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Abstract

We model endogenous technology adoption and competition among liquidity providers

with access to High-Frequency Trading (HFT) technology. HFT technology provides speed

and informational advantages. Information advantages may restore excessively toxic markets.

Speed technology may reduce resource costs for liquidity provision. Both effects increase

liquidity and welfare. However, informationally advantaged HFTs may impose a winner’s

curse on traditional market makers, who in response reduce their participation. This

increases resource costs and lowers the execution likelihood for market orders, thereby

reducing liquidity and welfare. This result also holds when HFT dominates traditional

technology in terms of costs and informational advantages.
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1 Introduction

One of the most striking developments in financial markets of the past years is the rise of

high-frequency traders (HFTs). HFTs invest heavily in trading technology that allows them to

benefit from a combination of “speed” i.e., low-latency market access, and “superior information

processing” generating (imperfect) signals about future order flows.

The participation of HFTs spurred an intense debate on their impact on markets. HFTs have

acquired substantial market shares, thereby largely crowding out traditional liquidity providers

(low frequency traders, LFTs). Large investors complain about increased “slippage”as a result

of HFT presence. HFTs, however, point at tighter spreads due to their presence.

Our paper examines how competition among differentially paced and differentially informed

liquidity providers affects markets, using a model with endogenous participation and technology

adoption. We find that the effect of the availability of HFT technology depends on market

circumstances. If adverse selection through informed liquidity demand is severe, markets can

shut down. Informationally advantaged HFTs may then restore markets, thereby improving

liquidity. If adverse selection is moderate or small and the informational advantage of HFTs

is small, the availability of HFT technology may improve liquidity by reducing the resource

costs for providing liquidity. Finally, if adverse selection is moderate and the informational

advantage of HFTs is substantial, HFTs may impose a winner’s curse on LFTs due to their

informational advantage. This winner’s curse impairs LFT profitability. In response, LFTs

become more cautious in providing liquidity and reduce their participation. HFT participation

by contrast increases. Liquidity reduces due to a lower likelihood of liquidity demand being

served and a potential increase in the resource costs for providing liquidity. The availability of

HFT technology affects welfare negatively if adverse selection is moderate and the informational

advantage of HFTs is substantial, and positively otherwise.

Our model has two stages. In the participation stage, candidate liquidity providers maximize

expected profits by investing in liquidity provision technology to become HFTs, LFTs, or refrain

from participation. The subsequent trading stage is inspired by Cordella and Foucault (1999).

It features sequential Poisson arrivals of liquidity providers posting limit orders, and a liquidity

demander posting a market order. For tractability, we focus on competition at quote levels close

to the mid price, which is where most action is found (e.g., Brogaard et al. (2019)). Upon arrival,

liquidity providers post quotes that maximize expected profits conditional on their information
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sets and the standing best quote. Liquidity demand is exogenous and reflected by a market

order, which executes against the standing best quote (if any). Liquidity demand is either

informed or uninformed, drawn by nature with given probabilities. The liquidity provider in a

transaction incurs a loss in case of informed liquidity demand, and a gain otherwise. The game

ends upon market order execution or if no liquidity provider is willing to provide liquidity.

HFTs benefit from superior speed technology and superior information processing technology.

Superior speed technology allows to monitor markets faster (e.g., due to colocation), which

is reflected by a higher arrival intensity. Following Aı̈t-Sahalia and Saglam (2017), superior

information processing technology allows HFTs to (imperfectly) infer the nature of the incoming

order flow (e.g., from recognizing informed trade clustering; see Admati and Pfleiderer, 1988),

which is reflected by a common signal about the nature of the incoming market order. The

adoption of LFT and HFT technology involves upfront, technology-specific participation costs.

We study liquidity and analyze two dimensions: the expected half spread for executed market

orders and the likelihood of serving liquidity demand. We also analyze welfare implications. The

execution of uninformed market orders increases welfare and investments in trading technology

decrease welfare. Executing informed market orders is welfare neutral (zero sum transfers).

Poisson intensities and participation costs are additive across liquidity providers. As a result,

we can show that when information processing technology is useless, it is the participation

cost per unit of speed that determines which type of liquidity provider survives in equilibrium.

Provided that order flow is not very likely to be informed, HFT technology is adopted only when

its cost per unit of speed is lowest, and LFT technology is adopted otherwise. Moreover, since

there is no information to condition on, liquidity is always offered. As a result, the availability

of HFT technology is (weakly) beneficial for liquidity.

If liquidity demand is very likely to be informed, adverse selection losses are prohibitively

severe for LFTs to participate. Signals about the nature of order flow may now allow HFTs to

participate and provide liquidity only when order flow is less likely to be informed. Thereby

HFTs (partially) restore markets and improve liquidity.

When information processing technology is useful, when order flow is moderately likely to be

informed, and when HFT technology is not prohibitively costly, LFTs may suffer from a winner’s

curse. The reason is that HFTs are likely to avoid informed order flow, leaving it for LFTs.

At the same time, HFTs compete with LFTs for uninformed order flow. This winner’s curse

makes LFTs less willing and more cautious to provide liquidity. Its severity increases as HFT

3

Electronic copy available at: https://ssrn.com/abstract=2698702



presence (relative to LFT presence) increases. The increased adverse selection and increased

caution when providing liquidity impair LFT profitability, thereby reducing scope for LFT

participation. This reduction in LFT participation creates space for more HFT participation

due to reduced competition, which in turn aggravates the winner’s curse and reduces LFT

profitability further. Hence, endogenous participation and technology adoption may aggravate

adverse selection concerns for LFTs. As a result, LFTs may largely or completely abstain from

providing liquidity. Consequently, the likelihood that liquidity demand is served is reduced

due to LFTs abstaining from quoting and HFTs retracting their liquidity when they suspect

informed liquidity demand.

When HFTs have higher costs per unit of speed than LFTs, multiple equilibria may arise,

since adverse section losses for LFTs increase in HFT presence and decrease in LFT presence.

There is then always one LFT Dominance equilibrium, and one equilibrium with large HFT

presence.1 The latter may involve coexistence when cost advantages of LFTs (vis-a-vis HFTs)

are exactly offset by reduced profitability due to more cautious liquidity provision.

When HFT have slightly higher or even lower costs per unit of speed than LFT, HFT

Dominance is the only equilibrium possible since informational advantages of HFTs more than

offset LFT cost advantages, if any. Expected half spreads are lower than if all liquidity were

provided by LFTs. Yet, the likelihood of serving liquidity demand is reduced, which may more

than offset the expected half spread reduction.

The availability of HFT technology affects welfare negatively if adverse selection is moderate

and the informational advantage of HFTs is substantial, due to a reduced likelihood of serving

liquidity demand and potentially excessive HFT participation. The latter is associated with

increased resource costs for providing liquidity. In all other situations HFT technology improves

welfare by restoring markets or reducing the resource costs for providing liquidity.

Our welfare analysis indicates a scope for policy measures to curtail the negative welfare

effects that the availability of HFT technology may impose on markets. We analyze three

policy measures that have been explicitly or implicitly used in markets: HFT transaction taxes,

mandatory liquidity provision requirements, and contingent quote subsidies. All three can

prevent low welfare equilibria if HFTs have higher costs per unit of speed than LFTs. The

latter two also capture welfare benefits from speed technology if HFTs have lower costs per unit

1There may be another equilibrium with coexistence. However, this equilibrium is trembling-hand-imperfect,
and therefore ignored.
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of speed than LFTs.

Our study contributes to the theoretical literature on informed trading and information

production in financial markets. In this literature, traders typically use information for speculative

trading by demanding liquidity. In such models (e.g., Kyle, 1985), informed liquidity demanders

face price impact, which limits their demand. This attenuated demand in turn limits information

acquisition and production when endogenized, like in Biais et al. (2015). Such effects are stronger

when multiple informed investors compete (Nöldeke and Tröger, 2001), giving additional disincentives

for information acquisition. Such competition can even increase endogenously due to learning

from prices and order flows (called backrunning; see Yang and Zhu, 2019). By contrast, we

model information acquisition that allows liquidity providers to avoid informed order flow.

Hence, diseconomies of scale due to price impact or information-based competition do not

arise. If anything, learning by LFTs from the state of the book reduces rather than increases

competition due to a winners’ curse.

Our paper also relates to the literature on common value auctions with differentially informed

bidders. Liquidity provision in a limit order book can be viewed as a common value auction if

there are no participation frictions or market power. Calcagno and Lovo (2006) is a good

example. A winners’ curse is a prime concern for bidders in common value auctions (see

e.g., Hausch (1987)). This winners’ curse would make it optimal for uninformed bidders to

not participate in a one-shot auction with other informed bidders. This winner’s curse is

also present in our paper, but uninformed agents may still participate. The prime reason is

market power due to a discrete tick size and the Poisson arrival process. In Calcagno and Lovo

(2006), uninformed traders also post limit orders since they can learn from informed limit orders

(similar to backrunning). Another difference is the nature of the signal. In Calcagno and Lovo

(2006) informed traders suffer from learning-induced competition from uninformed traders. As

a result informed traders do not fully reflect information in orders, similar to insiders in Kyle

(1985). Such effects are absent in our setting for aforementioned reasons. Finally, we endogenize

technology adoption and participation, which is not done in Calcagno and Lovo (2006).

Our paper also fits into the literature modeling dynamic trading in financial markets through

limit order books, which includes Foucault (1999), Goettler et al. (2005),Goettler et al. (2009),

Foucault et al. (2005), Parlour (1998), Li et al. (2018), Aı̈t-Sahalia and Saglam (2017), Bernales

(2014), and Roşu (2009). It also relates to the literature assessing the impact of HFT activity in

financial markets. Numerous theoretical contributions emerged in recent years on this topic (see
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Menkveld, 2016, for a review). However, only a limited number of those endogenize participation

and technology adoption (e.g., Li et al., 2018, do this to a limited degree). We thereby take

a long-run Industrial Organization perspective of the modern liquidity provision industry. In

addition, we show that it is the product of speed and participation rate that matters for market

outcomes (in contrast to Li et al., 2018, in which high speed is infinite).

The closest paper to ours is the one by Hoffmann (2014). His paper also models competition

for liquidity provision between HFTs and LFTs, where HFTs are better able to prevent their

quotes from being picked off. Yet, the economic implications differ at several important points.

First, we find that higher HFT presence in equilibrium can increase expected half spreads even

for the trades executed by HFTs. This is not the case in Hoffmann (2014). The reason is

that in our setup, participation is always endogenous, whereas in his setup it is (in most cases)

exogenous. Second, we find that HFTs can (but need not) be good for welfare, in particular

when they have lower costs per unit of speed than LFTs, or when markets suffer from severe

adverse selection in order flow. In Hoffmann (2014) HFTs are always bad for welfare when

technology adoption is endogenized (his setting closest to ours). We allow for a tradeoff between

an adverse selection-induced reduction of expected gains from trade against a better resource

allocation due to HFTs having lower costs per unit of speed. This tradeoff is absent in Hoffmann

(2014). Moreover, we allow HFTs to resolve no-trade, which also improves welfare. The third

important difference is that in our paper LFTs become less prominent in response to HFT

presence when HFT presence is high. In Hoffmann (2014) the same happens, but when HFT

presence is low. The reason is that our effect is driven by a winner’s curse, which is aggravated

by endogenous participation. In Hoffmann (2014) the effect is driven by an exogenous link

between the degree of informed trading (in his case specifically pick-off risk) and HFT presence.

The fourth difference in implications is that when LFTs scale back their presence, their caution

is reflected in timing in our paper (only offer liquidity when informed trading suspicions are low),

whereas in Hoffmann (2014) that is not possible by assumption and their caution is reflected

by less aggressive quotes. Interestingly, in these situations LFTs quote more rather than less

aggressive quotes in our setting.

Our findings and model setup allow to explain and are supported by several empirical

findings. A large number of studies has shown that market liquidity increases with the emergence

of HFTs, especially at quote levels close to the mid price (e.g., Brogaard et al., 2014; Hasbrouck

and Saar, 2012; Hendershott et al., 2011; Malinova et al., 2013). Our results on expected half
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spreads largely align with these empirical results. Moreover, the finding in Lyle et al. (2015)

that enhanced market maker monitoring explains the majority of liquidity improvements in

the 2000s is consistent with our model. HFT liquidity providers have been shown to be better

informed (see Menkveld, 2013; Brogaard et al., 2014). Moreover, some recent studies show that

HFTs retract liquidity in times of high information asymmetry (e.g., Anand and Venkataraman,

2016; Baldauf and Mollner, 2016; Korajczyk and Murphy, 2018). This observation is in line

with the liquidity provider behavior in our model.

2 Setup

We model the participation and trading decisions of market makers with access to different

trading technologies in a two-stage model. In the initial participation stage, potential liquidity

providers decide to participate or not and decide which technology they adopt, if any. In the

subsequent trading stage, liquidity providers compete for a market order. The game ends when

the market order is executed or when all liquidity providers refuse to submit limit orders.2 We

now introduce the two stages in reverse order. For the reader’s convenience, we provide a time

line of the game in Fig. 1 and a notation summary in C.

Participation
stage

-1

Start trading
stage:
arrival

liq. prov.

0

No posting
empty book

Market order
cannot execute

Game endsPosting
empty
book

τ1

Further
arrival

liq. prov.

Market order
arrival

and execution

T̃

Figure 1: Time line of the game.

2.1 Trading Stage

The trading stage is inspired by Cordella and Foucault (1999). The market is characterized

by a limit order book for a security with stochastic payoff Ṽ . We only consider the ask side of

the book, as the bid side is analogous. Conditional on public information, the expected value

2Hence, the baseline version of the model is static in nature (i.e., trading decisions are not serially correlated
or path dependent based on previous trades). In Internet Appendix IA.3, we do provide a dynamic extension in
which previous transactions do affect current quoting behavior through HFT learning. This way, we micro-found
the signal production in the HFT information processing technology.
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of the security, E(Ṽ ), is given by µ. We also call this the fundamental price. The structure of

the limit order book is provided in Fig. 2 below.

µ

0

µinf

p(1)

pliq

δ
2

δ Possible quotes

Figure 2: Price grid on which quotes can be posted (bold) on the ask side of the book.

The grid on which liquidity providers can post their quotes is discrete and characterized by

the minimum tick size δ. A smaller δ implies a finer grid. As shown in Fig. 2, we assume that

µ lies halfway between two ticks. Moreover, we define p(1) = µ+ δ
2 as the “competitive price”,

the lowest possible price on the grid at which potentially profitable quotes can be posted (i.e.,

quotes that exceed µ). Furthermore, time and price priority hold.

At an exponentially distributed random time T̃ ∈ [τ1,+∞], a liquidity demander arrives,

where τ1 is the time at which the first limit order is posted. The liquidity demander is a passive

player with exogenous behavior. Upon arrival, she submits a market order to buy 1 unit of the

security if the best standing ask quote is lower than her reservation price. Upon the resulting

transaction, the game ends. Liquidity demand is either uninformed (i.e., liquidity-induced)

or informed. We model the type of liquidity demand as a randomly drawn state of nature

ζ ∈ {liq , inf }, where liq and inf denote the states with uninformed and informed order flow,

respectively. The unconditional probabilities for states ζ = inf and ζ = liq are given by π̄

and 1 − π̄, respectively. We assume that E(Ṽ ) = µ when order flow is uninformed. We define

order flow to be informed when the liquidity demander knows that Ṽ = µinf > µ. Under the

assumptions made on reservation prices below, providing liquidity to informed liquidity demand

yields trading losses.3 The arrival intensity of the liquidity demand is information-specific

3The link between informed trading and a high value for Ṽ is without loss of generality. The combination
of an informed liquidity demander and asset value Ṽ = µ is irrelevant since she would be unwilling to pay a
price strictly exceeding µ. An asset value Ṽ = µinf without informed trading need not be considered separately
because µ is the expectation over all possible realizations. Some of these are high (potentially including µinf ),
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and given by νliq and νinf for uninformed and informed liquidity demand, respectively. In

particular, we assume that informed liquidity demand is more impatient than a uninformed

liquidity demand (νinf 6= νliq) for reasons outside of the model, such as perishability of private

information. 4 To facilitate tractability, we assume that νinf = ∞ throughout the paper. We

further motivate this assumption and explain its contribution to tractability in Subsection 4.2.

The reservation price of the liquidity demander is independent of whether liquidity demand

is informed or not and given by pliq ∈ (µ, µinf ).5 In the baseline of the model, we assume that

pliq = µ + 3
2δ, as also shown in Fig. 2. Due to this assumption, there are only two possible

(non loss making) quote levels, pliq and p(1). The assumption that pliq = µ + 3
2δ results in

high tractability. We can, for example, derive the equilibrium participation rates and expected

half spreads in closed form as a result of this assumption. The model with two quote levels is

simple, but rich enough to analyze the strategic interactions of differentially informed traders

at different speeds and with different participation costs. In Internet Appendix IA.2, we derive

results for a more general model in which pliq can be of arbitrary size and we get similar results.

In the more general model, we can derive undercutting patterns along the lines of those in

Hasbrouck (2018) and derive additional results on limit order aggressiveness. However, this

simplification comes at the expense of higher complexity and the inability to solve equilibrium

participation rates and expected half spreads in closed form.6

There are massesm and n of sophisticated (HFT) and unsophisticated (low-frequency trader,

LFT) atomistic liquidity providers, respectively. These masses are determined endogenously in

the participation stage, which is described later. Liquidity providers arrive to the market

following Poisson processes that are characterized by the masses of HFTs and LFTs and their

respective speeds. In particular, HFT and LFT arrival intensities are given by λγm and λn,

respectively, such that γ measures the speed advantage of HFTs relative to LFTs. This setup

reflects the higher frequency with which HFts monitor the market and submit limit orders

(as shown in, e.g., Baron et al., 2014; Brogaard et al., 2015; Hagströmer and Nordén, 2013;

while others are low (below µ). Hence, realizations may exceed or fall short of µ, but differences w.r.t. µ cancel out
in expectation. However, if order flow depends on the realization of Ṽ , adverse selection losses can systematically
materialize, which happens exactly when informed trading is paired with Ṽ = µinf .

4In Internet Appendix IA.3 we provide micro-foundations for HFT information production. The assumption
that νliq 6= νinf is a necessary condition for these micro-foundations to generate meaningful signals.

5In the Internet Appendix IA.1.2 we show that model outcomes are identical for reservation prices that do
depend on whether order flow is informed or not, as long as the reservation price for informed order flow is strictly
(but arbitrarily) smaller than µinf .

6The generalized setting also allows for further extensions such as one in which liquidity demand becomes
sensitive to the level of liquidity provision. See Internet Appendix IA.2.2.3.
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Hendershott and Riordan, 2013).

Upon arrival to the market, each liquidity provider k posts a quote a to maximize her

own profits given her information set ψk.
7 This way, LFTs act strategically despite being less

sophisticated. LFTs do not have access to advanced information processing technology and their

information set ψLFT consists solely of the standing best quote in the book or the absence of one

(i.e., the book being empty). HFTs have access to superior information processing technology

as compared to LFTs, which is captured by a different information set ψHFT . ψHFT contains

a noisy (but informative) signal s ∈ {inf, liq} about the state of nature, which is common to

all HFTs. The signal s = liq is correct with probability φ1. Moreover, we assume that signals

are unbiased, such that P (s = liq) = P (ζ = liq) = (1− π̄). The unbiasedness assumption also

implies that P (s = inf) = P (ζ = inf) = π̄. Moreover, it has the convenient implication that

P (s = liq|ζ = liq) = P (ζ = liq|s = liq) = φ1 and P (s = inf |ζ = inf) = P (ζ = inf |s = inf) =

1− 1−π̄
π̄ (1− φ1), due to Bayes’ Rule. For notational convenience, we define

φ2 ≡ 1− 1− π̄
π̄

(1− φ1) (1)

for the rest of the paper. HFT signals are informative and therefore useful if φ1 > (1 − π̄),

which, due to Eq. (1), is equivalent to φ2 > π̄.

Two information asymmetries arise in our model: one between the liquidity demander and

liquidity providers, and one among liquidity providers. The resulting adverse selection concerns

may be sufficiently severe that neither type of liquidity provider is willing to provide liquidity

in an empty book. In this case, the game also ends, as shown in the upper branch of Fig. 1

(essentially, this is a market breakdown; see Milgrom and Stokey, 1982).

2.2 Participation Stage

In the initial participation stage, there is a unit mass of atomistic risk neutral agents, which

simultaneously choose to invest in technology.8 In particular, agents endogenously choose to

become an LFT, an HFT, or stay out of the market. We denote the mass of agents that become

HFTs and LFTs by m ∈ [0, 1], and n ∈ [0, 1−m], respectively.9 In accordance with their choice,

HFTs and LFTs incur total participation costs mCHFT and nCLFT , respectively. These costs

7In this setup, liquidity providers cannot demand liquidity. We show in Internet Appendix IA.1.4 that relaxing
this assumption would if anything strengthen the effects we report.

8We consider a setting with a continuum of liquidity providers for tractability. It can be derived as the limit
of a discrete case with large numbers of LFTs and HFTs. For more details, see Internet Appendix IA.4.

9We assume that the mass of potential liquidity providers is so large that the upper bounds do not bind.
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are borne equally by all constituents in each respective group. Hence, individual HFTs and

LFTs face costs per capita of CHFT and CLFT , respectively.These costs could be associated

with IT infrastructure, accounts fees, or colocation fees.

Potential liquidity providers rationally maximize expected profits by choosing to adopt HFT,

LFT, or no technology. In doing so, they account for expected trading profits and participation

costs. While costs per capita are independent of m and n, expected trading profits may depend

on m and n. For example, expected per capita trading profits are lower as m and n increase

because expected trading surplus is shared by a larger mass of liquidity providers.

Our setting corresponds to a long-term equilibrium with free entry reflecting the a mature

HFT industry in which the initial oligopoly due to unique technology access has dissolved.

In our analyses, we explore how market liquidity is affected by the availability of HFT

technology. In doing so, we look at several dimensions. First, we look at expected transaction

costs for trades that materialize, which we measure by the expected half spread S. Second, we

look at the likelihood that liquidity demand is served.

3 Equilibrium Definition

In this section we provide a formal equilibrium definition. We work backwards, starting

by deriving optimal quoting strategies R∗HFT , R
∗
LFT , for HFTs and LFTs, respectively, in the

trading stage, taking m, n, and the state of the order book as given. Next, we derive expected

profits as functions of m and n, given these optimal quoting strategies. The participation stage

is in equilibrium if for a pair (m∗, n∗), HFTs, LFTs, and nonparticipants cannot benefit from

changing their participation decisions. Hence, an equilibrium is fully characterized by a tuple

(R∗HFT , R
∗
LFT ,m

∗, n∗). For a given set of parameters, multiple equilibria may exist.

3.1 Trading Stage

We analyze liquidity provider k’s order placement strategy, given standing best ask quote

â ∈ {Q, ∅}. Given information set ψk, k’s expected profit of posting a quote a is given by:

Πk(a, â) = E
(

Φ (a, ζ) · (a− Ṽ )|ψk
)
, (2)

where Φ (a, ζ) is the liquidity provider’s execution probability corresponding to quote a and

conditional on the nature of incoming order flow ζ, and E(·|ψk) is the liquidity provider’s

expectation over states of nature conditional on her information set. As price and time priority
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hold, a quote a ≥ â has zero execution probability and therefore zero expected profit. The same

holds for a quote larger than the reservation price pliq.

Each liquidity provider k optimizes her reaction function Rk to maximize expected profits:

R∗k(â) = arg max
Rk∈Q

Πk(Rk, â), (3)

where all liquidity providers behave according to R∗LFT and R∗HFT . As players are atomistic, the

probability for a liquidity provider to arrive to the market repeatedly is zero.10 Optimizing Eq.

(3) yields the optimal order placement strategies R∗HFT and R∗LFT . The conditional execution

probabilities Φ depend on optimal order placement strategies. Liquidity providers’ optimal

order placement strategies in turn depend on the expected execution probabilities. We define

the trading stage to be in equilibrium when the liquidity provision strategies of HFTs and LFTs

are characterized by a pair (R∗HFT , R
∗
LFT ) such that R∗HFT and R∗LFT are optimal for any HFT

or any LFT, respectively, given that all other HFTs and LFTs use the reaction functions R∗HFT

and R∗LFT , respectively.

3.2 Participation Stage

Before the trading stage starts, equilibrium participation masses, m∗ and n∗ are determined

in the participation stage. All potential liquidity providers decide simultaneously which technology

to adopt, anticipating optimal reaction functions R∗HFT and R∗LFT and optimal participation

rates (m∗, n∗) of all HFTs and LFTs, respectively. As a result, in equilibrium (potential)

liquidity providers cannot (strictly) benefit from deviating from their participation decision.

Optimality in participation results in zero-profit or indifference conditions (in line with empirical

evidence in Baron et al., 2014). Since all HFTs and LFTs are identical within a group, they all

solve the same optimization problem, and hence have identical equilibrium strategies.

HFT participation optimality implies zero profit, such that:

m∗ =


0, if Eâ (ΠHFT (R∗HFT (â), â)|m∗, n∗)− CHFT < 0 ∀m,

m∗ that solves Eâ (ΠHFT (R∗HFT (â), â)|m∗, n∗)− CHFT = 0, otherwise,

(4)

where Eâ is the expectation over all possible standing best quotes. Similarly, LFT participation

10It is possible to set up the model with a discrete number of LFTs and HFTs and allow for reentry. This
model relaxation hardly affects the results substantially reduces tractability. See also Internet Appendix IA.4.
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optimality implies zero profit, such that:

n∗ =


0, if Eâ (ΠLFT (R∗LFT (â), â)|m∗, n∗)− CLFT < 0 ∀n,

n∗ that solves Eâ (ΠLFT (R∗LFT (â), â)|m∗, n∗)− CLFT = 0, otherwise.

(5)

The participation stage is in equilibrium when zero-profit conditions (4) and (5) hold simultaneously.

4 Quote dynamics and trading costs

In this section, we characterize the equilibrium order placement strategies in the trading

stage, taking the masses of liquidity providers m and n as given. We first derive equilibrium

strategies for the uninformed trading case, in which order flow is uninformed with certainty.

The uninformed case is illustrative for our model setup and an important building block for the

more general case with informed trading. Next, we develop the informed trading case in which

order flow can be informed and HFTs may receive informative signals about its nature.

4.1 Uninformed Trading Case

The uninformed trading case is obtained by setting π̄ = 0, such that ζ = liq with certainty.

As divergences in information processing capacities do not matter in the uninformed case, we

abstract from the information sets ψk in this Subsection for notational convenience.

Consider the arrival of liquidity provider k at time τ before the arrival time T̃ of the market

order. If the standing best quote â = p(1), it is impossible to post a strictly profitable quote.

Hence, queue joining at p(1) with zero execution probability is (weakly) optimal. If the standing

best quote â = pliq, undercutting to p(1) yields a strictly positive, guaranteed profit of 1
2δ.

Finally, if the standing best quote exceeds the reservation price or the book is empty, an arriving

liquidity provider trades off an uncertain profit of 3
2δ by posting at pliq against a certain profit of

1
2δ by quoting p(1). Posting a = pliq is relatively more attractive if there is a higher execution

probability for that quote. We formalize this intuition by characterizing the optimal quote

submission strategies in the following Proposition.

Proposition 1. (Equilibrium Order Placement Strategies - Uninformed Trading Case). Any

liquidity provider k ∈ {HFT,LFT} optimally follows the following strategy given a standing
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best ask quote â:

R∗k =

 pliq if (â− δ ≥ pliq or â = ∅) and Φ ≥ 1
3

p(1) otherwise
, (6)

where

Φ ≡
νliq

νliq + λ(n+ γm)
. (7)

Proof. See Appendix.

Since the setup of the trading stage is inspired by Cordella and Foucault (1999), the result

in Proposition 1 is in line with their results (for the case with only two quote levels).

We define the half spread of a trade as the difference between the transaction price and µ.

In expectation it is given by

S =


1
2δ + Φδ, if Φ ≥ 1

3 ,

1
2δ, otherwise.

(8)

Holding everything else equal, the expected half spread decreases in the aggregate arrival

intensity of liquidity providers and increases in the arrival intensity of liquidity demanders for

two reasons. Lower arrival intensity of liquidity demand and higher aggregate arrival intensity

of liquidity supply both increase the probability that a quote a = pliq is undercut and hence

decrease the execution probability Φ at a = pliq. If a market order is more likely to execute

at p(1), the expected half spread is lower. Moreover, with a low Φ, it is less likely that an

initial quote at pliq is more profitable in expectation than one at p(1) and the aggressiveness

of initial quotes increases. Hence, liquidity increases in HFT presence m, LFT presence n,

and HFT speed γ as these all intensify competition. Proposition 1 shows how HFTs improve

market liquidity absent information processing asymmetry (as shown by Brogaard et al., 2014;

Hasbrouck and Saar, 2012; Hendershott et al., 2011; Malinova et al., 2013). Proposition 1 is also

consistent with Jiang et al. (2014), who find that in noninformational periods, HFTs heavily

compete in the U.S. Treasury market, and thereby drive spreads down.

Eq. (8) shows that if n+γm is sufficiently large, spreads become insensitive to participation,

which is less interesting for analyzing how liquidity depends on technology availability. Moreover,
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in a more general (but less tractable) model with pliq = (r+ 1
2)δ+µ for r ∈ N+, pliq is optimally

initially quoted when Φ ≥ 1
2r+1 . Hence, the parameter region in which p(1) is initially quoted

shrinks as r increases. For these reasons we assume throughout the paper that Φ ≥ 1/3, or

equivalently, (n+γm) <
2νliq
λ . In B we derive conditions expressed only in structural parameters

for this assumption to hold. Moreover, we also show in B that if this condition holds in the

uninformed case, it must also hold in the informed case.

4.2 Informed Trading Case

In this subsection, we work out the trading stage of the model in the presence of information

asymmetry among liquidity providers, (i.e., π̄ > 0 and φ2 > π̄). HFTs can process information

better than LFTs. Therefore, HFTs can (partially) avoid informed order flow, leaving it to

LFTs (if any). Hereby, HFTs reduce expected profits for LFTs and increase their own. In other

words, the informational advantage of HFT can increase adverse selection experienced by LFTs.

To facilitate exposition and tractability, we assume an infinitely impatient informed liquidity

demander, that is νinf =∞ (for reasons outside of the model such as perishable information).11

The informed liquidity demander monitors the market constantly and arrives instantaneously

when a quote (weakly) below her reservation price is posted. The advantage of setting νinf =∞

is that the state of nature is revealed upon posting a quote. As a result, the inference for

liquidity providers that subsequently arrive is trivial: order flow is uninformed. Hence, if an

initial quotes survives, the trading game reduces to the uninformed case (see Proposition 1).

Therefore, potentially informed order flow only affects HFT and LFT strategies upon arrival to

an empty book.

When a liquidity provider arrives to an empty book, she will only quote a = pliq when

the expected profits from doing so outweigh the expected adverse selection losses. HFTs can

condition their strategies on their signal. In some situations, however, the signal does not affect

their optimal quoting strategy because of being insufficiently accurate. Not quoting is optimal

for HFTs if expected profits conditional on a signal s = liq being correct are small given the

expected losses conditional on the signal being incorrect. Similarly, posting quotes in an empty

book is always optimal for HFTs if expected profits conditional on the a signal s = inf being

incorrect are large given the expected losses conditional on the signal being correct. In all other

scenarios, HFTs optimally post a = pliq in an empty book if s = liq and refrain from quoting in

11We can allow for more patient informed liquidity demanders, at the expense of reduced tractability and
increased complexity. The main results are largely unaffected. See Internet Appendix IA.1.3.
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an empty book when s = inf . The above notions are summarized in the following Proposition.

Proposition 2. HFTs optimally quote a = pliq in an empty limit order book if

(pliq − µ)P̂ (ζ = liq|ψHFT )Φ(ζ = liq) ≥ (µinf − pliq)P̂ (ζ = inf |ψHFT )Φ(ζ = inf), (9)

where P̂ (ζ = inf |ψHFT ) and P̂ (ζ = liq|ψHFT ) are the posterior probabilities for HFTs of

having an informed or uninformed trader as the first liquidity demander to come to the market,

respectively, and Φ(ζ) is the execution probability conditional on ζ.

This inequality is always satisfied if

φ2 ≤
(pliq − µ)Φ

(pliq − µ)Φ + (µinf − pliq)
, (10)

and is never satisfied if

φ1 ≤
µinf − pliq

(pliq − µ)Φ + (µinf − pliq)
. (11)

Upon arrival to a nonempty book with standing best quote â ≤ pliq, HFTs optimally quote

a = p(1).

Proof. See Appendix.

Note that nobody posts quotes when Condition (11) holds. If it is never profitable for HFTs

to post in an empty book, the same must be true for LFTs, as HFTs have superior information.

For an LFT to post in an empty book, the expected trading profit conditional on her

information set also needs to be positive. The only difference compared to the HFT profitability

criterion (9) is the information set ψLFT which, contrary to ψHFT , does not contain a signal.

LFTs only observe whether the book is empty or not upon arrival. Subsequently they use

Bayes’ Rule to form rational expectations about the HFT signal s and ultimately ζ. Intuitively,

when the presence of HFTs is high compared to LFTs (γm >> n) and s = liq, it is very

unlikely that an LFT would arrive to an empty book first. Yet, when s = inf this probability

equals 1 (assuming that HFTs condition their quote strategy on signal s). This high conditional

probability gives rise to a winner’s curse: LFTs can provide liquidity at pliq almost exclusively

when it is unfavorable to do so. By contrast, when the presence of HFTs compared to LFTs is

low (γm << n) the probability of an LFT arriving to an empty book when s = liq is high and

the winner’s curse is much less of a concern for LFTs. The winner’s curse is also more harmful
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as the adverse selection losses (µinf−pliq) are larger and the uninformed trading gains are lower

(lower δ). We summarize these notions in the following Proposition.

Proposition 3. LFTs optimally post quotes a = pliq in an empty book if

(pliq − µ)P̂ (ζ = liq|ψLFT )Φ(ζ = liq) ≥ (µinf − pliq)P̂ (ζ = inf |ψLFT )Φ(ζ = inf) (12)

where P̂ (ζ = inf |ψLFT ) = 1− P̂ (ζ = liq|ψLFT ) is the LFTs’ posterior probability for the order

flow to be informed. P̂ (ζ = inf |ψLFT ) is increasing in the mass of HFTs (m), HFT speed (γ),

and decreasing in the mass of LFTs (n). Given a standing best quote â ≤ pliq, LFTs optimally

quote a = p(1).

Proof. See Appendix.

The expected half spread in the informed case is given by

S =


1
2δ + δ(π̄ + (1− π̄)Φ), if (12) is satisfied,

1
2δ + δ((1− φ1) + φ1Φ), otherwise,

(13)

where Φ is defined as in (7).

5 Profitability and Participation

In this section, we determine the equilibrium masses m∗ and n∗ in the participation stage,

taking optimal quoting strategies in the trading stage as given. First, we express the zero-profit

conditions (4) and (5) as functions of m and n. Thereafter, we derive equilibrium participation

rates (m∗, n∗) and analyze all liquidity dimensions. Up to Subsection 5.2.2, we assume adverse

selection in market orders to be sufficiently low to prevent market breakdowns in the absence of

signals. In Subsection 5.2.3, we analyze the case in which incoming order flow is so toxic that

markets would break down in the absence of additional signals for liquidity providers.

5.1 Uninformed Trading Case

To calculate the equilibrium masses, we first need to derive the expected per capita trading

profits for HFTs and LFTs. Transactions materialize either at the competitive price p(1) or at

the reservation price pliq. The latter only happens with probability Φ. Moreover, due to the

Poisson arrival process, liquidity providers participate in such transactions according to relative

presence in the market. We formalize these notions in the following Lemma.
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Lemma 1. The unconditional expected per capita trading profits for LFTs and HFTs are

respectively given by:

Eâ (ΠHFT (R∗HFT (â)|m,n)) =
1

m

γm

γm+ n
Π =

γΠ

γm+ n
, (14)

Eâ (ΠLFT (R∗LFT (â)|m,n)) =
1

n

n

γm+ n
Π =

Π

γm+ n
, (15)

where

Π =
1

2
δ + Φδ. (16)

Proof. See Appendix.

The interpretation of the expressions in Lemma 1 is as follows. HFTs and LFTs share

aggregate expected profits from trading Π according to their relative presence ( γm
n+γm and n

n+γm ,

respectively). Moreover, each trader shares proportionally in its own expected group profits

(with factors 1
m ,

1
n , respectively). The total trading profits are derived as the probability-weighted

average transaction price minus the fundamental value µ. As expected trading profits for both

HFTs and LFTs are monotonically decreasing in m and n, and per capita participation costs

are constant, there is always an equilibrium with strictly positive participation.

At this point, we can rewrite net expected HFT profits in Eq. (14) as

Eâ (ΠHFT (R∗HFT (â)|m,n))− CHFT =
1

m

γm

γm+ n
Π− CHFT ,

= γ

(
1

γm+ n
Π− CHFT

γ

)
. (17)

In the last expression, m only shows up in a product with γ. Moreover, up to a scalar

multiplication, this expression corresponds to expected LFT profits in Eq. (5), but with CLFT

replaced by CHFT
γ . Hence, participation cost per unit of speed drive technology adoption.12

We can now derive equilibrium HFT and LFT masses. There is a competitive market

with free entry. Therefore, equilibrium prices must equal production costs of the liquidity

provider type with the lowest cost per unit of speed. Liquidity is then exclusively provided by

liquidity providers with lowest cost per unit of speed, as only for them liquidity provision is

(weakly) profitable. Moreover, a high arrival intensity of liquidity demand, boosts participation

12An alternative interpretation of this result is that our original problem is equivalent to solving a related
problem in which all HFTs have speed 1 and participation cost CHFT

γ
.
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of liquidity providers, such that expected trading profits still equal zero. We formalize these

notions in the following proposition.

Proposition 4. In the uninformed trading case, liquidity provision in equilibrium is conducted

only by HFTs when CLFT ≥ CHFT
γ , and only by LFTs otherwise. This equilibrium is unique.

Equilibrium participation rates are given by

(m∗, n∗) =



(
−(νliq

CHFT
γ
−λδ

2
)+

√
(νliq

CHFT
γ
−λδ

2
)2+6

CHFT
γ

λνliqδ

2λCHFT
, 0

)
, if CHFT

γ ≤ CLFT(
0,
−(νliqCLFT−λδ2 )+

√
(νliqCLFT−λδ2 )2+6CLFTλνliqδ

2λCLFT

)
, otherwise.

(18)

The expected half spread is given by

S =
1

2
δ +

νliq
νliq + λ(n∗ + γm∗)

δ. (19)

The availability of HFT technology strictly reduces S iff CHFT
γ < CLFT .

Proof. See Appendix.

For the rest of the paper, we refer to an equilibrium with m∗ > 0, n∗ = 0, and HFTs not

using any signal as “Nonconditioning HFT Dominance.”

Summarizing, only if HFTs incur lower costs per unit of speed than LFTs, they participate.

They then completely take over and lead to lower expected half spreads than if HFT technology

were not available. This result is also presented graphically in Panel A of Fig. 3.

5.2 Informed Trading Case

This subsection provides the main results of the paper. There are three possible scenarios

in which the availability of HFT technology can affect market outcomes. First, if information

processing technology for HFTs is insufficiently useful (Subsection 5.2.1), HFTs only provide

liquidity (and are the only liquidity providers) when they have the lowest cost per unit of

speed. Second, if HFTs have material informational advantages over LFTs and these compete

with one another (Subsection 5.2.2), HFTs may impose a winner’s curse on LFTs. This

winner’s curse may, depending on the relative presence of HFTs vs LFTs, prevent LFTs from

supplying liquidity in an empty book. As a result of reduced profits, LFTs may not participate.

Third, if adverse selection is sufficiently severe to make markets break down (Subsection 5.2.3),

informationally advantaged HFTs may (partially) restore markets.
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5.2.1 Equilibrium with no or useless Information Processing Technology

Consider the case with a strictly positive probability of informed liquidity demand (π̄ > 0),

but HFT information processing technology that is inaccurate (φ2 = π). The equilibrium can

be derived from the uninformed case in Subsection 5.1, if adverse selection from informed order

flow is sufficiently small. We derive an upper bound on π̄ for this condition to be met.

As a first step, we assume all liquidity providers to act in the trading stage as in the

uninformed case (see Proposition 1). Informed liquidity demand generates unavoidable losses

for HFTs and LFTs alike, as neither can use conditioning information. Moreover, trades

are profitable only with probability (1 − π̄). This profit base needs to cover participation

costs and adverse selection losses. It turns out that expected trading profits are given by a

linear transformation of those in the uninformed case. Expected trading profits are reduced

by expected adverse selection losses (−π̄(µinf − pliq)) and by a lower profit base (a factor

(1− π̄) < 1). The effect for HFTs is γ times as strong due to their speed being γ times as high.

Lemma 2. If liquidity providers quote as in Proposition 1, expected trading profits correspond

to those in the uninformed case, but with aggregate expected trading profits Π̃ given by

Π̃ = (1− π̄)Π− π̄(µinf − pliq). (20)

Proof. See Appendix.

It follows from Lemma 2 that per capita expected trading profits for HFTs and LFTs are

given by γf̃(n+ γm) and f̃(n+ γm), respectively, where

f̃(n+ γm) =
Π̃

n+ γm
. (21)

Since f̃(·) is hyperbolic in n+γm, a strictly positive mass of liquidity providers must materialize

in equilibrium if aggregate expected trading profits are strictly positive. Expected trading profits

are strictly positive if π̄ in (20) is sufficiently small. If not, neither type of liquidity provider

participates.

Lemma 3. In the absence of an informative signal, some potential liquidity providers optimally
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participate when

π̄ <
3δ

2(µinf − µ)
≡ πtox. (22)

Proof. See Appendix.

We assume for the remainder of this subsection that π̄ < πtox. Since signals are useless, quote

submission strategies follow Proposition 1, which validates the assumption that we started with.

In line with the results in Subsection 5.1, we conclude that the availability of HFT technology

either improves liquidity or leaves it unaffected. Since HFTs cannot condition on superior

information, liquidity providers always provide liquidity. Lemma 2 and Proposition 4 then

imply that HFT technology is adopted iff its cost per unit of speed is lowest. We summarize

our results in the following proposition.

Proposition 5. If π̄ ∈ (0, πtox) and, φ2 = π̄, the availability of HFT technology never reduces

market liquidity and liquidity is always offered. HFT technology takes over completely and

market liquidity improves iff HFT technology has a lower cost per unit of speed than LFT

technology. Equilibrium participation rates are given by

(m∗, n∗) =


(

0,
λc−νliqCLFT+

√
(νliqCLFT−λc)2+4λνliqCLFT (c+(1−π̄)δ)

2λCLFT

)
, if CHFT

γ > CLFT ,(
λc−νliq

CHFT
γ

+
√

(νliq
CHFT
γ
−λc)2+4λνliq

CHFT
γ

(c+(1−π̄)δ)

2λCHFT
, 0

)
, otherwise,

(23)

where

c = (1− π̄)
δ

2
− π̄(µinf − pliq). (24)

Proof. See Appendix.

The results in Proposition 5 immediately extend to situations in which information processing

technology is accurate (φ2 > π̄), but irrelevant for quoting strategies. If 1.) informed trading

losses are small compared to reservation prices, 2.) the execution probability is high due to

a high arrival intensity of (uninformed) market orders relative to that of limit orders, or 3.)

the signal is informative, but still rather inaccurate, Condition (10) holds and HFTs always

quote (and hence ignore their signal). Condition (10) depends on the endogenous variables

n∗+ γm∗ through Φ. Equating f̃(·) to participation costs (because of the zero-profit condition)
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and solving yields n∗+ γm∗ expressed in exogenous parameters, which can then be substituted

into (10), leading to the following corollary.

Corollary 1. The results from Proposition 5 extend to the setting with π̄ ∈ (0, πtox) and φ2 > π̄

when

φ2 ≤
(

1 +
µinf − pliq
pliq − µ

(
1 +

λ

νliq
f̃−1

(
min

(
CHFT
γ

, CLFT

))))−1

≡ φul2 . (25)

Proof. See Appendix.

5.2.2 Equilibria with useful Information Processing Technology

When π̄ ∈ (0, πtox), φ2 > max(π̄, φul2 ), the availability of superior information processing

technology may expose LFTs to a winners’ curse problem. The extent to which this problem

arises depends on model parameters. As a result, we obtain different equilibrium types, which

we analyze in this subsection.

If HFTs have higher costs per unit of speed than LFTs, multiple equilibria can materialize.

The reason is that the winner’s curse in Proposition 3 is particularly severe if the presence of

HFTs (γm) relative to LFTs (n) is high. By contrast, with a low presence of HFTs relative to

LFTs, LFTs are hardly affected by a winner’s curse and have a cost advantage.

With multiple equilibria, coexistence is possible. The reason is that the LFT cost advantage

(vis-a-vis HFTs) is offset by an informational disadvantage and (relatedly) reduced profitability

due to not quoting in an empty book.

We start our analysis by deriving expected per capita trading profits for individual LFTs

and HFTs, given their optimal quote posting strategies. To focus on adverse selection-induced

effects, we assume that π̄ ∈ (0, πtox) and φ2 > max(φul2 , π̄) throughout this section.

With the availability of information processing technology, expected per capita profits

depend on whether LFTs post in an empty book (i.e., whether Condition (12) is satisfied)

and are given in the following Lemma.

Lemma 4. Unconditional expected per capita trading profits for HFTs and LFTs are given by

Eâ (ΠHFT (R∗HFT (â))) =


gHFT (m,n) , if (12) is not satisfied,

hHFT (m,n) , otherwise,

(26)

Eâ (ΠLFT (R∗LFT (â))) =


gLFT (m,n) , if (12) is not satisfied,

hLFT (m,n) , otherwise,

(27)
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respectively, where

gLFT (m,n) = (1− π̄)φ1(1− Φ)
1
2δ

n+ γm
,

gHFT (m,n) = γ

(
gLFT (m,n) + (1− π̄)

φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)
γm

)
,

hHFT (m,n) = γ

(
(1− π̄)

(1− Φ)1
2δ + φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)

n+ γm

)
,

hLFT (m,n) =
1

γ
hHFT (m,n) + π̄

(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)
n

. (28)

If LFTs do not quote in an empty book, they only participate to undercut a quote â = pliq.

LFTs undercut when signal s = liq (with probability (1 − π̄)), the signal is correct (with

probability φ1), and the initial quote is not executed (with probability (1− Φ)). The expected

profit of undercutting equals 1
2δ for both LFTs and HFTs. HFTs also expect profits from

quoting in an empty book (the last term in gHFT (m,n)). HFTs quote in an empty book when

s = liq (with probability (1− π̄)). The quote yields a profit (pliq −µ) when the signal is correct

(with probability φ1) and it is executed (with probability Φ), or a loss of (µinf − pliq) when

the signal is incorrect (with probability (1− φ1)). Expected profits are divided equally among

the mass of HFTs, m. HFTs also have a factor γ in their expected trading profit functions,

reflecting their higher speed and therefore higher market presence.

Now assume that LFTs quote in an empty book. The initial quote is undercut when ζ = liq

(with probability (1− π̄)) and it is not executed (with probability (1−Φ)). Undercutting yields

a profit of 1
2δ. In addition HFTs expect profits from providing liquidity in an empty book

as before, but now share expected profits with LFTs (the last term in hHFT (m,n)). LFTs

have the same additional expected profits from providing liquidity in an empty book as HFTs,

but also incur expected losses due to trading when HFTs suspect order flow to be toxic (last

term in hLFT (m,n)). LFTs incur additional trading losses when s = inf (with probability π̄).

LFTs then share among themselves a loss of (µinf − pliq) if the HFT signal s is correct (with

probability φ2) and a profit of (pliq−µ) if the signal is incorrect (with probability (1−φ2)) and

the first quote is executed (with probability Φ).

We continue by analyzing equilibria in different ranges of participation cost parameters. We

first formalize our results in Proposition 6, which is graphically illustrated by Panel B of Fig.

3. Next, we discuss the different equilibria and associated cost parameter ranges in more detail

by providing intuition as well as graphical representations. A sensitivity analysis for the other
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model parameters is provided in Internet Appendix IA.1.1.

We start out by formally describing all possible equilibria and the cost parameter ranges in

which they can materialize. To separate equilibria with n∗ = 0, m∗ > 0 and HFTs conditioning

their quote strategy on their signal s from those without conditioning on s, we refer to the

former as ”Conditioning HFT Dominance equilibria.”

Proposition 6. There are unique thresholds K1 > K2 > K3 ∈ (0, 1), such that when

• CHFT
γCLFT

> K1, LFT Dominance is the only possible equilibrium,

• CHFT
γCLFT

∈ (K2,K1], LFT Dominance and a Coexistence equilibrium are possible,

• CHFT
γCLFT

∈ [K3,K2], LFT Dominance and Conditioning HFT Dominance are possible,

• CHFT
γCLFT

< K3, Conditioning HFT Dominance is the only possible equilibrium.

Proof. See Appendix. Closed form expressions for equilibrium participation rates for both HFTs

and LFTs, and thresholds K1,K2,K3 are provided in the proof.

The result in Proposition 6 is represented graphically in Fig. 3, Panel B. We discuss and

illustrate the different parameter regions and their associated equilibria below.

Consider Fig. 4 to 7. The mass of LFTs (n) and mass of HFTs (m, scaled by γ for exposition)

are on the x- and y-axis, respectively. The red solid curve is the indifference curve for LFTs

between posting in an empty book or not (the values for which Condition (12) binds exactly).

The blue circled and green squared curves correspond to the zero-profit conditions (4) and (5)

for HFTs and LFTs, respectively. These curves partition the (n, γm) space such that expected

profits from participation are strictly positive below the curve and strictly negative above the

curve. These curves can also be interpreted as indifference curves (relative to nonparticipation)

for HFTs and LFTs, respectively. Equilibria at internal values of (n, γm) are located at points

where the green and blue indifference curves intersect. Alternatively, equilibria could manifest

as corner solutions with either m = 0 or n = 0. The equilibria are indicated by numbered black

markers in Fig. 4 to 7.

We can use these curves to get more intuition for the effects at work. Higher aggregate

participation (n + γm) intensifies competition (competition effect). The competition effect

makes LFTs and HFTs substitutes and gives downward sloping indifference curves. For the

LFT indifference curve corresponding to hLFT (m,n) = CLFT (right of the red curve), there is
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another effect. A higher presence of LFTs relative to HFTs weakens the winner’s curse that

LFTs are exposed to (winner’s curse effect). When n is low, the winner’s curse effect is dominant

for LFTs, while the competition effect is dominant when n is high. As a result, the indifference

curve in the region right of the red curve is hump-shaped. When the red curve is crossed, LFTs

stop providing liquidity in an empty book, leading to a small upward jump in HFT profitability

(due to lower competition) and a small downward jump in LFT profitability (due to reduced

likelihood of liquidity demand being served).

We first analyze the case in which LFTs have much lower costs per unit of speed than

HFTs (Fig. 4 and the solid blue range in Panel B of Fig. 3). HFTs optimally refrain from

participation for cost reasons, despite their informational advantage. As a result, all liquidity

is provided by LFTs. Since no signals are used in this LFT Dominance equilibrium, market

outcomes conform to Proposition 5: liquidity is always provided and solely by the liquidity

provider with the lowest cost per unit of speed.

As HFT participation costs decline, we get multiple equilibria (Fig. 5 and the green

horizontally striped region of Panel B in Fig. 3). LFT Dominance is one equilibrium. Yet,

if the mass of HFTs is sufficiently shocked upwards, LFTs are increasingly adversely selected

and expected LFT profits decline. As a result, LFT participation is reduced compared to

LFT Dominance. The adverse selection losses are now borne by fewer LFTs, such that per

capita adverse selection losses for LFTs increase. Simultaneously, the drop in LFT participation

reduces competition intensity and thereby provides room increased HFT participation. Increased

HFT participation in turn further reduces LFTs profits from providing liquidity to uninformed

order flow, reducing LFT participation further, etc. At some point LFTs optimally refrain from

quoting in an empty book and only undercut (the red curve in Fig. 5 is crossed). A Coexistence

Equilibrium then materializes (marker 2 in Fig. 5), in which the cost advantage of LFTs (vs

HFTs) is exactly offset by an information disadvantage. Moreover, HFTs do not quote in an

empty book when s = inf . Hence, with strictly positive probability no liquidity is offered.

As HFT participation costs decline further we again get multiple equilibria, but some are

of different nature (Fig. 6 and the orange diagonally striped area in Panel B of Fig. 3). LFT

Dominance is still an equilibrium, but, there are also two others. One is a Conditioning HFT

Dominance Equilibrium (indicated by marker 2 in Fig. 6) in which the LFT cost advantage

is more than offset by an information disadvantage. The last one is an Instable Coexistence

Equilibrium (indicated by marker 3), in which LFTs always participate in an empty book.
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Expected half spreads are high because HFTs provide some liquidity despite having higher

cost per unit of speed than LFTs. The equilibrium is instable (trembling-hand-imperfect) and

therefore further ignored in the analysis.

As HFT participation costs decline further, Conditioning HFT Dominance becomes the only

equilibrium (Fig. 7 and the red checked area in Panel B of Fig. 3), because the informational

advantage of HFTs always outweighs the LFT cost advantage, if any. As before, no liquidity is

offered with strictly positive probability.

We now analyze the liquidity implications of technology availability. As we move away

from LFT Dominance, expected half spreads are affected in three ways. First, LFTs do not

participate in an empty book, which lowers their profitability and thereby their participation.

As a result competition is impaired. Second, HFTs attain a sizeable market share. To the

extend that HFTs have higher costs per unit of speed than LFTs, aggregate costs for liquidity

provision go up, which reduces the total amount of liquidity provision and increases expected

half spreads. A countervailing effect on expected half spreads originates from an aggregate

reduction in adverse selection losses. As a result, expected half spreads can in- or decrease as

we move away from LFT Dominance. Yet, with strictly positive probability liquidity demand is

not served in Coexistence and Conditioning HFT Dominance equilibria. Hence, the availability

of HFT technology could move liquidity measures in opposite directions, which makes it harder

to make conclusive statements on liquidity. To overcome this problem, we construct a measure

Ŝ, which reflects a lower bound on illiquidity. It is defined as the hypothetical expected half

spread if nonexecuted liquidity demand was executed at pliq. More formally, it is given by

Ŝ =


S = 1

2δ + δ(π̄ + (1− π̄)Φ), if (12) is satisfied,

(1− π̄)S + π̄(pliq − µ) = 1
2δ + δ(π̄ + (1− π̄)((1− φ1) + φ1Φ)), otherwise.

(29)

It turns out that when multiple equilibria exist, aggregate liquidity always deteriorates as we

move away from LFT Dominance, even if expected half spreads improve. When costs per unit of

speed for LFT technology exceed those for HFT technology (CHFTγ < CLFT ), both technology

costs as well as informational superiority contribute to higher aggregate participation rates.

Expected half spreads then improve because of HFT technology availability. Yet, we show,

using Ŝ, that even in this case, liquidity as a whole can suffer from the availability of HFT
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technology. Hence, at an aggregate level, it is possible for the forgone profits from incorrectly

classifying uninformed market orders to outweigh the combined cost savings from reduced

adverse selection risk and reduced participation costs. This is important because analyzing

empirically observable measures such as expected spreads may yield incorrect conclusions on

the effect of HFT technology on market liquidity. We formalize the aforementioned results in

the following Proposition.

Proposition 7. When HFT technology has a higher cost per unit of speed than LFT technology,

its availability can increase or reduce expected half spreads S. When multiple equilibria exist, Ŝ

for LFT Dominance is lower than that of either Coexistence or Conditioning HFT Dominance.

Even when HFT technology has the lowest cost per unit of speed (i.e., CHFT
γCLFT

< 1), Ŝ can be

higher than if HFT technology had not been available.

Proof. See Appendix.

Summing up, when HFTs have high cost per unit of speed, LFTs provide all liquidity and

markets are liquid. As HFT participation costs decline, multiple equilibria arise and HFTs can,

but need not, crowd out LFTs. As a result, HFTs can coexist with LFTs or even dominate,

in which case liquidity deteriorates. As HFT participation costs decline even further, HFTs

dominate completely. As a result, liquidity can improve. However, it can also deteriorate if the

cost advantage of HFTs is small.

5.2.3 Equilibria with very Informed Order Flow

We now analyze the case in which order flow is very likely to be informed (π̄ ≥ πtox). In

the absence of a signal, Lemma 3 implies that markets break down and are infinitely illiquid.

However, with a sufficiently accurate signal, informed HFTs may find it optimal to participate.

The signal allows HFTs to avoid informed order flow and (partially) restore markets.

Lemma 5. HFTs optimally participate and provide liquidity to an empty book following a signal

s = liq if

φ1 ≥
µinf − µ− 3

2δ

µinf − µ
. (30)

Proof. See Appendix.

A direct implication of Lemma 5 is that the availability of HFT technology increases market
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liquidity by overcoming market failures if (30) is satisfied. This result is true irrespective of the

participation costs, as they do not show up in Condition (30).

Proposition 8. When π̄ ≥ πtox, the presence of HFT technology improves liquidity by resolving

market failures if Condition (30) is satisfied. This results holds irrespective of participation cost

parameters. The resulting equilibrium corresponds to either Conditioning HFT Dominance or

Coexistence as in Proposition 6.

Proof. See Appendix.

Summing up, if Condition (30) is satisfied, the effect of HFT technology availability on

liquidity in toxic markets (π̄ ∈ (0, πtox)) is opposite of that in nontoxic markets. The availability

of HFT technology improves liquidity in toxic markets, even when HFTs have higher cost per

unit of speed than LFTs. HFTs can even induce LFTs to participate (LFTs then only undercut).

6 Welfare and Policy Implications

In this section, we analyze welfare effects of HFT technology availability in the equilibria

derived in Section 5. We use our welfare analysis to evaluate policy measures.

6.1 Welfare Analysis

To make welfare statements, we first define the sources of welfare gains and losses. Next, we

measure the welfare in each equilibrium. To further our understanding of how frictions affect

welfare, we compare our equilibrium outcomes to different welfare benchmarks.

In our model, gains from trade for uninformed liquidity demanders contribute positively to

welfare. Spending resources on participation costs contribute negatively to welfare. Finally,

informed trades are welfare neutral due to being zero-sum transfers.

We then continue by quantifying welfare in the different equilibria derived in Section 5.

We quantify welfare in the equilibria derived in Section 5 in two ways, which are presented in

Table 1. Aggregate expected welfare for each equilibrium type is obtained by summing over the

corresponding row elements.

In panel A of Table 1, we add up all positive and negative welfare effects at the origin.

When an uninformed liquidity demanders trades, the difference between reservation value and

fundamental value (pliq − µ) is realized as a welfare gain. an uninformed liquidity demanders

trades with probability (1− π̄) in LFT Dominance and Nonconditioning HFT Dominance and

with probability φ1(1− π̄) in other equilibrium types with strictly positive participation. Trades
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conducted by informed liquidity demanders are welfare neutral. Resources spent by LFTs

and HFTs on participation costs reduce welfare by n∗CLFT and m∗CHFT , respectively. Total

expected welfare effects are the sum of individual welfare effects. Welfare in no-participation

equilibria equals zero.

Alternatively, in Panel B of Table 1 we add up welfare effects by ultimate utility recipients.

Uninformed liquidity demanders capture an expected utility increase of (pliq − µ − S) from

an executed market order. This utility increase materializes with (unconditional) probability

(1−π̄) in LFT Dominance and Nonconditioning HFT Dominance equilibria and with probability

φ1(1 − π̄) in all others with strictly positive participation. Liquidity providers break even in

expectation, yielding them an expected utility increase of zero. Informed liquidity demanders

capture an expected utility increase of (µinf − µ − S) from an executed market order. This

utility increase is realized with probability π̄ in LFT Dominance and Nonconditioning HFT

Dominance equilibria and with probability (1 − π̄)(1 − φ1) in all others with strictly positive

participation.

Table 1: Welfare in different equilibrium types

Panel A: Expected welfare gains and losses by source

Equilibrium Uninf. Liq. Dem. Inf. Liq. Dem. Liq Prov.

No participation 0 + 0 +0
LFT Dominance (1− π̄)3

2δ + 0 −n∗CLFT
Nonconditioning
HFT Dominance

(1− π̄)3
2δ + 0 −m∗CHFT

Conditioning
HFT Dominance

φ1(1− π̄)3
2δ + 0 −m∗CHFT

Coexistence φ1(1− π̄)3
2δ + 0 −m∗CHFT − n∗CLFT

Panel B: Expected welfare gains and losses by agent the welfare accrues to

Equilibrium Uninf. Liq. Dem. Liq. Prov. Inf. Liq. Dem.

No participation 0 + 0 +0
LFT Dominance (1− π̄)(3

2δ − S(0, n∗)) + 0 +π̄(µinf − µ− S(0, n∗))
Nonconditioning
HFT Dominance

(1− π̄)(3
2δ − S(m∗, 0)) + 0 +π̄(µinf − µ− S(m∗, 0))

Conditioning
HFT Dominance

φ1(1− π̄)(3
2δ − S(m∗, 0)) + 0 +(1− π̄)(1− φ1)(µinf − µ− S(m∗, 0))

Coexistence φ1(1− π̄)(3
2δ − S(m∗, n∗)) + 0 +(1− π̄)(1− φ1)(µinf − µ− S(m∗, n∗))

The table presents expected welfare by equilibrium type. Panel A presents welfare components by source. Panel B
presents welfare components by recipient. Aggregate expected welfare is obtained by summing over row elements.

To understand the origins of welfare losses, we construct three welfare benchmarks. For the

first welfare benchmark, BM inf , a social planner decides whether HFTs use their signals, while

potential liquidity providers optimize their participation and other trading decisions. For the

second benchmark, BMpart, a social planner makes participation decisions, but leaves all other
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decisions to the liquidity providers. For the third benchmark, BM comb, a social planner decides

on the use of signals and participation, while liquidity providers optimize all other decisions.

For all welfare benchmarks, we require liquidity providers to break even. Hence, our welfare

benchmarks correspond to a social planner’s control over market entry, information access, or

both, while preserving participation incentives and precluding oligopoly rents.

When π̄ ≥ πtox and Condition (30) is satisfied, Conditioning HFT Dominance or Coexistence

materialize as equilibria. These equilibria coincide with all welfare benchmarks, since any

deviation leads to zero welfare or negative expected profits for LFTs.

Lemma 6. When π̄ ≥ πtox and Condition (30) is satisfied, all welfare benchmarks coincide

with the (Conditioning HFT Dominance or Coexistence) equilibrium materializing.

Proof. See Appendix.

When π̄ ∈ (0, πtox) and φ2 ∈ [π, φul2 ], Nonconditioning HFT Dominance is the only equilibrium

if CHFT
γCLFT

< 1, and LFT Dominance is the only equilibrium otherwise. These equilibria coincide

with all three welfare benchmarks in their respective scenarios. Using uninformative signals or

having liquidity provided by liquidity providers with high costs per unit of speed would lower

the expected profitability of the liquidity provision sector as a whole. As a result, participation

would be depressed, expected half spreads increased and liquidity providers would capture more

gains from trade. Since liquidity providers spend all revenues on participation costs, these effects

would lower welfare.

Lemma 7. When π̄ ∈ (0, πtox) and φ2 ∈ [π, φul2 ], all welfare benchmarks coincide with Nonconditioning

HFT Dominance if CHFT
γCLFT

< 1, and with LFT Dominance otherwise.

Proof. See Appendix.

When π̄ ∈ (0, πtox) and φ2 > φul2 , BM inf predicates that informative signals should not

be used, since these impose a winners’ curse on LFTs and may prevent gains from trade from

being realized. Hence, BM inf coincides with Nonconditioning HFT Dominance if CHFT
γCLFT

< 1,

and LFT Dominance otherwise. BMpart coincides with Conditioning HFT Dominance when

CHFT
γCLFT

< K and with LFT Dominance otherwise, for some K < 1. The reason is that when

CHFT
γCLFT

> 1, HFTs have a high cost per unit of speed, which is bad for welfare (following

the intuition above). In Conditioning HFT Dominance and Coexistence equilibria, gains from

trade fail to realize with strictly positive probability, which implies that K < 1. Finally,
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BM comb = BM inf , since markets allocate liquidity provision efficiently in the absence of

information asymmetry among liquidity providers.

Lemma 8. When π̄ ∈ (0, πtox) and φ2 > φul2 , BM inf and BMpart coincide with Nonconditioning

HFT Dominance when CHFT
γCLFT

< 1 and LFT Dominance otherwise. BMpart coincides with

Conditioning HFT Dominance if CHFT
γCLFT

< K and with LFT Dominance otherwise, where K < 1.

Proof. See Appendix.

We can now compare the equilibria in the different settings to the welfare benchmarks

derived above to arrive at the main proposition of this Section:

Proposition 9. When π̄ ∈ (0, πtox) and φ2 > φul2 , the availability of HFT technology may

depress welfare due to excessive information usage and HFT overparticipation. Overparticipation

may even occur if HFTs have the lowest cost per unit of speed ( CHFTγCLFT
< 1). In all other cases,

the availability of HFT technology improves welfare or leaves it unaffected.

Proof. See Appendix.

We can further analyze how welfare is impaired when π̄ ∈ (0, πtox) and φ2 > φul2 . First,

some gains from trade are not realized in expectation (φ1 in front of 3
2δ). Second, more gains

from trade are used to cover welfare reducing participation costs rather than welfare-neutral

informed trading losses. Third, liquidity is provided by parties with a high cost per unit of

speed. When HFTs have a higher cost per unit of speed than LFTs, all three channels are at

work. Otherwise, only the first two channels lead to welfare losses while HFTs cost advantages

partially counter these effects.

Panel B of Table 1 also shows how welfare is distributed. Liquidity providers are welfare-neutral

since they break even. Liquidity demanders capture a larger welfare share as expected half

spreads shrink. Unserved liquidity demand negatively affects the utility of both types of liquidity

demanders. Yet, informed demanders suffer relatively more since they are more likely to be

screened out. Hence, as participation costs for HFT technology decline, uninformed liquidity

demanders capture a larger welfare share. Yet, total expected welfare may shrink, leaving the

absolute effect for them ambiguous. If the availability of HFT technology prevents market

failures, both types of liquidity demanders benefit, but uninformed more since HFTs must have

accurate screening technology.
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6.2 Policy Implications

We now use our model to analyze policy measures that have been recently proposed to curb

negative welfare effects induced by HFTs. In particular, we discuss the following measures

1. imposing transaction taxes on HFTs (directly, or indirectly through exchanges),

2. imposing mandatory liquidity provision,

3. subsidizing liquidity provision when nobody is interested in doing so.

Naturally, these policies are only relevant and desirable to the extent that the availability

of HFT technology impairs welfare. That is, if π̄ ∈ (0, πtox) and φ2 > φul2 .

6.2.1 HFT Transaction Taxes

HFT transaction taxes have been introduced in some jurisdictions, such as France. We

model HFT transaction taxes as an additional cost η for each trade conducted by an HFT. The

per capita expected HFT trading profits in Lemma 4 change to:

ĝHFT (m,n) = gHFT (m,n)− E(η), (31)

ĥHFT (m,n) = hHFT (m,n)− E(η), (32)

where

E(η) =


η(1− π̄)

(
φ1(1−Φ)
n+γm + φ1Φ+(1−φ)

γm

)
, if (12) is not satisfied,

η(1− π̄)
(

(1−Φ)+φ1Φ+(1−φ)
n+γm

)
, otherwise.

(33)

We assume the transaction tax η to be chosen such that

ĝHFT (m,n)− γgLFT (m,n) < CHFT − γCLFT ∀(m,n),

ĥHFT (m,n)− γhLFT (m,n) < CHFT − γCLFT ∀(m,n). (34)

This transaction tax impairs HFT profitability to the extent that HFTs optimally do not

participate and that LFT Dominance remains as the only equilibrium. Interestingly, imposing

such a tax would prevent itself from ever being collected since it would eliminate all HFTs.

Proposition 10. The HFT transaction tax η prevents HFTs from participating. When CHFT
γCLFT

is sufficiently high, welfare improves. The tax is never collected in equilibrium.
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Proof. See Appendix.

As CHFT
γ declines, the right hand sides of Eq. (34) decline and the required transaction

tax is higher. Transaction taxes allow to attain welfare benchmark BMpart by preventing

HFT participation. Yet, transaction taxes are ineffective against inefficient information use and

thereby fail to achieve BM comb. Therefore, transaction taxes cannot capitalize all welfare gains

if HFTs have the lowest cost per unit of speed.

6.2.2 Mandatory Liquidity Provision

Mandatory liquidity provision forces liquidity providers to quote irrespective of the signal

received. As such, this measure provides regulatory control over information usage. Hence, it

allows to attain BM inf , which by Lemma 8 coincides with BM comb. We model mandatory

liquidity provision by having a regulator set φ1 = 1− π̄.

Proposition 11. Equilibria with mandatory liquidity provision yield the same outcomes as

equilibria without informative signals. Welfare then improves.

Proof. See Appendix.

Since mandatory Liquidity Provision allows to attain BM comb, it is possible to capitalize on

welfare benefits resulting from low costs per unit of speed of HFT technology.

The problem with mandatory liquidity provision is enforceability. With advanced trading

equipment technical glitches can occur. Arguably, these are more likely in turbulent times (in

which adverse selection concerns are also higher). Disentangling technical malfunctions from

deliberate quote retraction may be a very difficult.

6.2.3 Contingent Quote Subsidies

Contingent quote subsidies per se do not exist (at least not at large scale). Yet, mechanisms

in a similar spirit have been used in markets. Examples are Designated Market Makers (DMMs)

that are compensated based on the level of their liquidity provision in liquid and illiquid markets,

or better primary market allocations for treasury market dealers that support liquidity in bad

times. One could also directly implement contingent quote subsidies, potentially in combination

with a small transaction fee to make it cost neutral.

We model contingent quote subsidies by supplementing Condition (25) with a conditional

subsidy ω for scenarios in which nobody provides liquidity otherwise. Moreover, we impose a
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transaction fee η that satisfies:

η =


0, if CHFT

γCLFT
> 1

π̄
1−π̄ω, otherwise.

(35)

The subsidy ω we is chosen such that

φ2 ≤
(

1 +
µinf − pliq − ω
pliq − µ+ ω

(
1 +

λ

νliq
f̃−1

(
min

(
CHFT
γ

, CLFT

))))−1

. (36)

Proposition 12. The quote subsidy system outlined above induces HFTs to always quote in an

empty book. As a result, HFTs provide liquidity iff CHFT
γCLFT

≤ 1. Welfare improves as the result

of HFT technology being available.

Proof. See Appendix.

The reason why contingent quote subsidies work is as follows. The subsidy is chosen to

make sure that HFTs always post in an empty book. Consequently Corollary 1 applies, but

with (25) replaced by (36). As a result, liquidity is provided by the liquidity provider with

lowest costs per unit of speed, which maximizes welfare. The transaction fee is chosen to make

the policy self-financing. Therefore, expected trading profits are unaffected compared to the

case without contingent quote subsidies. When HFTs have higher costs per unit of speed than

LFTs, HFTs do not participate (see Proposition 5) and the subsidy is never used. Therefore,

a zero transaction fee is sufficient. When HFTs have lower costs per unit of speed than LFTs,

HFTs provide all liquidity. The subsidy is then paid with probability π̄. It is funded with a

transaction fee on uninformed trades, which is collected with probability 1− π̄.

Contingent quote subsidies allow to attain BM inf , since they make HFTs always quote in an

empty book. Because subsidies offset transaction fees in expectation, expected trading profits

are given by Lemma 2. Hence, BM inf coincides with BM comb (see Lemma 8). As a result, one

can capture welfare benefits resulting from low costs per unit of speed of HFT technology.

7 Empirical Implications

The model yields several empirical implications. Some are not unique to our model and are

therefore not discussed (e.g., liquidly provision shifting from LFT- to HFT-based).
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7.1 Expected Half Spreads

As CHFT
γ decreases the average half spread can in- or decrease, depending on a switch in

possible equilibrium types. If a decrease in CHFT
γ does not induce such a switch, a cost decrease

lowers expected half spreads in all equilibria except LFT Dominance (which is unaffected). The

reason is that lower participation costs lead to more entry and therefor faster undercutting to

p(1). If a drop in CHFT
γ induces a switch, expected half spreads may go down (e.g., a switch from

Coexistence to Conditioning HFT Dominance), or go up (e.g., a switch from LFT Dominance

to Coexistence). The latter implication is new.

Corollary 2. As CHFT
γ declines, expected half spreads decrease when there is no change in

possible equilibrium types. If there is a change in possible equilibrium types as a result, expected

half spreads may either increase or decrease.

Proof. See Appendix.

In line with our prediction, the literature has found effects in both directions. Generally, half

spreads have been found to decrease as HFT costs decrease and HFT presence becomes more

prominent (e.g., Hendershott et al., 2011). Yet, some studies document the opposite effect.

Jørgensen et al. (2018) investigate the effect of imposing a fee on the Oslo stock exchange for

high message to trade ratios. As these are only relevant for limit order users, and more likely to

affect HFTs, we can interpret this policy as a cost increase for HFTs. The diff-in-diff estimate

of this policy measure suggests that increases in CHFT
γ decrease spreads. 13

7.2 The willingness of LFTs to quote at high spreads

The model predicts that in the presence of HFTs, LFTs are less willing to quote far (multiple

ticks) away from the fundamental value due to increased adverse selection. This effect is more

severe as HFT presence is higher.

Corollary 3. The presence of HFTs reduces the willingness of LFTs to quote far from the

fundamental value.

Proof. See Appendix.

This prediction is in line with recent empirical evidence by O’Hara et al. (2019). They find

that HFT presence reduces the willingness of LFTs to quote far from the mid. The mechanism

13Other studies on similar natural experiments in Italy and Canada yield opposite results. This divergence in
findings is consistent with only the Oslo fee change leading to a change in equilibrium type. Our study provides
a possible explanation to reconcile these opposed findings.

35

Electronic copy available at: https://ssrn.com/abstract=2698702



they document differs slightly from ours. They argue that informed HFTs only undercut when

the probability of informed order flow is low. As a result, LFTs are disproportionally likely to

have their quotes executed by informed market orders.14

7.3 Fraction of Liquidity Demand that is Served

As CHFT
γ decreases and the equilibrium shifts away from LFT Dominance, the likelihood of

liquidity demand being served drops. There are two reasons for this liquidity reduction. First,

LFTs provide less liquidity out of fear for a winners’ curse. Second, HFTs as a group are more

likely to strategically stay away since their market share is larger. Together, these lead to a

strictly positive probability of liquidity not being served (which is zero in LFT Dominance).

Corollary 4. As CHFT
γ declines, the likelihood of liquidity demand being served decreases.

Proof. See Appendix.

This empirical implication is hard to empirically test for two reasons. First, the effect is

only observable with changes in equilibrium type, which are rare. Second, liquidity demand

that is not served is hard to observe, identify, and measure. One could look for drops in trading

volume, but these are endogenous and involve demand and supply effects (e.g., as in Internet

Appendix IA.2.2.3). Therefore, we leave the testing of this implication for future research.

7.4 Adverse Selection Costs for LFTs

As CHFT
γ decreases and the possible equilibria shift away from LFT Dominance only, adverse

selection costs for LFTs are affected in two ways. As HFTs enter, adverse selection costs for

LFTs increase as they provide liquidity to order flow that is disproportionately likely to be

informed. This adverse selection cost increase would be the full effect if n were fixed. Yet, LFT

participation is endogenous. As a result, LFTs limit liquidity provision to undercutting, or

abstain altogether. As a result, and counter-intuitively, adverse selection losses for LFTs may

decline as CHFT
γ drops.

Corollary 5. As CHFT
γ declines, the fraction of adverse selection losses borne by LFTs may

decline.

Proof. See Appendix.

14We are confident that our empirical prediction and their finding have the same origin: the increased adverse
selection/winner’s curse that HFTs impose on LFTs. The more general model we present in Internet Appendix
IA.1.3, with νinf < ∞, would generate the same effect resulting from strategic undercutting by HFTs as found
in O’Hara et al. (2019).
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Testing this implication is hard as it is only observable when equilibrium types switch.

If liquidity providers had the same motives for trading, the model would imply that adverse

selection losses for HFTs exceed those for LFTs. This implication is easier to test since it

does not depend on changes in equilibrium types. Brogaard et al. (2014) show that HFTs

suffer adverse selection losses when providing liquidity, but that these are even larger for

nonHFTs. These findings would be evidence against our implication. Yet, the results in

Brogaard et al. (2014) suggest that the assumption of equal trading motives is violated. In

particular, nonHFTs on average lose money on their limit orders, suggesting other trading

motives (such as fundamental trading needs). Therefore, we leave the testing of this implication

for future research.

8 Conclusion

We analyze the consequences of the emergence of HFTs, complementing or replacing LFTs

on financial markets in a long-term equilibrium model with endogenous participation and

technology adoption. We find that with low levels of informed trading HFT speed technology

improves market liquidity and welfare, which is reflected in lower transaction cost for end-users

(as e.g., shown in Menkveld, 2016). However, asymmetric information problems can arise when

HFTs retract in anticipation of toxic order flow (as shown in Anand and Venkataraman, 2016;

Baldauf and Mollner, 2016; Korajczyk and Murphy, 2018). In such situations, only LFTs keep

markets liquid. Yet, they may have been largely crowded out by HFTs (as e.g., described in

Kirilenko and Lo, 2013). Interestingly, this is the situation that markets are heading to as HFT

technology becomes more affordable. This situation will result in a proliferation of information

processing technology of market participants at an unprecedented scale. In the transition period,

markets may adopt HFT technology too early, leading to liquidity and welfare deteriorations.
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Figures

Figure 3: Equilibrium Ranges
Panel A:

Panel B:

Equilibria with information technology 

6 5 4 3 2 1 0 

"' HFT dominance onty , LFT or HFT dominance 

: LFT dominanceorCo-exi9:ence a LFT dominanceonty 

K1 K2 K3

This graph displays the parameter ranges in which the different equilibrium types manifest themselves for the

uninformed case (panel A) and the informed case (Panel B). The ratio of HFT speed cost to LFT speed costs(
CHFT
γCLFT

)
is on the x-axis. The order of the x-axis is reversed to align with the order of exposition in Section

5.2.2.
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Figure 4: LFT Dominance Equilibrium
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This graph displays the indifference curves for LFTs (blue circles) and HFTs (green squares) for different masses

of LFTs and HFTs. The mass of LFTs (n) is displayed on the x-axis and the mass of HFTs corrected for the

speed advantage (mγ) is indicated on the y-axis. The red curve is the indifference curve for LFTs to post a quote

when arriving to an empty book (i.e., to the left of the red curve there is no posting, and vice versa to the right).

Higher positioned indifference curves imply more competitive traders.
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Figure 5: Multiple Equilibria: LFT Dominance and coexistence
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This graph displays the indifference curves for LFTs (blue circles) and HFTs (green squares) for different masses

of LFTs and HFTs. The mass of LFTs (n) is displayed on the x-axis and the mass of HFTs corrected for the

speed advantage (mγ) is indicated on the y-axis. The red curve is the indifference curve for LFTs to post a quote

when arriving to an empty book (i.e., to the left of the red curve there is no posting, and vice versa to the right).

Higher positioned indifference curves imply more competitive traders.
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Figure 6: Multiple Equilibria: LFT Dominance, Conditioning HFT Dominance,
Instable coexistence
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This graph displays the indifference curves for LFTs (blue circles) and HFTs (green squares) for different masses

of LFTs and HFTs. The mass of LFTs (n) is displayed on the x-axis and the mass of HFTs corrected for the

speed advantage (mγ) is indicated on the y-axis. The red curve is the indifference curve for LFTs to post a quote

when arriving to an empty book (i.e., to the left of the red curve there is no posting, and vice versa to the right).

Higher positioned indifference curves imply more competitive traders.
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Figure 7: Conditioning HFT Dominance Equilibrium
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This graph displays the indifference curves for LFTs (blue circles) and HFTs (green squares) for different masses

of LFTs and HFTs. The mass of LFTs (n) is displayed on the x-axis and the mass of HFTs corrected for the

speed advantage (mγ) is indicated on the y-axis. The red curve is the indifference curve for LFTs to post a quote

when arriving to an empty book (i.e., to the left of the red curve there is no posting, and vice versa to the right).

Higher positioned indifference curves imply more competitive traders.
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Appendices

A Proofs

Proof of Proposition 1. Due to time and price priority, Φ = 0 if a ≥ â. Moreover, by assumption,

Φ = 0 if a > pliq. We define min(â − δ, pliq) = pliq if â = ∅ to simplify notation. Assume

that Φ > 0 if a ≤ min(pliq, â − δ) (proven later). Any quotes a ≤ min(p(1) − δ, â − δ) < µ

are loss-making with strictly positive probability and are hence suboptimal. Any quotes a ∈

[p(1),min(â − δ, pliq)] yield strictly positive profits with strictly positive execution probability

and hence carry strictly positive expected profits. Hence, if â ∈ (p(1), pliq], undercutting to

a = p(1) is optimal, while posting a quote with zero execution probability (such as a = p(1)) is

(weakly) optimal if â ≤ p(1).

In equilibrium, a = p(1) is optimally not undercut and has execution probability Φ = 1 if

â > p(1). A quote a = pliq executes if the liquidity demander arrives before the next liquidity

provider arrives to undercut. The arrival rate of liquidity suppliers is given by λ(γm+ n) and,

because liquidity providers are atomistic, is independent of the type of liquidity provider. The

arrival rate of liquidity demanders is given by νliq. Applying standard rules for the calculations

with exponential distributions yields Eq. (7).

Given â > pliq or â = ∅, a liquidity supplier optimally either posts a = pliq or a = p(1). The

former has an execution probability Φ as derived above. The latter has guaranteed execution

and a profit of p(1)− µ. It follows that posting a = p(1) is strictly optimal if

(pliq − µ)Φ < p(1)− µ =
δ

2
,⇒ (37)

3

2
δΦ <

1

2
δ,⇒ (38)

Φ <
1

3
(39)

while setting a = pliq is optimal otherwise.

Proof of Proposition 2. Submitting a quote is only optimal when the expected profit of doing

so is positive. Since Φ ≥ 1
3 by assumption, if it is optimal to quote in an empty book, the

optimal quote equals a = pliq. The expected profit of doing so is positive if

(pliq − µ)P̂ (ζ = liq|ψHFT )Φ(ζ = liq)− (µinf − pliq)P̂ (ζ = inf |ψHFT )Φ(ζ = inf) ≥ 0. (40)
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Rewriting gives Expression (9). Moreover, we have that:

P̂ (ζ = inf |ψHFT ) =


φ2 if s = inf,

1− φ1 if s = liq.

(41)

The execution probabilities are also completely defined, because in the case of informed trading

execution is guaranteed and immediate. In contrast, with uninformed trading, the game reduces

to the uninformed trading game immediately after posting the first quote in an empty book.

Hence, we have:

Φ(ζ = inf) = 1, (42)

Φ(ζ = liq) = Φ. (43)

Substituting these expressions into Inequality (9) and rewriting implies that an HFT will always

quote in an empty book if Condition (10) is satisfied, and never when (11) is satisfied.

Upon arrival to a book with standing best quote â = pliq, there is no risk of informed

trading, and hence Proposition 1 applies, implying that posting a = p(1) is optimal.

Proof of Proposition 3. Submitting a quote is only optimal when the expected profit of doing

so is positive. Since Φ ≥ 1
3 by assumption, if it is optimal to quote in an empty book, the

optimal quote equals a = pliq. The expected profit of doing so is positive if

(pliq − µ)P̂ (ζ = liq|ψLFT )Φ(ζ = liq)− (µinf − pliq)P̂ (ζ = inf |ψLFT )Φ(ζ = inf) ≥ 0. (44)

Rewriting gives Condition (12).

To prove the second part, define the event B that a specific LFT arrives to an empty order

book, let the event HS denote the situation when s = inf (high suspicion by HFTs) and NS

the situation that s = liq (no suspicion by HFTs). Then Bayes rule implies

P (ζ = inf |B) =
χ(B, ζ = inf)

χ(B)
, (45)
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χ(B, ζ = inf) = χ(B|ζ = inf,HS)P (ζ = inf |HS)P (HS)+

χ(B|ζ = inf,NS)P (ζ = inf |NS)P (NS), (46)

χ(B) = χ(B, ζ = inf) + χ(B|ζ = liq,HS)P (ζ = liq|HS)P (HS)+

χ(B|ζ = liq,NS)P (ζ = liq|NS)P (NS), (47)

where χ(·) is the probability density function of a specific LFT arriving to an empty LOB.

Moreover, we have that

χ(B|ζ = inf,HS) = χ(B|ζ = liq,HS) =
1

n
, (48)

χ(B|ζ = inf,NS) = χ(B|ζ = liq,NS) =
1

n+ γm
, (49)

P (HS) = π̄, P (NS) = 1− π̄, (50)

P (ζ = inf |HS) = φ2, P (ζ = liq|HS) = 1− φ2 (51)

P (ζ = inf |NS) = 1− φ1, P (ζ = liq|NS) = φ1 (52)

Substituting in, we get

P̂ (ζ = inf |B) =

1
nφ2π̄ + 1

n+γm(1− φ1)(1− π̄)
1
nφ2π̄ + 1

n+γm(1− φ1)(1− π̄) + 1
n(1− φ2)π̄ + 1

n+γmφ1(1− π̄)
(53)

=

1
nφ2π̄ + 1

n+γm(1− φ1)(1− π̄)
1
n π̄ + 1

n+γm(1− π̄)
. (54)

The partial derivatives (assuming φ2 > π̄) are given by:

∂P̂ (ζ = inf |B)

∂n
=
−γm(1− π̄)π̄(φ1 + φ2 − 1)

(n+ γmπ̄)2
< 0 (55)

∂P̂ (ζ = inf |B)

∂m
=
nγ(1− π̄)π̄(φ1 + φ2 − 1)

(n+ γmπ̄)2
> 0. (56)

If HFTs do not employ a differential strategy upon observing an informed trade (i.e., HFTs

always or never submit a first quote), LFTs cannot learn anything about the state of the world

from observing an empty book and we have that P̂ (ζ = inf |B) = π̄. Upon arrival to a book

with standing best quote â = pliq, there is no risk of informed liquidity demand, and hence

Proposition 1 applies, implying that posting a = p(1) is optimal.
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Proof of Lemma 1. Conditional on execution at a certain price level (i.e., pliq or p(1)), the first

liquidity provider to post a quote at this level transacts. Without loss of generality, let us assume

that the transaction executes at pliq. Moreover, let us denote τLFT and τHFT be the arrival

times of the first LFT and first HFT, respectively. Since waiting times for Poisson arrivals are

exponentially distributed, we have that

P (τLFT < τHFT ) =

∫ ∞
0

P (τLFT < τHFT |τLFT = t)λne−λntdt, (57)

=

∫ ∞
0

P (t < τHFT )λne−λntdt. (58)

We have that P (t < τHFT ) = e−λγmt (CDF of an exponential distribution). Substituting yields

P (τLFT < τHFT ) =

∫ ∞
0

λne−λnte−λγmtdt, (59)

= λn

∫ ∞
0

e−λ(n+γm)tdt, (60)

= λn
−e−λ(n+γm)t

λ(n+ γm)

∣∣∣∣∣
∞

0

, (61)

=
λn

λ(n+ γm)
=

n

(n+ γm)
. (62)

Hence, each group participates in trading profits according to relative market presence so that

the profit share of HFTs equals γm
γm+n , while that for LFTs equals n

γm+n . Moreover, since all

liquidity providers within a group are homogeneous, expected profits are evenly distributed

across the group members, which yields Expressions (14) and (15). The expected aggregate

profits are given by 1
2δ, plus an extra tick δ multiplied with the execution probability Φ because

quoting starts at pliq, which yields Expression (16).

Proof of Proposition 4. Consider Equations (14) to (17). It follows that given n+γm, expected

trading profits net of participation costs for HFTs always strictly exceed those for LFTs iff

CLFT > CHFT
γ . This result must be true in particular when m = 0 or n = 0. Moreover, the

partial derivatives of per capita expected trading profits in Expressions (14) to (17) with respect

to n and m are all strictly negative. By our equilibrium definition, we must have for each player

type in equilibrium that either participation costs equal expected trading profits or that the

participation rate equals zero. As a result we have that n = 0,m > 0 if CLFT > CHFT
γ and

n > 0,m = 0 if CLFT <
CHFT
γ .
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Now define

f(n+ γm) =
Π

n+ γm
, (63)

such that

f(n+ γm) = min

(
CHFT
γ

, CLFT

)
(64)

is an equilibrium condition. Imposing this condition allows us to invert the function f(·) to

obtain equilibrium participation rates of LFTs and HFTs. Substituting Expression (7) into Eq.

(63) yields

y = f(n+ γm) =

(
1

2
δ +

δνliq
νliq + λ(n+ γm)

)
1

n+ γm
⇒ (65)

(n+ γm)y =
1

2
δ +

δνliq
νliq + λ(n+ γm)

⇒ (66)

(n+ γm)y(νliq + λ(n+ γm)) =
1

2
δ(νliq + λ(n+ γm)) + δνliq ⇒ (67)

0 = λy(n+ γm)2 + (νliqy −
λδ

2
)(n+ γm)− 3

2
δνliq ⇒ (68)

n+ γm = f−1(y) =
−(νliqy − λδ

2 )±
√

(νliqy − λδ
2 )2 + 6λyδνliq

2λy
. (69)

n and γm need to be positive and hence their sum needs to be positive too. There is only one

positive root, namely

n+ γm = f−1(y) =
−(νliqy − λδ

2 ) +
√

(νliqy − λδ
2 )2 + 6λyδνliq

2λy
, (70)

=
1
2δ

2y
−
νliq
2λ

+

√√√√(νliq
2λ
−

1
2δ

2y

)2

+
3

2

δνliq
λy

, (71)

≥
1
2δ

2y
−
νliq
2λ

+

√√√√(νliq
2λ

+
1
2δ

2y

)2

=
δ

2y
. (72)

Hence the inverse of f(·) is one-to-one and monotonic, as basic calculus predicts (since f(·) is

continuous and monotonic on its domain). When we set y = min(CLFT ,
CHFT
γ ), a closed form

solution for n∗ or γm∗ can be obtained in the uninformed case. To obtain m∗, we need to divide

by γ to obtain (18) for m∗.

We have that S = 1
2δ+Φδ. Substituting the expression for Φ and imposing that (n+γm) =
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(n∗ + γm∗) yields Expression (19).

Finally, we prove that the availability of HFT technology strictly improves liquidity iff

CHFT
γ < CLFT . Since n and γm only show up in the denominator of Φ and only summed together

and moreover all elements of Φ are positive, Φ and thereby S are monotonically declining in

n and γm. It follows that the availability of HFT technology strictly reduces S if and only

if ñ < γm∗, where ñ is the n that solves hLFT (0, n) = CLFT (the mass of LFTs that would

materialize in the absence of HFT technology). ñ can be derived as n∗ for the hypothetical case

that CHFT =∞. Now we assume that CHFT
γ ≤ CLFT and differentiate the expressions for γm∗

and ñ to get

∂γm∗

∂CHFTγ

=
∂ñ

∂CLFT
< 0. (73)

Now assume that CHFT
γ = CLFT . Substituting into (18) yields that γm∗ = ñ. Together with

Eq. (73), it shows that γm∗ > ñ iff CHFT
γ < CLFT . Hence, the availability HFT technology

strictly improves liquidity iff CHFT
γ < CLFT .

Proof of Lemma 2. By assumption all players act in the trading stage as in Proposition 1.

With probability (1− π̄), there is no informed liquidity demand and expected per capita profits

of providing liquidity to uninformed order flow for HFTs and LFTs are given by Expression

(14) and (15), respectively. With probability π̄, there is informed liquidity demand leading to

informed trading losses of size (µinf − pliq). In expectation these are borne by all liquidity

providers according to their relative presence due to the Poisson arrival processes. Expected

trading profits for HFTs and LFTs are then given by

Eâ (ΠHFT (R∗HFT (â)|m,n)) = (1− π̄)
γΠ

γm+ n
− π̄ γ

n+ γm
(µinf − pliq) =

γΠ̃

γm+ n
, (74)

Eâ (ΠLFT (R∗LFT (â)|m,n)) = (1− π̄)
Π

γm+ n
− π̄ 1

n+ γm
(µinf − pliq) =

Π̃

γm+ n
, (75)

with Π̃ given by (20). Participation costs are unchanged since these are unaffected by informed

trading losses, which completes the proof.

Proof of Lemma 3. If expected trading profits are negative, participation is never optimal since

participation costs are strictly positive. Aggregate expected trading profits in the absence of
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informed signals are given by Π̃ due to Lemma 2. In order for participation by some liquidity

provider to be profitable we need that

Π̃− nCLFT −mCHFT > 0⇒ (76)

(1− π̄)δ(
1

2
+ Φ) > π̄(µinf − µ−

3

2
δ) + nCLFT +mCHFT . (77)

We have that

lim
n+γm→0

Φ = 1, lim
n+γm→0

+nCLFT +mCHFT = 0, (78)

such that (76) implies that

(1− π̄)δ(
3

2
) > π̄(µinf − µ−

3

2
δ). (79)

is a sufficient condition for participation. Rewriting yields (22).

Proof of Proposition 5. Because of Lemma 2, the results of Proposition 4 directly apply, but

with expected trading profits for HFTs and LFTs given by Expressions (74) and (75), respectively

and n∗ and m∗ derived as follows. We have that

f̃(n+ γm) = min

(
CHFT
γ

, CLFT

)
(80)

is an equilibrium condition. Imposing this condition allows us to invert the function f̃(·) to

obtain equilibrium participation rates of LFTs and HFTs. Substituting Expression (7) into Eq.

(21) yields

y = f̃(n+ γm) =

(
c+

(1− π̄)δνliq
νliq + λ(n+ γm)

)
1

n+ γm
⇒ (81)

(n+ γm)y = c+
(1− π̄)δνliq

νliq + λ(n+ γm)
⇒ (82)

(n+ γm)y(νliq + λ(n+ γm)) = c(νliq + λ(n+ γm)) + (1− π̄)δνliq, (83)

where

c =(1− π̄)
δ

2
− π̄(µinf − pliq). (84)
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Rewriting yields

0 = λy(n+ γm)2 + (νliqy − λc)(n+ γm)− νliq(c+ δ(1− π̄))⇒ (85)

n+ γm = f̃−1(y) =
−(νliqy − λc)±

√
(νliqy − λc)2 + 4λyνliq(c+ (1− π̄)δ)

2λy
. (86)

n and γm need to be positive and hence their sum needs to be positive too. There is at most

one positive root, namely

n+ γm = f̃−1(y) =
−(νliqy − λc) +

√
(νliqy − λc)2 + 4λyνliq(c+ (1− π̄)δ)

2λy
. (87)

Hence the inverse of f̃(·) is one-to-one and monotonic, as basic calculus predicts (since f̃(·) is

continuous and monotonic on its domain). When we set y = min(CLFT ,
CHFT
γ ), a closed form

solution for n∗ or γm∗ arises. To obtain m∗, we need to divide by γ to obtain (23) for m∗.

Proof of Corollary 1. Let us assume that Inequality (10) is satisfied in equilibrium. In this

setting, HFTs always quote in an empty book and hence we resort to the case with speed only.

Due to Proposition 5, liquidity is provided exclusively by the player type with the lowest cost

per unit of speed (i.e., HFTs when min
(
CHFT
γ , CLFT

)
= CHFT

γ and LFTs otherwise). Hence,

f̃−1
(

min
(
CHFT
γ , CLFT

))
yields the equilibrium participation mass n∗ if LFTs have the lowest

cost per unit of speed and γm∗ otherwise. Inequality (25) then ensures that Inequality (10) is

satisfied in equilibrium.

Proof of Proposition 6. The proof is structured as follows. We first show existence of different

equilibrium types and combinations of possible equilibria (in case of multiple equilibria). Next,

we derive equilibrium participation rates for LFTs and HFTs in closed form for each of the

possible equilibrium types. Finally, we derive the thresholds K1,K2,K3 as the unique solutions

for the equations that arise from intersections of equilibrium conditions.

As a preliminary step, we define auxiliary functions to facilitate our exposition

h̃HFT (m,n) =
hHFT
γ

, (88)

g̃HFT (m,n) =
gHFT
γ

. (89)
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Note that in equilibrium, we need to have that m = 0, gHFT (m,n) = CHFT , or hHFT (m,n) =

CHFT . This condition is equivalent to having m = 0, g̃HFT (m,n) = CHFT
γ , or h̃HFT (m,n) =

CHFT
γ , since h̃HFT (m,n) and g̃HFT (m,n) are scalar multiplications of hHFT (m,n) and gHFT (m,n),

respectively. We also define Dg as the domain of gk(m,n) and Dh the domain of hk(m,n).

We first prove existence of LFT Dominance only, Conditioning HFT Dominance only, and

multiple equilibria regions.

We start by assuming that CLFT <<
CHFT
γ , such that

hLFT (m,n)− CLFT > h̃HFT (m,n)− CLFT
γ

, (90)

gLFT (m,n)− CLFT > g̃HFT (m,n)− CHFT
γ

, (91)

for all (m,n) on their respective domains. These inequalities hold in particular when Eâ(ΠLFT (R∗LFT (â), â|0, n)) =

CLFT . Hence, an equilibrium exists with m = 0. When m = 0, Condition (12) is trivially

satisfied and LFTs participate in an empty book. Hence, liquidity is always offered. Moreover,

since m = 0, all liquidity is provided by the liquidity provider with the lowest cost per unit

of speed. Since LFTs have no conditioning information, the expressions for equilibrium LFT

participation rates and expected half spreads are identical to those in Proposition 5. Moreover,

this equilibrium is unique since ∂hLFT (0,n)−CLFT
∂n < 0 for all n and by definition, Condition (4)

cannot be satisfied with strictly positive m, which completes the proof that LFT dominance

exists as a unique equilibrium.

Now we show the existence of multiple equilibria. We start by assuming Condition (91) to

be violated in at least one point on Dg. Since

0 > −
∂g̃HFT
∂n

g̃HFT
∂γm

≥ −
∂gLFT
∂n
gLFT
∂γm

(92)

on Dg
15, the condition that gLFT (m,n)−CLFT < g̃HFT (m,n)− CHFT

γ in at least one point on

Dg implies that either Condition (91) is violated throughout Dg, or that there is exactly one

point where gLFT (m,n)−CLFT = g̃HFT (m,n)− CHFT
γ . As a result, an equilibrium other LFT

Dominance exists.

15
∂g̃HFT
∂n

g̃HFT
∂γm

and
∂gLFT
∂n

gLFT
∂γm

are essentially the equilibrium marginal rates of substitution for γm vs n for HFTs and

LFTs, respectively. These correspond, respectively, to the slopes of the green and blue curves in Fig. 4 to 7.
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To complete the proof that multiple equilibria can materialize, we must show that a combination

(CLFT ,
CHFT
γ ) exists such that Condition (91) is violated in some point(s) on Dg and that there is

an n such that hLFT (0, n)−CLFT = 0 and h̃HFT (0, n)−CHFT
γ < 0. Now we pick (CL,

CHFT
γ ) such

that gLFT (m̃, 0) = CLFT and g̃HFT (m̃, 0) = CHFT
γ for some m̃. This way of picking (CL,

CHFT
γ )

ensures that Condition (91) is violated in some point and that (m̃, 0) is an equilibrium on Dg.

It follows that

CHFT
γ
− CLFT = (1− π̄)

φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)
γm̃

> 0. (93)

Moreover, we have that

∂gLFT
∂n
gLFT
∂γm

= 1, (94)

and hLFT (0, n|n = γm̃) > gLFT (0, n|n = γm̃). It follows that ñ > γm̃, where ñ is defined as in

the proof of Proposition 4. Now we need to show that h̃HFT (0, ñ) < CHFT
γ . We have that

(hLFT (0, ñ)− CLFT )−
(
h̃HFT (0, ñ)− CHFT

γ

)
=
CHFT
γ
− CLFT + π̄

(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)
ñ

(95)

= (1− π̄)
φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)

γm̃
+ π̄

(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)
ñ

(96)

≥ (1− π̄)
φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)

ñ
+ π̄

(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)
ñ

.

(97)

Substituting φ2 by Expression (1) and rewriting yields

(hLFT (0, ñ)− CLFT )−
(
h̃HFT (0, ñ)− CHFT

γ

)
≥

(1− π̄)Φ(pliq − µ)− π̄(µinf − pliq)
ñ

(98)

≥ 0, (99)

where the last inequality is due to Inequality (12) being satisfied on Dh by definition. Hence,

(0, ñ) is also an equilibrium, which completes the proof on the existence of multiple equilibria.

Now assume that Conditions (90) and (91) are violated in every point in Dh and Dg,

respectively. Since hLFT (m,n) < h̃HFT (m,n) and gLFT (m,n) < g̃HFT (m,n), Conditions (90)
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and (91) are violated particularly if CLFT ≥ CHFT
γ . Requiring zero profit in equilibrium implies

that Conditioning HFT Dominance is the only possible equilibrium.

We now derive and participation rates in all possible equilibria in closed form below (except

for the LFT Dominance ones, which have been derived before in Proposition 5). We have that

gLFT (m,n) = (1− π̄)φ1(1− Φ)
1
2δ

n+ γm
, (100)

= (1− π̄)φ1

(
1−

νliq
νliq + λ(n+ γm)

) 1
2δ

n+ γm
, (101)

= (1− π̄)φ1
λ(n+ γm)

νliq + λ(n+ γm)

1
2δ

n+ γm
, (102)

= (1− π̄)φ1
λ1

2δ

νliq + λ(n+ γm)
. (103)

Equating gLFT (m,n) to CLFT and solving for (n+ γm) yields

gLFT (m,n) = CLFT ⇒ (104)

(n+ γm) =
(1− π̄)φ1λ

1
2δ

λCLFT
−
νliq
λ

=
(1− π̄)φ1

1
2δ

CLFT
−
νliq
λ
. (105)

Equilibria on Dg yield an interior solution with gLFT (m,n) = CLFT as derived above, or a

corner solution with gLFT (m,n) < CLFT such that n = 0. We work out both scenarios to get

a full characterization of all possible equilibria.

We have that

g̃HFT (m,n) = gLFT (m,n) +
1

γm
(1− π̄)

(
φ1Φ

3

2
δ − (1− φ1)(µinf − µ−

3

2
δ)

)
, (106)

= gLFT (m,n) +
1

γm
(1− π̄)

(
φ1

νliq
νliq + λ(n+ γm)

3

2
δ − (1− φ1)(µinf − µ−

3

2
δ)

)
.

(107)

For any interior solution, we substitute from Eq. (104) to get

g̃HFT (m,n|gLFT (m,n) = CLFT ) = CLFT +
1

γm
(1− π̄)

(
φ1

νliqCLFT
1
2δλ(1− π̄)

3

2
δ − (1− φ1)(µinf − µ−

3

2
δ)

)
.

(108)

Note that this expression does not depend on n anymore. Setting gHFT (m,n) = CHFT
γ and
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solving for m yields

m =
1

CHFT − γCLFT
(1− π̄)

(
φ1

νliqCLFT
1
2δλ(1− π̄)

3

2
δ − (1− φ1)(µinf − µ−

3

2
δ)

)
. (109)

For a corner solution where n = 0, we substitute n = 0 to get

g̃HFT (m, 0) =
1

γm
(1− π̄)

(
1
2φ1δλγm+ 3

2φ1δνliq

νliq + λγm
− (1− φ1)(µinf − µ−

3

2
δ)

)
. (110)

Setting g̃HFT (m, 0) = CHFT
γ and solving for m yields a quadratic expression of the form em2 +

ξm+ c = 0, which can be solved with standard quadrature rules:

m =
−ξ ±

√
ξ2 − 4eσ

2e
, (111)

where

e = λγCHFT , (112)

ξ = νliqCHFT − (1− π̄)

(
1

2
φ1δλγ − (1− φ1)λ(µinf − µ−

3

2
δ)

)
, (113)

σ = (1− π̄)νliq((1− φ1)(µinf − µ)− 3

2
δ). (114)

This equation only has at most one positive root since (1−φ1)(µinf −µ)− 3
2δ < 0 and hence

σ < 0, which gives at most one corner equilibrium.

On Dh we can have a corner equilibrium with m = 0. Since this equilibrium involves

only LFTs, it conforms to the results from Proposition 5. There could also be an interior

equilibrium where hLFT = CLFT and h̃HFT = CHFT
γ are jointly satisfied. Solving for (n+ γm)

on the indifference curve h̃HFT = CHFT
γ once again involves solving for the positive root of

a quadratic function (which we do not do in the interest of brevity since this equilibrium is

trembling-hand-imperfect).

Now we solve for the thresholds K1, K2, and K3. We solve first for K3. LFT Dominance is
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not an equilibrium when

h̃HFT (0, ñ)− CHFT
γ

> hLFT (0, ñ)− CLFT = 0,⇒ (115)

CLFT −
CHFT
γ

> π̄
(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)

ñ
,⇒ (116)

CHFT
γCLFT

< K3 = 1− π̄
(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)

ñCLFT
. (117)

We now solve for K2. When CHFT
γ = K2, we must have that

gLFT (m̄, 0) = CLFT , (118)

because ∂gLFT
∂m < 0, ∂gLFT∂n < 0 on Dg. We can solve for m̄:

gLFT (m̄, 0) = CLFT ,⇒ (119)

CLFT = (1− π̄)φ1(1− Φ)
1
2δ

γm̄
,⇒ (120)

CLFT
(1− π̄)φ1

=
1
2δ

γm̄

λγm̄

νliq + λγm̄
=

1
2δλ

νliq + λγm̄
,⇒ (121)

γm̄ =
1
2δ(1− π̄)φ1

CLFT
−
νliq
λ
, (122)

m̄ =
1
2δ(1− π̄)φ1

γCLFT
−
νliq
γλ

. (123)

We can now rearrange (109) and substitute m̄ to obtain the condition that Coexistence equilibria

are not possible anymore:

CHFT
γ

< CLFT +
1

m̄
(1− π̄)

(
φ1

νliqCLFT
1
2δλ(1− π̄)

3

2
δ − φ1(µinf − µ−

3

2
δ)

)
= K2. (124)

Finally, we solve for K1. Co-existence is possible when for some m, (109) holds. Rewriting

gives that Coexistence is possible when

K2 ≤
CHFT
γ

< K1 = CLFT +
1

m̆
(1− π̄)

(
φ1

νliqCLFT
1
2δλ(1− π̄)

3

2
δ − φ1(µinf − µ−

3

2
δ)

)
, (125)

where m̆ is the minimum value for m such that (109) holds. Let n̆ be the corresponding n

in the Coexistence equilibrium with m = m̆. Now we need to derive m̆, which we cannot do

directly. However, we can first derive all combinations (m,n) that correspond to Coexistence.

For Coexistence, we need gLFT (m,n) = CLFT , which is particularly true for (m,n) = (m̆, n̆).
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We can solve this equation towards (n̆+ γm̆) in the same way we solved for m̃:

n̆+ γm̆ =
1
2δ(1− π̄)φ1

CLFT
−
νliq
λ
,⇒ (126)

m̆ =
1
2δ(1− π̄)φ1

γCLFT
−
νliq
γλ
− n̆

γ
. (127)

We finally solve for n̆ to complete our derivation. Condition (12) binds for this Coexistence

equilibrium. We first define

X = n̆+ γm̆ =
1
2δ(1− π̄)φ1

CLFT
−
νliq
λ
. (128)

Substituting X into (54) and imposing n = n̆, we obtain

P̂ (ζ = inf |B) =
1
n̆φ2π̄ + (1− φ1)(1− π̄)X−1

1
n̆ π̄ + (1− π̄)X−1

. (129)

Making (12) bind, we get

3
2δνliq

νliq + λX
(1− P̂ (ζ = inf |B)) = (µinf − pliq)P̂ (ζ = inf |B). (130)

We define

F =
3
2δνliq

νliq + λX
, (131)

E = (µinf − pliq). (132)

Substituting and solving, we get

P̂ (ζ = inf |B) =
F

F + E
. (133)

Substituting (129) into (133), we get

1
n̆φ2π̄ + (1− φ1)(1− π̄)X−1

1
n̆ π̄ + (1− π̄)X−1

=
F

F + E
. (134)
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Rearranging, we get

n̆ =
π̄(φ2(F + E)− F )

(1− π̄)X−1(φ1(F + E)− E)
, (135)

which allows us to get K1 by substitution of the expressions for n̆ and m̆.

Proof of Proposition 7. We first prove that the availability of HFT technology with a higher cost

per unit of speed than LFT technology can both increase and decrease expected half spreads.

The proof is by numerical example. We set νliq = 0.05, λ = 0.1, µ = 8, µinf = 11, π̄ = 0.05,

φ1 = 0.98, δ = 1, CLFT = 1.1801 and obtain the following expected half spreads for different

values of CHFT
γ .

CHFT
γ 20 14 1.5 1.3 1.25

m 0 0.08 0.54 0.6 0.62

n 0.61 0.01 0 0 0

Φ 0.339 0.776 0.367 0.342 0.335

S 0.872 1.281 0.879 0.856 0.848

Ŝ 0.872 1.292 0.910 0.888 0.881

We continue by showing that with multiple equilibria, Ŝ in Coexistence and Conditioning

HFT Dominance equilibria is higher than in LFT Dominance. For LFT Dominance (12) is

satisfied, so Ŝ = S. It follows from (29) that it is sufficient to show that Φ for LFT Dominance

is lower than for Coexistence and Conditioning HFT Dominance. Showing this is equivalent to

showing that n∗ + γm∗ for LFT Dominance is higher than for Coexistence and Conditioning

HFT Dominance. We have that

−
∂hLFT
∂n

hLFT
∂γm

> −
∂h̃HFT
∂n

h̃HFT
∂γm

= −1, (136)

and that h̃HFT and hLFT are continuously differentiable on Dh. Moreover, we have that

h̃HFT (m, 0) > g̃HFT (m, 0), (137)

if h̃HFT were to exist onDg. Now assume that multiple equilibria are possible, which implies that

hLFT (0, n∗)− CLFT ≥ h̃HFT (0, n∗)− CHFT
γ . Hence, it must be that the aggregate equilibrium

competition intensity (n∗ + γm∗) in LFT Dominance is higher than in any equilibrium on Dg.
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Finally, we show that Ŝ can increase as a result of the availability of HFT technology,

even when CHFT
γCLFT

< 1. The proof is by numerical example. We set νliq = 0.05, λ = 0.1,

µ = 8, µinf = 11, π̄ = 0.05, φ1 = 0.98, δ = 1, CHFT
γ = 1.18, CLFT = 1.1801. Solving

yields ñ = 0.68, γm∗ = 0.70. Filling in the expressions for Φ and Ŝ, we get Ŝ = 0.9569 for

the Conditioning HFT Dominance equilibrium when evaluated at these parameter values and

m∗ and Ŝ = 0.9525 for the hypothetical LFT Dominance equilibrium in the absence of HFT

technology evaluated at these parameters and ñ.

Proof of Lemma 5. Aggregate participation costs for HFTs scale linearly with m. Hence, when

aggregate expected trading profits are strictly positive, it is always possible to find an m such

that expected trading profits equal expected participation costs. Aggregate expected trading

profits for HFTs with informed signals are given by mgHFT (m,n). We have that

mgHFT (m,n) > 0⇒ (138)

gLFT (m,n) + (1− π̄)φ1
3

2
δΦ > (1− π̄)(1− φ1)(µinf − µ−

3

2
δ). (139)

When φ1 > (1− π̄), the signal is informative and the condition above is tighter than (22), such

that no HFT participation implies no LFT participation. Moreover, we have that

lim
n+γm→0

Φ = 1, (140)

Hence gLFT (m,n) disappears in the limit and

(1− π̄)φ1
3

2
δ > (1− π̄)(1− φ1)(µinf − µ−

3

2
δ) (141)

is a sufficient condition for participation. Rewriting yields (30).

Proof of Proposition 8. Due to Lemma 5, there is no HFT nor LFT participation when (30) is

violated. When π̄ ≥ πtox, but (30) is satisfied, HFTs optimally post in an empty book when

s = liq due to Proposition 2. Moreover, due to Proposition 3, it is never optimal for LFTs

to post in an empty book. Hence, expected trading profits for HFTs and LFTs are given by

gHFT (m,n) and gLFT (m,n), respectively. Requiring zero profit for HFTs and LFTs requires
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solving the system gHFTs(m,n) = CHFT , gLFT (m,n) = CLFT or gHFTs(m, 0) = CHFT . Since

−
∂gLFT (m,n)

∂n
∂gLFT (m,n)

∂m

< −
∂gHFT (m,n)

∂n
∂gHFT (m,n)

∂m

, (142)

∂gHFT (m,n)

∂m
,
∂gLFT (m,n)

∂m
,
∂gHFT (m,n)

∂n
,
∂gLFT (m,n)

∂n
< 0, (143)

and

lim
n→∞

gHFT (m,n) > 0∀m, (144)

a solution always exists and is unique. Since the same equations are solved as in Proposition 6, it

corresponds to Coexistence with (m,n) = (m∗, n∗) as in Proposition 6 or to Conditioning HFT

Dominance with (m,n) = (m∗, 0) as in Proposition 6. Due to Proposition 6, transactions take

place with strictly positive probability, such that liquidity is higher than in the case without

HFT technology in which there was a complete absence of trading.

Proof of Lemma 6. The zero-profit requirement implies that not using information yields zero

welfare as otherwise there are no strictly positive values for m or n that allow for strictly

positive expected trading profits. Proposition 8 and Panel B of Table 1 indicate that strictly

positive expected trading profits and welfare are possible in Conditioning HFT Dominance or

Coexistence equilibria. Hence, using information is strictly optimal from a welfare perspective.

Irrespective of whether HFTs use information, LFTs optimally refrain from posting in an empty

book. Given that HFTs use informative signals and LFTs refrain from posting in an empty

book, expected trading profits for HFTs and LFTs are given by gHFT (m,n) and gLFT (m,n),

respectively. Imposing a zero-profit requirement for HFTs and LFTs requires solving the system

gHFTs(m,n) = CHFT , gLFT (m,n) = CLFT or gHFTs(m, 0) = CHFT . Since

−
∂gLFT (m,n)

∂n
∂gLFT (m,n)

∂m

< −
∂gHFT (m,n)

∂n
∂gHFT (m,n)

∂m

, (145)

∂gHFT (m,n)

∂m
,
∂gLFT (m,n)

∂m
,
∂gHFT (m,n)

∂n
,
∂gLFT (m,n)

∂n
< 0, (146)
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and

lim
n→∞

gHFT (m,n) > 0∀m, (147)

a solution always exists and is unique. Since the same equations are solved as in Proposition

6, the solution corresponds to Coexistence with (m,n) = (m∗, n∗) as in Proposition 6 or to

Conditioning HFT Dominance with (m,n) = (m∗, 0) as in Proposition 6. Since the socially

optimal use of information coincides with the equilibrium use of information and the socially

optimal participation rates coincide with equilibrium participation rates, the equilibrium outcome

coincides with all three welfare benchmarks.

Proof of Lemma 7. The proof is by contradiction. Assume that informative signals are used

when φ2 ∈ [π̄, φul2 ]. φ2 ∈ [π̄, φul2 ], implies that Condition (12) is satisfied, because P (ζ =

inf |B) < φ2, where B denotes the event of arriving to an empty book (substitute (1) into (54)).

Hence, LFTs optimally quote in an empty book. Moreover, since all uncertainty about ζ is

resolved after the first quote has been posted, undercutting happens with intensity λ(γm+ n),

as before. Hence, aggregate expected trading profits for given values of m and n must equal Π̃

due to Lemma 2. Using informative signals reduces HFT profitability, which implies that LFT

profitability must improve. When LFTs have the lowest cost per unit of speed, requiring zero

profit leads to LFT Dominance with n = n∗ as in LFT Dominance of Proposition 6, because

LFT profits always strictly exceed HFT profits. When HFTs have the lowest cost per unit of

speed, requiring zero profit may still lead to n > 0. In that case, some liquidity is provided

by a liquidity provider with the highest cost per unit of speed. Since aggregate trading profits

Π̃ are monotonically decreasing in n and γm, it must be that n + γm < γm∗ with m∗ as

in NonConditioning HFT Dominance. As a result, S(m,n) > S(m∗, 0). When all liquidity

demand is served, expected utility of uninformed and informed liquidity demanders is given

by (1 − π̄)(3
2δ − S) and π̄(µinf − µ − S), respectively, while liquidity providers break even.

Hence, aggregate welfare is declining in S. Hence, using informative signals cannot be socially

optimal. Given the expected profits in Lemma 2, Proposition 5 shows that imposing zero-profit

conditions yield a unique solution for (m∗, n∗). Hence, the equilibrium outcome must coincide

with all welfare benchmarks.
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Proof of Lemma 8. We start out by proving the result for BMpart. Take as given that signals

are used. Optimal behavior of HFTs and LFTs in the trading stage is then identical to that

in Propositions 2 and 3, respectively. As a result, expected profits are given by gHFT (m,n)

and hHFT (m,n) for HFTs and gLFT (m,n) and hLFT (m,n) for LFTs. Requiring zero profit for

HFTs and LFTs results in fixed points corresponding to Conditioning HFT Dominance, LFT

Dominance, Coexistence and Instable coexistence equilibria. Whenever Instable Coexistence is

possible, LFT Dominance is also possible. In Instable coexistence some liquidity is provided

by liquidity providers with the highest cost per unit of speed while liquidity demand is always

served. By the same argument that is used in the proof of Lemma 7, Instable coexistence

must be welfare inferior to LFT Dominance so it can never coincide with any of the welfare

benchmarks.

We now compare Conditioning HFT Dominance, LFT Dominance, and Coexistence. As a

first step, we substitute (29) into the expressions in Panel B of Table 1 to obtain the expected

welfare in case of Conditioning HFT Dominance:

(1− π̄)φ1
3

2
δ − Ŝ(m∗, 0) + (1− π̄)(1− φ1)(µinf − µ) + π̄(pliq − µ), (148)

and in the case of Coexistence:

(1− π̄)φ1
3

2
δ − Ŝ(m∗, n∗) + (1− π̄)(1− φ1)(µinf − µ) + π̄(pliq − µ), (149)

expressed as a function of Ŝ.

We now show that when multiple equilibria exist, LFT Dominance always strictly dominates

the other equilibria in terms of aggregate welfare. We have that φ1 ∈ (1− π̄, 1], such that

π̄(µinf − µ) > (1− φ1)(µinf − µ) + π̄(pliq − µ). (150)

Moreover, we have that in case of multiple equilibria, Ŝ for LFT Dominance is lower than

that Ŝ for Conditioning HFT Dominance or Coexistence due to Proposition 7. It then follows

immediately from expressions (148) and (149) that any other equilibrium than LFT Dominance

comes at a welfare loss as long as LFT Dominance is one of the possible equilibria.

We now show that there are always values for CHFT
γ ≤ CLFT for which welfare is lower

than with LFT Dominance, were it to exist (i.e., if HFTs were banned). Assume that CHFT
γ =
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CLFT . Define ñ as in the proof of Proposition 4. We have that
gHFT ( ñ

γ
,0)

γ > hLFT (0, ñ) due to

information processing technology and LFTs shunning an empty book. As a result, γm∗ > ñ,

which implies m∗CHFT > ñCLFT . Welfare gains from uninformed trades are only a fraction

φ1 < 1 of those when HFT technology were absent. It then follows from the expressions in

Panel A of Table 1 that aggregate welfare is strictly lower when CHFT
γ = CLFT . Since aggregate

welfare of the Conditioning HFT Dominance equilibrium is continuously declining in CHFT
γ there

must be values for CHFT
γ < CLFT for which welfare is also lower. Hence, BMpart coincides with

Conditioning HFT Dominance if CHFT
γCLFT

< K ≤ 1, where K < 1, and with LFT Dominance

otherwise.

We continue by showing the results for BM inf and BM comb. Now take as given that signals

are not used. Analogous to the proof of Lemma 7, it follows that a fixed point corresponding with

Nonconditioning HFT Dominance maximizes welfare when CHFT
γCLFT

< 1 and one corresponding

with LFT Dominance otherwise. These also happen to be the respective equilibria in case signals

are not used. To determine BM comb, we must compare the maximum welfare when information

is used vs the maximum welfare when information is not used. Panel A of Table 1 shows that

when m∗ for Conditioning HFT Dominance exceeds m∗ for Nonconditioning HFT Dominance,

Nonconditioning HFT Dominance must come at higher welfare since φ1 ≤ 1 and CHFT > 0.

Panel B of Table shows that when m∗ for Conditioning HFT Dominance is smaller or equal

to m∗ for Nonconditioning HFT Dominance, Nonconditioning HFT Dominance must come at

higher welfare since φ1 ≤ 1, (1 − π̄)(1 − φ1) < π̄, and S(m∗, 0) is declining in m∗. Hence,

BM comb coincides with Nonconditioning HFT Dominance when CHFT
γCLFT

< 1 and with LFT

Dominance otherwise. Since privately optimal participation decisions conditional on not using

signals coincide with socially optimal participation decisions, BM comb and BM inf coincide.

Proof of Proposition 9. Lemmas 6 and 7 show that when π̄ ≥ πtox and Condition (30) is satisfied

or when π̄ ∈ (0, πtox) and φ2 ≤ φul2 , equilibrium outcomes coincide with all welfare benchmarks.

When π̄ ∈ (0, πtox) and φ2 > φul2 , Lemma 8 shows that the equilibria that can materialize with

strictly positive HFT participation can differ from the different welfare benchmarks established.

In particular, the proof of Lemma 8 shows Conditioning HFT Dominance falls short of BM inf ,

which leads to the conclusion that welfare is forgone due to inefficient use of information.

Lemma 8 also shows that when CHFT
γCLFT

is sufficiently large, the Conditioning HFT Dominance
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and Coexistence equilibria with m∗ > 0 fall short of BMpart for which m∗ = 0. This result

implies HFT overparticipation.

Proof of Proposition 10. Assume that CHFT
γCLFT

is large enough to rule out Conditioning HFT

Dominance equilibria in which welfare is higher than LFT Dominance, were it to exist. Moreover,

assume that η is implemented according to Conditions (34).

Consider any pair (m,n) for which gLFT (m,n) = CLFT or hLFT (m,n) = CLFT . Due to

(34), it must be that gHFT (m,n) < CLFT or hHFT (m,n) < CLFT , which is particularly true

for gHFT (m, 0) and hHFT (0, n). Moreover, Conditions (34) preclude the situation in which

ĝHFT (m,n)− γgLFT (m,n) = CHFT − γCLFT or ĥHFT (m,n)− γhLFT (m,n) = CHFT − γCLFT

for any (m,n). As a result, m∗ = 0 and LFT dominance is the only possible equilibrium. Due

to Proposition 9, LFT Dominance yields strictly higher welfare than any other equilibrium in

these situations. Consequently, there must be a welfare improvement. Since m∗ = 0 and taxes

are only collected on trades conducted by HFTs, the tax is never collected in equilibrium.

Proof of Proposition 11. Identity (1) and Proposition 2 imply that if φ1 = 1 − π̄, a quote

is always posted irrespective of the signal. Proposition 5 then applies. When CHFT
γCLFT

> 1,

then LFT Dominance arises and Nonconditioning HFT Dominance otherwise. Proposition

9 shows that LFT Dominance yields higher welfare than Conditioning HFT Dominance when

CHFT
γCLFT

> 1. Moreover, Proposition 9 shows that Nonconditioning HFT Dominance yields higher

welfare than Conditioning HFT dominance, which completes the proof that welfare improves

as a consequence of mandatory liquidity provision.

Proof of Proposition 12. It is always optimal for an HFT to quote in an empty book when

φ2(µinf − pliq − ω) ≤ (pliq − µ+ ω)(1− φ2)Φ,⇒ (151)

φ2 ≤
(

1 +
µinf − pliq − ω
pliq − µ+ ω

(
1 +

λ

νliq
(n∗ + γm∗)

))−1

. (152)

Now assume that n∗ + γm∗ is such that (152) holds. In that case, Proposition 5 applies and

m∗ > 0 iff CHFT
γCLFT

≤ 1.
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Now if CHFT
γCLFT

> 1, m∗ = 0, such that LFT Dominance materializes and expected LFT

trading profits are given by Π̃
n∗ , such that f̃−1(CLFT ) = n∗ and (36) ensures that (152) holds.

If on the other hand CHFT
γCLFT

≤ 1, then Proposition 5 dictates that n∗ = 0. The expected

HFT trading profits are given by

γ
Π̃

γm∗
+
π̄ω − (1− π̄)η

m∗
= γ

Π̃

γm∗
+ 0. (153)

As a result, we have that f̃
(
CHFT
γ

)
= γm∗ and (36) ensures that (152) holds.

Proof of Corollary 2. If the equilibrium type is unchanged, S is strictly declining in n+γm since

Φ is. Due to Proposition 6, we have either of three options. We can have LFT Dominance,

in which case CHFT
γ is irrelevant, so S weakly declines when CHFT

γ decreases. We can have

Coexistence, which still satisfies gLFT (m,n) = CLFT . Since n and m only show up as n + γm

in gLFT (m,n), the marginal rate of HFT/LFT substitution equals γ, and hence liquidity is

unaffected too, so S weakly declines when CHFT
γ decreases. We can have Conditioning HFT

Dominance, in which case n = 0. Moreover, we have that ∂gHFT (m,n)
∂m < 0. Satisfying the

condition gHFT (m,n) = CHFT implies that m∗ strictly increases as CHFT
γ declines (leaving γ

constant). As a result, S strictly declines as CHFT declines.

When equilibrium types can change as a result of a change in CHFT , we can go from LFT

Dominance to Coexistence. Fig. 4 and 5 show a numerical example where n+γm can decline and

therefore S can increase as a result of a drop in CHFT
γ (because Coexistence becomes possible).

Similarly, Fig. 4 and 7 show a numerical example where n + γm increases and therefore S

declines as a result of a drop in CHFT
γ .

Proof of Corollary 3. In the model, the only quote level far from the competitive price is the

reservation price pliq. It follows from Proposition 3 that LFTs are less willing to post a quote

there when γm is large compared to n.

Proof of Corollary 4. Due to Proposition 6, liquidity demand is served with certainty with

LFT Dominance, and only with probability (1− π̄) < 1 with Coexistence or Conditioning HFT

Dominance. Due to Proposition 6, Coexistence and Conditioning HFT Dominance are only
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possible when CHFT
γ ≤ K1. Hence, as CHFT

γ declines, the likelihood of orders being executed

(weakly) declines.

Proof of Corollary 5. Due to Proposition 3, LFTs do not quote in an empty book when (12) is

violated and LFTs do not incur adverse selection losses. Due to Proposition 6, Coexistence and

Conditioning HFT Dominance are only possible when CHFT
γ ≤ K1, and only in these equilibria

adverse selection losses for LFTs equal zero. With LFT Dominance these are strictly positive

and independent of CHFT
γ . Hence, as CHFT

γ declines the LFT adverse selection losses (weakly)

decline.
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B Requirements for Nonaggressive Opening Quotes

In this section, we derive conditions for nonaggressive optimal opening quotes in an empty

book (i.e., a = pliq being optimal rather than a = p(1) ), and show that when this condition

holds in the uninformed case, it must also hold in the informed case.

We start from the uninformed case. The expected trading profit of posting pliq is given by

3
2δΦ. The expected trading profit of quoting p(1) is given by 1

2δ. Hence posting p(1) is strictly

optimal when

3

2
δΦ <

1

2
δ,⇒ (154)

Φ <
1

3
. (155)

Substituting for Φ, we get

νliq
νliq + λ(n+ γm)

<
1

3
,⇒ (156)

n+ γm >
2νliq
λ

. (157)

In equilibrium (m,n) = (m∗, n∗). Moreover, in equilibrium, expected trading profits should

equal participation costs:

Π

(n∗ + γm∗)
= min

(
CLFT ,

CHFT
γ

)
,⇒ (158)

(n∗ + γm∗) =
−(νliqy − λδ

2 ) +
√

(νliqy − λδ
2 )2 + 6yλνliqδ

2λy
, (159)

where y = min
(
CHFT
γ , CLFT

)
and the latter expression follows from Proposition 4. Imposing

that (m,n) = (m∗, n∗) on (157) and substituting in from (159) yields

−(νliqy − λδ
2 ) +

√
(νliqy − λδ

2 )2 + 6yλνliqδ

2λy
≤

2νliq
λ

. (160)

Condition (160) also assures that the first quote posted in a book, if any, always coincides

with pliq in the informed case. The reason is that expected informed trading losses are declining

in the starting quote in the book, and therefore ensuring that the starting point equals pliq in

the uninformed case must imply that pliq is also the starting point in the informed case.
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C Notation Summary

Parameters

Symbol Description

δ tick size

µ fundamental value conditional on public information only

pliq reservation price liquidity demanders

p(1) lowest profitable price level on the grid (competitive price)

µinf true value of the asset in the informed state

Ck participation costs for liquidity provider of type k

λ arrival intensity liquidity providers

γ speed advantage of HFTs

νinf , νliq arrival intensities for informed and uninformed

liquidity demanders, respectively

φ1, φ2 accuracy of signals s = liq and s = inf , respectively

π̄ (unconditional) probability of ζ = inf state

States of nature

Ṽ asset value

ζ liquidity demand type

s signal about liquidity demand type

ψk information set

â standing best quote upon arrival

Indices

k liquidity provider type

t time

Decision variables

m,n masses of HFTs and LFTs respectively

a ask price quote to be submitted

Market outcomes

S expected half spread

Ŝ expected half spread corrected for nonexecuted market orders

67

Electronic copy available at: https://ssrn.com/abstract=2698702



References

Admati, A., Pfleiderer, P., 1988. A theory of intraday patterns: Volume and price variability.

Review of Financial Studies 1, 3–40.

Aı̈t-Sahalia, Y., Saglam, M., 2017. High frequency market making: Optimal quoting, working

Paper.

Anand, A., Venkataraman, K., 2016. Market conditions, fragility and the economics of market

making. Journal of Financial Economics 121, 327–349.

Baldauf, M., Mollner, J., 2016. Fast traders make a quick buck: The role of speed in liquidity

provision, working Paper.

Baron, M., Brogaard, J., Kirilenko, A., 2014. The trading profits of high-frequency traders,

working Paper.

Bernales, A., 2014. Algorithmic and high frequency trading in dynamic limit order markets,

working Paper.

Biais, B., Foucault, T., Moinas, S., 2015. Equilibrium fast trading. Journal of Financial

Economics 116, 292–313.
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Internet Appendix for “Competition among Liquidity Providers with Access to

High-Frequency Trading Technology”

In this internet Appendix we present several robustness tests of our results. We also

present a special case of the model in which the reservation price pliq lies more than 3
2 ticks

away from µ, the best estimate of the true value based on public information. This setting

offers lower tractability, but allows for richer results in terms of order aggressiveness and

undercutting patterns. Moreover, we present a dynamic extension of the model with embedded

micro-foundations on information production by HFTs. Finally, we discuss how our setting

with continuums of HFTs and LFTs can be seen as the limit of a setting with finite numbers

of HFTs and LFTs where the number of players tends to infinity.

IA.1 Robustness

In this subsection, we show that our results are robust to a wide array of settings. We first

show the sensitivity of the results in Subsection 5.2.2 to various model parameters. Then,

we show robustness to relaxing the assumption of state-independent reservation prices (in

Subsection IA.1.2). Next, we consider patient informed liquidity demanders (in Subsection

IA.1.3). We also discuss the implications of allowing LFTs to switch to market order strategies

(in Subsection IA.1.4).

IA.1.1 Sensitivity to other Model Parameters

In Subsection 5.2.2, the main focus has been on how the materialization of different equilibrium

types depends on participation cost parameters. In this subsection, we discuss the sensitivity

of the results to changes in the other input parameters.

To start with, consider an increase in the HFTs’ signal accuracy (i.e., φ1 and linked to that

φ2). HFT profits in the trading stage then increase as HFTs can now avoid adverse selection

costs more effectively and miss out on profitable trading opportunities less often. In graphical

terms, it means that the HFT indifference curves in Fig. 4 to 7 shift up. Yet, the increased

adverse selection will also make LFTs less willing to supply liquidity in an empty book, implying

Condition (12) becomes more binding and the red curves shift to the right. To the right of the

red curve, LFTs are susceptible to the increased adverse selection costs, which induces their

indifference curve (corresponding to hLFT = CLFT ) to become flatter. In terms of equilibria

that materialize, LFT Dominance becomes less likely (due to the drop in LFT profitability).
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In contrast, the equilibria left of the red curve (i.e., Conditioning HFT Dominance and the

Coexistence equilibrium) become more likely.

The effect of an increase in the informed trading losses (i.e., larger µinf ), and the effect

of an increase in the unconditional probability of an informed market order (i.e., larger π̄)

are qualitatively similar as these result in a relative increase of the HFT indifference curve

compared to the LFT one and discourage LFTs from posting quotes in an empty book. As

a result, equilibria with Conditioning HFT Dominance or Coexistence become relatively more

likely.

The effect of the tick size δ is ambiguous and depends on the arrival rate of uninformed

liquidity demanders νliq relative to the arrival intensity of liquidity providers λ. If pliq is left

unaffected, a smaller tick size slows down undercutting and changes our setting to the more

general setting described in Section IA.2. Moreover, it makes jumping to the competitive price

in that setting less attractive, and as a result, undercutting will continue for longer. As a

result, liquidity provision is more profitable if most transactions realize along the undercutting

path, that is, if νliq is relatively small. As a result, expected half spreads increase. Moreover,

higher profitability of liquidity provision attracts both HFTs and LFTs. Due to more intense

competition, execution probabilities go down and posting in an empty book becomes relatively

less attractive. Hence, in this case the probability that liquidity is always offered deteriorates.

If, on the other hand, most (uninformed) transactions take place at the competitive price (νliq

is large), then lowering the tick size makes liquidity provision relatively less attractive. Hence,

there is lower presence of LFTs and HFTs, less intense competition, and posting in an empty

book is relatively more attractive. As a result, the probability that liquidity is always offered

increases.

Finally, if the arrival intensity (νliq) or the reservation price (pliq) of the uninformed liquidity

demander increase, liquidity provision becomes more profitable. As a result, the red curve shifts

to the left, and both LFT and HFT indifference curves shift upward. Since the shift in expected

profits for HFTs and LFTs is very similar, changing these parameters will hardly affect the

outcomes that realize (all else equal).

IA.1.2 State-dependent Reservation Prices

In our setup, we assume that the reservation price for the incoming liquidity demander equals

pliq, irrespective of the state of nature. In this section, we show that any reservation price of

the informed liquidity demanders pinf ∈ (pliq, µinf ) gives the same outcome as pinf = pliq. The

2
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argument runs as follows. Let us assume that pinf ∈ (pliq, µinf ). Now, consider a liquidity

provider (irrespective of its technology) arriving to an empty book. Trivially, posting a quote

strictly exceeding pinf is useless as its execution probability equals zero. Posting a quote

anywhere in the interval (pliq, pinf ] gives a zero execution probability for an uninformed market

order and an execution probability of 1 for an informed one. However, since pinf < µinf , such a

transaction is always loss making for the liquidity provider. Posting a quote equal to pliq in the

book is potentially profitable as shown in Section 4. Hence, even if reservation prices of informed

liquidity demanders exceed pliq, market outcomes are the same as with a uniform reservation

price pliq. The only condition required is that pinf < µinf . In a long-run equilibrium, it is

reasonable to assume that such condition is satisfied when there are information production

costs (see also Pedersen, 2015).

IA.1.3 Patient Informed Liquidity Demand

In itself, the restricted version of the model featuring νinf =∞ is sufficient to illustrate the

main insights of the paper.

To show robustness to this assumption, we now assume that νinf < ∞, LFTs can track

the status of self-submitted orders, quotes are cancellable, and adverse selection concerns are

sufficiently high. HFTs will still not post quotes in an empty book when s = inf and LFTs

will be exposed to a similar winner’s curse problem as in the baseline model. As a result, LFTs

may abstain from posting in an empty book altogether. Yet, there is another potential effect.

An LFT can now try to infer the HFT signal from the survival of its quote as the standing

best quote. If the quote survives for long, it is likely that HFTs shun the market out of adverse

selection fear. In this case, the LFT optimally cancels the quote. Hence, if LFTs are present

in equilibrium, liquidity may fully dry up, but also may temporarily dry up, resolving itself as

time passes by and the market learns. Moreover, the increased adverse selection imposed on

LFTs gives them a competitive disadvantage, as also in the baseline model. As a result, LFT

participation will be lower, HFT participation will be higher and adverse selection concerns

worsen even further as was also the case before. Hence, results are qualitatively similar to the

base case.

IA.1.4 Dual roles in limit order markets

One of the features that crucially characterize a limit order market is that participants can

trade either using limit orders or using market orders.

3
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One could imagine that HFTs, upon getting a signal, also start to send informed market

orders. This notion could be incorporated in a reduced form way by making π̄ an increasing

function of m and simultaneously reducing CHFT . As a result, HFT participation affects

adverse selection concerns of LFTs even more severely. If anything, our results regarding

adverse selection are understated. The only way this assumption would affect our results is

that average liquidity might deteriorate even more quickly with wider scale adoption of HFT

technology, as incoming order flow becomes more toxic (as in Biais et al., 2015).

IA.2 Generalized Version of the Model

In this section, we provide a generalized version of the model. The only difference compared

to the baseline model is that pliq can now be more than 3
2 ticks away from the fundamental price

µ. In this setup, we will show that price competition in the trading stage results in undercutting

patterns that are very much similar to those reported in Hasbrouck (2018). We will also show

that expected profits for LFTs and HFTs can be derived in similar ways as before, but because of

the added complexity, equilibrium expressions for (m∗, n∗) and expected half spreads S cannot

be derived in closed form anymore. Finally, we show that in such a setting, it is relatively

straightforward to make liquidity demand sensitive to liquidity supply (which is not featured in

the baseline model).

IA.2.1 Quote Dynamics Trading Stage

Let us first discuss the uninformed case. As before, liquidity providers trade off posting

potentially more profitable quotes away from µ with lower execution probability with certain

execution at p(1). When submitting a quote on the price grid in the interval (p(1), pliq], the

execution probability is unaffected by the level of the quote posted, only by the arrival intensities

of the market order and other liquidity providers. Hence, when a price is initially posted it is

done at either pliq or p(1), and any undercutting also happens either in steps of one tick, or

directly to p(1). We formalize this intuition below:

Proposition IA.1. (Equilibrium Order Placement Strategies - Uninformed Trading Case).

With time and price priority enforced, any liquidity provider k ∈ {LFT,HFT} follows the
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following strategy when observing an ask quote â upon arrival:

R∗k =


pliq if (â− δ ≥ pliq or â = ∅) and pliq ≥ p̃∗

â− δ if pliq > â− δ ≥ p̃∗

p(1) if â− δ < p̃∗ or (â = ∅ and pliq < p̃∗)

, (IA.1)

where

p̃∗ = p(1) +
1− Φ

2Φ
· δ, Φ ≡

νliq
νliq + λ(n+ γm)

. (IA.2)

Proof. See Proofs Section.

Proposition IA.1 states that at some point, liquidity providers switch from an undercutting-one-tick-at-a-time

strategy to a strategy of undercutting to the competitive price. The intuition for this result is as

follows. Consider a liquidity provider k arriving in the market at time τ , observing a standing

limit order at quote â > p(1). This liquidity provider faces the following tradeoff. If she quotes

the competitive price p(1), she secures execution and certainly obtains a profit of a half tick (i.e.,

p(1)− µ = δ
2). If instead she undercuts â by only one tick (δ), she obtains a larger profit (i.e.,

â− δ−µ) in case of execution. Yet, she then runs the risk of being undercut by a subsequently

arriving liquidity provider before the market order has arrived. Hence, the limit order only pays

off with execution probability Φ. When p̃∗ is reached in the sequential undercutting process,

liquidity providers switch strategies from tick-by-tick undercutting directly to p(1). Fig. IA.1

shows an example of a possible undercutting path in the uninformed setting. The undercutting

starts at pliq when the first liquidity provider comes to the market and continues with all players

undercutting each other. After p̃∗ is reached, all arriving liquidity providers jump to p(1), which

is the quote at which execution takes place when the liquidity demander arrives. Of course, if

the liquidity demander were to arrive before p(1) was reached, the transaction would take place

at the prevailing quote at the time the liquidity demander arrived to the market to submit a

market order. At the micro level, these trading patterns are in line with the fast-paced quote

undercutting sequences with high-frequency liquidity provision shown in Hasbrouck (2018).

The half spread of a trade is the difference between the transaction price and µ. The

expected half spread declines in the undercutting speed and the level of the switching point p̃∗.

Both, the undercutting speed and p̃∗ are increasing in HFT presence m, LFT presence n, and
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HFT speed γ as these all intensify competition for order flow.

In the trading stage of the informed case, essentially nothing changes. The tradeoffs and

resulting conditions for HFT and LFT quote posting in an empty book are unaffected by the

generalization of the reservation price. Once it is clear that there is no informed trading (because

of the survival of the initial quote), the game reduces to the uninformed case starting at pliq−δ.

IA.2.2 Participation Stage

IA.2.2.1 Uninformed Case

To calculate the equilibrium masses, we first need to derive the expected per capita profits

for HFTs and LFTs. If, conditional on m and n, the strategies R∗HFT and R∗LFT are played by

all liquidity providers, we can distinguish two regions along the equilibrium path in Fig. IA.1.

In the first region from pliq down to p̃∗ inclusive, denoted “UC”, both HFTs and LFTs undercut

the standing best quote tick-by-tick upon arrival to the market. In the second region, denoted

“comp”, each liquidity provider that enters the market will post a quote at the competitive

price p(1). Next, let us define λ̄ = (n+γm)λ, the overall arrival intensity of liquidity providers.

Moreover, let us define Z as the number of ticks from pliq to p̃∗ inclusive. Lemma IA.1 then

presents the unconditional expected per capita profits for both liquidity provider types.

Lemma IA.1. For an LFT and an HFT, the unconditional expected per capita profits are

respectively given by:

E

(∑
â

ΠHFT (R∗HFT (â))

)
=

(1− n
n+γm)(E(ΠUC + Πcomp))

m
, (IA.3)

E

(∑
â

ΠLFT (R∗LFT (â))

)
=

(
n

n+γm

)
(E(ΠUC + Πcomp))

n
, (IA.4)

where

E(ΠUC) =
Z∑
i=0

νliqλ̄
i

(νliq + λ̄)i+1
(pliq − i · δ − µ), (IA.5)

E(Πcomp) = (1− PUC)(p(1)− µ), (IA.6)

PUC =
Z∑
i=0

νliqλ̄
i

(νliq + λ̄)i+1
, (IA.7)

Proof. See Proofs Section.
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The interpretation of the expressions in Lemma IA.1 is as follows. HFTs and LFTs share

in the aggregate expected surplus from trading according to their relative presence in the

market given by γm
n+γm and n

n+γm , respectively. The aggregate expected profits in the UC

region are given by the probability-weighted average trading profit at each tick in this range

(where probabilities sum to less than one). The aggregate expected profit in the comp region

is given by the probability of reaching it (i.e., (1− PUC)) times the guaranteed profit of half a

tick δ
2 . With the expressions in Lemma IA.1, we can derive the equilibrium masses of HFTs and

LFTs. As expected profits for both HFTs and LFTs are monotonically decreasing in m and n,

and per capita costs are constant, it is always possible to find an equilibrium with a strictly

positive mass of at least one type of liquidity providers.

IA.2.2.2 Informed Case

In case there are no useful signals, the results from Section IA.2.2.1 just carry over. In case

signals are useful conditioning variables, the per capita expected trading revenue functions are

expressed as follows.

Lemma IA.2. The expected per capita profits for HFTs and LFTs are given by

E

(∑
â

ΠHFT (R∗HFT (â))

)
=


gHFT (m,n) , if (12) is not satisfied,

hHFT (m,n) , otherwise,

(IA.8)

E

(∑
â

ΠLFT (R∗LFT (â))

)
=


gLFT (m,n) , if (12) is not satisfied,

hLFT (m,n) , otherwise,

(IA.9)

respectively, where

gLFT (m,n) = (1− π̄)φ1(1− Φ)f(n+ γm|pliq − δ),

gHFT (m,n) = γ

(
gLFT (m,n) + (1− π̄)

φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)
b

)
,

hHFT (m,n) = γ

(
(1− π̄)

(
(1− Φ)f(γm|pliq − δ) +

φ1Φ(pliq − µ)− (1− φ1)(µinf − pliq)
n+ γm

))
,

hLFT (m,n) =
1

γ
hHFT (m,n) + π̄

(1− φ2)Φ(pliq − µ)− φ2(µinf − pliq)
n

,

f(n+ γm) =
(E(ΠUC + Πcomp))

n+ γm
. (IA.10)

The idea here is that once a quote survives after having been posted, all uncertainty about

potentially informed trading is resolved (there is none). Hence, the trading game then reduces

7

Electronic copy available at: https://ssrn.com/abstract=2698702



to the uninformed trading game, but at a starting level that is one tick lower. Other than

that, everything works through as in the baseline model. While quantitatively different from

the baseline model, qualitatively, all results carry over.

IA.2.2.3 Heterogeneous Liquidity Demanders

In the baseline and the generalized model with arbitrary pliq, the execution probability

of a limit order is independent from its aggressiveness, which may be at odds with empirical

patterns. Therefore, we now consider the implications of a positive correlation between quote

aggressiveness and execution probability. To this end, we introduce U different groups of

uninformed liquidity demanders, and assume that individual group u has relative size wu and

reservation price puliq. Given a standing best quote â, with pu−1
liq < â ≤ puliq, we have that the

arrival intensity of an uninformed liquidity demander is given by ν̃liq = νliq
∑U

i=uwi. That is, in

group 1, we have the liquidity demanders with the lowest reservation price and in group U with

the highest. Hence, as quotes become more aggressive, more uninformed liquidity demanders

will consider trading.IA.1

Interestingly, our main results remain largely unchanged. In this extended setting, it is still

impossible to separate the informed from the uninformed liquidity demanders. Moreover, as all

informed trading occurs when a quote is added to an empty book, this change in setup can only

affect trading strategies in two ways. First, through a different tradeoff of posting in an empty

book or not. Posting is now less profitable, implying that Condition (12) is tightened. Second,

through a different tradeoff between undercutting by a single tick or jumping to the competitive

price. Expected undercutting profits now decrease, and thus jumping becomes relatively more

attractive. As a result, both LFT and HFT expected profits shift downwards, so do equilibrium

participation rates (m∗, n∗).

Most crucially, the participation outcomes obtained with uninformed liquidity demanders

with heterogeneous reservation prices can also be obtained in the generalized model with

arbitrary pliq with adjusted parameters. In particular, the tradeoff for HFTs and LFTs posting

to an empty book (red curve) can be attained by having ν ′liq = νliq × wU in Conditions

(10) to (12). Moreover, the lower expected profits for LFTs and HFTs (the blue and the

green indifference curves, respectively) can be mimicked by increasing CLFT and CHFT by

IA.1The intuition is that liquidity demanders with a reservation price that is strictly lower than the best standing
ask quote still arrive to the market but would not send a market order. Furthermore, we assume that the
reservation price of the informed liquidity demander corresponds with the reservation price of group U (i.e., the
highest reservation price in the market).
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amounts that equal the lower expected profits. Hence, the model is qualitatively robust to the

simplification of a uniform reservation price.

IA.3 Endogenous Information Production in a Dynamic Model

So far, the information production technology in our model has been exogenously given. To

endogenize the information production process of HFTs, we extend the model to a dynamic

setting, which comes at the cost of additional complexity. Let us consider an infinitely repeated

version of our trading game. In every stage game l, a state of nature ζl is drawn according to

a Markov switching process with transition matrix:

 α 1− α

1− β β

 , (IA.11)

where α and β denote the probabilities of continued liquidity trading and continued informed

trading, respectively. In turn, 1− α and 1− β denote the switching probabilities from liquidity

to informed and from informed to liquidity trading, respectively. Unconditional steady state

probabilities are then given by π̄ = 1−α
2−β−α and 1 − π̄ = 1−β

2−β−α . This setup allows to capture

the clustering of informed trades.IA.2

Next, we assume that informed order flow is less patient than uninformed order flow (i.e.,

νinf > νliq) and that informationally advanced liquidity providers can perfectly observe the

historical evolution of the book. In this dynamic setting, the difference in patience between

informed and uninformed liquidity demanders allows for inference about trading types in previous

periods by informationally advanced liquidity providers. This information is particularly useful

when β 6= 1− α, because information about the previous liquidity-demanding trader type will

then help to better forecast the current trader type. In particular, when we assume νinf = ∞

as in our main model, informationally advanced liquidity providers can perfectly infer the state

of nature of the previous stage game. In that case, we obtain a perfect Bayesian equilibrium,

and the signal accuracy parameters are given by:

φ1 = α, φ2 = β. (IA.12)

IA.2Informed trade clustering may for instance arise because at some times there is more private information
available than at others, or because a single informed trader slices his trading volume into smaller trades and
feeds them consecutively to the market (Admati and Pfleiderer, 1988).
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The dynamic version of the model is essentially a repeated version of the baseline model.IA.3

As a result, the results from earlier sections carry over. Moreover, because the signals are a result

of superior technology for processing public information, signals are common across HFTs. This

commonality result validates the assumption in the static baseline model of identical signals for

all HFTs.

IA.3.1 Internally Consistent News Announcements

In the dynamic extension of the model, we need to make sure that price movements are

consistent with informed trading. In other words, it is important that prices move in the

direction of the information in the market when the state of nature switches from inf to liq.

However, we want to prevent LFTs from learning from price paths to keep tractability. To

this end, we assume that public information can be released between iterations. In particular,

we assume that information releases always occur if ζl switches from informed to uninformed,

such that the efficient price µ can be updated to the value µinf from last period. Moreover,

we assume that information from either side of the book is impounded in prices in a similar

way such that there is no price drift up or down.IA.4 To have that information releases contain

no information about ζl, certain conditions about the frequencies of public information releases

need to be satisfied. Let us define the event Al as a public information release (announcement)

between iteration l − 1 and l.

Assumption 1. (Announcement uninformativeness) When the state of nature switches from

inf to liq, public information is released (i.e., P (Al|ζl−1 = inf, ζl = liq) = 1). Moreover,

information releases satisfy the following constraint

β(1− π)P (Al|ζl = inf, ζl−1 = inf) + (1− α)(1− π̄)(
1

π̄
− 1)P (Al|ζl = inf, ζl−1 = liq) =

(1− β)π̄ + α(1− π̄)P (Al|ζl−1 = liq, ζl = liq) (IA.13)

Under Assumption 1, we show below that public information releases are uninformative

about the state of nature ζl. Note that the assumptions in this paragraph are not necessary to

IA.3To be complete, for the fully dynamic setting some conditions need to be satisfied for LFTs to be unable
to learn, and for the learning of informationally advanced traders from order flow to be rational and internally
consistent. In particular, we need to have that signals are indeed informative of future price moves, while LFTs
cannot learn anything from price moves. One can achieve signal informativeness by letting prices react to public
information releases and set conditions on the news release process. These conditions on public information
releases and price processes are described and derived in Appendix IA.3.1.
IA.4For tractability reasons, we refrain from also explicitly modeling the other side of the book.
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obtain our main results, but merely to show that the setup of our model is internally consistent.

To have information asymmetry that is consistent with future price movements, we have

under Assumption 1 that

P (Al|ζl−1 = inf, ζl = liq) = 1. (IA.14)

Moreover, we want the event Al to be uninformative about the state of nature (to LFTs),

which is the case when

P (ζl = inf |Al) = P (ζl = inf) → (IA.15)

P (Al|ζl = inf)P (ζl = inf)

P (Al)
= P (ζl = inf) → (IA.16)

P (Al|ζl = inf) = P (Al). (IA.17)

The only thing left to do now is to work out this constraint in terms of public news release

probabilities for each type of transition. We can work out P (Al|ζl = inf) first:

P (Al|ζl = inf) = P (Al|ζl = inf, ζl−1 = inf)P (ζl−1 = inf |ζl = inf)+

P (Al|ζl = inf, ζl−1 = liq)P (ζl−1 = liq|ζl = inf). (IA.18)

Applying Bayes rule twice, we have

P (ζl−1 = inf |ζl = inf) =
P (ζl = inf |ζl−1 = inf)P (ζl−1 = inf)

P (ζl = inf)
=
βπ̄

π̄
= β, (IA.19)

where π̄ = 1−α
2−β−α , the long-term (unconditional) steady state probability of being in the

informed state of nature. Similarly, we have

P (ζl−1 = liq|ζl = inf) =
(1− α)(1− π̄)

π̄
. (IA.20)

Substituting these expressions into Eq. (IA.18), we get
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P (Al|ζl = inf) =

P (Al|ζl = inf, ζl−1 = inf)β + P (Al|ζl = inf, ζl−1 = liq)(1− α)(
1

π̄
− 1). (IA.21)

Similarly, we can work out P (Al) as

P (Al) = P (Al|ζl−1 = inf, ζl = inf)P (ζl−1 = inf, ζl = inf)+

P (Al|ζl−1 = inf, ζl = liq)P (ζl−1 = inf, ζl = liq)+

P (Al|ζl−1 = liq, ζl = inf)P (ζl−1 = liq, ζl = inf)+

P (Al|ζl−1 = liq, ζl = liq)P (ζl−1 = liq, ζl = liq). (IA.22)

Working out basic statistical identities, we have

P (ζl−1 = inf, ζl = inf) = P (ζl = inf |ζl−1 = inf)P (ζl−1 = inf) = βπ̄, (IA.23)

and similarly

P (ζl−1 = inf, ζl = liq) = (1− β)π̄, (IA.24)

P (ζl−1 = liq, ζl = inf) = (1− α)(1− π̄), (IA.25)

P (ζl−1 = liq, ζl = liq) = α(1− π̄). (IA.26)

Substituting everything into Eq. (IA.17) and realizing that probabilities must be contained

in the unit interval, any set of announcement probabilities satisfying the following set of

constraints can be allowed:

β(1− π)P (Al|ζl = inf, ζl−1 = inf) + (1− α)(1− π̄)(
1

π̄
− 1)P (Al|ζl = inf, ζl−1 = liq) =

(1− β)π̄ + α(1− π̄)P (Al|ζl−1 = liq, ζl = liq), (IA.27)
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and

P (Al|ζl = inf, ζl−1 = inf) ∈ [0, 1], (IA.28)

P (Al|ζl = inf, ζl−1 = liq) ∈ [0, 1], (IA.29)

P (Al|ζl−1 = liq, ζl = liq) ∈ [0, 1]. (IA.30)

IA.4 Limits with a Continuum of Liquidity Providers

In our model, we have a continuum of atomistic liquidity providers that endogenously choose

to participate as LFTs (a mass n), as HFTs (a mass m), or to not participate at all. Whenever

max(m,n) > 0, we have infinitely many liquidity providers. If we were to assume finite arrival

intensity and finite participation cost per liquidity provider, the aggregate arrival intensity as

well as the aggregate participation costs would become infinite. Therefore, we use infinitesimal

per capita expected trading profits and participation costs, such that population aggregates are

still finite. Below we show that our setting is a limiting case of a setting with a finite number

of (potential) liquidity providers.

First, let us assume that we have a finite number W of potential liquidity providers. We also

assume that there is a fixed amount of resources available for monitoring where each potential

liquidity provider has equal access to these resources. Employing these resources comes at a

cost that scales linearly in the amount of resources used (i.e., constant cost to scale). Moreover,

the monitoring intensity also scales linearly with the amount of resources employed. Hence, we

have for an individual potential liquidity provider i that

λi =
λ

W
, (IA.31)

CHFT,i =
CHFT
W

, (IA.32)

CLFT,i =
CLFT
W

, (IA.33)

where CHFT , CLFT are the costs involved if all potential liquidity providers were to implement

HFT or LFT technology. As a result, the maximum possible monitoring intensity equals λ if

everyone adopts LFT technology and γλ if everyone adopts HFT technology.
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Now let W approach infinity, which implies that

lim
W→∞

λi = 0, (IA.34)

lim
W→∞

CHFT,i = 0, (IA.35)

lim
W→∞

CLFT,i = 0. (IA.36)

Yet, because the number of potential liquidity providers approaches infinity, we still have (by

construction) that

lim
W→∞

W∑
i=0

λi = λ, (IA.37)

lim
W→∞

W∑
i=0

CHFT,i = CHFT , (IA.38)

lim
W→∞

W∑
i=0

CLFT,i = CLFT . (IA.39)

Going from a discrete number of liquidity providers to a continuum is rather innocuous in

our model as costs and intensities add linearly. With regard to aggregate arrival intensity and

aggregate costs to the economy, it does not matter whether 10 out of a total of 100 potential

liquidity providers adopt advanced technology or whether it is a 10% fraction of a continuous

mass of potential liquidity providers.

Yet, analyzing the continuous rather than a discrete case comes with substantial advantages

to tractability. First, in the trading stage, it matters because it is never optimal for a player to

undercut herself and because players have heterogeneous speed. As a result, the undercutting

intensity following a quote by an LFT would be λ(γM+N−1), while following an HFT it would

be λ(γ(M − 1) +N). As a result, the undercutting speed becomes path-dependent, making it

much harder to take expectations. Second, because we have endogenous technology adoption

and participation, we need to solve for zero expected profit conditions in terms of m and n.

This requirement creates a need for rounding as mW or nW may not be integers. As a result,

several nuisance terms may not cancel out in the discrete case while they do in the continuous

one. Finally, we manage to simplify our model substantially by deriving Eq. (17), which shows

that it is CHFT
γ rather than CHFT relative to CLFT that matters for technology adoption and

participation decisions. In the discrete case, this derivation would only be possible if W
γ is an
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integer, and even then the first issue of not undercutting oneself would play up.
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IA.5 Figures

Figure IA.1: Example of an Undercutting Path in the Uninformed Setting

Time

UC comp

Execution !

~T

p(1)

~p$

pliq

7

This figure shows an example undercutting path when there is no asymmetric information. The x-axis features

time elapsed since the first quote has been posted, while the y-axis displays price ticks. Blue curves are HFT

exposures while red curves are LFT exposures. UC stands for the undercutting region, while comp stands for

the region in which the competitive price p(1) is quoted.

16

Electronic copy available at: https://ssrn.com/abstract=2698702



IA.6 Proofs

Proof of Proposition IA.1. Due to time and price priority, Φ = 0 if a ≥ â. Moreover, by

assumption, Φ = 0 if a > pliq. We assume for the moment that Φ > 0 if a ≤ min(pliq, â − δ),

which we prove to be true later. Any quotes a ≤ min(p(1)− δ, â− δ) < µ are loss-making with

strictly positive probability and are hence suboptimal. Any quotes a ∈ [p(1),min(â − δ, pliq)]

yield strictly positive profits with strictly positive execution probability and hence carry strictly

positive expected profits. Hence, if â > p(1), undercutting to a quote in a ∈ [p(1),min(â−δ, pliq)]

is optimal, while posting a quote with zero execution probability (such as a = p(1)) is optimal

if â ≤ p(1).

In equilibrium, a quote a = p(1) is optimally not undercut and hence, such a quote has

execution probability Φ = 1. A quote a ∈ (p(1),min(â− δ, pliq)] executes whenever the liquidity

demander arrives before the next liquidity provider arrives to undercut. The arrival rate of

liquidity providers is given by λ(γm + n) and is independent of k, because liquidity providers

are atomistic. The arrival rate of liquidity demanders is given by νliq. Applying standard rules

for the calculations with exponential distributions yields Eq. (IA.2).

Given min(â, pliq) > p(1), an arriving liquidity provider optimally either undercuts to a quote

a ∈ (p(1),min(â−δ, pliq)] or to p(1). The former has an execution probability Φ as derived above

that is independent of the exact quote in the range and hence, setting a = min(â − δ, pliq) is

optimal since this yields largest profits in case of execution. The latter has guaranteed execution

and a profit of p(1)− µ. It follows that undercutting to p(1) is strictly optimal if

(min(â− δ, pliq)− µ)Φ ≤ p(1)− µ =
δ

2
,⇒ (IA.40)

min(â− δ, pliq) ≤ µ+
δ

2Φ
= p(1) +

1− Φ

2Φ
δ, (IA.41)

while setting min(â− δ, pliq) is optimal otherwise.

Proof of Lemma IA.1. We will now work out the unconditional expected profits in each of the

two parts along the equilibrium path.

Let us start with region UC. To facilitate exposition, let us define the random variables d as

the number of ticks away from pliq on which execution takes place, and qt the number of ticks

the best standing quote is away from pliq. The market-wide expected aggregate profit earned
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in region UC is given by

E(ΠUC) =

Z∑
i=0

P (d = i)(pliq − iδ − µ).

The probability of execution i ticks away from pliq can be derived as follows. We have that

P (d = i) =

∫ ∞
t=0

P (qt = i)P (T̃ > t)νliqdt. (IA.42)

The probability P (qt = i) is given by a Poisson distribution with parameter λ̄t, while P (T̃ >

t) = exp(−νliqt). Substituting these distribution functions into Eq. (IA.42), we get

P (d = i) =

∫ ∞
t=0

1

i!
(λ̄t)i exp(−λ̄t) exp(−νliqt)νliqdt, (IA.43)

=

∫ ∞
t=0

νliqλ̄
i

(νliq + λ̄)i+1

[
(νliq + λ̄)i+1 1

i!
ti exp(−(νliq + λ̄)t)

]
dt. (IA.44)

The part in square brackets can be recognized as the pdf of a Gamma distribution with

parameters (i+ 1, νliq + λ̄), while all other terms are multiplicative, do not depend on t and can

therefore be put in front of the integration. By definition, a pdf integrates to 1 over its support,

such that we have

P (d = i) =
νliqλ̄

i

(νliq + λ̄)i+1
. (IA.45)

Let us now continue with the comp region. Let us define the probability of execution in the UC

region

PUC =

Z∑
i=0

P (d = i). (IA.46)

If execution takes place outside the UC region, it must take place in the comp region where

execution is guaranteed to the first one posting a quote p(1). Hence,

E(Πcomp) = (1− PUC)(p(1)− µ)

trivially follows.

Now we still need to show how expected aggregate profits accrue to LFTs and HFTs. This

depends on the expected exposures of both groups. Due to the Poisson arrival assumption,

expected quote life is independent of the liquidity provider’s type, the expected exposure of a

group depends on how often it can be expected to post an undercutting quote relative to the
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other group. Hence, the fraction of time that the market is exposed to LFT quotes is given by

n
n+γm .
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