
Expert Systems With Applications 174 (2021) 114759

Available online 26 February 2021
0957-4174/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

APFA: Automated product feature alignment for duplicate detection

Nick Valstar 1, Flavius Frasincar *,2, Gianni Brauwers 3

Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands

A R T I C L E I N F O

Keywords:
Duplicate detection
Automated pre-processing
Product comparison
E-commerce

A B S T R A C T

To keep up with the growing interest of using Web shops for product comparison, we have developed a method
that targets the problem of product duplicate detection. If duplicates can be discovered correctly and quickly,
customers can compare products in an efficient manner. We build upon the state-of-the-art Multi-component
Similarity Method (MSM) for product duplicate detection by developing an automated pre-processing phase that
occurs before the similarities between products are calculated. Specifically, in this prior phase the features of
products are aligned between Web shops, using metrics such as the data type, coverage, and diversity of each
key, as well as the distribution and used measurement units of their corresponding values. With this information,
the values of these keys can be more meaningfully and efficiently employed in the process of comparing prod-
ucts. Applying our method to a real-world dataset of 1629 TV’s across 4 Web shops, we find that we increase the
speed of the product similarity phase by roughly a factor 3 due to fewer meaningless comparisons, an improved
brand analyzer, and a renewed title analyzer. Moreover, in terms of quality of duplicate detection, we signifi-
cantly outperform MSM with an F1-measure of 0.746 versus 0.525.

1. Introduction

Increasingly many people do their shopping via the Internet in the
safe environment of their home (Thomas, Davie, & Weidenhamer,
2014). The most important reason might be that the Internet allows
people to visit several Web shops in a few minutes when deciding what
product to buy. This is much less time consuming than in real-life where
we have to consider travel time. Nevertheless, it is not an easy task to
compare the large amounts of products from the many various Web
shops. For example, due to differing ways of displaying product infor-
mation, some products may look different, while they are in fact du-
plicates. Conversely, other products might appear the same, yet turn out
to be different products. In this work we focus on solving this very
problem, which is known as product duplicate detection.

Most of the time, with some effort, the human eye will spot that two
products are the same when looking at both the product titles and
product features. However, this takes a considerable amount of time (de
Bakker, Frasincar, & Vandic, 2013), and it may not always be possible.
Different Web shops may omit information, or may indeed have the
same information, but present it under different names. In this case, one

of the goals of Web shops, namely providing a fast and convenient way
of shopping, is not achieved. For these reasons, the focus of this paper is
to improve duplicate detection methods.

The context of this work is the television market. Note that in this
context we are concerned with the sales of televisions, not the sub-
scriptions for channels. Specifically, we consider only the online market
for television selling. A dataset is used that contains over 1000 records of
TV’s obtained from four different Web shops (Amazon.com, Inc, n.d.;
Best Buy Co., Inc., n.d.; Computer Nerds International, Inc., n.d.; New-
egg Inc., n.d.) that each exhibit different product descriptions. The aim is
to find the duplicate TV’s between the considered Web shops. A product
duplicate detection method can be used for Web shop aggregators.

1.1. Methods

Before discussing the related work in the next section, the general
framework that the majority of duplicate detection methods follow is
introduced. Note that not all methods use all the phases contained in this
framework, but all obey the order defined by the framework. This ex-
plains to the reader the basics which are needed to understand the

* Corresponding author.
E-mail addresses: nickvalstar@gmail.com (N. Valstar), frasincar@ese.eur.nl (F. Frasincar), gianni.brauwers@gmail.com (G. Brauwers).

1 ORCID: 0000-0002-9778-028X
2 ORCID: 0000-0002-8031-758X
3 ORCID: 0000-0001-6550-6588

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114759
Received 20 July 2020; Received in revised form 7 January 2021; Accepted 17 February 2021

mailto:nickvalstar@gmail.com
mailto:frasincar@ese.eur.nl
mailto:gianni.brauwers@gmail.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114759
https://doi.org/10.1016/j.eswa.2021.114759
https://doi.org/10.1016/j.eswa.2021.114759
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114759&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 174 (2021) 114759

2

research question that is posed at the end of this section. Furthermore,
one can use this framework as a reference throughout the rest of this
paper.

Duplicate detection methods typically consist of three phases which
are referred to as phases 1 through 3. However, in some papers a fourth
phase can be distinguished which is performed before the other phases.
Therefore, this phase is named phase 0. Phase 0 entails a prior inspection
and processing of the data to extract key characteristics and information
about the products and their features. A ‘feature’ is the general term
used for an attribute of a product, such as ‘Brand’. Such a feature can be
represented by different ‘keys’ across Web shops. In one Web shop the
key ‘Brand Name’ may be used, while in another it is simply called
‘brand’. Thus, a process called feature alignment can be implemented in
phase 0 where the objective is to find the keys between Web shops that
represent the same feature. The resulting information from phase 0 (e.g.,
which keys align across Web shops) is used to speed up and improve the
rest of the process. Each product description extracted from the various
Web shops contains a set of keys and their corresponding values that
describe the product features. As one might understand, comparing all
products from each Web shop with all products of all other Web shops
quickly becomes infeasible due to the substantial amount of products.
Phase 1 is therefore used to reduce the amount of comparisons. This is
generally achieved through a process called ‘blocking’. Based on some
conditions, products are placed in groups called ‘blocks’. Products that
can never be duplicates (e.g., ones that have different brands or belong
to the same shop) will not fall into the same block. Only products within
each block are compared, significantly reducing the amount of com-
parisons that are made. Blocking is a fast method, but is not flawless with
respect to accuracy.

The next phase, phase 2, consists of comparing all possible product-
pairs that are in the same block, and calculating a similarity score for
each comparison. Web shops use different keys that can represent the
same feature (e.g., ‘Brand’, ‘Company’) with corresponding values (e.g.,
‘Motorola’, ‘HTC’). The challenge is to match these key-value pairs
(KVP). Since it is unknown which keys correspond across Web shops, it is
impossible to compare the corresponding values, thus one cannot
compute the similarity score for a considered pair. In phase 2, solutions
are proposed to address these problems. Lastly, once all relevant
product-pairs are scored, phase 3 entails the actual decisions: which
products are duplicates. This is often done by means of clustering
techniques.

1.2. Research question

Developing an automated phase 0 is the main contribution of this
research. This pre-processing phase entails extracting additional infor-
mation for the products and keys. The additional information can be
used to produce new metrics based on the values of the keys, which are
used to significantly improve the feature alignment step. Furthermore,
the additional information can be used during phase 2 to both improve
the model’s ability to accurately match products and reduce the
computation time of the algorithm. With this, we aim to improve upon
the state-of-the-art MSM algorithm for product duplicate detection.
MSM (van Bezu et al., 2015) performs significantly better than its pre-
decessors (Vandic, Van Dam, & Frasincar, 2012; de Bakker et al., 2013).
This leads us to address the following research question:

• Can the MSM algorithm for product duplicate detection be improved
in terms of F1-measure and/or speed through the use of an improved
and automated phase 0?

In order to answer this question, the following sub-questions are
answered as well:

1. How can product feature alignment be automated and what is its
value?

2. Can the calculation of the product similarity in phase 2 be improved
by incorporating information from phase 0?

3. Will an automatic product feature alignment step improve the speed
of the process?

The structure of this paper is as follows. In Section 2, a theoretical
background is provided on duplicate detection of products from Web
shops and we give an overview of the existing techniques. In Section 3, a
detailed description is provided of the proposed techniques and the
employed framework that are used to answer the research questions.
Next, the performance of these methods are evaluated in Section 4.
Lastly, conclusions are drawn based on these results, and directions are
given for future work in Section 5.

2. Related work

Entity resolution and duplicate detection are relevant in fields such
as probabilistic data (Ayat, Akbarinia, Afsarmanesh, & Valduriez, 2014),
microarray analysis on gene data (Breitling, Armengaud, Amtmann, &
Herzyk, 2004), and entity disambiguation in various domains (Zhu &
Iglesias, 2018; Fernández, Fisteus, Sánchez, & López, 2012). Although
many methods have already been proposed for the purpose of duplicate
detection, the task remains a challenge (Hsueh et al., 2014; Monge,
2000). Furthermore, due to differences in used datasets and hardware, it
is difficult to determine the optimal methods. Toolkits such as DuDe
(Draisbach & Naumann, 2010) have been developed to ease the imple-
mentation and comparison of the various duplicate detection methods.
The foundations of the theory of entity resolution are presented by
Talburt (2010). Some work focuses on improving the effectiveness of
duplicate detection, while others consider the scalability of the proposed
solution. We aim to develop a framework that is both effective and
scalable by reusing, extending, as well as proposing new solutions to the
framework components. In this section, an overview is provided of the
existing methods while adhering to the four-phase framework as
described in the introduction for improved readability.

2.1. Phase 0: Data pre-processing

In Elmagarmid, Ipeirotis, and Verykios (2007), where the existing
literature on duplicate detection in general is reviewed, there is a
separate section on data preparation. However, this mostly deals with
methods used for ‘cleaning’ the data such as standardization (e.g.,
changing “5 Feb ’98” to a more uniform format “02/05/1998”) and
parsing (e.g., differentiating between strings, numbers, and Booleans).
This makes the datasets easier to compare and therefore more useful. In
addition, the concept of data heterogeneity, the occurence of systemic
differences between databases, is discussed. Two different types of
heterogeneity are considered, namely structural and lexical. Both of
these types are encountered in our data. An example of structural het-
erogeneity is that two Web shops may represent the same feature with
different keys (e.g., ‘Brand’ versus ‘Company’). Lexical heterogeneity
can occur when, for example, different Web shops use different repre-
sentations for the exact same values (e.g., ‘7cd/m2’, ‘7.0nit’, ‘7,0cd m2’).
Moreover, even within the same Web shop values are not always
depicted consistently. In order to sensibly compare products between
two Web shops, both these heterogeneity types need to be dealt with.
Another example of research in this field that contains a pre-processing
phase is provided by Verykios, Elmagarmid, and Houstis (2000).
Although, this work is also only concerned with ‘cleaning’ the data.
Their research, just like much other research (Bilenko & Mooney, 2003;
Jalbert, 2008) on duplicate detection, deals only with the second type of
heterogeneity as was just described, so feature alignment is not
necessary.

Many previously proposed models often do not include a phase
0 since most of the functions of phase 0 can be performed while pro-
cessing the other phases. For example, van Bezu et al. (2015) and de

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

3

Bakker et al. (2013) decide to do key matching ‘on the fly’ during
product pairwise comparisons. When two products are compared, the
lexical similarity between the names of two keys is calculated using q-
grams (Sutinen & Tarhio, 1995). When this similarity passes a threshold,
the keys are marked as similar and their corresponding values are
compared and scored. This is done for all combinations of key-pairs
between the two considered products. We discuss in SubSection 2.3
the details of this step. In the linguistic literature, this approach is
intuitively called name matching, since the keys are matched based on
the similarity of the key names. Fig. 1 shows how this can fail. The first
three keys are not matched, because the q-gram distance between the
names of the keys is too low, although it is quite clear that the keys
should match. In contrast, the last three keys are matched because the
names of the keys agree sufficiently, while they should not be matched.
This example is worked out later on. In an attempt to prevent such
mistakes, in this work the focus is moved from name matching to
description matching, where the descriptions are used to decide what to
match. In our context, this means analyzing the values within keys in
order to align features.

The idea behind incorporating a phase 0 is that the feature alignment
is done beforehand and not every time for each product comparison. The
first advantage is that, especially for large datasets, this saves compu-
tational time. Instead of performing key alignment for each key-pair of
each product-pair during phase 2, all key-pair matching is done be-
forehand during phase 0 and stored for future use. During phase 2, when
comparing products, the algorithm only needs to check the previously
stored results to decide which keys to compare. The second advantage is
that it raises the opportunity to perform description matching. After
iterating over all products in a Web shop, all values belonging to a key
can be stored. After that, for a certain key, some metrics on these values
(e.g., measurement units or data types) can be calculated that are used
later in feature alignment. We discuss these in the rest of this section.

Nederstigt, Aanen, Vandic, and Frasincar (2014) use the values
associated with the keys to discover the data type of said keys. To
illustrate, the key named ‘inputs’ can in one Web shop contain string
values (e.g., the kind of input: ‘usb3.0’, ‘hdmi’), while in another Web
shop the key ‘inputs’ can contain numeric values (e.g., the amount of
inputs: ‘0’, ‘4’). Even though these keys represent the ‘inputs’ feature,
comparing them will not make sense. Yet, if one would only use name
matching, the keys would certainly be matched regardless of the
differing values. One can create an improved algorithm by allowing it to
incorporate the additional information of the data types in its matching
decisions. For the fourth example key in Fig. 1, this improved algorithm
would be able to detect that the data type of the left key is a string, while
on the right it is a double. Consequently, this false match would be
prevented. Using such information can therefore make key alignment
more trustworthy. Another contribution by Nederstigt et al. (2014) is the
idea of using measurement units to improve the matching process. For
example, even when the data types of the key are both numeric, it is still
possible that the values represent something completely different when

their units do not correspond (e.g., ‘35cm’ versus ‘35lbs.’). The incor-
poration of measurement units would perhaps have caused the second
example key in Fig. 1 to be matched because of the matching unit types.
Moreover, the last two keys would not be matched due to differing
measurement units. Both the data types and measurement units of the
keys are used by van Rooij et al. (2016) in a pre-processing phase to
improve upon the MSM model. In this work, not only are both the data
types and the measurement units considered as metrics, but we also use
various additional metrics based on the values of the keys to obtain an
even more dependable alignment method. We introduce the data dis-
tribution, coverage, diversity, and standard deviation metrics, which are
explained in depth in Section 3.

2.2. Phase 1: blocking

The goal of blocking is reducing the number of product-pairs that are
to be compared. Papadakis, Ioannou, Palpanas, Niederee, and Nejdl
(2013) have laid the foundations of this method. The idea is to assign
products to blocks based on certain conditions. To illustrate blocking,
consider an easy example where we assign products to blocks using the
condition that their brand must correspond, so that in each block every
product has the same brand. Consequently, products that do not have
any blocks in common are not to be compared. The major advantage is
that the more blocks you have, the smaller the amount of comparisons.

For example, 1 large block of 50 requires 1 ×

(
50
2

)

= 1225 product

comparisons, while 5 blocks of 10 would require only 5 ×

(
10
2

)

= 225

product comparisons. The risk, however, is that a potential duplicate
ends up in different blocks due to a mistake in the Web shop (mis-
spellings) or in the blocking selection (too strict or incorrect conditions).
The probability of this occurring can be reduced by creating blocks
based on more than one condition. The side effect is that candidate pairs
are likely to fall in multiple blocks and thus need to be compared more
than once. In turn, this issue can be dealt with by keeping track of
whether a pair has already been compared or not. In general, the sizes of
the blocks have no limit, while some specific practical applications do
require such a limit. For example, due to privacy or scalability issues. As
such, Fisher, Christen, Wang, and Rahm (2015) propose a clustering-
based framework that allows one to control the sizes of the blocks.

If the available data adheres to a certain schema, the blocking phase
can be performed in a relatively straightforward manner, since one can
always use the same key or set of keys for the conditions in the blocking
process. However, as has been mentioned before, Web shop data is
generally highly heterogeneous with no clearly defined schema. In such
cases, schema-agnostic methods can be implemented that simply extract
all available information from the products and use that information for
the blocking process (Papadakis, Alexiou, Papastefanatos, & Koutrika,
2015; Simonini, Papadakis, Palpanas, & Bergamaschi, 2019).

Different methods can be used to make the blocking phase more
scalable. For example, in (Kolb, Thor, & Rahm, 2012), a map-reduce
algorithm is proposed for implementing the sorted neighborhood
blocking method via multiple passes. Instead of scaling existing
methods, other works focus on introducing more scalable approaches.
For example, Vandic, Frasincar, Kaymak, and Riezebos (2020) propose a
scalable approach that improves the blocking phase using model words
extracted from the product titles and descriptions. Model words are
words that contain alphabetic characters as well as numeric characters,
such as ‘TV100’. Additionally, the proposed blocking method by Vandic
et al. (2020) is applicable when more than two Web shops are to be
compared, which is also the case in this paper.

After blocking is finished, all products that have at least one block in
common are compared with each other. From now on, pairs that are to
be compared are referred to as candidate pairs. So within a block of size

10 the number of candidate pairs is
(

10
2

)

= 45. Note that not all works

Fig. 1. Illustration of how matching based only on the name of the keys can
lead to incorrect key matching. Green dashed line: should be matched, but are
not matched. Red full line: are matched, but should not be matched.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

4

use blocking. In those cases we say, for uniformity purposes, that all
products are put into a single large block. Instead of blocking, a simple
condition based on the brands of products is used by van Bezu et al.
(2015). During the pairwise comparison phase only pairs with the same
brand are compared. Such a heuristic can be seen as a form of blocking
since it produces similar effects on the actual comparisons made.

2.3. Phase 2: pairwise product comparison

Phase 2 entails comparing all products that need to be compared
using a comparison algorithm. Firstly, the comparison algorithm takes
as input a set of candidate pairs. Then, the algorithm computes for each
candidate pair a similarity score ranging between 0 and 1. Perhaps the
clearest pairwise comparison method is the HSM method proposed by de
Bakker et al. (2013). HSM largely builds on TMWM developed by Vandic
et al. (2012) where model words play an important role. HSM was built
for only two Web shops, so pairs were immediately assigned as being
duplicates and not scored for similarity. Given two products, it first
checks whether the model words from the titles match. If they do, assign
them as duplicates. Otherwise, loop through the keys and check if it can
find keys that lexicographically match sufficiently. For matching keys,
compute the similarity of the corresponding values. For all other non-
matching keys, compute the similarity of all the model words of the
corresponding values taken all together. If the average of the similarity
scores is above a certain threshold, the products are considered
duplicates.

The authors of MSM (van Bezu et al., 2015) improved upon the HSM
model in several ways. First and foremost, they have extended the model
from two to multiple Web shops so that a product may be duplicated
across two or more shops. Consequently, product pairs are scored on
their similarity, rather than immediately assigning them to clusters. The
similarity score ranges between 0 and 1 with the following exception: if
two products are from the same shop they are not compared and have a
similarity of − ∞. Furthermore, in the case that two products have
differing brands, a similarity score of 0 is given. A final improvement is
that the very flexible q-grams measure is used for comparing keys and
for comparing values. For comparing the model words of the keys that
were not previously compared, the same technique as in HSM is used,
namely simply calculating the percentage of model words that those
keys have in common in their corresponding values.

van Dam et al. (2016) propose to use Locality-Sensitive Hashing
(LSH) (Indyk & Motwani, 1998) to significantly reduce the number of
product comparisons made during this phase. Based on model words
extracted from the product titles, binary vector representations are
produced. Vector representations are not uncommon for duplicate
detection and entity resolution. For example, in Yang, Hoang, Mikolov,
and Han (2019), unsupervised feature generation models are used to
produce vector embeddings of places for the purpose of place dedupli-
cation. For the LSH model, the product feature vectors are used as input
such that the algorithm can pre-select product-pairs as duplicates with a
high accuracy. Consequently, the number of necessary comparisons is
reduced significantly. Further extensions of this LSH method are pro-
posed by Hartveld et al. (2018). These extensions consist of data
cleaning and incorporating additional information from the key-value
pairs. Compared to the MSM algorithm, Hartveld et al. (2018) present
a 95% reduction in the number of computations with only a 6%
reduction in the F1-measure.

As stated earlier in SubSection 2.1, another way of making the
pairwise comparison method substantially more efficient is by storing
the matched keys from the pre-processing phase. The comparisons are
then also likely to make more sense, since we have identified corre-
sponding keys between Web shops. Using this knowledge about keys, we
plan to treat the comparison between two numerical values differently
than between two strings, instead of using q-grams for everything. As an
illustration, the q-gram similarity between 1000 and 1001 is the same as
between 5000 and 1000, while the differences between these values are

rather dissimilar. Also, q-grams cannot properly deal with rounding
(‘19.9’ vs. ‘20’ gives a q-gram similarity of 0, while it perhaps should be
much higher). Lastly, based on the similarity of the keys as described in
SubSection 2.1 we weigh some comparisons more than others. When we
are less certain that two keys are a match, we weigh their value com-
parison less. With these adjustments, we aim to improve upon the MSM
algorithm in terms of F1-measure.

2.4. Phase 3: clustering

Once all candidate pairs are scored, the final phase can be performed,
namely the actual assignment of duplicates, which is done via clustering.
Clustering is a process in which similar data records are classified into
groups (Jain, Murty, & Flynn, 1999). There is significant work on
clustering techniques with applications in many different fields of
research (Saxena et al., 2017). Clusters in the context of duplicate
detection are groups of duplicate data records. A clustering algorithm
that does not require a predefined amount of clusters must be used in the
case of duplicate detection, since we do not know how many duplicates
there are in total (Hassanzadeh, Chiang, Lee, & Miller, 2009). Elma-
garmid et al. (2007) and Hassanzadeh et al. (2009) provide an overview
of clustering techniques specifically for duplicate detection. However,
the main issue with previous solutions is that they often take a database
perspective that includes structured data. Since we work with semi-
structured Web data, the phases explained in the previous subsections
are necessary before a clustering algorithm can be used.

MSM (van Bezu et al., 2015) uses agglomerative hierarchical clus-
tering (Tan, Steinbach, & Kumar, 2006). All products start in their own
cluster of size one, after which clusters that are sufficiently similar are
merged based on a certain linkage strategy. MSM uses single linkage,
where the distance between two clusters is defined as the distance be-
tween the closest two points of the clusters. The distance between
products is measured as 1 minus the similarity score, which is also
known as the dissimilarity. The dissimilarity ranges between 0 and 1,
with the exception of ∞ as introduced earlier. It is not a proper math-
ematical distance function, since a distance of 0 does not necessarily
mean that the products are the same. Of course, the closer it is to 0, the
higher is the probability that the products are duplicates. The intuitive
downside of this method is that each time it only looks at one product of
a cluster (the one most similar) while the rest is ignored, even though
they might be very different. This can cause products with very low
similarity to end up together. An exception can be made to this regard.
Namely, when one of the distances between the points in two clusters is
set equal to ∞, complete linkage can be used. Complete linkage simply
calculates the largest distance between the clusters, rather than the
smallest. In that case, they will not be merged, which has solved the
issue. The downside of complete clustering is that one product (the
furthest) has all the influence in the merging process and the rest is
ignored, while these might be very similar to each other. A third method
is the so-called average linkage, which is defined as the average of all the
distances between all possible points between the clusters. When one of
the distances is set to ∞, the average distance is automatically set to ∞ as
well. This method creates a balance between the aforementioned
downsides of single- and complete linkage.

3. Methodology

The structure of the methodology is based on the order of the posed
research questions. First, in SubSection 3.1, a novel pre-processing al-
gorithm is presented that matches product features between Web shops.
Second, in SubSection 3.2, an algorithm is proposed that performs
pairwise comparison similar to MSM (van Bezu et al., 2015), while
incorporating information from the improved pre-processing step. Fig. 2
illustrates the various steps of APFA that are explained in this section.

After developing the proposed steps, we implement the two algo-
rithms into a framework so that it can be tested and optimized. By a

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

5

framework we mean the environment in which the algorithms are run
and the evaluation is performed. The framework that is used was pro-
posed by Vandic et al. (2020). The programming languages Java and
Scala are used in the framework, while Spark is employed for distributed
computing.

Due to space limitations, the pseudocode of all proposed algorithms
throughout this section can be found in the technical report, which can
be accessed online (Valstar & Frasincar, 2019). The software (including
the data) is made available in GitHub (Valstar & Frasincar, 2019).

3.1. Phase 0: pre-processing

In order to answer the first research subquestion, an automatic
feature alignment phase is developed. In the previous section, it was
explained how keys are often matched while they should not be
matched, and other keys are not matched while they should be. This is
caused by the fact that, in earlier works, merely the names of the keys
are used in order to detect key matches. In this section, we present
several other metrics based on the values of the keys that can be used for
key matching in addition to the key names.

In SubSection 3.1.1, it is explained how all values per key in one Web
shop are aggregated in order to extract valuable information. Next, in
SubSection 3.1.2, it is explained how the various metrics for the keys are
extracted. Using these metrics, in SubSection 3.1.3, it is demonstrated
how the keys between the different Web shops are matched. These
matched keys are then enriched with information, as shown in Sub-
Section 3.1.4. Finally, a brand-analyzer and title-analyzer are presented
in SubSection 3.1.5 that are designed to extract additional information
about each individual product independent of the key alignments. Both
the product information, as well as the key alignments, are then used
further on in Phase 2: Pairwise Product Comparison, presented in

SubSection 3.2.

3.1.1. Value aggregation per key
We have argued earlier that metrics based on the values of the keys in

addition to the name of the key, may provide valuable information for
feature alignment. In this step, we propose a simple algorithm that it-
erates over all the products and stores all the used keys per Web shop.
More importantly, for these keys, a list of all used values that correspond
to a key is stored. For now, all values are seen as strings, and no pro-
cessing is done. These values are used to calculate metrics in the next
section. Fig. 3 shows a visualization of the inputs and outputs of the
algorithm.

Product
Descriptions

Aligned
Keys Scoring

Non-Aligned
Keys Scoring

Title Scoring

Scores
Averaging

Key Values
Aggregation

Phase 2: Pairwise
Product Comparison Phase 3: ClusteringPhase 0: Pre-

Processing

Key Metrics

Key Alignment

Aligned Keys
Preparation

Additional
Information

MSM
Clustering

Product
Duplicates

Fig. 2. A flowchart illustrating the various processing steps utilized in APFA. Note that phase 1 (blocking) is missing since it is also not used in MSM.

Fig. 3. Value aggregation per key. From the products per Web shop, all keys
are collected containing all their corresponding values.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

6

3.1.2. Adding metrics per key
Using the aggregated raw values for each key, we calculate certain

metrics. These metrics are used in the product feature alignment phase
in SubSection 3.1.3. In addition to the data type and measurement unit
metrics used by van Rooij et al. (2016), we propose four new key met-
rics: data distribution, coverage, diversity, and standard deviation.

Before doing any calculations, we clean the raw values of each key
and split them. Raw values (e.g., ‘LCD HD’, ‘40inch × 22.3inch’) often
consist of several parts which we refer to as ‘blocks’. Note that this is
separate from the blocking phase for duplicate detection. The blocks are
separated by spaces, commas, composite symbols (e.g., ‘x’, ‘+’), and
other punctuation marks. For the (‘LCD HD’, ‘40inch × 22.3inch’)
example, the blocks would be (‘LCD’, ‘HD’, ‘40inch’, ‘22.3inch’). When,
after splitting, a block contains both numeric and non-numeric charac-
ters (e.g., ‘40inch’), another split is made so that each numeric part
forms a block, and each non-numeric part forms a block. For example,
splitting (‘40inch’) would result in (‘40’, ‘inch’). Fig. 4 shows what this
looks like for the example above. The colored cubes at the bottom are the
final blocks. The coloring is explained later in this section. All blocks
from all values of a key are taken together and are treated equally. The
first three metrics are calculated based on these collected blocks.

Each block is now categorized into a data type, which is a two step
process. Fig. 5 visualizes this process. Recall that a block by construction
must contain either only numeric characters or only non-numeric
characters. Thus, blocks can be classified as quantitative or qualita-
tive. The values of quantitative blocks are then simply converted into a
‘double’ value, or in some programming languages referred to as a float
(e.g., ‘1’, ‘2’, ‘5.5’, ‘− 10.25’). On the other hand, for each qualitative
block, it is checked whether the value occurs in a unit measurement list.
If it does, the block is denoted as being a unit measure. All other qual-
itative blocks are classified as a so-called ‘string’. More details on unit
measurements are provided later in this section.

Summarizing, per key, all values are split into blocks and each block
is classified into a data type. From the data types of these blocks, the data
type of the key is decided. A key can be either a string or a double. For
doubles, the dimensionality is also specified as is shown in Fig. 6. When
a key is of type double, it means that it describes a quantitative value,
such that many of its values look like ‘2’, but also values such as ‘180Hz’.
The latter, although not purely numeric, is clearly describing a quanti-
tative class, which is why unit measures are employed for blocks. Intu-
itively, when a key has a lot values with blocks of data type ‘unit
measure’, the key is likely to describe something quantitative. This
reasoning brings us to the following: if for a key the number of ‘double’
blocks plus the number of ‘unit measure’ blocks is larger than the
number of ‘string’ blocks, the key is regarded as a double, and otherwise
as a string. By default, keys of type double are one-dimensional, but
when the large majority (>90%) of the values of a key share the pattern
of including one or two single composite signs (‘X’, ‘x’) between values,
the key is considered to be two- or three-dimensional. For example,
(‘40inch × 22.3inch’) would indicate a two-dimensional key.

The measurement unit list is provided online (List with Measurement
Units, n.d.) and contains the most commonly used measurement units.
Such a list can be easily found and implemented in any context, making
it an elegant way of incorporating prior knowledge into the automated
framework. Units are not always represented similarly between Web

shops, or even within Web shops. This is dealt with by translating the
raw units into a canonical representation (e.g., ‘lb’, ‘lbs.’, ‘pound’,
‘pounds’ all become ‘pounds’). See Table 1 for conversion examples. The
canonical representation of the unit that occurs most often in the blocks
of a key is marked as the unit of that key. To illustrate, consider a key
that has the following counts for (raw) unit measurement blocks: 50
blocks of ‘lb’, 50 blocks of ‘lbs.’, 50 blocks of ‘pound’, and 75 blocks of
‘watt’. Then, the canonical form ‘pounds’ has the majority with 150
blocks and thus will be denoted as the unit measure of the considered
key. Thus, the canonical form can now be used instead of the raw units,
so that in phase 0 keys may be matched more precisely. Furthermore, in
phase 2 values of keys may be compared when they share the same unit.

The next metric is the data distribution metric. The data distribution
is a slightly different metric, since it is not calculated individually per
key. Instead, once in the key matching phase, when comparing two keys
that are classified as ‘double’, we test using a standard t-test whether
their respective sets of double values can originate from the same dis-
tribution. For example, {‘0.3’,‘0.5’,‘1.0’} will not likely come from the
same distribution as {‘10’,‘14’,‘28’}. We deem a t-distribution valid, as
the samples are usually larger than 100 values and there is no obvious
reason for another distribution. The assumption is that when the values
of two keys are distributed very differently, there are 2 possibilities: the
keys do not represent the same feature or the feature is not represented
in the same manner. We discuss both of these possibilities. An exception
to the first possibility would be the case that one Web shop would sell
only large TV’s and another only small TV’s. However, this is not very

Fig. 4. Blocking. Raw values are split into blocks.

Fig. 5. Block data type hierarchy. Oval shapes are data types. At the bottom
there are examples of the colored blocks from the previous figure that corre-
spond to these data types.

Fig. 6. Key data type hierarchy. Oval shapes are data types.

Table 1
List of Units. Raw units are translated into a canonical form.

Canonical Representation (raw) Units

pounds lb lbs. pound pounds
nit cd/m2 cd-m2 nit

inch inches ′ ′ inch
watt w watt watts

hours hour hours hrs
degrees degree ◦ degrees

etc.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

7

likely as shops typically try to offer their products to a wide range of
customers. For the second possibility, the keys do represent the same
feature, while having different distributions. This is for example possible
when the keys are represented in different units. When the units are
given, the unit metric will catch this. However, when the units are not
given, the distribution metric will correctly reject this key-pair to be
matched. To clarify, consider the following: (‘50cm’ versus ‘0.5m’) will
be rejected by the unit metric and the distribution metric, while
(‘50’,‘60’ versus ‘0.5’,‘0.6’) will only be rejected by the distribution
metric. Although 50cm is equal to 0.5m, keep in mind that in this case
‘rejected’ means that the keys should not be matched, because
comparing their values is incorrect. On the other hand, (‘500W’ versus
‘500Hz’) will just be rejected by the unit metric. Therefore, both of these
metrics are needed. Note that by ‘rejected’ we mean that the key-pair
will get a negative score for that metric and therefore will probably
not be denoted as a matching key-pair. In the next subsection, we go into
more detail on scoring key-pairs for the purpose of feature alignment.

Lastly, diversity, coverage, and standard deviation are relatively
straightforward metrics. Diversity is the number of unique values a key
has. To illustrate, a day of the week will have a diversity of 7, while a
month entry will have a diversity of 12. The idea is that when two keys
have contrasting/similar diversities, we can adjust the similarity score of
the key-pair accordingly. On the other hand, diversity may also be used
for the importance of the matched feature. A diversity of 1 (e.g., all
values are ‘yes’) does not add any discriminating power when
comparing corresponding keys. Such keys can be left out, which is
inspired by Koller and Sahami (1997) where the selection of important
features is stressed. We deliberately choose to consider the raw values as
to maintain a fair comparison between Web shops. When splitting the
values into blocks, this may increase the number of unique values more
for a Web shop that uses values that consist of several blocks, rather than
just of one block. Coverage of a key is the proportion of products of a
Web shop that have that particular key included in their description.
This may therefore be calculated as the number of raw values a key has,
divided by the number of products a Web shop has. Important features
such as brand will always be included in the description of the product,
while details such as shipping size will only be included occasionally,
either because it is not known for that product or it is left out by acci-
dent. Whatever the reason, it may suggest that such a key is not as
important as a key that is always included. This metric may therefore
also help to prevent aligning keys between Web shops that have very
different coverages and therefore probably not the same meaning.
Finally, the standard deviation (spread around the mean) is calculated
based on the stripped double values of the key. This last metric is used in
phase 2 when comparing values of matched keys, and more details
follow in SubSection 3.2. Fig. 7 shows the entire process for one of the
keys from the example used in Fig. 3 in the previous section.

3.1.3. Alignment of keys between web shops
The final stage of phase 0 is the actual matching of the keys. All the

information of each key that has been previously gathered is incorpo-
rated in this process. This includes the name of the keys, the processed
string- and double-values, and the calculated metrics. Technically, the
name of the Web shop of a key also plays a role in key matching since
keys within the same Web shop should not be matched. This is because
products within the same Web shop are not to be compared, following
the assumption made by van Bezu et al. (2015) that Web shops do not
contain duplicates.

As stated before, MSM does not employ a separate phase for key
matching, but does this ‘on the fly’ during product comparison. We now
explain how this approach works and compare this with our approach. A
first difference is that, in MSM, key matching occurs every time when
two products are compared, while in our approach, key matching hap-
pens only once beforehand. The second difference is that, in key
matching, MSM uses only information about those two products, while
our model uses information about keys gathered from all products, due

to the metrics being based on the cumulative information in the keys.
We now elaborate on how the score between two keys is calculated.

In MSM, the q-gram similarity between the names of the keys is calcu-
lated. When this similarity is higher than a pre-specified threshold, the
keys are matched. In this paper, this is just a small part of the scoring,
since the score is also based on the processed string- and double-values,
and the previously calculated metrics. Each of these scores that the total
similarity score consists of will now be discussed. Recall that the input
for the matching algorithm is a pair of keys from different shops, where a
key has the information as visualized in Fig. 7.

The first step in the matching of two keys is to check the data types.
When the data types do not agree, the algorithm immediately rejects this
key-pair (e.g., one of the keys is of type ‘String’ while the other is of type
‘Double 2-dim’). These keys most likely do not represent the same
feature. Even if they do, when arriving in phase 2, the comparison be-
tween a double value and a string value will give a delusive answer.
Thus, it is better not to compare products based on this key at all. The
same holds for different dimensionalities. Note that, technically, the
keys are not scored based on data types, but this step merely acts as a test
whether this key-pair should be scored and matched at all.

Just as in MSM, the lexical similarity of the names of the keys based
on the q-gram measure is now calculated. This score, ranging from 0 to
1, is used in the calculation of the final score. Furthermore, this score
also acts as a test, since it is required to pass a certain predefined
threshold. The reasoning is that even when a pair has a high similarity
score overall, we are hesitant to match these keys if the names of the
keys are not alike. In order to evaluate whether this hesitation is
appropriate, the model is also implemented with a threshold parameter
set to 0 to compare the results. One more test that is performed is when
the model checks whether one of the names is contained in the other
name. This test is necessary since in many cases it means that one Web
shop is merely more elaborate than the other on the used terminology.
As such, both keys still denote the same feature. Often, however, such
pairs score low using q-grams (e.g., ‘Weight’ vs. ‘Weight (Approximate)’
scores 0.42, ‘Labor’ vs. ‘Labor warranty’ scores 0.47), so that these key-
pair may not pass the threshold. Therefore, a set minimum score is given
when one key name is contained in the other. This minimum score is a
parameter that is trained using a grid-search. Note that when a name is
contained in the other, it is still allowed to score higher than the mini-
mum. This occurs when the names are very similar (e.g., ‘Length’ vs.
‘Length cm’, ‘Size’ vs. ‘Sizes’, ‘Res max’ vs. ‘Res max.’).

The next part of the similarity score is the part determined by the
coverage metric. The coverage score is calculated by taking the negative

Fig. 7. Adding metrics per key. Processes the raw values of a key and calculates
metrics. Note that for reasons explained earlier, detected units (in this case:
‘lb’,‘pound’,‘lbs.’) are not included in ‘String Values’.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

8

squared error of the difference of their coverages, as can be seen in Eq.
(1). The closer the coverages of the keys, the higher the score, ranging
between − 1 and 0. The reasoning behind taking squares is that it results
in a relatively smaller punishment when the coverages are quite similar.
This coverage score is used, because we reason that a key with high/low
coverage is deemed more/less important by the Web shop. We assume
that this works in a similar manner across Web shops. Note that the size
of the Web shop is taken into account, since coverage has been divided
by the number of products in the shop. For the diversity metric, the
model punishes pairs with a negative score when at least one key has a
diversity value of one. When there is no variation in the values of a key
of a certain Web shop, there is little value in using such a key.

covScore = − (key1.coverage − key2.coverage)2 (1)

divScore =

{
− 1 key1.diversity == 1OR key2.diversity == 1
0 Otherwise (2)

The similarity of the values is calculated differently when dealing
with strings or doubles. In case of strings, a variant of the Jaccard
(Phillips, 2013) similarity as seen in Eq. (3) is used, where A and B are
sets of strings. This formula is adjusted so that instead of dividing by the
amount of unique strings the sets have in total, they are divided by the
number of strings the smallest set has, resulting in Eq. (4). This is done to
avoid penalizing bigger shops that have more different products, and
therefore more different unique values, which results in larger sets of
strings. Comparing a large shop with a small shop would then always
result in a low Jaccard similarity. Finally, Eq. (5) is used to calculate the

score for the string similarity, using the (adjusted) Jaccard similarity as
just described.

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(3)

Jaccard adjusted(A,B) =
|A ∩ B|

min{|A|, |B|}
(4)

stringScore = jaccardSimilarity(key1.stringValues, key2.stringValues) (5)

When dealing with doubles, a paired, 2-sample t-test is performed to
test whether the sets of double values could have originated from the
same distribution. Only the first dimension is considered even when the
values are two- or three-dimensional, so that the comparison is fair. This
results in a score between 0 and 1, where 0 means that the probability
that these sets of values came from the same distribution is very small,
and 1 indicates a high probability. When this probability is high, we
reason that these keys are likely describing the same feature, since their
values are distributed similarly. When the sets are not distributed
similarly, but nevertheless have multiple values in common, we still
want to give a high score. Therefore, we also calculate the (adjusted)
Jaccard similarity and take the maximum of both measures.

The final metric is based on the measurement unit, which is scored
according to Eq. (7). When both keys have the same unit, a positive score
is awarded, because this makes it more likely that they refer to the same
feature. When the units are not alike, this strongly suggests the features
differ, so a negative score is given. In the case that one or both units are
missing, the two features receive a zero score. Due to the fact that units
are generally used more often in combination with doubles than with
strings, the final measurement score is adjusted as to maintain a fair
comparison. Therefore, all strings are given a bonus score, as illustrated
in Eq. (8).

unitScore =

⎧
⎨

⎩

0 key1.unit == ‘none’ OR key2.unit == ‘none’
1 key1.unit == key2.unit
− 1 Otherwise

(7)

isString =

{
1 key1.datatype == ‘String’ AND key2.datatype == ‘String’
0 key1.datatype == ‘Double’ AND key2.datatype == ‘Double’

(8)

The final total score is a weighted average of all the previously dis-
cussed scores. To ensure optimal weighting, parameters are introduced.
Based on multiple training sets, these parameters are trained and
optimal values are found. This is further explained in Section 4. Finally,
Eq. (9) gives the formula used for the calculation of the final score be-
tween two keys. The final score has to pass a threshold (similarity-
Threshold) in order for a key-pair to be a candidate for being a match. We
say candidate, since it will not be matched when one of either keys has a

higher final score with another key.

Summarizing, for any combination of two Web shops, a score is
calculated for each of the combinations of keys, after which the pair with
the highest score is assigned as being a ‘match’. Next, both keys of that
pair are removed and the process is repeated from the beginning for
these shops. This stops when the highest score does not reach a certain
threshold. When that happens, the respective pair is not marked as a
match, and the algorithm continues with another combination of Web
shops. All found matches between each combination of shops are stored
in a variable called Alignments.

3.1.4. Preparation of alignments
In order to incorporate the information obtained up until now, the

aligned keys from Alignments are to be enriched first, just as was done to
the keys from KeyMap in SubSection 3.1.2. Recall that the output from
the last algorithm in the previous section is the variable Alignments
which contains pairs of aligned keys including their scores. The keys (as
can be seen in Fig. 7) contain information that was used for matching,
but not all their information is useful in phase 2. At that stage, when
comparing products, we focus on the individual values belonging to the

finalScore =
∑7

i=1
αiβj

α = {keyWeight, doubleWeight, stringWeight, covWeight, divWeight, unitWeight, isString}
β = {keyScore, doubleScore, stringScore, covScore, divScore, unitScore, stringBonus}

(9)

doubleScore = max{p − value − t − test(key1.doubleValues, key2.doubleValues),
jaccardSimilarity(key1.doubleValues, key2.doubleValues)} (6)

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

9

products of the keys that are to be compared. We are no longer inter-
ested in the collective values that have been aggregated earlier, such as
all the raw, double and string values. For each matched key-pair, only
the name of the respective keys, the Web shops, all used units per key,
the minimum standard deviation, the mutual data type, and the total
final score are kept. In the next section, it is revealed to what purpose
these metrics are kept.

3.1.5. Additional information per product
In addition to the keys and metrics explained previously, information

about the brand and title of the products is also extracted. In this section,
a concise overview of the brand-analyzer and title-analyzer is provided.
For the intricate details, the interested reader can refer to the technical
report (Valstar & Frasincar, 2019).

An important feature for any product is the brand. It can be
considered a good indicator of products being duplicates, since products
with differing brands will generally not be the same. However, the brand
is not always a feature that is included in a product listing. As such, a
brand-analyzer is employed to identify the brand for each product. The
brand-analyzer is an improved version of the brand extraction process of
MSM. It essentially consists of extracting the brand from the product title
and/or identifying a ‘brand key’ for each web shop and using that to
extract the brands of the products.

While the brand-analyzer only extracts the brand from the title,
additional valuable information can be found. A title provides a quick
overview of the product that may include information about important
product features. In the context of TV’s, examples of such features are
resolution, size and sharpness. Similarly to the blocking procedure
previously described for the extracted keys, the title-analyzer extracts
model-words from the title of a product, and splits them up into numeric
and non-numeric parts. If the model identifies a unit in the non-numeric
part, it is converted to a canonical unit representation, similar to before.
The extracted features are stored for later use during the pairwise
product comparison phase.

3.2. Phase 2: pairwise product comparison

We move on to phase 2 now, deliberately not going into phase 1.
Phase 1, the blocking phase, has not been used by van Bezu et al. (2015),
so for fair comparison it is not used here either. Now that the keys are
aligned, we continue to subquestion 2 and develop an algorithm for
product comparison while incorporating information from phase 0. Four
separate steps are implemented in this phase. A pair of products is scored
on the values of their matching keys in a manner conforming to the
information we have on these matching keys (Step a). Next, the product-
pair is also scored on the values of the keys that were not aligned (Step b)
and on their titles (Step c). Finally, a weighted average is calculated and
is assigned to the product-pair in consideration (Step d). In the remainder
of this section, detailed descriptions of these steps are provided, while
the changes that have been made compared to MSM (van Bezu et al.,
2015) are also explained.

In this phase, all combinations of two products are compared and

scored, resulting in a large amount of comparisons (
(

n
2

)
) and thus

computational time. When linearly increasing the number of products,
the amount of comparisons grows quadratically for large

n
((

a∗ n
2

)/(
n
2

)
→a2

)
. In order to keep this feasible, two heuristics are

implemented that were used in MSM as well, namely the shop and brand
heuristic. If two products are from the same shop, they are not to be
compared and get a similarity of − ∞. In the case that two products have
differing brands, it is highly unlikely that these are duplicates, so a
similarity of 0 is given, and no further comparison is done. Depending on
the clustering algorithm of phase 3, a pair with similarity 0 can occa-
sionally end up together as duplicates, which is not the case with − ∞.
Consequently, we are a bit more flexible with non-matching brands, as

this can be due to misspelling, while shops usually do not have dupli-
cates. Note that the shop is always provided for each product, and the
brand has been extracted from the features and title of each product as
has been previously described in SubSection 3.1.5.

Only when both conditions of the above heuristics are met, we
continue to Step a: scoring the product-pair on the values of their
matching keys. Two different scores are involved for each KVP (key-
value pair), namely the key-score and the value-score. The former
quantifies the certainty that the keys actually represent the same feature,
and the latter is the similarity of the values. In the calculation of both
scores there are major differences between MSM and our proposed
approach. We discuss these now.

For the key matching, recall that in MSM the keys are matched ‘on
the fly’ during the comparison of two products. All combinations of keys
between the two products are scored based on the lexical similarity of
their names, keeping only those key-pairs with sufficient key-score. A
key may be matched with multiple other keys. In our approach, the key
matching has already been performed in phase 0. Keys are not matched
merely based on their lexical similarity, but also on their collective
values, units, data types, and more. Keys cannot be matched multiple
times. In practice, given two products from two different Web shops, all
key-pairs that have been labeled in phase 0 to be matches between these
two Web shops are retrieved. Those key-pairs for which both keys
appear in these specific products are kept. Recall that it is not always
possible to use all labeled key-pairs, as many products have missing key-
value pairs. Now, only for the remaining matching key-pairs, a value-
score is calculated.

When scoring the values of key-value pairs for the purpose of product
scoring, in MSM the value-score is simply calculated using q-grams on
their values, where, besides cleaning for some punctuation marks, no
processing is done. In contrast, in our approach, we make a distinction
between data types and treat them differently. Recall that in key
matching we used strings and doubles, where the latter is further
specified to be one-, two- or three-dimensional (e.g., ‘10 × 5 × 2 cm3’).
We now briefly discuss how keys that are strings are dealt with, and after
that we more elaborately discuss doubles.

When dealing with a key-pair that has been denoted to be a string,
consider the following three values of the ‘USB’ input of Newegg.com:
‘Yes’, ‘USB 2.0 (JPEG, MPEG-4/DivX HD)’, and ‘1 (Side)’, where we
encounter, respectively, a Boolean, a qualitative, and a quantitative
value. It is not only difficult to compare such values, but meaningless as
well. Therefore, we do not score key-pairs on their string similarity.

When the data type is a one-dimensional double, an attempt is made
to extract the double value by processing the raw value and converting it
to a double. We now explain how the processing of a double works, and
how two doubles are scored. The first part of the processing is removing
everything between brackets, because although it may be useful addi-
tional information for the customer, it is not essential for our task.
Consider for example the following value for the key ‘Output Power’
from Newegg: ‘20W (10W + 10W, THD 10%)’, where obviously we only
wish to extract the ‘20W’, or even better only ‘20’. The latter can be said
because we may assume that the keys that are to be compared have
values using the same units of measurement, which the previously dis-
cussed key matching algorithm has made sure of. This brings us to the
second processing step, namely stripping the value of all measurement
units that have been used for that key in that specific Web shop. The
third processing step deals with composite values. Some Web shops are
more detailed than others, making it more difficult to compare their
values. To illustrate this, consider again the key ‘Output Power’ and
compare a product from Newegg with a product from Bestbuy, having for
a certain product-pair respective values ‘7W + 7W’ and ‘14W’, quite
certainly representing the same audio output which naturally consists of
a left and a right audiobox. When our method encounters a ‘+’ sign, the
sum is calculated. As of now, we have not included other composite
signs, leaving this to be an interesting direction for future work. The
final step is simply extracting the numeric part from what is left so that it

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

10

can be converted to a double. These four processing steps help identify
duplicates as well as non-duplicates, because each step attempts to
assure a fair comparison between values.

Recall that due to inconsistency within Web shops, even when a key
has been appointed to be of type double, it does not imply that this holds
for all products, meaning it is not always possible to extract a double
value for both keys. The compiler of the programming software is able to
check whether a value is numeric or not. In those unfortunate cases that
it is not a double while it should be, it is better to not consider this key-
pair at all, so that it neither has a positive nor negative contribution to
the scoring of these products. To illustrate, consider the feature ‘USB-
inputs’ with the following values that are not necessarily equal, yet not
conflicting as well: ‘1’, ‘Yes’, ‘Unknown’, ‘usb2.0’. In such cases, simply
comparing these would result in a meaningless score and thus weaken
the reliability of the eventual score of the product similarity. Therefore,
when at least one is not of type double, the key-pair is not scored on this
part.

For two- or three-dimensional doubles, we simply take the first value
and continue as if it were one-dimensional. Note that this does not mean
that the information of the extra dimensions is ignored, since these were
an important part of the key matching performed in phase 0. For product
comparison, taking only the first value usually suffices (e.g., Resolution
‘1920 × 1080’ vs. ‘1024 × 768’ becomes ‘1920’ vs. ‘1024’, resulting in
the same answer). However, this might not always be the case (Item
Dimensions ‘36.8 × 24.4 × 10.4’ vs. ‘36.8 × 21.6 × 2.0’ becomes an
incorrect comparison), so we strongly suggest to follow up on this in
future research and compare all individual values of multi-dimensional
values.

Given the two processed double values, a similarity score is calcu-
lated, which is a different approach from taking q-grams. Namely, we
take the absolute (numeric) difference of the two double values and
evaluate whether this is sufficiently small. Specifically, when it is
smaller than the AllowedDifference parameter (see Eq. (10)), a score of 1
is rewarded, and 0 otherwise. As stated earlier, some Web shops are
more precise than others, so when the width of one product of a
(duplicate) pair is ‘30–6/7 inch’, it might very well be the case that the
product in the other Web shop has a width of ‘31 inch’. Furthermore, due
to imperfect processing, values may be cut off (e.g., ‘30–6/7’ to ‘30’)
instead of rounded, causing a difference of 1 inch. Our reasoning in such
cases is that we wish to allow for an absolute difference up to (and
including) 1. However, we must bear in mind the distribution of values.
For example, when the double values of ‘USB-inputs’ are all taken from
(‘0’, ‘1’, ‘2’, and ‘3’), we obviously do not want to allow for a difference
of 1. Therefore, the minimum of 1 and half of the smallest standard
deviation of the values of the keys is taken. Consequently, the more
dense the values are distributed, the lower the AllowedDifference and
thus the stricter we are.

AllowedDifference = min
{

1, 0.5 ∗ σkey1, 0.5 ∗ σkey2
}

(10)

The final scoring method for the aligned keys is the same for all data
types. Namely, for each key-pair, the value-score is weighted by multi-
plying it with the key-score. This is intuitively clear when recalling that
the key-score can be seen as the certainty that this key-pair represents
the same feature and thus has to be compared. The more certain we are
that the comparison of values between two keys is valid, the larger the
weight it gets. As mentioned earlier, the authors of MSM have used the
lexical similarity of the names of the keys for the key-score, whereas in
our approach a more composite score is used that also considers the
aggregated values of the keys and several metrics. When all matched
key-pairs between the two products are scored, the weighted average of
their scores is the output of Step a, the alignedScore. The amount of key-
pair comparisons that have been made, is stored in alignedCount.

In Step b, the keys that were not scored in Step a are evaluated. In
other words, the keys that are present in at least one product of the pair,
but do not have a matching key in the other product. Specifically, per

product, the values of all these remaining keys are aggregated together,
resulting in a set of values for both products. From both sets, all model
words are extracted. Model words are words containing at least one
numerical value. When a model word occurs twice for one product, it is
given a double weight, as it seems to be important. Thus, duplicates are
kept, so technically we are not dealing with proper sets here, but with
bags. Then, the score for this step (restScore) is calculated with the
Jaccard similarity from Eq. (3), where A and B are not sets but bags
(possibly containing duplicates), where the set operators (∩,∪) must be
interpreted loosely, meaning that duplicates are retained. This step has
been kept the same as in MSM, where model words proved to be very
useful in this context. The smallest size of both bags of model words is
stored as restCount.

Before moving on to the titles, the weighted average of the scores
that were achieved by the aligned keys and the rest keys is calculated
using Eq. (11), resulting into featuresScore. restWeight is used as a
weighting parameter. When one of alignedCount or restCount is zero, the
other one gets full weight. When both counts are zero, this is dealt with
in step d.

featuresScore = alignedScore × (1 − restWeight)+ restScore × restWeight
(11)

Step c concerns the scoring based on titles. For each title, a number of
features are extracted as described in SubSection 3.1.5, which are
compared to determine a score. The total amount of features compared
for two titles is denoted as titleCount, and the score produced is defined
as titleScore. The details of the proposed scoring technique can be found
in the technical report (Valstar & Frasincar, 2019). In Step d, we calcu-
late a final score for the product-pair in question, which is a weighted
average of the score for the features (featuresScore) and the titles (title-
Score), using the weighting parameter μ, as shown in Eq. (12). There are
several exceptions to this calculation of the final score which we discuss
now. When alignedCount or titleCount is low, it means that there was not
much information to be gained from the features or title. To illustrate,
consider two televisions that are only compared on their resolution, a
quite general feature that many televisions have in common. Conse-
quently, when their resolutions agree, it does not add much value.
Therefore, when alignedCount is lower than the parameter minA-
lignedCount, only the titleScore is used. The same holds for thetitleCount.
When both do not pass the threshold, the final score is set to zero.

finalScore = μ × titleScore+(1 − μ) × featuresScore (12)

Coming back to the example presented before, when two televisions
have a different resolution, it does add valuable information, since it
implies quite strongly that these are not duplicates. Therefore, even
when the alignedCount does not pass the threshold, but the featuresScore
is low enough, it is still used in the same manner as by default (Eq. (12)).
The same holds for the title. Specifically, an individual score is low when
it is lower than the parameter ε, which is used in the phase 3 clustering
algorithm as well. Simplified, when two products have a similarity lower
than ε, they are not considered in the clustering algorithm. For that
reason we consider scores lower than this threshold ‘low’.

The final scores are used as the input for the clustering method of
phase 3. We use the same method as MSM (van Bezu et al., 2015), so we
do not go into the details. However, a quick explanation may help the
reader understand what the phase entails. The higher the score between
two products, the more likely that these end up in the same cluster and
be denoted as duplicates. As said before, when their score is lower than
ε, they are not considered, but when they pass it, they are not necessarily
marked as duplicates either, since it is still possible that one of these
products is part of a different product-pair with a higher score. Product-
pairs with the highest score are put together in a cluster and this process
iteratively continues until no more product-pairs exist with a score
higher than ε. Finally, all products in a cluster are marked as duplicates.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

11

4. Evaluation

In this section, we evaluate the proposed method using the same real-
world dataset as was referred to in the previous section. Our dataset
consists of 1629 TV’s from 4 different Web shops, namely 163 from
Amazon.com, 672 from BestBuy.com, 744 from Newegg.com, and 20
from TheNerds.net. We know the actual duplicate products within this
dataset, so it is possible to evaluate the performance of our algorithm.
We know that there are 1262 unique TV’s in the entire dataset, although
we have not used this knowledge when implementing the model.

In SubSection 4.1, the feature alignment algorithm is evaluated. In
SubSection 4.2, we evaluate the full algorithm. Finally, in SubSection
4.3, the speed of the proposed algorithm is investigated. We start each
subsection with the corresponding subquestion belonging to the
research question posed in SubSection 1.2.

4.1. Feature alignment

In this first part of the evaluation, we answer the first subquestion of
this work: How can product feature alignment be automated and what is
its value? As explained in SubSection 1.1, product features can be rep-
resented by different keys across different Web shops. Examples of such
keys and their corresponding values are provided in SubSections 1.1 and
2.1. Throughout SubSection 3.1, we have described an algorithm that
matches the keys such that the features of different products are aligned,
and the corresponding values can be compared. This algorithm has been
intrinsically tested against a gold standard on the correct feature
alignments between Web shops. This means that, independent of the
other phases, we test how the algorithm performs solely on key
matching, not yet taking into account the effect it has on duplicate
detection. In order to evaluate the algorithm, we compare it with a gold
standard that contains the correct matching key-pairs between Web
shops. Specifically, ‘correct’ means that at least two out of three people
indicated that a particular key-pair is a match, while the third person did
not contradict this. This means that they did not include either keys in
their list of matching keys. In the case that they would have included one
of the keys with another key, it would count as a conflict, so that the key-
pair is not included in the gold standard. This inter-annotated agreement
(IAA) has been performed to create a gold standard between the two
largest Web shops, Newegg.com and BestBuy.com, who together ac-
count for 87% of all products. The ratio of the number of occurrences
where two out of three agree versus the occurrences where three people
agree is 0.53. Naturally, we have implemented the key-matching algo-
rithm for all Web shops, but throughout the entire evaluation of this
phase we only consider the two Web shops mentioned before.

In this evaluation, we use the conventional way of defining true
positives, false positives, false negatives, and true negatives. Important
to realize is that we look at key-pairs, not at single keys. A true positive
(TP) is therefore defined as a key-pair that has been marked correctly as
being a match. A false positive (FP) is a key-pair that we deemed to be a
match, while it is not according to the gold standard. A false negative
(FN) is a key-pair that should be denoted as a match, but is not, either
because neither of these keys have been matched at all, or because they
have been incorrectly matched to a different key. Finally, a true negative
(TN) is that two keys are not matched, when indeed they should not be
matched. Furthermore, we use the commonly used performance mea-
sures Precision, Recall, and the F1-measure. The Precision as in Eq. (13)
is the ratio of our correctly matched key-pairs versus all our matched
key-pairs, while Recall as in Eq. (14) is the ratio of our correctly matched
key-pairs versus all matching keys according to the gold standard.
Lastly, the F1-measure, shown in Eq. (15), is the harmonic mean be-
tween the two where both are deemed equally important.

Precision = TP/(TP+FP) (13)

Recall = TP/(TP+FN) (14)

F1 − Measure = 2 × Precision × Recall/(Precision+Recall)

= 2 × TP/(2 × TP+FP+FN) (15)

Before we evaluate this phase using these performance measures, we
give a detailed evaluation of the parameters that were used in the
framework. Ideally one would use multiple datasets to train the pa-
rameters, and test whether the proposed method works out of sample as
well, and not just in the given dataset. Due to a lack of multiple datasets,
we make use of a bagging bootstrapping technique (Breiman, 1996). For
each bootstrap sample, approximately 63% of the original dataset is
sampled as a training set and the remaining approximate 37% as the test
set. The training set is chosen in such a way that the ratios of duplicates
and non-duplicates in the training set and the test set are approximately
the same as in the original dataset. On the training set we perform a grid
search with steps of 0.1 to find out the combination of choices for the
different parameters that results in the highest performance measure in
the training set. Finally, when the best parameters are found on the
training set, these are used in the key-matching algorithm on the test set,
and the final performance measures are calculated. This process is
repeated for 50 bootstraps, each having a different training and test set.
Summarizing, for each bootstrap, an optimal parameter set is found
based on a training set, and using this parameter set, performance
measures are calculated for a test set.

In Table 2, we provide the means of the found optimal values for
each parameter and their standard deviation. Note that these parameters
are the same as the ones discussed in SubSection 3.1.3. We now shortly
recap the meaning of these parameters, interpret the found means of the
optimal values, and elaborate on the stability using the standard
deviation.

The weighting parameters can only be interpreted relatively, as the
six of them together are used for the calculation of the weighted average
of the final score. When one of these weights is higher than the rest, it
means that the corresponding score is relatively more important than
the other scores. nameScore is the lexical similarity between the names of
the keys. Its weight is quite stable, with its standard deviation of 0.044,
and only having values 0.9 and 1.0. nameScore ranges from 0 to 1, but
any key-pair having a nameScore lower than minNameScore is immedi-
ately dismissed, so technically its range is [minNameScore, 1]. minNa-
meScore is extremely stable with a mean of 0.7 and a standard deviation
of 0, meaning that for all 50 bootstraps, 0.7 was the optimal value. It
seems that 0.8 would be too strict, meaning that too many key-pairs
would be prematurely dismissed while some may actually be correct
matches. In turn, 0.6 would be too lenient to too many key-pairs,
resulting in some incorrectly matched keys. The third aspect that
played a role in the lexical name similarity was that we grant a score of
at least minContainedScore when one of the key names is contained in the
other. It is remarkable that for 49 bootstraps, the best value for min-
ContainedScore was 0.7, and once it was 0.8. As a result, when the name
of the key is contained in the other name of the key, this grants at least a
score equal to the minNameScore, so that the considered key-pair is not
dismissed. This is an interesting finding, as apparently such keys
sometimes are (correctly) matched, while otherwise they would not
even be considered. We conclude that they must have been correctly
matched occasionally, for otherwise when it would not result into cor-
rect matches and/or cause wrong matches, a lower value for min-
ContainedScore would have been found to be more optimal in the
training samples.

doubleScore is the score describing how well the distributions of the
double values of the keys match each other. doubleWeight has been set to
1.7 for all 50 bootstraps, being a surprisingly constant factor in the
weighting process. Together with stringWeight, they account for the most
influence in the calculation of the final score. This is an interesting
result, as it confirms that the values of keys are very important in
deciding whether two keys are representing the same feature, and not
only the names of the keys as was done in MSM. stringWeight is not a very

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

12

stable parameter, with its standard deviation of 0.133. Still, 80% of its
values are 2.0 and the rest ranges between 2.0 and 2.4. A parameter that
is strongly related to doubleWeight and stringWeight is stringBonus. This
bonus is granted to key-pairs that are both of type strings, as a
compromise to the score that keys with doubles may receive when they
have matching measurement units. It seems not to be very important,
with its mean of 0.060 and standard deviation of 0.093. As the value
does not follow a standard distribution (it is bounded at 0 and discrete),
we cannot easily say whether it is significantly different from zero. What
we do know is that about half of its values are 0, indicating that it is
redundant, while the other half are either 0.1 or 0.2. At any rate, it is
valuable to include this parameter, so that the potential structural dif-
ference between key-pairs of type strings and of type doubles is not
captured in the difference between doubleWeight and stringWeight, so
that these may still be meaningfully compared to the other 4 weighting
parameters.

The coverage, denoting how well a key is represented in a Web shop,
has proven to be useful in key-matching with an average covWeight of
0.272 and a standard deviation of 0.131. The values range between 0.2
and 0.5, but are mostly 0.2. The covScore is always a negative score,
which describes the difference of the coverages of the keys. The further
the coverages are apart, the lower (so the more negative) the score. Our
reasoning is that when a key is important for a product, it is included
more often in the product description, so that its coverage is relatively
high. If one Web shop deems a key important, the other Web shop will
most likely do as well, given that the keys represent the same feature.
This is an important finding, because it means that coverage is useful in
feature alignment.

The divScore does not get any weight having been weighted 0 for all
50 bootstraps. This score is set to 0 by default, but becomes − 1 if and
only if at least one of the two keys has a diversity of 1, meaning that it
has only 1 unique value for that key. A possible explanation for the
divWeight being 0 is that the coverage metric captures the issue, as keys
with such a low diversity often have low coverage, so that the reason for
having only one unique value is simply the small amount of products
that has a value for this key. More surprisingly is that the unit metric
seems to be of little value in the process of key matching. Apparently, the
measurement units were used consistently across the tested Web shops
or they were missing so often that the neutral score of 0 was given
regularly. Looking for a reason more closely in this context, we observe
that most features were simply in inches, Hz, or pixels and their values
were so different that the low doubleScore (that compares their value
distributions) would prevent these from being matched anyway. This
may explain why checking for units proved to be redundant.

The last parameter is similarityThreshold. The final score is compared
to this threshold at the end of each key-pair comparison. If it passes it,

the key-pair becomes a candidate pair and the algorithm continues
iterating. In the end, the candidate pair with the highest score is marked
as a match. On average, the optimal value for similarityThreshold is
1.632, and its values are either 1.6 or 1.7. With a standard deviation of
0.047, it is a stable parameter, which was to be expected as it controls
the amount of key-pair matches that are formed, an important part in
both Precision and Recall. This is the case, for having a too low value
(<1.6) generates too many FP’s, while a too high value (>1.7) gives rise
too many FN’s. Interpreting this value in the light of all other optimal
parameters suggests that when a key-pair has a doubleScore or stringScore
of respectively about 0.6 or 0.5, it is sufficient to be a candidate key-pair,
given that their coverages are not too far apart. Note that this holds
because the nameScore must be higher than 0.7.

As explained before, MSM does not have a separate phase for key
matching, but matches keys during the product comparison phase.
When the lexical similarity of two keys is higher than a threshold, the
keys are compared, or in other words: the keys are matched temporarily.
In order to compare our results with MSM, we have simulated this
technique on the same 50 bootstraps as in APFA. The performances
obtained without a feature alignment phase (MSM) and with a feature
alignment phase (APFA) are shown in Table 3. Though both Precision
and Recall are higher, APFA’s higher F1-measure is mostly due to higher
Precision and less due to higher recall. The interpretation is that both
methods are able to detect the correct matching keys almost equally
well, whereas APFA is more selective than MSM, resulting in less
incorrect matches. We apply a Wilcoxon signed rank test (Wilcoxon,
1945) to check whether the difference in F1-measure is significant.
Specifically, we test whether both are equal, compared to the alternative
that APFA’s F1-measure is higher. Indeed, even against a significance
level of 0.001, the null hypothesis that both are equal is rejected. From
this we conclude that by incorporating a pre-processing phase, features
can be aligned significantly better.

4.2. Duplicate detection

In this subsection, we answer the second subquestion of this work:
Can the calculation of the product similarity in phase 2 be improved by
incorporating information from phase 0? Before evaluating, there are
some notes to be made about the difference with the previous section so
that it is clear how the evaluation is performed. Where we had a gold
standard for correct key-pairs only for two Web shops, we know the
exact correct product duplicates for the complete dataset. We do
perform bootstraps in the same manner and calculate the performances

Table 2
Analysis of the Optimal Parameters of phase 0. Means and standard deviations are calculated based on the results obtained from 50 bootstraps.

Weighting Parameters Standard Other Standard
(belonging to score) Mean Deviation Parameters Mean Deviation

nameWeight (nameScore) 0.926 0.044 minNameScore 0.700 0.000
doubleWeight (doubleScore) 1.700 0.000 minContainedScore 0.702 0.014

stringWeight (stringScore) 2.048 0.133 stringBonus 0.060 0.093
covWeight (covScore) 0.272 0.131 similarityThreshold 1.632 0.047
divWeight (divScore) 0.000 0.000

unitWeight (unitScore) 0.000 0.000

Table 3
Average performance measures without a feature alignment phase (MSM) and
with a feature alignment phase (APFA). The last column is the one-sided p-value
of the Wilcoxon signed rank test (H0: μAPFA = μmethod versus HA: μAPFA > μmethod).

Method F1-measure Precision Recall p-value

MSM 0.572 0.533 0.618 0.000
APFA 0.767 0.817 0.725 x

Table 4
Analysis of the optimal parameters of phase 2 over 50 training sets.

Standard
Parameter Mean Deviation

minAlignedCount 4.18 0.63
restWeight 0.11 0.03

minTitleCount 2.00 0.00
titleRestWeight 0.62 0.04

μ 0.50 0.09
ε 0.22 0.04

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

13

measures using the same formulas, but the calculation of TP, FP, TN, and
FN needs some explanation. As we have more than two Web shops, it is
possible to have a duplicate across three or more shops. A cluster can
thus contain one (no duplicates), two, three, or four products. When a
cluster contains three products (A, B, C), we see this as three product-
pairs (AB, BC, AC). All three pairs are then separately evaluated. MSM
does this in the same manner, so that a fair comparison is possible.

One shortcoming of the evaluation of this phase is that it cannot be
tested intrinsically for APFA, as it must use the results of phase 0, namely
the feature alignments. Ideally, we would use as input the correct
matching key-pairs between each combination of Web shops. That way,
phase 2 could be tested independently of phase 0. Unfortunately,
creating such a gold standard by hand is, besides tedious, extremely
difficult. Each Web shop has roughly 80 keys, resulting in a large amount
of possibilities. Moreover, besides the key matching, phase 2 also uses,
for example, the data type and units used for each key and the weights
for each matched key-pair from phase 0. Nevertheless, keeping the
research question of this work in mind, it is not harmful to test phase 2
extrinsically, as the main goal is to improve duplicate detection using a
pre-processing phase. Summarizing, in this subsection we use the results
of phase 0 as well, so we evaluate the full algorithm, rather than only
phase 2.

Just as in the previous subsection, we first evaluate the optimal
values for the parameters of this phase. Table 4 shows the mean and
standard deviation of the parameters acquired over 50 bootstraps using
a grid search between 0 and 1 with steps of 0.1. Two exceptions are
minAlignedCount and minTitleCount, where a grid search between 1 and
10 was used with steps of 1. Zero is not included, because in those cases
the score is not used at all as has been explained in SubSection 3.2. We
now recap the usage of these parameters, interpret the optimal values,
and evaluate the stability using the standard deviation.

minAlignedCount is used as a threshold, representing the minimum
required amount of compared key-pairs between two products. Specif-
ically, only the aligned pairs from phase 0 are counted, not the ‘rest’ keys
that could not be matched. This parameter was introduced with the idea
that when too few comparisons are made, the attained score is not suf-
ficiently reliable. As can be seen in Table 4, on average the minA-
lignedCount is 4.18 with a standard deviation of 0.63. All values are in
the range 3–5, so the spread is not large. Still, there seems to be some
flexibility. It is an important result that minAlignedCount is higher than 1,
providing evidence that setting a required amount of comparisons is
useful in duplicate detection.

restWeight, although very small, has never been set to 0.0 throughout
all bootstraps, implying that there is some value incorporating it in the
feature score. The restScoreis quite unreliable, as it does not look at keys,
but only at values. For example, it may incorrectly give a full score to
two equal values, while one represents a minimum resolution and the
other is a maximum resolution. Nevertheless, it provides an overall
indication whether there are few or many values matching between two
products. Taking all model words from all keys and comparing these
takes quite some computational time. Especially in APFA, where
comparing aligned keys is very quick (we discuss this in the next sec-
tion), calculating the restScoreis relatively time consuming, while it only
represents 10% of the feature score. We therefore conclude that using
the ‘rest’ keys is certainly useful, but we suggest to leave it out when
speed is required.

minTitleCountis set to 2.0 for all 50 bootstraps, making this a very
stable parameter. The clear interpretation is that when only one com-
parison can be made between the titles of two products, it is not reliable.
Intuitively this is true, since knowing that two televisions have one
feature in common (e.g., resolution, screen rate, size) does not provide
much evidence that they are duplicates. In the calculation of the title-
Score, a weighted average is taken of the scores attained by the titleUnits
and the titleRest. titleUnits are model words that contain a value and a
unit, while titleRest contains any other remaining model words. titleR-
estWeight has an average optimal value of 0.62, 39 times being set to 0.6

and 11 times to 0.7. To understand why the rest is relatively more
important than the units, we consider some examples of the titleRests:
‘4K’, ‘E291A1’, ‘47G2’, ‘class(64’, ‘3D-ready’, ‘E423’, ‘cd/m2’. Some of
these may represent a product code which may either be internally used
within that Web shop or used for televisions in general. The latter may
explain why restScoregets so much weight. However, we expect that we
deal with both cases as some codes have only 4 characters and others
have about 14, while a unified code usually has a fixed format. At any
rate, in general it is very helpful in duplicate detection. Especially in
non-automated methods, it is possible to gain close to perfect results
when extracting the code from each product, and then only using that in
duplicate detection. In automated methods it is still possible to use the
product code, but other model words which are not codes may interfere
with this.

The final score is calculated as a weighted average of thefeaturesScore
and the titleScore. μ is the weight that the title gets. The optimal values
for μ range between 0.3 and 0.7, being the least stable parameter in the
whole algorithm. At the end of this section, we provide a detailed
evaluation of μ.

ε has two interpretations as it has two usages. Most importantly, it is
used in the clustering algorithm as a threshold. The dissimilarity of a
product-pair must be lower than this threshold in order to be a candidate
pair. The found average value for ε in APFA is significantly lower than
MSM (0.22 vs 0.52). This has a clear interpretation. When ε is lower, less
products are clustered since a lower dissimilarity is required. In other
words, in APFA a higher product similarity between keys is required to
become clustered. APFA is therefore more selective than MSM, so we
expect a relatively higher Precision measure for APFA.

The second usage of ε has been explained at the end of SubSection
3.2. Recall that when thetitleCount does not pass minTitleCount(or when
alignedCountdoes not passminAlignedCount) it is deemed as too unreli-
able and its score is not used in the scoring, with one exception. Namely,
when the count is too low, but at the same time the score is lower than ε.
In that case, it is used in the scoring, since we reason that finding non-
matching values for a feature contains more information than finding
matching values. At first we used a separate parameter for this
threshold, but found that most of the time its values were the same as the
values for ε. It is not strange that these are related, keeping in mind that
according to the first usage of ε, it acts as a threshold whether product-
pairs are to be matched or not. Related or not, it is an important finding
that low scores should be considered even when their count is low,
because that information is valuable in detecting non-duplicates.

We have now come to the final evaluation of the proposed algorithm
for duplicate detection. We have calculated the F1-measure, Precision,
and Recall based on 50 different test sets. For each bootstrap, the data is
pre-processed in phase 0 before it moves on to phase 2 where the
product similarities are calculated. A slightly higher Precision than
Recall is achieved, and the F1-measure lays around 0.75. The interpre-
tation of the Precision is that of all matched product-pairs by APFA,
roughly 76% is correct, and the interpretation of Recall is that about
73% of the actual duplicates are detected.

We now compare these results to MSM in Table 5. Again, using a
Wilcoxon signed rank test (Wilcoxon, 1945), we check whether the
difference in the F1-measure is significant. APFA significantly out-
performs MSM even with a significance level of 0.001. Especially the
Precision has risen substantially, which is in accordance with our ex-
pectations, as APFA is more selective than MSM.

Table 5
Duplicate detection: Average performance measures for MSM and APFA. The
last column is the one-sided p-value of the Wilcoxon signed rank test (H0:
μAPFA = μmethod versus HA: μAPFA > μmethod).

Method F1-measure Precision Recall p-value

MSM 0.525 0.472 0.592 0.000
APFA 0.746 0.763 0.731 x

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

14

Lastly, we elaborate on the relation and relative importance between
the product features and the product title. As such, we have evaluated
the algorithm once using only features and once using only titles in the
product comparison phase. This is done using the conventional 50
bootstraps, and the results for both methods are shown in Table 6. As
expected, for both APFA and MSM, the F1-measure is higher when
optimally combining the features and titles. For both methods, the title
on its own does better than only the features. The importance of the title
is even stronger in MSM as the reported optimal value for μ is 0.65 (van
Bezu et al., 2015), while for APFA it is 0.5. We conclude by saying that
APFA significantly outperforms MSM not only for features and titles
together, but also when considering them individually. Answering the
question of this subsection, using a pre-processing phase certainly im-
proves the quality of duplicate detection.

4.3. Speed of the proposed algorithm

In this final subsection, we answer the third subquestion: Will an
automatic product feature alignment step improve the speed of the
process? Before looking at the speed of the process, we take a closer look
at two components that make up most of the computational time. Firstly,
there is a difference between MSM and APFA concerning the number of
product-pair comparisons. Recall that both methods use a so-called
Brand Heuristic, which checks whether two products have the same
brand. If they are not of the same brand, they will certainly not be du-
plicates, so they do not need to be compared. In Table 7, we show how
the amount of product comparisons may be reduced using a Brand
Heuristic. Specifically, we see that MSM already reduces the number of
comparisons by 75% compared to not using a Brand Heuristic. In turn,
APFA performs 43% less product comparisons than MSM. In SubSection
3.1.5, we described our approach to finding the brand compared to the
heuristic of MSM and we discussed two advantages, namely complete-
ness and speed. Indeed, because we search in both title and features of
each product, we discover a brand more often than the MSM method.
The decrease of 43% is fully due to completeness. Moreover, in our
approach we search for the brand only 1629 times, namely once for each
product, while in MSM this must happen for each potential product-pair:
419.010 times. However, due to smart caching, this still can be pro-
cessed relatively quickly.

The second component that takes significant computational time is
the number of key comparisons within one product-pair comparison.
Recall that in MSM, given two products, all their keys are compared on
their lexical key similarity, after which their values are compared when
their key similarity is high enough. On average, a product has 30 keys, so
this requires 900 comparisons. Again, string similarities including all

lexical key similarities between products are stored in the cache, so these
do not have to be re-calculated. Nevertheless, on average the cache has
to be accessed 900 times for each product comparison (which is 96.890
times in total). In contrast, in APFA only the matched key-pairs that were
found in the pre-processing phase are being compared. On average,
there are 20 matched key-pairs between two Web shops (on shop level),
and on average 10 of them can actually be used on product level,
because many products have missing keys. Table 8 summarizes these
results.

After comparing the number of comparisons, we now move on to the
actual computational time. All runs were performed on a PC with a
2.53GHz Intel Core 2 Duo processor and 2GB of RAM. MSM uses an
extensive framework of caching for the product similarity phase.
Caching is appropriate in this framework, because when performing
multiple bootstraps and/or different parameter combinations, many
calculations have been done before. MSM’s caching framework stores
string similarities as well as similarity scores of product-pairs. APFA has
been implemented in the same framework so that caching works in a
similar way for the product comparison phase. In Fig. 8, we compare the
durations of ten sequential bootstraps of MSM and APFA on the training
set with one parameter combination. For both methods, we notice a
clear downward trend, strongly suggesting that this is due to caching.
Specifically, the decrease in time from bootstrap 1 to 2 is about 50%,
which makes sense as the overlap of two random subsets that contain
two-thirds of the original set, is 50%.

Phase 0 takes on average 18 s on the training set with one parameter
combination. This duration ranges from 13 to 20 s depending on the
bootstrap sample and parameter combination. Ignoring caching, so
looking only at one bootstrap, when running the full algorithm (phase
0 and phase 2), APFA is still significantly faster than MSM (18 + 46 = 64
s versus 153 s). When increasing the number of products in the dataset,
the time of the pre-processing phase will not increase much. This is
because more products does not mean more keys, but rather more values
per key, barely causing any additional computational time for the
feature alignment phase. Therefore, APFA is certainly scalable, as with
increasing size, the duration of the pre-processing phase diminishes
relative to the rest of the process. Our expectation is that when caching

Table 6
Performance measure for features and titles separately. Averages are taken over
50 bootstrap samples. The last column is the one-sided p-value of the Wilcoxon
signed rank test (H0: μAPFA = μMSM versus HA: μAPFA > μMSM).

Average F1-measure
Description Restriction APFA MSM p-value

Only Features μ=0 0.521 0.392 0.000
Only Titles μ=1 0.605 0.440 0.000

Feature & Titles (No restr.) 0.746 0.525 0.000

Table 7
Product-pair Comparisons. Reducing the amount of com-
parisons using the brand heuristic.

#Product
Method Comparisons

(No Brand-Heur.) 419,010
MSM 96,890
APFA 55,149

Table 8
Key Comparisons for each product-pair
comparison.

#Key
Method Comparisons

MSM 900
APFA 10

Fig. 8. Computational time of the product comparison phase compared.

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

15

could be achieved for phase 0, that APFA (including phase 0) will be
faster than MSM for each sequential bootstrap.

The answer to the third research subquestion is twofold: incorpo-
rating a pre-processing phase greatly improves the speed of one run.
When multiple bootstraps on the same dataset are run, the pre-
processing phase makes it slower because a caching framework has
not yet been implemented for that phase. However, bootstrapping is
usually only done in research, when (a subset of) the correct answers are
known, and one wants to evaluate an algorithm. In practice, in a real-
world duplicate detection problem, this is not the case, so a single run
on the full dataset is all that needs to be done. In that case a pre-
processing phase greatly improves the speed as well.

5. Conclusion & future work

In this work, we have proposed a method for the problem of product
duplicate detection. The context has been finding duplicate television
between different Web shops. We have improved upon the state-of-the-
art MSM algorithm for product duplicate detection (van Bezu et al.,
2015), mainly by developing an automated pre-processing phase that
occurs before the similarities between products are calculated. This way,
we managed to outperform MSM both in terms of F1-measure and in
speed. In this section, we summarize our contributions and present our
most important findings.

The first step was to incorporate a pre-processing phase, so that
features can be aligned between Web shops in an automated way. The
most important result is that not only the names of the keys, but the
values of the keys are very important in deciding whether two keys are
representing the same feature. For keys containing qualitative values,
the Jaccard similarity of the values of both keys has been compared,
while for keys containing numeric values, their distributions are
compared. Considering unit measurements proved not to be useful in
feature alignment, because when units are different, this is already
captured by the difference in their value distributions. Coverage, rep-
resenting the ratio of how many products have a certain key within a
Web shop, has been found to be useful in feature alignment. When
exploiting this metric, the diversity metric which represents the number
of unique values of a key, is redundant, as it is captured by the coverage,
because keys with such a low diversity often have low coverage as well.
Lexical key matching based on their names has also been improved by
granting a minimum score to key-pairs of which one of their key-names
is contained in the other. By testing on a real-world dataset of TV’s, it has
been shown that we significantly outperform MSM with an F1-measure
of 0.767 versus 0.572 for feature alignment.

The second step has been to improve the quality of duplicate
detection, using the gained information from the pre-processing phase.
Given two products, we now only compare the keys there were matched
earlier, instead of comparing all keys with each other. Moreover,
depending on the discovered data type in the pre-processing phase, we
treat key-pairs differently, so that the comparisons are more meaningful.
Comparing non-aligned keys is still useful, but may be omitted for effi-
ciency purposes. As the product titles are important, we have improved
the title analyzer. Rather than comparing all model words in one large
set, we make a distinction between model words with units and the rest,
so that the units can be aligned between the two products and scored
separately. An important finding is that a required minimum amount of
comparisons of both aligned keys and between titles is necessary to
prevent unreliable high scores based on too little information. On the
other hand, we found that low scores do provide important information
in rejected non-duplicates, even when the amount of performed com-
parisons is low. Applying our duplicate detection method to the same
real-world dataset of TV’s, we find that we significantly outperform
MSM with an F1-measure of 0.746 versus 0.525.

Since speed is important in the process of duplicate detection, we
have enhanced the pre-processing phase in such a way that it reduces the
running time of the product similarities phase. MSM makes on average

900 comparisons per product-pair, while APFA brings this down to 10
on average. Moreover, when increasing the amount of keys, the former
grows quadratically, while the latter linearly. Because brands play an
important role in distinguishing between TV’s, we have developed an
improved brand finder, which not only extracts the brand from the
product title, but also from the discovered brand key of each product.
This leads to a decrease of 43% in the amount of product comparisons,
saving much computational time. Incorporating a pre-processing phase
improves the speed of the product similarities phase by roughly a factor
of 3. When increasing the size of the dataset, the time of the pre-
processing phase will relatively diminish compared to the rest of the
process, achieving even higher efficiency.

The algorithm is not limited to this particular dataset or even to the
television market. The only requirement is that the dataset has some sort
of title and some features with values, which is often the case. Even if
there is no title, APFA performs reasonably well with an F1-measure of
0.521 on this dataset. For future research, we recommend trying the
algorithm on several different datasets, preferably with varying types of
products. Furthermore, it will be important to do more research on the
last phase, namely the clustering algorithm. In Benjelloun et al. (2008), a
different approach than the one we use now is proposed, which is called
‘matching and merging’. When a match occurs, the source code of those
entities is immediately removed and we continue with the merged
version. Especially when the dataset becomes larger, we suggest using
map-reduce algorithms, two of which are given in Rastogi, Machana-
vajjhala, Chitnis, and Das Sarma (2013), that focus on computing con-
nected components for large graphs, and in Jin et al. (2013), that
proposes a distributed algorithm for single-linkage hierarchical
clustering.

We give two directions to improve the key matching algorithm. The
first is to research to what extent the matching keys obey the transitivity
relation. If transitivity holds sufficiently, this knowledge may be
implemented in the pre-processing phase. Specifically, after aligning
shop A with B and shop B with C, we may use the transitivity relation to
make several alignments between shop A and C already, that way
further bringing down the number of key-pair comparisons when
aligning the keys. A second direction is to evaluate whether it is prof-
itable to perform key matching within Web shops before the actual key
matching between Web shops. We suspect that it may prove useful, as
we encountered some keys within Web shops that in fact represent the
same feature (e.g., ‘warranty terms’ with ‘warranty term’, ‘shipping:’
with ‘shipping’). If these could be merged, we would have more values
so that key matching could be improved. Moreover, during the product
similarity phase, the merged key may be used, rather than only one of
the keys. As the latter is the case, we are currently missing all infor-
mation from the other key.

Furthermore, much may still be left to be exploited from the blocking
phase, with it being the method of reducing the number of product
comparisons. The pre-processing phase may provide valuable informa-
tion for the forming of the blocks, e.g., finding out which features are
important for block splitting and what these features are across different
Web shops. This will further enhance the effectiveness of the blocking
method, so we recommend to combine the proposed pre-processing
phase with the blocking phase.

Lastly, in this paper we have only considered the performance of
APFA in comparison with the algorithm that it is meant to improve
upon, namely MSM. APFA utilizes various handcrafted features and
processing steps to link product keys. An interesting approach to explore
and compare APFA with is the implementation of deep learning methods
for this problem. Similarly to how Word2Vec (Mikolov, Chen, Corrado, &
Dean, 2013) can be used to calculate similarity scores between words
and find synonyms, a deep learning implementation could be used to
define key similarity scores and find matching keys. Not only could this
idea be implemented for the purpose of calculating key similarity scores
during phase 0, but also during phase 2 to calculate similarity scores
between products. There already is significant work done on linking

N. Valstar et al.

Expert Systems With Applications 174 (2021) 114759

16

similar knowledge from different sources using deep learning techniques
(Xu et al., 2016). Furthermore, deep learning approaches could also be
explored for the other parts of the process like the clustering phase
(Aljalbout, Golkov, Siddiqui, Strobel, & Cremers, 2018).

CRediT authorship contribution statement

Nick Valstar: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Writing - original draft, Writing - review & editing.
Flavius Frasincar: Conceptualization, Investigation, Writing - review &
editing, Supervision. Gianni Brauwers: Conceptualization, Investiga-
tion, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

Wouter Bender, Tim Grevelink, Kai Huiskamp, and Ruben Timmer-
mans contributed in the early stages of this work with their insights in
the field of Value-Driven Similarity Detection. Thomas Breugem, Bert
Wassink, Gino Mangnoesing, and Wim Kuipers contributed with their
research on applying Data Types and Measurement Units for the purpose
of key matching.

References

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., & Cremers, D. (2018). Clustering with
Deep Learning: Taxonomy and New Methods. arXiv preprint arXiv:1801.07648.

Amazon.com, Inc. (n.d.). URL:http://www.amazon.com.
Ayat, N., Akbarinia, R., Afsarmanesh, H., & Valduriez, P. (2014). Entity resolution for

probabilistic data. Information Sciences, 277, 492–511.
Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S., & Widom, J. (2008).

Swoosh: a generic approach to entity resolution. The VLDB Journal, 18, 255–276.
Best Buy Co., Inc. (n.d.). URL:http://www.bestbuy.com.
Bilenko, M., & Mooney, R.J. (2003). Adaptive duplicate detection using learnable string

similarity measures. In 9th ACM SIGKDD international conference on knowledge
discovery and data mining (KDD 2003) (pp. 39–48). ACM.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
Breitling, R., Armengaud, P., Amtmann, A., & Herzyk, P. (2004). Rank products: a

simple, yet powerful, new method to detect differentially regulated genes in
replicated microarray experiments. FEBS Letters, 573, 83–92.

Computer Nerds International, Inc. (n.d.). URL:http://www.thenerds.net.
de Bakker, M., Frasincar, F., & Vandic, D. (2013). A Hybrid model words-driven

approach for web product duplicate detection. In 25th international conference on
advanced information systems engineering (CAiSE 2013) (pp. 149–161). Springer
volume 7908 of LNCS.

Draisbach, U., & Naumann, F. (2010). DuDe: The duplicate detection toolkit. In 8th
International workshop on quality in databases (QDB 2010).

Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate record detection: a
survey. IEEE Transactions on Knowledge and Data Engineering, 19, 1–16.

Fernández, N., Fisteus, J. A., Sánchez, L., & López, G. (2012). IdentityRank: named entity
disambiguation in the news domain. Expert Systems with Applications, 39, 9207–9221.

Fisher, J., Christen, P., Wang, Q., & Rahm, E. (2015). A clustering-based framework to
control block sizes for entity resolution. In 21st ACM SIGKDD international conference
on knowledge discovery and data mining (KDD 2015) (pp. 279–288). ACM.

Hartveld, A., van Keulen, M., Mathol, D., van Noort, T., Plaatsman, T., Frasincar, F., &
Schouten, K. (2018). An LSH-based model-words-driven product duplicate detection
method. In 30th International conference on advanced information systems engineering
(CAiSE 2018) (pp. 409–423). Springer volume 10816 of LNCS.

Hassanzadeh, O., Chiang, F., Lee, H. C., & Miller, R. J. (2009). Framework for evaluating
clustering algorithms in duplicate detection. Proceedings of the VLDB Endowment, 2,
1282–1293.

Hsueh, S., Lin, M., & Y., C. (2014). A load-balanced mapreduce algorithm for blocking-
based entity-resolution with multiple keys. In 12th Australasian symposium on parallel
and distributed computing (AusPDC 2014) (pp. 3–9). Australian Computer Society
volume 152.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the
curse of dimensionality. In 30th Annual ACM symposium on theory of computing (STOC
1998) (pp. 604–613). ACM.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing
Surveys, 31, 264–323.

Jalbert, N. (2008). Automated duplicate detection for bug tracking systems. In 2008 IEEE
international conference on dependable systems and networks with FTCS and DCC (DSN
2008) (pp. 52–61). IEEE.

Jin, C., Patwary, M.M.A., Agrawal, A., Hendrix, W., Liao, W., & Choudhary, A. (2013).
DiSC: A distributed single-linkage hierarchical clustering algorithm using
MapReduce. In 4th international workshop on data intensive computing in the clouds
(DataCloud 2013).

Kolb, L., Thor, A., & Rahm, E. (2012). Multi-pass sorted neighborhood blocking with
MapReduce. Computer Science – Research and Development, 27, 45–63.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words.
Stanford InfoLab.

List with Measurement Units (n.d.). URL:http://www.convert-me.com/en/unitlist.html.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.
Monge, A. E. (2000). Matching algorithms within a duplicate detection system. IEEE Data

Engineering Bulletin, 23, 14–20.
Nederstigt, L. J., Aanen, S. S., Vandic, D., & Frasincar, F. (2014). FLOPPIES: A framework

for large-scale ontology population of product information from tabular data in e-
commerce stores. Decision Support Systems, 59, 296–311.

Newegg Inc. (n.d.). URL:http://www.newegg.com.
Papadakis, G., Alexiou, G., Papastefanatos, G., & Koutrika, G. (2015). Schema-agnostic vs

schema-based configurations for blocking methods on homogeneous data. In 41st
International conference on very large data bases (VLDB 2015), 9 (pp. 312–323).

Papadakis, G., Ioannou, E., Palpanas, T., Niederee, C., & Nejdl, W. (2013). A blocking
framework for entity resolution in highly heterogeneous information spaces. IEEE
Transactions on Knowledge and Data Engineering, 25, 2665–2682.

Phillips, J. M. (2013). Jaccard similarity and shingling. University of Utah.
Rastogi, V., Machanavajjhala, A., Chitnis, L., & Das Sarma, A. (2013). Finding connected

components in map-reduce in logarithmic rounds. In IEEE international conference on
data engineering 2013 (ICDE 2013) (pp. 50–61). IEEE.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W.,
& Lin, C.-T. (2017). A review of clustering techniques and developments.
Neurocomputing, 267, 664–681.

Simonini, G., Papadakis, G., Palpanas, T., & Bergamaschi, S. (2019). Schema-agnostic
progressive entity resolution. IEEE Transactions on Knowledge and Data Engineering,
31, 1208–1221.

Sutinen, E., & Tarhio, J. (1995). On using q-gram locations in approximate string
matching. In Third annual european symposium (ESA 1995) (pp. 327–340). Springer
volume 979 of LNCS.

Talburt, J. R. (2010). Entity resolution and information quality. Morgan Kaufmann.
Tan, P., Steinbach, M., & Kumar, V. (2006). Introduction to data mining (1st ed.). Pearson

International Edition.
Thomas, I., Davie, W., & Weidenhamer, D. (2014). Quarterly retail e-commerce sales 3rd

Quarter 2014. U.S Census Bureau News.
Valstar, N., & Frasincar, F. (2019). Technical report and software of APFA. URL:https://

github.com/nickvalstar/APFAProject.
van Bezu, R., Borst, S., Rijkse, R., Verhagen, J., Frasincar, F., & Vandic, D. (2015). Multi-

component similarity method for web product duplicate detection. In 30th Annual
ACM symposium on applied computing (SAC 2015) (pp. 761–768). ACM.

van Dam, I., van Ginkel, G., Kuipers, W., Nijenhuis, N., Vandic, D., & Frasincar, F.
(2016). Duplicate detection in web shops using LSH to reduce the number of
computations. In 31st Annual ACM symposium on applied computing (SAC 2016) (pp.
772–779). ACM.

Vandic, D., Frasincar, F., Kaymak, U., & Riezebos, M. (2020). Scalable entity resolution
for web product descriptions. Information Fusion, 53, 103–111.

Vandic, D., Van Dam, J., & Frasincar, F. (2012). Faceted product search powered by the
semantic web. Decision Support Systems, 53, 425–437.

van Rooij, G., Sewnarain, R., Skogholt, M., van der Zaan, T., Frasincar, F., & Schouten, K.
(2016). A data type-driven property alignment framework for product duplicate
detection on the web. In 17th International conference on web information systems
engineering (WISE 2016) (pp. 380–395). Springer volume 10042 of LNCS.

Verykios, V., Elmagarmid, A., & Houstis, E. (2000). Automating the approximate record-
matching process. Information Sciences, 126, 83–98.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1,
80–83.

Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., & Li, S. (2016). Predicting semantically linkable
knowledge in developer online forums via convolutional neural network. In 31st
IEEE/ACM international conference on automated software engineering (ASE 2016) (pp.
51–62). ACM.

Yang, C., Hoang, D., Mikolov, T., & Han, J. (2019). Place deduplication with
embeddings. In 2019 World Wide Web Conference (WWW 2019) (pp. 3420–3426).
ACM.

Zhu, G., & Iglesias, C. A. (2018). Exploiting semantic similarity for named entity
disambiguation in knowledge graphs. Expert Systems with Applications, 101, 8–24.

N. Valstar et al.

http://refhub.elsevier.com/S0957-4174(21)00200-1/h0005
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0005
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0015
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0015
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0020
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0020
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0035
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0060
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0060
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0065
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0065
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0095
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0095
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0110
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0110
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0115
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0115
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0150
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0150
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0150
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0155
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0170
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0170
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0170
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0180
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0185
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0185
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0190
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0190
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0195
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0195
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0210
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0210
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0215
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0215
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0225
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0225
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0230
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0230
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0245
http://refhub.elsevier.com/S0957-4174(21)00200-1/h0245

	APFA: Automated product feature alignment for duplicate detection
	1 Introduction
	1.1 Methods
	1.2 Research question

	2 Related work
	2.1 Phase 0: Data pre-processing
	2.2 Phase 1: blocking
	2.3 Phase 2: pairwise product comparison
	2.4 Phase 3: clustering

	3 Methodology
	3.1 Phase 0: pre-processing
	3.1.1 Value aggregation per key
	3.1.2 Adding metrics per key
	3.1.3 Alignment of keys between web shops
	3.1.4 Preparation of alignments
	3.1.5 Additional information per product

	3.2 Phase 2: pairwise product comparison

	4 Evaluation
	4.1 Feature alignment
	4.2 Duplicate detection
	4.3 Speed of the proposed algorithm

	5 Conclusion & future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

