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Abstract

This paper introduces the idea of adjusting forecasts from a linear time series

model where the adjustment relies on the assumption that this linear model

is an approximation of a nonlinear time series model. This way of creating fore-

casts could be convenient when inference for a nonlinear model is impossible,

complicated or unreliable in small samples. The size of the forecast adjustment

can be based on the estimation results for the linear model and on other data

properties such as the first few moments or autocorrelations.

An illustration is given for a first‐order diagonal bilinear time series model,

which in certain properties can be approximated by a linear ARMA(1, 1) model.

For this case, the forecast adjustment is easy to derive, which is convenient as

the particular bilinear model is indeed cumbersome to analyze in practice.

An application to a range of inflation series for low‐income countries shows

that such adjustment can lead to some improved forecasts, although the gain

is small for this particular bilinear time series model.

KEYWORDS

adjustment of forecasts, ARMA(1, 1), first‐order diagonal bilinear time series model, inflation,

method of moments
1 | INTRODUCTION

Forecasts from econometric time series models are fre-
quently adjusted by experts who have domain knowledge
(see Franses, 2014, and the many studies cited therein).
There are various reasons why such econometric model‐
based forecasts are adjusted. The observation at the fore-
cast origin may be an outlier, or an explanatory variable
may suffer from measurement error. It can be believed that
parameters will change in the future, or one may know
that there will be a structural shift in the forecast sample.

There are various methods of expert adjustment of
forecasts. One may simply add or subtract a number from
- - - - - - - - - - - - - - - - - - - - - - - - - -
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a given quote, or one may change an estimated parameter
to another value; one may multiply the quote by some
number, change the observation of an explanatory vari-
able to another value, or replace the observation at the
forecast origin with another observation.

In this paper I put forward yet another reason to
adjust a model‐based forecast. The model‐based forecast
is believed to be based on an incorrectly specified model,
while it is assumed known what the correct specification
should be, but where the data do not allow that poten-
tially correct model to be analyzed. In fact, here the idea
is to generate a forecast from a linear time series model,
and to adjust this forecast based on the assumption that
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a specific nonlinear time series model would be a more
appropriate specification. There are many nonlinear time
series models around (see De Gooijer, 2017, for a recent
extensive survey) but, typically, proper parameter estima-
tion for these models requires quite a number of observa-
tions, potentially with a high frequency. Also, for some
nonlinear time series models (like the one to be discussed
below), asymptotic theory is missing and there can be
problems with the likelihood function.

The present paper specifically addresses one‐step‐ahead
forecasts for annually or monthly observed inflation rates
for low‐income countries. For many countries in Africa,
typically, data are not collected at a higher frequency than
yearly, and the available samples typically cover five or six
decades at the very maximum. Inflation rates in low‐
income countries once in a while can show periods of
hyperinflation, whereas at other times inflation rates can
be moderate. Inflation rate data thus seem a good candi-
date for nonlinear time series models, due to the potential
presence of temporary shifts in the data. One may view
such patterns as reflecting recurring structural shifts (see,
e.g., Arize, Malindretos, & Nam, 2005; Castle, Doornik,
Hendry, & Nymoen, 2014). Alternatively, one may see
such longer periods with higher or lower inflation as a
reflection of long memory, perhaps to be modeled by a
fractionally integrated time series model (see, e.g., Bos,
Franses, & Ooms, 2002). Here, I will take the angle of a
nonlinear time series model.

In this paper I will focus on a specific nonlinear time
series model, which is the so‐called first‐order diagonal
bilinear time series model (introduced in Granger &
Andersen, 1978). An approximate linear time series
model turns out to be an autoregressive moving average
model of order (1, 1), in short an ARMA(1, 1). Inference
for this diagonal bilinear model is notoriously difficult,
and also for many other bilinear models the asymptotic
properties of the parameter estimators are unknown.
For point‐forecasting purposes, the latter properties may
be viewed as less relevant, as long as one gets the proper
estimates of the parameters.

The outline of this paper is as follows. In Section 2 the
focus is on the ARMA(1, 1) model and how it relates to a
first‐order diagonal bilinear time series model. First, the
linear model can be viewed as a proper linear approxima-
tion of this bilinear model. Second, given the expressions
for the expected values of the levels and the squared
levels of the data, the parameters in the bilinear model
could be identified and a method‐of‐moments estimator
could be used, although it will be shown that then the
data should have rather peculiar properties. In Section 3
I illustrate the potential merits of such model‐based fore-
cast adjustment for data on annual inflation for 41 coun-
tries on the African continent and for 11 sector‐specific
monthly inflation series for Suriname (a country that
recently experienced a period of very high inflation).
For all series the ARMA(1, 1) model is fitted. Looking at
the quality of the one‐step‐ahead forecasts, it can be
learned that for eight of the 41 countries the adjusted
forecasts lead to improvement (sometimes more than
30%), although the sign test indicates statistically signifi-
cant improvement for only one country. For the remain-
ing 33 countries, the adjusted forecasts are less accurate.
For the 11 sector‐specific inflation rates, there is moder-
ate forecast improvement for three series, but none is sta-
tistically significant. Section 4 concludes with further
ideas on the proposed indirect method to create forecasts.
2 | THE MAIN IDEA

In this section I outline the main idea of model‐based
forecast adjustment. First, I discuss a linear model and a
specific nonlinear model. Next, the expression for the
adjusted forecast will be presented.
2.1 | Linear and bilinear models

Consider a time series yt and suppose that a reasonable
model for this time series is an ARMA(1, 1) model: that is,

yt ¼ τ þ αyt−1 þ ut þ θut−1;

with |α| < 1 and |θ| < 1.The first‐order autocorrelation of
the ARMA(1, 1) model is

ρ1 ¼
1þ αθð Þ αþ θð Þ
1þ 2αθþ θ2

(see Franses, van Dijk, & Opschoor, 2014, pp. 52–53).
The next autocorrelations obey the scheme

ρk ¼ αρk−1;

for k = 2, 3, … (see Franses et al., 2014, p. 53). Simple
algebra gives

ρ1 − α ¼ θ 1 − α2ð Þ
1þ 2αθþ θ2

:

This shows for α > 0 that ρ1 > α when θ > 0 and that
ρ1 < α when θ < 0. Hence, with a positive value of θ,
there is more persistence in the process.

The one‐step‐ahead forecast from origin T for an
ARMA(1, 1) model is based on

yTþ1∣T ¼ τ þ αyT þ θuT ; (1)

where in practice, of course, the parameters are replaced



1Note that a useful by‐product of the exercise in this paper is that a sim-
ple diagnostic method can be implemented which can be used to see if it
would be worthwhile to try to estimate the parameters in a bilinear
model in the first place. This diagnostic method is based on the differ-
ence between the expected values of the levels and the squares.
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by estimated values. The forecast error is
uT + 1 = yT + 1 − yT + 1 ∣ T. Thus too low a forecast means
a positive forecast error, and when θ < 0 there is a ten-
dency to revert to the mean. In the case of inflation, this
is perhaps an unwanted effect as typically inflation can
peak for a few periods in a row. That is, high initial infla-
tion levels can spur a period with again high inflation.
One may therefore want to look at alternative forecasts.

To make a link with a bilinear model, one may now
want to replace θ with a function of yT to mitigate any
mean‐reverting effect; that is, one may want to replace
the ARMA(1, 1) forecast by

yTþ1∣T ¼ τ þ αyT þ βyTuT ; (2)

that is, θ in Equation 1 is replaced by βyT in Equation 2.
A closer look at this forecast function reveals that it cor-
responds to a so‐called first‐order diagonal bilinear time
series model; that is,

yt ¼ αyt−1 þ βyt−1εt−1 þ εt; (3)

where the notation for α is kept the same, for reasons to
become clear below. There is no need to include an inter-
cept, as we will also see below. Naturally, the ut in the
ARMA(1, 1) model is not the same as the εt in Equation 3.
This first‐order diagonal bilinear model was introduced in
Granger and Andersen (1978, p. 56 et seq.).

This model has acquired quite some attention in the lit-
erature. Basrak, David, and Mikosch (1999) examined the
sample autocorrelation function of Equation 3. Bibi and
Oyet (2004) extended the model to allow for time‐varying
coefficients. Brunner and Hess (1995) discussed the poten-
tial problems with the likelihood function. Charemza,
Lifshits, and Makarova (2005) studied Equation 3 in the
case of α = 1. Guegan and Pham (1989) discussed estima-
tion of the parameters using the least squares method. A
method‐of‐moments estimator for this diagonal model
was considered by Kim, Billard, and Basawa (1990). Pham
and Tran (1981) discussed various other properties of this
first‐order bilinear time series model. Sesay and Subba
Rao (1988) looked into estimation methods using higher
order moments, and Subba Rao (1981) provided a general
theory of bilinear models. Among the few studies where
bilinear models in general are considered for forecasting
are Poskitt and Tremayne (1986) and Weiss (1986), where
it was found for a few cases that bilinear models could
slightly improve on linear models. Finally, Turkman and
Turkman (1997) derived the properties of the extremal
observations corresponding to bilinear time series models.

That a bilinear time series model can be associated
with extremal observations can also be seen from the fol-
lowing. For the bilinear model in Equation 3, Granger
and Andersen (1978, p. 56) derived that
μ ¼ E ytð Þ ¼ βσ2ε
1 − α

;

ω ¼ E y2t
� � ¼ σ2ε 1þ 2β2σ2ε þ 4αβμ

� �
1 − α2 − β2σ2ε

:

They also derived that the autocorrelation function of
the first‐order diagonal bilinear time series model in
Equation 3 was the same as that of an ARMA(1, 1) model
such as

yt ¼ τ þ αyt−1 þ ut þ θut−1;

with exactly the same α (see Granger & Andersen, 1978,
p. 56).

One could now think that with an expression for α
and the expressions for the first and second moments,
one could design separate estimators for β and σ2ε . How-
ever, in the Appendix it is shown that this method‐of‐
moments‐type method is quite unlikely to be successful
for empirical data. In short, the reason is that ω ¼ E y2t

� �
should be more than (about) eight times as large as
μ2 = (E(yt))

2, or ω should be very small relative to μ.
For the inflation data in Africa, to be analyzed later, this
occurs only for Chad and the Democratic Republic of
Congo. For the data on Suriname this does not happen
at all.1 This shows that, as such, the first‐order diagonal
bilinear time series model may not be successfully ana-
lyzed in practice, and this may also explain the relatively
small number of empirical applications of this model. But
perhaps indirectly achieved forecasts based on a linear
model may be useful.
2.2 | Model‐based forecast adjustment

Conveniently, to create the model‐adjusted forecast

yTþ1∣T ¼ τ þ αyT þ βyTuT ;

there appears to be no need to estimate β and σ2ε sepa-
rately. This can be seen as follows. When the first‐order
diagonal bilinear time series model is the data‐generating
process, and we fit an ARMA(1, 1) model to these data,
then the estimator for σ2u for the ARMA model is not an
estimator for σ2ε . Hence the model‐adjusted forecast
should correct for the difference between the two, and
one should properly scale the added term, like



TABLE 1 Estimation results for annual inflation in Africa

Country α μ βσ2ε
βσ2

ε
σ2u

Algeria 0.620 8.957 3.404 0.151

Angola 0.123 339.36 297.62 9.12E − 04

Benin 0.924 7.343 0.558 0.016

Botswana 0.839 9.754 1.570 0.402

Burkina Faso 0.647 4.577 1.616 0.033

Burundi −0.293 9.892 12.790 0.227

Cape Verde 0.816 4.504 0.829 0.078

Central African Republic −0.615 4.132 6.673 0.170

Chad −0.092 4.789 5.230 0.058

76 FRANSES
yTþ1∣T ¼ τ þ αyT þ βyT
σ2ε
σ2u

� �
uT : (4)

Given an estimator for the variance σ2u for the ARMA
model, and given the observable value yT, we thus need to
know βσ2ε . This last term can simply be found from the
first moment (see earlier): that is,

μ 1 − αð Þ ¼ βσ2ε :

All in all, we now have quite a simple way of finding a
forecast that associates with a first‐order diagonal bilinear
time series model, without having to estimate its model
parameters.
Republic of Congo 0.021 10.614 10.391 0.048

DR of Congo 0.644 642.67 228.79 2.14E − 05

Egypt 0.862 9.264 1.278 0.068

Equatorial Guinea 0.126 3.596 3.143 0.119

Ethiopia −0.259 8.614 10.845 0.108

Gabon 0.167 4.995 4.161 0.084

Gambia 0.666 8.041 2.686 0.046

Guinea Bissau 0.977 31.213 0.718 0.005
3 | EMPIRICAL APPLICATION

This section deals with a comparison of the forecasts from
an ARMA(1, 1) model and from a model‐based forecast
adjustment, where it is presumed that the first‐order diag-
onal model in Equation 3 could have generated the data.
Fitting the model to the data is unlikely to work, and
therefore I opted for the forecast adjustment approach.
Ivory Coast −0.081 5.586 6.038 0.196

Kenya 0.373 10.271 6.440 0.138

Libya 0.731 5.303 1.427 0.038

Madagascar 0.367 11.725 7.422 0.119

Malawi 0.732 26.179 7.016 0.021

Mali −0.212 3.180 3.854 0.271

Mauritius 0.450 7.407 4.074 0.111

Morocco 0.893 4.454 0.477 0.058

Mozambique 0.811 18.741 3.542 0.042

Niger 0.233 4.502 3.498 0.061

Nigeria 0.337 15.948 10.574 0.075

Rwanda 0.173 7.734 6.396 0.205

Senegal 0.533 5.104 2.384 0.050

Seychelles 0.075 6.959 6.437 0.185

Sierra Leone 0.892 23.770 2.567 0.004

Somalia 0.689 23.171 7.206 0.008

South Africa 0.827 8.195 1.418 0.361

Sudan 0.886 28.486 3.247 0.008

Swaziland 0.843 9.554 1.500 0.077
3.1 | Forty‐one countries in Africa

The first set of data concerns annual inflation rates for 41
African countries, ranging from 1960 to 2015. The data
source is Franses and Janssens (2018). Table 1 presents
the estimates of α, μ, βσ2

ε , and βσ2ε
� �

=σ2u, where this latter
term will be used in Equation 4 to create the adjusted
forecast. The estimates of that term have a maximum
value of 0.402 (Botswana) and a minimum of
2.14E − 05 (Democratic Republic of Congo).

Table 2 presents the results on measures of forecast
accuracy, where here it is chosen to use the median abso-
lute forecast error (MedAFE).2 The MedAFE is defined as
the median value of the absolute values of the prediction
errors, where these errors are defined as yTþ1 − byTþ1∣T .

The forecasts are all one‐step‐ahead forecasts, within the
sample, where the estimates are obtained for the full sam-
ple.3 Much more refined forecast evaluation methods can
be considered, but it is believed that the overall qualita-
tive outcome will be about the same. In italics are those
cases where the model‐based adjusted forecasts give a
Tanzania 0.860 16.145 2.260 0.067

Togo 0.387 5.380 3.298 0.067

Tunisia 0.863 5.521 0.756 0.041

Uganda 0.712 30.964 8.918 0.011

Zambia 0.598 36.616 14.720 0.023

2As the data can have outliers, the median seems an obvious choice.
And, as inflation is measured as a percentage, the absolute errors seem
the natural errors to evaluate.
3The sample sizes are not large, and cutting the data in estimation and
holdout samples seriously reduces the quality of the estimated parame-
ters. Moreover, the prediction equation requires the estimated residuals
from the ARMA model.



TABLE 2 Median absolute forecast error (MedAFE), based on

in‐sample one‐step‐ahead forecasts, Africa

Country ARMA Model‐based adjusted

Algeria 2.728 2.852

Angola 126.00 143.99

Benin 2.746 2.061

Botswana 1.125 3.144

Burkina Faso 3.460 3.569

Burundi 4.126 6.689

Cape Verde 1.711 2.330

Central African Republic 3.781 5.824

Chad 5.013 6.710

Republic of Congo 6.408 7.655

DR of Congo 498.37 235.61*

Egypt 2.502 2.843

Equatorial Guinea 1.786 1.900

Ethiopia 4.747 8.738

Gabon 2.260 2.713

Gambia 1.829 2.261

Guinea Bissau 2.073 2.389

Ivory Coast 2.297 2.652

Kenya 4.096 5.172

Libya 3.072 2.928

Madagascar 3.990 4.548

Malawi 7.011 5.315

Mali 0.841 1.207

Mauritius 2.398 2.713

Morocco 1.179 1.814

Mozambique 2.255 3.554

Niger 4.560 5.196

Nigeria 5.020 6.807

Rwanda 3.626 4.240

Senegal 2.947 2.361

Seychelles 2.677 3.042

Sierra Leone 46.169 31.360

Somalia 18.197 6.804

South Africa 1.163 2.725

Sudan 44.366 50.824

Swaziland 2.557 3.539

Tanzania 3.043 3.476

Togo 2.901 3.423

Tunisia 1.312 1.033

(Continues)

TABLE 2 (Continued)

Country ARMA Model‐based adjusted

Uganda 30.390 42.712

Zambia 41.664 48.906

Note. Cases with forecast improvement are in italics. Only for the DR of
Congo is the improvement statistically significant at the 5% level (*).
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lower MAFE than those from the linear ARMA model.
Clearly, there are eight cases with improvement, where,
even though the improvement is not statistically signifi-
cant, the differences can be substantial (look at Sierra
Leone and Somalia, for example). On the other hand,
for some of the 33 other cases, the adjusted forecasts
can be less good. Upon using a sign test, only for the
Democratic Republic of Congo is there a statistically sig-
nificant result.
3.2 | Eleven categories in Suriname

Figure 1 presents the monthly inflation rates for the
South American country Suriname. The sector‐specific
inflation rates concern the percentage differences
between prices in a current month and that same month
the year before. The prices data range from January 2013
to December 2017 and are obtained from Statistics Suri-
name (http://www.statistics‐suriname.org/), and hence
the inflation rate data start in January 2014. Clearly, there
were months with exceptionally high inflation levels.

Table 3 presents similar estimation results for
Suriname as given in Table 1 for Africa. The estimates
for βσ2ε

� �
=σ2u range from 0.007967 (category Housing,
FIGURE 1 Monthly inflation in Suriname, January 2014 to

December 2017 [Colour figure can be viewed at

wileyonlinelibrary.com]

http://www.statistics-suriname.org/
http://wileyonlinelibrary.com


TABLE 3 Estimation results for monthly inflation in Suriname

Category α μ βσ2ε
βσ2

ε
σ2u

Food, Non‐alcohol 0.939 27.82 1.697 0.077

Alcohol, Tobacco 0.942 38.15 2.213 0.022

Clothing, Footwear 0.947 29.75 1.577 0.030

Housing, Utilities 0.882 49.95 5.894 0.008

Household Furnishing 0.956 24.07 1.059 0.069

Health Care 0.942 23.03 1.336 0.018

Transportation 0.918 13.53 1.109 0.035

Communication 0.924 28.52 2.168 0.027

Recreation, Education 0.952 30.03 1.441 0.034

Food away from home 0.943 19.57 1.115 0.132

Other 0.943 30.90 1.761 0.033

TABLE 4 Median absolute forecast error (MedAFE), based on

in‐sample one‐step‐ahead forecasts, Suriname

Category ARMA Model‐based adjusted

Food, Non‐alcohol 2.179 2.254

Alcohol, Tobacco 3.866 4.879

Clothing, Footwear 2.147 1.749

Housing, Utilities 5.951 5.126

Household Furnishing 1.715 2.206

Health Care 1.567 2.316

Transportation 2.866 4.153

Communication 2.178 6.873

Recreation, Education 2.639 2.469

Food away from home 1.504 2.853

Other 1.767 2.599

Note. Cases with forecast improvement are in italics.
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Utilities) to 0.132 (category Food away from home).
Table 4 presents the MedAFE results, for the one‐step‐ahead
in‐sample forecasts. We see that for three categories
there can be some slight forecast improvement,
although a sign test indicates no statistically significant
differences.
4 | CONCLUSION

The application of the new and simple “model‐based fore-
cast adjustment” method in this paper to one particular
type of bilinear time series model did not lead to much
forecast success overall, although there were a few
exceptions. Indeed, the simple ARMA model seems to
outperform this particular bilinear model.

This study can best be seen as an attempt to readdress
attention to a model that, because of estimation problems
and other issues, is rarely considered in practice. This
may also hold for various other models that have features
which make their empirical application cumbersome. For
that matter, in this paper I therefore proposed an alterna-
tive approach, which does rely on an assumption of a
nonlinear data‐generating process, but which does not
require its parameter estimation and asymptotic infer-
ence. This approach simply estimates a linear time series
model, and then modifies the forecasts using properties of
the data that associate with the nonlinear data‐generating
process. For 11 of the 41 + 11 = 52 cases in total, it was
found that some forecast improvement is possible. It is
hoped, therefore, that this new and indirect approach
can bring life to nonlinear model classes that have inter-
esting properties, but which are difficult to analyze in
practice.

Further work on this approach could consider various
other nonlinear models. For example, consider the bilin-
ear model

yt ¼ βyt−2εt−1 þ εt;

which is the focus of Ling, Peng, and Zhu (2015). The
expected value of yt is zero, and also the autocorrelations
are zero. This means that the linear model would simply
be yt = ut, where σ2

u ¼ σ2y ≠ σ2ε . An adjusted forecast for

T + 1 would then be

yTþ1∣T ¼ βyT−1uT
σ2ε
σ2u
:

Grahn (1995) shows that

E ytyt−1ð Þ ¼ βσ2ε yt−2;

and hence also for this model we can obtain an estimate
of βσ2ε . This makes it possible to create the rather simple
model‐based‐adjusted forecast equal to

yTþ1∣T ¼ βyT−1uT
σ2ε
σ2y

¼ βσ2ε
yT−1yT
σ2y

This bilinear model has different features than the
diagonal model considered for the inflation series. For
example, the autocorrelations are zero, which is not the
case for the inflation data. To see if this model can perhaps
be useful to financial returns data, where typically the best
forecast is that the return is 0, and where autocorrelations
are zero, I consider the daily returns (yt) on the Dow Jones
index, January 1, 1990 to and including December 31,
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2012. Based on the data and the auxiliary regression to
retrieve βσ2ε , the forecasting scheme becomes

yTþ1∣T ¼ 0:088219
yT−1yT

1:096087ð Þ2:

This model predicts the sign of the returns correctly in
44.7% of cases. The zero mean model never predicts a
sign; it always predicts 0. A prediction equal to the aver-
age returns would mean always a positive forecast, and
this can hardly be believed to be a sensible forecast. This
illustration suggests that a bilinear model may be useful
for asset returns. Further research is needed to see
whether more such models exist, for which our simple
methodology can be useful.
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difficult to handle in practice, consider the case where
α = 0 (to save notation); that is, consider
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yt ¼ βyt−1εt−1 þ εt:

The first and second moments are

μ ¼ E ytð Þ ¼ βσ2ε

and

ω ¼ E y2t
� � ¼ σ2ε 1þ 2β2σ2ε

� �
1 − β2σ2ε

(see Granger & Andersen, 1978, p. 56). This last equa-
tion can be written as

1 − β2σ2ε
� �

ω ¼ σ2ε 1þ 2β2σ2ε
� �

:

Replacing σ2ε by μ/β (based on the first moment) and
rearranging gives a second‐order equation for β:

−μωβ2 þ ω − 2μ2
� �

β − μ ¼ 0:
To solve for β, the determinant is

Dβ ¼ ω2 − 8μ2ωþ 4μ4:

To see when Dβ is positive, solve Dβ = 0 for ω, to get
the determinant

Dω ¼ 48μ4:

The solutions for ω are 4þ 2
ffiffiffi
3

p� �
μ2 and 4 − 2

ffiffiffi
3

p� �
μ2.

Therefore, to find estimates based on a method‐of‐
moments estimator for σ2ε and β, it should hold that

ω > 4þ 2
ffiffiffi
3

p� �
μ2

or that

ω < 4 − 2
ffiffiffi
3

p� �
μ2:

Both conditions are very rare for empirical data. For
the African countries the first condition occurs twice, and
for the Suriname data neither one of the conditions occurs.


