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ABSTRACT
Background: Severe iodine deficiency during pregnancy can cause intellectual disability, presumably through

inadequate placental transfer of maternal thyroid hormone to the fetus. The association between mild-to-moderate iodine

deficiency and child neurodevelopmental problems is not well understood.

Objectives: We investigated the association of maternal iodine status during pregnancy with child attention-deficit

hyperactivity disorder (ADHD) and autistic traits.

Methods: This was a collaborative study of 3 population-based birth cohorts: Generation R (n = 1634), INfancia y

Medio Ambiente (n = 1293), and the Avon Longitudinal Study of Parents and Children (n = 2619). Exclusion criteria were

multiple fetuses, fertility treatment, thyroid-interfering medication use, and pre-existing thyroid disease. The mean age of

assessment in the cohorts was between 4.4 and 7.7 y for ADHD symptoms and 4.5 and 7.6 y for autistic traits. We studied

the association of the urinary iodine-to-creatinine ratio (UI/Creat) <150 μg/g—in all mother–child pairs, and in those with

a urinary-iodine measurement at ≤18 weeks and ≤14 weeks of gestation—with the risk of ADHD or a high autistic-trait

score (≥93rd percentile cutoff), using logistic regression. The cohort-specific effect estimates were combined by random-

effects meta-analyses. We also investigated whether UI/Creat modified the associations of maternal free thyroxine (FT4)

or thyroid-stimulating hormone concentrations with ADHD or autistic traits.

Results: UI/Creat <150 μg/g was not associated with ADHD (OR: 1.2; 95% CI: 0.7, 2.2; P = 0.56) or with a high autistic-

trait score (OR: 0.8; 95% CI: 0.6, 1.1; P = 0.22). UI/Creat <150 μg/g in early pregnancy (i.e., ≤18 weeks or ≤14 weeks

of gestation) was not associated with a higher risk of behavioral problems. The association between a higher FT4 and a

greater risk of ADHD (OR: 1.3; 95% CI: 1.0, 1.6; P = 0.017) was not modified by iodine status.

Conclusions: There is no consistent evidence to support an association of mild-to-moderate iodine deficiency during

pregnancy with child ADHD or autistic traits. J Nutr 2020;150:1516–1528.
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Introduction

Attention-deficit hyperactivity disorder (ADHD)—
characterized by symptoms of inattention, impulsivity,
and/or hyperactivity—and Autism Spectrum Disorder
(ASD)—characterized by difficulties with social interaction,

communication, and restricted and repetitive behavior—
are co-occurring neurodevelopmental disorders (1–5). The
prevalence of ADHD has been estimated to be 5.9%–7.1%
in childhood and adolescence (6) and globally, ∼1 in 130
individuals had ASD in 2010 (7). The fifth edition of the
Diagnostic and Statistical Manual of Mental Disorders (DSM)
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requires an age of onset of symptoms before 12 y of age for
the diagnosis of ADHD. For an ASD diagnosis, symptoms
must be present in “early childhood” (8). The etiology of these
2 neurodevelopmental disorders is yet to be elucidated, but it is
assumed that there is an (overlapping) heritable component to
these conditions (9).

Given the neurobiological origin of these disorders, research
has focused on investigating whether the maternal supply of thy-
roid hormone to the fetus is associated with childhood ADHD
and ASD. Thyroid hormone regulates neuronal proliferation,
differentiation, migration, synapse formation, and myelination
in the fetal brain (10, 11) and during early pregnancy
the fetus acquires thyroid hormone solely from the mother
(12). Epidemiological studies do not consistently show an
association between maternal thyroid function and childhood
ADHD (13–20). In our previously conducted meta-analysis
of individual participant data, we reported no consistent
evidence linking maternal thyroid-stimulating hormone (TSH)
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and free thyroxine (FT4) concentrations with child ADHD (21).
Maternal hypothyroidism and overt hyperthyroidism have been
associated with a greater risk of diagnosed ASD (15, 20), and
a low maternal FT4 concentration measured in the first 18 wk
of pregnancy has been associated with a greater risk of autistic
traits (22). In a previous study, we also reported a suggestive
association of both hypothyroxinemia, characterized by low
FT4 and normal TSH, and high FT4 with a greater risk of
autistic traits within the clinical range (23). It is unclear whether
iodine deficiency underpins the association between mild
thyroid dysfunction and these neurodevelopmental disorders.

Iodine deficiency in pregnant populations, which is defined
by the WHO as a median urinary iodine concentration (UIC)
<150 μg/L, is common (24, 25). Severe iodine deficiency during
pregnancy has been associated with severe health outcomes
including goiter, abortion, stillbirths, and intellectual disability
in the offspring (26). Mild-to-moderate iodine deficiency—
which has been defined in pregnant populations as a median
UIC between 50 and 150 μg/L (27)—before conception and
during pregnancy has been associated with neurodevelopmental
outcomes, including lower child intelligence quotient (IQ)
scores (28–30). A study suggested that maternal iodine status
may affect child outcomes in a dose-dependent manner, but
the authors could not test whether the effects of iodine
availability for the developing brain were related to impaired
maternal thyroid function in pregnancy (30). Investigating such
underlying mechanisms may elucidate which subgroups of
pregnant women may be at a high risk of giving birth to children
with neurobehavioral problems.

Given the important role of iodine for thyroid hormone
production and fetal brain development, maternal iodine defi-
ciency during a critical developmental window may potentially
increase the risk of neurodevelopmental disorders in the
offspring (31). Studies on the association between maternal
iodine status during pregnancy and ADHD or ASD are rare.
A small study performed in Italy (n = 27) showed that 68.7%
of children (11 out of 16) born to mildly-to-moderately iodine-
deficient mothers—more than half of whom also suffered from
hypothyroxinemia—were diagnosed with ADHD, whereas
none of the children born to mothers originating from an iodine-
sufficient area were diagnosed with ADHD (32). In a larger
Norwegian cohort, maternal iodine intake <200 μg/d (which
is lower than currently recommended in pregnancy) (33) as
reported by a questionnaire at week 22 of gestation was also
associated with higher ADHD symptoms but not with ADHD
diagnosis (34). However, in that same cohort, the use of iodine-
containing supplements was not associated with a lower risk
of ADHD or a lower symptom score. In fact, children born
to mothers with low iodine intake and who initiated iodine
supplementation in the first trimester of pregnancy had a higher
risk of ADHD (34). To the best of our knowledge, maternal
iodine status has not been studied in relation to childhood ASD
or autistic traits in large, prospective cohort studies. Against
this background we carefully posit that iodine deficiency is
related to a higher likelihood of ADHD or ASD. This hypothesis
implies a threshold, i.e., nonlinear relation, because we have no
evidence that, if sufficient, iodine is more protective at higher
concentrations.

The primary aim of this study was to investigate the
association of maternal iodine status during pregnancy with
child ADHD and autistic traits. A second aim was to examine
whether maternal iodine status modifies the association between
maternal thyroid function and neurobehavioral outcomes.
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26,631 pregnant women were enrolled 

18,922 exclusions:
18,671 no measures of urinary iodine

251 contamination of urine samples 
in ALSPAC (UIC >500 µg/L)

7709 women with measures of urinary 
iodine during pregnancy

5914 mother–child pairs with urinary 
iodine and child outcome data 

1795 exclusions: no data on childhood 
ADHD symptoms or autistic traits 

Per cohort:
Generation R : 1634
INMA            : 1293 
ALSPAC        : 2619

Per child outcome
ADHD diagnosis    : 5265
ADHD symptoms   : 5234
Autistic traits          : 4987

5546 mother–child pairs in the study 
population

368 exclusions:
130 twin pregnancies or fertility treatment
105 using thyroid-interfering medication 

and/or pre-existing thyroid disease
38 no urinary creatinine measure 
95 contamination of urine samples in 

ALSPAC (UI/Creat >700 µg/g)

FIGURE 1 Flowchart of the study population. ADHD, attention-deficit hyperactivity disorder; ALSPAC, Avon Longitudinal Study of Parents and
Children; INMA, INfancia y Medio Ambiente; UIC, urinary iodine concentration; UI/Creat, urinary iodine-to-creatinine ratio.

Methods
Study design and population
The study was embedded in 3 population-based birth cohorts:
Generation R (Netherlands) (35), the INfancia y Medio Ambiente
Project (INMA) (Spain: Valencia, Sabadell, and Gipuzkoa) (36), and the
Avon Longitudinal Study of Parents and Children (ALSPAC) (United
Kingdom) (37, 38). Briefly, in Generation R, 9778 mothers from
Rotterdam, Netherlands with a delivery date between April 2002 and
January 2006 were enrolled. The INMA Project consists of 7 birth
cohorts in Spain, of which 3 were included in the current research:
Valencia (n = 855), Sabadell (n = 657), and Gipuzkoa (n = 638).
Pregnant women from these 3 regions were enrolled from November
2003 until June 2005, July 2004 until July 2006, and April 2006 until
January 2008, respectively. In ALSPAC, pregnant women resident in
Avon, United Kingdom with expected delivery dates between April 1991
and December 1992 were invited to take part in the study. The initial
number of pregnancies enrolled was 14,541, of which 13,998 children

were alive at 1 y of age. The ALSPAC website contains all the data that
are available, which can be accessed via a searchable data dictionary and
variable search tool (39). Inclusion criteria for the current study were
data availability of measures of urinary iodine and creatinine during
pregnancy and an assessment of ADHD symptoms and/or autistic
traits in childhood. Exclusion criteria were multiple fetuses, fertility
treatment, thyroid-interfering medication use, and pre-existing thyroid
disease (Figure 1). Women with undiagnosed thyroid disorder were
not excluded. Ethical approval was obtained before recruitment from
a number of bodies: the Medical Ethical Committee of the Erasmus
Medical Center (Generation R), Ethical Committee of the Municipal
Institute of Medical Investigation and the Ethical Committees of the
hospitals involved in the study (INMA), and the ALSPAC Ethics and
Law Committee and the Local Research Ethics Committees; approval
by parents or guardians of the children was given via a signed informed-
consent form. The current study did not follow a prespecified registered
protocol.
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Maternal iodine status
UIC and creatinine were measured in spot-urine samples stored at
−20◦C after collection. UIC was measured in 3 different laboratories
using different assays. Detailed information on the measurement
methods is described elsewhere (29). To take into account hydration
status, we used the iodine-to-creatinine ratio (UI/Creat) as a measure
of iodine status. Owing to the possible use of iodine-containing test
strips in ALSPAC, contamination of some urine samples in ALSPAC
was suspected (40); hence, in this cohort only, women with a UIC
>500 μg/L and/or a UI/Creat >700 μg/g were excluded from the
analyses (Figure 1). These cutoffs were based on previous work in
ALSPAC and from other studies of pregnant women in the United
Kingdom (30, 41, 42).

Maternal thyroid function
In a previous study, we investigated whether maternal thyroid function
was associated with child ADHD (21) and autistic traits (23). For
the second aim of the current study—to test whether iodine modifies
the association between thyroid function and neurodevelopmental
outcomes—we used previously measured TSH and FT4 in maternal
serum samples and created interaction terms with UI/Creat. In
Generation R, serum samples were centrifuged and stored at −80◦C
after collection at a mean ± SD gestational age of 13.2 ± 1.8 wk. FT4
and TSH were measured using the Vitros ECi Immunodiagnostic System
(Ortho Clinical Diagnostics) (43). Thyroid peroxidase antibodies
(TPOAbs) were also measured using the Phadia 250 immunoassay
analyzer (Phadia AB) and the manufacturer cutoff for TPOAb positivity
was a thyroid peroxidase (TPO) titer ≥60 IU/mL. In INMA, serum
samples were stored at −80◦C after collection at a mean ± SD
gestational age of 13.2 ± 1.4 wk. FT4 and TSH were measured using
a solid-phase, time-resolved sandwich fluoro-immunoassay (AutoDEL-
FIA, PerkinElmer Life and Analytical Sciences, Wallac Oy) and a
lanthanide metal europium label (44). TPOAbs were not measured. In
ALSPAC, serum samples were collected at a mean ± SD gestational
age of 10.3 ± 2.7 wk and stored at −20◦C. FT4, TSH, and TPOAb
measurements were performed using the Abbott Architect i2000
(17). The manufacturer cutoff for TPOAb positivity was a TPO
titer ≥6 IU/mL.

ADHD symptoms
In Generation R, ADHD symptoms were rated by parents at a
mean ± SD age of 5.8 ± 0.2 y using the DSM-oriented scale Attention-
Deficit/Hyperactivity of the Child Behavioral Checklist for ages 1.5–5 y
(CBCL1 1

2 –5) (45). This scale consists of 6 questions on a 3-point Likert
scale, the sum score constituting the total ADHD symptom rating. The
CBCL1 1

2 –5 was chosen at the time of follow-up, because the majority of
children were expected to be younger than 6 y old at assessment and the
CBCL1 1

2 –5 was collected at 2 earlier time points (i.e., 18 mo and 3 y)
and thus chosen for continuity reasons. All subscales of the CBCL1 1

2 –5
showed Cronbach’s αs ranging from 0.60 to 0.89, and are the same for
5-y-old children and children older than 5 y (46). Next, positive screens
[i.e., children who scored in the top 15 percentiles of the CBCL1 1

2 –5
total problem score and/or in the top 2% of the syndrome scale scores;
scores above the 97th percentile are in the clinical range (45)] were
invited for further assessment with the Diagnostic Interview Schedule
for Children—Young Child version (DISC-YC) (47). This DSM-IV-
based interview was used to establish an ADHD diagnosis and was
conducted with parents or caregivers by trained research assistants at
a mean ± SD age of 6.6 ± 0.4 y. More detailed information on the
procedures and the DISC-YC assessment is described elsewhere (48).

In INMA, ADHD symptoms were assessed by teachers by means
of the ADHD criteria of the DSM fourth edition (DSM-IV) (49) at a
mean ± SD age of 5.9 ± 0.3 y in Valencia, 4.4 ± 0.3 y in Sabadell,
and 4.4 ± 0.2 y in Gipuzkoa. The DSM-IV consists of questions on
9 inattention symptoms and 9 hyperactivity-impulsivity symptoms on
a 4-point Likert scale. The sum score of these 18 questions constituted
the total symptom score. Based on the symptom criteria of the DSM-
IV, ADHD was diagnosed when the child had ≥6 inattention and/or
hyperactivity-impulsivity symptoms.

In ALSPAC, inattention and hyperactivity symptoms were assessed
through a parental semistructured interview as part of the Development
and Well-Being Assessment (DAWBA) at a mean ± SD age of
7.7 ± 0.1 y (50). The total symptom score consisted of the sum of
the inattention and hyperactivity-impulsivity symptoms. In addition,
teachers completed the DAWBA questionnaire for half of all children
(51). Data from the interview and/or questionnaire were used to assign
an ADHD diagnosis following the DSM-IV symptom criteria.

Autistic traits
Autistic traits in children were measured by assessing the number of
symptoms common to ASD. In Generation R, parents completed the
Social Responsiveness Scale (SRS) questionnaire at a mean ± SD child
age of 5.9 ± 0.2 y (52). We used the short version with 18 items,
including 4-point Likert-scale questions on social cognition, social
communication, and stereotypical behavior. The correlation between
the full SRS score and the shortened SRS version is 0.93–0.99, as shown
in 3 different studies (53). The complete 18-item version of the SRS is
provided elsewhere (54).

In INMA, autistic traits were assessed using the Childhood Autism
Spectrum Test, which was administered to the parents by a psychologist
at a mean ± SD child age of 5.8 ± 0.2, 4.5 ± 0.2, and 4.5 ± 0.1 y in
the regions of Valencia, Sabadell, and Gipuzkoa, respectively (55). The
sum score of 31 items, which could be answered with only 2 response
options, yielded the total sum score.

In ALSPAC, autistic traits were assessed using the Social Commu-
nication Disorder Checklist by parents at a mean ± SD child age of
7.6 ± 0.1 y (56). This questionnaire with a total of 12 items on a 3-point
Likert scale covered questions on social reciprocity, nonverbal skills,
pragmatic language usage, and functional impairment. The ratings of
these 12 items were summed to obtain a total score.

Covariates
Covariates were chosen based on prior knowledge and a directed
acyclic graph (Supplemental Figure 1), and available for all cohorts.
Information on maternal age, parity (0, 1, ≥2), prepregnancy BMI,
smoking during pregnancy (never, smoked in the beginning or until
pregnancy confirmed, continued smoking), ethnicity/country of birth
(cohort-specific categories), and maternal educational level (low,
middle, high) was collected through questionnaires during pregnancy.
Gestational age at urine and blood sampling was defined using
ultrasound and/or last menstrual period. Information on sex of the
child was obtained from community midwives, obstetricians, hospital
registries, clinical records, or questionnaires. Child age was obtained at
the time of the ascertainment of ADHD symptoms and autistic traits.
All further analyses were adjusted for the mentioned covariates.

Statistical analyses
We imputed missing values of the covariates (0%–11.3% missing;
see Table 1) by chained equations and generated 25 imputed data sets
(57). Because our study population differed from those mother–child
pairs who were lost to follow-up (Supplemental Table 1), we used
inverse probability weighting (58). First, we predicted the probability of
participation in the study with the characteristics of all participants at
recruitment, and then applied the inverse of this probability as weights
in all analyses.

A proportion of women had multiple measurements of UIC and
creatinine throughout pregnancy (Supplemental Table 2). To have
a measure of average fetal iodine availability during the course of
pregnancy, we calculated a geometric mean of the UI/Creat values for
these women, which is a measure that is less susceptible to outliers
than the arithmetic mean. A geometric mean was also calculated to
have a measure of average gestational age at the time of measurement.
The continuous UI/Creat measures were transformed by the natural
logarithm to achieve a normal distribution. We grouped women into
2 groups: those with a UI/Creat <150 μg/g or a UI/Creat ≥150 μg/g.
The former cutoff relates to iodine deficiency based on the WHO
median UIC classification (33), and when adjusted for creatinine has
been used previously (28–30, 59, 60).
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TABLE 1 Population characteristics1

Generation R (n = 1634) INMA (n = 1293) ALSPAC (n = 2619)

n Values n Values n Values

ADHD,2 % 1588 3.5 1066 5.0 2611 1.7
Autistic traits ≥93rd percentile, % 1291 7.4 1111 8.5 2585 8.0
Iodine status, all women

UI/Creat, μg/g 1634 212 (153–291) 1293 168 (110–255) 2619 131 (88–203)
UI/Creat <150 μg/g, % 1634 23.4 1293 43.1 2619 58.7
Gestational age, wk 1634 16.1 (15.0–17.3) 1293 20.6 (19.5–21.8) 2619 13.0 (9.2–17.0)

Iodine status at ≤18 wk
UI/Creat, μg/g 1555 211 (141–309) 1161 154 (97–259) 2403 125 (85–198)
UI/Creat <150 μg/g, % 1555 28.0 1161 48.5 2403 61.0
Gestational age, wk 1555 12.9 (12.1–14.4) 1161 12.9 (12.3–13.7) 2403 12.0 (9.0–15.0)

Iodine status at ≤14 wk
UI/Creat, μg/g 1082 210 (141–303) 952 157 (99–265) 1530 111 (75–165)
UI/Creat <150 μg/g, % 1082 28.0 952 47.5 1530 69.7
Gestational age, wk 1082 12.4 (11.6–13.1) 952 12.7 (12.1–13.3) 1530 10.0 (8.0–12.0)

Maternal thyroid function
TSH, mIU/L 1451 1.32 (0.81–2.01) 1251 1.25 (0.84–1.80) 965 0.98 (0.64–1.40)
FT4, pmol/L 1459 14.5 (13.0–16.4) 1253 10.6 (9.7–11.6) 970 16.2 (14.9–17.6)
TPOAb positivity, % 1470 5.4 NA 973 12.7
Gestational age, wk 1460 13.2 ± 1.8 1252 13.2 ± 1.4 979 10.3 ± 2.7

Female sex, % 1634 50.1 1292 49.8 2619 50.7
Educational level,3 % 1580 1289 2570

Low 6.5 21.0 18.7
Middle 39.7 41.1 62.8
High 53.9 37.6 18.5

Maternal ethnicity/country of birth, % 1633 1291 2562
Majority4 56.8 93.5 98.6
Minority5 43.2 6.5 1.4

Maternal age, y 1634 30.8 ± 4.6 1281 31.6 ± 3.9 2619 28.7 ± 4.4
Parity, % 1634 1291 2545

0 60.0 56.2 47.6
1 28.7 37.1 34.0
≥2 11.3 6.6 18.5

Smoking during pregnancy, % 1490 1293 2586
Never 76.6 69.9 84.4
In the beginning of pregnancy 10.0 13.2 3.7
Continued 13.4 16.9 11.9

Prepregnancy BMI, kg/m2 1450 22.6 (20.8–25.1) 1293 22.5 (20.8–25.0) 2417 22.2 (20.5–24.4)

1Values are means ± SDs, medians (IQRs), or percentages. Values are shown without multiple imputation (percentages of missing data: 0.0%, 0.1%, and 0.0% for child sex;
3.3%, 0.3%, and 1.9% for maternal education; 0.1%, 0.2%, and 2.1% for maternal ethnicity/country of birth; 0.1%, 0.9%, and 2.2% for maternal age; 0.0%, 0.2%, and 2.8%
for parity; 8.8%, 1.3%, and 1.3% for smoking; and 11.3%, 0.0%, and 7.7% for prepregnancy BMI in Generation R, INMA, and ALSPAC, respectively). ADHD, attention-deficit
hyperactivity disorder; ALSPAC, Avon Longitudinal Study of Parents and Children; FT4, free thyroxine; INMA, INfancia y Medio Ambiente; NA, not available; TPOAb, thyroid
peroxidase antibody; TSH, thyroid-stimulating hormone; UI/Creat, urinary iodine-to-creatinine ratio.
2ADHD diagnosis was established by interview but not confirmed by medical-record data.
3Generation R: low = no education or primary; middle = secondary phase 1 and 2; high = higher phase 1 and 2; INMA: low = no education, unfinished primary, or primary;
middle = secondary; high = university degree; ALSPAC: low = no qualification, certificate of secondary education, or vocational; middle = O level or A level; high = a degree.
4Defined as Dutch (Generation R), Spanish (INMA), or white (ALSPAC).
5Defined as non-Dutch (Generation R), non-Spanish (INMA), or nonwhite (ALSPAC).

We studied the associations of UI/Creat <150 μg/g and UI/Creat
on a continuous scale with ADHD or a high autistic-trait score, the
latter defined as a score ≥93rd percentile, using multivariable logistic
regression in each cohort separately. The reference group consisted of
women with a UI/Creat ≥150 μg/g. The 93rd-percentile cutoff was
derived from a Dutch norm sample as a cutoff score to define children
with problem behavior using the DSM-oriented scales of the CBCL
(61). In the absence of a normative sample in INMA and ALSPAC, we
also used the 93rd-percentile cutoff scores in these 2 cohorts. We did
not use a cutoff that defines autistic traits within the clinical range,
as we have used previously (23), because of the low prevalence of
children with such a score. The cohort-specific estimates were combined
using random-effects meta-analysis (termed “pooled analysis” in this
article). Statistical heterogeneity was explored and quantified using the

Cochran Q test and the I2 statistic (62). Because the fetus is largely
dependent on the thyroidal state of the mother during early pregnancy
(63), we wanted to investigate whether there is a particularly high risk of
neurobehavioral outcomes in childhood in the offspring born to women
with (mild-to-moderate) iodine deficiency in early pregnancy. Therefore,
we repeated the analysis in those mother–child pairs, in which the
mothers had ≥1 measure of urinary iodine at ≤18 weeks of gestation
and in those with ≥1 measure at ≤14 weeks of gestation. The pregnancy
period of ≤14 wk was chosen because our previous study indicated
that low iodine status within this time window, but not thereafter, was
associated with low child verbal IQ (29). For women with 2 available
measures of urinary iodine and creatinine in early pregnancy (≤18 wk:
Generation R, n = 0; INMA, n = 0; ALSPAC, n = 306; ≤14 wk:
Generation R, n = 0; INMA, n = 0; ALSPAC, n = 27), a geometric
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mean of the 2 UI/Creat values and of the gestational age at the time of
measurement was calculated.

We conducted several sensitivity analyses supporting the primary
aim of the current study. First, we repeated all analyses using the UIC as
an indicator of iodine status instead of UI/Creat. For these UIC analyses
we re-added mother–child pairs that were excluded from the UI/Creat
analyses due to missing creatinine data (n = 38 mother–child pairs from
INMA) or those that were excluded due to possible contamination of
urine samples (i.e., UI/Creat >700 μg/g; n = 95 mother–child pairs from
ALSPAC). Although correcting UIC for creatinine takes into account
the hydration status and better reflects the 24-h iodine excretion than
UIC alone (64), the median UIC is recommended by the WHO to assess
the iodine status of a population (33). Second, considering that the
distribution of ADHD symptoms and autistic traits in a population is on
a continuous spectrum, we also investigated the association of UI/Creat,
either <150 μg/g or on a continuous scale, with ADHD symptoms and
autistic traits as count scores using negative binomial regression models.
The symptom scores were not comparable between cohorts because they
did not share a common metric and therefore the associations were
analyzed and presented by cohort.

Next, we studied whether the associations of maternal FT4 and
TSH with ADHD and a high autistic-trait score differed depending
on the iodine status of the mother. First, FT4 and TSH concentrations
were logarithmically transformed to approach normality. To take into
account the varying assays, cohort-specific SD scores were calculated
with a mean of 0 and an SD of 1. These SD scores were based on the
data of TPOAb-negative women or all women if TPOAb status was
unknown (i.e., in INMA). FT4 and TSH SD scores outside the mean
± 4 SD range were considered as outliers and excluded from further
analyses. The associations of FT4 SD scores and TSH SD scores with
ADHD and a high-autistic trait score were assessed using multivariable
logistic regression per cohort. The cohort-specific effect estimates were
combined in random-effects meta-analyses (65). The time of thyroid
function measurements coincided in a high proportion of women with
the time of the first available measurement of UI/Creat. We therefore
used the latter to stratify these associations into 2 groups of mother–
child pairs: those in which the mother had a UI/Creat <150 μg/g and
those that had a UI/Creat value ≥150 μg/g. Interaction of FT4 or TSH
SD scores with UI/Creat in relation to ADHD and autistic traits was
also formally tested per cohort by adding a product interaction term
in the cohort-specific models. As a sensitivity analysis, we examined
whether excluding TPOAb-positive women changed the association of
maternal thyroid function with ADHD and autistic traits. All statistical
analyses were performed in STATA version 15.0 (StataCorp.). Values
were considered statistically significant at P < 0.05.

Results

A total of 5546 mother–child pairs were included (Figure 1).
The iodine status of the 3 cohorts differed; the median UI/Creat
in pregnancy was 212 μg/g in Generation R, 168 μg/g in
INMA, and 131 μg/g in ALSPAC (Table 1). The median
UIC was 178 μg/L [adequate intake, i.e., median UIC in the
range 150–249 μg/L (33)], 134 μg/L [inadequate intake, i.e.,
median UIC <150 μg/L (33)], and 98 μg/L (inadequate intake)
in Generation R, INMA, and ALSPAC, respectively. A total
of 1290 (78.9%), 929 (71.8%), and 412 (15.7%) women
had 2–4 repeated measurements of UI/Creat in Generation
R, INMA, and ALSPAC, respectively (Supplemental Table 2).
Women with repeated measures in INMA and ALSPAC differed
in several characteristics from those that only provided a
single urine sample. This may reflect the fact that repeated
measures are conditional to early study inclusion. Moreover,
the concentration of the first UI/Creat sample of women with
repeated measurements in ALSPAC was lower than that of later
measurements, and also lower than that of women with only a
single measurement, possibly reflecting gestational changes.

ADHD

Children born to women with a UI/Creat <150 μg/g during
pregnancy (i.e., “iodine deficiency”) were not at greater risk of
ADHD in the pooled analysis than those born to women with
UI/Creat ≥150 μg/g (OR: 1.2; 95% CI: 0.7, 2.2; P = 0.56;
I2 = 66.5%; P for heterogeneity = 0.051) (Figure 2). In
Generation R, UI/Creat <150 μg/g was associated with a 2.0-
fold higher risk of ADHD (95% CI: 1.2, 3.5; P = 0.014)
(Figure 2). Our random-effects meta-analysis also shows no
association of UI/Creat <150 μg/g in the gestational age period
of ≤18 wk or ≤14 wk with ADHD (Figure 2). When UI/Creat
was analyzed continuously, there was no association between
UI/Creat and ADHD. Again, only in Generation R a 1-unit
increase in the natural logarithm of UI/Creat was associated
with a 60% lower relative risk of ADHD (OR: 0.4; 95%
CI: 0.2, 0.7; P < 0.001; Supplemental Figure 2). UIC was
not associated with ADHD (Supplemental Figures 3 and 4).
Similarly to UI/Creat, lower UIC was associated with a higher
risk of ADHD in the Generation R cohort only (Supplemental
Figures 3 and 4). UI/Creat, modeled either categorically or on a
continuous scale, was not associated with ADHD symptoms on
a continuous scale in any of the 3 cohorts (Supplemental Tables
3 and 4, respectively).

A high autistic-trait score

Children born to women with UI/Creat <150 μg/g during
pregnancy were not at greater risk of a high autistic-trait
score (OR: 0.8; 95% CI: 0.6, 1.1; P = 0.22; I2 = 30.4%; P
for heterogeneity = 0.24) in the pooled analysis than those
born to women with UI/Creat ≥150 μg/g (Figure 3). In the
Generation R cohort only, UI/Creat <150 μg/g was associated
with a 50% lower relative risk of a high autistic-trait score
(OR: 0.5; 95% CI: 0.3, 1.0; P = 0.035) (Figure 3). Further
pooled analyses in those with a urinary iodine assessment
in the gestational age period of ≤18 wk or ≤14 wk also
showed no association between UI/Creat <150 μg/g and a
high autistic-trait score (Figure 3). Next, we performed an
analysis of continuously modeled UI/Creat concentrations;
a 1-unit increase in the natural logarithm of UI/Creat was
associated with a 1.2-fold higher risk of a high autistic-trait
score (95% CI: 1.0, 1.5; P = 0.044; I2 = 0.0%; P for
heterogeneity = 0.63) (Supplemental Figure 5). The latter effect
estimates were similar when this association was investigated in
the 2 early time periods during pregnancy (Supplemental Figure
5). UIC, modeled either categorically or continuously, was not
associated with a high autistic-trait score in any of the cohorts
(Supplemental Figures 6 and 7, respectively). UI/Creat, modeled
either as <150 μg/g or on a continuous scale, was not associated
with autistic traits on a continuous scale in any of the 3 cohorts
(Supplemental Tables 3 and 4, respectively).

Maternal thyroid function and child ADHD and autistic
traits

Neither FT4 nor TSH concentrations nor TPOAb positivity
rates differed between women with UI/Creat <150 μg/g or
≥150 μg/g (Supplemental Table 5). A 1-unit increase in the
FT4 SD score was associated with a 1.3-fold higher risk
of ADHD (95% CI: 1.0, 1.6; P = 0.017; I2 = 0.0%; P
for heterogeneity = 0.93) (Table 2). This association was
not modified by UI/Creat (P for interaction = 0.70, 0.40,
0.96, in Generation R, INMA, and ALSPAC, respectively).
TSH was not associated with ADHD (OR: 0.8; 95% CI:
0.7, 1.0; P = 0.11; I2 = 0.0%; P for heterogeneity = 0.63)
(Table 2). This association was not modified by UI/Creat (P for
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(I2 P = 0.051)

random-effects

≤18 weeks

≤14 weeks

(I2 P = 0.07)

random-effects

(I2 P = 0.26)

random-effects

FIGURE 2 Association of maternal UI/Creat <150 μg/g with child ADHD. Associations depicted as OR (dot) with 95% CI per cohort and
overall associations as estimated by random-effects meta-analysis (diamond) in (A) all mother–child pairs, (B) those with ≥1 measure of UI/Creat
at ≤18 weeks of gestation, and (C) those with ≥1 measure of UI/Creat at ≤14 weeks of gestation. Analyses adjusted for maternal age, parity,
prepregnancy BMI, smoking during pregnancy, ethnicity/country of birth, maternal educational level, gestational age at urine sampling, child sex,
child age, and subcohort in INMA. n = children with ADHD, N = children without ADHD. ADHD, attention-deficit hyperactivity disorder; ALSPAC,
Avon Longitudinal Study of Parents and Children; INMA, INfancia y Medio Ambiente; UI/Creat, urinary iodine-to-creatinine ratio.
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(I2 = 30.4%,  P = 0.24)

random-effects

≤18 weeks

≤14 weeks

random-effects

random-effects

(I2 = 19.7%,  P = 0.29)

(I2 = 77.7%,  P = 0.011)

FIGURE 3 Association of maternal UI/Creat <150 μg/g with a high child autistic-trait score ≥93rd percentile. Associations depicted as OR
(dot) with 95% CI per cohort and overall associations as estimated by random-effects meta-analysis (diamond) in (A) all mother–child pairs, (B)
those with ≥1 measure of UI/Creat at ≤18 weeks of gestation, and (C) those with ≥1 measure of UI/Creat at ≤14 weeks of gestation. Analyses
adjusted for maternal age, parity, prepregnancy BMI, smoking during pregnancy, ethnicity/country of birth, maternal educational level, gestational
age at urine sampling, child sex, child age, and subcohort in INMA. n = children with a score >93rd percentile, N = children with a score <93rd
percentile. ALSPAC, Avon Longitudinal Study of Parents and Children; INMA, INfancia y Medio Ambiente; UI/Creat, urinary iodine-to-creatinine
ratio.
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TABLE 2 Association of FT4 and TSH with ADHD in all mother–child pairs and stratified by groups of UI/Creat1

ADHD2

FT4 TSH

Subgroup Cohort n/N3 OR (95% CI) P I2 (P)4 n/N3 OR (95% CI) P I2 (P)5

All mother–child pairs Pooled 117/3295 1.3 (1.0, 1.6) 0.017 0.0% (0.93) 114/3266 0.8 (0.7, 1.0) 0.11 0.0% (0.63)
Generation R 51/1362 1.3 (0.9, 1.7) 0.13 0.70 50/1359 0.8 (0.6, 1.0) 0.08 0.57

INMA 53/979 1.2 (0.9, 1.7) 0.16 0.40 52/970 0.9 (0.6, 1.3) 0.57 0.54
ALSPAC 13/954 1.4 (0.8, 2.4) 0.22 0.96 12/937 1.0 (0.5, 2.1) 0.93 0.09

UI/Creat <150 μg/g Pooled 57/1497 1.3 (1.0, 1.7) 0.08 0.0% (0.80) 56/1481 0.8 (0.6, 1.1) 0.15 0.0% (0.75)
Generation R 21/381 1.5 (0.9, 2.4) 0.12 NA 21/379 0.8 (0.5, 1.3) 0.43 NA

INMA 28/477 1.3 (0.8, 1.9) 0.31 NA 27/472 0.7 (0.4, 1.2) 0.15 NA
ALSPAC 8/639 1.1 (0.5, 2.3) 0.80 NA 8/630 0.9 (0.4, 2.2) 0.89 NA

UI/Creat ≥150 μg/g Pooled 60/1798 1.4 (0.9, 2.2) 0.13 39.4% (0.19) 58/1785 0.8 (0.6, 1.1) 0.22 7.9% (0.34)
Generation R 30/981 1.1 (0.7, 1.7) 0.59 NA 29/980 0.7 (0.4, 1.0) 0.049 NA

INMA 25/502 1.4 (0.9, 2.2) 0.17 NA 25/498 1.0 (0.6, 1.6) 0.98 NA
ALSPAC 5/315 3.8 (1.1, 13.1) 0.038 NA <5/307 1.5 (0.2, 10.3) 0.68 NA

1The pooled estimate represents the overall effect estimates (OR with 95% CI) calculated with a random-effects meta-analysis. ADHD, attention-deficit hyperactivity disorder;
ALSPAC, Avon Longitudinal Study of Parents and Children; FT4, free thyroxine; INMA, INfancia y Medio Ambiente; NA, not applicable; TSH, thyroid-stimulating hormone;
UI/Creat, urinary iodine-to-creatinine ratio.
2ADHD diagnosis was established by interview but not confirmed by medical-record data.
3n represents the number of children with ADHD; N represents the number of children without ADHD.
4Values represent quantification of statistical heterogeneity using the I2 statistic (P for heterogeneity of the Cochran Q test) or represent the cohort-specific P for interaction
between the FT4 SD score and UI/Creat in relation to ADHD.
5Values represent quantification of statistical heterogeneity using the I2 statistic (P for heterogeneity of the Cochran Q test) or represent the cohort-specific P for interaction
between the TSH SD score and UI/Creat in relation to ADHD.

interaction = 0.57, 0.54, and 0.09 in Generation R, INMA, and
ALSPAC, respectively).

FT4 was not associated with a high autistic-trait score
(OR: 1.1; 95% CI: 0.9, 1.2; P = 0.27; I2 = 0.0%; P for
heterogeneity = 0.27) (Table 3). This association was not
modified by UI/Creat (P for interaction 0.48, 0.82, and 0.11 in
Generation R, INMA, and ALSPAC, respectively). TSH was not
associated with a high autistic-trait score (OR: 0.9; 95% CI: 0.8,
1.1; P = 0.46; I2 = 6.2%; P for heterogeneity = 0.34) (Table 3).
A statistically significant effect modification by UI/Creat was
only seen in INMA (P for interaction = 0.007), showing that
higher TSH is associated with higher risk of a high autistic-
trait score when the mother has UI/Creat <150 μg/g (OR: 1.7;
95% CI: 1.0, 2.8; P = 0.049) (Table 3). However, when we
combined the 3 cohorts using a random-effects meta-analysis,
this association was not apparent (Table 3). Excluding TPOAb-
positive women from Generation R and ALSPAC (information
on TPOAb status was only available in these 2 cohorts) yielded
similar results (data not shown).

Discussion

This meta-analysis of individual-participant data from 3 large
cohorts showed no consistent evidence to support an associa-
tion of maternal iodine status with child ADHD or autistic traits
in the general population. The association of maternal FT4 with
child ADHD was not affected by the iodine status of the mother.

This study was performed against the background of
mild-to-moderate iodine deficiency being a common problem
among pregnant women (24) that has been associated with
lower IQ scores (28–30), suboptimal reading accuracy and
comprehension (30), poorer spelling (66, 67), reduced receptive
and expressive language skills (68), worse executive function
(69), poorer fine motor skills (70), internalizing and exter-
nalizing problems (70), and higher ADHD symptom scores
(34). Separate studies within Generation R or INMA reported

no evidence for an association between UIC and language
comprehension at the age of 6 y (59) or cognitive and
psychomotor development measured at 1 y of age (71, 72).
The current meta-analysis of individual-participant data from
3 different studies also finds no support for an association
between maternal iodine status and child ADHD or autistic
traits.

There may be several explanations as to why no association
was observed in this study. Firstly, although use of urinary
iodine concentration is recommended to determine population
iodine status, it is only a crude proxy for individual iodine
status owing to large day-to-day variability (73, 74). Although
it is assumed that a low excretion of iodine reflects a low
recent iodine intake, it is uncertain how well this reflects
the ability of a person to utilize the available iodine supply
for thyroid hormone synthesis, or whether this reflects an
iodine-depleted thyroid. Second, it is suggested that iodine
deficiency before preconception and in early pregnancy may
constitute a risk factor for neurodevelopmental problems (28–
30). Hence, optimal iodine intake needs to be achieved in
early pregnancy, and preferably before conception to anticipate
the increased need for thyroid hormone production during
pregnancy (75, 76). On the assumption that the urine collection
may have occurred too late in pregnancy, we also investigated
the association of iodine status in early pregnancy with
neurodevelopmental problems (i.e., ≤18 and ≤14 wk), but
maternal iodine status in these early time-windows was also
not associated with child ADHD or autistic traits. Third, the
clinical relevance of our outcome measures may be debated.
Not all 3 cohorts obtained clinical diagnoses of ADHD
and ASD, which may have led to (nondifferential) outcome
misclassification. Against this, the questionnaires were valid
quantitative measures of ADHD symptoms or autistic traits and
have been extensively used in epidemiological studies.

Interestingly, only in the Generation R cohort, which is an
overall iodine-sufficient population, was “iodine deficiency”
associated with a higher risk of ADHD. These associations
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TABLE 3 Association of FT4 and TSH with a high autistic-trait score ≥93rd percentile in all mother–child pairs and stratified by
groups of UI/Creat1

High autistic-trait score ≥93rd percentile

FT4 TSH

Subgroup Cohort n/N2 OR (95% CI) P I2 (P)3 n/N2 OR (95% CI) P I2 (P)4

All mother–child pairs Pooled 255/2920 1.1 (0.9, 1.2) 0.27 0.0% (0.27) 210/2441 0.9 (0.8, 1.1) 0.46 6.2% (0.34)
Generation R 85/1062 1.1 (0.9, 1.3) 0.69 0.48 84/1056 1.0 (0.8, 1.3) 0.81 0.33

INMA 88/985 1.1 (0.9, 1.4) 0.50 0.82 46/528 1.0 (0.8, 1.3) 0.98 0.007
ALSPAC 82/873 1.1 (0.9, 1.4) 0.45 0.11 80/857 0.8 (0.6, 1.0) 0.10 0.45

UI/Creat <150 μg/g Pooled 121/1330 0.9 (0.7, 1.1) 0.42 0.0% (0.98) 124/1396 1.1 (0.8, 1.6) 0.61 53.8% (0.11)
Generation R 21/299 1.0 (0.6, 1.6) 0.86 NA 21/297 1.0 (0.6, 1.7) 0.97 NA

INMA 42/452 0.9 (0.6, 1.4) 0.64 NA 46/528 1.7 (1.0, 2.8) 0.049 NA
ALSPAC 58/579 0.9 (0.7, 1.2) 0.51 NA 57/571 0.9 (0.7, 1.2) 0.45 NA

UI/Creat ≥150 μg/g Pooled 134/1590 1.2 (1.0, 1.5) 0.06 13.6% (0.31) 132/1573 0.8 (0.7, 1.0) 0.12 18.1% (0.29)
Generation R 64/763 1.1 (0.8, 1.4) 0.55 NA 63/759 1.0 (0.8, 1.3) 0.85 NA

INMA 46/533 1.2 (0.9, 1.7) 0.26 NA 46/528 0.8 (0.5, 1.1) 0.15 NA
ALSPAC 24/294 1.6 (1.0, 2.5) 0.032 NA 23/286 0.7 (0.4, 1.1) 0.08 NA

1The pooled estimate represents the overall effect estimates (OR with 95% CI) calculated with a random-effects meta-analysis. ALSPAC, Avon Longitudinal Study of Parents
and Children; FT4, free thyroxine; INMA, INfancia y Medio Ambiente; NA, not applicable; TSH, thyroid-stimulating hormone; UI/Creat, urinary iodine-to-creatinine ratio.
2n represents the number of children with a high autistic-trait score ≥93rd percentile; N represents the number of children with an autistic trait score <93rd percentile.
3Values represent quantification of statistical heterogeneity using the I2 statistic (P for heterogeneity of the Cochran Q test) or represent the cohort-specific P for interaction
between the FT4 SD score and UI/Creat in relation to a high autistic-trait score.
4Values represent quantification of statistical heterogeneity using the I2 statistic (P for heterogeneity of the Cochran Q test) or represent the cohort-specific P for interaction
between the TSH SD score and UI/Creat in relation to a high autistic-trait score.

in the Generation R cohort only may seem counter-intuitive,
because at population level, iodine deficiency in this population
is relatively less severe and certainly less common than in the
INMA or ALSPAC populations. The Netherlands has a well
implemented iodine fortification program (77). The proportion
of households consuming iodized salt is estimated to be 60%–
70%, which is relatively high compared with Spain and the
UK [16% and 2%, respectively (78)]. As such, an association
between maternal iodine deficiency and child neurobehavioral
problems might be less likely in Generation R than in INMA
or ALSPAC. However, it has previously been suggested that
iodine-deficient women with a more sporadic iodine supply
may have a more efficient thyroidal uptake of iodine (79) and
the strength of the association between iodine deficiency and
child neurodevelopmental outcomes need not depend on the
degree of iodine sufficiency in the population. Racial differences
may also contribute to heterogeneity in results across cohorts.
The Generation R cohort consists of a multiethnic population,
whereas in the INMA and ALSPAC cohorts there is less ethnic
variability. Whether genetic variation modifies the association
between maternal iodine status and child neurobehavioral
problems remains to be investigated.

The association between higher UI/Creat and a higher risk
of autistic traits was unexpected. If not a chance finding, then
this may be explained by the fact that more-than-adequate
or excessive iodine intake in an iodine-replete population
has previously been linked to maternal hypothyroidism and
hypothyroxinemia (80); both of these have also been associated
with a higher risk of ASD or autistic traits (15, 22). However, we
did not identify differences in FT4 or TSH concentrations, or the
TPOAb-positivity rates between the “iodine-deficient” group
(i.e., UI/Creat <150 μg/g) and the “iodine-sufficient”group (i.e.,
UI/Creat ≥150 μg/g). Because iodine and thyroid measures were
both taken in pregnancy, there is a possible lag time between low
iodine status and impaired thyroid function.

The present study shows that the maternal FT4 concentra-
tion during pregnancy was associated with child ADHD, but
maternal iodine status did not seem to underpin this association.

First, the association between higher FT4 and child ADHD
did not reach statistical significance in our previous analysis
(21), which suggests that conditioning on iodine concentrations
may have introduced a selection effect. Second, the cohort-
specific analysis showed that, solely in INMA, a higher TSH
was associated with a high child autistic-trait score in “iodine-
deficient” mothers only. Iodine deficiency may induce TPOAb
positivity (80), and the presence of these antibodies could
potentially lead to impaired thyroid function, including higher
TSH. Children born to TPOAb-positive mothers may be at a
higher risk of ASD (81). Unfortunately, we could not investigate
whether TPOAb positivity could explain why there was effect
modification in the association between TSH and autistic traits
in INMA, because TPOAb titers were not determined in this
cohort.

We have performed random-effects meta-analyses because
we assumed that differences in effect estimates across cohorts
are not due to chance only. Despite having used individual-
participant data to harmonize the analysis across cohorts, some
degree of heterogeneity is inevitable. We previously discussed
different factors that could contribute to heterogeneity in
the results across cohorts, including the differing ages at
assessment, types of evaluators (i.e., parents or teachers),
and methodologies (21, 23). We explored and quantified the
statistical heterogeneity. A high percentage of I2 (i.e., ≥75%)
typically indicates that studies are highly heterogeneous and
in the absence of strict criteria, it is up to the meta-analyst
to decide whether the meta-analysis is meaningful or if it is
better to present the cohort-specific effect estimates only (82).
In the present study, several meta-analyses showed moderate
statistical heterogeneity (i.e., I2 ∼50%). The only meta-analysis
with a high I2 of 77.7% was that of the association of maternal
UI/Creat with child autistic traits in the subgroup with ≥1
measure of UI/Creat in the first 14 wk of pregnancy. This finding
should therefore be interpreted with caution.

This study enabled us to investigate the association of mater-
nal iodine status during pregnancy with child neurobehavioral
problems in a large population-based sample and to examine
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the heterogeneity of results across cohorts. This study has
several potential limitations. Firstly, although the sample size
was large enough to evaluate the iodine status of the population
from 1–4 spot urine samples, this is insufficient for assessing
individual iodine status (73, 83). Second, there is variability
between urinary iodine measurements undertaken in different
laboratories (84); however, the 3 laboratories that measured
samples from these cohorts used certified reference materials
to ensure accurate measurements. Next, the ascertainment of
ADHD and autistic traits was performed at different ages
by different instruments and evaluators, which may have
introduced “noise” and heterogeneity. Furthermore, we had
no medical-record data to confirm ADHD or ASD diagnosis
or data on therapeutic drug use by the children in the study.
Lastly, this meta-analysis was not conducted in the context
of a systematic review. Ideally, meta-analyses of individual
participant data should be performed by a systematic review
that searches for both published and unpublished studies (85).

To conclude, no consistent evidence for an association of
maternal iodine status with child ADHD and autistic traits was
found across cohorts with differing iodine status.
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