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A B S T R A C T

Railway capacity is a scarce and expensive resource that has to be utilised in the best way
possible. Many methods exist for medium- and short-term planning and analysis of railway
capacity. Yet, there is a lack of methods for long term (strategic) planning that provides high
quality estimates of capacity in complex railway networks. In this paper, we define capacity of
a railway network by a maximal set of trains that can be operated in a predefined period. This
maximal set distinguish between different train types and the number of each type, and thus
the heterogeneity of the operation.

We formalise the capacity determination as an optimisation problem with the objective of
finding the maximal set of trains that minimises the average waiting time between trains of the
same type. We test for feasibility of sets of trains by computing the time a set of trains occupies
the infrastructure. A fixed timetable is not needed for the feasibility tests as samples of train
sequences are examined. Furthermore, it is possible to determine a span of capacity depending
on service constraints by adjusting input parameters.

We propose and test two different solution approaches to determine the capacity of
railway infrastructure: an exact branch-and-bound algorithm and a tabu search heuristic. The
applicability of the capacity determination framework is demonstrated on the railway network
of Southwestern Denmark, with and without infrastructure upgrades. We analyse computation
time, solution performance and sensitivity. The results illustrate the ability to obtain quality
solutions for a real network within the order of minutes. As precise infrastructure characteristics
are considered in junctions, the method is able to quantify the effect of the infrastructure
upgrades, contrary to other assessment methods used in the long term (strategic) planning
phase.

1. Introduction

Increasing railway traffic calls for a better utilisation of the existing infrastructure. However, the infrastructure capacity of
existing or future railway networks is not easily determined or even defined.

Intuitively, we would like to define railway infrastructure capacity as the number of trains that can traverse the railway network
in a given time period. However, this number does not only depend on the infrastructure itself, but also on characteristics of
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the rolling stock and operational requirements. Some factors that need to be considered in capacity determination of railway
infrastructure are:

1. Signalling equipment and layout as well as operational rules impose minimum headways unique to each railway segment
2. Train services operated on a line usually have different stop patterns and are operated according to a timetable to serve

passenger demand
3. Rolling stock types have different acceleration and braking capabilities as well as maximum speed

For a very simple type of operation where the effect of the above factors is minimised, the capacity is relatively straightforward
to determine. E.g. if the minimum headway time of a given railway segment is known and the operation is homogeneous with only
one train type and stopping pattern used, the maximum theoretical capacity of the given segment can be calculated as the time
period considered divided by the minimum headway.

However, most of the time, operations are not homogeneous as demand must be met in the best way possible. To serve passengers
travelling longer distances, skip-stop and/or high-speed services are introduced. These services usually operate on the same tracks
as services stopping at all stations. In addition to different passenger services, freight trains may also be operated on the same tracks.
As a result, trains might run with different speeds. Such variances in speed from train to train form a heterogeneous train operation
that leads to longer line headway times. I.e. a fast train must depart later not to catch up with a slower train. Thus, only a reduced
number of trains per hour can be operated with heterogeneous operation compared to a network with homogeneous train operation.
Furthermore, the reduced number of trains is heavily dependent on the order of trains. E.g. bundling fast trains and slow trains will
lead to a higher capacity than distributing fast and slow trains. On the other hand, bundling is not desirable from a passenger point
of view as departures are distributed unevenly.

Existing methods to estimate the capacity of a railway system either neglect these complicating factors, or rely on additional
information like timetables or fixed train sequences.

In this paper, we define the infrastructure capacity of a railway network by means of a maximal set of trains that can be
operated on the infrastructure within a given time period given input parameters describing heterogeneity and maximum capacity
occupation. Among all sets that fulfil these properties, we choose the one that minimises the average waiting time between trains
of the same type. We check the feasibility of sets of trains by computing the time a set of trains occupies the infrastructure using
the approach presented in Jensen et al. (2017). To solve the optimisation problem and find the capacity-representing set of trains,
we use branch-and-bound and tabu search.

The approach presented in this paper is designed for capacity estimation in the strategic planning phase. This is the early planning
phase in the planning of railway infrastructure and operations. Subsequent phases include the tactical planning phase and the
operational phase. As an approach designed for the strategic phase, our approach uses only the infrastructure network and the type of
trains that would potentially be run on the network as input. This makes it different from some other capacity estimation approaches
designed for later planning stages, which can base their estimation on operational details like frequencies, train sequences, or even
timetables that only become known later in the planning process. Compared to other approaches for the strategic planning phase, the
approach presented in this paper still takes important infrastructure constraints at junctions into account contrary to other strategic
assessments methods.

In Section 2, we review literature to determine capacity assessment approaches for both the strategic and the tactical planning
phase. In Section 3, we introduce the capacity determination problem, and in Section 4, we present our solution approaches. We
conclude the paper with a case study and computational results in Section 5

2. Literature review

2.1. Capacity terminology

Within the railway field, there already exist several methods to determine and analyse railway capacity. From publication to
publication, capacity terms used may differ. Therefore, we first give some definitions of the main capacity terms used in this paper
before reviewing the literature. Our definition of infrastructure capacity in Section 1, can be divided into theoretical, maximum and
practical capacity. We define these terms as:

Theoretical capacity: the maximum number of trains that can traverse a given part of the network in a predefined time period.
The operation must be completely homogeneous with a single ideal train type with no supplements of any kind.
Maximum capacity: the maximal set of trains that can be handled in a given time period while considering the actual train
mix where train types may have different stopping patterns and maximum speeds resulting in heterogeneous operation. Buffer
times are not included in headways between trains.
Practical capacity: the maximal capacity that can actually be used in a given time period to obtain a robust and stable operation.
Buffer times are added to the minimum headway time between trains to obtain planning headways that provide stability and
robustness.

Furthermore, we use the term capacity occupation throughout the paper to describe the time a set of trains in a given sequence
occupies the infrastructure (i.e. the makespan of the train sequence). This term is also known as infrastructure occupation, but
has many synonyms in the literature as described by Bešinović and Goverde (2018). The ratio between capacity occupation and
2
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Fig. 1. Example cumulative distribution of capacity occupation.

consumption is also frequently used synonymously with capacity occupation. However, this term is defined by UIC (2004) as the
time a train sequence (compressed timetable) occupies the infrastructure including additional buffer time to absorb delay. Thus,
capacity consumption is not synonymous with capacity occupation (or infrastructure occupation). We therefore avoid using the
term in this paper, except when referring to existing literature in this section.

2.2. Capacity analysis methods

We now review literature related to analyses of railway capacity. One of the most well-known methods for analyses of capacity
is the UIC 406 method (UIC, 2013), which is designed for use in the (late) tactical planning phase, when the timetable is already
known. This method can be used to calculate the capacity occupation on line segments and routes based on a given timetable. The
timetable sets out the order of trains and the UIC 406 method is therefore able to give estimates on the capacity consumed by a
given set of trains in a specific order. The simplicity of the method has entailed its use throughout Europe.

Jensen et al. (2017) expand the UIC 406 method to determine the capacity consumption and infrastructure/capacity occupation
(as defined by UIC, 2004) of a set of trains in a railway network rather than segments of the network. Since the capacity occupation
by the trains depends on the sequence in which they traverse the network, Jensen et al. (2017) describe the capacity occupation
not by a single value but by a distribution which describes which percentage of the sequences that can be scheduled within a given
capacity occupation rate. An example is given in Fig. 1.

To compute the capacity occupation of a set of trains, Jensen et al. (2017) generate and schedule all train sequences if the set
of trains is comparatively small, or a sample of them if the instance is larger. Train sequences yielding capacity occupation rates of
100% or close will not be feasible in practice due to the stochastic behaviour of railway systems (resulting in delays and thereby
higher occupation). To account for the stochastic behaviour, they build upon the basic model to include robustness considerations by
stochastic simulation (see Jensen et al., 2017) and thus obtain capacity consumption values. In this paper, we use the methodology
presented in Jensen et al. (2017) to estimate the capacity occupation for sets of trains as a feasibility check in our solution approach.

2.3. Timetabling methods

Since a timetable decides the usage of railway capacity, timetabling methods can be used to estimate the feasibility of scheduling
a given set of trains. Within optimisation and scheduling of railway operations, the timetabling problem is used to generate a feasible
(and possibly optimal) timetable when solved. Both nominal and robust versions of timetabling are considered in the literature, see
e.g. the overview given in Cacchiani and Toth (2012). In the nominal problem, the goal is to schedule all the trains subject to
the given constraints. In the robust problem, the goal is to schedule the trains such that a robust timetable is obtained. That is, a
timetable that can absorb smaller delays using the supplements included in the timetable to prevent delay propagation. The most
common model for finding periodic timetables is the periodic event scheduling problem (PESP) where train departure and arrival times
repeat after a certain time period (i.e. cyclic timetables). Another model for timetabling is proposed by Polinder et al. (2020) who
defines the Strategic Passenger-Oriented Timetabling (SPOT) problem. Compared to PESP the proposed model is aimed at strategic
planning instead of tactical planning to provide a timetable outline using less input.

While timetabling methods cannot directly be used to estimate the capacity, they can be combined with methods to calculate
capacity occupation with a given timetable to estimate capacity of the system (e.g. the UIC 406 method). An example of this
combination of timetabling and methods for calculation of capacity occupation is proposed by Zhang and Nie (2016) who use
a minimum cycle time calculation (MCTC) model based on the PESP to assess the capacity occupation for a given train line plan
3
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taking train mixes (different train types) and overtaking into account. While the approach by Zhang and Nie (2016) provides quality
results, the computation times are long in the order of days, and the input required makes the approach more suitable for the tactical
planning level. This exemplifies the challenges with using timetabling methods for strategic capacity evaluation. In general, the
resulting capacity will rely heavily on the input given to the timetabling method and thus the structure of the generated timetable.
This timetable will be quite specific which is usually not desirable in the strategic planning phase. Furthermore, long computation
times of timetabling methods may make it undesirable to run them several times in a loop to find the maximum capacity.

In addition to timetabling methods, several models and tools exist that can be used to saturate existing timetables (which can
e empty) with additional trains, locate bottlenecks in the network and estimate stability or robustness of a generated timetable.
uch models can be used to estimate the number of trains that can traverse a given network under a set of operational constraints.
owever, as also described above, these models are more suitable on a tactical level as they require a significant amount of input.
or an overview of these models and tools we refer to Abril et al. (2008).

.4. Capacity determination in early planning phases

We now describe approaches which address the problem of capacity determination in the strategic phase; the subject of this paper.
n overview of the reviewed approaches is given in Table 1. The capacity determination approaches described in the following all
efine the capacity in a similar form, which may be summed up as the maximum number of trains that can traverse the network
r corridor in a given time period. Some approaches distinguish between different train types while others use an average train
ype. Furthermore, some include a buffer in the determined capacity to mitigate delay propagation (the practical capacity), some
easure the quality of the determined capacity, while others calculate the determined capacity as either the maximum capacity or

heoretical capacity without considering delays.
De Kort et al. (2003) uses a probabilistic approach using max-plus algebra to determine the capacity of a simple railway

nfrastructure with single track tunnels. The approach is based on the bottleneck approach which determines the critical section
bottleneck) that limits the capacity of the system considered. The approach does not explicitly account for different train types.
owever, it is possible to implement this by using the probability that a train will be of a given type.

Inspired by the work of De Kort et al. (2003) and Mussone and Wolfler Calvo (2013) present a framework to maximise the total
umber of trains in the railway system based on train conflict probabilities, where different train types can be considered. De Kort
t al. (2003) ans Mussone and Wolfler Calvo (2013) are able to include knock-on delays (delay propagation) and route conflicts
junction constraints) in the railway system in a simple way. The approaches by De Kort et al. (2003) and Mussone and Wolfler Calvo
2013) do not depend on the exact train sequence, but rather consider a weighted average. Thus, in a network with heterogeneous
peration the average maximum capacity is obtained, and this capacity might therefore be increased by bundling trains.

Burdett and Kozan (2006) describe and discuss terms for absolute capacity (maximum capacity) and utilisation levels based on
ectional running times of train types, dwell times and proportional mix of (different) train types. Based on these, they propose
n optimisation model to maximise the theoretical number of trains that can traverse a railway network. The model used to
etermine the capacity for a network is non-linear and is therefore only solved to a local maximum (Burdett and Kozan, 2006).
he approach by Burdett and Kozan (2006) is quite flexible and is able to capture a large number of operational characteristics.
urthermore, the approach is able to give a lower and an upper bound for the determined capacity. Bevrani et al. (2017b) use
he model by Burdett and Kozan (2006) in a case study in Iran to provide decision support on future capacity extensions. Burdett
2015b) extend the earlier work in Burdett and Kozan (2006) from a single objective to a multi-objective model to include a variable
rain mix instead of a fixed train mix. The multi-objective problem is formulated to regulate competition between train services,
rains types and network corridors resulting in Pareto optimal solutions. Burdett (2015a) extends the work of Burdett and Kozan
2006) further by incorporating complex train paths. Burdett (2016) describes a model to obtain a given capacity while minimising
pending and a model where capacity is optimised within a given budget based on the work in Burdett (2015b). Similar to the
odel by Burdett (2015b), Bevrani et al. (2017a) develop a capacity assessment model for multi-modal transport systems. Common

or the approaches described is the representation of the network as segments each with a capacity constraint. However, capacity
onstraints in junctions, due to route conflicts, are not included. This may lead to an overestimation in the determined network
apacity.

Jensen (2015a) develops a framework to determine the number of trains that can traverse a network within a given time period.
oth the maximum capacity and the practical capacity can be determined. Jensen (2015a) represents an early version of the present
aper. Compared to this early work, we have improved the problem formulation to provide results that are more realistic and
ractically useable compared to the initial test results in Jensen (2015a). Furthermore, the greedy heuristic used in Jensen (2015a)
as been replaced by branch-and-bound and tabu search.

Related to determination of capacity on a strategic level is also the work of Harrod (2009). Harrod (2009) uses a linear
rogramming model to assess the effect on capacity from introducing passenger trains on single track freight lines resulting in
peed differentials between trains. A weighted sum of train trips as well as delays incurred are included in the objective function
o indicate the quality of the determined capacity. The primary focus is on how fast passenger trains affect the operation of freight
rains. The specific model used is limited to various single track line configurations.

Other capacity determination methods take a macroscopic view that requires less data and yields fast computation times, but
roduces less precise results. Examples are Yaghini et al. (2014) where line capacity is evaluated using an integer programming
odel. The problem is formulated as a multi-commodity network design model. The inputs of the model are the characteristic
4
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Table 1
Summary of capacity determination approaches and their main characteristics (denoted by ∙) as described in the text. Parentheses imply only partial applicability

Method Timetable
independent

Different
train types

Practical
capacitya

Span of
capacity

Junction
constraints

Execution
timec

Timetabling + capacity evaluation ∙ (∙) (∙) Slow
Zhang and Nie (2016) (∙) ∙ (∙) (∙) Slow
De Kort et al. (2003) ∙ (∙) (∙) Fast
Mussone and Wolfler Calvo (2013) ∙ ∙ (∙) ∙ Fast
Burdett et al.b ∙ ∙ (∙) ∙ Fast
Yaghini et al. (2014) ∙ (∙) (∙) Fast
Reinhardt et al. (2017) ∙ (∙) Fast

The approach in this paper ∙ ∙ (∙) ∙ ∙ Fast

See also the following notes.
aAs none of the methods uses integrated stochastic simulation, only partial applicability is assigned.
bCovers the literature: Burdett and Kozan (2006), Burdett (2015a,b, 2016) and Bevrani et al. (2017a,b). Common for the approaches is the base capacity model
used which is extended and improved in various ways. Due to the base model used, the characteristics are essentially the same across the listed literature albeit
with different purposes and contributions.
cEstimated comparison of model execution times. Slow: in the order of hours or days, Fast: in the order of seconds or minutes.

heterogeneity into account. Other examples are Reinhardt et al. (2017) who propose a model for strategic long-term assessment of
railway freight capacity using a macroscopic model.

Table 1 gives a comparison and summary of the capacity determination methods described in this section. In conclusion, the
apacity determination framework, we propose in this paper complements and extends existing research by determining a span
f capacity (e.g. practical and maximum capacity as well as bundled and distributed operation) taking different train types and
hus train heterogeneity into account. Additionally, essential and precise infrastructure characteristics are considered, especially
t junctions, and no timetable is needed thus making the approach suitable for fast and high quality assessments in the strategic
lanning phase. Furthermore, the capacity determination framework can easily be altered to adapt for later planning phases by
sing an approach for calculation of capacity occupation that takes additional input available later in the planning process and thus
rovide solutions that are adapted to more complex constraints.

. The capacity determination problem

We now introduce the capacity determination problem that is solved using the approaches described in Section 4. Let 𝑁 be a
network that models railway infrastructure, represented by a mesoscopic infrastructure model where nodes and edges respectively
represent switches and tracks used in normal operation. This paper develops a framework to determine the capacity of 𝑁 , which,
colloquially speaking, is the number of trains that can traverse the network in a given period of time 𝑇 .

3.1. Infrastructure capacity definition

If 𝑁 is a simple set of railway segments and all trains that run on 𝑁 have the same speed profile, the number of trains that can
traverse the network in time period 𝑇 can be determined by dividing 𝑇 by the maximum headway between two trains.

However, defining the capacity of a network 𝑁 is much less straightforward if the trains that are supposed to run on 𝑁 are
heterogeneous in the sense that they have different speed profiles and/or cross 𝑁 on different routes.

To see this, consider a heterogeneous set of trains 𝑆. Each train follows a predefined route on 𝑁 . Furthermore, minimum headway
times and running times are defined for each edge (including junctions) and train type.

We would like to refer to the time it takes for these trains to traverse the network as the capacity occupation by the set 𝑆.
The capacity occupation in relation to the time period is referred to as the capacity occupation rate. The capacity occupation by 𝑆
depends crucially on the sequence in which the trains traverse the network. E.g. even if all trains in the set run on a single railway
segment and we have two fast trains and two slow trains on this segment, then sending the two fast trains first and then the two
slow trains will lead to a lower occupation than scheduling first a slow train, then a fast one, then a slow one, and a fast one. This
follows from the extra time that has to be planned to make sure that the fast trains do not catch up with the slow ones.

Thus, for each sequence 𝑠 of trains, we call the time that this sequence needs to traverse the network if scheduled as close as
operationally feasible, the capacity occupation by sequence 𝑠.

For a set of trains 𝑆 and a percentage 𝑝, we follow the approach of Jensen et al. (2017) and define the capacity occupation by the
set of trains 𝑆 as the time in which 𝑝 percent of all sequences of trains in 𝑆 can traverse the network. For 𝑝 = 0 we consider only
the sequence with minimum capacity occupation in which slow and fast trains are bundled. For 𝑝 = 100, the worst-case sequence
with maximum makespan determines the capacity occupation. A natural choice would be 𝑝 = 50, which means that we determine
the capacity occupation by 𝑆 as the time span in which at least for 50% of the possible sequences from 𝑆 it would be possible to
traverse the network.

We represent the capacity of a network by a maximal set of trains which can be operated on it within a time period length
5

𝑇 . More precisely, the (𝑝, 𝐶max)-capacity of a network is represented by a maximal set of trains with a capacity occupation rate
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𝐶(𝑋, 𝑝) of at most 𝐶max where 𝑋 is a vector representing the number of trains per train type in 𝑆. Thus, besides the parameter 𝑝,
which describes the percentage of train sequences we consider to determine the capacity occupation by a set 𝑆, we parametrise the
capacity by an additional parameter 𝐶max ∈ [0, 1]. 𝐶max is thus the maximum capacity occupation rate that we allow for the period
𝑇 . With 𝐶max = 1, we may fully use the period length, 𝑇 . If 𝐶max < 1, there is some buffer, to account for delays during operations.
The requirement ‘maximal’ means that if we add one more train to the set, its capacity occupation rate is higher than the maximum
capacity occupation rate, 𝐶(𝑋, 𝑝) ≤ 𝐶max.

Of course, there is a multitude of different maximal sets of trains with capacity occupation rate 𝐶(𝑋, 𝑝) of at most 𝐶max. In
articular, for each train type that runs on the network, we have such a set. However, in our opinion, real-life capacity of a network
s best represented by a capacity-representing set of trains that is close(r) to real-life usage of the network.

We thus require that each train type that would run on the network is contained at least once in the capacity-representing set,
nd that the number of trains of a certain type is the same in both directions. Among all maximal sets of trains that fulfil these
equirements, we choose one that favours solutions with high service quality for passengers and freight: we minimise the weighted
verage waiting time between two departures of the same train type.

.2. Problem formulation

The (𝑝, 𝐶max)-capacity can thus be described as solution to the following optimisation problem:

Minimise 𝑇
2
⋅

2𝑛
∑

𝑖=1

𝑤𝑖
𝑥𝑖

[Minimise weighted average waiting time]

Subject to 𝑥𝑖 ≥ 1 ∀𝑖 ∈ {1, 2,… , 𝑛} [Minimum threshold on trains]
𝐶(𝑋, 𝑝) ≤ 𝐶max [Maximum capacity occupation rate]
𝑥𝑖 = 𝑥𝑛+𝑖 [Directional balance]

𝑋 = (𝑥1,… , 𝑥𝑖,… , 𝑥2𝑛) are the decision variables, i.e. a vector representing the number of trains of each train type 𝑥𝑖 present
n the set of trains 𝑆. 𝑥𝑖 is the number of trains of train type 𝑖 in one direction for 𝑖 = 1,… , 𝑛, while 𝑥𝑛+𝑖 is the number of trains
f train type 𝑖 in the opposite direction for 𝑖 = 1,… , 𝑛. The constraint 𝑥𝑖 = 𝑥𝑛+𝑖 ensures balance (or symmetry) between the two
irections. 𝐶(𝑋, 𝑝) is the function that calculates the 𝑝-capacity occupation rate in a given time period 𝑇 given a set of trains 𝑆
epresented by the vector 𝑋, and a percentile 𝑝. To give an indication on the waiting time per train type, we estimate waiting time
s if departures of trains of the same type were equally spread over the period, and assume that arrival of passengers and freight
s uniformly distributed over the period. (For more information on the difference of actual and hidden waiting time see Ingvardson
t al., 2018). Then the estimated waiting time between train of type 𝑖 can be calculated as 1∕2 ⋅𝑇 ∕𝑥𝑖. By 𝑤𝑖 we denote the weight of
rain type 𝑖 with 𝑤𝑖 > 0, where a higher value defines a higher weight. The train weights make it possible to prioritise certain train
ypes over others, e.g., because they need to be operated more often. Note that the factor T/2 in the objective function is constant,
nd could thus be omitted. However, we included it in the objective function, so that the objective value can be interpreted as the
eighted average waiting time. Ultimately, we obtain a convex objective function that deflates the value of a train as more trains
re added per train type.

Although the capacity determination problem as is presented by the mathematical model above looks simple, a closed-form
xpression cannot be constructed for the evaluation of the capacity occupation rate 𝐶(𝑋, 𝑝) in networks with heterogeneous
peration. As described earlier in Section 3, this is caused by the heterogeneous operation resulting in different capacity occupation
ates depending on the sequence in which the trains traverse the network. As described in Section 4.3, we use the approach by Jensen
t al. (2017) to estimate 𝐶(𝑋, 𝑝) by sampling random permutations of train sequences. Depending on the size of the set of trains 𝑆,
large sample size may be needed resulting in long computation times each time the capacity occupation rate 𝐶(𝑋, 𝑝) is evaluated.

. Solution approaches

In this section, we describe two approaches to determine the capacity of a network, expressed by a capacity representing set of
rains 𝑆, by finding an (optimal) solution to the optimisation problem described in Section 3.

The first approach to solve the optimisation problem is a branch-and-bound approach, as such approaches are able to handle non-
inear problems and are well-suited for discrete problems. Branch-and-bound (with local search heuristic) is also used in many train
ispatching and timetabling problems, see Karoonsoontawong and Taptana (2017). A branch-and-bound approach can, however, be
ime-consuming as the number of solutions in the problem instances grows exponentially with the number of trains. In addition to
he branch-and-bound approach, we also propose in the following a tabu search meta-heuristic to handle larger problem instances.

As described in the previous section, the constraint 𝐶(𝑋, 𝑝) ≤ 𝐶max in our problem is expensive to evaluate as the capacity
ccupation rate 𝐶(𝑋, 𝑝) in general has to be calculated each time a new solution is examined. To mitigate this, we define the
ollowing properties, that is used in the approaches to reduce the computational running time:

roperty 1. If an extra train is added to a network, the capacity occupation will never decrease compared to the capacity occupation
in the previous solution (without the extra train)

roperty 2. Likewise, if a train is removed, the capacity occupation will never increase
6
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Fig. 2. Example of solution (enumeration) tree for the problem.

In Sections 4.1 and 4.2 we describe the branch-and-bound algorithm and the tabu search. Both approaches make use of a
odule for evaluation of the capacity occupation rate 𝐶(𝑋, 𝑝). We name this evaluation module the capacity occupation evaluation
COE) module. This module is discussed in Section 4.3. Furthermore, a module based on binary search to compute lower and upper
hresholds per train type for both approaches is described in Appendix. Together the approaches and modules comprise our capacity
etermination framework.

.1. Branch-and-bound

To obtain an exact solution to the optimisation problem, we use a branch-and-bound algorithm tailored for our problem. Each
ode in the solution (enumeration) tree represents a fixed number of trains of train type 𝑥𝑖, see Fig. 2 for an example. Using branch-
nd-bound, we construct only the parts of the tree containing feasible solutions having a lower bound better than the incumbent
olution (the current best solution). Starting from the root node of the tree, we branch depth-first by adding nodes (and connecting
dges) to a stack (LIFO) data structure. This ensures that leaf nodes in the tree (representing complete solutions) are reached early
n the process providing new feasible solutions and thus potentially better upper bounds faster. Branching is only done if the subtree
ay contain the optimal solution.

Algorithm 1: Pseudocode for branch-and-bound algorithm.
Data: 𝑥𝑚𝑖𝑛𝑖 , 𝑥𝑚𝑎𝑥𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛}: lower and upper threshold for trains 𝑥 per train type 𝑖;
𝑤𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛}: train type weights;
𝐶𝑚𝑎𝑥: threshold for capacity occupation, 𝑝: percentile;
esult: Solution𝑋∗ = (𝑥∗1 ...𝑥

∗
𝑖 ...𝑥

∗
𝑛) maximum number of trains that can be added

* Start solution */
𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘 ← add node 𝑣 with 𝑥𝑖 = 𝑥𝑚𝑖𝑛𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛};
hile 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘 is not empty do
𝑣 ← take top solution node of 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘;
if 𝑣 is a leaf node in the solution tree then

/* 𝑣 and preceding nodes in the solution tree comprising a complete solution */
Update incumbent, 𝑋∗, if solution, 𝑣, is better (wrt. objective function);

else
/* 𝑣 comprises a partial solution, check if branch nodes are feasible using binary search */
�̂�𝑖+1 ← 𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑥𝑚𝑖𝑛𝑖+1 , 𝑥

𝑚𝑎𝑥
𝑖+1 ); // Find the feasible branch with the highest number of trains �̂�𝑖+1

Update incumbent, 𝑋∗, if a better solution was found during 𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ;
for 𝑥 = 𝑥𝑚𝑖𝑛𝑖+1 to �̂�𝑖+1 do

/* Add feasible branch nodes to 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘 if the best solution in the branch has a better
objective than the incumbent */

if 𝑔𝑒𝑡𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑(𝑥 𝑎𝑠 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑣) < 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑋∗) then
Add new node as child to 𝑣 with 𝑥𝑖+1 = 𝑥 to 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘;

return 𝑋∗

In the construction of the tree, nodes can be pruned by either infeasibility (the capacity occupation rate for the set of trains
(𝑋, 𝑝) exceeds the maximum capacity occupation rate 𝐶max) or bound (𝑓 (𝑋) > 𝑓 (𝑋∗) where 𝑋 is the candidate solution and 𝑋∗ is

the current best solution). To minimise the number of times the capacity occupation evaluation (COE) module is executed to check
for feasibility of the constraint 𝐶(𝑋, 𝑝) ≤ 𝐶max, the following three features have been implemented:

• Binary search in branches to determine feasible and infeasible branches (as described in pseudocode in the second part of
Algorithm 3). E.g. for a tree node, we do not need to check a child (branch) for feasibility if the child node has one train less
7

than another child node that has already been deemed feasible. This follows from the properties described in Section 4.
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• List with non-dominated feasible solutions, where a solution 𝑎 dominates another solution 𝑏 if 𝑥𝑎𝑖 ≥ 𝑥𝑏𝑖 ∀𝑖 and ∃𝑖∗ s.t. 𝑥𝑎𝑖∗ > 𝑥𝑏𝑖∗
with 𝑥𝑖 denoting the number of trains per train type 𝑖

• List with non-dominated infeasible solutions, where solution 𝑎 dominates solution 𝑏 if 𝑥𝑎𝑖 ≤ 𝑥𝑏𝑖 ∀𝑖 and ∃𝑖∗ s.t. 𝑥𝑎𝑖∗ < 𝑥𝑏𝑖∗ with 𝑥𝑖
denoting the number of trains per train type 𝑖

The three features listed above effectively reduce the number of times the COE-module is executed to evaluate 𝐶(𝑋, 𝑝) by taking
advantage of the two properties defined in Section 4. The two lists come at the expense of increased memory usage and CPU time
to maintain and search the lists. However, the additional CPU time and memory used are substantially smaller than the CPU time
and memory required to run the COE-module additional times.

4.2. Tabu search

The branch-and-bound algorithm described in Section 4.1 provides optimal solutions to problem instances at the expense of
computational time. As described earlier, the computational effort makes the branch-and-bound algorithm unsuitable for large
problem instances.

To handle large problem instances within reasonable time, we employ a tabu search metaheuristic that can quickly provide good
solutions to even large problems. Tabu search is characterised by the use of adaptive memory structures to escape local optima in
order to find global optima. This adaptive memory allows the efficient search of the solution space (Glover and Laguna, 2013).

To reduce the number of times 𝐶(𝑋, 𝑝) is evaluated using the capacity occupation evaluation (COE) module, we reuse the strategy
f saving dominating feasible and infeasible solution from the branch-and-bound search. This fits well with the tabu search algorithm,
s the feasibility list can also be used as long-term memory for the tabu search. The only exception being that all feasible solutions
re saved, not just the dominating feasible solutions.

Our customised tabu search algorithm is given in Algorithm 2 and consists of four main memory structures or methods:

• The tabu list (short-term memory)
• The neighbourhood search in the form of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
• The diversification strategy in the form of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
• The list with all feasible solutions generated (long-term memory) used by 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

Algorithm 2: Tabu search
Data: 𝑥𝑚𝑖𝑛𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛}: lower threshold for trains 𝑥 per train type 𝑖;
𝑤𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛}: train type weights;
Result: Solution 𝑋∗ = (𝑥∗1 ...𝑥

∗
𝑖 ...𝑥

∗
𝑛)

𝑥𝑖 ← 𝑥𝑚𝑖𝑛𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛};
while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑡𝑖𝑚𝑒𝑟 < 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 do

𝑋 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
if 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑋) < 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑋∗) then

𝑋∗ ← 𝑋;
𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡.𝑎𝑑𝑑(𝑋);
𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒𝑂𝑙𝑑𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑚𝑎𝑥𝑇 𝑎𝑏𝑢𝑆𝑖𝑧𝑒);
if generateNeighbourhoodCandidate failed or iteration = restartInterval then

𝑋 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;

return 𝑋∗;

We now describe each of the above items followed by an example.
The tabu list prevents the neighbourhood search in choosing a candidate solution that is tabu (in the tabu list). Every candidate

olution found in each iteration is put in the tabu list (see Algorithm 2). The tabu list has a maximum size. For our case in Section 5,
e use a list size of 25 solutions. When the list size is exceeded, the oldest solution is removed from the tabu list. This solution is

hen no longer tabu and can potentially be revisited by the search. The tabu list thus serves as short-term memory, and ensures that
he search is guided towards new areas of the solution space.

The 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 returns a candidate solution 𝑋𝑆 from the neighbourhood of the current solution 𝑋. The
eighbourhood of a solution consists of all solutions for which the following conditions hold true:

• for each train type 𝑖 the number of trains is at most increased or decreased by a maximum of 1, i.e. |𝑥𝑖 − 𝑥𝑆𝑖 | ≤ 1
• the sum of trains in the neighbourhood solution is restricted to a maximum increase or decrease of 1 train, i.e. ∑𝑛

𝑖=1 |𝑥𝑖 − 𝑥𝑆𝑖 | ≤ 1

To return the best feasible solution in the neighbourhood that is not tabu, we use a greedy (descent) method. The greedy method
returns the feasible solution in the neighbourhood that has the lowest objective and is not tabu. If there are no feasible solutions or
8

the solutions are tabu in the neighbourhood, the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 fails.
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Fig. 3. Example of iterations in the tabu search for six train types with weights 𝑤1 = 1, 𝑤2 = 2, 𝑤3 = 2, 𝑤4 = 3, 𝑤5 = 3, 𝑎𝑛𝑑 𝑤6 = 5. GNC:
𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and GDC: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒. Infeasibility list or Tabu: the best solution generated is either evaluated as infeasible,
n the infeasible list or in the tabu list.

After a predefined number of iterations, the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is executed to restart the tabu search algorithm. The
𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is also executed if 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 fails (i.e. the search is trapped in a local minimum).
he purpose of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is to construct a new diverse candidate solution from existing solutions in order to explore
ew parts of the solution space. Based on Glover and Laguna (2013), our diversification strategy makes use of the feasibility list as
ong-term frequency-based memory. All feasible solutions encountered during the search are included in this list with a frequency
arameter that describes how many times the same solution is encountered.

The diversification works by constructing a candidate solution made out of different parts of random length. The number of
arts for this division is case specific. For our case, a division into three parts has been used. Each of these parts is populated with
rains from a random solution selected out of the three feasible solutions which have been encountered the least (i.e. lowest solution
requency) from the feasible solutions list. This restricted random selection, in contrast to a uniform random selection of feasible
olutions, ensures that the search is not cycling, yet still directed towards unexplored solutions.

An example of the tabu search and solutions generated by 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is
iven in Fig. 3 for six arbitrary train types with a tabu list size of 5.

In the example 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is able to generate the best solution in the neighbourhood in iterations 1–
and 9. In both iteration 4 and 5, the best solution in the neighbourhood is found to be infeasible (i.e. 𝐶(𝑋, 𝑝) exceeds 𝐶max)

y the COE-module or the infeasibility list (i.e. the capacity occupation is above the threshold, 𝐶max ⋅ 𝑇 ). In iteration 6, a local
inimum is reached as 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 cannot find a feasible solution that is not tabu in the neighbourhood.
hus, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is executed and returns the solution (1, 2, 1, 1, 1, 2) based on three randomly selected feasible solution
(1, 2, ), (, 1, 1, ), (, 1, 2)). In iterations 7–9, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 incrementally improves this solution to obtain a solution
hat is marginally better than the best solution found before 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 was executed. In iteration 10, the search is
topped as the predefined stop criterion is met.

.3. Computing the capacity occupation of a set of trains

To evaluate the capacity occupation rate 𝐶(𝑋, 𝑝) for a set of trains in our capacity determination framework, we use the approach
escribed in Jensen et al. (2017) as the basis for our capacity occupation evaluation (COE) module (see also Section 2). To estimate
he capacity occupation rate 𝐶(𝑋, 𝑝) of a network with respect to a set of trains, we generate all possible train sequences if the set
f trains is small, or use only a sample if the set is (too) big, since the amount of possible permutations of the set of trains into train
equences grows factorial with the number of trains. Furthermore, trains sequences which are not desirable from a demand point
f view may discarded (Jensen et al., 2017). An example of this are passenger trains of the same type following immediately after
ach other. Such a sequence of trains is (usually) not desirable as it results in a bad distribution of departures for a given station or
estination throughout the time period.

Note that this evaluation method may be replaced by any other approach to compute the capacity occupation rate by a set of
rains on a network, 𝐶(𝑋, 𝑝). Alternative models may also target later planning phases by incorporating more input data by focussing
n a more specific (fixed) timetable. However, any capacity evaluation model used to evaluate 𝐶(𝑋, 𝑝) must fulfil the two properties
et out in Section 4 to be used in the framework. Many possible models do not fulfil these properties. For instance, in models where
cheduling decisions are made by slowing down fast trains and/or re-routing trains, the addition of a train might lead to a lower
ccupation of capacity. The model from Jensen et al. (2017) that we use to evaluate the capacity occupation rate 𝐶(𝑋, 𝑝) fulfils
hese properties.
9
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Fig. 4. Schematic plan of the network of Southwestern Denmark. Dashed circles indicate junctions that are upgraded in the upgrade scenario. In the base
cenario the highlighted junctions are at-grade junctions, in the upgrade scenario the junctions are upgraded to grade separated junctions.

Table 2
Train types in the network with route used and weights assigned. Values in parenthesis denote
the track used at the given station.

Train type Route Weight

Express Odense (4) → Fredericia (2) 3
↪ Fredericia (6) → Odense (2) 3
Intercity-A Odense (4) → Fredericia (2) 2
↪ Fredericia (6) → Odense (2) 2
Intercity-B Odense (3) → Esbjerg (1) 2
↪ Esbjerg (3) → Odense (1) 2
Regional-A Odense (4) → Fredericia (3) 1
↪ Fredericia (5) → Odense (1) 1
Regional-B Fredericia (4) → Esbjerg (2) 1
↪ Esbjerg (3) → Fredericia (1) 1
Freight Odense (3) → Vamdrup (2) 4
↪ Vamdrup (1) → Odense (2) 4

5. Case study and computational experiments

In this section, we apply the proposed capacity determination framework to the network used in Jensen et al. (2017). The
etwork consists of 161 kilometres of double track, at-grade and grade separated junctions and four line end stations in Southwestern
enmark. The network is depicted schematically in Fig. 4 with tracks used in normal operation.

Table 2 provides an overview of the train types that should traverse the network and the route used. The train types form a
eterogeneous operation. E.g. between Odense and Snoghøj the slowest train type (Regional-A) is 17 min slower than the express
rain type that takes 31 min between Odense and Snoghøj. For the case a minimum (block) headway time of 150 s is used.

During a period of one hour, the goal is to estimate the number of trains the network can handle using the framework proposed
n this paper. For the optimisation, weights have been derived by taking the following into consideration: (1) the (desired) priority
f the train type, and (2) how much capacity the train type consumes, i.e. a fast or slow train (type) consumes more capacity in
he set of trains than a train (type) that is average in terms of speed. The latter can be difficult to account for before running the
odel and weights may have to be adjusted before running the model again to obtain the desired prioritisation of train types (the

ensitivity of train weights are further analysed and discussed in Section 5.3). For this case study, we slightly favour express trains
ver intercity and regional trains as defined in Table 2. Furthermore, freight trains have also been given some priority. However, the
ain reason for the high weight is that the freight trains are slower than the other trains (except regional-A) making it is necessary

o assign a higher weight as described above.
This case study serves as a basis for practical implications and for theoretical experiments to explore how the capacity

etermination framework performs. The framework and module for evaluation of capacity occupation rate 𝐶(𝑋, 𝑝) (COE) are
executed on a Windows 10 desktop PC with an AMD Ryzen 7 1700 (3.7 GHz) CPU and 16 GB of RAM. Both the framework and the
COE-module (developed in Jensen et al., 2017) have been implemented in C++. The model implementations do not take advantage
of multi-threading.

First, we investigate the results of the base infrastructure using the branch-and-bound search, including the performance of
the search (Section 5.1). Subsequently, the capacity of the network is analysed when the infrastructure is upgraded (Section 5.2).
Section 5.3 contains a sensitivity analysis of train weights, while Section 5.4 explores the performance of the tabu search.

5.1. Results using branch-and-bound

Using the branch-and-bound algorithm, we have obtained the capacity results based on three different thresholds for maximum
capacity occupation rate (capacity threshold), 𝐶max. The thresholds examined are 75%, 84% and 100% respectively. The 75% is
10

the UIC recommendation for line sections with mixed traffic in the peak hours (UIC, 2013). 100% is the maximum that can only
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Table 3
Results using branch-and-bound algorithm. COE: capacity occupation evaluation module. Nodes refer to the nodes in the enumeration tree described in Section 4.1
𝐶𝑚𝑎𝑥 Operational type

(percentile)
Obj. value
(optimal)

CPU time [s] COE
calls

Possible
solutions

Theoretical
number of nodes

Nodes
evaluated [%]

Total COE

75%

Bundled (5) 37 800 25.5 24.6 52 288 478 7.7%
Near bundled (25) 43 200 14.4 14.0 26 4 17 41%
Part. distributed (50) No solutions
Distributed (75) No solutions
95 No solutions

84%

Bundled (5) 33 300 51.0 49.7 84 4 600 6 746 1.1%
Near bundled (25) 37 800 28.6 27.8 51 432 478 4.8%
Part. distributed (50) 43 200 16.5 16.1 50 6 21 23.8%
Distributed (75) No solutions
95 No solutions

100%

Bundled (5) 27 000 343.9 337.9 403 78 400 99 745 0.4%
Near bundled (25) 32 400 79.3 77.9 119 11 880 16 214 0.7%
Part. distributed (50) 34 800 52.5 51.3 91 1 280 2 066 3.7%
Distributed (75) 39 600 19.9 19.5 34 48 124 8%
95 No solutions

be utilised under perfect conditions, i.e. there is no buffer to absorb delay as described in Section 2. The 75% threshold given
by the UIC is given for line sections which are divisions of the network into sections between larger stations and stations where
overtaking and crossings take place. This 75% threshold is not suitable for routes (start to end of a train line) and networks which
usually cover the equivalent of several line sections. As shown by Jensen et al. (2017), the capacity occupation on a route or in
a network is higher compared to the line sections that compose the network or route. As we consider a (sub)network in our case
study, we therefore use a threshold of 84%, which is found by Jensen (2015b) as suitable for the network used in the case study.
The threshold of 84% is considered the most realistic threshold of the three (the practical capacity). Furthermore, the optimisation
has been executed using the 5th, 25th, 50th, 75th and 95th percentile, 𝑝. Combined with the three thresholds, we have a total of
15 different (𝑝, 𝐶max)-instances as shown in Table 3.

First, we investigate the performance of the branch-and-bound algorithm. In Table 3, the computational results of the
optimisation are shown for the three different thresholds for capacity occupation and the different percentiles. The operational type
listed categorises the percentiles into different types of operation. In ‘‘bundled’’ operation, slow and fast trains are bundled which
consumes less capacity than ‘‘distributed’’ operation where slow and fast trains alternates (i.e. are distributed throughout the time
period). Furthermore, the table shows the size of the problem instances ranging from 4 to 78,400 possible solutions depending on
values of the capacity constraint, 𝐶max, and the percentile used. The number of possible solutions is derived as a combination of the
upper thresholds of trains that can be added of each train type from the results of the dichotomic search, i.e. ∏𝑛

𝑖=1(𝑥
max
𝑖 − 𝑥min

𝑖 + 1).
Thus, when the capacity constraints (𝐶max and/or percentile) are relaxed, the number of possible solutions calculated increases
significantly. Theoretical number of nodes is the maximum number of nodes that can be generated, i.e. if the complete enumeration
tree is generated. For the instances considered, the theoretical number of nodes spans from 17 to 99,745 in the case study depending
on the constraints. Nodes evaluated describes the ratio of nodes, in relation to the theoretical number of nodes, that may contain
the optimal solution and thus result in branching during the branch-and-bound search. The remainder of the generated nodes are
pruned by bound or infeasibility by the algorithm.

As Table 3 shows, the smallest instance is solved in less than 15 s, where the majority of the computation time is consumed by
the dichotomic search described in Appendix. The largest instance is solved to optimality in less than 6 min, which is fast given the
strategic planning horizon. During the execution of the branch-and-bound algorithm for the largest instance, only 0.4% of the tree
nodes have to be evaluated as the remaining 99.6% can be pruned due to infeasibility or bound. Comparing these percentages with
the percentages for the smaller instances it can be observed that the percentage of nodes evaluated decreases. This comes down to
the fact that the more relaxed capacity constraint in the form of higher values of 𝐶max and/or lower percentiles result in significantly
more possible solutions as described earlier in this section. This results in a very large enumeration tree where the vast majority of
solutions are found infeasible during the execution of the branch-and-bound algorithm. To avoid this, a better combined threshold
on the number of trains must be produced, e.g. optimal solutions of all combinations of unique train type set of size two, three or
even more. This is, however, computationally expensive due to many calls being necessary to the COE-module for evaluation of the
capacity occupation rate 𝐶(𝑋, 𝑝).

The majority of computation time is spent in the COE-module with approx. 98% of the total computation time as listed in Table 3.
The number of calls to the model range from 26 calls in the smallest instance to 403 calls in the largest instance.

The capacity results are depicted in Fig. 5 for the three different thresholds for capacity occupation, 𝐶max, and the percentiles
(operational types) that yield feasible solutions. Each row shows the number of trains of each train type that can be operated in
the network in the defined time period. For (a) only 75% of the maximum capacity is utilised while (c) utilises all capacity. As a
reference to these calculated percentiles and capacity thresholds, it can be noted that the 2013 timetable in Southwestern Denmark
11

roughly corresponds to the 50th percentile with a capacity occupation rate threshold, 𝐶max, of 84%.
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Fig. 5. Results for the case using branch-and-bound. Capacity figures as trains per train type per direction (specified with values immediately above the bars).
Objective values for each solution to the left.

From Fig. 5(b) and (c), it can be derived that a capacity of three trains in total act as a buffer in the 2013 timetable when
comparing the practical capacity (84%) with the maximum (theoretical) capacity of 100%, i.e. three potential trains are not
scheduled to provide buffer time against delays. Lowering the threshold 𝐶max to 75% yields a solution for the 25th percentile
that is identical to the 50th percentile at 84%. From this it can be derived from that lowering the capacity threshold (to obtain
better robustness against delays) requires the trains to be bundled in the timetable. Thus the 50th percentile solution at 84% is
more attractive than the 25th percentile solution at 75% in terms of departure distribution even though the objective value is the
same. Operational quality of a solution (capacity estimate) can therefore be perceived as the combination of the objective value, the
percentile and the chosen capacity occupation rate threshold, 𝐶max. The objective value should be as low as possible to allow for as
many departures as possible. The percentile should also be as high as possible to ensure that departures are distributed throughout
12
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Fig. 6. Upgrade of Snoghøj and Taulov junctions (upgrade scenario). Capacity figures as trains per train type per direction (specified with values immediately
above the bars). Capacity increase from base scenario (at-grade junctions) to upgrade scenario (grade-separated junctions) denoted by arrows.

Table 4
Weights used in the two sensitivity scenarios (equal weights and express priority), and the default scenario (freight priority).

Scenario Express Intercity-A Intercity-B Regional-A Regional-B Freight

Equal weights 1 1 1 1 1 1
Express priority 4 2 2 1 1 1
Freight priority (case default) 3 2 2 1 1 4

the time period. The capacity threshold should be high enough to maximise the number of trains, but also low enough to ensure
buffer times for sufficient robustness against delays. The latter is to some extent subjective and based on preferences.

5.2. Capacity expansion

We now investigate the effect on infrastructure capacity by upgrading the infrastructure. The network as depicted in Fig. 4 has
two at-grade junctions (Taulov and Snoghøj). This means that trains to/from Fredericia have to wait on trains running from Odense
to Lunderskov or vice versa. These conflicts put a constraint on the capacity which can be solved by constructing an overpass
or underpass (the junctions at FA are already built like this). Using the 84% capacity threshold, we use our proposed capacity
determination framework to evaluate the capacity effect of upgrading the two at-grade junctions (Taulov and Snoghøj) to grade
separated junctions to avoid the mentioned conflicts.

The results of this analysis are shown in Fig. 6. As labelled in the figure, the upgrade yields an increase in capacity of 1–3 trains
or 12.5% to 37.5%. Comparing the 50th percentile, which resembles today’s operation the most, an increase of two trains is obtained
(or 28.5%) in the form of one additional express train and one additional regional-B train.

5.3. Sensitivity of train type weights

In this section, we present the results of a sensitivity analysis of the train type weights to investigate how the weights affect
the capacity results. Table 4 shows the sensitivity scenarios investigated. We investigate two scenarios, one with equal weights
and one with priority given to express trains. The first is chosen as it illustrates the effect of unweighted train types. The latter is
chosen to significantly prioritise passenger express trains over freight trains. The freight priority weights are the default weights
used throughout the case study.

Fig. 7 illustrates how the capacity results change based on weights for the 5th and 50th percentile. As the results show there
is no difference for the 50th percentile under a capacity threshold of 84%. This comes down to the fact that the solution space is
quite small due to the minimum threshold on trains. Thus, only one extra train in the form of an intercity-B can be added.

For the 5th percentile, the solution space is larger. Therefore, we can also observe how the different weights affect the capacity
results. As observed in Fig. 7, giving priority to freight and express trains yields a lower total of trains than having equal weights.
This is caused by the heterogeneity of the solution train mix. Express trains are the fastest and the freight (and regional-A) trains
are the slowest. Increasing the number of trains of these types in a solution results in a more heterogeneous operation (and thus
higher capacity occupation). Using equal weights results in a high amount of regional-B train being added as these consume a small
amount of capacity (lowering solution heterogeneity). However, such a high amount of regional-B trains is not desirable in terms
of demand. The freight priority weights (case default) therefore constitute a good basis for realistic capacity results.
13
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Fig. 7. Sensitivity of weights for the 5th and 50th percentile with a capacity threshold of 84%. Capacity figures as trains per train type per direction denoted
with values immediately above the bars.

Table 5
Performance of tabu search algorithm. Upper bounds marked with italic are optimal. *Optimal solution found in dichotomic search.
𝐶𝑚𝑎𝑥 Operational type (percentile) Obj. value (optimal) Tabu search CPU time [s]

LB UB TS B&B B&B w/ TS

75%

Bundled (5) 37 800 21 000 37 800 15.3 25.5 32.7
Near bundled (25) 43 200 40 800 43 200 2.3* 14.4 16.4
Part. distributed (50) No solutions
Distributed (75) No solutions
95 No solutions

84%

Bundled (5) 33 300 12 940 33 300 45.1 51.0 121.0
Near bundled (25) 37 800 19 200 37 800 18.1 28.6 51.7
Part. distributed (50) 43 200 41 400 43 200 2.6* 16.5 16.9
Distributed (75) No solutions
95 No solutions

100%

Bundled (5) 27 000 8460 27 000 35.2 343.9 300.5
Near bundled (25) 32 400 11 787 32 400 20.5 79.3 115.0
Part. distributed (50) 34 800 17 190 34 800 31.8 52.5 81.9
Distributed (75) 39 600 33 900 39 600 17.3 19.9 27.1
95 No solutions

5.4. Performance of tabu search algorithm

For the tabu search, we have used a restart interval of 25 iterations and a maximum tabu list size of 25 as these have provided
fast convergence in our tests. In Table 5, the results are compared with the branch-and-bound algorithm. As the table shows, the
tabu search is able to find an optimal solution in all cases. Except for the large instance (100% and 5th percentile) the tabu search is
not faster than the branch-and-bound. The optimal solution is found faster (the CPU time defined), however, the tabu search needs
to run longer than this to increase the probability that a good solution has been found. The result for the largest instance suggests
that the tabu search will perform better in terms of computation time than the branch-and-bound in large problem instances. To
further test this, we have scaled the case to simulate even larger problem instances by increasing the maximum capacity occupation
rate, 𝐶max. These scaling results are shown in Fig. 8. The two main take-aways from the figure are: (1) in all but one instance, the
tabu search finds the optimal solution, (2) the CPU (computation) time used by the branch-and-bound search increases exponentially
(note the logarithmic scale) when the instance size increase. The latter is caused by decreasingly less tight lower bounds, as described
in Table 3, causing the branch-and-bound tree to explode with increasing instance size.

In addition to providing measures for tighter lower bounds, the upper bounds may also be tightened to be able handle larger
instances. One possibility is to tighten the initial upper bound for the branch-and-bound search. We have tested this by using
the tabu search in sequence with the branch-and-bound algorithm. As listed in Table 5 (B&B w/ TS), this provides a reduction in
computation time in the largest problem instance (5th percentile at 100%) when using branch-and-bound combined with tabu search
instead of only branch-and-bound. In the smaller problem instances, the number of calls to the COE-module in the branch-and-bound
search is not decreased sufficiently to offset the extra computation time used in the tabu search. Another possibility to tightened
upper bounds during traversal of the branch-and-bound tree is by integrating the tabu search algorithm in the branch-and-bound
algorithm as described in Puchinger and Raidl (2005). This could improve the ability of the branch-and-bound algorithm to handle
larger instances faster as larger branches in the solution tree can be pruned away using the (potentially) better upper bound.
14
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Fig. 8. Test of scalability of branch-and-bound and tabu search with increasing instance size. Maximum occupation rate (x-axis) increases from left to right.

Conclusively, the branch-and-bound search provides exact results and fast computation times in the small problem instances. The
tabu search provides quality results and computation times that are much faster than the branch-and-bound search for the larger
problem instances even if measures are taken to improve the branch-and-bound search.

6. Conclusions

In railway networks with heterogeneous operation the capacity depends on the sequence (order) of trains. As this is unknown
in the early planning phases (strategic planning), the presented capacity determination framework provides a maximal set of trains
(and a span of trains per train type) that the network can handle. The framework determines the maximal set of trains that can be
scheduled within a threshold of capacity occupation while minimising weighted average waiting time. Differentiated weights make
it possible to prioritise certain trains types according to demand.

The framework was tested using branch-and-bound and tabu search for solving the optimisation problem on a case network
of 161 kilometres of double track lines in Southwestern Denmark. The capacity could be estimated in the order of seconds in
small problem instances, and up to six minutes in the largest problem instance. The branch-and-bound and tabu search performed
approximately equal in the analysed problem instances, except for the largest instances where the tabu search was faster. For early
planning phases the model ran fast and should therefore be able to handle larger problem instances than used in this paper.

Some practical implications on the specific case was that upgrading the infrastructure resulted in an increase of capacity of
1–3 trains or 12.5% to 37.5%. Comparing with today’s operation, an increase of two trains is obtained (or 28.5%). This result was
obtained fast with a small amount of input data. Thus, with our framework it is possible to analyse a large amount of infrastructural
changes, operational constraints or new types of rolling stock in a short amount of time. Consequently, this makes it possible to
analyse a larger span of scenarios in early planning phases, thus reducing capital spending and optimising the utilisation of railway
capacity.
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Appendix. Dichotomic search

To determine the maximum number of trains per train type that can be included in the capacity-representing set of trains, we
use a dichotomic search algorithm which is an extension of the well-known binary search algorithm. In the following, we describe
15

the algorithm followed by an example. The dichotomic search is described in pseudocode in Algorithm 3.
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Algorithm 3: Pseudocode for dichotomic search.
Data: 𝑖 ∈ 𝑋: train type for which as many trains as possible should be added;
𝐶𝑚𝑎𝑥: threshold for capacity occupation, 𝑝: percentile;
esult: 𝑥𝑚𝑎𝑥𝑖 : maximum number of trains that can be added
𝑖 ← 𝑥𝑚𝑖𝑛𝑖 ∀𝑖 ∈ {1, 2, ..., 𝑛};
𝑔𝑢𝑒𝑠𝑠
𝑖 ← guess on upper interval bound;
𝐿𝐵
𝑖 ← 𝑥𝑚𝑖𝑛𝑖 , 𝑥𝑈𝐵

𝑖 ← 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 ;
* Part 1: Find an initial upper interval bound on how many trains of type 𝑖 that can be added */

𝑙𝑜𝑜𝑝 ← 𝑡𝑟𝑢𝑒;
while loop do

𝑥𝑖 ← 𝑥𝑈𝐵
𝑖 ;

/* If infeasible */
if 𝐶(𝑋, 𝑝) > 𝐶𝑚𝑎𝑥 then

𝑙𝑜𝑜𝑝 ← 𝑓𝑎𝑙𝑠𝑒; // Upper bound for interval found, terminate loop
else

/* If feasible */
𝑥𝐿𝐵𝑖 ← 𝑥𝑖;
𝑥𝑈𝐵
𝑖 ← 𝑥𝑖 + 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 ;
if 𝑥𝑖 > 𝑥𝑚𝑎𝑥𝑖 then 𝑥𝑚𝑎𝑥𝑖 ← 𝑥𝑖; // Save as current best

/* Part 2: Use binary search to find the maximum number of trains that can be added of type 𝑖 */
while 𝑥𝐿𝐵𝑖 + 1 < 𝑥𝑈𝐵

𝑖 do
𝑥𝑖 ← ⌊(𝑥𝐿𝐵𝑖 + 𝑥𝑈𝐵

𝑖 )∕2⌋; // Set midpoint
/* If infeasible */
if 𝐶(𝑋, 𝑝) > 𝐶𝑚𝑎𝑥 then

𝑥𝑈𝐵
𝑖 ← 𝑥𝑖; // Continue search in lower search half

else
/* If feasible */
𝑥𝐿𝐵𝑖 ← 𝑥𝑖; // Continue search in upper search half
if 𝑥𝑖 > 𝑥𝑚𝑎𝑥𝑖 then 𝑥𝑚𝑎𝑥𝑖 ← 𝑥𝑖; // Save as current best

return 𝑥𝑚𝑎𝑥𝑖 ;

If the set of trains with a predefined minimum of trains per train type (minimum solution) is feasible, the dichotomic search is
tarted. The dichotomic search is repeated for all train types. For our problem the search works by initially determining an upper
ound on the search interval for the train type in question, 𝑥𝑈𝐵

𝑖 . That is, an upper interval bound on the number of trains of a
rain type that yields an infeasible set of trains. Given this interval bound, we know that the best feasible solution is in the interval
etween the lower interval bound (current best feasible solution), 𝑥𝐿𝐵𝑖 , and the upper interval bound (an infeasible solution). To
ind the initial upper interval bound, a guess, 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , is required. A good guess will provide a good upper interval bound that is
lose to the best feasible solution, but still infeasible. A bad guess will result in extra iterations in the second part of the algorithm.
iven that we focus on one train type at a time in the dichotomic search, a guess could be based on the minimum headway time

or the train type divided by the time period. This will yield a set of trains with the maximum number of trains of the type in a
otal homogeneous operation. The search for the initial upper bound is described in pseudocode in the first part of Algorithm 3.

When the initial upper interval bound has been found, the search for the maximum number of trains is started (second part of
lgorithm 3). For each iteration the number of trains of the train type to be tested for feasibility is the midpoint between the lower

nterval bound and upper interval bound. If the tested number of trains yields an infeasible solution, the upper interval bound is
et to the tested number of trains. If a feasible solution is found the lower interval bound is set to the tested number of trains.
he algorithm is stopped after convergence (𝑥𝐿𝐵𝑖 + 1 = 𝑥𝑈𝐵

𝑖 ) and the best solution (maximum number of trains of a type), 𝑥max
𝑖 , is

returned.

In Fig. A.9, an example is given to illustrate the steps in the dichotomic search. In the example, the minimum set of trains defined,
𝑥min
𝑖 = 1, is found to be feasible in iteration 1. The initial guess on the upper interval bound is set to 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 = 10. This guess is found

to be infeasible in iteration 2, and the first part of the search is complete as an upper interval bound has been found (𝑥𝑈𝐵
𝑖 = 10). In

iteration 3–5, the second part of the search (the binary search) divides the search interval until the best feasible solution, 𝑥max
𝑖 = 5,
16

is found.
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Fig. A.9. Example of iterations in the dichotomic search for a train type 𝑖. 0 denotes that the solution is infeasible while 1 denotes that the solution is feasible
for a given value of 𝑥𝑖. Iteration 1–2 corresponds to the first part (while loop) and iteration 3–5 to the second part (while loop) in Algorithm 3. LB, UB, and
guess are pointers for 𝑥𝐿𝐵𝑖 , 𝑥𝑈𝐵

𝑖 , and 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 .
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