buchs, Switserland)

Quantification of Immunohisto- and Immunocytochemistry positive cells

Two investigators independently examined and counted CD3+ and CD8+ cells in all consecutive 

liver tissue biopsy slides, and CD3+CD8+ and CD3+CD8- cells in FNAB and peripheral blood 

cytospin preparations microscopically at a magnification of 400x. FNAB cytospin preparations 

and tissue biopsy sections were examined independently and in separate sessions. The 

investigators were blinded to the virological and clinical biochemical conditions of the patients. 

In every paraffin biopsy slide 8 microscopic fields within the liver lobuli were randomly selected 

to count CD3+ or CD8+ T-lymphocytes. In addition at least 3 portal tracts were counted.

Since the numbers of leukocytes on individual cytospin preparations may vary, the numbers 
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Figure 2. The median CD8+/CD3+ ratio in peripheral blood, FNABs, portal tract and lobular fields. The upper and lower limits 

of the boxes and the middle line across the boxes indicate the 75th and 25th percentiles and the median (the 50th percentile), 

respectively. The length of the box is thus the interquartile range; the box represents 50% of the data. The upper and lower 

horizontal bars indicate the 90th and 10th percentiles, respectively.
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Figure 3. Variations in numbers of CD8+ T-lymphocytes in the liver tissue biopsies were reflected in the FNAB.



Monitoring intrahepatic CD8+ T-cells in chronic HCV infection 93

of positive cells counted were normalized to the number of leukocytes. For that purpose, in 

every FNAB cytospin preparation, 6 microscopic fields were randomly selected to count the 

number of leukocytes. The count was multiplied with 104 (total number of high power fields in 

a cytopsin slide) to obtain the total number of leukocytes per cytospin slide. For analysis, the 

numbers of positive cells were expressed per 1000 leukocytes.

Virological assessments

A quantitative HCV RNA assay was performed to assess viremia (Cobas Amplicor HCV test, 

Roche Diagnostics, Almere, The Netherlands) within one week before or after the liver biopsy. 

In addition these tests were performed at the start of treatment and at 4 and 12 weeks during 

treatment.

Statistical analysis

Data are expressed as mean ± standard deviation, unless otherwise indicated. Pearson’s 

correlation coefficients (r) were used to investigate the correlation between liver, peripheral 

blood and FNAB cell counts. Mann-Whitney tests were performed to investigate differences 

in CD3+/CD8+ ratios between FNAB, peripheral blood and liver tissue biopsies, and between 

treatment response groups. P-values (p) of < 0.05 (two sided) were considered to be statistically 

significant.
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Figure 4. In FNABs a significantly higher median CD8+/CD3+ T-lymphocyte ratio was found in “rapid responders” than in “slow 

responders” at 4 weeks of treatment (p=0.02)(A). At 12 weeks the CD8+/CD3+ T-lymphocyte ratio was lower in patients who 

did not have a 2-log drop with borderline significance (B). For explanation on boxes and lines see figure 2.
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RESULTS

Patients

Twenty-six patients with chronic hepatitis C who underwent a FNAB and a liver tissue biopsy in 

the evaluation for the necessity of antiviral treatment were included in this study. According to 

the most recent treatment consensus [10] therapy was indicated and sequentially started in 23 

patients. There was no indication for treatment in 2 patients, 1 patient was lost prior to therapy 

for further follow-up.

Relation between T-cells in liver FNAB, liver tissue biopsy and peripheral blood

CD8+ and CD3+ T-cells were immunocytochemically detected in FNABs, liver tissue biopsies, 

and peripheral blood specimens (Figure 1). In peripheral blood, about forty percent of the CD3+ 

T-cells were cytotoxic T-cells bearing the CD8 marker. In contrast in the liver, both in the portal 

tracts as well as intralobular, the CD8+/CD3+ ratio’s were significantly higher (both p<0.01; 

figure 2).

FNABs are cytological aspirates and will therefore contain liver-derived as well as blood-

derived leukocytes. To investigate whether the leukocytes in FNABs reflect intrahepatic 

inflammatory cells, we first compared the CD8+/CD3+ ratios found in FNAB, liver tissue biopsies, 

and blood. The CD8+/CD3+ ratio in the FNAB was significantly higher than that in peripheral 

blood (p<0.01), significantly lower than that in the lobular fields (p<0.01), but not different from 

that in portal tracts of the liver tissue biopsies (p=0.46), indicating that T-lymphocytes in FNAB 

originate primarily from the liver (Figure 2). The difference in CD8+/CD3+ between lobular fields 

and

FNAB may be due to the fact that in the liver the majority of both the CD8+ and CD3+ cells 

were present in the portal tracts (Figure 1). Next, we investigated whether variations in numbers 

of CD8+ T-lymphocytes in the liver were reflected in the FNAB. Significant correlations between 

the numbers of CD8+ cells in the lobular fields (r=0.52, p=0.02; figure 3a) or in the portal tracts 

(r=0.58, p=0.01; figure 3b) with the numbers of CD8+CD3+ T-lymphocytes in the FNAB (expressed 

as number per thousand leukocytes) were found. CD3+CD8+ T-lymphocytes in the FNAB did not 

correlate with CD3+CD8+ T-lymphocytes fromperipheral blood (r=0.37, p=0.11; figure 3c).

The numbers of CD3+ T-lymphocytes in the FNAB were also correlated with CD3+ T-cells in 

the portal tracts (r=0.47, p=0.04), but in addition these were weakly associated with those in 

lobular fields (r=0.40, p=0.08) and peripheral blood (r=0.38, p=0.06), indicating that CD3+ T-

lymphocytes in FNAB originate both from liver and blood.

T-cells in pretreatment FNAB in relation to response 

T-cell parameters in FNAB, liver tissue biopsy and peripheral blood as well as treatment data 

such as HCV RNA levels at baseline and at 4 and 12 weeks of treatment and were available in 

20 out of 23 treated patients. In order to investigate differences between treatment response 
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groups we divided the patients on treatment into two groups according to the decline in HCV 

RNA at 4 and 12 weeks of therapy. The average decline in HCV RNA within the first month of 

treatment was 2.7-log (range: 0.45-5.27). Patients who had a serum HCV RNA decline of less 

than 2.7-log within this period were considered “slow responders” (n=7) and those with a 

decline of more than 2.7-log as “rapid responders” (n=13). The relative numbers of CD8+ T-cells 

were not associated to response (p=0.94), but the ratio of CD8+/CD3+ T-lymphocytes in FNABs 

was significantly higher in responders than in non-responders (p=0.02; figure 4a). At 12 weeks 

of therapy 4 patients did not have at least a 2-log drop of HCV RNA. All 4 were “slow responders” 

at week 4. In these patients the CD8+/CD3+ T-lymphocytes ratio in FNABs was lower compared 

to the group with more then 2-log decline, although with borderline significance (p=0.06; 

figure 4b).

DISCUSSION

In the present study we investigated whether the minimal invasive fine needle aspiration biopsy 

(FNAB) technique could be used as a tool to monitor CD8+ T-lymphocytes in the liver during 

chronic HCV-infection. Comparison of the ratio’s and numbers of CD8+ and CD3+ T-cells in 

simultaneously obtained FNABs, liver tissue biopsies and peripheral blood specimens showed 

that CD8+ T-cells in FNABs were primarily liver-derived. Since, in contrast to circulating T-cells, 

the majority of intrahepatic T-cells are CD8+ T-cells [13-14], first the CD8+/CD3+ ratio’s in the 

three sources were compared. In the FNABs these were similar to those in portal tract, where 

the majority of the intrahepatic CD8+ T-cells reside, but different from that in the blood samples. 

Second, the relative numbers of CD3+CD8+ T-cells in the FNABs correlated significantly with 

the absolute CD8+ T-cell numbers in the lobular fields and the portal tracts of simultaneously 

obtained liver tissue biopsies, while there was no correlation with numbers in peripheral blood. 

On the other hand, variations in numbers of CD3+ T-lymphocytes in the FNABs were associated 

with variations in both peripheral blood and liver tissue biopsies, indicating that CD3+ cells in 

the FNABs originated from the liver and blood. Recently we found that numbers of CD8+ T-

cells in portal tracts of pre-treatment liver tissue biopsies were associated to the occurrence of 

response of HCV-infection on interferon-α therapy [7]. To investigate whether quantification of 

T-cells in FNABs showed association with early virological response during therapy, the patients 

were divided into two response groups according to their individual decline in HCV RNA within 

the first 4 treatment weeks. We choose the average decline of HCV-RNA within the first month 

as value to divide the patients into “rapid” and “slow” responders. According to this limit, a 

significantly higher FNAB CD8+/CD3+ T-lymphocyte ratio was found in “rapid responders” than 

in “slow responders”.

For 12 weeks of therapy, a drop in HCV RNA of at least 2-log recently proved to be essential 

for obtaining a sustained virological response recently [15]. Dividing our patients according to 
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this limit, a borderline significant lower CD8+/CD3+ T-lymphocyte ratio was found in patients 

who did not have at least a 2-log drop of HCV RNA as compared to the other patients. Therefore, 

whether the CD8/CD3 ratio in pretreatment FNAB is predictive for long-term virological 

response to therapy needs to be investigated in a larger patient population.

It is not allowed to compare the present finding directly to our previous finding on the 

association between the numbers of CD8+ T-cells in pre-treatment liver biopsies and response 

to anti-HCV therapy [7], since absolute numbers of cells cannot be measured in FNABS and the 

therapies in both studies are different. In the previous study the patients were treated with 

interferon-α and in the present study with Peg-interferon. The determining role of the immune 

system in obtaining a sustained response is probably much smaller in Peg-interferon therapy 

because of the long lasting and constant antiviral pressure and the relatively high dose when 

compared to 3 MU t.i.w of conventional interferon-α therapy.

In conclusion, we demonstrated that differences in numbers of intrahepatic CD8+ T-cells 

during chronic HCV-infection are reflected in FNABs, and that there is an association between 

the composition of the T-cell population contained in pre-treatment FNABs and early response 

to subsequent anti-viral therapy. We therefore postulate that the FNAB-technique can be used 

as a tool for monitoring the cellular immune status in the liver during chronic HCV-infection on 

a frequent basis.
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ABSTRACT

Chronic carriers of hepatitis B virus (HBV) or hepatitis C virus (HCV) have impaired T-cell responses 

against these viruses. We hypothesized that this immunological deficit may be due to impaired 

presentation of viral antigens by liver-derived dendritic cells (DC) to T-cells in the hepatic 

lymph nodes (LN). To investigate whether the composition of the DC-population in hepatic LN 

is affected in these patients, we compared by quantitative immunohistochemistry the numbers 

of immature Langerhans-type myeloid DC (MDC), mature MDC, plasmacytoid DC (PDC), and 

IFN-α-producing cells in the paracortex of hepatic LN obtained during liver transplantation 

from chronic HBV-patients (n=8), chronic HCV-patients (n=5), patients with liver inflammation 

due to cholestatic liver diseases (n=10), and organ donors with non-inflamed livers (n=10). 

Hepatic LN from patients with chronic HBV- or HCV-infection contained significantly less mature 

MDC, but similar numbers of immature Langerhans-type MDC, PDC and IFN-α producing cells 

compared to hepatic LN from patients with cholestatic liver diseases. Hepatic LN from organ 

donors contained strongly variable numbers of all three DC-types. In conclusion, hepatic LN of 

patients with persistent HBV- or HCV-infection have reduced numbers of mature MDC in their 

T-cell areas. This may be one cause of the impaired anti-viral T-cell response in these patients.
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INTRODUCTION

Many individuals infected with hepatitis B virus (HBV) or hepatitis C virus (HCV) are unable 

to clear these viruses and develop a chronic carrier state. Effective control of these viruses 

during acute self-limiting infections is associated with vigorous and multi-specific antiviral 

T-helper (Th) and cytotoxic T-lymphocyte (CTL) responses. The virus-specific Th lymphocytes 

found during self-limiting infections are predominantly of the T-helper 1 type (Th1), producing 

cytokines which activate the cellular arm of the immune system. In contrast, in chronic carriers 

of these viruses, virus-specific T-cell responses are weak, and Th cells are often characterized 

by a type 2 cytokine response (recently reviewed in [1] and [2]). It is at present unclear why 

chronically infected patients are unable to mount adequate antiviral T-cell responses. 

T-cell respones are initiated by antigen-presenting cells (APC) in secondary lymphoid tissues, 

especially in the lymph nodes (LN) to which the lymph of the infected tissue is draining. The 

most potent APC are myeloid dendritic cells (MDC). These DC are, in contrast to other APC, 

capable of activating naïve T-cells. MDC reside as immature sentenile cells in non-lymphoid 

tissues, specialized in recognition and uptake of pathogens. After antigen uptake MDC’s migrate 

to the regional LN, and, dependent on the type of stimuli they have received, maturate to APC 

with strong T-cell stimulatory capacity [3], or remain in a immature state capable of inducing 

T-cell tolerance [4, 5]. The second main DC-type are the plasmacytoid DC (PDC), which are able 

to produce high amounts of IFN-α upon stimulation by several viruses [6, 7]. This cytokine has 

pronounced direct anti-viral effects [8]. Upon activation, precursor-PDC differentiate into APC, 

which are, by producing IFN-α, able to drive the differentiation of naive T-helper cells into the 

Th1 type direction [9, 10]. 

There are indications that the weak T-cell response during chronic HBV- and HCV-infections 

might be due to reduced numbers and impaired function of MDC. MDC cultured in vitro from 

monocytes of patients with chronic HCV- or HBV-infection were found to have a lower capacity 

to stimulate proliferation of allogeneic T-cells and a decreased capacity to produce the Th1-

driving cytokine IL-12 compared to monocyte-derived MDC from healthy people [11-15]. In 

addition, patients with chronic HBV- or HCV-infection have lower numbers of circulating 

precursor-MDC compared to healthy individuals [14, 16]. However, the anatomical location 

where T-cell responses to these viruses are elicited is not the blood circulation, but the hepatic 

LN. Indeed, recently HBV-specific T-cells capable of reacting to viral antigenic peptides have 

been detected in hepatic LN from patients with chronic HBV-infection [17]. 

To start elucidating whether DC in hepatic LN of patients with chronic HBV- and HCV-infection 

are affected, we compared numbers of MDC, PDC, and IFN-α-producing cells in the T-cell areas 

of hepatic LN from patients with chronic HBV- or HCV-infection, inflammatory liver diseases due 

to a non-viral etiology, and of organ donors with non-inflamed livers.
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MATERIAL AND METHODS

Patients and lymph nodes

During liver transplantations, liver lymph-draining LN were obtained along the hepatoduodenal 

ligament [18] of patients with chronic HBV-infection (n=8), chronic HCV-infection (n=5), primary 

sclerosing cholangitis (PSC; n=5), or primary biliary cirrhosis (PBC; n=5) as indications for liver 

transplantation. In addition hepatic LN were obtained from cadaveric donor-livers (n=10). 

The LN were transported in University of Wisconsin solution to the laboratory and frozen in 

isopentane cooled in liquid nitrogen and stored at -80°C. The Medical Ethical Committee of the 

Erasmus Medical Center approved the study protocol.

Detection of HBV DNA and HCV RNA

Serum HBV DNA and HCV RNA were quantitatively measured by real-time PCR-based assays 

(detection limits: HBV DNA 1 × 103 geq/ml; HCV RNA 100 geq/ml; both manufactured by Roche 

Diagnostics, Almere, The Netherlands).

Immunohistochemistry

To visualize DCs in the paracortex of LN, cryostat sections were double-stained for DC and 

T-cells. At three planes of each LN, consecutive 5 μm cryostat sections were cut. These were 

fixed in 4% paraformaldehyde (10 min), after which endogenous peroxidase was blocked by 

incubation in citric acid/phosphate buffer-solution (pH=5.8) supplemented with 0.05% H
2
O

2 

and 0.2% NaN
3
 (15 min, 20°C). Aspecific antibody binding was reduced by pre-incubation in 

Tris-Buffered Saline (TBS, pH=7.4) supplemented with 10% Normal Rabbit Serum (NRS) and 

Table 1. Patient and donor characteristics

HBV
(n=8)

HCV
(n=5)

cholestatic
disease
(5 PBC, 5 PSC)

donors
(n=10)

p-
Value

gender (m/f ) 7/1 3/2 5/5 5/5 0.322

age1 (years) 51 (31-59) 57 (44-60) 47 (37-65) 53 (25-64) 0.773

Child-Pugh (A/B/C) 0/1/7 1/2/2 2/5/3 na 0.132

Pre-transplant/donation ALT 
(IU/ml)1

62 (29-590) 50 (35-332) 67 (23-131) … 0.953,4

HBV-DNA/HCV-RNA (geq/ml)
median
range

6.104

<1.103 - 6.107

9.105

7.103 - 6.106

na na na

Hepatocellular Carcinoma 4/8 2/5 0/10 0/10 na

HBeAg+; treated with lamivudine 4/8 na na na na
1median (range)
2Fisher’s exact test
3Kruskal Wallis test
4p-value for the 3 patient groups
na = not applicable
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10% Normal Human Serum (NHS). Primary mAb were applied in optimal concentrations in TBS 

(pH 7.4) supplemented with 1% NHS for 18 h at 4°C. The mAb used were: anti-DC-LAMP (CD208; 

clone 104.G4 [19]), anti-Langerin (CD207; clone DCGM4 [20]), which were both generous gifts 

from Prof. S. Lebecque, Schering Plough Corporation, Dardilly, France, CD123 (Becton and 

Dickinson, Heidelberg, Germany), or isotype-matched control mAb (Dako, Glostrup, Denmark). 

Binding of anti-DC-LAMP and CD123 mAb was detected by incubation with Rabbit-anti-Mouse 

antibodies (Dako) diluted in TBS (pH 7.4) followed by Alkaline-Phosphatase-Anti-Alkaline 

Phosphatase antibody complex (APAAP, Serotec, UK). Anti-langerin was detected by biotinylated 

Rabbit-anti-Mouse antibodies and followed by Streptavidin-Alkaline Phosphatase (AP) (Dako). 

In this procedure, slides were blocked for endogenous biotin with DAKO Biotin Blocking System 

before applying the secondary antibody. Subsequently, all sections were incubated with 10% 

normal mouse serum (Dako, 30 min, 20°C) and subsequently with CD3-FITC (Beckman Coulter 

Immunotech, Marseille, France; 1h, 20°C), followed by Rabbit-anti-FITC-Peroxidase (PO) (Dako). 

To visualize IFN-α producing cells, PFA-fixed sections were incubated with anti-IFN-α mAb 

(UCytec, Utrecht, The Netherlands), followed by biotinylated Rabbit-anti-Mouse antibodies and 

A B

C D

Figure 1. Cryosections of hepatic LN from patients with chronic HBV-infection (A), chronic HCV-infection (B), and PBC (C), and 

from an organ donor (D) immunohistochemically double-stained for T-cells (CD3) in red and for mature MDC (anti-DC-Lamp) 

in blue. The red-coloured areas represent the paracortex. Non-coloured areas are B-cell follicles or medulla. Note that HEVs are 

colourless too.
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Alkaline Phosphatase-conjugated ABC-complex (DAKO). Alkaline phosphatase was visualized 

by Fast Blue/ASBI-phosphate substrate (blue) and PO with Amino-Ethyl-Carbazole (AEC; red). 

Immunohistochemical stainings with anti-IFN-α mAb were counterstained with Nuclear Fast 

Red. Optimal dilutions of primary mAb were established in preliminary experiments by titration 

on human tonsil or skin cryo-sections. Stains were only examined when control stains with 

isotype-matched mAb were negative.

Quantification of DC and IFN-α-producing cells

On each plane of the LN, numbers of DC in the paracortex, which was visualized by the red 

CD3-staining, were counted by two independent observers in six microscopic fields with a 

Figure 3. Immunohistochemical staining of IFN-α in a hepatic LN of a PSC-patient.
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Figure 4. Numbers of IFN-α+ cells in T-cell areas of hepatic LN from patients with inflamed livers due to chronic HBV-infection, 

chronic HCV-infection, auto-immune cholestatic diseases (PBC or PSC), and from organ donors with a non-inflamed liver. 

Numbers of postive cells were counted per microscopic field of 200 times magnification. Each point represents one LN. Lines 

indicate median values for each group.



Dendritic cells in chronic viral hepatitis 107

magnification of 630 times. Only brightly coloured cells were counted. For each LN, means 

were calculated from the numbers of DC counted in 18 microscopic fields distributed over the 

three sections by the two observers. Numbers of IFN-α-producing cells were counted in two 

sections of each LN. In each section four randomly selected microscopic fields of 200 times 

magnification were counted by two observers, and the mean of these counts were calculated. 

Statistical analysis: Differences in continuous variables between the four study groups was 

tested by the Kruskal Wallis test for independent samples, and differences in discontinuous 

variables by the Fisher’s exact test. Differences between pairs of groups were tested by the 

Mann-Whitney U test.

RESULTS

Patient characteristics

For this study hepatic LN were collected during liver transplantation procedures from patients 

with chronic HBV- or HCV-infection, and as control groups, from patients with auto-immune 

cholestatic diseases, and from liver-donors, i.e. individuals with non-inflamed livers. Patient- 

and donor characteristics are summarized in Table 1.

The groups did not differ in gender or age. All three patient groups had moderately enhanced 

serum ALT levels, indicating ongoing liver damage at the time of procurement of the LN, while 

the organ donors had normal ALT levels. The majority of the patients had decompensated liver 

cirrhosis, as indicated by the Child-Pugh scores. The Child-Pugh scores tended to be higher in the 

HBV-group as compared to the patients with HCV or cholestatic diseases, but this difference did 

not reach statistical significancy. Four out of eight HBV-patients had antibodies against HBeAg, 

but all had active viral replication (HBV-DNA: 5.104 - 6.107 geq/ml) on the day of transplantation. 

The other four HBV-patients were HBeAg+, and had been treated for at least 2 months before 

transplantation with lamivudine. Nevertheless, in three of them HBV-DNA was still detectable 

in serum on the day of transplantation (4.103 - 6.104 geq/ml). The five patients undergoing liver 

transplantation for chronic HCV-infection had not been treated for HCV for at least 16 months 

before transplantation, and all had active viral replication. The group of patients with auto-

immune cholestatic diseases consisted of five patients with PBC and five with PSC. 

Comparison of numbers of DC in hepatic LN from patients with chronic HBV- or HCV-infection, patients 
with autoimmune liver diseases, and organ donors

Figure 1 shows cryosections of hepatic LN from patients with chronic HBV- (A), or HCV-infection 

(B), PBC (C), and an organ donor (D) immunohistochemically double-stained for T-cells (CD3) in 

red and for mature MDC (anti-DC-Lamp) in blue. The DC-Lamp+-cells are visible as blue cells in 

red-coloured T-cell areas, i.e. the paracortex. Likewise, Langerhans-type immature myeloid DC 
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were detected in the paracortex of the LN by staining with anti-Langerin mAb, and PDC with 

CD123 mAb (not shown). 

The densities of the different DC-types in hepatic LN of the HBeAg+ HBV-patients, which 

had been treated with lamuvidine before transplantation, were similar to those in LN of the 

HBeAg- patients which had not been treated for HBV. Therefore, these LN were combined into 

one group for analysis. Figure 2A shows that the densities of immature Langerhans-type MDC 

in hepatic LN did not differ between the groups. However, as shown in Figure 2B, the median 

density of mature MDC (DC-Lamp+ cells) in the paracortex of LN from chronic HBV-patients was 

about one quarter lower compared to that in LN from patients with liver inflammation due to 

cholestatic diseases (p=0.02). 

Moreover, despite of the limited number of LN from chronic HCV-patients, also in these LN a 

nearly significantly lower density of mature MDC was observed in comparison with LN from PBC 

and PSC patients (p=0.06). When the data from the patients with HBV- and HCV-infection were 

taken together, the median density of mature MDC in the paracortex of their hepatic LN was 

22% lower compared to that in LN from PBC and PSC patients (p=0.007). Due to considerable 

variation in the densities of mature MDC in LN from organ donors, mature MDC-densities in 

hepatic LN of the patient groups did not differ significantly from those in the LN of the organ 

donors (combined HBV- and HCV-patients versus organ donors: p = 0.26; cholestatic liver 

diseases versus organ donors: p = 0.56). 

In a previous study (Tanis et al, submitted) we found that hepatic LN, both from non-inflamed 

livers and from patients with auto-immune cholestatic diseases, have about four times less PDC 

in their paracortex as compared to muscle-and skin-lymph draining LN. Figure 2C shows that 

chronic HBV-infection does not result in an increase in CD123+ PDC-numbers in hepatic LN, 

while PDC-numbers tended to be further decreased in hepatic LN from chronic HCV-patients 

(HCV-group versus HBV-group: p = 0.09).

Comparison of numbers of IFN-α producing cells in hepatic LN from patients with chronic HBV- or HCV-
infection, patients with autoimmune liver diseases, and organ donors

The main source of IFN-α in secondory lymphoid organs in vivo are PDC [9]. Immunohisto-

chemical staining of LN-sections with an anti-IFN-α mAb showed that IFN-α-producing cells 

were mainly situated in the T-cell areas (Figure 3). 

Microscopic quantification revealed that the numbers of IFN-α producing cells varied 

considerable within the study groups, but did not differ significantly between hepatic LN of the 

different study groups (Figure 4).
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DISCUSSION

Inflammatary components, like necrotic cells [21] and cytokines [22], stimulate the maturation 

of MDC. Therefore, we estimated that hepatic LN from patients with liver inflammation due to 

PBC or PSC would contain higher numbers of mature MDC compared to those of organ donors 

with non-inflamed livers. This was, however, not the case. Hepatic LN from organ donors showed 

a large variation in mature MDC-numbers. This variation may be due to the presence or absence 

of factors, like endotoxins absorbed from the gut [23], or cytokines released in the early phase 

of brain death [24], which stimulate the maturation and migration of liver MDC to the hepatic 

LN in organ donors. Indeed, in some cadaveric liver transplants Kupffer cells are activated and 

in others not [25]. Much less varation in DC-numbers was observed in the LN from the patient 

groups with inflamed livers, where continuous stimulation of hepatic DC may be assumed. 

The present study shows that hepatic LN from patients with liver inflammation due to chronic 

HBV- or HCV-infection contained significantly less mature MDC in their T-cell areas as compared 

to hepatic LN from patients with liver inflammation due to PBC or PSC. Mature MDC are the most 

potent APC known. Moreover, hepatic LN are probably the primary sites where MDC present 

viral peptides derived from the infected hepatocytes to T-cells. We therefore propose that the 

reduced numbers of mature MDC in these LN may be one of the causes of the impaired anti-

viral Th and CTL-responses, which are characteristic for patients with persistent HBV- or HCV-

infection. Whether MDC in hepatic LN of chronic HBV- or HCV-patients are also functionally 

impaired, will be investigated in future studies in which MDC will be isolated from hepatic LN. 

The presence of lower numbers of mature MDC in the hepatic LN of chronic HBV- or HCV-

patients might be caused by an impairment in MDC-maturation in the liver of these patients. 

This possibility is suggested by the reduced maturation of monocyte-derived MDC from such 

patients observed in vitro [11-15]. If impaired maturation had occurred in vivo, increased 

numbers of immature MDC would be expected to be present in the hepatic LN of chronic 

HBV- and HCV-patients. However, we observed similar numbers of immature Langerin+ MDC 

in hepatic LN of all patient groups and in the control group of organ donors. Langerin is a 

molecule specific for the epithelial immature MDC type, i.e. the Langerhans cell. We suppose 

that the Langerin+ cells in the hepatic LN represent Langerhans cells immigrated from the 

Glisson capsule of the liver, like Langerin+ cells in skin-lymph draining LN are considered to 

represent Langerhans cells immigrated from the skin [26]. At present no specific antibodies 

are available for the interstitial type of immature MDC [27], which is supposed to be present 

in the liver parenchyma. Therefore, in the present immunohistochemical study we could not 

determine whether increased numbers of immature interstitial-type liver MDC were present in 

the hepatic LN from chronic HBV- and HCV-patients. Such analysis can only be done by multi-

parameter flow cytometry of LN cell suspensions. 

The lower numbers of mature MDC in hepatic LN from chronic HBV- and HCV-patients may 

also be due to reduced availability of bone marrow-derived precursor-MDC in these patients. 
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Recently, it has indeed been reported that patients with chronic HBV- and HCV-infection have 

reduced numbers of circulating precursor-MDC in comparison with healthy individuals [14, 

16]. 

PDC are the principal producers of the anti-viral cytokine IFN-α. Moreover, this cytokine can 

direct the differentiation of naïve Th cells into the Th1 direction. However, to influence the 

outcome of the T-helper response, IFN-α must be produced at the site where naïve T-cells are 

activated, i.e. in secondary lymphoid tissue. Several, but not all, viruses are able to induce IFN-α 

production by PDC in vitro [7, 9] and in lymphoid organs in vivo [28]. Here, we found that the 

numbers of IFN-α producing cells, as well as the numbers of PDC, were not increased in the 

hepatic LN of patients with chronic active HBV- or HCV-infection, compared with those from 

PBC- and PSC-patients and those of organ donors. Apparently, HBV- and HCV do not stimulate 

IFN-α production in hepatic LN in vivo in chronically infected patients. Whether this is due to 

inability of these viruses to trigger IFN-α production by PDC, or whether other factors present 

in chronic HBV- or HCV-patients inhibit the production of this cytokine, will be investigated 

in future studies. We have previously shown that hepatic LN contain few PDC compared with 

skin-muscle-lymph draining LN (Tanis et al, submitted). Possibly, the relative shortage of IFN-α 

producing PDC in hepatic LN is another cause of the impaired anti-viral Th and CTL-responses 

in chronic HBV- and HCV-patients. 

In conclusion, this pilot study shows that hepatic LN in patients with persistent HBV- or HCV-

infection have reduced numbers of mature MDC in their T-cell areas compared to hepatic LN of 

patients with liver inflammation due to auto-immune cholestatic diseases, and that the numbers 

of IFN-α producing PDC in hepatic LN are not enhanced during these chronic infections. These 

deficits in the DC-system of hepatic LN may be at least in part responsible for the impaired anti-

viral Th and CTL responses found in these patients. 



Dendritic cells in chronic viral hepatitis 111

ACKNOWLEDGEMENT

This study was financially supported by the Revolving Fund of the Erasmus MC. The authors 

thank Geert Kazemier for providing us with hepatic lymph nodes during liver transplant 

procedures, and Wilco Tanis and Geert Bezemer who participated as students in this project.



112

C
ha

p
te

r V
II

REFERENCES

 1. Jung MC, Pape GR. Immunology of hepatitis B infection. Lancet Infect Dis 2002;2:43-50
 2. Bertoletti A, Ferrari C. Kinetics of the immune response during HBV and HCV infection. Hepatology 

2003;38:4-13
 3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252
 4. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory 

T cells. Trends Immunol 2001;22:394-400.
 5. Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in 

peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002;99:351-358
 6. Cella M, Jarrossay D, Facchetti F, Allebardi O, Nakajima H, Lanzavecchia A, et al. Plasmacytoid 

monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat 
Med 1999;5:919-923

 7. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the 
principal type 1 interferon-producing cells in human blood. Science 1999;284:1835-1837

 8. Katze MG, He Y, Gale M, Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2002;2:675-
687

 9. Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza 
virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000;1:305-310

 10. Kadowaki N, Antonenko S, Lau JY, Liu YJ. Natural interferon alpha/beta-producing cells link innate 
and adaptive immunity. J Exp Med 2000;192:219-226

 11. Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, et al. Impaired allostimulatory capacity 
of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 
1999;162:5584-5591

 12. Bain C, Fatmi A, Zoulim F, Zarski JP, Trepo C, Inchauspe G. Impaired allostimulatory function of 
dendritic cells in chronic hepatitis C infection. Gastroenterology 2001;120:512-524

 13. Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with 
chronic, but not resolved, hepatitis C virus infection. Blood 2001;97:3171-3176

 14. Beckebaum S, Cicinnati VR, Dworacki G, Muller-Berghaus J, Stolz D, Harnaha J, et al. Reduction in the 
circulating pDC1/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B 
infection. Clin Immunol 2002;104:138-150

 15. Arima S, Akbar SM, Michitaka K, Horiike N, Nuriya H, Kohara M, et al. Impaired function of antigen-
presenting dendritic cells in patients with chronic hepatitis B: Localization of HBV DNA and HBV 
RNA in blood DC by in situ hybridization. Int J Mol Med 2003;11:169-174

 16. Kunitani H, Shimizu Y, Murata H, Higuchi K, Watanabe A. Phenotypic analysis of circulating and 
intrahepatic dendritic cell subsets in patients with chronic liver diseases. J Hepatol 2002;36:734-
741

 17. Malacarne F, Webster GJ, Reignat S, Gotto J, Behboudi S, Burroughs AK, et al. Tracking the source 
of the hepatitis B virus-specific CD8 T cells during lamivudine treatment. J Infect Dis 2003;187:679-
682

 18. Scheurlein H KF. The anatomy of the liver. In: Kockerling F SS, editor. Liver Surgery: Operative 
techniques and avoidance of complications. Heidelberg: J.A. Barth; 2001. p. 9-38

 19. de Saint-Vis B, Vincent J, Vandenabeele S, Vanbervliet B, Pin JJ, Ait-Yahia S, et al. A novel lysosome-
associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently 
expressed in MHC class II compartment. Immunity 1998;9:325-336

 20. Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Damboyant C, Vincent C, Massacrier C, et al. The 
monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is 
rapidly internalized from the cell surface. Eur J Immunol 1999;29:2695-2704

 21. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: 
exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the 
maturation of immunostimulatory dendritic cells. J Exp Med 2000;191:423-434

 22. Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML. High-level IL-12 production by human dendritic 
cells requires two signals. Int Immunol 1998;10:1593-1598



Dendritic cells in chronic viral hepatitis 113

 23. van Goor H, Rosman C, Grond J, Kooi K, Wubbels GH, Bleichrodt RP. Translocation of bacteria and 
endotoxin in organ donors. Arch Surg 1994;129:1063-1066

 24. Amado JA, Lopez-Espadas F, Vazquez-Barquero A, Salas E, Riancho JA, Lopez-Cordovilla JJ, et al. 
Blood levels of cytokines in brain-dead patients: relationship with circulating hormones and acute-
phase reactants. Metabolism 1995;44:812-816

 25. Kwekkeboom J, Kuijpers MA, Bruyneel B, Mancham S, de Baar-Heesakkers E, IJzermans JN, et al. 
Expression of CD80 on Kupffer cells is enhanced in cadaveric liver transplants. Clin Exp Immunol 
2003;132:345-351

 26. Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, et al. Accumulation of 
immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 
2002;196:417-430

 27. Woltman AM, van Kooten C. Functional modulation of dendritic cells to suppress adaptive immune 
responses. J Leukoc Biol 2003;73:428-441

 28. Dalod M, Salazar-Mather TP, Malmgaard L, Lewis C, Asselin-Pasturel C, Briere F, et al. Interferon alpha/
beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine 
expression in vivo. J Exp Med 2002;195:517-528





Chapter 8

Summary and conclusions

Samenvatting en conclusies

Appendix

Dankwoord

Curriculum vitae 

Bibliography

Abbreviations





Summary and conclusions 117

SUMMARY AND CONCLUSIONS

Intrahepatic immune response in chronic hepatitis B infection (chapter 2 and 3)

More than a third of the world’s population has been infected with hepatitis B virus (HBV) and it 

is estimated that there are 350 million persistent carriers of HBV worldwide, 25% of whom have 

active chronic liver disease and cirrhosis, which could progress to hepatocellular carcinoma. 

The annual mortality rate is approximately one million people worldwide, which makes it a 

major global health concern. 

It is not clearly known how an individual develops a chronic hepatitis carrier state; however, 

a defective immune response of the host is thought to play a critical role in the underlying 

pathogenetic mechanism. HBV clearance is associated with co-ordinated activation of both 

the cellular and humoral arms of the adaptive immune response that ultimately control the 

virus. A proper activation of the innate response is necessary for full development of an efficient 

anti-viral adaptive immune response. The earliest responses are non-specific and include type 

I IFN, NK and NK-T cells, non-specific activation of Kupffer cells and proper dendritic cell (DC) 

maturation. In addition of being a first line of defence against the virus, the innate immune 

respons is necessary to deliver the signals to a proper adaptive response. The fundamental step 

of antiviral protective immunity is the elimination of intracellular virus by the cellular response. 

This has long been thought to require the immune destruction of infected hepatocytes by 

cytotoxic T-lymphocytes (CTL). Recent investigations have demonstrated that the cellular 

immune response can also purge HBV from infected hepatocytes without killing the infected 

cells, by secreting of antiviral cytokines (IFN gamma and TNF alpha) that inhibit viral gene 

expression and replication, thereby curing the HBV infection without destruction of the liver. 

CD8+ CTLs are the main immune effector cells in the viral clearance. However, little is known 

about the immune mechanisms which control viral replication during chronic HBV-infection. 

A majority of chronically infected patients survive for several decades. In these patients 

apparently a balance emerges between liver injury and viral replication, indicating a phase 

of relative immune control. In addition to CTLs, cells of the innate immune response, such as 

macrophages, Kupffer cells, natural killer (NK) cells may contribute to control of the virus and 

to tissue injury. Most of the available information is based on studies on anti-viral T-cells in 

the circulation of patients. Since the infection is localized in the liver, we decided to study the 

intrahepatic immune response. 

In chapter 2, we studied the immune balance between HBV and the chronically infected 

host. We performed a cross-sectional study in which we determined the associations between 

numbers of intrahepatic immune cells on the one hand and viral replication and liver damage 

on the other hand in patients with HBeAg+ and HBeAg- chronic HBV-infection. We found 

that low HBV replication and HBeAg negativity were associated with increased numbers of 

intralobular CD8+ T-lymphocytes in liver biopsies. This suggests a prominent role of CTL in 

immune control of viral replication during chronic infection. We did not determine whether 
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these intrahepatic CD8 T-lymphocytes were HBV specific T-cells, but additional investigations 

showed an activated state of these cells, revealed by the presence of intracellular cytotoxic 

granule proteases granzymes A and B. In contrast to patients with fulminant HBV-infection, the 

intrahepatic CD8+ T-lymphocytes in the patients with chronic infection did almost not produce 

antiviral cytokines. The absence of intrahepatic cytokine production may be one of the causes 

of viral persistence in these patients. NK (CD56+) and plasmacytoid dendritic cells (CD123+), 

which are the principal producers of IFNα, were rare in the liver specimens, suggesting a limited 

role in chronic HBV infection. An interesting finding was the Fas-ligand upregulation on Kupffer 

cells in patients with inflammatory liver damage, suggesting a contribution of Kupffer cells to 

virus-induced liver injury. 

In chapter 3, we investigated whether the pre-treatment numbers of intrahepatic CD8+ T-

lymphocytes were related to response to anti-viral therapy in chronic HBV patients. We found 

firstly, that the pretreatment numbers of intrahepatic CD8+ T-cells were higher in responders 

than in nonresponders and, secondly, that the intrahepatic lobular CD8 T-cells decreased 

significantly in responders, but remain unchanged in nonresponders. These findings suggest 

that in responders, CD8+ T-cells infiltrated in the liver favour complete viral elimination during 

antiviral therapy. Further studies must be performed to investigate whether the CD8+ T-cells 

present in the lobular fields at the end of therapy are HBV-specific T-cells, controlling the virus. 

For guidance of antiviral management, our results demonstrate that the pretreatment numbers 

of CD8+ T-lymphocytes may predict response to antiviral therapy. Future studies must indicate 

whether this finding could have clinical implications for antiviral therapy. 

The primary host immune attack against HBV is the cause of the liver injury, mediated by a 

cellular response to small epitopes of HBV proteins, especially HBcAg, presented on the surface 

of the hepatocyte. HLA-class I-restricted CD8+ cells recognize HBV peptide fragments derived 

from intracellular processing and presented on the hepatocyte surface by class I molecules. An 

interesting finding was that cytoplasmic HBcAg expression was significantly associated with 

higher number of intrahepatic CD8+ T-lymphocytes and that they were co-localized in the 

liver. This strongly suggests that these CD8+ T-cells exert antiviral activity at the site of maximal 

replication resulting in a complete disappearance of HBcAg-infected hepatocytes at the end of 

therapy. 

The intrahepatic immune response during treatment of chronic HBV-patients as determined by Fine-
Needle aspiration biopsies (chapter 4 and 5)

The intrahepatic cellular immune response during chronic HBV infection can be monitored 

occasionally, but not frequently with the traditional liver tissue biopsy technique, due to its risks 

and discomfort. Successful therapy for chronic HBV infection consists of immune modulation 

(interferon alpha) or direct inhibition of viral replication with nucleoside analogues. However, 

it is at present unknown why only part of chronic HBV patients responds to these treatments. 

Longitudinal investigations of the intrahepatic immune response during de novo infection or 
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treatment of chronic HBV infection have not been performed yet, because these were hampered 

by the lack of an alternative tool for the liver tissue biopsy. In chapter 4 we introduce the fine-

needle aspiration biopsy (FNAB) as a low-risk and patient-friendly tool for frequent monitoring 

of the intrahepatic immune response during therapy of patients with chronic HBV-infection. 

The FNAB was sensitive and able to measure a significant CD8+ T-lymphocytes elevation in the 

liver during ALT flare-ups in three chronic HBV patients, compared to non-flare episodes during 

antiviral therapy. This elevation was associated in one patient with a sustained seroconversion, 

indicating that the T-lymphocytes collected by the FNAB-technique reflect antiviral immune 

reactivity. 

Subsequently, we used the FNAB to investigate in a large cohort of chronic HBV patients 

which intrahepatic mechanisms of CD8+ T-cells were involved in viral clearance during antiviral 

therapy.

In chapter 5, intrahepatic CD8+ T-cells expressing granzymes and CD8+ T-cells secreting 

IFN gamma, representing the two pathways of anti-viral activity of CTLs were frequently 

determined in FNAB during antiviral therapy. The first conclusion we could draw was that there 

was a significant CD8 T-cell response in the liver, which was absent in peripheral blood during 

antiviral therapy. This supports the notion that the predominant immune response against HBV 

is at the site of replication and not in peripheral blood. Secondly, in responders to antiviral 

therapy, and not in non-responders, a significant elevation of intrahepatic CD8+ T-cells was 

observed during treatment. This treatment response was associated with elevations of CD8 

T-lymphocytes containing granzyme B and CD8 T-lymphocytes expressing IFN gamma during 

antiviral therapy. It remains unclear whether this elevation of CD8+ T-lymphocytes is the result of 

recruitment of activated CD8 T-cells or expansion of locally resting T-cells that have recognized 

viral antigens. The major conclusions from this study was that a prominent intrahepatic CD8+ 

T-cell response was present in responders to antiviral therapy and not in nonresponders and 

that cytolytic and noncytolytic mechanisms were both involved in the response to antiviral 

therapy.

Intrahepatic immune response in relation to treatment of chronic HCV-infection as determined by FNAB 
(chapter 6)

More than seventy percent of adults infected by hepatitis C virus develop a chronic infection. 

Like for HBV-infection, it has been proposed that the ability to mount an efficient cellular 

immune response is the main mechanism responsible for HCV control, whereas a deficient 

immune response leads to chronicity. Based on our experience with the application of FNAB 

in chronic HBV patients, we validated the FNAB for detection of intrahepatic CD8+ T-cells in 

chronic HCV patients by comparison with liver tissue biopsies. Chapter 6 reports that we found 

increased relative numbers of CD8+ T-cells in the FNAB-specimens compared to peripheral 

blood, suggesting an increased activity of CD8+ T-cells at the site of infection. Subsequently, 

we questioned whether we could use this parameter for prediction for response of antiviral 
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therapy with interferon-alpha. In our study, significantly more CD8+CD3+ T-cells were observed 

in pre-treatment FNAB of “rapid responders compared to ‘slow responders” to interferon alpha 

therapy. This suggests a higher absolute number of HCV–specific CD8+ T-cells in the liver and 

prominent role of CD8+ T-cells in the cellular response to HCV in the ‘rapid responders’. 

Crucial role for dendritic cells in viral control in chronic viral hepatitis (chapter 7)

Dendritic cells act as a link between the innate and adaptive immune response. Signals from 

the innate immune system often lead to a proper maturation of DCs, which are critical for 

triggering the antigen-specific immune response. The ability of DCs to induce T-cell responses 

is influenced by their tissue localization and the viral load. Activation of CD8 T-cells in lymph 

nodes draining lymph from the site of infection occurs very rapidly and is mediated by DCs. 

Chronic hepatitis B or hepatitis C patients have impaired T-cell responses against these viruses. 

Given the important role played by DCs in T-cell priming, we raised the hypothesis that this 

immunological deficit may be due to impaired presentation of viral antigens by liver derived 

dendritic cells to T-cells in the hepatic lymph nodes. This may be due to an alteration of the DC 

function and/or maturation induced by the high viral load or even by infection of the DCs by HBV 

or HCV. In chapter 7, we quantified myeloid DC and plasmacytoid DC in immunohistochemical 

stainings of hepatic lymph node sections obtained from liver transplant recipients. The major 

finding in this study was that hepatic lymph nodes from patients with chronic HBV- or HCV 

infection contained significantly less mature myeloid DC, but similar numbers of immature 

myeloid DCs, plasmacytoid DC and IFNα producing cells compared to hepatic lymph nodes of 

patients with liver inflammation due to cholestatic liver diseases. This finding strongly suggests 

that viral chronicity may be associated with reduced numbers of mature myeloid DCs in hepatic 

lymph nodes causing an impaired anti-viral T-cell response and subsequently a deficient 

intrahepatic immune response.
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SAMENVATTING EN CONCLUSIES

De intrahepatische immuun respons bij een chronische hepatitis B infectie (hoofdstuk 2 en 3)

Meer dan een derde van de wereldbevolking is geïnfecteerd met het hepatitis B virus (HBV) 

en wereldwijd zijn er ongeveer 350 miljoen mensen die persisterende dragers van het HBV 

zijn; 25% daarvan hebben een actieve chronische leverziekte en cirrose, die kan leiden tot 

hepatocellulair carcinoma. De jaarlijkse mortaliteit wordt geschat op een miljoen mensen 

wereldwijd, waardoor HBV een mondiaal gezondheidsprobleem is. Het is nog onbekend hoe 

een individu na infectie zich ontwikkelt tot een chronische drager van het HBV; een defect in 

het immuun systeem van de gastheer lijkt een belangrijke rol te spelen in de onderliggende 

pathogenese. Klaring van het HBV is geassocieerd met een gecoördineerde activatie van de 

cellulaire alswel de humorale onderdelen van de specifieke immuun respons dat uiteindelijk 

het virus onder controle houdt. Een juiste activatie van de niet-specifieke immuun respons is 

noodzakelijk voor een volledige ontwikkeling van een efficiënte antivirale specifieke immune 

respons.

De vroege responsen zijn niet-specifiek en bestaan uit secretie van type I IFN, infiltratie 

van Natural Killer (NK) en Natural Killer-T (NK-T) cellen, maturatie van dendritische cellen 

(DC) en activatie van Kupffer cellen. De niet-specifieke immuun respons is het eerste 

verdedigingsmechanisme tegen het virus en is nodig om een effectieve specifieke immuun 

respons in gang te zetten. De essentiële stap van een beschermende antivirale immuun respons 

is de eliminatie van intracellulair virus door de cellulaire respons. Er werd lang aangenomen 

dat dit bereikt werd door vernietiging van geïnfecteerde hepatocyten door cytotoxische T-

lymfocyten (CTL).

Recent onderzoek heeft uitgewezen dat de cellulaire immuun repons het HBV kan 

verwijderen uit geïnfecteerde hepatocyten zonder deze te beschadigen, namelijk door secretie 

van antivirale cytokinen (IFNγ en TNFα) die de virale genexpressie en replicatie inhiberen en 

daarbij de HBV infectie genezen zonder leverschade. CD8+ CTL’s zijn de voornaamste immuun-

effector cellen in deze virale klaring.

De meerderheid van chronisch geïnfecteerde patiënten hebben een overleving van enkele 

tientallen jaren. Er lijkt een balans te ontstaan tussen leverschade en virale replicatie in deze 

patiënten, wat aangeeft dat zij in een fase van relatieve immuun controle van het virus 

verkeren. 

Naast de CTL’s dragen cellen van het niet-specifieke immuunsysteem, zoals macrofagen, 

Kupffer cellen, NK- en NK-T cellen bij aan de controle van het virus en aan veroorzaken 

weefselschade. De meeste beschikbare gegevens betreffende de cellulaire immuun respons 

tegen HBV zijn verkregen door studies van antivirale T-cellen in de circulatie van chronische 

HBV patiënten. Omdat de primaire infectie gelokaliseerd is in de lever zelf, hebben wij besloten 

om de intrahepatische immuun respons te bestuderen.



122

C
ha

p
te

r V
III

In hoofdstuk 2 hebben wij de balans tussen HBV en het immuun systeem van de chronisch 

geïnfecteerde patiënt bestudeerd. Een cross-sectionele immunohistochemische studie 

werd uitgevoerd met lever biopsieën van HBeAg-positieve en negatieve chronische HBV-

patiënten, waarin wij de verbanden hebben bestudeerd tussen de aantallen intrahepatische 

immuun cellen enerzijds en virale replicatie en leverschade anderzijds. Wij vonden dat 

lage HBV replicatie en HBeAg-negativiteit geassocieerd waren met een verhoogd aantal 

intralobulaire CD8+ T-lymfocyten in lever biopten. Dit suggereert een prominente rol van 

CTL’s in de immuun gemedieerde controle van virale replicatie tijdens een chronische infectie. 

Of deze intrahepatische CD8 T-lymfocyten HBV-specifieke T-lymfocyten waren, hebben wij 

niet onderzocht, maar aanvullend onderzoek heeft wel aangetoond dat deze cellen in een 

geactiveerde status waren, weergegeven door de aanwezigheid van intracellulaire cytotoxische 

proteasen Granzym A en B.

In tegenstelling tot patiënten met een fulminante HBV infectie, maakten de intrahepatische 

CD8 T-lymfocyten in de patiënten met chronische infectie geen antivirale cytokines. Afwezigheid 

van intrahepatische cytokine productie kan één van de oorzaken zijn van virale persistentie in 

deze patiënten.

NK (CD56+) en plasmacytoide dendritische cellen (CD123+), de voornaamste producenten 

van IFNα, waren zeldzaam in de lever biopsieën, wat suggereert dat ze een beperkte rol hebben 

in chronische HVB infectie. Een interessante bevinding was de opregulatie van Fas-Ligand op 

Kupffer cellen van patiënten met inflammatoire leverschade. Dit suggereert dat Kupffer cellen 

bijdragen aan de virus geïnduceerde lever schade.

In hoofdstuk 3 hebben wij onderzocht of de aantallen CD8+ T-lymfocyten die voorafgaand aan 

antivirale therapie met IFNα, aanwezig zijn in de lever van chronische HBV-patiënten, gerelateerd 

zijn aan de respons op deze therapie. Wij vonden allereerst, dat in lever biopsieën die genomen 

waren voorafgaand aan de behandeling, de aantallen intrahepatische CD8+ T-lymfocyten 

hoger bij waren responders dan bij nonresponders. Ten tweede, dat de CD8+ T-lymfocyten in 

de lever significant afnamen tijdens de therapie bij responders, maar stabiel bleven in aantal bij 

de nonresponders. De derde interessante bevinding was dat cytoplasmatisch HBcAg-expressie 

in hepatocyten significant was geassocieerd met hogere aantallen intrahepatische CD8+ T-

lymfocyten in de biopsieën. CD8+ T-lymfocyten en cytoplasmatisch HBcAg vertoonden co-

localisatie. Dit suggereert dat deze CD8+ T-lymfocyten hun antivirale activiteit uitoefenen op 

de plaats van maximale virus replicatie, en dat dit resulteert in complete eliminatie van met 

HBV geïnfecteerde hepatocyten aan het einde van therapie.

Deze bevindingen suggereren dat bij responders de voorafgaand aan therapie in de lever 

geïnfiltreerde CD8+ T-lymfocyten complete virale eliminatie begunstigen tijdens antivirale 

therapie. Vervolgstudies moeten uitwijzen of de CD8+ T-lymfocyten die intralobulair aanwezig 

zijn aan het einde van de therapie HBV-specifieke T-lymfocyten zijn die het virus controleren.

Met betrekking tot beleid voor antivirale therapie, laten onze resultaten zien dat aantallen 

intrahepatische CD8+ T-lymfocyten voorspellend zijn voor de kans op respons. 
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De intrahepatische immuun respons bepaald met de Dunne-Naald aspiratie biopsie tijdens behandeling 
van chronische HBV patiënten (hoofdstuk 4 en 5)

De intrahepatische cellulaire immuun respons tijdens chronische HBV infectie kan met de 

traditionele lever biopsie techniek af en toe onderzocht worden, maar niet frequentvanwege 

de risco’s en het ongemak. Succesvolle therapie voor chronische HBV infectie bestaat uit 

immuunmodulatie (interferon alfa) of directe inhibitie van virale replicatie met nucleoside 

analogen. Echter, het is tot op heden niet bekend waarom een deel van de chronische 

HBV patiënten niet respondeert op deze behandelingen. Longitudinaal onderzoek van de 

intrahepatische immuun respons tijdens de novo infectie of behandeling van een chronische 

HBV infectie is tot op heden nog niet uitgevoerd, omdat dit belemmerd werd door de 

afwezigheid van een alternatief voor de leverbiopsie. 

In Hoofdstuk 4 introduceren wij de dunne naald aspiratie biopsie (fine-needle aspiration 

biopsie; FNAB) als een patiënt vriendelijker alternatief voor frequente monitoring van de 

intrahepatische immuun respons tijdens therapie bij patiënten met een chronische HBV 

infectie. Aan deze techniek zijn nagenoeg geen risico’s verbonden. De FNAB-techniek bleek 

sensitief genoeg om een stijging van CD8+ T-lymfocyten in de lever te meten tijdens ALT-

flares in drie chronische HBV patiënten. Bij één patiënt werd tevens een stijging van CD4+ T-

helper lymfocyten in de FNAB waargenomen, die werd gevolgd door een blijvende HBeAg-

seroconversie. Dit betekent dat de T-lymfocyten verkregen door middel van de FNAB-techniek 

antivirale activiteit weergeven tijdens de therapie. 

Vervolgens pasten wij de FNAB-techniek toe in een groot cohort chronische HBV patiënten 

om te onderzoeken welke intrahepatische mechanismen van CD8+ T-lymfocyten betrokken 

zijn bij virale klaring tijdens antivirale therapie. In de studie beschreven in hoofdstuk 5 

werden CD8+ T-lymfocyten met IFNγ en granzymes gekwanficeerd in FNAB die longitudinaal 

tijdens antivirale therapie met IFNα werden genomen. Deze markers representeren de twee 

mechanismen van antivirale activiteit van CTL’s. De eerste conclusie uit deze studie was dat 

er een significante stijging van CD8+ T-lymfocyten was in de lever, maar niet in perifeer bloed 

tijdens antivirale therapie. Dit gegeven ondersteunt het concept dat er een predominant 

immuun respons tegen HBV aanwezig is op de plaats van replicatie en niet in perifeer bloed. 

Ten tweede werd bij responders op antivirale therapie een significante stijging van het aantal 

CD8+ T-lymfocyten waargenomen in de FNAB tijdens behandeling, welke afwezig was bij non-

responders. Deze therapie geïnduceerde respons bestond uit stijgingen van zowel CD8+ T-

lymfocyten die granzyme B bevatten als CD8+ T-lymphocyten die IFNγ tot expressie brachten. 

De voornaamste conclusies van deze studie waren dat er een prominente intrahepatische 

CD8+ T-lymfocyt respons aanwezig was bij responders op antivirale therapie en niet bij non-

responders en dat zowel cytolytische als non-cytolytische mechanismen betrokken zijn bij de 

anti-virale respons tijdens therapie met IFNα.
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De intrahepatische immuun respons bepaald met FNAB in relatie tot behandeling van chronische HCV-
infectie (hoofdstuk 6) 

Meer dan zeventig procent van volwassenen die geïnfecteerd zijn met het hepatitis C virus 

(HCV) ontwikkelt een chronische infectie. Men heeft voorgesteld dat, evenals bij HBV-infectie, 

de opbouw van een efficiënte cellulaire immuun respons het voornaamste mechanisme is voor 

HCV controle en dat een deficiënte immuun respons leidt tot chroniciteit van de infectie. Op 

basis van onze ervaring met het gebruik van de FNAB-techniek bij chronische HBV patiënten, 

hebben wij de FNAB gevalideerd voor het detecteren van intrahepatische CD8+ T-lymfocyten 

bij chronische HCV patiënten, door vergelijking met materiaal verkregen middels een standaard 

lever biopsie.

Hoofdstuk 6 geeft weer dat de relatieve aantallen CD8+ T-lymfocyten in FNAB materiaal van 

patiënten met chronische HCV-infectie significant gecorreleerd waren met de aantallen CD8+ 

T-lymfocyten in lever biopsieën. In de tweede plaats vonden we dat de CD8+/CD3+ T-lymfocyt 

ratio in FNAB gelijk was aan die in portale gebieden van de lever, maar hoger dan in met perifeer 

bloed. Vervolgens hebben wij ons afgevraagd of we deze parameter kon worden gebruikt 

voor predictie van kans op respons op antivirale therapie met interferon alfa. In onze studie 

werd een significant hogere ratio CD8+/CD3+ T-lymfocyten geobserveerd in FNAB genomen 

voorafgaand aan behandeling bij “snelle responders” ten opzichte van “langzame responders” 

op interferon alfa therapie. Dit suggereert een prominente rol van CD8+ T-lymfocyten in de 

door therapie geïnduceerde respons tegen HCV bij “snelle responders”.

Cruciale rol voor dendritische cellen bij virale controle in chronische virale hepatitis (hoofdstuk 7)

Dendritische cellen fungeren als een verbinding tussen de niet-specifieke en specifieke 

immuun respons. Signalen vanuit het niet-specifieke immuun systeem dragen bij aan een 

adequate maturatie van DC’s, die belangrijk is voor het initiëren van de antigeen-specifieke 

immuun respons. De mogelijkheid van DC’s om T-cel responsen te induceren wordt beïnvloed 

door hun weefsel lokalisatie en waarschijnlijk ook door de virale load.

Activatie van CD8+ T-lymfocyten geschiedt in lymfe-drainerende lymfeklieren in de regio van 

infectie door DC’s. Chronische hepatitis B en C patiënten hebben een verzwakte T-cel respons 

tegen deze virussen. Door de belangrijke rol van DC’s in het proces van T-cel priming, vroegen 

we ons af of deze immunologische tekortkoming een gevolg is van een verzwakte presentatie 

van virale antigenen opgenomen door DC’s in de lever aan de T-cellen in de hepatische 

lymfeklieren. Dit kan het gevolg zijn van een verandering in de functie en/of in de maturatie 

van DC’s geïnduceerd door een hoge virale load of zelfs door infectie van de DC’s zelf door HBV 

en HCV. 

In hoofdstuk 7 hebben wij de myeloide en plasmacytoide DC’s gekwantificeerd door 

middel van immunohistochemische kleuringen van hepatische lymfeklieren verkregen van 

levertransplantatie patiënten. De voornaamste bevinding in deze studie was dat hepatische 

lymfeklieren van patiënten met een chronische HBV en HCV infectie significant minder 
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mature myeloide, maar hetzelfde aantal immature myeloide, en plasmacytoide DC’s bevatten 

vergeleken met lymfeklieren van patiënten met inflammatie ten gevolge van cholestatische 

leverziekten. Tevens was het aantal IFNα producerende cellen gelijk. Dit resultaat suggereert 

sterk dat chroniciteit van deze virale infecties het gevolg is van verlaagde aantallen mature 

myeloide DC’s in hepatische lymfeklieren wat een verzwakte antivirale T-cel respons veroorzaakt 

en vervolgens een deficiënte immuun repons in de lever.
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CHAPTER 2

A

B

Figure 2. Liver biopsy sections immunohistochemically stained with CD8 mAb from chronic HBV patient with normal (A) and 

raised ALT (B) (× 400)
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A

B

Figure 4. Consecutive liver biopsy sections immunohistochemically stained with Fas-L mAb (a) or CD68 mAb (b), showing that 

Fas-L is expressed predominantly on Kupffer cells (× 400)
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CHAPTER 3

A

B

Figure 1. Immuno double-stain of HBcAg and CD8 T-lymphocytes (brown=HBcAg; CD8 T-lymphocytes=blue). Scattered 

nuclear expression of HBcAg and CD8 T-lymphocytes (original magnification × 200) (A). Clustered cytoplasmic expression of 

HBcAg (original magnification × 100) and co-localisation of cytoplasmic HBcAg and CD8 T-lymphocytes (inserted left, original 

magnification × 200) (B).
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CHAPTER 4

A B

Figure 1. A: May-Grünwald-Giemsa-stained cytospin preparation of a FNAB obtained during a hepatitis flare containing many 

lymphocytes. The large cells are hepatocytes. B: Immunocytochemical CD8-stain (red) of a FNAB cytospin preparation obtained 

during a hepatitis flare.
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CHAPTER 5

A B

Figure 1. Immunocytochemical double-stains of CD8 and GrB (A) (× 1000) and of CD8 and IFNg (B) (× 600) on FNAB cytospins. 
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CHAPTER 7

A B

C D

Figure 1. Cryosections of hepatic LN from patients with chronic HBV-infection (A), chronic HCV-infection (B), and PBC (C), and 

from an organ donor (D) immunohistochemically double-stained for T-cells (CD3) in red and for mature MDC (anti-DC-Lamp) 

in blue. The red-coloured areas represent the paracortex. Non-coloured areas are B-cell follicles or medulla. Note that HEVs are 

colourless too.

Figure 3. Immunohistochemical staining of IFN-α in a hepatic LN of a PSC-patient.
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ALT alanine aminotransferase

anti-HBe antibody against HBeAg

cccDNA covalently closed circular DNA

CI confidence interval

CTL cytotoxic T lymphocyte

DC dendritic cell

DNA desoxyribonucleic acid

Fas-L Fas-Ligand

FNAB fine needle aspiration biopsy

Geq genome equivalents

HBcAg hepatitis B core antigen 

HBeAg hepatitis B envelop antigen

HBsAg hepatitis B surface antigen

HBV hepatitis B virus

HCV hepatitis C virus

HDV hepatitis D virus

HIV human immunodeficiency virus

IFN-α interferon-alpha

IFN-γ interferon-gamma

IL interleukin

IU international units

LN lymph node

mAb mouse antibody 

MDC myeloid dendritic cell

MU mega-units

NK cell natural killer cell

PB peripheral blood

PBC primary biliary cirrhosis

PCR polymerase chain reaction

PDC plasmacytoid dendritic cell

PEG pegylated

PSC primary sclerosing cholangitis

RNA ribonucleic acid

SD standard deviation

SEM standard error of mean 

TNF-α tumor necrosis factor-alpha
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