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ABSTRACT

Aims: To assess the prognostic value of left ventricular (LV) global longitudinal strain (GLS) and global longitu-
dinal early diastolic strain rate (GLSre) with regard to cardiovascular events, as congenital aortic stenosis (AoS) is
associated with significant mortality and morbidity but predictors for clinical outcome are scarce. Strain analysis
provides a robust and reproducible method for early detection of LV dysfunction, which might be of prognostic
value. Methods: This prospective study, included clinically stable patients with congenital AoS between 2011–
2013. LV GLS and GLSre was performed in the apical 4, 3 and 2-chamber views using Tomtec software. The end-
point was a composite of death, heart failure, hospitalization, arrhythmia, thrombo-embolic events and re-inter-
vention. Results: In total 138 patients were included (33[26–43] years, 86(62%) male), NYHA class I: 134(97%).
Mean LV GLS was –15.3 ± 3.2%, GLSre 0.66 ± 0.18 s–1. Both correlated with NT-proBNP, LV volumes and ejec-
tion fraction (strongest LV GLS with LV EF: r –0.539, p < 0.001, strongest LV GLSre with age: r –0.376, p < 0.001).
During median follow-up of 5.9[5.5–6.2] years, the endpoint occurred in 53(38%) patients: 4 patients died,
9 developed heart failure, 22 arrhythmias, 8 thrombo-embolic events and 35 re-interventions. Both LV GLS (stan-
dardized HR (sHR 0.62(95%CI 0.47–0.81) and GLSre (sHR 0.62(95%CI 0.47–0.83) were associated with the end-
point. Additional multivariable analysis showed that both GLS and GLSre were associated independent of left
atrial volume, NT-proBNP and prior re-interventions. Conclusion: Left ventricular GLS and GLSre are reduced
in adult patients with congenital AoS. Both markers are associated with adverse cardiac events and have clear
clinical relevance.
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1 Introduction

Congenital aortic stenosis is responsible for over 4% of all congenital heart defects [1]. Indeed, it is the
most frequent indication for aortic valve replacement in young adults [2]. The last few decades research has
been focused primarily on re-intervention free survival of different surgical techniques as well as balloon
valvuloplasty [3–10]. There are however only a few studies that assess clinical endpoints such as heart
failure or mortality [9,11].
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The presence of an aortic stenosis gives rise to several hemodynamic and pathophysiological changes.
An important derangement in aortic valve stenosis is the relative reduction of coronary blood flow to the
hypertrophic left ventricle, which has an increased oxygen demand. This imbalance is enhanced by a
reduction in diastolic filling period, resulting in an even more extreme imbalance between demand and
supply. The remodeling and subendocardial ischemia results in changes in myocardial function, both
systolic and diastolic, which can be assessed using strain analysis [12,13].

Previous work from our group reported on disease progression over time mainly focusing on progression
of stenosis and aortic dilatation [14], and determined that left ventricular (LV) hypertrophy is associated with
faster progression of stenosis [15]. However, to the best of our knowledge there are no studies evaluating
myocardial deformation using speckle tracking echocardiography (STE). In this study consisting of adult
patients with congenital aortic stenosis we performed a cross-sectional analysis, investigating myocardial
function with STE derived variables, both systolic and diastolic, and detect possible correlations with
baseline variables. In addition, the predictive value of myocardial function was prospectively investigated.

2 Methods

2.1 Study Population
Patients with a congenital aortic stenosis were extracted from a prospective cohort of consecutively

included clinically stable patients with adult congenital heart disease, between September 2011 and June
2014 at the outpatient clinic of our tertiary center. Inclusion criteria were �18 years of age, and a
diagnosis of congenital aortic stenosis. This study protocol has been described previously [16], and was
carried out according to the principles of the Declaration of Helsinki and approved by the local ethics
committee. Written informed consent was obtained from every patient.

The study protocol included a questionnaire on medical history, a physical examination, 12-leads
electrocardiogram, comprehensive echocardiogram and venous blood sampling (not fasting) on the same
day. Hypertension was defined as systolic pressure above 140 mmHg or diastolic pressure above 90 mmHg.

2.2 Image Acquisition
Two-dimensional greyscale images were obtained in the left lateral decubitus position with an iE33 or

EPIC7 ultrasound system (Philips medical systems, Best, the Netherlands) equipped with a transthoracic
X5-1 matrix transducer (3040 elements, extended operating frequency range 1–5 MHz). Care was taken
to retain a minimum framerate of 50 Hz. The studies were stored in digital imaging and communications
in medicine (DICOM) format.

2.3 Echocardiographic Measurement
For all measurements the current guideline from the American of European Society of Cardiology were

adhered to when performing measurements [17]. Diastolic function was assessed to the most recent guideline
from the SE/EACVI, recommendation for the evaluation of LV diastolic function [18]. For ejection fraction,
the method-of-disk summation technique was used, for LV mass, the linear method was used.

2.4 Speckle Tracking Analysis
Speckle tracking analysis was performed with dedicated commercially available software (2D Cardiac

Performance Analysis, Tomtec Imaging Systems, Unterschleissheim, Germany). By determining the end-
systolic and end-diastolic frame and identifying the annulus and apex, the software semi-automatically
detects the myocardial contours. This contour was visually checked and corrected if necessary. This was
performed in the apical four-, three- and two-chamber view. The left ventricle was assessed according to
the 17-segment model as stated by the guideline for echocardiographic chamber quantification [19]. LV
global longitudinal strain (GLS and LV global longitudinal early diastolic strain rate (GLSre) were
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assessed. The latter was as the maximum strain rate during early diastole (Fig. 1). Measurements regarding
STE were done according to the guidelines set by ASE/EAE consensus statement [20] and Taskforce to
standardize deformation imaging [21].

2.5 Definition of Events
The endpoint was a composite of death, heart failure, arrhythmia (both supraventricular and ventricular,

had to be symptomatic and recorded or treated), hospitalization for cardiac reasons, thrombo-embolic events
and re-interventions (both surgical and percutaneous). These endpoints were defined before any data analysis
was performed. Each patient was regularly seen at the outpatient clinic and endpoints were manually checked
on a yearly basis, while being blinded for clinical data. The Municipal Population Register was checked to
obtain survival status. If patients did not experience any event, subjects were censored at the end of the
follow-up period (01-01-2018). When patients did experience an event, they were censored for the rest of
the follow-up time, but new events were still being registered. Every patient was treated to the
physician’s discretion and in accordance with the ACHD guidelines [22].

2.6 Statistical Analysis
Data distribution was checked using histograms and the Shapiro–Wilk test. Continuous data were

presented as mean ± SD or median and interquartile range [IQ1–IQ2], as appropriate. Categorical data
were presented as frequencies and percentages. The student’s T-test or Mann–Whitney-U test was used to
assess differences between groups for continuous data, and the Chi-square test or Fisher’s exact test was
used for categorical data as appropriate. Missing data regarding LV GLS and LV GLSre was handled
with by imputation of the mean. Correlations were assessed for baseline characteristics and
echocardiographic variables with both LV GLS and LV GLSre.

Patients were stratified into tertiles according to LV GLS and LV GLSre. Using the Kaplan–Meier
method, cumulative endpoint-free survival estimates were calculated. The log-rank test was used to
determine significant differences between groups. Cox proportional hazard ratios (HR) were calculated to
determine possible associations between variables of interest and endpoints. These were standardized to
make comparison easier. For both LV GLS and LV GLSre several bivariable Cox regression models were
performed for the occurrence of the combined endpoints. Ion the first model NT-proBNP was added, in

Figure 1: An example of strain analysis, where the apical four-chamber view has been used to analyze
longitudinal strain and strain rate. The graph shows strain rate during the cardiac cycle; the peak at the
arrow A represents the speed of early diastolic lengthening of the myocardium
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the second was left atrial (LA) volume and in the third with LV number of prior re-interventions. This
resulted in 6 bivariable models; three with LV GLS and three with LV GLSre.

Statistical analysis was performed using IBM SPSS 24.0 (IBM Corp., Armonk, NY, USA). Tests were
considered statistically significant when two-sided p-value was less than 0.05.

3 Results

3.1 Patient Characteristics
There were 138 patients included in the study: median age was 34.4 [25.5–42.8] years, of which 86

(62.3%) were male. Baseline characteristics are presented in Tab. 1. The majority of patients were in
NYHA class I: 134(97.1%) at baseline. Median BMI was 25.1 [22.6–27.6] kg/m2, 12(8.7%) patients had
hypertension and 108(78.3%) had a bicuspid aortic valve. At the time of inclusion, 41(29.7%) patients
had at least prior valvular intervention. The echocardiographic findings are presented in Tab. 2. Mean LV
ejection fraction (EF) was 57.9 ± 7.0%.

Table 1: Baseline characteristics

Clinical assessment All patients
(n = 138)

LV GLSre tertiles p-value

Best tertile
(n = 45)

Middle tertile
(n = 50)

Worst tertile
(n = 43)

Age (years) 33.4 [25.5–42.8] 27.8 [23.1–37.4] 34.2 [26.1–40.6] 41.1 [33.2–52.0] <0.001

Sex (male) 86 (62.3) 26 (57.8)* 33 (66.0)* 27 (62.8)* 0.709

BMI (kg/m2) 25.1 [22.6–27.6] 24.0 [22.6–26.4] 25.0 [22.5–27.3] 26.3 [22.7–28.6] 0.244

BSA (m2) 1.94 ± 0.25 1.92 ± 0.21 1.98 ± 0.22 1.92 ± 0.25 0.312

Systolic blood pressure (mmHg) 127 ± 16 125 ± 15 127 ± 16 129 ± 16 0.43

Diastolic blood pressure (mmHg) 80 ± 11 79 ± 11 80 ± 11 81 ± 12 0.77

Heart rate (bpm) 75 ± 14 77 ± 15 76 ± 14 73 ± 11 0.275

QRS duration (ms) 102 [94–110] 102 [96–110] 98 [88–107] 106 [96–115] 0.025

Hypertension 12 (8.7) 0 (0.0)* 3 (6)* 9 (20.9)* 0.002

NYHA class I 134 (97.1) 44 (97.8)* 50 (100)* 40 (93.0)* 0.128

Aortic valve stenosis location 0.036

Subvalvular 16 (11.6) 6 (13.3)* 1 (2)* 9 (20.9)*

Valvular 94 (68.1) 33 (73.3)* 36 (72.0)* 25 (58.1)*

Supravalvular 1 (0.7) 1 (2.2)* 0 (0.0)* 0 (0.0)*

Bicuspid aortic valve 108 (78.3) 33 (73.3)* 43 (86.0)* 32 (74.4)* 0.503

Initial repair 100 (72.5) 25 (55.6)* 39 (78.0)* 36 (83.7)* 0.007

Age at initial intervention (years) 15.6 [8.3–27.4] 15.9 [9.4–27.4] 14.4 [7.1–29.4] 16.0 [7.3–25.8] 0.943

Surgical 85 (85) 19 (42.2)* 35 (70.0)* 31 (72.1)*

Percutaneous 15 (15) 6 (13.3)* 4 (8.0)* 5 (11.6)*

Aortic re-intervention 55 (39.8) 14 (31.1)* 20 (40.0)* 21 (18.6)* 0.237

More than one 15 (10.9) 2 (4.4)* 5 (10.0)* 8 (18.6)*

Cholesterol level (mmol/L) 5.0 ± 1.1 4.8 ± 0.9 5.1 ± 1.1 5.2 ± 1.0 0.187

NT-proBNP (pmol/L) 10.4 [5.7–22.1] 8.2 [4.3–12.6] 10.7 [5.9–20.3] 16.9 [7.5–42.3] 0.003
* Percentages are fraction of the column. p-values were calculated with One-way ANOVA or Kruskal–Wallis test depending on distribution.
frequencies were tested with the Chi-square test.
** Most patients with a bicuspid valve had a valvular stenosis; 18 patients had no stenosis at time of inclusion, 4 had a subvalvular stenosis.
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3.2 Strain Values and Associations with Baseline Variables
LV GLS was feasible in 134 (97.1%) and LV GLSre in 132 (95.7%) patients. Mean values were –15.3 ±

3.2% and 0.66 ± 0.18 s–1 for the entire study population.

Tab. 3 shows the correlations between baseline variables and both LV GLS and LV GLSre. For LV GLS,
age, number of reinterventions and NT-proBNP were significantly correlated. The echocardiographic
variables that correlated strongest with LV GLS were LV EF (r: 0.539, p < 0.001) and LV GLSre
(r: 0.620, p < 0.001). Conventional diastolic parameters correlated with LV GLS: LA volume, A-wave
and E/A-ratio, of which LA volume had the strongest correlation (r: –0.264, p < 0.01).

For LV GLSre, older age, presence of hypertension and higher NT-proBNP levels were correlated with
lower LV GLSre values. A higher LV and mass correlated with lower LV GLSre values, and also with
conventional diastolic parameters such as E/A-ratio and e’.

Table 2: Echocardiographic measurements

Conventional measurements Patients

(n = 138)

LV GLSre tertiles p-value

Best tertile (n = 45) Middle tertile (n = 50) Worst tertile (n = 43)

LV end-diastolic dimension (mm/m2) 26.2 ± 3.3 26.2 ± 2.9 25.5 ± 3.0 26.8 ± 3.8 0.207

LV end-systolic dimension (mm/m2) 16.6 ± 3.2 16.4 ± 2.3 16.4 ± 3.2 17.5 ± 3.8 0.205

LV end-diastolic volume (ml/m2) 63.8 ± 17.5 63.2 ± 14.3 30.7 ± 16.6 67.9 ± 20.8 0.144

LV end-systolic volume (ml/m2) 27.3 ± 11.7 25.5 ± 6.9 25.6 ± 9.0 31.2 ± 16.7 0.033

LV ejection fraction (%) 57.9 ± 7.0 59.9 ± 4.1 58.3 ± 5.8 55.5 ± 9.5 0.011

LV mass / BSA (g/m2) 90.0 ± 25.2 88.1 ± 21.5 85.8 ± 28.5 96.8 ± 24.0 0.093

Aortic jet velocity (m/s) 2.52 ± 1.03 2.71 ± 1.06 2.48 ± 1.02 2.38 ± 1.00 0.321

Aortic jet velocity > 4.0 m/s 16 (11.6) 7 (15.6)* 6 (12.0)* 3 (7.0)*

Aortic regurgitation 0.662

None / mild 101 (73.2) 24 (53.3)* 39 (78.0)* 28 (65.1)*

Moderate 26 (18.8) 8 (17.8)* 6 (12.0)* 12 (27.9)*

Severe 4 (2.9) 1 (2.2)* 2 (4.0)* 1 (2.3)*

Diastolic measurements

LA volume (ml/m2) 22.6 [18.5–31.0] 24.2 [19.2–33.5] 20.2 [15.4–25.1] 24.8 [15.4–39.0] 0.028

LV E-wave (m/s) 0.84 ± 0.22 0.88 ± 0.22 0.83 ± 0.19 0.81 ± 0.25 0.363

LVA-wave (m/s) 0.60 ± 0.20 0.53 ± 0.20 0.63 ± 0.18 0.64 ± 0.20 0.047

LV E/A-ratio 1.52 ± 0.59 1.81 ± 0.71 1.44 ± 0.52 1.31 ± 0.40 0.001

LV e’ (cm/s) 8.2 ± 2.4 8.9 ± 1.8 8.6 ± 2.5 6.8 ± 2.3 0.001

LV E/e 11.3 ± 5.3 10.4 ± 4.7 10.6 ± 4.8 13.0 ± 6.4 0.109

Myocardial deformation

LV global longitudinal strain (%) –15.3 ± 3.2 –17.5 ± 2.6 –15.6 ± 1.9 –12.7 ± 2.9 <0.001

Decreased LV GLS (<17.8%) 45 (32.6) 24 (53.3)* 43 (86.0)* 43 (100.0)*

LV global early diastolic strain rate (s-1) 0.66 ± 0.18 0.85 ± 0.12 0.66 ± 0.04 0.47 ± 0.09
* Percentages are fraction of the column. p-values were calculated with One-way ANOVA or Kruskal–Wallis test depending on distribution.
frequencies were tested with the Chi-square test.
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Table 3: Correlations with myocardial deformation

Clinical assessment LV GLS LV global diastolic strain rate

Correlation coefficient Correlation coefficient

Age –0.177* –0.376‡

Sex –0.049 –0.125

BMI 0.007 –0.067

BSA 0.026 –0.053

Systolic blood pressure 0.137 –0.096

Diastolic blood pressure 0.068 –0.032

Heart rate –0.091 0.143

QRS duration –0.124 –0.096

Hypertension –0.049 –0.230†

NYHA class I –0.136 0.006

Bicuspid aortic valve 0.085 –0.002

Initial intervention

Age at initial intervention (years) 0.098 –0.036

Type of first intervention (surgical or percutaneous) –0.121 –0.119

Number of aortic re-intervention –0.248† –0.128

Cholesterol level 0.065 –0.157

NT-proBNP 0.354‡ –0.235†

Echocardiographic measurements

LV end-diastolic dimension indexed 0.126 –0.07

LV end-systolic dimension indexed –0.212* –0.135

LV end-diastolic volume –0.183* –0.151

LV end-systolic volume –0.388‡ –0.253†

LV ejection fraction –0.539‡ 0.306†

LV mass/BSA –0.162 –0.172*

Aortic jet velocity –0.145 0.147

Diastolic measurements

LA volume (ml/m2) –0.264† –0.099

LV E-wave (m/s) –0.001 –0.141

LVA-wave (m/s) –0.262† –0.125

LV E/A-ratio –0.243* –0.276†

LV e’ (cm/s) 0.181 0.323†

LV E/e –0.167 –0.154

Myocardial deformation

LV GLS – 0.620‡

LV global diastolic strain rate 0.619‡ –

*: <0.05. †: <0.01. ‡: <0.001
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3.3 Prognostic Value of Myocardial Deformation
The composite endpoint occurred in 53 (38%) patients. During a median follow-up period of

5.9 [5.5–6.2] years. During that period, four patients died; 3 due to cardiac arrest and 1 presumed sudden
cardiac death. Another 45 patients were hospitalized for a myriad of reasons (specified in supplemental
Tab. 1). In total 22 patients experienced arrhythmias: 11 patients had supraventricular tachycardia’s,
10 patients suffered from ventricular arrhythmias, of which 5 were out-of-hospital-cardiac-arrests due to
ventricular fibrillation. In total 8 patients had a thrombo-embolic event: 6 ischemic cerebral vascular
events, 1 myocardial infarction and 1 superior mesenteric artery thrombus. In total 35 patients had a re-
intervention during follow-up, 22 surgical and 16 percutaneous.

In Fig. 2, the cumulative event-free survival is depicted for LV GLS and LV GLSre. Both variables have
been stratified into tertiles. Both variables show that decreased values are associated with a decreased event-
free survival (LV GLS p: 0.048, LV GLSre p < 0.001).

Tab. 4 shows univariable standardized hazard ratios (sHR) of baseline characteristics, conventional
echocardiographic and STE derived variables for the combined endpoint. The presence of hypertension,
elevated NT-proBNP levels and re-intervention prior to inclusion were associated with a higher risk for
the occurrence of the combined endpoint. Notable is that of the conventional echocardiographic variables
only LV diastolic variables were associated with the combined endpoint. Both LV GLS and LV GLSre
were significantly associated with the combined endpoint (sHR 0.62 95%CI 0.47–0.81 and sHR 0.62
95%CI 0.47–0.83 respectively). Interestingly, LV mass and aortic jet velocity were not.

Three bivariable models were analyzed: 1. LV GLS combined with NT-proBNP and 2. LV GLS
combined with LA volume and 3. LV GLS combined with the number of re-interventions prior to
inclusion. The first model showed that both LV GLS and NT-proBNP were independently associated with
the combined endpoint (sHR 0.76 95%CI 0.58–0.99 and sHR 2.28 95%CI 1.63–3.21 respectively).
The second model with LA volume showed similar results: both were independently associated (LV GLS
sHR 0.67 95%CI 0.51–0.89 and LA volume sHR 1.38 95%CI 1.14–1.68). LV GLS was independently
associated with the endpoint of re-intervention, which was no longer significantly associated. The third

Figure 2: Two graphs showing the Kaplan–Meier curves for LV GLS an GLSre respectively. In the left
panel LV GLS is stratified in tertiles, and in the right panel LV GLSre is stratified in tertile
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model showed that LV GLS was significantly associated with the endpoint (LV GLS sHR 0.67 95%CI 0.50–
0.88), independent of reintervention prior to inclusion, which was no longer associated with the endpoint.

For LV GLSre, we also analyzed three bivariable models. The first model revealed that LV GLSre and
NT-proBNP were independently associated with the combined endpoint (LV GLSre sHR 0.73 95%CI 0.55–
0.96, NT-proBNP sHR 2.35 95%CI 1.68–3.28, respectively). The second model showed again that LV
GLSre and LA volume were independently associated with the combined endpoint (LV GLSre 0.62 85%
CI 0.47–0.83, LA volume 1.48 95%CI 1.22–1.79). Lastly, the third showed that LV GLSre was
significantly associated with the endpoint (sHR 0.66 95%CI 0.50–0.87) independently of re-intervention,
which was no longer associated with the endpoint.

Table 4: Cox regression analysis

Clinical assessment Any event

Standardized HR 95% CI p-value

Systolic blood pressure 1.14 0.87–1.51 0.341

Diastolic blood pressure 1.06 0.80–1.41 0.686

QRS duration 1.11 0.84–1.47 0.454

Hypertension (not standardized) 2.98 1.45–6.16 0.003

Cholesterol level 1.02 0.77–1.35 0.88

NT-proBNP (2log transformed) 2.50 1.80–3.48 <0.001

Number of re-interventions (n = 55) (not standardized) 1.48 1.07–2.06 0.018

Echocardiographic measurements

LV end-diastolic volume 1.14 0.85–1.51 0.387

LV end-systolic volume 1.3 0.99–1.70 0.061

LV ejection fraction 0.81 0.59–1.11 0.188

LV mass/BSA 0.97 0.73–1.27 0.800

Aortic jet velocity 0.92 0.69–1.22 0.539

Aortic regurgitation � moderate (not standardized) 0.52 0.72–3.80 0.522

Diastolic measurements

LA volume 1.52 1.25–1.83 <0.001

LV E-wave 1.3 0.98–1.71 0.068

LVA-wave 1.47 1.13–1.91 0.004

LV E/A-ratio 0.89 0.63–1.25 0.484

LV e’ 0.41 0.27–0.62 <0.001

LV E/e 1.56 1.23–1.97 <0.001

Myocardial deformation

LV global longitudinal strain* 0.62 0.47–0.81 0.001

LV global early diastolic strain rate 0.62 0.47–0.83 0.001
* Absolute values were used.
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4 Discussion

To our knowledge, this is the first study to investigate the prognostic value of left ventricular strain
measurements in adult patients with a congenital aortic stenosis. We conclude that LV global longitudinal
strain and global longitudinal early diastolic strain rate are reduced in these patients compared to healthy
controls [23–25]. Hypertension correlated with reduced LV GLSre, and LV EF with LV GLS, though LV
EF was normal whereas LV GLS was reduced, suggesting that LV GLS is better capable to detect
systolic dysfunction.

Both LV GLS and GLSre contain prognostic value for risk-stratification in adult patients with congenital
aortic stenosis. LV GLS and LV GLSre are associated with the composite endpoint, independently from
variables such as NT-proBNP, left atrial volume or number of prior interventions.

4.1 Left Ventricular Function in Congenital Aortic Stenosis
There are several observations to be made from the cross-sectional data. First, volumetric assessment

and ejection fraction of the left ventricle were predominantly good. On the other hand, the average LV
GLS was reduced, as was LV GLSre. And although there was a strong correlation between LV GLS and
LV EF, LV EF evidently failed to detect LV systolic dysfunction; conventional echocardiographic
assessment approximates but does not fully describe the intricacies of left ventricular function.

The fact that LV systolic and diastolic function are interconnected and influence each other can be
witnessed by a number of correlations found in this study; left ventricular GLS as a measure of systolic
function was correlated with LV GLSre, E-wave, E/A-ratio and LA volume. Conversely, LV GLSre
correlated LV end-systolic volume and EF.

Interestingly, the diagnosis hypertension at baseline correlated with reduced LV GLSre. It is known
that prolonged pressure overload negatively influences diastolic function. Pressure overload induces LV
hypertrophy, and indeed increased LV mass also correlated with reduced LV GLSre. We found that LV
GLSre correlated well with conventional diastolic markers, however the results from the bivariate models
suggest that LV GLSre provides additional prognostic information over LA volume alone, since LV
GLSre was significantly associated with the endpoint, independently of LA volume.

4.2 Prognostic Value of Myocardial Deformation
This study shows that patients with congenital aortic stenosis have a high morbidity and mortality,

therefore comprehensive risk-stratification and follow-up are imperative. We found that multiple re-
interventions in childhood did correlate with reduced LV GLS, and LV GLS was associated with adverse
cardiac events. This demonstrates the value of strain measurements in routine clinical follow-up. Severe
aortic stenosis or rapid progression leads to LV hypertrophy and might cause reduced coronary flow
[12,13] and has previously been linked to higher intervention rates [15]. Both hypertrophy and reduced
coronary flow can induce fibrosis and may cause sub endocardial dysfunction. Indeed, the number of re-
interventions prior to inclusion was associated with the combined endpoint. However multivariable
analysis showed that it was no longer associated with the endpoint after including either LV GLS or
GLSre. Myocardial deformation is a very sensitive way to assess LV function, systolic and diastolic. With
strain analysis, new tools have come available for adequate risk-assessment. The results also suggest that
more severely decreased LV GLS or GLSre seems to lead to a worse prognosis, considering the Kaplan–
Meier curves in Fig. 2.

Interestingly, conventional LV parameters were unable to predict cardiovascular events in our study,
most notably LV EF, LV mass and aortic jet velocity. And even though the aortic stenosis may no longer
be present, the imbalance between oxygen demand and supply has already induced myocardial changes.
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These changes in combination with hypertension and hypertrophy, are most likely why LV GLSre and
conventional diastolic parameters were predictors for adverse outcome.

Studies pertaining adult patients with a congenital aortic stenosis are relatively scarce, and studies
investigating clinical outcome even more so. Van der Linde et al. [14] found that severity of the aortic
stenosis is fairly stable over time but identified the presence of LV hypertrophy to be associated with
disease progression. It is also one of the few studies which reported mortality rates (3 out of 414 patients,
0.7%, during a median follow-up of 4.1 years). In our study, LV mass was not associated with clinical
events. This is most likely due to lower values of LV mass in our cohort: mean LV mass in our study was
90 ± 25.2 g/m2 against 106 ± 32.2 g/m2. However, LV mass was correlated with LV GLSre, and it is well
known that increased LV mass is associated with impaired LV diastolic dysfunction [26,27]. But the
added value of LV mass seems to be a limited in clinical decision making in these patients as it was not
associated with clinical outcome in this study.

5 Clinical Implications

This study has identified LV GLS and GLSre as prognostic markers for clinical events in patients with
congenital aortic stenosis. LV GLS and GLSre are measured in the same analysis, making them applicable for
routine clinical use. Left ventricular GLS is more sensitive to detect systolic dysfunction than LV EF
[21,28,29], and LV GLSre improves the detection of diastolic dysfunction [24]. In other words, both are
more sensitive markers that provide benefit over conventional measurements and should therefore be
included clinical evaluation when feasible.

These patients have a high risk for late cardiac complications. During a median follow-up of 6 years,
4(2.9%) patients died. Arrhythmias and re-intervention occurred much more frequently, underlining the
need for adequate risk-stratification. Especially the incidence of ventricular arrhythmias is concerning:
5 patients had an out-of-hospital-cardiac-arrest and 2 patients developed ventricular tachycardia. These
life-threatening complications should be prevented. Reduced strain indices may help in the identification
of these patients.

5.1 Limitations
Patients were included in a tertiary care center, possibly resulting in inclusion bias. On the other hand,

care was taken to include clinically stable patients. The strain results presented here are based on software
from Tomtec. Though several studies have concluded that differences between vendors are negligible
[30,31], care should be taken when extrapolating these results to other vendors.

6 Conclusion

Myocardial deformation measurements can be used to assess the risk for late complications in patients
with congenital aortic stenosis. Furthermore, both LV systolic and diastolic strain have incremental value
over conventional echocardiographic measurements. The high rate of cardiovascular events further
underlines the need for adequate risk-stratification; therefore, we recommend that LV strain analysis
should be incorporated in the clinical assessment of these patients in routine practice.
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