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A B S T R A C T   

To keep up with the growing interest of using Web shops for product comparison, we have developed a method 
that targets the problem of product duplicate detection. If duplicates can be discovered correctly and quickly, 
customers can compare products in an efficient manner. We build upon the state-of-the-art Multi-component 
Similarity Method (MSM) for product duplicate detection by developing an automated pre-processing phase that 
occurs before the similarities between products are calculated. Specifically, in this prior phase the features of 
products are aligned between Web shops, using metrics such as the data type, coverage, and diversity of each 
key, as well as the distribution and used measurement units of their corresponding values. With this information, 
the values of these keys can be more meaningfully and efficiently employed in the process of comparing prod-
ucts. Applying our method to a real-world dataset of 1629 TV’s across 4 Web shops, we find that we increase the 
speed of the product similarity phase by roughly a factor 3 due to fewer meaningless comparisons, an improved 
brand analyzer, and a renewed title analyzer. Moreover, in terms of quality of duplicate detection, we signifi-
cantly outperform MSM with an F1-measure of 0.746 versus 0.525.   

1. Introduction 

Increasingly many people do their shopping via the Internet in the 
safe environment of their home (Thomas, Davie, & Weidenhamer, 
2014). The most important reason might be that the Internet allows 
people to visit several Web shops in a few minutes when deciding what 
product to buy. This is much less time consuming than in real-life where 
we have to consider travel time. Nevertheless, it is not an easy task to 
compare the large amounts of products from the many various Web 
shops. For example, due to differing ways of displaying product infor-
mation, some products may look different, while they are in fact du-
plicates. Conversely, other products might appear the same, yet turn out 
to be different products. In this work we focus on solving this very 
problem, which is known as product duplicate detection. 

Most of the time, with some effort, the human eye will spot that two 
products are the same when looking at both the product titles and 
product features. However, this takes a considerable amount of time (de 
Bakker, Frasincar, & Vandic, 2013), and it may not always be possible. 
Different Web shops may omit information, or may indeed have the 
same information, but present it under different names. In this case, one 

of the goals of Web shops, namely providing a fast and convenient way 
of shopping, is not achieved. For these reasons, the focus of this paper is 
to improve duplicate detection methods. 

The context of this work is the television market. Note that in this 
context we are concerned with the sales of televisions, not the sub-
scriptions for channels. Specifically, we consider only the online market 
for television selling. A dataset is used that contains over 1000 records of 
TV’s obtained from four different Web shops (Amazon.com, Inc, n.d.; 
Best Buy Co., Inc., n.d.; Computer Nerds International, Inc., n.d.; New-
egg Inc., n.d.) that each exhibit different product descriptions. The aim is 
to find the duplicate TV’s between the considered Web shops. A product 
duplicate detection method can be used for Web shop aggregators. 

1.1. Methods 

Before discussing the related work in the next section, the general 
framework that the majority of duplicate detection methods follow is 
introduced. Note that not all methods use all the phases contained in this 
framework, but all obey the order defined by the framework. This ex-
plains to the reader the basics which are needed to understand the 
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research question that is posed at the end of this section. Furthermore, 
one can use this framework as a reference throughout the rest of this 
paper. 

Duplicate detection methods typically consist of three phases which 
are referred to as phases 1 through 3. However, in some papers a fourth 
phase can be distinguished which is performed before the other phases. 
Therefore, this phase is named phase 0. Phase 0 entails a prior inspection 
and processing of the data to extract key characteristics and information 
about the products and their features. A ‘feature’ is the general term 
used for an attribute of a product, such as ‘Brand’. Such a feature can be 
represented by different ‘keys’ across Web shops. In one Web shop the 
key ‘Brand Name’ may be used, while in another it is simply called 
‘brand’. Thus, a process called feature alignment can be implemented in 
phase 0 where the objective is to find the keys between Web shops that 
represent the same feature. The resulting information from phase 0 (e.g., 
which keys align across Web shops) is used to speed up and improve the 
rest of the process. Each product description extracted from the various 
Web shops contains a set of keys and their corresponding values that 
describe the product features. As one might understand, comparing all 
products from each Web shop with all products of all other Web shops 
quickly becomes infeasible due to the substantial amount of products. 
Phase 1 is therefore used to reduce the amount of comparisons. This is 
generally achieved through a process called ‘blocking’. Based on some 
conditions, products are placed in groups called ‘blocks’. Products that 
can never be duplicates (e.g., ones that have different brands or belong 
to the same shop) will not fall into the same block. Only products within 
each block are compared, significantly reducing the amount of com-
parisons that are made. Blocking is a fast method, but is not flawless with 
respect to accuracy. 

The next phase, phase 2, consists of comparing all possible product- 
pairs that are in the same block, and calculating a similarity score for 
each comparison. Web shops use different keys that can represent the 
same feature (e.g., ‘Brand’, ‘Company’) with corresponding values (e.g., 
‘Motorola’, ‘HTC’). The challenge is to match these key-value pairs 
(KVP). Since it is unknown which keys correspond across Web shops, it is 
impossible to compare the corresponding values, thus one cannot 
compute the similarity score for a considered pair. In phase 2, solutions 
are proposed to address these problems. Lastly, once all relevant 
product-pairs are scored, phase 3 entails the actual decisions: which 
products are duplicates. This is often done by means of clustering 
techniques. 

1.2. Research question 

Developing an automated phase 0 is the main contribution of this 
research. This pre-processing phase entails extracting additional infor-
mation for the products and keys. The additional information can be 
used to produce new metrics based on the values of the keys, which are 
used to significantly improve the feature alignment step. Furthermore, 
the additional information can be used during phase 2 to both improve 
the model’s ability to accurately match products and reduce the 
computation time of the algorithm. With this, we aim to improve upon 
the state-of-the-art MSM algorithm for product duplicate detection. 
MSM (van Bezu et al., 2015) performs significantly better than its pre-
decessors (Vandic, Van Dam, & Frasincar, 2012; de Bakker et al., 2013). 
This leads us to address the following research question:  

• Can the MSM algorithm for product duplicate detection be improved 
in terms of F1-measure and/or speed through the use of an improved 
and automated phase 0? 

In order to answer this question, the following sub-questions are 
answered as well:  

1. How can product feature alignment be automated and what is its 
value?  

2. Can the calculation of the product similarity in phase 2 be improved 
by incorporating information from phase 0?  

3. Will an automatic product feature alignment step improve the speed 
of the process? 

The structure of this paper is as follows. In Section 2, a theoretical 
background is provided on duplicate detection of products from Web 
shops and we give an overview of the existing techniques. In Section 3, a 
detailed description is provided of the proposed techniques and the 
employed framework that are used to answer the research questions. 
Next, the performance of these methods are evaluated in Section 4. 
Lastly, conclusions are drawn based on these results, and directions are 
given for future work in Section 5. 

2. Related work 

Entity resolution and duplicate detection are relevant in fields such 
as probabilistic data (Ayat, Akbarinia, Afsarmanesh, & Valduriez, 2014), 
microarray analysis on gene data (Breitling, Armengaud, Amtmann, & 
Herzyk, 2004), and entity disambiguation in various domains (Zhu & 
Iglesias, 2018; Fernández, Fisteus, Sánchez, & López, 2012). Although 
many methods have already been proposed for the purpose of duplicate 
detection, the task remains a challenge (Hsueh et al., 2014; Monge, 
2000). Furthermore, due to differences in used datasets and hardware, it 
is difficult to determine the optimal methods. Toolkits such as DuDe 
(Draisbach & Naumann, 2010) have been developed to ease the imple-
mentation and comparison of the various duplicate detection methods. 
The foundations of the theory of entity resolution are presented by 
Talburt (2010). Some work focuses on improving the effectiveness of 
duplicate detection, while others consider the scalability of the proposed 
solution. We aim to develop a framework that is both effective and 
scalable by reusing, extending, as well as proposing new solutions to the 
framework components. In this section, an overview is provided of the 
existing methods while adhering to the four-phase framework as 
described in the introduction for improved readability. 

2.1. Phase 0: Data pre-processing 

In Elmagarmid, Ipeirotis, and Verykios (2007), where the existing 
literature on duplicate detection in general is reviewed, there is a 
separate section on data preparation. However, this mostly deals with 
methods used for ‘cleaning’ the data such as standardization (e.g., 
changing “5 Feb ’98” to a more uniform format “02/05/1998”) and 
parsing (e.g., differentiating between strings, numbers, and Booleans). 
This makes the datasets easier to compare and therefore more useful. In 
addition, the concept of data heterogeneity, the occurence of systemic 
differences between databases, is discussed. Two different types of 
heterogeneity are considered, namely structural and lexical. Both of 
these types are encountered in our data. An example of structural het-
erogeneity is that two Web shops may represent the same feature with 
different keys (e.g., ‘Brand’ versus ‘Company’). Lexical heterogeneity 
can occur when, for example, different Web shops use different repre-
sentations for the exact same values (e.g., ‘7cd/m2’, ‘7.0nit’, ‘7,0cd m2’). 
Moreover, even within the same Web shop values are not always 
depicted consistently. In order to sensibly compare products between 
two Web shops, both these heterogeneity types need to be dealt with. 
Another example of research in this field that contains a pre-processing 
phase is provided by Verykios, Elmagarmid, and Houstis (2000). 
Although, this work is also only concerned with ‘cleaning’ the data. 
Their research, just like much other research (Bilenko & Mooney, 2003; 
Jalbert, 2008) on duplicate detection, deals only with the second type of 
heterogeneity as was just described, so feature alignment is not 
necessary. 

Many previously proposed models often do not include a phase 
0 since most of the functions of phase 0 can be performed while pro-
cessing the other phases. For example, van Bezu et al. (2015) and de 
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Bakker et al. (2013) decide to do key matching ‘on the fly’ during 
product pairwise comparisons. When two products are compared, the 
lexical similarity between the names of two keys is calculated using q- 
grams (Sutinen & Tarhio, 1995). When this similarity passes a threshold, 
the keys are marked as similar and their corresponding values are 
compared and scored. This is done for all combinations of key-pairs 
between the two considered products. We discuss in SubSection 2.3 
the details of this step. In the linguistic literature, this approach is 
intuitively called name matching, since the keys are matched based on 
the similarity of the key names. Fig. 1 shows how this can fail. The first 
three keys are not matched, because the q-gram distance between the 
names of the keys is too low, although it is quite clear that the keys 
should match. In contrast, the last three keys are matched because the 
names of the keys agree sufficiently, while they should not be matched. 
This example is worked out later on. In an attempt to prevent such 
mistakes, in this work the focus is moved from name matching to 
description matching, where the descriptions are used to decide what to 
match. In our context, this means analyzing the values within keys in 
order to align features. 

The idea behind incorporating a phase 0 is that the feature alignment 
is done beforehand and not every time for each product comparison. The 
first advantage is that, especially for large datasets, this saves compu-
tational time. Instead of performing key alignment for each key-pair of 
each product-pair during phase 2, all key-pair matching is done be-
forehand during phase 0 and stored for future use. During phase 2, when 
comparing products, the algorithm only needs to check the previously 
stored results to decide which keys to compare. The second advantage is 
that it raises the opportunity to perform description matching. After 
iterating over all products in a Web shop, all values belonging to a key 
can be stored. After that, for a certain key, some metrics on these values 
(e.g., measurement units or data types) can be calculated that are used 
later in feature alignment. We discuss these in the rest of this section. 

Nederstigt, Aanen, Vandic, and Frasincar (2014) use the values 
associated with the keys to discover the data type of said keys. To 
illustrate, the key named ‘inputs’ can in one Web shop contain string 
values (e.g., the kind of input: ‘usb3.0’, ‘hdmi’), while in another Web 
shop the key ‘inputs’ can contain numeric values (e.g., the amount of 
inputs: ‘0’, ‘4’). Even though these keys represent the ‘inputs’ feature, 
comparing them will not make sense. Yet, if one would only use name 
matching, the keys would certainly be matched regardless of the 
differing values. One can create an improved algorithm by allowing it to 
incorporate the additional information of the data types in its matching 
decisions. For the fourth example key in Fig. 1, this improved algorithm 
would be able to detect that the data type of the left key is a string, while 
on the right it is a double. Consequently, this false match would be 
prevented. Using such information can therefore make key alignment 
more trustworthy. Another contribution by Nederstigt et al. (2014) is the 
idea of using measurement units to improve the matching process. For 
example, even when the data types of the key are both numeric, it is still 
possible that the values represent something completely different when 

their units do not correspond (e.g., ‘35cm’ versus ‘35lbs.’). The incor-
poration of measurement units would perhaps have caused the second 
example key in Fig. 1 to be matched because of the matching unit types. 
Moreover, the last two keys would not be matched due to differing 
measurement units. Both the data types and measurement units of the 
keys are used by van Rooij et al. (2016) in a pre-processing phase to 
improve upon the MSM model. In this work, not only are both the data 
types and the measurement units considered as metrics, but we also use 
various additional metrics based on the values of the keys to obtain an 
even more dependable alignment method. We introduce the data dis-
tribution, coverage, diversity, and standard deviation metrics, which are 
explained in depth in Section 3. 

2.2. Phase 1: blocking 

The goal of blocking is reducing the number of product-pairs that are 
to be compared. Papadakis, Ioannou, Palpanas, Niederee, and Nejdl 
(2013) have laid the foundations of this method. The idea is to assign 
products to blocks based on certain conditions. To illustrate blocking, 
consider an easy example where we assign products to blocks using the 
condition that their brand must correspond, so that in each block every 
product has the same brand. Consequently, products that do not have 
any blocks in common are not to be compared. The major advantage is 
that the more blocks you have, the smaller the amount of comparisons. 

For example, 1 large block of 50 requires 1 ×

(
50
2

)

= 1225 product 

comparisons, while 5 blocks of 10 would require only 5 ×

(
10
2

)

= 225 

product comparisons. The risk, however, is that a potential duplicate 
ends up in different blocks due to a mistake in the Web shop (mis-
spellings) or in the blocking selection (too strict or incorrect conditions). 
The probability of this occurring can be reduced by creating blocks 
based on more than one condition. The side effect is that candidate pairs 
are likely to fall in multiple blocks and thus need to be compared more 
than once. In turn, this issue can be dealt with by keeping track of 
whether a pair has already been compared or not. In general, the sizes of 
the blocks have no limit, while some specific practical applications do 
require such a limit. For example, due to privacy or scalability issues. As 
such, Fisher, Christen, Wang, and Rahm (2015) propose a clustering- 
based framework that allows one to control the sizes of the blocks. 

If the available data adheres to a certain schema, the blocking phase 
can be performed in a relatively straightforward manner, since one can 
always use the same key or set of keys for the conditions in the blocking 
process. However, as has been mentioned before, Web shop data is 
generally highly heterogeneous with no clearly defined schema. In such 
cases, schema-agnostic methods can be implemented that simply extract 
all available information from the products and use that information for 
the blocking process (Papadakis, Alexiou, Papastefanatos, & Koutrika, 
2015; Simonini, Papadakis, Palpanas, & Bergamaschi, 2019). 

Different methods can be used to make the blocking phase more 
scalable. For example, in (Kolb, Thor, & Rahm, 2012), a map-reduce 
algorithm is proposed for implementing the sorted neighborhood 
blocking method via multiple passes. Instead of scaling existing 
methods, other works focus on introducing more scalable approaches. 
For example, Vandic, Frasincar, Kaymak, and Riezebos (2020) propose a 
scalable approach that improves the blocking phase using model words 
extracted from the product titles and descriptions. Model words are 
words that contain alphabetic characters as well as numeric characters, 
such as ‘TV100’. Additionally, the proposed blocking method by Vandic 
et al. (2020) is applicable when more than two Web shops are to be 
compared, which is also the case in this paper. 

After blocking is finished, all products that have at least one block in 
common are compared with each other. From now on, pairs that are to 
be compared are referred to as candidate pairs. So within a block of size 

10 the number of candidate pairs is 
(

10
2

)

= 45. Note that not all works 

Fig. 1. Illustration of how matching based only on the name of the keys can 
lead to incorrect key matching. Green dashed line: should be matched, but are 
not matched. Red full line: are matched, but should not be matched. 
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use blocking. In those cases we say, for uniformity purposes, that all 
products are put into a single large block. Instead of blocking, a simple 
condition based on the brands of products is used by van Bezu et al. 
(2015). During the pairwise comparison phase only pairs with the same 
brand are compared. Such a heuristic can be seen as a form of blocking 
since it produces similar effects on the actual comparisons made. 

2.3. Phase 2: pairwise product comparison 

Phase 2 entails comparing all products that need to be compared 
using a comparison algorithm. Firstly, the comparison algorithm takes 
as input a set of candidate pairs. Then, the algorithm computes for each 
candidate pair a similarity score ranging between 0 and 1. Perhaps the 
clearest pairwise comparison method is the HSM method proposed by de 
Bakker et al. (2013). HSM largely builds on TMWM developed by Vandic 
et al. (2012) where model words play an important role. HSM was built 
for only two Web shops, so pairs were immediately assigned as being 
duplicates and not scored for similarity. Given two products, it first 
checks whether the model words from the titles match. If they do, assign 
them as duplicates. Otherwise, loop through the keys and check if it can 
find keys that lexicographically match sufficiently. For matching keys, 
compute the similarity of the corresponding values. For all other non- 
matching keys, compute the similarity of all the model words of the 
corresponding values taken all together. If the average of the similarity 
scores is above a certain threshold, the products are considered 
duplicates. 

The authors of MSM (van Bezu et al., 2015) improved upon the HSM 
model in several ways. First and foremost, they have extended the model 
from two to multiple Web shops so that a product may be duplicated 
across two or more shops. Consequently, product pairs are scored on 
their similarity, rather than immediately assigning them to clusters. The 
similarity score ranges between 0 and 1 with the following exception: if 
two products are from the same shop they are not compared and have a 
similarity of − ∞. Furthermore, in the case that two products have 
differing brands, a similarity score of 0 is given. A final improvement is 
that the very flexible q-grams measure is used for comparing keys and 
for comparing values. For comparing the model words of the keys that 
were not previously compared, the same technique as in HSM is used, 
namely simply calculating the percentage of model words that those 
keys have in common in their corresponding values. 

van Dam et al. (2016) propose to use Locality-Sensitive Hashing 
(LSH) (Indyk & Motwani, 1998) to significantly reduce the number of 
product comparisons made during this phase. Based on model words 
extracted from the product titles, binary vector representations are 
produced. Vector representations are not uncommon for duplicate 
detection and entity resolution. For example, in Yang, Hoang, Mikolov, 
and Han (2019), unsupervised feature generation models are used to 
produce vector embeddings of places for the purpose of place dedupli-
cation. For the LSH model, the product feature vectors are used as input 
such that the algorithm can pre-select product-pairs as duplicates with a 
high accuracy. Consequently, the number of necessary comparisons is 
reduced significantly. Further extensions of this LSH method are pro-
posed by Hartveld et al. (2018). These extensions consist of data 
cleaning and incorporating additional information from the key-value 
pairs. Compared to the MSM algorithm, Hartveld et al. (2018) present 
a 95% reduction in the number of computations with only a 6% 
reduction in the F1-measure. 

As stated earlier in SubSection 2.1, another way of making the 
pairwise comparison method substantially more efficient is by storing 
the matched keys from the pre-processing phase. The comparisons are 
then also likely to make more sense, since we have identified corre-
sponding keys between Web shops. Using this knowledge about keys, we 
plan to treat the comparison between two numerical values differently 
than between two strings, instead of using q-grams for everything. As an 
illustration, the q-gram similarity between 1000 and 1001 is the same as 
between 5000 and 1000, while the differences between these values are 

rather dissimilar. Also, q-grams cannot properly deal with rounding 
(‘19.9’ vs. ‘20’ gives a q-gram similarity of 0, while it perhaps should be 
much higher). Lastly, based on the similarity of the keys as described in 
SubSection 2.1 we weigh some comparisons more than others. When we 
are less certain that two keys are a match, we weigh their value com-
parison less. With these adjustments, we aim to improve upon the MSM 
algorithm in terms of F1-measure. 

2.4. Phase 3: clustering 

Once all candidate pairs are scored, the final phase can be performed, 
namely the actual assignment of duplicates, which is done via clustering. 
Clustering is a process in which similar data records are classified into 
groups (Jain, Murty, & Flynn, 1999). There is significant work on 
clustering techniques with applications in many different fields of 
research (Saxena et al., 2017). Clusters in the context of duplicate 
detection are groups of duplicate data records. A clustering algorithm 
that does not require a predefined amount of clusters must be used in the 
case of duplicate detection, since we do not know how many duplicates 
there are in total (Hassanzadeh, Chiang, Lee, & Miller, 2009). Elma-
garmid et al. (2007) and Hassanzadeh et al. (2009) provide an overview 
of clustering techniques specifically for duplicate detection. However, 
the main issue with previous solutions is that they often take a database 
perspective that includes structured data. Since we work with semi- 
structured Web data, the phases explained in the previous subsections 
are necessary before a clustering algorithm can be used. 

MSM (van Bezu et al., 2015) uses agglomerative hierarchical clus-
tering (Tan, Steinbach, & Kumar, 2006). All products start in their own 
cluster of size one, after which clusters that are sufficiently similar are 
merged based on a certain linkage strategy. MSM uses single linkage, 
where the distance between two clusters is defined as the distance be-
tween the closest two points of the clusters. The distance between 
products is measured as 1 minus the similarity score, which is also 
known as the dissimilarity. The dissimilarity ranges between 0 and 1, 
with the exception of ∞ as introduced earlier. It is not a proper math-
ematical distance function, since a distance of 0 does not necessarily 
mean that the products are the same. Of course, the closer it is to 0, the 
higher is the probability that the products are duplicates. The intuitive 
downside of this method is that each time it only looks at one product of 
a cluster (the one most similar) while the rest is ignored, even though 
they might be very different. This can cause products with very low 
similarity to end up together. An exception can be made to this regard. 
Namely, when one of the distances between the points in two clusters is 
set equal to ∞, complete linkage can be used. Complete linkage simply 
calculates the largest distance between the clusters, rather than the 
smallest. In that case, they will not be merged, which has solved the 
issue. The downside of complete clustering is that one product (the 
furthest) has all the influence in the merging process and the rest is 
ignored, while these might be very similar to each other. A third method 
is the so-called average linkage, which is defined as the average of all the 
distances between all possible points between the clusters. When one of 
the distances is set to ∞, the average distance is automatically set to ∞ as 
well. This method creates a balance between the aforementioned 
downsides of single- and complete linkage. 

3. Methodology 

The structure of the methodology is based on the order of the posed 
research questions. First, in SubSection 3.1, a novel pre-processing al-
gorithm is presented that matches product features between Web shops. 
Second, in SubSection 3.2, an algorithm is proposed that performs 
pairwise comparison similar to MSM (van Bezu et al., 2015), while 
incorporating information from the improved pre-processing step. Fig. 2 
illustrates the various steps of APFA that are explained in this section. 

After developing the proposed steps, we implement the two algo-
rithms into a framework so that it can be tested and optimized. By a 
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framework we mean the environment in which the algorithms are run 
and the evaluation is performed. The framework that is used was pro-
posed by Vandic et al. (2020). The programming languages Java and 
Scala are used in the framework, while Spark is employed for distributed 
computing. 

Due to space limitations, the pseudocode of all proposed algorithms 
throughout this section can be found in the technical report, which can 
be accessed online (Valstar & Frasincar, 2019). The software (including 
the data) is made available in GitHub (Valstar & Frasincar, 2019). 

3.1. Phase 0: pre-processing 

In order to answer the first research subquestion, an automatic 
feature alignment phase is developed. In the previous section, it was 
explained how keys are often matched while they should not be 
matched, and other keys are not matched while they should be. This is 
caused by the fact that, in earlier works, merely the names of the keys 
are used in order to detect key matches. In this section, we present 
several other metrics based on the values of the keys that can be used for 
key matching in addition to the key names. 

In SubSection 3.1.1, it is explained how all values per key in one Web 
shop are aggregated in order to extract valuable information. Next, in 
SubSection 3.1.2, it is explained how the various metrics for the keys are 
extracted. Using these metrics, in SubSection 3.1.3, it is demonstrated 
how the keys between the different Web shops are matched. These 
matched keys are then enriched with information, as shown in Sub-
Section 3.1.4. Finally, a brand-analyzer and title-analyzer are presented 
in SubSection 3.1.5 that are designed to extract additional information 
about each individual product independent of the key alignments. Both 
the product information, as well as the key alignments, are then used 
further on in Phase 2: Pairwise Product Comparison, presented in 

SubSection 3.2. 

3.1.1. Value aggregation per key 
We have argued earlier that metrics based on the values of the keys in 

addition to the name of the key, may provide valuable information for 
feature alignment. In this step, we propose a simple algorithm that it-
erates over all the products and stores all the used keys per Web shop. 
More importantly, for these keys, a list of all used values that correspond 
to a key is stored. For now, all values are seen as strings, and no pro-
cessing is done. These values are used to calculate metrics in the next 
section. Fig. 3 shows a visualization of the inputs and outputs of the 
algorithm. 

Product
Descriptions

Aligned
Keys Scoring

Non-Aligned
Keys Scoring

Title Scoring

Scores
Averaging

Key Values
Aggregation

Phase 2: Pairwise
Product Comparison Phase 3: ClusteringPhase 0: Pre-

Processing

Key Metrics

Key Alignment

Aligned Keys
Preparation

Additional
Information

MSM
Clustering

Product
Duplicates

Fig. 2. A flowchart illustrating the various processing steps utilized in APFA. Note that phase 1 (blocking) is missing since it is also not used in MSM.  

Fig. 3. Value aggregation per key. From the products per Web shop, all keys 
are collected containing all their corresponding values. 
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3.1.2. Adding metrics per key 
Using the aggregated raw values for each key, we calculate certain 

metrics. These metrics are used in the product feature alignment phase 
in SubSection 3.1.3. In addition to the data type and measurement unit 
metrics used by van Rooij et al. (2016), we propose four new key met-
rics: data distribution, coverage, diversity, and standard deviation. 

Before doing any calculations, we clean the raw values of each key 
and split them. Raw values (e.g., ‘LCD HD’, ‘40inch × 22.3inch’) often 
consist of several parts which we refer to as ‘blocks’. Note that this is 
separate from the blocking phase for duplicate detection. The blocks are 
separated by spaces, commas, composite symbols (e.g., ‘x’, ‘+’), and 
other punctuation marks. For the (‘LCD HD’, ‘40inch × 22.3inch’) 
example, the blocks would be (‘LCD’, ‘HD’, ‘40inch’, ‘22.3inch’). When, 
after splitting, a block contains both numeric and non-numeric charac-
ters (e.g., ‘40inch’), another split is made so that each numeric part 
forms a block, and each non-numeric part forms a block. For example, 
splitting (‘40inch’) would result in (‘40’, ‘inch’). Fig. 4 shows what this 
looks like for the example above. The colored cubes at the bottom are the 
final blocks. The coloring is explained later in this section. All blocks 
from all values of a key are taken together and are treated equally. The 
first three metrics are calculated based on these collected blocks. 

Each block is now categorized into a data type, which is a two step 
process. Fig. 5 visualizes this process. Recall that a block by construction 
must contain either only numeric characters or only non-numeric 
characters. Thus, blocks can be classified as quantitative or qualita-
tive. The values of quantitative blocks are then simply converted into a 
‘double’ value, or in some programming languages referred to as a float 
(e.g., ‘1’, ‘2’, ‘5.5’, ‘− 10.25’). On the other hand, for each qualitative 
block, it is checked whether the value occurs in a unit measurement list. 
If it does, the block is denoted as being a unit measure. All other qual-
itative blocks are classified as a so-called ‘string’. More details on unit 
measurements are provided later in this section. 

Summarizing, per key, all values are split into blocks and each block 
is classified into a data type. From the data types of these blocks, the data 
type of the key is decided. A key can be either a string or a double. For 
doubles, the dimensionality is also specified as is shown in Fig. 6. When 
a key is of type double, it means that it describes a quantitative value, 
such that many of its values look like ‘2’, but also values such as ‘180Hz’. 
The latter, although not purely numeric, is clearly describing a quanti-
tative class, which is why unit measures are employed for blocks. Intu-
itively, when a key has a lot values with blocks of data type ‘unit 
measure’, the key is likely to describe something quantitative. This 
reasoning brings us to the following: if for a key the number of ‘double’ 
blocks plus the number of ‘unit measure’ blocks is larger than the 
number of ‘string’ blocks, the key is regarded as a double, and otherwise 
as a string. By default, keys of type double are one-dimensional, but 
when the large majority (>90%) of the values of a key share the pattern 
of including one or two single composite signs (‘X’, ‘x’) between values, 
the key is considered to be two- or three-dimensional. For example, 
(‘40inch × 22.3inch’) would indicate a two-dimensional key. 

The measurement unit list is provided online (List with Measurement 
Units, n.d.) and contains the most commonly used measurement units. 
Such a list can be easily found and implemented in any context, making 
it an elegant way of incorporating prior knowledge into the automated 
framework. Units are not always represented similarly between Web 

shops, or even within Web shops. This is dealt with by translating the 
raw units into a canonical representation (e.g., ‘lb’, ‘lbs.’, ‘pound’, 
‘pounds’ all become ‘pounds’). See Table 1 for conversion examples. The 
canonical representation of the unit that occurs most often in the blocks 
of a key is marked as the unit of that key. To illustrate, consider a key 
that has the following counts for (raw) unit measurement blocks: 50 
blocks of ‘lb’, 50 blocks of ‘lbs.’, 50 blocks of ‘pound’, and 75 blocks of 
‘watt’. Then, the canonical form ‘pounds’ has the majority with 150 
blocks and thus will be denoted as the unit measure of the considered 
key. Thus, the canonical form can now be used instead of the raw units, 
so that in phase 0 keys may be matched more precisely. Furthermore, in 
phase 2 values of keys may be compared when they share the same unit. 

The next metric is the data distribution metric. The data distribution 
is a slightly different metric, since it is not calculated individually per 
key. Instead, once in the key matching phase, when comparing two keys 
that are classified as ‘double’, we test using a standard t-test whether 
their respective sets of double values can originate from the same dis-
tribution. For example, {‘0.3’,‘0.5’,‘1.0’} will not likely come from the 
same distribution as {‘10’,‘14’,‘28’}. We deem a t-distribution valid, as 
the samples are usually larger than 100 values and there is no obvious 
reason for another distribution. The assumption is that when the values 
of two keys are distributed very differently, there are 2 possibilities: the 
keys do not represent the same feature or the feature is not represented 
in the same manner. We discuss both of these possibilities. An exception 
to the first possibility would be the case that one Web shop would sell 
only large TV’s and another only small TV’s. However, this is not very 

Fig. 4. Blocking. Raw values are split into blocks.  

Fig. 5. Block data type hierarchy. Oval shapes are data types. At the bottom 
there are examples of the colored blocks from the previous figure that corre-
spond to these data types. 

Fig. 6. Key data type hierarchy. Oval shapes are data types.  

Table 1 
List of Units. Raw units are translated into a canonical form.  

Canonical Representation (raw) Units    

pounds lb lbs. pound pounds 
nit cd/m2 cd-m2 nit  

inch inches ′ ′ inch  
watt w watt watts  

hours hour hours hrs  
degrees degree ◦ degrees  

etc.      
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likely as shops typically try to offer their products to a wide range of 
customers. For the second possibility, the keys do represent the same 
feature, while having different distributions. This is for example possible 
when the keys are represented in different units. When the units are 
given, the unit metric will catch this. However, when the units are not 
given, the distribution metric will correctly reject this key-pair to be 
matched. To clarify, consider the following: (‘50cm’ versus ‘0.5m’) will 
be rejected by the unit metric and the distribution metric, while 
(‘50’,‘60’ versus ‘0.5’,‘0.6’) will only be rejected by the distribution 
metric. Although 50cm is equal to 0.5m, keep in mind that in this case 
‘rejected’ means that the keys should not be matched, because 
comparing their values is incorrect. On the other hand, (‘500W’ versus 
‘500Hz’) will just be rejected by the unit metric. Therefore, both of these 
metrics are needed. Note that by ‘rejected’ we mean that the key-pair 
will get a negative score for that metric and therefore will probably 
not be denoted as a matching key-pair. In the next subsection, we go into 
more detail on scoring key-pairs for the purpose of feature alignment. 

Lastly, diversity, coverage, and standard deviation are relatively 
straightforward metrics. Diversity is the number of unique values a key 
has. To illustrate, a day of the week will have a diversity of 7, while a 
month entry will have a diversity of 12. The idea is that when two keys 
have contrasting/similar diversities, we can adjust the similarity score of 
the key-pair accordingly. On the other hand, diversity may also be used 
for the importance of the matched feature. A diversity of 1 (e.g., all 
values are ‘yes’) does not add any discriminating power when 
comparing corresponding keys. Such keys can be left out, which is 
inspired by Koller and Sahami (1997) where the selection of important 
features is stressed. We deliberately choose to consider the raw values as 
to maintain a fair comparison between Web shops. When splitting the 
values into blocks, this may increase the number of unique values more 
for a Web shop that uses values that consist of several blocks, rather than 
just of one block. Coverage of a key is the proportion of products of a 
Web shop that have that particular key included in their description. 
This may therefore be calculated as the number of raw values a key has, 
divided by the number of products a Web shop has. Important features 
such as brand will always be included in the description of the product, 
while details such as shipping size will only be included occasionally, 
either because it is not known for that product or it is left out by acci-
dent. Whatever the reason, it may suggest that such a key is not as 
important as a key that is always included. This metric may therefore 
also help to prevent aligning keys between Web shops that have very 
different coverages and therefore probably not the same meaning. 
Finally, the standard deviation (spread around the mean) is calculated 
based on the stripped double values of the key. This last metric is used in 
phase 2 when comparing values of matched keys, and more details 
follow in SubSection 3.2. Fig. 7 shows the entire process for one of the 
keys from the example used in Fig. 3 in the previous section. 

3.1.3. Alignment of keys between web shops 
The final stage of phase 0 is the actual matching of the keys. All the 

information of each key that has been previously gathered is incorpo-
rated in this process. This includes the name of the keys, the processed 
string- and double-values, and the calculated metrics. Technically, the 
name of the Web shop of a key also plays a role in key matching since 
keys within the same Web shop should not be matched. This is because 
products within the same Web shop are not to be compared, following 
the assumption made by van Bezu et al. (2015) that Web shops do not 
contain duplicates. 

As stated before, MSM does not employ a separate phase for key 
matching, but does this ‘on the fly’ during product comparison. We now 
explain how this approach works and compare this with our approach. A 
first difference is that, in MSM, key matching occurs every time when 
two products are compared, while in our approach, key matching hap-
pens only once beforehand. The second difference is that, in key 
matching, MSM uses only information about those two products, while 
our model uses information about keys gathered from all products, due 

to the metrics being based on the cumulative information in the keys. 
We now elaborate on how the score between two keys is calculated. 

In MSM, the q-gram similarity between the names of the keys is calcu-
lated. When this similarity is higher than a pre-specified threshold, the 
keys are matched. In this paper, this is just a small part of the scoring, 
since the score is also based on the processed string- and double-values, 
and the previously calculated metrics. Each of these scores that the total 
similarity score consists of will now be discussed. Recall that the input 
for the matching algorithm is a pair of keys from different shops, where a 
key has the information as visualized in Fig. 7. 

The first step in the matching of two keys is to check the data types. 
When the data types do not agree, the algorithm immediately rejects this 
key-pair (e.g., one of the keys is of type ‘String’ while the other is of type 
‘Double 2-dim’). These keys most likely do not represent the same 
feature. Even if they do, when arriving in phase 2, the comparison be-
tween a double value and a string value will give a delusive answer. 
Thus, it is better not to compare products based on this key at all. The 
same holds for different dimensionalities. Note that, technically, the 
keys are not scored based on data types, but this step merely acts as a test 
whether this key-pair should be scored and matched at all. 

Just as in MSM, the lexical similarity of the names of the keys based 
on the q-gram measure is now calculated. This score, ranging from 0 to 
1, is used in the calculation of the final score. Furthermore, this score 
also acts as a test, since it is required to pass a certain predefined 
threshold. The reasoning is that even when a pair has a high similarity 
score overall, we are hesitant to match these keys if the names of the 
keys are not alike. In order to evaluate whether this hesitation is 
appropriate, the model is also implemented with a threshold parameter 
set to 0 to compare the results. One more test that is performed is when 
the model checks whether one of the names is contained in the other 
name. This test is necessary since in many cases it means that one Web 
shop is merely more elaborate than the other on the used terminology. 
As such, both keys still denote the same feature. Often, however, such 
pairs score low using q-grams (e.g., ‘Weight’ vs. ‘Weight (Approximate)’ 
scores 0.42, ‘Labor’ vs. ‘Labor warranty’ scores 0.47), so that these key- 
pair may not pass the threshold. Therefore, a set minimum score is given 
when one key name is contained in the other. This minimum score is a 
parameter that is trained using a grid-search. Note that when a name is 
contained in the other, it is still allowed to score higher than the mini-
mum. This occurs when the names are very similar (e.g., ‘Length’ vs. 
‘Length cm’, ‘Size’ vs. ‘Sizes’, ‘Res max’ vs. ‘Res max.’). 

The next part of the similarity score is the part determined by the 
coverage metric. The coverage score is calculated by taking the negative 

Fig. 7. Adding metrics per key. Processes the raw values of a key and calculates 
metrics. Note that for reasons explained earlier, detected units (in this case: 
‘lb’,‘pound’,‘lbs.’) are not included in ‘String Values’. 
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squared error of the difference of their coverages, as can be seen in Eq. 
(1). The closer the coverages of the keys, the higher the score, ranging 
between − 1 and 0. The reasoning behind taking squares is that it results 
in a relatively smaller punishment when the coverages are quite similar. 
This coverage score is used, because we reason that a key with high/low 
coverage is deemed more/less important by the Web shop. We assume 
that this works in a similar manner across Web shops. Note that the size 
of the Web shop is taken into account, since coverage has been divided 
by the number of products in the shop. For the diversity metric, the 
model punishes pairs with a negative score when at least one key has a 
diversity value of one. When there is no variation in the values of a key 
of a certain Web shop, there is little value in using such a key. 

covScore = − (key1.coverage − key2.coverage)2 (1)  

divScore =

{
− 1 key1.diversity == 1OR key2.diversity == 1
0 Otherwise (2) 

The similarity of the values is calculated differently when dealing 
with strings or doubles. In case of strings, a variant of the Jaccard 
(Phillips, 2013) similarity as seen in Eq. (3) is used, where A and B are 
sets of strings. This formula is adjusted so that instead of dividing by the 
amount of unique strings the sets have in total, they are divided by the 
number of strings the smallest set has, resulting in Eq. (4). This is done to 
avoid penalizing bigger shops that have more different products, and 
therefore more different unique values, which results in larger sets of 
strings. Comparing a large shop with a small shop would then always 
result in a low Jaccard similarity. Finally, Eq. (5) is used to calculate the 

score for the string similarity, using the (adjusted) Jaccard similarity as 
just described. 

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(3)  

Jaccard adjusted(A,B) =
|A ∩ B|

min{|A|, |B|}
(4)  

stringScore = jaccardSimilarity(key1.stringValues, key2.stringValues) (5) 

When dealing with doubles, a paired, 2-sample t-test is performed to 
test whether the sets of double values could have originated from the 
same distribution. Only the first dimension is considered even when the 
values are two- or three-dimensional, so that the comparison is fair. This 
results in a score between 0 and 1, where 0 means that the probability 
that these sets of values came from the same distribution is very small, 
and 1 indicates a high probability. When this probability is high, we 
reason that these keys are likely describing the same feature, since their 
values are distributed similarly. When the sets are not distributed 
similarly, but nevertheless have multiple values in common, we still 
want to give a high score. Therefore, we also calculate the (adjusted) 
Jaccard similarity and take the maximum of both measures.   

The final metric is based on the measurement unit, which is scored 
according to Eq. (7). When both keys have the same unit, a positive score 
is awarded, because this makes it more likely that they refer to the same 
feature. When the units are not alike, this strongly suggests the features 
differ, so a negative score is given. In the case that one or both units are 
missing, the two features receive a zero score. Due to the fact that units 
are generally used more often in combination with doubles than with 
strings, the final measurement score is adjusted as to maintain a fair 
comparison. Therefore, all strings are given a bonus score, as illustrated 
in Eq. (8). 

unitScore =

⎧
⎨

⎩

0 key1.unit == ‘none’ OR key2.unit == ‘none’
1 key1.unit == key2.unit
− 1 Otherwise

(7)  

isString =

{
1 key1.datatype == ‘String’ AND key2.datatype == ‘String’
0 key1.datatype == ‘Double’ AND key2.datatype == ‘Double’

(8) 

The final total score is a weighted average of all the previously dis-
cussed scores. To ensure optimal weighting, parameters are introduced. 
Based on multiple training sets, these parameters are trained and 
optimal values are found. This is further explained in Section 4. Finally, 
Eq. (9) gives the formula used for the calculation of the final score be-
tween two keys. The final score has to pass a threshold (similarity-
Threshold) in order for a key-pair to be a candidate for being a match. We 
say candidate, since it will not be matched when one of either keys has a 

higher final score with another key.   

Summarizing, for any combination of two Web shops, a score is 
calculated for each of the combinations of keys, after which the pair with 
the highest score is assigned as being a ‘match’. Next, both keys of that 
pair are removed and the process is repeated from the beginning for 
these shops. This stops when the highest score does not reach a certain 
threshold. When that happens, the respective pair is not marked as a 
match, and the algorithm continues with another combination of Web 
shops. All found matches between each combination of shops are stored 
in a variable called Alignments. 

3.1.4. Preparation of alignments 
In order to incorporate the information obtained up until now, the 

aligned keys from Alignments are to be enriched first, just as was done to 
the keys from KeyMap in SubSection 3.1.2. Recall that the output from 
the last algorithm in the previous section is the variable Alignments 
which contains pairs of aligned keys including their scores. The keys (as 
can be seen in Fig. 7) contain information that was used for matching, 
but not all their information is useful in phase 2. At that stage, when 
comparing products, we focus on the individual values belonging to the 

finalScore =
∑7

i=1
αiβj

α = {keyWeight, doubleWeight, stringWeight, covWeight, divWeight, unitWeight, isString}
β = {keyScore, doubleScore, stringScore, covScore, divScore, unitScore, stringBonus}

(9)   

doubleScore = max{p − value − t − test(key1.doubleValues, key2.doubleValues),
jaccardSimilarity(key1.doubleValues, key2.doubleValues)} (6)   
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products of the keys that are to be compared. We are no longer inter-
ested in the collective values that have been aggregated earlier, such as 
all the raw, double and string values. For each matched key-pair, only 
the name of the respective keys, the Web shops, all used units per key, 
the minimum standard deviation, the mutual data type, and the total 
final score are kept. In the next section, it is revealed to what purpose 
these metrics are kept. 

3.1.5. Additional information per product 
In addition to the keys and metrics explained previously, information 

about the brand and title of the products is also extracted. In this section, 
a concise overview of the brand-analyzer and title-analyzer is provided. 
For the intricate details, the interested reader can refer to the technical 
report (Valstar & Frasincar, 2019). 

An important feature for any product is the brand. It can be 
considered a good indicator of products being duplicates, since products 
with differing brands will generally not be the same. However, the brand 
is not always a feature that is included in a product listing. As such, a 
brand-analyzer is employed to identify the brand for each product. The 
brand-analyzer is an improved version of the brand extraction process of 
MSM. It essentially consists of extracting the brand from the product title 
and/or identifying a ‘brand key’ for each web shop and using that to 
extract the brands of the products. 

While the brand-analyzer only extracts the brand from the title, 
additional valuable information can be found. A title provides a quick 
overview of the product that may include information about important 
product features. In the context of TV’s, examples of such features are 
resolution, size and sharpness. Similarly to the blocking procedure 
previously described for the extracted keys, the title-analyzer extracts 
model-words from the title of a product, and splits them up into numeric 
and non-numeric parts. If the model identifies a unit in the non-numeric 
part, it is converted to a canonical unit representation, similar to before. 
The extracted features are stored for later use during the pairwise 
product comparison phase. 

3.2. Phase 2: pairwise product comparison 

We move on to phase 2 now, deliberately not going into phase 1. 
Phase 1, the blocking phase, has not been used by van Bezu et al. (2015), 
so for fair comparison it is not used here either. Now that the keys are 
aligned, we continue to subquestion 2 and develop an algorithm for 
product comparison while incorporating information from phase 0. Four 
separate steps are implemented in this phase. A pair of products is scored 
on the values of their matching keys in a manner conforming to the 
information we have on these matching keys (Step a). Next, the product- 
pair is also scored on the values of the keys that were not aligned (Step b) 
and on their titles (Step c). Finally, a weighted average is calculated and 
is assigned to the product-pair in consideration (Step d). In the remainder 
of this section, detailed descriptions of these steps are provided, while 
the changes that have been made compared to MSM (van Bezu et al., 
2015) are also explained. 

In this phase, all combinations of two products are compared and 

scored, resulting in a large amount of comparisons (
(

n
2

)
) and thus 

computational time. When linearly increasing the number of products, 
the amount of comparisons grows quadratically for large 

n
((

a∗ n
2

)/(
n
2

)
→a2

)
. In order to keep this feasible, two heuristics are 

implemented that were used in MSM as well, namely the shop and brand 
heuristic. If two products are from the same shop, they are not to be 
compared and get a similarity of − ∞. In the case that two products have 
differing brands, it is highly unlikely that these are duplicates, so a 
similarity of 0 is given, and no further comparison is done. Depending on 
the clustering algorithm of phase 3, a pair with similarity 0 can occa-
sionally end up together as duplicates, which is not the case with − ∞. 
Consequently, we are a bit more flexible with non-matching brands, as 

this can be due to misspelling, while shops usually do not have dupli-
cates. Note that the shop is always provided for each product, and the 
brand has been extracted from the features and title of each product as 
has been previously described in SubSection 3.1.5. 

Only when both conditions of the above heuristics are met, we 
continue to Step a: scoring the product-pair on the values of their 
matching keys. Two different scores are involved for each KVP (key- 
value pair), namely the key-score and the value-score. The former 
quantifies the certainty that the keys actually represent the same feature, 
and the latter is the similarity of the values. In the calculation of both 
scores there are major differences between MSM and our proposed 
approach. We discuss these now. 

For the key matching, recall that in MSM the keys are matched ‘on 
the fly’ during the comparison of two products. All combinations of keys 
between the two products are scored based on the lexical similarity of 
their names, keeping only those key-pairs with sufficient key-score. A 
key may be matched with multiple other keys. In our approach, the key 
matching has already been performed in phase 0. Keys are not matched 
merely based on their lexical similarity, but also on their collective 
values, units, data types, and more. Keys cannot be matched multiple 
times. In practice, given two products from two different Web shops, all 
key-pairs that have been labeled in phase 0 to be matches between these 
two Web shops are retrieved. Those key-pairs for which both keys 
appear in these specific products are kept. Recall that it is not always 
possible to use all labeled key-pairs, as many products have missing key- 
value pairs. Now, only for the remaining matching key-pairs, a value- 
score is calculated. 

When scoring the values of key-value pairs for the purpose of product 
scoring, in MSM the value-score is simply calculated using q-grams on 
their values, where, besides cleaning for some punctuation marks, no 
processing is done. In contrast, in our approach, we make a distinction 
between data types and treat them differently. Recall that in key 
matching we used strings and doubles, where the latter is further 
specified to be one-, two- or three-dimensional (e.g., ‘10 × 5 × 2 cm3’). 
We now briefly discuss how keys that are strings are dealt with, and after 
that we more elaborately discuss doubles. 

When dealing with a key-pair that has been denoted to be a string, 
consider the following three values of the ‘USB’ input of Newegg.com: 
‘Yes’, ‘USB 2.0 (JPEG, MPEG-4/DivX HD)’, and ‘1 (Side)’, where we 
encounter, respectively, a Boolean, a qualitative, and a quantitative 
value. It is not only difficult to compare such values, but meaningless as 
well. Therefore, we do not score key-pairs on their string similarity. 

When the data type is a one-dimensional double, an attempt is made 
to extract the double value by processing the raw value and converting it 
to a double. We now explain how the processing of a double works, and 
how two doubles are scored. The first part of the processing is removing 
everything between brackets, because although it may be useful addi-
tional information for the customer, it is not essential for our task. 
Consider for example the following value for the key ‘Output Power’ 
from Newegg: ‘20W (10W + 10W, THD 10%)’, where obviously we only 
wish to extract the ‘20W’, or even better only ‘20’. The latter can be said 
because we may assume that the keys that are to be compared have 
values using the same units of measurement, which the previously dis-
cussed key matching algorithm has made sure of. This brings us to the 
second processing step, namely stripping the value of all measurement 
units that have been used for that key in that specific Web shop. The 
third processing step deals with composite values. Some Web shops are 
more detailed than others, making it more difficult to compare their 
values. To illustrate this, consider again the key ‘Output Power’ and 
compare a product from Newegg with a product from Bestbuy, having for 
a certain product-pair respective values ‘7W + 7W’ and ‘14W’, quite 
certainly representing the same audio output which naturally consists of 
a left and a right audiobox. When our method encounters a ‘+’ sign, the 
sum is calculated. As of now, we have not included other composite 
signs, leaving this to be an interesting direction for future work. The 
final step is simply extracting the numeric part from what is left so that it 
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can be converted to a double. These four processing steps help identify 
duplicates as well as non-duplicates, because each step attempts to 
assure a fair comparison between values. 

Recall that due to inconsistency within Web shops, even when a key 
has been appointed to be of type double, it does not imply that this holds 
for all products, meaning it is not always possible to extract a double 
value for both keys. The compiler of the programming software is able to 
check whether a value is numeric or not. In those unfortunate cases that 
it is not a double while it should be, it is better to not consider this key- 
pair at all, so that it neither has a positive nor negative contribution to 
the scoring of these products. To illustrate, consider the feature ‘USB- 
inputs’ with the following values that are not necessarily equal, yet not 
conflicting as well: ‘1’, ‘Yes’, ‘Unknown’, ‘usb2.0’. In such cases, simply 
comparing these would result in a meaningless score and thus weaken 
the reliability of the eventual score of the product similarity. Therefore, 
when at least one is not of type double, the key-pair is not scored on this 
part. 

For two- or three-dimensional doubles, we simply take the first value 
and continue as if it were one-dimensional. Note that this does not mean 
that the information of the extra dimensions is ignored, since these were 
an important part of the key matching performed in phase 0. For product 
comparison, taking only the first value usually suffices (e.g., Resolution 
‘1920 × 1080’ vs. ‘1024 × 768’ becomes ‘1920’ vs. ‘1024’, resulting in 
the same answer). However, this might not always be the case (Item 
Dimensions ‘36.8 × 24.4 × 10.4’ vs. ‘36.8 × 21.6 × 2.0’ becomes an 
incorrect comparison), so we strongly suggest to follow up on this in 
future research and compare all individual values of multi-dimensional 
values. 

Given the two processed double values, a similarity score is calcu-
lated, which is a different approach from taking q-grams. Namely, we 
take the absolute (numeric) difference of the two double values and 
evaluate whether this is sufficiently small. Specifically, when it is 
smaller than the AllowedDifference parameter (see Eq. (10)), a score of 1 
is rewarded, and 0 otherwise. As stated earlier, some Web shops are 
more precise than others, so when the width of one product of a 
(duplicate) pair is ‘30–6/7 inch’, it might very well be the case that the 
product in the other Web shop has a width of ‘31 inch’. Furthermore, due 
to imperfect processing, values may be cut off (e.g., ‘30–6/7’ to ‘30’) 
instead of rounded, causing a difference of 1 inch. Our reasoning in such 
cases is that we wish to allow for an absolute difference up to (and 
including) 1. However, we must bear in mind the distribution of values. 
For example, when the double values of ‘USB-inputs’ are all taken from 
(‘0’, ‘1’, ‘2’, and ‘3’), we obviously do not want to allow for a difference 
of 1. Therefore, the minimum of 1 and half of the smallest standard 
deviation of the values of the keys is taken. Consequently, the more 
dense the values are distributed, the lower the AllowedDifference and 
thus the stricter we are. 

AllowedDifference = min
{

1, 0.5 ∗ σkey1, 0.5 ∗ σkey2
}

(10) 

The final scoring method for the aligned keys is the same for all data 
types. Namely, for each key-pair, the value-score is weighted by multi-
plying it with the key-score. This is intuitively clear when recalling that 
the key-score can be seen as the certainty that this key-pair represents 
the same feature and thus has to be compared. The more certain we are 
that the comparison of values between two keys is valid, the larger the 
weight it gets. As mentioned earlier, the authors of MSM have used the 
lexical similarity of the names of the keys for the key-score, whereas in 
our approach a more composite score is used that also considers the 
aggregated values of the keys and several metrics. When all matched 
key-pairs between the two products are scored, the weighted average of 
their scores is the output of Step a, the alignedScore. The amount of key- 
pair comparisons that have been made, is stored in alignedCount. 

In Step b, the keys that were not scored in Step a are evaluated. In 
other words, the keys that are present in at least one product of the pair, 
but do not have a matching key in the other product. Specifically, per 

product, the values of all these remaining keys are aggregated together, 
resulting in a set of values for both products. From both sets, all model 
words are extracted. Model words are words containing at least one 
numerical value. When a model word occurs twice for one product, it is 
given a double weight, as it seems to be important. Thus, duplicates are 
kept, so technically we are not dealing with proper sets here, but with 
bags. Then, the score for this step (restScore) is calculated with the 
Jaccard similarity from Eq. (3), where A and B are not sets but bags 
(possibly containing duplicates), where the set operators (∩,∪) must be 
interpreted loosely, meaning that duplicates are retained. This step has 
been kept the same as in MSM, where model words proved to be very 
useful in this context. The smallest size of both bags of model words is 
stored as restCount. 

Before moving on to the titles, the weighted average of the scores 
that were achieved by the aligned keys and the rest keys is calculated 
using Eq. (11), resulting into featuresScore. restWeight is used as a 
weighting parameter. When one of alignedCount or restCount is zero, the 
other one gets full weight. When both counts are zero, this is dealt with 
in step d. 

featuresScore = alignedScore × (1 − restWeight)+ restScore × restWeight
(11) 

Step c concerns the scoring based on titles. For each title, a number of 
features are extracted as described in SubSection 3.1.5, which are 
compared to determine a score. The total amount of features compared 
for two titles is denoted as titleCount, and the score produced is defined 
as titleScore. The details of the proposed scoring technique can be found 
in the technical report (Valstar & Frasincar, 2019). In Step d, we calcu-
late a final score for the product-pair in question, which is a weighted 
average of the score for the features (featuresScore) and the titles (title-
Score), using the weighting parameter μ, as shown in Eq. (12). There are 
several exceptions to this calculation of the final score which we discuss 
now. When alignedCount or titleCount is low, it means that there was not 
much information to be gained from the features or title. To illustrate, 
consider two televisions that are only compared on their resolution, a 
quite general feature that many televisions have in common. Conse-
quently, when their resolutions agree, it does not add much value. 
Therefore, when alignedCount is lower than the parameter minA-
lignedCount, only the titleScore is used. The same holds for thetitleCount. 
When both do not pass the threshold, the final score is set to zero. 

finalScore = μ × titleScore+(1 − μ) × featuresScore (12) 

Coming back to the example presented before, when two televisions 
have a different resolution, it does add valuable information, since it 
implies quite strongly that these are not duplicates. Therefore, even 
when the alignedCount does not pass the threshold, but the featuresScore 
is low enough, it is still used in the same manner as by default (Eq. (12)). 
The same holds for the title. Specifically, an individual score is low when 
it is lower than the parameter ε, which is used in the phase 3 clustering 
algorithm as well. Simplified, when two products have a similarity lower 
than ε, they are not considered in the clustering algorithm. For that 
reason we consider scores lower than this threshold ‘low’. 

The final scores are used as the input for the clustering method of 
phase 3. We use the same method as MSM (van Bezu et al., 2015), so we 
do not go into the details. However, a quick explanation may help the 
reader understand what the phase entails. The higher the score between 
two products, the more likely that these end up in the same cluster and 
be denoted as duplicates. As said before, when their score is lower than 
ε, they are not considered, but when they pass it, they are not necessarily 
marked as duplicates either, since it is still possible that one of these 
products is part of a different product-pair with a higher score. Product- 
pairs with the highest score are put together in a cluster and this process 
iteratively continues until no more product-pairs exist with a score 
higher than ε. Finally, all products in a cluster are marked as duplicates. 
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4. Evaluation 

In this section, we evaluate the proposed method using the same real- 
world dataset as was referred to in the previous section. Our dataset 
consists of 1629 TV’s from 4 different Web shops, namely 163 from 
Amazon.com, 672 from BestBuy.com, 744 from Newegg.com, and 20 
from TheNerds.net. We know the actual duplicate products within this 
dataset, so it is possible to evaluate the performance of our algorithm. 
We know that there are 1262 unique TV’s in the entire dataset, although 
we have not used this knowledge when implementing the model. 

In SubSection 4.1, the feature alignment algorithm is evaluated. In 
SubSection 4.2, we evaluate the full algorithm. Finally, in SubSection 
4.3, the speed of the proposed algorithm is investigated. We start each 
subsection with the corresponding subquestion belonging to the 
research question posed in SubSection 1.2. 

4.1. Feature alignment 

In this first part of the evaluation, we answer the first subquestion of 
this work: How can product feature alignment be automated and what is 
its value? As explained in SubSection 1.1, product features can be rep-
resented by different keys across different Web shops. Examples of such 
keys and their corresponding values are provided in SubSections 1.1 and 
2.1. Throughout SubSection 3.1, we have described an algorithm that 
matches the keys such that the features of different products are aligned, 
and the corresponding values can be compared. This algorithm has been 
intrinsically tested against a gold standard on the correct feature 
alignments between Web shops. This means that, independent of the 
other phases, we test how the algorithm performs solely on key 
matching, not yet taking into account the effect it has on duplicate 
detection. In order to evaluate the algorithm, we compare it with a gold 
standard that contains the correct matching key-pairs between Web 
shops. Specifically, ‘correct’ means that at least two out of three people 
indicated that a particular key-pair is a match, while the third person did 
not contradict this. This means that they did not include either keys in 
their list of matching keys. In the case that they would have included one 
of the keys with another key, it would count as a conflict, so that the key- 
pair is not included in the gold standard. This inter-annotated agreement 
(IAA) has been performed to create a gold standard between the two 
largest Web shops, Newegg.com and BestBuy.com, who together ac-
count for 87% of all products. The ratio of the number of occurrences 
where two out of three agree versus the occurrences where three people 
agree is 0.53. Naturally, we have implemented the key-matching algo-
rithm for all Web shops, but throughout the entire evaluation of this 
phase we only consider the two Web shops mentioned before. 

In this evaluation, we use the conventional way of defining true 
positives, false positives, false negatives, and true negatives. Important 
to realize is that we look at key-pairs, not at single keys. A true positive 
(TP) is therefore defined as a key-pair that has been marked correctly as 
being a match. A false positive (FP) is a key-pair that we deemed to be a 
match, while it is not according to the gold standard. A false negative 
(FN) is a key-pair that should be denoted as a match, but is not, either 
because neither of these keys have been matched at all, or because they 
have been incorrectly matched to a different key. Finally, a true negative 
(TN) is that two keys are not matched, when indeed they should not be 
matched. Furthermore, we use the commonly used performance mea-
sures Precision, Recall, and the F1-measure. The Precision as in Eq. (13) 
is the ratio of our correctly matched key-pairs versus all our matched 
key-pairs, while Recall as in Eq. (14) is the ratio of our correctly matched 
key-pairs versus all matching keys according to the gold standard. 
Lastly, the F1-measure, shown in Eq. (15), is the harmonic mean be-
tween the two where both are deemed equally important. 

Precision = TP/(TP+FP) (13)  

Recall = TP/(TP+FN) (14)  

F1 − Measure = 2 × Precision × Recall/(Precision+Recall)

= 2 × TP/(2 × TP+FP+FN) (15) 

Before we evaluate this phase using these performance measures, we 
give a detailed evaluation of the parameters that were used in the 
framework. Ideally one would use multiple datasets to train the pa-
rameters, and test whether the proposed method works out of sample as 
well, and not just in the given dataset. Due to a lack of multiple datasets, 
we make use of a bagging bootstrapping technique (Breiman, 1996). For 
each bootstrap sample, approximately 63% of the original dataset is 
sampled as a training set and the remaining approximate 37% as the test 
set. The training set is chosen in such a way that the ratios of duplicates 
and non-duplicates in the training set and the test set are approximately 
the same as in the original dataset. On the training set we perform a grid 
search with steps of 0.1 to find out the combination of choices for the 
different parameters that results in the highest performance measure in 
the training set. Finally, when the best parameters are found on the 
training set, these are used in the key-matching algorithm on the test set, 
and the final performance measures are calculated. This process is 
repeated for 50 bootstraps, each having a different training and test set. 
Summarizing, for each bootstrap, an optimal parameter set is found 
based on a training set, and using this parameter set, performance 
measures are calculated for a test set. 

In Table 2, we provide the means of the found optimal values for 
each parameter and their standard deviation. Note that these parameters 
are the same as the ones discussed in SubSection 3.1.3. We now shortly 
recap the meaning of these parameters, interpret the found means of the 
optimal values, and elaborate on the stability using the standard 
deviation. 

The weighting parameters can only be interpreted relatively, as the 
six of them together are used for the calculation of the weighted average 
of the final score. When one of these weights is higher than the rest, it 
means that the corresponding score is relatively more important than 
the other scores. nameScore is the lexical similarity between the names of 
the keys. Its weight is quite stable, with its standard deviation of 0.044, 
and only having values 0.9 and 1.0. nameScore ranges from 0 to 1, but 
any key-pair having a nameScore lower than minNameScore is immedi-
ately dismissed, so technically its range is [minNameScore, 1]. minNa-
meScore is extremely stable with a mean of 0.7 and a standard deviation 
of 0, meaning that for all 50 bootstraps, 0.7 was the optimal value. It 
seems that 0.8 would be too strict, meaning that too many key-pairs 
would be prematurely dismissed while some may actually be correct 
matches. In turn, 0.6 would be too lenient to too many key-pairs, 
resulting in some incorrectly matched keys. The third aspect that 
played a role in the lexical name similarity was that we grant a score of 
at least minContainedScore when one of the key names is contained in the 
other. It is remarkable that for 49 bootstraps, the best value for min-
ContainedScore was 0.7, and once it was 0.8. As a result, when the name 
of the key is contained in the other name of the key, this grants at least a 
score equal to the minNameScore, so that the considered key-pair is not 
dismissed. This is an interesting finding, as apparently such keys 
sometimes are (correctly) matched, while otherwise they would not 
even be considered. We conclude that they must have been correctly 
matched occasionally, for otherwise when it would not result into cor-
rect matches and/or cause wrong matches, a lower value for min-
ContainedScore would have been found to be more optimal in the 
training samples. 

doubleScore is the score describing how well the distributions of the 
double values of the keys match each other. doubleWeight has been set to 
1.7 for all 50 bootstraps, being a surprisingly constant factor in the 
weighting process. Together with stringWeight, they account for the most 
influence in the calculation of the final score. This is an interesting 
result, as it confirms that the values of keys are very important in 
deciding whether two keys are representing the same feature, and not 
only the names of the keys as was done in MSM. stringWeight is not a very 
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stable parameter, with its standard deviation of 0.133. Still, 80% of its 
values are 2.0 and the rest ranges between 2.0 and 2.4. A parameter that 
is strongly related to doubleWeight and stringWeight is stringBonus. This 
bonus is granted to key-pairs that are both of type strings, as a 
compromise to the score that keys with doubles may receive when they 
have matching measurement units. It seems not to be very important, 
with its mean of 0.060 and standard deviation of 0.093. As the value 
does not follow a standard distribution (it is bounded at 0 and discrete), 
we cannot easily say whether it is significantly different from zero. What 
we do know is that about half of its values are 0, indicating that it is 
redundant, while the other half are either 0.1 or 0.2. At any rate, it is 
valuable to include this parameter, so that the potential structural dif-
ference between key-pairs of type strings and of type doubles is not 
captured in the difference between doubleWeight and stringWeight, so 
that these may still be meaningfully compared to the other 4 weighting 
parameters. 

The coverage, denoting how well a key is represented in a Web shop, 
has proven to be useful in key-matching with an average covWeight of 
0.272 and a standard deviation of 0.131. The values range between 0.2 
and 0.5, but are mostly 0.2. The covScore is always a negative score, 
which describes the difference of the coverages of the keys. The further 
the coverages are apart, the lower (so the more negative) the score. Our 
reasoning is that when a key is important for a product, it is included 
more often in the product description, so that its coverage is relatively 
high. If one Web shop deems a key important, the other Web shop will 
most likely do as well, given that the keys represent the same feature. 
This is an important finding, because it means that coverage is useful in 
feature alignment. 

The divScore does not get any weight having been weighted 0 for all 
50 bootstraps. This score is set to 0 by default, but becomes − 1 if and 
only if at least one of the two keys has a diversity of 1, meaning that it 
has only 1 unique value for that key. A possible explanation for the 
divWeight being 0 is that the coverage metric captures the issue, as keys 
with such a low diversity often have low coverage, so that the reason for 
having only one unique value is simply the small amount of products 
that has a value for this key. More surprisingly is that the unit metric 
seems to be of little value in the process of key matching. Apparently, the 
measurement units were used consistently across the tested Web shops 
or they were missing so often that the neutral score of 0 was given 
regularly. Looking for a reason more closely in this context, we observe 
that most features were simply in inches, Hz, or pixels and their values 
were so different that the low doubleScore (that compares their value 
distributions) would prevent these from being matched anyway. This 
may explain why checking for units proved to be redundant. 

The last parameter is similarityThreshold. The final score is compared 
to this threshold at the end of each key-pair comparison. If it passes it, 

the key-pair becomes a candidate pair and the algorithm continues 
iterating. In the end, the candidate pair with the highest score is marked 
as a match. On average, the optimal value for similarityThreshold is 
1.632, and its values are either 1.6 or 1.7. With a standard deviation of 
0.047, it is a stable parameter, which was to be expected as it controls 
the amount of key-pair matches that are formed, an important part in 
both Precision and Recall. This is the case, for having a too low value 
(<1.6) generates too many FP’s, while a too high value (>1.7) gives rise 
too many FN’s. Interpreting this value in the light of all other optimal 
parameters suggests that when a key-pair has a doubleScore or stringScore 
of respectively about 0.6 or 0.5, it is sufficient to be a candidate key-pair, 
given that their coverages are not too far apart. Note that this holds 
because the nameScore must be higher than 0.7. 

As explained before, MSM does not have a separate phase for key 
matching, but matches keys during the product comparison phase. 
When the lexical similarity of two keys is higher than a threshold, the 
keys are compared, or in other words: the keys are matched temporarily. 
In order to compare our results with MSM, we have simulated this 
technique on the same 50 bootstraps as in APFA. The performances 
obtained without a feature alignment phase (MSM) and with a feature 
alignment phase (APFA) are shown in Table 3. Though both Precision 
and Recall are higher, APFA’s higher F1-measure is mostly due to higher 
Precision and less due to higher recall. The interpretation is that both 
methods are able to detect the correct matching keys almost equally 
well, whereas APFA is more selective than MSM, resulting in less 
incorrect matches. We apply a Wilcoxon signed rank test (Wilcoxon, 
1945) to check whether the difference in F1-measure is significant. 
Specifically, we test whether both are equal, compared to the alternative 
that APFA’s F1-measure is higher. Indeed, even against a significance 
level of 0.001, the null hypothesis that both are equal is rejected. From 
this we conclude that by incorporating a pre-processing phase, features 
can be aligned significantly better. 

4.2. Duplicate detection 

In this subsection, we answer the second subquestion of this work: 
Can the calculation of the product similarity in phase 2 be improved by 
incorporating information from phase 0? Before evaluating, there are 
some notes to be made about the difference with the previous section so 
that it is clear how the evaluation is performed. Where we had a gold 
standard for correct key-pairs only for two Web shops, we know the 
exact correct product duplicates for the complete dataset. We do 
perform bootstraps in the same manner and calculate the performances 

Table 2 
Analysis of the Optimal Parameters of phase 0. Means and standard deviations are calculated based on the results obtained from 50 bootstraps.  

Weighting Parameters  Standard  Other  Standard 
(belonging to score) Mean Deviation  Parameters Mean Deviation 

nameWeight (nameScore) 0.926 0.044  minNameScore 0.700 0.000 
doubleWeight (doubleScore) 1.700 0.000  minContainedScore 0.702 0.014 

stringWeight (stringScore) 2.048 0.133  stringBonus 0.060 0.093 
covWeight (covScore) 0.272 0.131  similarityThreshold 1.632 0.047 
divWeight (divScore) 0.000 0.000     

unitWeight (unitScore) 0.000 0.000      

Table 3 
Average performance measures without a feature alignment phase (MSM) and 
with a feature alignment phase (APFA). The last column is the one-sided p-value 
of the Wilcoxon signed rank test (H0: μAPFA = μmethod versus HA: μAPFA > μmethod).  

Method F1-measure  Precision Recall p-value 

MSM 0.572 0.533 0.618 0.000 
APFA 0.767 0.817 0.725 x  

Table 4 
Analysis of the optimal parameters of phase 2 over 50 training sets.    

Standard 
Parameter Mean Deviation 

minAlignedCount 4.18 0.63 
restWeight 0.11 0.03 

minTitleCount 2.00 0.00 
titleRestWeight 0.62 0.04 

μ  0.50 0.09 
ε  0.22 0.04  
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measures using the same formulas, but the calculation of TP, FP, TN, and 
FN needs some explanation. As we have more than two Web shops, it is 
possible to have a duplicate across three or more shops. A cluster can 
thus contain one (no duplicates), two, three, or four products. When a 
cluster contains three products (A, B, C), we see this as three product- 
pairs (AB, BC, AC). All three pairs are then separately evaluated. MSM 
does this in the same manner, so that a fair comparison is possible. 

One shortcoming of the evaluation of this phase is that it cannot be 
tested intrinsically for APFA, as it must use the results of phase 0, namely 
the feature alignments. Ideally, we would use as input the correct 
matching key-pairs between each combination of Web shops. That way, 
phase 2 could be tested independently of phase 0. Unfortunately, 
creating such a gold standard by hand is, besides tedious, extremely 
difficult. Each Web shop has roughly 80 keys, resulting in a large amount 
of possibilities. Moreover, besides the key matching, phase 2 also uses, 
for example, the data type and units used for each key and the weights 
for each matched key-pair from phase 0. Nevertheless, keeping the 
research question of this work in mind, it is not harmful to test phase 2 
extrinsically, as the main goal is to improve duplicate detection using a 
pre-processing phase. Summarizing, in this subsection we use the results 
of phase 0 as well, so we evaluate the full algorithm, rather than only 
phase 2. 

Just as in the previous subsection, we first evaluate the optimal 
values for the parameters of this phase. Table 4 shows the mean and 
standard deviation of the parameters acquired over 50 bootstraps using 
a grid search between 0 and 1 with steps of 0.1. Two exceptions are 
minAlignedCount and minTitleCount, where a grid search between 1 and 
10 was used with steps of 1. Zero is not included, because in those cases 
the score is not used at all as has been explained in SubSection 3.2. We 
now recap the usage of these parameters, interpret the optimal values, 
and evaluate the stability using the standard deviation. 

minAlignedCount is used as a threshold, representing the minimum 
required amount of compared key-pairs between two products. Specif-
ically, only the aligned pairs from phase 0 are counted, not the ‘rest’ keys 
that could not be matched. This parameter was introduced with the idea 
that when too few comparisons are made, the attained score is not suf-
ficiently reliable. As can be seen in Table 4, on average the minA-
lignedCount is 4.18 with a standard deviation of 0.63. All values are in 
the range 3–5, so the spread is not large. Still, there seems to be some 
flexibility. It is an important result that minAlignedCount is higher than 1, 
providing evidence that setting a required amount of comparisons is 
useful in duplicate detection. 

restWeight, although very small, has never been set to 0.0 throughout 
all bootstraps, implying that there is some value incorporating it in the 
feature score. The restScoreis quite unreliable, as it does not look at keys, 
but only at values. For example, it may incorrectly give a full score to 
two equal values, while one represents a minimum resolution and the 
other is a maximum resolution. Nevertheless, it provides an overall 
indication whether there are few or many values matching between two 
products. Taking all model words from all keys and comparing these 
takes quite some computational time. Especially in APFA, where 
comparing aligned keys is very quick (we discuss this in the next sec-
tion), calculating the restScoreis relatively time consuming, while it only 
represents 10% of the feature score. We therefore conclude that using 
the ‘rest’ keys is certainly useful, but we suggest to leave it out when 
speed is required. 

minTitleCountis set to 2.0 for all 50 bootstraps, making this a very 
stable parameter. The clear interpretation is that when only one com-
parison can be made between the titles of two products, it is not reliable. 
Intuitively this is true, since knowing that two televisions have one 
feature in common (e.g., resolution, screen rate, size) does not provide 
much evidence that they are duplicates. In the calculation of the title-
Score, a weighted average is taken of the scores attained by the titleUnits 
and the titleRest. titleUnits are model words that contain a value and a 
unit, while titleRest contains any other remaining model words. titleR-
estWeight has an average optimal value of 0.62, 39 times being set to 0.6 

and 11 times to 0.7. To understand why the rest is relatively more 
important than the units, we consider some examples of the titleRests: 
‘4K’, ‘E291A1’, ‘47G2’, ‘class(64’, ‘3D-ready’, ‘E423’, ‘cd/m2’. Some of 
these may represent a product code which may either be internally used 
within that Web shop or used for televisions in general. The latter may 
explain why restScoregets so much weight. However, we expect that we 
deal with both cases as some codes have only 4 characters and others 
have about 14, while a unified code usually has a fixed format. At any 
rate, in general it is very helpful in duplicate detection. Especially in 
non-automated methods, it is possible to gain close to perfect results 
when extracting the code from each product, and then only using that in 
duplicate detection. In automated methods it is still possible to use the 
product code, but other model words which are not codes may interfere 
with this. 

The final score is calculated as a weighted average of thefeaturesScore 
and the titleScore. μ is the weight that the title gets. The optimal values 
for μ range between 0.3 and 0.7, being the least stable parameter in the 
whole algorithm. At the end of this section, we provide a detailed 
evaluation of μ. 

ε has two interpretations as it has two usages. Most importantly, it is 
used in the clustering algorithm as a threshold. The dissimilarity of a 
product-pair must be lower than this threshold in order to be a candidate 
pair. The found average value for ε in APFA is significantly lower than 
MSM (0.22 vs 0.52). This has a clear interpretation. When ε is lower, less 
products are clustered since a lower dissimilarity is required. In other 
words, in APFA a higher product similarity between keys is required to 
become clustered. APFA is therefore more selective than MSM, so we 
expect a relatively higher Precision measure for APFA. 

The second usage of ε has been explained at the end of SubSection 
3.2. Recall that when thetitleCount does not pass minTitleCount(or when 
alignedCountdoes not passminAlignedCount) it is deemed as too unreli-
able and its score is not used in the scoring, with one exception. Namely, 
when the count is too low, but at the same time the score is lower than ε. 
In that case, it is used in the scoring, since we reason that finding non- 
matching values for a feature contains more information than finding 
matching values. At first we used a separate parameter for this 
threshold, but found that most of the time its values were the same as the 
values for ε. It is not strange that these are related, keeping in mind that 
according to the first usage of ε, it acts as a threshold whether product- 
pairs are to be matched or not. Related or not, it is an important finding 
that low scores should be considered even when their count is low, 
because that information is valuable in detecting non-duplicates. 

We have now come to the final evaluation of the proposed algorithm 
for duplicate detection. We have calculated the F1-measure, Precision, 
and Recall based on 50 different test sets. For each bootstrap, the data is 
pre-processed in phase 0 before it moves on to phase 2 where the 
product similarities are calculated. A slightly higher Precision than 
Recall is achieved, and the F1-measure lays around 0.75. The interpre-
tation of the Precision is that of all matched product-pairs by APFA, 
roughly 76% is correct, and the interpretation of Recall is that about 
73% of the actual duplicates are detected. 

We now compare these results to MSM in Table 5. Again, using a 
Wilcoxon signed rank test (Wilcoxon, 1945), we check whether the 
difference in the F1-measure is significant. APFA significantly out-
performs MSM even with a significance level of 0.001. Especially the 
Precision has risen substantially, which is in accordance with our ex-
pectations, as APFA is more selective than MSM. 

Table 5 
Duplicate detection: Average performance measures for MSM and APFA. The 
last column is the one-sided p-value of the Wilcoxon signed rank test (H0: 
μAPFA = μmethod versus HA: μAPFA > μmethod).  

Method F1-measure  Precision Recall p-value 

MSM 0.525 0.472 0.592 0.000 
APFA 0.746 0.763 0.731 x  
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Lastly, we elaborate on the relation and relative importance between 
the product features and the product title. As such, we have evaluated 
the algorithm once using only features and once using only titles in the 
product comparison phase. This is done using the conventional 50 
bootstraps, and the results for both methods are shown in Table 6. As 
expected, for both APFA and MSM, the F1-measure is higher when 
optimally combining the features and titles. For both methods, the title 
on its own does better than only the features. The importance of the title 
is even stronger in MSM as the reported optimal value for μ is 0.65 (van 
Bezu et al., 2015), while for APFA it is 0.5. We conclude by saying that 
APFA significantly outperforms MSM not only for features and titles 
together, but also when considering them individually. Answering the 
question of this subsection, using a pre-processing phase certainly im-
proves the quality of duplicate detection. 

4.3. Speed of the proposed algorithm 

In this final subsection, we answer the third subquestion: Will an 
automatic product feature alignment step improve the speed of the 
process? Before looking at the speed of the process, we take a closer look 
at two components that make up most of the computational time. Firstly, 
there is a difference between MSM and APFA concerning the number of 
product-pair comparisons. Recall that both methods use a so-called 
Brand Heuristic, which checks whether two products have the same 
brand. If they are not of the same brand, they will certainly not be du-
plicates, so they do not need to be compared. In Table 7, we show how 
the amount of product comparisons may be reduced using a Brand 
Heuristic. Specifically, we see that MSM already reduces the number of 
comparisons by 75% compared to not using a Brand Heuristic. In turn, 
APFA performs 43% less product comparisons than MSM. In SubSection 
3.1.5, we described our approach to finding the brand compared to the 
heuristic of MSM and we discussed two advantages, namely complete-
ness and speed. Indeed, because we search in both title and features of 
each product, we discover a brand more often than the MSM method. 
The decrease of 43% is fully due to completeness. Moreover, in our 
approach we search for the brand only 1629 times, namely once for each 
product, while in MSM this must happen for each potential product-pair: 
419.010 times. However, due to smart caching, this still can be pro-
cessed relatively quickly. 

The second component that takes significant computational time is 
the number of key comparisons within one product-pair comparison. 
Recall that in MSM, given two products, all their keys are compared on 
their lexical key similarity, after which their values are compared when 
their key similarity is high enough. On average, a product has 30 keys, so 
this requires 900 comparisons. Again, string similarities including all 

lexical key similarities between products are stored in the cache, so these 
do not have to be re-calculated. Nevertheless, on average the cache has 
to be accessed 900 times for each product comparison (which is 96.890 
times in total). In contrast, in APFA only the matched key-pairs that were 
found in the pre-processing phase are being compared. On average, 
there are 20 matched key-pairs between two Web shops (on shop level), 
and on average 10 of them can actually be used on product level, 
because many products have missing keys. Table 8 summarizes these 
results. 

After comparing the number of comparisons, we now move on to the 
actual computational time. All runs were performed on a PC with a 
2.53GHz Intel Core 2 Duo processor and 2GB of RAM. MSM uses an 
extensive framework of caching for the product similarity phase. 
Caching is appropriate in this framework, because when performing 
multiple bootstraps and/or different parameter combinations, many 
calculations have been done before. MSM’s caching framework stores 
string similarities as well as similarity scores of product-pairs. APFA has 
been implemented in the same framework so that caching works in a 
similar way for the product comparison phase. In Fig. 8, we compare the 
durations of ten sequential bootstraps of MSM and APFA on the training 
set with one parameter combination. For both methods, we notice a 
clear downward trend, strongly suggesting that this is due to caching. 
Specifically, the decrease in time from bootstrap 1 to 2 is about 50%, 
which makes sense as the overlap of two random subsets that contain 
two-thirds of the original set, is 50%. 

Phase 0 takes on average 18 s on the training set with one parameter 
combination. This duration ranges from 13 to 20 s depending on the 
bootstrap sample and parameter combination. Ignoring caching, so 
looking only at one bootstrap, when running the full algorithm (phase 
0 and phase 2), APFA is still significantly faster than MSM (18 + 46 = 64 
s versus 153 s). When increasing the number of products in the dataset, 
the time of the pre-processing phase will not increase much. This is 
because more products does not mean more keys, but rather more values 
per key, barely causing any additional computational time for the 
feature alignment phase. Therefore, APFA is certainly scalable, as with 
increasing size, the duration of the pre-processing phase diminishes 
relative to the rest of the process. Our expectation is that when caching 

Table 6 
Performance measure for features and titles separately. Averages are taken over 
50 bootstrap samples. The last column is the one-sided p-value of the Wilcoxon 
signed rank test (H0: μAPFA = μMSM versus HA: μAPFA > μMSM).    

Average F1-measure   
Description Restriction APFA MSM p-value 

Only Features μ=0  0.521 0.392 0.000 
Only Titles μ=1  0.605 0.440 0.000 

Feature & Titles (No restr.) 0.746 0.525 0.000  

Table 7 
Product-pair Comparisons. Reducing the amount of com-
parisons using the brand heuristic.   

#Product 
Method Comparisons 

(No Brand-Heur.) 419,010 
MSM 96,890 
APFA 55,149  

Table 8 
Key Comparisons for each product-pair 
comparison.   

#Key 
Method Comparisons 

MSM 900 
APFA 10  

Fig. 8. Computational time of the product comparison phase compared.  
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could be achieved for phase 0, that APFA (including phase 0) will be 
faster than MSM for each sequential bootstrap. 

The answer to the third research subquestion is twofold: incorpo-
rating a pre-processing phase greatly improves the speed of one run. 
When multiple bootstraps on the same dataset are run, the pre- 
processing phase makes it slower because a caching framework has 
not yet been implemented for that phase. However, bootstrapping is 
usually only done in research, when (a subset of) the correct answers are 
known, and one wants to evaluate an algorithm. In practice, in a real- 
world duplicate detection problem, this is not the case, so a single run 
on the full dataset is all that needs to be done. In that case a pre- 
processing phase greatly improves the speed as well. 

5. Conclusion & future work 

In this work, we have proposed a method for the problem of product 
duplicate detection. The context has been finding duplicate television 
between different Web shops. We have improved upon the state-of-the- 
art MSM algorithm for product duplicate detection (van Bezu et al., 
2015), mainly by developing an automated pre-processing phase that 
occurs before the similarities between products are calculated. This way, 
we managed to outperform MSM both in terms of F1-measure and in 
speed. In this section, we summarize our contributions and present our 
most important findings. 

The first step was to incorporate a pre-processing phase, so that 
features can be aligned between Web shops in an automated way. The 
most important result is that not only the names of the keys, but the 
values of the keys are very important in deciding whether two keys are 
representing the same feature. For keys containing qualitative values, 
the Jaccard similarity of the values of both keys has been compared, 
while for keys containing numeric values, their distributions are 
compared. Considering unit measurements proved not to be useful in 
feature alignment, because when units are different, this is already 
captured by the difference in their value distributions. Coverage, rep-
resenting the ratio of how many products have a certain key within a 
Web shop, has been found to be useful in feature alignment. When 
exploiting this metric, the diversity metric which represents the number 
of unique values of a key, is redundant, as it is captured by the coverage, 
because keys with such a low diversity often have low coverage as well. 
Lexical key matching based on their names has also been improved by 
granting a minimum score to key-pairs of which one of their key-names 
is contained in the other. By testing on a real-world dataset of TV’s, it has 
been shown that we significantly outperform MSM with an F1-measure 
of 0.767 versus 0.572 for feature alignment. 

The second step has been to improve the quality of duplicate 
detection, using the gained information from the pre-processing phase. 
Given two products, we now only compare the keys there were matched 
earlier, instead of comparing all keys with each other. Moreover, 
depending on the discovered data type in the pre-processing phase, we 
treat key-pairs differently, so that the comparisons are more meaningful. 
Comparing non-aligned keys is still useful, but may be omitted for effi-
ciency purposes. As the product titles are important, we have improved 
the title analyzer. Rather than comparing all model words in one large 
set, we make a distinction between model words with units and the rest, 
so that the units can be aligned between the two products and scored 
separately. An important finding is that a required minimum amount of 
comparisons of both aligned keys and between titles is necessary to 
prevent unreliable high scores based on too little information. On the 
other hand, we found that low scores do provide important information 
in rejected non-duplicates, even when the amount of performed com-
parisons is low. Applying our duplicate detection method to the same 
real-world dataset of TV’s, we find that we significantly outperform 
MSM with an F1-measure of 0.746 versus 0.525. 

Since speed is important in the process of duplicate detection, we 
have enhanced the pre-processing phase in such a way that it reduces the 
running time of the product similarities phase. MSM makes on average 

900 comparisons per product-pair, while APFA brings this down to 10 
on average. Moreover, when increasing the amount of keys, the former 
grows quadratically, while the latter linearly. Because brands play an 
important role in distinguishing between TV’s, we have developed an 
improved brand finder, which not only extracts the brand from the 
product title, but also from the discovered brand key of each product. 
This leads to a decrease of 43% in the amount of product comparisons, 
saving much computational time. Incorporating a pre-processing phase 
improves the speed of the product similarities phase by roughly a factor 
of 3. When increasing the size of the dataset, the time of the pre- 
processing phase will relatively diminish compared to the rest of the 
process, achieving even higher efficiency. 

The algorithm is not limited to this particular dataset or even to the 
television market. The only requirement is that the dataset has some sort 
of title and some features with values, which is often the case. Even if 
there is no title, APFA performs reasonably well with an F1-measure of 
0.521 on this dataset. For future research, we recommend trying the 
algorithm on several different datasets, preferably with varying types of 
products. Furthermore, it will be important to do more research on the 
last phase, namely the clustering algorithm. In Benjelloun et al. (2008), a 
different approach than the one we use now is proposed, which is called 
‘matching and merging’. When a match occurs, the source code of those 
entities is immediately removed and we continue with the merged 
version. Especially when the dataset becomes larger, we suggest using 
map-reduce algorithms, two of which are given in Rastogi, Machana-
vajjhala, Chitnis, and Das Sarma (2013), that focus on computing con-
nected components for large graphs, and in Jin et al. (2013), that 
proposes a distributed algorithm for single-linkage hierarchical 
clustering. 

We give two directions to improve the key matching algorithm. The 
first is to research to what extent the matching keys obey the transitivity 
relation. If transitivity holds sufficiently, this knowledge may be 
implemented in the pre-processing phase. Specifically, after aligning 
shop A with B and shop B with C, we may use the transitivity relation to 
make several alignments between shop A and C already, that way 
further bringing down the number of key-pair comparisons when 
aligning the keys. A second direction is to evaluate whether it is prof-
itable to perform key matching within Web shops before the actual key 
matching between Web shops. We suspect that it may prove useful, as 
we encountered some keys within Web shops that in fact represent the 
same feature (e.g., ‘warranty terms’ with ‘warranty term’, ‘shipping:’ 
with ‘shipping’). If these could be merged, we would have more values 
so that key matching could be improved. Moreover, during the product 
similarity phase, the merged key may be used, rather than only one of 
the keys. As the latter is the case, we are currently missing all infor-
mation from the other key. 

Furthermore, much may still be left to be exploited from the blocking 
phase, with it being the method of reducing the number of product 
comparisons. The pre-processing phase may provide valuable informa-
tion for the forming of the blocks, e.g., finding out which features are 
important for block splitting and what these features are across different 
Web shops. This will further enhance the effectiveness of the blocking 
method, so we recommend to combine the proposed pre-processing 
phase with the blocking phase. 

Lastly, in this paper we have only considered the performance of 
APFA in comparison with the algorithm that it is meant to improve 
upon, namely MSM. APFA utilizes various handcrafted features and 
processing steps to link product keys. An interesting approach to explore 
and compare APFA with is the implementation of deep learning methods 
for this problem. Similarly to how Word2Vec (Mikolov, Chen, Corrado, & 
Dean, 2013) can be used to calculate similarity scores between words 
and find synonyms, a deep learning implementation could be used to 
define key similarity scores and find matching keys. Not only could this 
idea be implemented for the purpose of calculating key similarity scores 
during phase 0, but also during phase 2 to calculate similarity scores 
between products. There already is significant work done on linking 

N. Valstar et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 174 (2021) 114759

16

similar knowledge from different sources using deep learning techniques 
(Xu et al., 2016). Furthermore, deep learning approaches could also be 
explored for the other parts of the process like the clustering phase 
(Aljalbout, Golkov, Siddiqui, Strobel, & Cremers, 2018). 
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