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NON-THEMATIC REVIEW

Platelets in aging and cancer—“double-edged sword”
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Abstract

Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during
aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role
in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous
thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with
cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading
cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how
platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken
along the road towards a “healthy aging” strategy. Here, we review the changes that occur in platelets during aging, and
investigate how these versatile blood components contribute to cancer progression.
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1 Introduction

Physiological changes occur in all organ systems during ag-
ing, and are a reflection of changes that occur on a molecular
level in individual cells. Diverse animal and yeast models
have shown that aging is associated with tissue-specific
changes in transcriptomes as well as intra- and extracellular
metabolite changes [1]. Cellular senescence, a block in cellu-
lar proliferation as a result of (amongst others) telomere short-
ening and loss of DNA damage repair, plays an important role
in the process of aging [2]. In addition to telomere attrition,
genomic instability, and cellular senescence, other hallmarks
of cellular aging include stem cell exhaustion, epigenetic al-
terations, loss of proteostasis, deregulated nutrient sensing,
mitochondrial dysfunction, and altered intercellular
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communication [3]. Not all cells become senescent, and re-
moval of senescent cells may reduce aging on an organismal
level [4]. However, cellular communication is mediated in
part via the release of vesicles known as exosomes, which
can carry cellular components from one cell to another across
large distances. Senescent cells also release such exosomes
and these have been speculated to play a significant role in
age-related phenotypes including age-related diseases [5].
Connecting all known cellular alterations to biological aging
remains challenging, and finding ways to promote “healthy
aging” remains a holy grail [3].

Thus far, aging is often studied in the context of stem cell
capacity and longevity, but cellular changes in individual cell
types have also been investigated for neurons, skin fibroblasts
and keratinocytes, bone and bone marrow (bone-proximal os-
teoblastic niche), and many other tissues and cell types [6-8].
One more cellular component to be added to this mix are
platelets, as a role for these blood constituents in aging and
age-related diseases is now emerging [9]. Like many systems
in cellular metabolism and catabolism, the biology/function of
platelets appears to be altered in the elderly. In addition, al-
tered platelet function and clinical conditions such as cancer
create a complex chain of cause and effect, which can culmi-
nate in systemic responses responsible for the main causes of
death in the world, namely, (1) inappropriate blood clot
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formation known as thrombosis and (2) cancer metastasis,
responsible for more than 90% of cancer-related deaths [9,
10]. Thrombotic risk in the elderly is associated with genetic
factors, but also with lifestyle, obesity, and diseases such as
cancer [11, 12], creating a complex feedback loop. Other ex-
amples of the interrelationship between platelet function and
pathological conditions can be seen in the acquisition of
bleeding disorders such as hemophilia or Von Willebrand
syndrome [13], or the involvement of platelets to neurological
disorders such as Alzheimer disease (for review, see [14]). In
this latter condition, the microenvironment sensitizes platelets
to activation and renders them less sensitive to inhibition,
most likely due to increased sensitivity to some platelet acti-
vation agonists, such as thrombin and collagen, leading to an
increase in (3-amyloid production by platelets [15, 16]. Large-
scale omics studies have demonstrated age-specific proteomic
changes in platelets from childhood to adulthood [17], and
miRNA patterns associated with age in individuals ranging
from 18 to 46 years old [18]. It is conceivable that such cel-
lular changes may predispose an individual to aging-related
diseases. In this review, we summarize the impact of aging on
platelet function, and investigate how such altered platelet
functionality can contribute to aging-related diseases, with
particular emphasis on cancer.

2 Aging-associated changes in platelet
phenotype and function(s)

Since the lifespan of platelets is around 7 to 10 days in the
bloodstream, changes in platelet functions may be correlated
with megakaryocyte maturation, adhesion, and
thrombopoiesis, as changes in megakaryocyte maturation dur-
ing aging lead to altered proplatelet formation and release of
platelets with an altered content [19]. Some of these events
appear to be driven by [-adrenergic signals coming from a
senescent microenvironment [19-21]. As such, megakaryo-
cyte aging, aging of platelets in the circulation, and cues from
an aged microenvironment to megakaryocytes and nascent
platelets during organismal aging can all contribute to changes
in platelet biology in elderly individuals. Under normal con-
ditions, there is a gradual loss of RNA content over the course
of a platelet lifespan, while in aged organisms, distribution of
megakaryocyte content to platelets is altered. However, there
are also clear differences between “aged platelets” and “plate-
lets in aged individuals.” Hepatic clearance of senescent plate-
lets from the circulation of adult organisms is dependent on
the loss of sialic acid residues of glycoproteins in the cell
membrane. Activation of the pro-apoptotic BAX-BAK path-
way in aged platelets results in caspase-dependent surface
exposure of phosphatidylserine, which serves as a recognition
signal for phagocytic cells. In terms of functionality, senescent
platelets have impaired adhesion and aggregation responses.
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On the other hand, platelets in senescent organism might be
primed to increase their responsiveness to agonists (hyper-
reactive platelets) [22, 23].

Several recent studies have investigated the effect of aging
on platelet morphology and function. During the course of
life, platelet size increases [24], which directly affects platelet
content, including granules and pro-coagulation factors. Other
morphological changes seen in platelets from older individ-
uals include an irregular, less smooth plasma membrane with
more frequent ruptures, and an increase of slender pseudopo-
dia [25]. The number of circulating platelets is thought to
decrease with advanced age. While a study of over 5000 par-
ticipants suggested that platelet count in individuals of >
65 years is not affected by subsequent age differences [26],
two large studies investigating over 25,000 and 40,000 indi-
viduals, respectively, showed that platelet numbers drop from
early childhood, are relatively stable in adulthood, and drop
again over the age of 60 years old, irrespective of gender and
ethnicity [27, 28]. Careful consideration of the age groups
studied is essential, and for the purpose of this review, we
therefore aimed to compare young adults (18-39 years),
middle-aged (40-59 years), old-aged (60—79 years), and
very-old-aged (>80 years) groups, where possible (Figs. 1
and 2). While the cause of reduced platelet numbers during
aging remains to be clarified, some studies have suggested
changes in hematopoietic stem cells as a pivotal cause of low-
er platelet counts in advanced age [59-61].

Despite a lower platelet count in older individuals, bleeding
times are reduced during aging, which is thought to contribute
to an increased risk of blood clot formation [62]. Bleeding
time (i.e., time before efficient blood clotting occurs) is de-
pendent on platelet count and vessel contractibility, as well as
platelet function, and platelets in the elderly are indeed hyper-
reactivated, especially in subjects with associated comorbidi-
ties (for review, see [61, 63]). For instance, spontaneous plate-
let aggregation is higher in very old subjects as compared with
old adults [30, 64], and a higher sensitivity to ADP stimulation
[10, 65, 66] and thrombin receptor—activating protein
(TRAPO) [67] is seen. Several other platelet agonists, includ-
ing ristocetin, thrombin, and collagen, have received attention
but whether responsiveness of platelets towards these agonists
is increased or decreased during aging remains disputed
(Fig. 1).

Whether overactivation of platelets is a failed compensa-
tion mechanisms to make up for the loss of platelet count
remains speculative. The mechanisms contributing to higher
platelet activity in elderly individuals are still under investiga-
tion. It has been suggested that age-related inflammatory and
metabolic changes contribute to an increased platelet function
in the elderly [66]. Mouse models have shown an increase of
hydrogen peroxide concentration in blood, which directly in-
creases platelet activity during aging [67]. In humans, oxida-
tive stress markers in platelets increase from young to middle-
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Fig. 1 Age-associated changes in
platelet function. Platelet function
of aggregation, tissue repair, and
remodeling changes
discriminated on age groups. The
concept of age groups is based on
young adults (18-39 years),
middle-aged (40-59 years), old-
aged (60-79 years), very-old-
aged group (> 80 years) [27, 29]
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aged individuals [30, 68]. Hydrogen peroxide accumulation in
platelets could be the result of NADPH oxidase and superox-
ide dismutase activity, which are associated with an increased
integrin oIIbP3 activity in platelets [68]. Indeed, the expres-
sion of surface markers such as integrin «IIb and «IIb33 is
increased during the course of aging [69, 70]. Thus, overall
increased oxidative stress is generally seen during the aging
process, contributing to the concept that platelet alterations in
aging are associated with an increasing inflammatory state.
The oxidative burst triggers activation of the signaling mole-
cule mTOR, a key regulator of lifespan and aging [69]. mTOR
activation in turn results in an increased platelet production by
megakaryocytes [70]. Moreover, mTOR hyper-activation dur-
ing aging is associated with increased platelet aggregability
and aging-related venous thrombosis risk in mice [59]. Thus,
mTOR plays a dual role in platelet hyper-aggregability by
increasing the activity of platelets, while oxidative stress
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further increases platelet reactivity, resulting in an enhanced
risk of thrombi formation in the elderly (Fig. 2).

Association between activated platelets and monocytes, as
would occur during blood clotting, enhances the formation of
aggregates. While there is no impact of age on platelet-
monocyte aggregation per se in healthy adults [71], higher
levels of platelet-monocytes aggregates were seen in patients
with acute coronary syndrome [72], and platelet hyper-
activation may thus be further exacerbated in disease states.
Others have shown that the age-related increases of platelet-
derived {3-2-microglobulin levels in the serum cause mono-
cyte differentiation towards a less regenerative phenotype,
providing a further link between platelet changes during aging
and the aging process [73].

A clear association between platelet hyper-reactivity and
the occurrence of thromboembolic events exists and may con-
tribute to cardiovascular comorbidities in the elderly [74]. In
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Fig.2 Age-associated changed in
platelet markers. Platelets present
several changes during the aging
process on their content (cytosolic
and membrane) and release
thereof. The concept of age
groups is based on young adults
(18-39 years), middle-aged (40—
59 years), old-aged (60-79 years),
very-old-aged group (>80 years)
[40-47, 31, 32, 48, 58]
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addition to the direct effect of aging on platelet aggregation
described above, this phenomenon has also been attributed to
the fact that the production of anti-coagulation factors does not
follow the increasing pro-coagulation factor production dur-
ing aging [11]. Gleerup and Winther showed that, in addition
to an enhancement of platelet aggregability, aging provokes a
decrease of fibrinolytic activity, further reinforcing the asso-
ciation between lower fibrinolytic activity forming stable
thrombus formation and accumulation, an imbalance between
thrombotic versus fibrinolytic events [75]. The same research
group described that adrenaline and sub-concentration ADP-
induced canonical platelet activation is enhanced in old and
very old individuals, as is the synergistic effect of serotonin on
adrenaline-/ADP-induced platelet activation. Adrenaline
levels were also augmented in the old and very old groups
[76, 77]. This might be a compensatory mechanism for the
fact that (3-adrenoreceptors from older individuals show
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higher ligand affinity. This receptor reduces platelet aggrega-
tion through the production of cAMP, and a reduced signaling
capacity through this receptor may thus contribute to an en-
hanced platelet aggregation in the elderly; however, the levels
of cAMP in plasma did not change significantly during aging
[76, 77]. Endothelial dysfunction during aging may further
increase platelet responsiveness [75]. For instance, it has been
speculated that platelet activation and aggregation caused by
dysfunctional lung epithelium in virally infected individuals
may cause depletion of thrombocytes, and contribute to the
thrombocytopenia observed in COVID-19 patients infected
with SARS-CoV-2 [76, 77].

In addition to blood clotting, it is increasingly recognized
that platelets play an important role in wound healing. While
wound healing is not absolutely impaired, delayed closure
rates and weaker wound repair are commonly seen in subjects
of advanced age [78]. During wound healing, many different
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cell types, including fibroblasts and immune cells such as
macrophages and lymphocytes, cooperate to restore tissue ar-
chitecture. Activated platelets trapped in the blood clot release
mediators to attract these cells and express P-selectin which
acts as cell adhesion molecule for passing lymphocytes [79].
Furthermore, the secretion of several growth factors, such
VEGF, PDGF, EGF, and TGF3, may modulate T cells to
induce keratinocyte regenerative capacity and enhance prolif-
eration of regenerative cells such as fibroblasts [80, 81].
However, while reduced serum levels of these platelet-
derived factors could theoretically contribute to decreased
wound healing rates, age-related variations in cytokine levels
appear most pronounced in early adulthood, disputing their
relevance for wound healing delay in the very old individuals
[25, 82].

Data collection on platelet function during aging is
complicated by several issues. For one thing, platelet ag-
ing may be gender-specific, as studies have indicated that
aging-related loss of interaction with the adhesion mole-
cule von Willebrand factor (vWF) is more pronounced in
women as compared to men [28, 83]. Thus, hormonal
changes may contribute to platelet alterations in older
subjects [84]. Levels of steroids such as testosterone
and dihydrotestosterone in older individuals are negative-
ly associated with platelet activation markers, and these
steroids can directly inhibit collagen-induced aggregation
in vitro [85]. Secondly, recent data suggest that changes
that occur during aging are complicated and were not
always found to be continuous during aging.
Spontaneous aggregation was increased in elderly indi-
viduals compared with younger subjects, while ristocetin
or collagen-induced aggregation was decreased (pointing
towards platelet exhaustion) [30]. However, these trends
did not follow linear relationships with changes most
pronounced in the very old (80+ years) [30]. Other plate-
let activation markers (soluble P-selectin, integrin «IIb,
caspase 3, oxidative stress) were shown to increase from
young to old individuals, but decrease again in the very
old [68]. However, it should be noted that others found
no differences in basal membrane-bound P-selectin be-
tween individuals <45 years and > 65 years old [34,
35], while the percentage of platelets expressing P-
selectin upon stimulation with TRAP-6 was actually
higher in younger individuals [67]. Differences in age
groups, methods, and stimuli used vary per study and
may account for conflicting results. It should further be
noted that the effects observed are sometimes small, and
small group sizes may hamper interpretation of results.
While many studies point towards disturbances in platelet
functionality during aging, the direct consequences on
coagulation in healthy aging may not always be clear
[85, 86], and may be more pronounced under pathologi-
cal conditions.

2.1 Platelet bioactive lipids in aging

A detailed study on platelet lipid production and aging was
reported in 1986 [49]. This study investigated platelet choles-
terol and phospholipids content, and observed a slight increase
of cholesterol/phospholipids molar ratio upon aging within a
range of 20 to 69 years old [87]. It is important to highlight
that platelets are not able to produce their own cholesterol,
which must be obtained during their genesis (from megakar-
yocytes) or derived from plasma. The cholesterol/
phospholipid molar ratio is important to maintain platelet
membrane fluidity, and, consequently, the platelet capacity
to change its shape during activation. In addition, activation
of platelets via agonist-receptor activation in many cases re-
quires localization of receptors and downstream signaling
molecules in cholesterol-rich lipid rafts [88]. The lipid com-
position is also affected by aging [89], with increased fatty
acids 16:0 phosphatidylcholine and sphingomyelin, and a de-
crease of linoleic acids 18:2, 20:4, and 20:3 in older subjects
[49]. It is important to note that lipid oxidation occurs on
platelet LDL, and this phenomenon may have severe conse-
quences for cardiovascular diseases. One study showed that
older males at risk for coronary heart disease due to dietary
habits (55—73 years old) showed higher platelet aggregation in
response to epinephrine as compared with younger individ-
uals (28-54 years old) and males at lower risk for heart dis-
ease, indicating that age-related platelet changes associated
with phospholipid content may be a risk factor for cardiovas-
cular diseases [90].

Besides the platelet membrane lipid composition, the most
important bioactive lipids relevant to platelet function are the
signaling lipids derived from the eicosanoid pathway. Briefly,
upon stimulation of cells, membrane-anchored arachidonic
acids (AA) are released from the membrane phospholipids
by phospholipases (phospholipase A2), after which they are
enzymatically converted to prostanoids by COX1/2 enzymes.
This process results in production of platelet stimulatory
thromboxane (TxA,, mainly produced via COX1 [91]) or
platelet antagonistic prostaglandins (PG), PGI,, prostacyclin),
PGD,, and PGE, (mainly via COX2) [92, 93]. Alternatively,
AA can be converted to leukotrienes through lipoxygenases
activity. Eicosanoids are important mediators of inflamma-
tion, and, indeed, eicosanoid biosynthesis is higher on ad-
vanced age [77, 94, 95], which in turn may contribute to
enhanced inflammatory state during aging [92, 94, 96].
Platelet interaction with peripheral blood mononuclear cells
directly modulates inflammatory responses, potentially
through their production of PGE, [79, 80]. In this case,
PGE, decreases the effectiveness of myeloid cell differentia-
tion and affects their responses [97].

However, both increased TxA, as well as PGE, and pros-
tacyclin excretion were seen in older humans or rats, which
begs the question of how this balance would affect platelet
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activity [77, 98, 99]. While TxA, is produced by platelets, the
major source of prostacyclins is endothelial cells. While some
studies showed no differences in prostacyclin secretion by
arterial endothelial cells for donors of different ages [97],
others demonstrated reduced prostacyclin expression in aorta
endothelia from older individuals, suggesting that perhaps the
TxA, effect wins out during aging. It is of interest to know that
dietary restriction, known to prolong healthy aging, is associ-
ated with an enhanced prostacyclin/TxA, ratio in rats [100,
101]. Indeed, increased TxA, excretion appears to be associ-
ated not only with age-related diseases such as atherothrom-
bosis but also with metabolic disease [102, 103]. Obesity and
decompensated glucose metabolism increase not only platelet
activation but also inflammation (for review, see [104]). In
this case, the persistent TxA,-dependent platelet activation
increases systemic inflammation [103, 105]. Inflammation-
induced endothelial events may play a major role in aging
comorbidities. For instance, glycemia-mediated TxA,-recep-
tor activation was associated to disturbed blood-brain barrier
integrity in diabetes [106]. Furthermore, TxA, is a P2X; ion
channel agonist and both platelets and P2X; are required to
maintain vascular integrity in a mouse colitis model [107,
108].

Taken together, a clear change in platelet morphology and
function is seen during aging, which may have severe conse-
quences for aging-related physiology. The most relevant
changes in platelet biology were highlighted in Figs. 1 and 2.

3 Platelets in cancer—“double-edged sword”?

As described above, platelet hyper-reactivity during aging is
associated with an increased risk of formation of embolisms.
Nevertheless, despite cancer being an age-related disease,
thrombocytopenia is a common event in these patients. The
risk of bleeding in thrombocytopenic cancer patients is diffi-
cult to predict [109], and platelet counts must be carefully
monitored. In particular, cancers of the bone marrow (platelet
production from megakaryocytes) or spleen (platelet clear-
ance), where hematopoiesis is affected, are prone to lead to
loss of platelet counts. For instance, thrombocytopenia in pa-
tients with bone dyscrasias is directly related to bleeding
events [110]. However, the most common cause of bleeding
due to platelet loss in cancer patients arises as a result of
myeloablative chemotherapy [111] and cytopenia may there-
fore be a bystander effect rather than a pathogenic event. In
fact, the role of platelets in cancer appears to be ambiguous, as
enhanced blood clotting represents a major risk factor in can-
cer patients.

Patients with cancer (but also those with cardiovascular
diseases including diabetes, hyper-cholesterolemia, and
hypertension) can develop an increased platelet activity,
which may be either age-related or disease-specific. The
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hyper-aggregability observed in these diseases appears to be
related to higher platelet reactivity towards agonists or in-
creased circulation of these agonists (such as thrombin and
factor Xa), and is a primary cause of thrombotic events, in
particular venous thromboembolism events (VTE) and arterial
thrombosis (AT) [112, 113]. These events partially overlap,
with shared risk factors, and similar incidence in cancer pa-
tients [114, 115].

The first report of a platelet-related disorder in cancer
came from Armand Trousseau, who described a higher
risk of thrombotic events in cancer patients [116], which
has subsequently been termed Trousseau syndrome. As
the second cause of death, VTE poses a significant co-
morbidity in cancer patients, and a common cause of
hospitalizations, thereby significantly contributing to
cancer-associated health care costs [117]. Several cancers
are associated with increased VTE risk, including renal
carcinoma [118]; hepatocellular carcinoma [119]; lung
cancer [120]; and esophageal and stomach cancer [112].
Moreover, VTE in esophageal or gastric cancer patients
has been associated with decreased survival: patient sur-
vival without VTE is 18 months compared with
13.9 months with VTE [121]. While the risk of VTE
appears to be especially high in patients suffering from
stomach and pancreatic cancer, up to 20% of all cancer
patients may develop thromboembolisms, including pul-
monary and venous events. For AT, the overall incidence
of events in patients with cancer is increased 2-fold
[115].

Enhanced platelet activation as determined by mean plate-
let volume (MPV) is seen in cancer patients, and may correlate
with tumor stage [122, 123]. Both MPV and increased soluble
P-selectin levels correlate with VTE development in cancer
patients [124-126]. Age does not predict VTE risk for all
cancer types, suggesting that at least for some cancer types,
tumor cells themselves increase platelet reactivity and VTE
risk [127]. Indeed, higher platelet P-selectin expression was
found in mouse models of breast cancer, which in turn was
associated to lung metastasis [128]. In addition, MPV, which
is enhanced in malignant tumors, drops upon treatment [129],
enforcing the direct link between tumor burden and platelet
activation. Thus, cancer cell-mediated platelet hyper-
reactivity contributes to increased VTE risk. While to date,
there is no method available and validated to monitor the
clinical implication of platelet hyper-aggregability in cancer
patients; this may be a promising avenue of investigation
[130].

Multiple mechanisms may underlie the tendency of plate-
lets from cancer patients to aggregate. Tumor cells can stim-
ulate platelet aggregation through direct interaction via adhe-
sion molecules or via the delivery of extracellular vesicles
and/or secreted factors. This phenomenon, described as tumor
cell-induced platelet activation (TCIPA), was already
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identified decades ago [130]. It has now been shown that
single tumor cells are capable of attracting and activating
platelets to form fibrin clots [131]. Furthermore, platelets from
cancer patients differ from platelets from healthy controls in
their mRNA profiles, with mRNA transcripts undergoing al-
ternative splicing under influence of tumor-derived stimuli
[132, 133]. Platelets are also capable of taking up tumor con-
tent, as determined by the fact that tumor-specific mutations
can be identified in platelets upon co-culture with tumor cells.
This process appears to be regulated by extracellular vesicles
released by the tumor cells, which are subsequently taken up
by co-cultured platelets [134]. This alteration of platelets by
tumor cells, i.e., tumor education, was shown to contribute to
an increased adhesive propensity of platelets [135—-137].
Furthermore, cancer cells shed extracellular vesicles contain-
ing the adhesion molecule tissue factor (TF), which may con-
tribute to VTE at sites of vessel damage [134, 138].

4 Platelets drive tumor growth, angiogenesis,
and metastasis in cancer

Specifically in solid tumors, the interaction of tumor cells and
platelets leads to a condition called paraneoplastic
thrombocytosis, in which malignant tumors not only hijack
or mimic platelet functions but can also increase their produc-
tion. A cyclic picture emerges, which contributes to the most
feared outcome of a malignant neoplasm: metastasis [139].
Metastasis is the principal cause of death in cancer patients
and investigation of the molecular mechanisms that coordi-
nate this process is therefore crucial. The process of metastasis
requires several steps: invasion of cells in the surrounding
matrix, intravasation to the blood circulation, survival at the
circulation, extravasation at the secondary site (tissue or or-
gan), micrometastasis formation and colonization [140]. The
primary tumor can shed many cells during the growth phase;
however, only a few cells are able to colonize a secondary site
[135]. Much depends on the survival of these tumor cells in
the blood circulation, survival of detachment, and the hemo-
dynamic flux force, as well as escaping the immune system.
One of the principal strategies of cancer cells to survive in the
circulation is interaction with platelets, and nearly all process-
es of cancer metastasis appear to be facilitated by interaction
of tumor cells with platelets.

Platelets can stimulate expression of metalloproteinases in
tumor cells, which in turn contributes to tumor cell invasion
by facilitating extracellular matrix degradation [141, 142].
Tumor cell metastasis often requires the acquisition of a dif-
ferent phenotype, termed epithelial-to-mesenchymal transi-
tion (EMT). This process is characterized by upregulation of
several molecular markers (e.g., expression of SNAIL,
vimentin cadherin, and MMPs), and platelet-released TGFf3
can significantly enhance the upregulation of these markers in

cancer cells [143, 144]. In addition, direct contact between
cancer cells and platelets contributes to TGF3/Smad and
NFkB pathway activation, culminating in EMT stimulation.
Adherence of cells to the extracellular matrix provides surviv-
al signals, which are disrupted upon detachment of cells,
thereby leading to anoikis: detachment-induced apoptosis.
While cancer cells have several mechanisms to overcome
anoikis, it has been demonstrated that interaction of cancer
cells with platelets further induces tumor cell resistance
against anoikis [129]. Thus, platelet-induced alteration of can-
cer cell intracellular programs contributes to tumor invasive-
ness and metastasis [135, 144, 145].

Extravasation of tumor cells from tissue to bloodstream is
facilitated by platelet-derived ADP stimulation of P2Y, recep-
tors on endothelial cells [146]. Once the cancer cell enters the
blood circulation, the dissemination efficiency also depends
on the interaction with platelets, with many studies showing
that platelets facilitate the metastatic process via hematoge-
nous dissemination [143, 147]. Survival of tumor cells in the
blood stream is not only enhanced by platelets through me-
chanic protection from shear force but also by protecting the
cancer cells from circulating immune cells, which may target
neoantigens, expressed by tumor cells. Interestingly, it has
been demonstrated that cancer cells may mimic platelets by
expressing megakaryocytic genes and expressing platelet sur-
face markers, including adhesion molecules such as integrins
and selectins [139, 148]. Additionally, coating of tumor cells
with platelets allows transferring their major histocompatibil-
ity complex (MHC) class I to tumor cells, thereby giving these
cells a false “pseudonormal” exterior, and allowing escape
from immunosurveillence by natural killer cells [149].
TGF3 released by platelets also downregulates the NK recep-
tor NKG2D on tumor cells, further shielding them from
immunosurveillence [150, 151]. Lastly, extravasation of the
tumor cells from the blood stream is facilitated by platelets,
and appears to require binding of platelets to Integrin v 33
expressed on tumor cells [152].

As a solid tumor grows and its oxygen and nutrient de-
mands increase, angiogenesis, the formation of new blood
vessels, is essential for its survival. Tumor-induced angiogen-
esis often results in an abnormal vasculature with suboptimal
perfusion. Nevertheless, tumor cells may benefit from this, as
this may reduce delivery of therapies and tumor-targeted im-
mune cells [150]. Furthermore, tumor cells may adapt to such
ineffective vascularization, and the ensuing hypoxia may fa-
vor tumorigenesis by selecting for aggressive and metastatic
clones [153]. Supplementation of platelets or their released
products stimulates angiogenesis induced by breast tumor
cells in vitro [136, 154]. In glioblastoma patients, release of
VEGEF by platelets was shown to contribute to vessel forma-
tion [155], although other studies indicated that platelet-
induced angiogenesis was independent of VEGF but most
likely relied on release of several other factors, including
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4*metalloproteinases
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Fig. 3 The cross talk between cancer cells and platelets support
metastasis, angiogenesis, and tumor growth. Platelets release factors
such as TGFf3 and VEGF that stimulate epithelial-to-mesenchymal

IL6, thrombopoietin, and angiopoietin [156, 157].
Furthermore, animal models indicate that tumor-educated
platelets are more efficient at inducing angiogenesis than
healthy platelets, suggesting a more efficient delivery of pro-
angiogenic factors by tumor-educated platelets [158]. This
appears to be supported by findings in humans, showing that
levels of VEGF are increased in platelets from prostate, breast,
and colorectal cancer patients [159, 160]. It is of interest to
note that vasculogenic mimicry, where tumor cells themselves
rather than endothelial cells form vessels, is inhibited by plate-
lets. While counterintuitive, this process is thought to promote
metastasis [161]. Thus, platelets tightly coordinate the vascu-
larization process in the context of cancer, and may thereby
potentiate malignancies.

Thus far, platelet participation in cancer progression has
been associated with vascularization, delivery of growth fac-
tors, and hematogenous dissemination [143]. In addition,
platelets may directly stimulate cancer cell proliferation
through upregulation of oncogenic genes, as was demonstrat-
ed for colorectal cancer cells [131]. Thus, platelets play a role
in all aspects of cancer progression, something we may do
well to take into account when addressing these diseases.

Taking the above into account, it is perhaps surprising to
realize that fibrinolysis, the process of dissolving a blood clot,
can also play a tumor-promoting role [162]. The main enzyme
promoting fibrinolysis is plasmin, while the platelet-derived
plasminogen activator inhibitor (PAI) is the main suppressor
of'this system. Elevated PAI-1 levels are associated with VTE
[163], and may explain VTE in pancreatic and glioma cancer
patients [164, 165]. As such, inhibition of fibrinolysis is det-
rimental to cancer patients. On the other hand, plasminogen
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transition (EMT) and angiogenesis. Additionally, platelets contribute to
escape from immunosurveillance by covering cancer cells and shielding
them from the immune system

itself contributes to metastasis by degradation of the extracel-
lular matrix surrounding tumor cells. In addition, the fibrino-
lytic system contributes to inflammation, angiogenesis, the
release of tumor growth factors, and other tumor-promoting
functions [162]. Thus, coagulation and fibrinolysis play dou-
ble roles in cancer, highlighting platelet performance as
double-edged sword [166].

In order to target these interactions in healthy aging as well
as age-related diseases, detailed knowledge regarding the mo-
lecular mechanisms involved may prove essential (Fig. 3).
Many of the molecular interactions between cancer cells and
platelets depend on their molecular cell surface composition.
Platelets can interact with cancer cells via tissue factor (TF),
selectins, integrins, and glycoproteins receptors, all of which
may activate signaling pathways leading to platelet activation.
Thus, platelet membrane components have multiple functions:
they contribute directly to hemostasis during thrombus forma-
tion, but can also contribute to multifactorial cancer dissemi-
nation. TF expressed by cancer cells stimulates platelet acti-
vation and initiation of the coagulation cascade. The fibrin
produced by platelets subsequently interacts with integrins
from cancer cells as well as platelets themselves, inducing
formation of cancer cell-fibrin—platelet clusters, which may
enter the circulation [167, 168]. Overexpression of TF on
breast cancer cells has been reported, and appears to be linked
to the release of TGF( from activated platelets [169].
Furthermore, in ovarian cancer, platelet-induced increase in
TF acts as a metastasis initiator [170].

The contribution of integrins to cancer cell-platelet inter-
actions is broad and bidirectional. Platelets express integrins
olIbB3, avp3, a2 1, a5pA1, and a6p1, which bind
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Fig. 4 Aging-related changes in platelet function and their association
with aging-related diseases (e.g., cancer). As a cross-link between aging
and cancer, oxidative stress, wound healing disturbed, inflammation, low-
er platelet count, and senescent cells delivery factors are highlighted.
Platelets support metastasis by augmentation of integrin activity,

preferentially fibrinogen, vitronectin, collagen, fibronectin,
and laminins, respectively, all of which have been described
to have adhesive proprieties [150]. Mammadova-Bach and
colleagues described that integrin «631 from platelets directly
binds ADAM9 from tumor cells, a member of the disintegrin
and metalloproteinase family. As a consequence of this inter-
action, platelets are activated and support hematogenous dis-
semination of cancer cells [171]. Conversely, as already
mentioned above, interaction of av[(33 on platelets was
associated with extravasation in aggressive breast cancer
[152]. A last class of molecules facilitating the interac-
tion between cancer cells and platelets are selectins,
membrane-localized glycoproteins that bind carbohy-
drates from glycoproteins, glycolipids, and glycosamino-
glycan/proteoglycans. Of the selectin family, P-selectin
is expressed on platelets and endothelial cells and has
already been mentioned above. Platelet dysfunction as a
result of P-selectin deficiency limits colon carcinoma
and metastasis progression [172, 173]. E-selectin, which
is produced by endothelial cells, binds to sialyl-Lewis-x/
an, otherwise known as CA19-9, a common tumor
marker. The ensuing interaction promotes hematogenous
dissemination of colorectal cancer cells [174].
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increasing expression of metalloproteinases, and the release of growth
factors, which also augment angiogenesis. Furthermore, kinase activa-
tion, including mTOR pathways, increase platelet activation. Production
of reactive oxygen species enhances platelet production

Platelet bioactive lipids are also associated to cancer metas-
tasis (for review, see [175]), and prostanoid synthesis inhibition
as a strategy for cancer treatment has been suggested since 1972
[176]. Leukemic cell-induced platelet aggregation is associated
with increased TxA, and decreased leukotriene B4 (LTB-4)
production by platelets [177]. TxA, in turn promotes metastasis
of various tumor models by increasing TCIPA, endothelial cell
activation, and recruitment of innate immune cells, all contrib-
uting to creating a pre-metastatic niche [178]. Targeting
COX1/TxA, appears efficient to reduce tumor cell metastasis
[179, 180]. Conversely, prostacyclin, one of the most potent
platelet inhibitors, prevents metastasis in a melanoma model
[176, 178]. Endothelial function, essential to tumor cell
intravasation/extravasation, is also modulated by prostacyclins.
Interestingly, endothelial dysfunction, as characterized
(amongst others) by decreased prostacyclin and increased P-
selectin levels, was associated with more severe lung cancer
stage, but also to patient age [181]. PGD, can also decrease
tumor MMP-2 expression, inhibit EMT inhibition, and reduce
tumor cell proliferation [182, 183]. While these latter functions
appear to be independent of platelets, some of the prostacyclin-
mediated anti-tumor effects may come from inactivation of
platelet hyper-reactivity in response to cancer cells, as was
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shown for melanoma, lung cancer, and breast cancer [179].
However, the anti-tumorigenic effects of prostacyclin and
PGD, may be specific to these prostanoids, as PGE, did not
reduce TCIPA, and COX2 and PGE, have been associated with
enhanced rather than reduced cancer metastasis [184, 185].
Thus, while COX2 inhibitors have been advocated as anti-
cancer treatments in the context of inflammation (i.e., prosta-
glandins are important mediators of inflammation, which in
turn may have carcinogenic effects), caution should be taken
[186, 187]. Complicating matters further is the fact that platelets
and their products may actually protect endothelial cells, in
particular under inflamed conditions (e.g., platelet dysfunction
has been suggested to contribute to endothelial dysfunction in
COVID-19 patients) [188]. By strengthening the endothelial
barrier, platelets may prevent intra/extravasation of tumor cells,
thereby limiting tumor metastasis (reviewed in [189]).

All in all, many different molecular associations underlie
platelet—cancer cell interactions and a better insight into these
pathways may provide targets for treatment of both cancer and
its associated VTE risk in elderly patients. With platelets
playing multiple roles in cancer progression, care needs to
be taken when using platelet inhibitors [189].

5 Conclusions

It is becoming increasingly clear that aging is associated with
changes in platelet ontogenesis/biogenesis and function, and
that this may have consequences for physiological aging.
With the (relatively late) recognition of the importance of
platelets, it has also become evident that age-related diseases
such as cancer and cardiovascular disease are associated with
platelet alterations (Fig. 4). However, to what extent this is
driven by age-related changes or whether these alterations are
disease-specific is perhaps unclear and age-matching in plate-
let investigation is imperative. Nevertheless, evidence show-
ing that tumor cells directly modulate platelet content and
functions suggests that while aging may predispose towards
platelet dysfunction, specific disease states may further exac-
erbate platelet dysfunction to a pathological extent. Finding
ways to break this pathological interaction while maintaining
the balance of hemostasis may prove an important step to-
wards healthy aging.
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