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Abstract. Problem definition: We consider the case of prescriptive policing, that is, the
data-driven assignment of police cars to different areas of a city. We analyze key problems
with respect to prediction, optimization, and evaluation as well as trade-offs between dif-
ferent quality measures and crime types. Academic/practical relevance: Data-driven pre-
scriptive analytics is gaining substantial attention in operations management research, and
effective policing is at the core of the operations of almost every city in the world. Given
the vast amounts of data increasingly collected within smart city initiatives and the grow-
ing safety challenges faced by urban centers worldwide, our work provides novel insights
on the development and evaluation of prescriptive analytics applications in an urban con-
text. Methodology: We conduct a computational study using crime and auxiliary data on
the city of San Francisco. We analyze both strong and weak prediction methods along with
two optimization formulations representing the deterrence and response time impact of
police vehicle allocations. We analyze trade-offs between these effects and between differ-
ent crime types. Results: We find that even weaker prediction methods can produce
Pareto-efficient outcomes with respect to deterrence and response time. We identify three
different archetypes of combinations of prediction methods and optimization objectives
that constitute the Pareto frontier among the configurations we analyze. Furthermore, opti-
mizing for multiple crime types biases allocations in a way that generally decreases single-
type performance along one outcomemetric but can improve it along the other.Manageri-
al implications: Although optimization integrating all relevant crime types is theoretically
possible, it is practically challenging because each crime type requires a collectively consis-
tent weight. We present a framework combining prediction and optimization for a subset
of key crime types with exploring the impact on the remaining types to support implemen-
tation of operations-focused smart city solutions in practice.
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1. Introduction
In today’s data-driven world, prescriptive analytics
has been gaining traction in both research and practice
(Bertsimas and Kallus 2019). Although definitions for
prescriptive analytics abound, we understand it as the
culmination of the analytics value chain, transforming
data into concrete recommendations for decision mak-
ers. Depending on the context, this may include un-
derstanding patterns in historical data; predicting

future developments; and employing heuristics, learn-
ing algorithms, optimization techniques, or scenario
analysis to determine the recommended way forward.
Recent examples can be found in a variety of business
domains, such as optimizing customer segmentation
and targeting based on customer data (Nair et al.
2017) or creating decision support tools that optimize
maintenance assignments (Angalakudati et al. 2014).
Such leveraging of data-driven algorithms to improve
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both strategic decision making and day-to-day service
operations has not only become a key objective for
private-sector companies, but is also becoming in-
creasingly relevant in the public sphere. The emerging
smart city paradigm reflects this development, with
municipalities using sensors, data, crowdsourced citi-
zen input, and analytics to improve public services
and tackle complex urban challenges.

In this context, a smart city can be perceived as a
system of systems (Qi and Shen 2019) with adjust-
ments to one system potentially affecting a variety of
connected systems and phenomena. For example,
changes to urban mobility through the introduction of
electric vehicles and smart charging strategies may im-
pact the city’s power grid (Valogianni et al. 2020). The
complexity of navigating such potential externalities a
given smart city solution may exert is added to the
complexity of improving the focal system or service.
Particularly in the context of prescriptive analytics, the
latter form of complexity derives, for instance, from
operationalizing data, identifying the appropriate pre-
diction and optimization methods, and integrating
these methods into a cohesive approach as explored in
current research by, for example, Elmachtoub and
Grigas (2020) and Wilder et al. (2019). The manage-
ment of smart city operations that utilize prescriptive
approaches, therefore, requires a thorough under-
standing of how these components are linked within
the problem at hand and how a potential solution af-
fects adjacent systems in the smart city ecosystem.

In this paper, we contribute to this understanding by
exploring operations management (OM) challenges as-
sociated with the application of prescriptive analytics to
urban policing operations, a critical service in commu-
nities around the globe. Prescriptive policing links the
prediction of urban crime with the assignment of patrol
cars to specific areas in the city in order to improve
both crime deterrence and the patrols’ response time.
Much of the extant research on this topic has exclusive-
ly focused on the prediction angle, seeking to identify
data sources and methods that improve crime forecasts.
As we illustrate in this paper, combining those forecasts
with optimization methods that assign patrol cars in an
efficient manner is not a trivial task, reflecting the
problem-specific complexity previously discussed. The
likelihood of a given crime occurring at a specific place
and time is exceedingly low; different crime types are
driven by different, possibly contradictory dynamics; a
constrained resource needs to be allocated such that the
actual crimes are best addressed; and there are compet-
ing measures of the quality of the resulting allocations.
We first consider each of these problems separately—
prediction, assignment, and evaluation—before analyz-
ing how the solution approaches work together and
identifying key trade-offs.

Building upon a comprehensive data set from the city
of San Francisco, we calibrate established prediction
methods to produce varying levels of prediction perfor-
mance and combine these with two different optimiza-
tion approaches that target different objective functions.
We find that, although combined approaches that lever-
age the prediction method with the best prediction quali-
ty (PQ) generally lead to the best decision quality (DQ)
according to the optimization objective, this is not neces-
sarily always the case. Particularly when considering the
trade-off between the two target objectives, approaches
that use weaker prediction methods may still provide
Pareto-efficient outcomes. Effectively, this implies that de-
cisions regarding the choice of prediction and optimiza-
tion methods should not be made sequentially; instead,
the choice of prediction method can be considered a key
parameter of the optimization method depending on the
desired trade-off between the target objectives. Further-
more, we find that the dynamics underlying different
critical crime types lead to different optimal vehicle allo-
cations. To overcome the complex challenge of making
the relative weight of each crime type explicit within the
objective function, we propose an approach that com-
bines prediction and optimization with exploration for
practical implementations of prescriptive policing. This
predict–optimize–explore approach also provides a frame-
work for decision makers to navigate between complexi-
ty that is made explicit within the focal problem and po-
tential externalities on other systems and phenomena in
smart city application beyond prescriptive policing.

In the next section, we first provide detailed back-
ground information on the policing context, including a
discussion of target objectives and relevant work on
crime predictions. In Section 3, we introduce the case
context and outline the distinct subproblems constituting
the prescriptive policing challenge as well as the solution
approaches we explore in our analysis. In Section 4, we
present the results of our analysis. In Section 5, we dis-
cuss key implications and the predict–optimize–explore
approach. Section 6 concludes.

2. Background and Related Work
Algorithmic, data-driven support for operations in
both police forces and the judicial system has sub-
stantially grown in recent years, ranging from soft-
ware supporting probation decisions and sentencing to
improved targeting of police resources (Metz and
Satariano 2020, Sassaman 2020). The impact of this de-
velopment is heavily debated with concerns over, for
example, racial and sociodemographic biases, policing
intensity, and accountability shaping that discussion
(Ferguson 2017, Shapiro 2017). In this paper, we focus
on one problem from the policing environment, namely,
the dynamic assignment of a constrained number of pa-
trol cars to different parts of the city based on crime
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predictions. Although not without controversy—Sassa-
man (2020) argues that police forces in the United States
continue to grow despite the purported efficiency gain
from algorithmic decision support—the fundamental
idea that patrol forces should be used in the most effec-
tive manner receives broad support. Field patrols consti-
tute the largest share in police departments’ budgets
(Mak 2020), and efficiency gains have the potential to pro-
vide relief to municipal budgets that are often stretched
thin. Consequently, preventive and proactive measures
that strategically leverage police presence in hot spot
areas to quickly react to and possibly prevent crime have
become an important goal for research and practice (Bra-
ga et al. 2014).

Response time and prevention/deterrence are also the
key objectives that are generally associated with the
allocation of patrol forces. Response time represents a
fundamental measure of police service quality
(Dunnett et al. 2019, Leigh et al. 2019) as a shorter de-
lay before arriving at the scene of the crime may in-
crease chances that suspects are immediately appre-
hended and that victims’ recollection of events are
still fresh. However, research also shows that the pres-
ence of police officers has a deterring effect on crime
(Sherman and Weisburd 1995, Di Tella and Schar-
grodsky 2004) within their immediate surroundings.
As this effect is highly localized, there is likely to be a
trade-off between these key objectives. Patrols that are
allocated to maximize deterrence are likely to be con-
centrated in hot spot areas where a single patrol can
cover a high number of potential incidents. In con-
trast, minimizing response time may induce a more
spread out allocation.

For decades, improvements in police operations have
focused primarily on reactive approaches to improving
these key performance criteria. For instance, Chaiken
and Dormont (1978) develop solutions for allocating ve-
hicles to police precincts, allowing departments to opti-
mize for a selection of performance criteria, including
response times. Other approaches use historical crime
patterns to model future crime incidence in addition to
purely analytical models. For example, Taylor and Hux-
ley (1989) describe a program for allocating police offi-
cers to precincts based on forecasted service calls
and time to resolution, and Chelst (1978) uses a
simulation of patrol cars to estimate the expected
number of crimes that would have been intercepted
by police cars in different regions.

Recent advances in data management and comput-
ing have led to an increased focus on prediction in
crime prevention approaches. For instance, Al Boni
and Gerber (2016b) augment the commonly used ker-
nel density estimation (KDE, Chainey et al. 2008) and
show prediction improvements for 17 different crime
types using this local KDE approach. Al Boni and
Gerber (2016a) find that training separate models for

different ZIP codes improves prediction for some
crime types as the driving factors behind crime pat-
terns may vary across geographical regions. Other ap-
proaches consider the use of autoregressive integrated
moving average predictions (Chen et al. 2008) and the
application of bio-surveillance techniques for crime
pattern detection (Neill and Gorr 2007).

A related stream of work explores the use of novel
sources of information in addition to historical crime
data to infer crime incidents. Kang and Kang (2017)
show that using data on demographics, housing, and
education as well as image data from Google Street
View can improve crime prediction. Other work inves-
tigates how data from social media, such as Twitter,
can be utilized both indirectly (only the tweets’ time
stamps and locations) and directly (the tweets’ con-
tent) to improve crime prediction (Blevins et al. 2016,
Williams et al. 2016). Wang and Gerber (2015) use
Twitter and Foursquare data to track and predict spa-
tial trajectories of users to derive inferences regarding
future crimes. Gerber (2014) uses a crime hot spot anal-
ysis with KDE for 25 different crime types in the city
of Chicago as a base case. In a subsequent step, latent
Dirichlet allocation (LDA) is applied to the tweets to
extract higher level information. LDA groups words
from text documents into clusters that can be inter-
preted as topics (Blei et al. 2003). The strength of each
cluster is then used as input for the prediction. Based
on this data representation, Gerber (2014) finds an im-
provement of the prediction quality for most crime
types. However, the interpretability of the results is
limited as the reason for specific topics relating to a
crime increase is unclear. In contrast, dictionary-
enabled approaches analyze tweets along different
linguistic dimensions, such as use of certain gram-
matical structures or valence according to different
emotional categories (e.g., anger, joy, sadness) and
are also shown to be effective in improving predic-
tion quality (Chen et al. 2015, Ristea et al. 2017).

The results from Gerber (2014) also illustrate a crit-
ical issue associated with most research on crime
prediction techniques. Models are often calibrated to
provide predictions on a daily basis, thereby omit-
ting intraday spatial and temporal variance. This is
problematic insofar as crime predictions are sup-
posed to serve as input for patrol routes and similar
operational decisions. With crime hot spots shifting
throughout the day and probabilities of a given
crime occurring at a specific area and time span be-
ing extremely small, the practical use of daily predic-
tions is limited. We address this issue by splitting
each day into six blocks of four hours, a duration
that captures intraday dynamics (morning, noon, af-
ternoon, evening, midnight, late night) and aligns
well with common eight-hour shifts in police depart-
ments (Amendola et al. 2011).
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In addition to this more realistic problem design,
the main contribution of our work lies in furthering
our understanding of how the pieces that constitute
such a highly complex urban operational problem,
such as prescriptive policing, beyond prediction—
choice of data, choice and evaluation of vehicle assign-
ment, aspects to include into the model, and those to
exclude from it—fit together and affect each other. Al-
though we rely on well-established prediction and as-
signment techniques, we show that the degrees of
freedom these techniques offer already require deci-
sion makers to quantify potential trade-offs within the
focal system and with respect to externalities caused
on other systems and phenomena. Thereby, we illus-
trate a key challenge the practice of operations man-
agement in a smart city context faces and provide in-
sights on how to overcome it.

3. Problem Description, Data, and
Methodology

Before we describe the prediction, assignment, and
evaluation problems of the prescriptive policing prob-
lem in detail, we briefly introduce the main data set
used in this study. We obtained call-for-service data
for the city of San Francisco from the authorities’ offi-
cial website (https://datasf.org/opendata/). The data
spans the period between August 1, 2013, and Sep-
tember 30, 2013, and contains both criminal and non-
criminal incidents, including a categorization, a short
description, location, and time stamp. Table 1 shows
the prevalence of different crime types. We performed
standard data-cleaning procedures to the original data
we obtained, such as removing corrupted or incom-
plete data points (e.g., missing time, location, or crime
type). Furthermore, to determine the lagged values of
crime densities during model training (see Section 4.1),

we also collected crime data for the four weeks between
July 4, 2013, and July 31, 2013.

We augment the crime data with a comprehensive
set of geotagged Twitter messages (384,916 in total)
from August and September 2013 to assess the benefit
of such external data. As noted earlier, Gerber (2014)
and Chen et al. (2015) find that geotagged social me-
dia activity can improve crime prediction perfor-
mance. Specifically, we employ both the density of
tweets in a given area as well as linguistic characteris-
tics identified by the Linguistic Inquiry and Word
Count (LIWC) software. LIWC analyzes each
tweet along different linguistic dimensions, such as
use of certain grammatical structures or valence ac-
cording to different emotional categories (e.g., anger,
joy, sadness). Additionally, given that Brandt et al.
(2017) and Willing et al. (2017) demonstrate the value
of points-of-interest (POIs) in explaining and predict-
ing urban phenomena, we also consider data on
63,308 points of interest in San Francisco. The POI
data contains location information as well as the type
of POI according to a set of categories and was ac-
cessed through Google Maps.

3.1. Prediction Problem
The crime prediction problem is challenging along
several dimensions. First, the occurrence of a crime at
a given place and time is an extremely rare event.
Considering common temporal and spatial resolu-
tions, a crime is by several magnitudes more likely
not to happen at a given place and time than other-
wise. Second, the likelihood of a crime taking place at
a given place and time is neither spatially nor tempo-
rally independent from its surroundings. In most
cases, this likelihood would be identical to the likeli-
hood of the same crime taking place at the same place,
but several minutes later. Third, as shown in Table 1,
the term “crime” encompasses a wide array of differ-
ent offences with each following different and possi-
bly contrary patterns. Hence, as has been suggested in
prior work, it is useful to consider predictions for dif-
ferent crime types separately. Specifically, modeling
each crime type independently allows deriving and
acting upon predictive patterns that are idiosyncratic
to a given crime type and thereby improves predictive
accuracy.

For our main analysis, we focus on the two most
frequent crime types: larceny/theft and assault (hence-
forth, we refer to larceny/theft simply as theft). There
are multiple reasons for this choice. First, for both of
these crime types, adequate allocation of police ve-
hicles can have practical benefits: the presence of po-
lice forces has likely a deterring effect, or shorter re-
sponse times can have a tangible benefit. Second, both
are crime types that are prevalent, and thus, dealing
more effectively with these crimes can be impactful.

Table 1. Selected Crime Types and Their Prevalence in the
Data Set

Crime type Count Share, %

Larceny/theft 7,082 30.0
Assault 2,195 9.3
Vehicle theft 1,283 5.4
Vandalism 1,188 5.0
Drug/narcotic 1,118 4.7
Burglary 1,102 4.7
Robbery 785 3.3
Fraud 474 1.7
Stolen property 247 1.0
Weapon laws 239 1.0
Drunkenness 197 0.8
Forgery/counterfeiting 165 0.7
Trespass 150 0.6
Sex offenses, forcible 144 0.6
Others 7,747 30.8
Total 23,642 100
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Thefts and assaults account for 40% of all reported in-
cidents, and they represent harm to either a person’s
body or property. The relatively high number of inci-
dents also reduces the impact of data sparsity as other,
less frequent crimes would be even harder to predict.
Third, this choice provides a theoretical reasoning on
why social media data may be of value to the predic-
tion of these crime types. High levels of social media
activity may point to public events at a given place
and time at which crowds may be targets for thefts;
similarly, the valence of tweets in a given area may fa-
cilitate predictions of assaults. Fourth, the underlying
dynamics of thefts and assaults are very different,
which allows us to compare the impact of optimiza-
tion on one or the other. Thefts are usually considered
crimes requiring intent and/or opportunity, whereas
assaults often result from sudden emotional arousal.

To address the spatiotemporal dependency, we fol-
low the approach proposed by Gerber (2014) and
transform point observations of crimes, tweets, and
POIs into densities across the entire area through ker-
nel density estimation. As a result, the occurrence of a
crime is independent from the particular location and,
instead, understood as reflective of the local vicinity.
Figure 1 visualizes the resulting density surfaces for
assaults and thefts for our data. The surface is created
by transforming the observation area into a grid of
300 × 300 meter tiles and calculating the density at the
centroid of each tile. It is worth emphasizing that the
calculation does not only take occurrences within the
focal tile into account, but rather all occurrences and
weights them by distance. Consequently, these densi-
ty values represent both the input and output of the
prediction methods as we are seeking to predict fu-
ture crime density distributions across the city. The
choice of tile size aims to balance computational com-
plexity and usefulness for the police car assignment

task. In most cities, the chosen tile size would corre-
spond to one or two blocks. However, our results are
consistent for other tile sizes. The larger area with
darker shades in Figure 1(b) reflects the difference in
the number of incidents between thefts and assaults.
Although the hot spot in downtown San Francisco
(northeast) is common to both figures, the patterns in
other parts of the city differ between the crime types.
Several smaller theft hot spots are, for instance, not ac-
companied by an increase in local assault crimes. By
transforming all variables into densities, spatial de-
pendencies are made explicit, and the prediction
models assess the relationships between the spatial
patterns of the variables instead of individual
occurrences (Willing et al. 2017).

From a temporal perspective, we distribute crimes
into six blocks per day as previously discussed: 2 a.m.
to 6 a.m. (late night), 6 a.m. to 10 a.m. (morning), 10
a.m. to 2 p.m. (noon), 2 p.m. to 6 p.m. (afternoon), 6
p.m. to 10 p.m. (evening), and 10 p.m. to 2 a.m. (mid-
night). This distribution achieves two objectives. First,
the temporal dependency is taken into account, and
crimes are perceived as representative of a more gen-
eral notion of time of day. The blocks follow the natu-
ral course of the day, and it is reasonable to assume
that crime patterns within a block are relatively con-
sistent although differing across blocks. For example,
there may be more criminal activity around bars with-
in the midnight block compared with the morning
block. Second, the four-hour blocks should also prove
more useful in the practical vehicle assignment than
full-day predictions as they cover intraday variation
in hot spot locations and align well with the tradition-
al eight-hour shifts of most police departments
(Amendola et al. 2011).

When distributing discrete crime observations
across these blocks, the result is an extremely imbalanced

Figure 1. (Color online) Density Surfaces of Crime Data

Notes. (a) Assaults. (b) Thefts.
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data set with only a handful of “positive” observations
taking place in a given time block. As a consequence,
some measures of prediction quality, such as accuracy,
are inappropriate (e.g., a naïve strategy that always pre-
dicts no crime to occur would have an accuracy of close
to 100% and be hard to beat). Gerber (2014) proposes the
area under the curve (AUC) of a surveillance plot as a
more appropriate measure in this context. A surveillance
plot is a function s : [0, 1] → [0, 1], mapping the share of
area covered (“surveilled”) to the share of crimes cov-
ered. The surveilled area is calculated by ranking the tiles
according to the predicted density in a descending order
as follows. Let L be the set of all tiles and let Ly ⊂ L be
the set of y tiles with the highest prediction value. Simi-
larly, let C be the set of all crimes of the chosen category
occurring during the time span considered and Cy ⊂ C
as the subset of those crimes that occur in the tiles con-
tained in Ly. Then, s(|Ly|=|L|) � |Cy|=|C|. Effectively, the
surveillance plot takes the share of tiles covered as input
and returns the share of crimes covered. For other input
values, the function s is obtained via linear interpolation.
Note that the ordering of tiles is based on the prediction
value, whereas s(·) is calculated based on the actual
number of crimes per tile. Clearly, we have that s(0) � 0
and s(1) � 1.

The AUC is then obtained by calculating the area
under the curve s(·) between zero and one, which can
be calculated by taking the integral. However, as s is a
piecewise linear function with |L| pieces, this can also
be calculated by summing over the different tiles:

AUC �∑|L|
l�1

0:5 × s
(
l− 1
|L|

)
+ s

(
l
|L|

)( )
× 1
|L| :

Note that the AUC of a prediction method does only
depend on the ordering of the tiles based on the pre-
diction and not on the predicted value. Note further
that the upper limit for the AUC, that is, the AUC cor-
responding to a perfect prediction, depends on the
distribution of crimes over the tiles. For example, if
each tile would have exactly one crime, the maximum
AUC would be 0.5. However, because our crime data
are very sparse, the maximum AUC approaches one.

Figure 2 offers some illustrative examples of sur-
veillance plots. In Figure 2(a), we construct a simple
example of three tiles (A, B, C) with one, three, and six
crimes, respectively. Now, suppose that the prediction
is reasonably good and that it yields density values of
0.2, 0.4, and 0.6, respectively. Arranging the tiles in de-
scending order according to their density results in
the sequence C, B, A. The corresponding surveillance
plot in Figure 2(a) is, hence, defined by four points—
(0.00, 0.00), (0.33, 0.60), (0.66, 0.90), and (1.00, 1.00)—
and an AUC metric of 0.83. For comparison, random
ordering would result in a score of 0.67 on average in
this particular case. Figure 2(b) shows the surveillance

plot for a real-time slot from our data set with five as-
sault crimes. This curve seems to be a step function,
but this is not the case. Because of the small number
of crimes and the large number of tiles, the curve is
just very steep for tiles with a crime. Figure 2(c) aggre-
gates the surveillance plots for all time slots, yielding
a smooth curve. The AUC values in Figure 2, (b) and
(c), are 0.88 and 0.85, respectively.

In summary, the prediction problem generally seeks
to identify the prediction method that provides the
highest AUC of the surveillance plot when predicting
crime densities for the next four-hour block. However,
as we are particularly focusing on the interdependen-
cies between prediction, optimization, and evaluation,
we tune models such that they produce both high-
AUC predictions and low-AUC predictions. For this,
we use three established methods, namely, multiple
linear regression (MLR), random forest (RF), and gra-
dient boosting (GB) (see Hastie et al. 2009 for detailed
descriptions of these methods). As input data we use
historical crime data, twitter data, and data on points
of interest. For training the models, we use a rolling
window of four weeks, implying that a model trained
on data from August 1 to August 28 is used to predict
assault and crime densities during the six time slots
on August 29. AUC values are calculated using the ac-
tual crimes that took place during the time slot that
was predicted.

3.2. Optimization Problem
The output of the prediction method is a density sur-
face of predicted crimes during the next four-hour in-
terval. This density surface is used to determine the
optimal distribution of vehicles over the city. As dis-
cussed in Section 2, prescriptive policing can affect
both the police force’s ability to deter crime and its
ability to quickly respond to a call for service. Regard-
ing the first effect, people are unlikely to commit a
crime within the immediate vicinity of a police officer
or patrol; however, this influence diminishes relative-
ly swiftly with increasing distance. Hence, if deter-
rence is the main objective, the goal is to find the dis-
tribution of vehicles that maximizes coverage, that is,
the probability that the closest vehicle is within a (rela-
tively short) predefined maximum distance from a
crime. If the objective is based on the average re-
sponse time, we find the distribution of vehicles such
that the average distance between the closest vehicle
and a crime is minimized, taking distance as a proxy
for the time the police need to traverse it. Because of
the overall rarity of crimes (on average, there are 0.013
thefts and 0.004 assaults per tile/time slot combina-
tion) the location of any given incident is always high-
ly stochastic. Hence, in the optimization stage, the de-
cision maker is bound to the density surfaces
provided.

Brandt et al.: Prescriptive Policing in Urban Policing Operations
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As we have previously mentioned, we transform
the city area into a grid of 43 × 46 square tiles with an
edge length of 300 meters each. With L � {(x,y) | x ∈
{1, :::, 43},y ∈ {1, :::, 46}} as the set of tiles, the symmet-
ric distance between tile l and tile l′ is denoted by
d(l, l′). For each tile l, the crime density is predicted at
its centroid and is denoted by δl. Note that some pre-
diction methods could give a negative prediction for
some tiles. To avoid having a negative reward for a
short response time to these tiles, we set δl equal to
zero for tiles with a negative prediction value. Regard-
less of the objective considered, the main decision is
the assignment of police vehicles to tiles. We denote
this decision by the binary decision variable vl, which
takes value one if a police vehicle is assigned to tile l
and zero otherwise.

Based on the maximal covering location problem
(MCLP) model introduced by Church and ReVelle
(1974), we maximize the probability that the closest
police vehicle is less than τ meters from a crime for
the coverage objective. For this purpose, we introduce
the binary decision variable wl that takes value one if
at least one police vehicle is within a distance τ from
tile l. The resulting optimization problem can be for-
mulated as the following integer linear programming
problem:

Maximize
∑
l∈L

δl × wl (1)

Subject to
∑

l′:d(l, l′)≤τ
vl′ ≥ wl ∀l ∈ L (2)

∑
l∈L

vl ≤ v̄: (3)

Although the average distance objective can be formu-
lated based on the p-median problem introduced by
ReVelle and Swain (1970), it is crucial that the optimi-
zation models run very quickly, both for the purpose
of practical implementation and given the large num-
ber of instances that need to be solved in our numeri-
cal experiments. An initial exploration of the runtime
shows that such a model is very slow because the full

distance matrix needs to be incorporated. In contrast,
for the coverage model, it is sufficient to know which
pairs of tiles have a distance less than or equal to τ be-
tween them. As a result, only building the average
distance model already takes more than an hour,
whereas the coverage model can be built and solved
in less than a second. Alternative solution methods do
exist that could speed up the optimization compared
with using commercial solvers (see, for example, Fi-
schetti et al. 2016), but these methods do not give the
speedup required for this study.

To overcome the excessive computation time re-
quirements, we implement an alternative model as a
proxy for the average distance model. Instead of evaluat-
ing every distance, we only evaluate the model at a pre-
specified number of values. This allows us to use a for-
mulation that is similar to the MCLP formulation. Let
R � {r1, r2, :::, r|R|} be the set of distances that is consid-
ered in the optimization and let ar be the weight of dis-
tance target r in the objective. The model then maximizes
the weighted average over the different distance targets.
For this, we replace the decision variableswl bywl,r, indi-
cating whether tile l is covered within a distance r:

Maximize
∑
r∈R

ar
∑
l∈L

δl × wl,r (4)

Subject to
∑

l′:d(l, l′)≤r
vl′ ≥ wl,r ∀l ∈ L, r ∈ R (5)

∑
l∈L

vl ≤ v̄: (6)

By choosing the distance targets appropriately, this
model provides solutions with a small average dis-
tance. We set ari � ri+1 − ri with r|R|+1 being equal to the
maximum distance between any two tiles, d̄. This ap-
proach corresponds with rounding the distance for
each tile up to the first distance in the set R. Thus, by
increasing the number of distance values considered,
the proxy model resembles the average distance mod-
el more closely. Naturally, however, increasing the

Figure 2. Illustrative Examples for Surveillance Plots
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Notes. (a) Constructed example with three tiles and 10 crimes. (b) Single time slot and all tiles. (c) Aggregation over all time slots and tiles. Plots
(b) and (c) are based on the multiple linear regression prediction method.
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number of distances considered increases the compu-
tation time of the model.

3.3. Evaluation Problem
As improving both deterrence and response time are
valid goals of prescriptive policing systems, we evalu-
ate decision quality with respect to both, corresponding
to the two optimization models introduced in Section
3.2. Effectively, we assume that vehicles are allocated to
certain locations within the city and patrol within a cer-
tain radius around that location. Therefore, we calculate
any response time values using the central location as
this is where the vehicle is at a given time on average.
Similarly, we assume that the vehicle has a deterring ef-
fect within a certain radius of this central location as a
proxy of the deterrence effect along the patrol routes.

To assess the deterrence effect within a short dis-
tance surrounding a patrol car, we construct a decision
quality measure Q1

ω that corresponds to optimization
Problems (1)–(3). This measure reflects the share of
crimes in the evaluation set (i.e., the time slots starting
with August 29, 2013) that occur within a ω-vicinity of
a police car. Formally, in a given time slot t, the binary
variable vtl describes the allocation of vehicles to tiles
l ∈ L. The set of assaults (respectively, thefts) is
C � {c1, c2, : : : }, with each crime c ∈ C being described
by a location lc and a time slot tc. We define the cover-
age measure Q1

ω representing the deterrence effect as

Q1
ω ≡

∑
c∈Cγc

|C|
with

γc �
{
1, if min

l∈L
{d(lc, l) | vtcl � 1} ≤ ω

0, otherwise:

In the numerator, we check for each crime c whether
there is a police car at a distance less than ω from it
given allocation Vt. Here, d(·) gives the distance be-
tween any two locations. Note that we use the center
of the tile for the location of the police car, but the ac-
tual coordinates of the crime for the crime location.
We divide the number of positive cases by the total
number of crimes analyzed. In this study, we set ω to
500 meters.

The second measure for decision quality calculates
the average distance between a crime and the closest
police car. This measure corresponds to the objective
of optimization Problems (4)–(6). We define the aver-
age minimum distance measure Q2 as

Q2 ≡
∑

c∈Cminl∈L{d(lc, l) | vtcl � 1}
|C| :

In the numerator, we calculate for each crime c ∈ C the
minimum distance from a tile with a police car at the
given time to the crime location. We sum the resulting

distance for each crime and divide the result by the to-
tal number of crimes to get the average distance be-
tween a crime and the closest police vehicle.

4. Results
To gain a deeper understanding of the interdependen-
cies between the problems we describe in the previous
section, we first consider the determinants of predic-
tion quality before proceeding to the alignment be-
tween prediction and decision quality for the different
optimization objectives. Afterward, we present results
on the trade-off between the two objectives and be-
tween the two crime types considered in this paper.

4.1. Prediction Quality
As a first step, we analyze the drivers of crime predic-
tion quality. In Section 2, we outline that several pa-
pers find evidence for spatial patterns of social media
activity improving full-day crime predictions. Similar-
ly, points of interests are shown to be relevant predic-
tors for other urban phenomena. In Table 2, we inves-
tigate whether these data sources affect prediction
quality when increasing the temporal resolution of
crime forecasts to four-hour time slots.

For this purpose, we focus on an MLR prediction of
Δt � {δl,t : l ∈ L}, that is, the crime density (in this case,
assaults) in all tiles in time slot t. The initial configura-
tion exclusively relies on autoregressive features of
crime density: the density values for the preceding
time slot (δl,t−1), the same time slot one day before
(δl,t−6), and the same time slot one week before (δl,t−42)
as well as a four-week moving average (AvgCrime).
We then successively add various additional varia-
bles, namely, the tweet density in t− 1 (Tweets), the
POI density (assumed to be fixed over the observation
period), and the density of tweets weighted by the
share of negative (NegEm) and positive (PosEm)

Table 2. AUC Values for Varying Variable Input to
Multiple Linear Regression Predicting Assaults

AvgCrime δl,t−42 δl,t−6 δl,t−1 Tweets POIs NegEm PosEm AUC

� � � � 0.848
� � � � � 0.848
� � � � � 0.851
� � � � � � 0.851
� � � � � 0.849
� � � � � 0.848
� � � � � � � � 0.850

Notes. The predicted variable is the assault density in time slot t and
tile l, δl,t for all tiles. Predictors are the average crime density during
the preceding four weeks in that tile; the crime density from one
week ago (δl,t−42), one day ago (δl,t−6), and one time slot ago (δl,t−1);
the tweet density from one time slot ago; the POI density (fixed); the
negative sentiment in the tweets one time slot ago; and the positive
sentiment in the tweets one time slot ago. AUC values are averaged
over the observation period.
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words, respectively. These shares are derived by the
LIWC algorithm. The regression is trained using data
from the first four weeks of the observation period as
previously described. The resulting model is then
used to predict the subsequent time slots using a roll-
ing four-week window, and the AUC is calculated
based on the surveillance plot.

Table 2 summarizes the average AUC, and it is
clearly evident that the autoregressive components
are the dominant drivers of prediction quality, at
least for the MLR setting. Although adding tweets
and POIs does result in some improvement, it does
not exceed 0.2 percentage points for AUC values
that are already quite high. Overall, the evidence
suggests that social media and POI data does
not substantially affect prediction quality when
the temporal resolution is increased to four-hour
blocks.

To gain a better understanding of the relationship
between prediction quality and decision quality, we
apply the random forest and gradient boosting predic-
tors, tuning them such that they produce compara-
tively high and low AUC levels, respectively. By
choosing an extremely low number of trees, the RF
predictor performs substantially worse than the other
predictors. The fact that it still outperforms the ran-
dom predictor by a wide margin emphasizes that it
still captures some of the predictive information—just
not as well as the other configurations. The GB predic-
tors are tuned to produce high-AUC results but fail to
outperform the MLR prediction. As summarized in
Table 3, this results in a set of weak predictors (the RF
configurations) and a set of strong predictors (the
MLR and GB configurations) that we use to analyze
the relationship between prediction and decision
quality going forward.

4.2. Comparing Prediction and Decision Quality
We first investigate whether the differences in the pre-
dictive quality between strong and weak predictors

translate into similar differences in the quality of deci-
sions when those are based on predictions resulting
from these models. In Figure 3, we summarize key re-
sults on the alignment between DQ and PQ. Specifically,
we consider the decision quality metric—coverage or
average distance—that was used in the optimization
stage and present results for three different fleet sizes,
namely, 5, 25, and 50 vehicles. For the coverage model,
we set τ � ω � 0:5 km, and in the average distance mod-
el, we set R � {0:0, 0:5, 1:0, 1:5, 2:5, 5:0, 10:0 km}. We fo-
cus on assault cases; however, results for thefts are large-
ly similar and presented in the appendix.

Across both metrics, we see that prediction and de-
cision quality are generally well aligned although not
exclusively so. When optimizing for coverage (plots a,
c, and e), alignment implies that a high AUC is associ-
ated with high coverage values so that the best combi-
nations would be found in the top right corner. Al-
though this is the case for the scenarios with 25 and 50
vehicles, we observe that there is a slight misalign-
ment for five vehicles because a combination that uses
GB predictions with slightly lower AUC values results
in higher coverage than those with the highest AUC
values. The reason is likely that this lower AUC GB
predictor excels at identifying the areas with the high-
est likelihood of assaults but performs worse than the
other strong predictors in correctly ranking the re-
maining areas. Because the low number of available
vehicles limits the share of crimes that can be covered
at all, only a small share of the AUC actually matters,
pushing the performance of predictive models that
are otherwise inferior when considering the entire
city. As vehicle numbers and the share of crimes that
can be covered increase, this advantage is outstripped
by the high-AUC models that predict well across the
entire area.

It is noteworthy that the same low-AUC GB model
that excels with respect to coverage falls behind when
optimizing for average distance as shown in plots b,
d, and f of Figure 3. We can also observe that PQ and

Table 3. AUC Values for Varying Prediction Methods and Configurations

Model ID Method AUC assaults AUC thefts

1 Random 0.515 0.504
2 MLR 0.850 0.851
3 Random forest (5, 5) 0.753 0.785
4 Random forest (10, 5) 0.770 0.804
5 Random forest (5, 10) 0.752 0.787
6 Random forest (10, 10) 0.768 0.799
7 Gradient boosting (10,000, 0.01) 0.847 0.850
8 Gradient boosting (1,000, 0.01) 0.849 0.850
9 Gradient boosting (10,000, 0.001) 0.849 0.850
10 Gradient boosting (1,000, 0.001) 0.804 0.812

Notes. Random predictor assigns values from the interval [0, 1] randomly to tiles. The full set of variables from Table 2 is provided to Models
2–10 as input. Parameter configurations are listed as (ntree, mtry) for random forest models and (ntree, shrinkage) for gradient boosting models.
Predictions were executed in R using the randomForest and gbm packages.
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the Q2 measure of average distance are consistently
well aligned. We would expect a high AUC to be asso-
ciated with low average distance values, placing the
best combinations in the bottom right corner. This is
indeed the case with the high-AUC GB and linear
models also producing the lowest average distance
for all vehicle fleet sizes.

4.3. Alignment of Decision Quality Metrics
Overall, these results illustrate that the alignment be-
tween prediction and decision quality in prescriptive
policing approaches is not unambiguous even when
focusing on a single crime category. The optimal combi-
nation of methods depends on various factors, includ-
ing vehicle fleet size and the optimization objective

Figure 3. Alignment Between Prediction Quality and Decision Quality After Optimizing for the Respective DQMetric (Assault)
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with a combination that is optimal for one DQ metric
potentially being inferior for the other. In practice, it is
unlikely that decision makers would focus exclusively
on one single DQ metric while completely neglecting
the other. Instead, police departments might seek to
maximize the deterrence effect of patrol visibility in hot
spot areas while also being aware of the need to keep a
low response time on average (or the other way
around).

When analyzing the trade-offs between these quality
measures, the impact of the choice of prediction meth-
od becomes even more nuanced. Figure 4 illustrates
the respective performance of each combination of pre-
diction model and optimization objective with respect
to both quality measures. Given that decision makers
would aim for low average distance and high cover-
age, better outcomes would be located toward the top
and left of the plots. At a first glance, the results in Fig-
ure 4 confirm expectations. Combinations that opti-
mize for distance perform well along the distance-
related DQ metric, and those that optimize for cover-
age perform well along the coverage metric. In

contrast, the performance of a given combination is
generally lower when considering the opposite metric.

However, when considering the Pareto frontier
among these solutions, that is, the combinations that
do not allow for improvement along one metric with-
out decreasing performance along the other, the
weaker RF-based prediction models offer additional
options in the trade-off between coverage and average
distance when combined with coverage as the optimi-
zation objective. For low numbers of vehicles, the fact
that the RF models are less tuned toward the hot spot
density peaks leads to a more spread out distribution
of vehicles, sacrificing coverage for a reduction in av-
erage distance. This effect is even more pronounced
for thefts as illustrated in the appendix with the RF
models providing a reasonable decrease in average
distance for a slight decrease in coverage for fleet sizes
of both 5 and 25 vehicles.

4.4. Alignment Across Crime Types
As we explain in Section 3.1, assault and theft are
crimes that are driven by different factors, resulting in

Figure 4. (Color online) Trade-off Between Decision Quality Metrics for Different Combinations of Prediction Techniques and
Optimization Objectives (Assault)
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the different spatial patterns illustrated in Figure 1. As
a consequence, although police patrols usually aim at
handling a broad spectrum of crimes, optimizing for a
particular crime type does not necessarily lead to opti-
mal—or even good—allocations for other types. This
problem is illustrated in Figure 5, in which we visual-
ize the performance of the different configurations
with respect to coverage of and distance to theft
crimes. Specifically, we compare performance when
vehicles are allocated based on theft predictions (see
the appendix for details) to the performance when ve-
hicles are allocated based on assault predictions. As
expected, for configurations minimizing average dis-
tance, the assault-based performance is consistently
worse than the theft-based performance across both
DQ metrics. The effect for configurations maximizing
coverage is a bit more nuanced. Although coverage of
thefts decreases if vehicles are allocated based on as-
sault predictions, the average distance actually de-
creases as well for the best performing configurations
in the top right of the plot. The reason for this phe-
nomenon is that, as evident in Figure 1, the spatial ex-
tent of the assault hot spot in San Francisco’s down-
town area is much smaller than the extent of the theft
hot spot. As a consequence, fewer vehicles are re-
quired to cover this hot spot, leaving more available
to be allocated to other parts of the city. Therefore,
fewer of the thefts in the downtown area are covered,
but the distance to thefts in the rest of the city is
decreased.

In this example, optimization is biased extremely
toward one crime type as vehicles are allocated solely
based on assault predictions. We further explore the
trade-off between different crime types by considering
configurations that optimize based on a mixture of the
predicted densities of both crimes. Figure 6 presents

the results for such a mixture in which assault and
theft are given equal weight. Because the total number
of theft cases is more than three times as high as the
number of assaults, this implies that coverage of and
distance to an assault are given a weight approximate-
ly three times as high as for a theft.

Compared with Figure 5, the performance decrease
for thefts is now substantially reduced, reflecting the
weight the predicted density of thefts now receives in
the optimization stage. However, the fundamental
patterns observed in Figure 5 persist with the configu-
rations optimizing for distance performing slightly
worse along both DQ metrics. For the configurations
optimizing for coverage, we see again that coverage
decreases, but so does average distance for the best
performing models. When considering the effect on
assaults in Figure 6(b), we can observe the opposite ef-
fect as the average distance for models optimizing
coverage increases, and coverage also decreases. Simi-
lar to thefts, the effect on models optimizing average
distance is only slight with marginal decreases in cov-
erage and average distance for most configurations.

5. Discussion
The results presented in the previous section provide
several insights regarding the nature, complexity, and
potential solution approaches of the prescriptive po-
licing problem. With respect to prediction quality, we
can observe that, when considering four-hour predic-
tion intervals, data on historical crime distributions
represent the most important input by far. These au-
toregressive and moving average components domi-
nate any potential influence of additional predictors,
such as social media activity and points of interest, that
have been used in other works (e.g., Gerber 2014, Chen
et al. 2015). Although our results do not invalidate the

Figure 5. (Color online) Trade-off Between Decision Quality Metrics for Theft CrimesWhen Applying Assault-Based Vehicle
Allocations (25 Vehicles)
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findings from these papers—the focus in them is gener-
ally on temporal resolutions exceeding four hours—
they emphasize the importance of practical considera-
tions in the context of prescriptive policing. As we have
previously outlined four-hour blocks correspond well
with common shift durations, whereas the actionable
insights from full-day predictions are limited. The sub-
stantial impact of historical crime data on predictive
quality also implies that police departments can rely on
a generally readily available data source without need-
ing to depend on external data providers. Furthermore,
as we have previously discussed prescriptive policing is
susceptible to biases induced by the data utilized. Fo-
cusing exclusively on crime data limits the introduction
of latent biases as, for instance, socioeconomic and so-
cial media data would do. However, as Shapiro (2017)
argues, using reported crimes as the data foundation
may introduce a different bias as certain communities
may be less likely to report a specific incident. These
and similar effects need to be kept in mind when train-
ing and applying models for crime prediction in
practice.

Our results further show that prediction and deci-
sion quality are generally aligned but not always. A
key reason for the occasional divergence between PQ
and DQ are the constraints of the optimization prob-
lem in addition to the stochastic nature of criminal in-
cidents as a crime at a specific location and time is an
extremely unlikely event. The AUC metric used to as-
sess prediction quality evaluates the fit between the
predicted crime density surface and the actual crimes
that happened across the entire city. However, if only

a small number of vehicles is available, the share of
the city that can be covered at all is limited. How a
prediction model performs beyond this limit is irrele-
vant for the decision quality if the metric used is cov-
erage. Integrating the constraint from the optimization
problem into the prediction problem (Elmachtoub
and Grigas 2020) by limiting the AUC calculation only
to the share of the city that can theoretically be cov-
ered addresses this divergence, bringing PQ and DQ
in line.

However, when we consider the alignment between
multiple decision quality metrics, we can observe that
the choice of prediction method becomes an impor-
tant parameter irrespective of prediction quality out-
comes. Although the strong predictors we consider
achieve the best DQ when combined with the corre-
sponding optimization objective, optimizing for cov-
erage with weak predictor methods can produce allo-
cations that also represent a Pareto-efficient trade-off
between the DQ metrics (coverage and average dis-
tance) among the configurations we analyze. With
low-PQ methods being less attuned to the city’s hot
spots, allocations based on them result in a more
spread out distribution of vehicles, reducing average
distance at the cost of coverage. Relaxing the resource
constraint by increasing the available number of ve-
hicles diminishes this phenomenon as a larger fleet
size automatically results in a more spread out distri-
bution once hot spots are covered.

Similar to the trade-off between multiple DQ met-
rics, we also find a clear trade-off when seeking to ad-
dress multiple crimes. As different crime types are

Figure 6. (Color online) Trade-off Between Decision Quality Metrics for Assault and Theft CrimesWhenOptimizing for a Mix-
ture of Both Crime Types (25 Vehicles)
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driven by different factors, their spatial and temporal
patterns of occurrence differ as well. Naturally, opti-
mizing for one is likely to decrease performance metrics
for the other as shown in our analysis of theft and as-
sault crimes. However, even this effect is not unambig-
uous when both DQ metric are considered. Although
optimizing for coverage decreases the coverage of thefts
when assaults are used as (part of) the optimization in-
put, average distance also decreases. The underlying
dynamic is similar to the one for low-PQ methods as
fewer vehicles are needed to cover assault hot spots
than those of theft, leading to the remaining fleet being
distributed in a more spread out fashion.

5.1. Implications for Prescriptive Policing and
Smart City Operations

Returning to our initial considerations regarding the
complexity of the focal problem and potential external
effects on other systems and phenomena in the smart
city context, we can perceive the variety of different
crime types either as part of the problem or, as such, an
external phenomenon. From a theoretical perspective, it
is possible to assign weights to all crime types and inte-
grate them into the optimization problem. As different
crimes might be more or less susceptible to coverage or
responsive to a short reaction time, weights might be
further differentiated by target metric. However, for
practical purposes, this approach is infeasible for several
reasons. First, although such weights may be formulated
for two crime types as in our study, explicitly articulat-
ing them for all relevant types is a nontrivial task. Al-
though thefts and assaults account for 40% of observed
crimes, there are several additional categories that both
occur frequently and matter to vehicle allocation, such
as vehicle theft, vandalism, burglary, and robbery. To-
gether, these types account for another 20% of crimes.
Deriving weights for them that are both transitive and
reflect the potentially varying importance of the

deterrence and response time criteria for each type
would be a time-consuming and subjective process. Sec-
ond, any weights that are determined would likely need
to vary between different time blocks as certain crimes
are particularly prevalent during specific times of day.
Prescriptive policing algorithms may be required to give
them additional weight beyond the increased density.
Similarly, seasonal effects, such as waves of certain
crimes during particular times of the year, may require
adjustments of the weights. Finally, in addition to being
able to respond better to crimes and prevent some from
happening at all, the application of prescriptive policing
is likely to displace certain crimes to less-covered areas.
This dynamic response to the prescriptive policing solu-
tion requires both regular updates using current data
and, potentially, a weight shift as well.

Although these challenges may prevent the inclu-
sion of all relevant crime types in the optimization
process, it is still important to consider how these are
affected by the prescriptive policing mechanism. For
this purpose, we propose an approach that combines
prediction, optimization, and exploration not just in
the context of prescriptive policing, but as a general
tool to navigate the complexity of smart city OM prob-
lems. Figure 7 summarizes this approach using our
policing case as an example. Instead of attempting to
optimize across all crimes, a small set of focal crime
types is selected. Similar to the choice of theft and as-
sault in our study, these types should matter (frequen-
cy and impact) and be affected by intelligent patrol
placement. For these crime types, prediction and opti-
mization is conducted for so-called Pareto archetypes,
that is, the main combinations of prediction methods
and optimization objectives defining the trade-off be-
tween coverage and average distance. In our exam-
ples, these would be the strong predictors combined
with either objective function and the weak predic-
tors combined with coverage maximization. The

Figure 7. (Color online) Predict–Optimize–Explore Approach for Prescriptive Policing
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impact of the resulting allocations is then explored
for other relevant crime types. Based upon this ex-
ploration, the choice regarding the configuration to
be used is made.

Through this approach, the practical complexity of
the prescriptive policing problem is substantially re-
duced. Instead of explicitly formulating the relative
weights for each relevant crime type, decision makers
only need to explicate relative importance for a small
set of key types. For these types, a reduced set of
prediction–optimization combinations is determined
that offers different trade-offs between coverage and
average distance for the key decision quality metrics
used. The exploration stage then allows the inclusion
of other crime types in a less formalized way to allow
for a holistic perspective on the impact of the chosen
method. However, exploration is not limited to analyz-
ing the impact on other crime types and can similarly
investigate the performance of the different configura-
tions on other metrics and systems in the urban eco-
system. For instance, in light of the debate surround-
ing policing and racism in many countries, decision
makers may want to analyze how certain configura-
tions may produce outcomes that are biased against cer-
tain sociodemographic groups during the exploration
stage. Thereby, the predict–optimize–explore approach
offers a perspective on fair AI that not only sees human
input as a potential source of bias (Feuerriegel et al.
2020), but also as a potential remedy to support the
identification of discriminating algorithmic decisions.

5.2. Limitations and Future Work
These considerations are particularly relevant as all
models are trained on historical data—data that may
already reflect certain biased operational policies.
Even absent explicit bias, patrols are likely to have ex-
erted deterrence and displacement effects in the areas
they were patrolling. Although difficult to access, data
on patrol allocations can potentially be used to ad-
dress these issues.

Our study focuses on analyzing the interactions be-
tween the separate operational challenges that consti-
tute a prescriptive policing approach and how the
practical implementation of such smart city solutions
affects the urban ecosystem. We use established pre-
diction and optimization methods to address the indi-
vidual challenges, and there are certainly opportuni-
ties for future work to further refine these algorithms
or explore the value of adding additional data sour-
ces. For instance, in the calculation of the average re-
sponse time metric, we assume that the vehicle closest
to a crime is actually available and not busy with han-
dling another incident. Given that, on average, there are
about 25 thefts or assaults in total per four-hour time
slot in the city, the impact of this assumption is likely
small for vehicle fleets of 25 or more cars. Nevertheless,

delving deeper into this availability problem is a prom-
ising path for future research.

6. Conclusion
Modern cities represent confluences of multiple com-
plex subsystems, and data-driven approaches provide
a new set of tools to understand and steer these sys-
tems. Focusing on the case of urban policing, we show
that such a single application still consists of multiple
interlinked problems with various trade-offs that af-
fect the application’s effectiveness.

Fundamentally, we derive four key lessons for prac-
tical applications of prescriptive policing. First, when
considering actionable prediction intervals (e.g.,
four hours), historical crime data are—from the data
sources we analyzed—by far, the most dominant
and important. Second, when seeking to maximize
coverage, it is important to consider the police de-
partment’s resource constraint, that is, the number
of available vehicles, in the assessment of prediction
quality. Third, weaker prediction methods may still
provide a viable trade-off between the deterrence ef-
fect of policing and response time. Fourth, it is im-
portant to consider how optimizing for one or a few
types of crimes affects quality measures for other rel-
evant crime types.

For the practical implementation of smart city solu-
tions that affect multiple urban systems or phenome-
na, such as the variety of different crime types in the
policing context, we propose an approach that com-
bines prediction and optimization with an exploration
stage. By focusing on a small subset of important
crime types, problem complexity is reduced, and a set
of candidate solutions offering varying trade-offs be-
tween deterrence and response time are derived. Dur-
ing exploration, the impact of these solutions on other
relevant crime types is analyzed. As a result, a holistic
impact assessment can be made without having to ex-
plicitly weight all relevant crime types against each
other. Such an exploration stage can also prove useful
in the context of other smart city operational chal-
lenges affecting multiple systems, such as the transi-
tion to electric mobility.
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Appendix. Prediction and Decision Quality Analysis for Thefts

Figure A.1. Alignment Between Prediction Quality and Decision Quality After Optimizing for the Respective DQMetric (Theft)

Notes. Figure A.1 illustrates the alignment between PQ and the two DQ metrics for thefts. Alignment is strong across all combinations of fleet
size and optimization objective with the highest AUC values leading to the highest coverage values when optimizing for coverage (plots a, c,
and e) and to the lowest average distances when optimizing for average distance (plots b, d, and f).
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