Zhou et al., 2013), however, the speci-
ficity of the abccé6a zebrafish model was
not validated by an independent gene-
editing tool.

In their recent paper, Van Gils et al.
(2018), based on work by others in the
field (Bedell et al., 2011; Kok et al.,
2015), demonstrated that the nonspe-
cific phenotype observed in our study
was most likely a consequence of high
dosage of abcc6a morpholino, and this
can be counteracted by co-injection of
p53 morpholino. Van Gils et al. (2018)
also generated a complete abccéa
knockout  zebrafish model using
CRISPR/Cas9 with ectopic mineraliza-
tion phenotype (Van Gils et al., 2018).
We are pleased that the progress in the
field has clarified some aspects of our
early pioneering work, which attemp-
ted to develop the first zebrafish model
for PXE, well before techniques such as
CRISPR/Cas9 were available.

As indicated in our recent Commen-
tary on this topic (Li and Uitto, 2018),
zebrafish models offer a facile and cost-
efficient platform for high throughput
screen of potential pharmacologic
agents to counteract the clinical phe-
notypes of heritable connective tissue
and skin disorders, such as ectopic
mineralization in PXE using abccé6a
mutant zebrafish. In this regard, we
would like to reiterate the call by
Vanchieri (2001) to “Move Over, Mice:
Make Way for the Woodchucks, Fer-
rets, and Zebrafish.” However, as noted

Genome-Wide Association Studies Identify
Multiple Genetic Loci Influencing Eyebrow

in our Commentary (Li and Uitto,
2018), the zebrafish mineralization
models characterized by Van Gils et al.
(2018) do not fully recapitulate the
phenotypes of PXE patients; these
models show little or no evidence of
skin, eye, or vascular mineralization,
the clinico-pathological hallmarks of
PXE, and instead, the changes mostly
involve skeletal structures. Therefore,
we suggest that after initial high
throughput screen of potential anti-
mineralization compounds in zebra-
fish, their efficacy should be tested in
rodent models of PXE (knockout mice
and rats) that we have developed to
accurately and reproducibly recapitu-
late the features of PXE (Klement et al.,
2005; Li et al., 2017).
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TO THE EDITOR

Eyebrow color shows a high degree of
variation in Europeans. Although no
heritability estimate has yet been re-
ported, eyebrow color may share a

large genetic component with scalp
hair color, which has an estimated
heritability of up to 90% (Lin et al.,
2015). Although a phenotypic rela-
tionship between eyebrow and scalp
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Check for
updates

hair color clearly exists, such a corre-
lation is not perfect, suggesting the ex-
istence of overlapping and unique
genetic components for both traits.
Although previous genome-wide asso-
ciation studies (GWASs) on human eye
(Kayser et al., 2008; Liu et al., 2010;
Sulem et al., 2007, 2008), scalp hair
(Han et al., 2008; Hysi et al., 2018;
Sulem et al., 2007), and skin color
(Han et al., 2008; Liu et al., 2015;
Sulem et al., 2007; Visconti et al.,
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Figure 1. Manhattan plot of the discovery stage meta-analysis results for human eyebrow color from three European GWASs (RS, TwinsUK, and QIMR
(N = 6,513). The —log10 P-values for association were plotted for each SNP according to chromosomal positions (genome assembly GRCh37.p13). Previously
known pigmentation genes are marked with black text, and gene to our knowledge previously unreported is highlighted in violet. The red and violet lines,
respectively, correspond to the thresholds for genome-wide significance (P =5 x 107®) and suggestive significance (P =1 x 107°). GWAS, genome-wide
association study; QIMR, Queensland Institute of Medical Research; RS, Rotterdam Study; SNP, single nucleotide polymorphism.

2018) have identified multiple DNA
variants, no GWAS for eyebrow color
has been reported as of yet.

The cohort-related studies included
in this study were approved by the
medical ethics committee of the Eras-
mus University Medical Center, the St.
Thomas’ Hospital local research ethics
committee, the Queensland Institute of
Medical Research (QIMR) Berghofer
human research ethics committee, and
the Indiana University internal review
board. All participants provided written
informed consent under protocols
reviewed by the corresponding
institutions.

The discovery stage meta-analysis of
three GWASs for eyebrow color
included a total of 6,513 European in-
dividuals from three cohorts, the Rot-
terdam Study (RS) (n = 3,114, mean
age = 68.48 + 9.34 years, 53.6% fe-
male), the TwinsUK study (n = 1,038,
mean age = 59.47 + 9.50 years, 100%
female), and the QIMR study (n =

2,361, mean age = 16.43 £ 0.80 years,
54.0% female) (see Supplementary
Table ST online). Eyebrow color was
graded into four broad ordinal cate-
gories (red, blond, brown, and black)
by using photonumeric scales (see
Supplementary Table S1). Detailed
phenotype evaluation is provided in
Supplementary Tables S2—S6 and the
Supplementary Materials online.

The discovery stage meta-analysis of
three GWASs identified a total of 355
single  nucleotide  polymorphisms
(SNPs) at six distinct genetic loci
showing genome-wide significant as-
sociation with eyebrow color (P < 5 x
1079 (Figure 1 and see Supplementary
Figure ST and Supplementary Table S7
online). Among these six loci, one lo-
cus (10g22.2: C100rf11) had not been
previously associated with any other
human pigmentation trait; the top-
associated SNP (rs11001536; B =
—-0.21, P = 3.16 x 107 (see
Supplementary Table S7) is an intronic

Journal of Investigative Dermatology (2019), Volume 139

DNA variant in CT10orfl1 (see
Supplementary Figure S2 online). The
remaining five loci have been repeat-
edly reported to have genome-wide
significant association with human
eye, scalp hair, and/or skin color. These
include 15q13.1 (rs7494942; B = 0.22,
P = 636 x 107°® for HERC2 and
rs4778237; =0.17, P=7.01 x 107>"
for OCA2), 16g24.3 (MCIR
rs75570604; p = —0.25, P = 9.88 x
107°2), 14932.12 (SLC24A4
rs12883151; B = 0.10, P = 4.44 x
107%7), 20q11.22 (ASIPrs6059655, § =
—0.11, P = 4.60 x 107'9), and 5p13.2
(SLC45A2 rs16891982, B = 0.18, Ps =
2,60 x 107% (see Supplementary
Table S7).

The replication was conducted in
2,054 individuals of European origin
from an additional US cohort (mean
age = 25.75 + 11.39 years, 68% fe-
male) (see Supplementary Table S1).
Five loci highlighted in our discovery
GWAS meta-analysis (SCL45A2,
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polymorphism.

SCL24A4, HERC2 and OCA2, MCIR,
and ASIP) have been successfully
replicated in the US cohort (P < 0.05)
(see Supplementary Table S7) and
showed consistent allele effects in all
four cohorts (see  Supplementary
Figure S3 online). The significant asso-
ciation for rs11001536 in C10orf11
highlighted in the discovery GWAS was
not replicated in the US cohort. This
SNP was nominally significant in the RS
(B =-023, P=216 x 107% and
TwinsUK (B = —0.27, P=4.97 x 1073)

cohorts but was nonsignificant in the
QIMR (B = —0.09, P = 0.26) and the
US (B = 0.07, P = 0.60) cohorts (see
Supplementary Table S7).

Notably, both cohorts (RS and Twin-
sUK) that showed significant associa-
tion consist of older individuals,
whereas the two datasets not showing
significant association (QIMR and US)
consist of adolescents. This suggests
that the eyebrow color effect of
C10orfl1 may be age dependent,
which warrants further investigation in

future studies. The light eyebrow color-
associated G-allele had a relatively
low frequency in Europeans (f = 0.02)
but was more frequent in Asians with
darker eyebrows (see Supplementary
Figure ~ S4  online),  potentially
explained by different linkage disequi-
librium structures between these pop-
ulations. Previous studies suggest that
C100rf11 is an effective melanocyte
differentiation gene, which is known to
cause the oculocutaneous albinism
(i.e., OCA) 7 phenotype via a rare
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nonsense mutation, c.580C>T
(p-Arg194*, rs587776952) (Gronskov
et al., 2013). An additional genome-
wide meta-analysis in all four cohorts
did not show any additional genome-
wide significant loci (see
Supplementary Figure S5 online).
Among the 138 SNPs from a recently
published GWAS meta-analysis on scalp
hair color involving almost 300,000
Europeans (Hysi et al.,, 2018), seven
SNPs showed significant association af-
ter the correction for multiple testing
(adjusted P < 4.67 x 1079, including

15q13.1 HERC2 512913832 (P =
112 x  107%), 16q24.3 MCIR
rs1805007 (P = 1.25 x 107%),

14932.12 SLC24A4 rs17184180 (P =

1.67 x 10779, 20q11.22 ASIP
rs6059655 (P = 4.60 x 107'%), 5p13.2
SLC45A2 1516891982 (P = 2.60 x

1078), 6p25.3 IRF4 rs12203592 (P =
347 x 107%, and 1g32.1 DSTYK
rs2369633 (P = 5.03 x 107°) (see
Supplementary Table S8 online). The
first six SNPs all have known effects on
human pigmentation traits. The last SNP
was only recently identified in associa-
tion with hair color (Hysi et al., 2018).

In a subset of the RS cohort (n =
1,656), we compared the eight top
associated SNPs at the seven genetic
loci that were highlighted with signifi-
cant eyebrow color association in our
GWAS and candidate gene study (see
Supplementary Table S9 online). In
general, the contributions of the eight
SNPs to scalp hair color variation were
slightly larger than their impact on
eyebrow color variation (see
Supplementary Figure S6 online). MCTR
rs1805007 showed a much larger
contribution to scalp hair color than
eyebrow color, likely explained by an
aging effect on red eyebrow color,
because the scalp hair color information
in the RS cohort was ascertained from a
questionnaire item on “hair color when
young.” SLC45A2 rs16891982 was the
only DNA variant of the eight tested that
showed a slightly larger contribution to
eyebrow color than to scalp hair color.
These results suggest that the prediction
accuracy for eyebrow color should be at
a similar level to that for hair color in the
same sample set under equal phenotype
accuracy.

An eyebrow color prediction model
was trained in 3,114 RS participants
and validated in 779 independent RS

participants not included in the GWAS.
Red eyebrow color was excluded from
the prediction analysis because none of
these individuals had the phenotype. A
model including 25 SNPs achieved
prediction accuracies expressed as
area under the curve (AUC) of 0.701
(95% confidence interval [Cl] =
0.621—0.781) for blond, 0.620 (95%
Cl = 0.576—0.658) for brown, and
0.674 (95% Cl = 0.633—0.709) for
black eyebrows (Figure 2a and b, and
see Supplementary Figure S7 and
Supplementary Tables S10 and S11
online). The AUC values reported here
for eyebrow color are lower than those
previously reported for scalp hair color
with the 22-SNP HlrisPlex model,
which ranged between 0.75 and 0.92
for the four scalp hair color categories
used (Walsh et al., 2014). This
discrepancy can be explained by our
data set lacking four important rare
MCTR SNPs (which are used in the
HirisPlex model) and an aging effect
that decreases phenotype quality,
particularly for red color. With the
midrange accuracy level, our 25-SNP
model provided highly confident pre-
diction results for approximately 7% of
the validation set, for example, those
with high (>0.80) or low (<0.20) pre-
diction probabilities of certain eyebrow
color type (Figure 2c). Applying this
model to 2,504 participants from the
1000 Genomes Project showed that
prediction outcomes were generally
consistent with knowledge about the
global distribution of eyebrow color
variation  (Figure 2d, and see
Supplementary Figure S8 online). More
detailed prediction results are provided
in the Supplementary Materials.

In conclusion, this eyebrow color
GWAS in Europeans (the first, to our
knowledge) highlighted six genome-
wide significant genetic loci harboring
six well-known pigmentation genes
(ASIP, HERC2, MCI1R, OCA2, SLC24A4,
SLC45A2) and a gene to our knowledge
previously unreported (C100rf11). The
finding at C100rf11 warrants further in-
vestigations in European individuals
with different age distributions. A
candidate gene study suggested the
involvement of two additional known
pigmentation genes, DSTYK and IRF4,
in human eyebrow color. This DNA-
based eyebrow color prediction model
is useful in future forensic applications.
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TO THE EDITOR

The ability of human pigmentation
varies within and across populations.
The geographic variation in human
skin pigmentation is hypothesized to
be a result of adaptation to the amount
of UV exposure, and the high herita-
bility of pigmentation on various traits
such as hair and eye color supports the
hypothesis. (Frisancho et al., 1981;
Harrison and Owen, 1964; Jablonski
and Chaplin, 2000). Genome-wide
association studies (GWAS) for skin

pigmentation or skin tanning showed
several SNPs that affect skin pigmen-
tation depending on the studied pop-
ulation and traits (see Supplementary
Table ST online). The Fitzpatrick pho-
totyping scale is widely used to assess
human skin color and pigmentation by
classifying them into six skin types
(Fitzpatrick, 1988). Japanese are
mostly categorized as type Ill or IV in
the Fitzpatrick phototyping scale.
Satoh and Kawada’s Japanese skin
types (JST) classification classify

Abbreviations: GWAS, genome-wide association study; JST, Japanese Skin Types; PCA, principal
component analysis; SNP, single nucleotide polymorphism; TMM, Tohoku Medical Megabank Project
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Japanese skin into three types based
on the susceptibility to sunburn and
the ability to tan: J-I, burns easily and
tans minimally; J-1l, burns moderately
and tans moderately; and J-IIl, burns
slightly and tans markedly (Satoh and
Kawada, 1986). The correlation be-
tween the self-reported questionnaire
for the JST classification and minimal
erythema dose has been validated,
and the JST classification is widely
used in skin type tests for Japanese
studies. We performed a GWAS for JST
using data sets from the prospective
cohort study of the Tohoku Medical
Megabank Project (TMM). The GWAS
included 9,187 Japanese individuals:
4,475 individuals in Miyagi prefecture
and 4,712 individuals in Iwate
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