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Abstract—In cardiac high-frame-rate color tissue Doppler imaging (TDI), a wave-like pattern travels over the
interventricular septum (IVS) after atrial contraction. The propagation velocity of this myocardial stretch post-
atrial contraction (MSPa) was proposed as a measure of left ventricular stiffness. The aim of our study was to
investigate the MSPa in patients with hypertrophic cardiomyopathy (HCM) compared with healthy volunteers.
Forty-two healthy volunteers and 33 HCM patients underwent high-frame-rate (>500 Hz) TDI apical echocardi-
ography. MSPa was visible in TDI, M-mode and speckle tracking. When assuming a wave propagating with con-
stant velocity, MSPa in healthy volunteers (1.6 § 0.3 m/s) did not differ from that in HCM patients (1.8 §
0.8 m/s, p = 0.14). Yet, in 42% of patients with HCM, the MSPa had a non-constant velocity over the wall: in the
basal IVS, the velocity was lower (1.4 § 0.5 m/s), and in the mid-IVS, much higher (6.1 § 3.4 m/s, p < 0.0001),
and this effect was related to the septal thickness. The reason is hypothesized to be the reaching of maximal longi-
tudinal myocardial distension in HCM patients. (E-mail: m.strachinaru@erasmusmc.nl) © 2019 The Author(s).
Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open
access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

The possibility of imaging the heart at very high frame

rates has opened a new window to our understanding of

cardiac physiology and pathology (Cikes et al. 2014;

Voigt et al. 2018). High-frame-rate imaging allows min-

ute tracking of many wave-like phenomena that are

either naturally present during the cardiac cycle because

of valve closure (Brekke et al. 2014; Kanai 2009; Stra-

chinaru et al. 2017, 2019; Vos et al. 2017) and atrial con-

traction (Pislaru et al. 2014, 2017; Voigt et al. 2002) or

are induced by external sources (Pernot et al. 2011; Song

et al. 2016; Vejdani-Jahromi et al. 2017; Villemain et al.

2018a, b). The naturally occurring shear waves second-

ary to the closure of the valves (Brekke et al. 2014; Stra-

chinaru et al. 2017) appear during intervals in which the

muscle is in the process of contraction (mitral valve clo-

sure) or relaxation (aortic valve closure), challenging the
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physiologic interpretation of the data. Such complexity

is absent in late diastole, where the left ventricle (LV) is

supposed to be in a quasi-relaxed state, allowing estima-

tion of the true intrinsic elasticity of the wall (Pislaru

et al. 2014, 2017; Voigt et al. 2002). A strain rate wave-

like pattern visible in the LV myocardium after atrial

contraction was reported by Voigt et al. (2002), who esti-

mated its propagation velocity as between 2 and 4.6 m/s

in the interventricular septum (IVS) of normal individu-

als at a frame rate of 178 Hz. They found the value to be

preload dependent. Later, Pislaru et al. investigated the

same tissue Doppler imaging (TDI) velocity and strain

rate pattern at higher frame rates (350�460 Hz) and

computed values of 1.4 § 0.2 m/s in normal individuals

and 2.2 § 0.7 m/s in severe aortic stenosis patients

(Pislaru et al. 2014, 2017). Yet, the exact nature and

behavior of this tissue velocity-based pattern remain

unclear. These earlier studies hypothesized that the fast

traction on the mitral annulus by the atrial contraction

generates a wave into the LV, which travels from base to

apex with a constant velocity that is related to the
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underlying tissue stiffness. It is also possible that this

wave has a radial component (Pislaru et al. 2017).

The aim of this study was to investigate the nature

of the wave-like pattern following atrial contraction by

integrating multiple high-frame-rate ultrasound modali-

ties. To further test the above hypothesis we studied both

normal and hypertrophic hearts, the latter being suppos-

edly stiffer than normal hearts (Elliott et al. 2014; Mir-

sky and Parmley 1973; Villemain et al. 2018a, b).

METHODS

In apical TDI videos of the interventricular septal

wall, wave patterns after atrial contraction are visible, as

further described in the next subsection. The pattern has

a propagation velocity on the order of several meters per

second (Pislaru et al. 2014, 2017; Voigt et al. 2002), and

general theory predicts that waves travel faster in stiffer

material (Giorgi 1993). We denote this pattern as myo-

cardial stretch propagation post-atrial contraction

(MSPa), in line with a similar definition by Pislaru et al.

We started this study with the hypothesis of a wave prop-

agating with constant velocity over the first 4 to 5 cm of

the interventricular septum, as previously described in

normal and pathologic hearts after atrial contraction

(Pislaru et al. 2014, 2017; Voigt et al. 2002).

Study population

This prospective study was conducted in 2016�2017

according to the principles of the Declaration of Helsinki

and approved by the Institutional Medical Ethical

Committee (MEC-2014-611, MEC-2017-209). Written

informed consent was obtained from every participant.

The same patient pool was used for selecting the study

population in a different work investigating naturally

occurring shear waves after valve closure (Strachinaru

et al. 2019).

Healthy volunteers aged 18�62 y (N = 42). Pa-

tients were excluded if they had a history of cardiovascu-

lar disease or systemic disease, a finding of cardiac

abnormalities during the examination (including QRS

duration >100 ms), cardiovascular risk factors including

hypertension (cutoff value: 140/90 mm Hg), diabetes

mellitus or hypercholesterolemia, breast implants or

were pregnant. Professional athletes or morbidly obese

individuals (body mass index >40 kg/m2) were also

excluded.

Hypertrophic cardiomyopathy (HCM) patients

aged 20 to 73 y, recruited from the HCM outpatient

clinic (N = 33). Patients were included if they had a

definitive diagnosis of hypertrophic cardiomyopathy

(Elliott et al. 2014), with pathologic septal hypertrophy
(end-diastolic thickness >15 mm or >13 mm if diag-

nosed through family screening) and normal systolic

function (ejection fraction >55%). Exclusion criteria

were associated coronary artery disease, more than mild

valve disease (systolic anterior movement was not con-

sidered an exclusion criterion), prior septal reduction

(either surgical or interventional) and atrial fibrillation.

Echocardiography

All echocardiographic studies were performed by

one experienced sonographer (M.S.). Normal complete

echocardiographic studies were performed, including

2-D, Doppler and pulsed-wave TDI of the mitral annu-

lus. The peak velocity of the early diastolic mitral inflow

was measured (E wave), as was the peak early diastolic

tissue velocity of the medial mitral annulus in the apical

four-chamber view (e0 wave). Their ratio (E/e0) was then
calculated as an index of the early diastolic properties of

the LV. We also quantified the motion of the atrioven-

tricular annulus with atrial contraction by measuring

peak TDI velocity (a0 wave) and a0 acceleration in pulsed
wave tissue Doppler images of the medial mitral annulus

in the apical four-chamber view. As a0 acceleration is

not a standard clinical measurement, we detailed it in

Figure 1.

Normal complete echocardiographic studies were

performed as a reference. Grayscale loops were also

acquired at the highest frame rate achievable (frame

rates of 200�250 Hz) from the IVS in the parasternal

and apical four-chamber views.

Tissue velocities of the LV myocardium were

sampled in color TDI in standard parasternal and apical

four- chamber views using a Philips iE33 system (Phi-

lips Medical, Best, The Netherlands) equipped with an

S5-1 transducer (three separate recordings for each

view, two heartbeats per clip). As previously described

(Strachinaru et al. 2017), by carefully tuning the rela-

tionship between the depth of the image, the 2-D line

density and the TDI field of view, frame rates >500 Hz

were achieved in regular clinical TDI mode. The color

tissue velocity scale was set up for optimal visualiza-

tion of the stretch, leading to scale limits between 1.5

and 3.5 cm/s, corresponding to the amplitude of the

wave pattern in TDI, which is not to be confused with

its propagation velocity, which is orders of magnitude

higher.

Figure 2 illustrates the alignment of the probe with

respect to the propagation of the wave on the septal

wall in the apical four-chamber view. TDI is extremely

sensitive to tissue motion in the axial direction of the

probe, indicated by the yellow arrows, but not sensitive

to lateral motion. We use this directional sensitivity to

determine the dominant tissue motion by TDI. Addi-

tionally, we analyze grayscale clips with a speckle



Fig. 1. Clinical pulse-wave tissue Doppler imaging recordings of the medial mitral annulus in the apical four-chamber
view, with demonstration of the a0 velocity and acceleration slope calculation. (a) Normal healthy volunteer. (b) Patient

with hypertrophic cardiomyopathy. Note that the velocity scales for the two recordings differ.
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tracking algorithm. Speckle tracking detects motion in

all directions, albeit with generally lower frame rate,

sensitivity and accuracy than TDI. By combining the

information from all modalities, we illustrate the pre-

dominant tissue motion after atrial contraction.

The Digital Imaging and Communications in Medi-

cine TDI loops were processed using Qlab 9 (Philips

Medical, Best, The Netherlands). As illustrated in

Figure 3a and b, the software is used to trace an anatomic

M-mode line in the TDI clips. The M-mode line was

traced midwall, starting apically and ending at the begin-

ning of the muscular septum, pointing toward the possi-

ble wave source (the atrioventricular annulus). The

software generates a map of color-coded TDI velocities

over time and space, that is, along the M-mode line

(Fig. 3c). After atrial contraction, a pattern can be seen,

of which the slope of the initial front determines the

velocity of the MSPa. The slope is computed by
manually fitting a line (Fig. 3c, white dotted line) to the

isovelocity front of the wave. To reduce the variability

resulting from manual tracking, as previously described

for naturally occurring shear waves (Strachinaru et al.

2017, 2019), we compared this slope with the line

between the entrance and exit points (frames) of the

wave into the M-mode map (Fig. 3c, black dotted line).

The entrance and exit points were also adjusted by

frame-to-frame analysis. The velocity V of the MSPa is

calculated, from the time T, which is the interval

between the time stamps of the entrance and exit frames

in the map, and the pre-defined M-mode length L, as

V = L/T in units of meters per second.

The length L ranged from 4 to 6 cm (4.9 § 0.4 cm),

starting from the onset of the muscular IVS (Fig. 3b).

Propagation velocity was averaged over at least 3 heart-

beats for every subject, randomly chosen from the three

recorded clips.



Fig. 2. Tissue motion as visible in the left ventricular walls after the atrial contraction, in the apical four-chamber view.
Atrial contraction pulls on the mitral annulus (red arrows); this induces a local stretch (small yellow arrows) which prop-
agates along the walls (white arrows) in the form of a tissue Doppler imaging pattern (red line). Note that the direction of

the ultrasound in the apical view (blue lines) is in line with both the stretch and the direction of propagation.

Fig. 3. Data obtained in the study patients using offline processing (modified to include one entire heartbeat). (a) Classi-
cal echocardiographic apical image and the focus region for high-frame-rate imaging. (b) High-frame-rate tissue Doppler
imaging window over the interventricular septum. The M-mode line is traced midwall, ending at the beginning of the
muscular septum, pointing toward the possible wave source. (c) Tissue Doppler imaging space�time map at 541 Hz, col-
lected over the M-mode line of (b), of a full heart cycle (reconstructed offline). This map illustrates the wave-like veloc-
ity pattern after atrial contraction (P wave on the echocardiogram). The slope of the MSPa is traced along the isovelocity
front (white dotted line) and compared with the line between the entrance and exit points (yellow circles, black dotted
line) of the MSPa along the M-mode line. ECG = echocardiogram; MSPa =myocardial stretch post-atrial contraction.
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Speckle tracking of the high-frame-rate 2-D data,

represented as velocity vector imaging, was used in Qlab

9 to qualitatively determine the direction and propaga-

tion of local motion/deformation of the IVS after the

atrial contraction. Anatomic M-mode tracings were also
obtained from the same grayscale data along the IVS

using a general post-processing platform (Tomtec Imag-

ing System 4.6, Unterschleissheim, Germany). They

were also employed for qualitative comparison with the

data from the TDI recordings.
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Statistical analysis

Distribution of data was checked by using histo-

grams and Shapiro�Wilk tests. Continuous variables

were represented as the mean § standard deviation. Cat-

egorical data are presented as absolute number and per-

centage. For comparison of normally distributed

continuous variables, we used the dependent or indepen-

dent means t-test when appropriate. In case of a skewed

distribution of continuous variables, the Mann�Whitney

U-test was applied. For comparison of frequencies, the

x2-test or Fisher’s exact test was used. Correlations were

estimated using Pearson’s correlation coefficient. The

relationship between variables was investigated using

univariate and multivariate regression models.

Each statistical analysis was performed using the

Statistical Package for Social Sciences, Version 21

(IBM SPSS Statistics for Windows, Armonk, NY,

USA). Testing was done two-sided and considered sig-

nificant if the p value was <0.05.
RESULTS

High-frame-rate tissue Doppler

The group characteristics and results are outlined in

Table 1. There were significant differences in age, sys-

tolic blood pressure, septal thickness, e0, a0, a0 accelera-
tion and E/e0.

In the apical view, wave-like tissue velocity pat-

terns were visible in all patients upon atrial contraction.

In the parasternal longitudinal view of the LV, the gray-

scale traction movement of the IVS with atrial contrac-

tion was visible in all patients (Supplementary Video S1,

online only), but high-frame-rate TDI could not visualize

a wave phenomenon. This indicates that the dominant

direction of tissue motion was along the septum, in line

with the traction of the atria on the LV wall through the

atrioventricular annulus.

In normal individuals and some HCM patients

(Fig. 4a) the straight line corresponding to the entry-

�exit points of the MSPa into the M-mode line was

superimposed on the first isovelocity trace (as described

under Methods), revealing a globally constant propaga-

tion velocity. The same constant velocity is visible on

the high-frame-rate virtual M-mode of the underlying 2-

D data (Fig. 4b). Yet, we noticed in a substantial group

of HCM patients (n = 14) that the MSPa isovelocity front

had a non-constant propagation as evidenced by a devia-

tion of more than two frames’ time (3�4 ms) at any

point along the first isovelocity tracing from the straight

entry-exit line used for reference (Fig. 5): a first mild

slope in the basal IVS, followed by a very steep slope in

the mid-IVS (Fig. 5a). By use of M-mode tracings from

the underlying 2-D data, the same behavior was con-

firmed (Figs. 5b and 7). In the case of such non-constant
propagation velocity, quantification was done in two

ways. The average slope was quantified by computing

the slope of the entry�exit points line as described under

Methods (see Fig. 5a for an example), thus ignoring the

deviation of the slope from a straight line. Alternatively,

we manually traced the slowest and fastest first isoveloc-

ity slopes visible in the TDI panels (Fig. 5a, 1 and 2),

and separately reported the slowest and highest apparent

propagation velocities.

When analyzing the measured slope under the

assumption of a linear propagation velocity (Fig. 6), the

average velocity of the MSPa did not differ between nor-

mal volunteers (1.6 § 0.3 m/s, range = 1.1�2.1 m/s) and

the HCM patients (1.8 § 0.8, range = 0.9�3.8 m/s,

p = 0.14). However, the maximum slope in the HCM

patients presenting the non-constant TDI slope was 6.1

§ 3.4 m/s (range 2.3�12.5 m/s), which was significantly

different from that of the normal volunteers (p <

0.0001). The slow slope in these patients was 1.4 §
0.5 m/s (range = 0.8�2.5 m/s, p = 0.2) versus normal

volunteers.

Subgroup analysis (Table 1, Fig. 6) among the

patients with or without constant propagation velocity of

the MSPa revealed a significant difference in septal

thickness between the two groups (19 § 4 mm in the

non-constant propagation group and 16 § 3 mm in the

linear group, p = 0.02). Also, the linearized MSPa veloc-

ity in the non-constant velocity group was significantly

higher than that in normal volunteers (2.6 § 0.8 m/s vs.

1.6 § 0.3 m/s, p < 0.0001).

The only parameter predicting the presence of a

non-constant propagation velocity (Table 2) in a univari-

ate and multivariate logistic regression analysis was the

septal thickness (p = 0.03 univariate and p = 0.001 multi-

variate).

In the total group of 33 HCM patients, the linear-

ized MSPa velocity did not correlate with age (p = 0.24),

systolic or diastolic blood pressure (p = 0.75 and 0.96,

respectively), septal thickness (p = 0.11), e0 (p = 0.39) or

E/e0 (p = 0.47).

The a0 velocity and acceleration were significantly

higher in the normal volunteers, suggesting either a

stronger atrial traction on the mitral annulus or a stiffer

IVS.

2-D tissue tracking and M-mode

The grayscale clips were analyzed with speckle

tracking and anatomic M-mode, and for normal volun-

teers, local velocity vectors revealed a traction move-

ment on the mitral annulus, followed by a local

downward-only stretch, progressing from base to apex,

later followed by a global outward movement of the

whole IVS (atrial “volume kick”). As exemplified in

Supplementary Video S2 (online only) and Figure 7a, in



Table 1. General characteristics and results in the study population (comparisons between groups and subgroups)

Parameter, units Normal volunteer HCM patients total HCM patients with non-constant MSPa (A) HCM patients with linear MSPa (B) p
A vs. B

N = 42 N = 33 p vs. Normal N = 14 p vs. Normal N = 19 p vs. Normal

Age, y 35 § 14 49 § 13 0.0001* 46 § 14 0.01 50§ 12 0.0002* 0.4
Male sex 29 (69%) 24 (73%) 0.7 12 (85%) 0.3 12 (63%) 0.8 0.2
BMI 24 § 3 27 § 5 0.002* 28 § 5 0.0007* 26§ 5 0.06 0.3
Systolic blood
pressure, mmHg

117 § 12 131 § 17 <0.0001* 135 § 14 <0.0001* 127 § 17 0.01* 0.2

Diastolic blood
pressure, mmHg

72 § 7 76 § 11 0.06 78 § 10 0.028* 75§ 11 0.2 0.4

Septal thickness, mm 8 § 1 17 § 4 <0.0001* 19 § 4 <0.0001* 16§ 3 <0.0001* 0.02*
Frame rate pulsed
wave TDI, Hz

167 § 17 197 § 65 0.005* 197 § 75 0.02* 196 § 57 0.004* 0.9

e0, cm/s 8.3 § 1.3 5.5 § 1.9 <0.0001* 5.6 § 1.7 <0.0001* 5.4 § 2.1 <0.0001* 0.8
E/e0 8 § 1 16 § 7 <0.0001* 16 § 5 <0.0001* 16§ 8 <0.0001* 1
a0, cm/s 8.6 § 1.9 7.6 § 1.8 0.02* 7.7 § 2.2 0.15 7.5 § 1.3 0.03* 0.7
a0 acceleration, cm/s2 0.14 § 0.04 0.10 § 0.04 0.0001* 0.10 § 0.05 0.004* 0.10 § 0.04 0.0006* 1
Frame rate color
TDI, Hz

542 § 30 530 § 20 0.052 522 § 22 0.03* 536 § 16 0.4 0.04*

Linearized MSPa
(range), m/s

1.6 § 0.3 (1.1�2.1) 1.8 § 0.8 (0.9�3.8) 0.14 2.6 § 0.8 (1.3�3.8) <0.0001* 1.4 § 0.4 (0.9�2.2) 0.03* <0.0001*

First slope MSPa
(range), m/s

— — — 1.4 § 0.5 (0.8�2.5) — — — —

Second slope MSPa
(range), m/s

— — — 6.1 § 3.4 (2.3�12.5) — — — —

BMI: body mass index; HCM: hypertrophic cardiomyopathy; MSPa: myocardial stretch propagation post atrial contraction.
Variables are presented as mean § standard deviation
* Significant p values.
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Fig. 4. Zoomed-in view of the end-diastolic phase after atrial contraction (P wave). (a) Tissue Doppler imaging velocity
pattern starting from the basal interventricular septum. In normal volunteers and some hypertrophic cardiomyopathy
patients, the isovelocity front line (white dotted line) was superimposed on the black dotted line traced between the entry
and exit points of the myocardial stretch post-atrial contraction (yellow circles) into the M-mode map, revealing a con-
stant slope. (b) Synchronous anatomic M-mode of the underlying 2-D information along the same M-mode line. A pro-

gressive base-to-apex downward line shift is visible, following the same contour.
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HCM patients with a constant velocity of the initial

front, the same progressive base-to-apex downward

stretch could be seen. In patients having a non-constant

velocity, we noticed after the mitral annulus traction an

initial basal-only slow downward stretch, followed by a

global rigid downward motion of the entire IVS and later

a short outward movement (Supplementary Videos S3

and S4). This is consistent with the behavior of the

MSPa in TDI and M-mode panels (Fig. 7b).
DISCUSSION

The main findings of this prospective study are as

follows: (i) No significant difference could be found in

the linearized propagation velocity of the wave-like pat-

tern occurring in TDI post-atrial contraction between

normal volunteers and HCM patients. (ii) Clinical and

classic echocardiographic parameters did not correlate

with the linearized propagation velocity of this pattern.

(iii) In about half of the HCM patients, the wave front

seemed to propagate with non-constant velocity, and this

effect was related to disease severity as reflected by the

end-diastolic septal thickness.
Previous studies have described the wave-like phe-

nomena appearing in color TDI after atrial contraction

(Pislaru et al. 2014, 2017; Voigt et al. 2002). By using a

multimodality (speckle tracking, M-mode, TDI)

approach, we found that the dominant direction of local

tissue motion within the wave pattern was longitudinal

to the wave propagation direction, as illustrated by the

absence of the wave pattern in a parasternal TDI record-

ing. When this study was compared with Voigt et al.

(2002), there was a significant difference in the reported

propagation velocity range, which could be due to errors

in manually measuring very fast phenomena with rela-

tively low time resolution in that study. In our study, the

velocity range in normal individuals was similar to those

found in earlier studies that used similarly high frame

rates (Pislaru et al. 2014, 2017), but we could not find a

statistically significant difference in linearized velocities

between normal and pathologic myocardium, despite the

numerous differences (age, body mass index and echo-

cardiographic parameters) between the two study

groups. This was an unexpected finding as HCM ven-

tricles were considered a pathologic model of increased

muscle stiffness and diastolic dysfunction (Elliott et al.

2014; Mirsky and Parmley 1973; Villemain et al. 2018a,



Fig. 5. In more than 40% of the patients with hypertrophic cardiomyopathy, a non-constant shape of the initial front could
be seen. (a) Tissue Doppler imaging velocity pattern. The straight line between the entry and exit points of the MSPa into
the M-mode map (black dotted line) emphasizes the deviation of the first isovelocity front (white lines) from a constant
propagation velocity. The first milder slope is marked ‘1’ and the second steeper slope is marked ‘2’. (b) Anatomic M-
mode of the underlying 2-D information along the same M-mode line, revealing the same variation in propagation velocity.
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b). Also, the linearized propagation velocity of this

wave-like pattern was not correlated with differences in

blood pressure, septal thickness or echographic signs of

diastolic dysfunction. These findings differ from the

results of previous studies (Pislaru et al. 2014, 2017).

This triggered the in-depth analysis of TDI and 2-D data

in search of an explanation.

We noticed the non-constant propagation of the

front of the IVS deformation pattern post-atrial contrac-

tion, present in 42% of the HCM group, and this finding

was statistically related to the septal thickness. Its

appearance in the TDI map consists of a first mild slope

(1.4 § 0.5 m/s) in the basal part of the IVS followed by

a very steep or almost vertical slope (Figs. 5 and 7)

toward the apex, with an average velocity of 6.1 §
3.4 m/s, which is much higher than the velocities mea-

sured in the group of healthy volunteers. Strikingly, the

linearized MSPa velocity did not significantly differ

between the two groups. On the other hand, it was signif-

icantly different when comparing only the non-constant

velocity subgroup and normal volunteers (2.6 § 0.8 m/s

vs. 1.6 § 0.3 m/s, p < 0.0001). This would suggest that

only those patients with non-constant velocity propaga-

tion of the MSPa had higher myocardial stiffness than

normal individuals. However, the two HCM groups
were statistically similar, except for the septal thickness

(19 § 4 vs. 16 § 3 mm, p = 0.02).

With respect to this very steep slope, although

HCM is associated with higher myocardial stiffness,

such high propagation velocities have not been measured

with an alternative stiffness measurement that uses

induced shear waves by (Villemain et al. 2018a,b). They

measured an average velocity of 3.5 m/s in the diastolic

phase for HCM patients, which is a factor of 2 less than

our average values in the steep slope. One explanation

might be related to the physics of such traveling waves.

The pulling action of the atria on the ventricle induces a

wave in which the particle motion is mainly in the direc-

tion of its propagation (i.e., along the wall), as also

observed by the absence of a TDI wave pattern in the

parasternal view. Such waves might behave as symmet-

ric Lamb waves, as opposed to asymmetric Lamb waves

or bulk shear waves which are generated with the tech-

nique applied by (Villemain et al. 2018a,b). The sym-

metric zero-order Lamb waves have a higher

propagation velocity than bulk shear waves, up to a fac-

tor between 1.7 and 2 for a frequency range of nearly

0�40 Hz, as estimated by a wall thickness of 1 cm and

propagation speed of 2 m/s (Brum 2019). Hence, the

MSPa, purely because of its dominant longitudinal tissue



Table 2. Logistic regression analysis of the parameters predict-
ing a non-constant propagation of the MSPa in HCM patients

(N = 33)

Parameter Univariate analysis Multivariate analysis

95% CI p 95% CI p

Age 0.93�1.03 0.41 0.88�1.03 0.22
Sex 0.05�1.66 0.16 0.20�11.39 0.68
BMI 0.94�1.24 0.31
Systolic blood pressure 0.98�1.08 0.21 1.01�1.20* 0.02*
Septal thickness 1.03�1.61* 0.03* 1.19�2.01* 0.001*
e0 0.73�1.48 0.84
E/e0 0.91�1.11 0.97

BMI: body mass index; CI: confidence intervals; MSPa: myocardial
stretch post-atrial contraction.

* Significant p values.

Fig. 6. Linearized propagation velocity of the MSPa in the study population of normal volunteers and HCM patients. (a)
Comparison between normal volunteers and the whole HCM group. Although the velocity range is larger in HCM, the dif-
ference remains statistically non-significant. (b) By splitting the HCM according to the constant or non-constant velocity
of the MSPa, we obtain two subgroups. The subgroup with constant-velocity MSPa has a slightly lower linearized MSPa
than normal volunteers (1.4§ 0.4 m/s, p = 0.03), whereas the non-constant velocity group has a significantly higher linear-
ized propagation velocity (2.6 § 0.8 m/s, p < 0.0001). HCM = hypertrophic cardiomyopathy; MSPa =myocardial stretch

post-atrial contraction.
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motion direction, would expectedly lead to propagation

velocities higher than those found by Villemain et al.,

but it is very unlikely that they would reach well over

10 m/s.

(Villemain et al. 2018a,b) mentioned that the stiff-

ness was measured in diastole, but it is unclear whether

the measurement was timed before, during or after the

atrial contraction. This timing may be critical, as experi-

mental studies of the ex vivo myocardium have found an

exponential relation between stress and strain (Holzapfel

and Ogden 2009; Mirsky and Parmley 1973; Villari et

al. 1993; Weber 1989). Atrial contraction in end-diastole

leads to a rapid increase in LV strain, which might thus

result in a rapid increase in momentary

stiffness in the case of HCM, especially when the

myocardium is close to its maximum distensibility. On

slow-motion 2-D videos (Supplementary Videos S1�S4
at 220�250 Hz), the progression of the local tissue

stretch after atrial contraction can be directly seen, as

can its relation to the global displacement of the left ven-

tricular wall. In normal volunteers (Fig. 3), the LV wall

never reaches the maximal possible tissue distension

permitted by the stiffer collagen network (Elliott et al.

2014; Weber 1989), allowing a progressive linear tissue

stretch from base to apex. In the HCM patients in whom

the slope was linear, some tissue distensibility may be

preserved, and the LV stretch behaves similarly to that

of normal individuals (Figs. 4 and 7a; Supplementary

Video S2). In the more severe HCM patients, as the IVS

becomes thicker and more rigid, the atrial contraction

could induce a limited slow basal stretch, followed by a

very steep movement of the entire LV wall as the hyper-

trophic ventricle reaches maximal longitudinal disten-

sion allowed by the collagen network (Figs. 5 and 7b;

Supplementary Videos S3 and S4). In other words, the

non-constant propagation would be caused by the shift

from the myocardial stiffness to the stiffness of the limit-

ing and more rigid collagen network surrounding the

myocardial fibers. Depending on the degree of tissue dis-

tension existing before the atrial contraction, this shift

may occur sooner or later, explaining the pattern in Fig-

ures 5 and 6, as well as the rigid wall motion seen in

Supplementary Videos S3 and S4. Loading conditions

will affect the strain of the myocardium and thus could

drastically alter the propagation velocity of the MSPa

(Voigt et al. 2002).

With respect to the initial mild slope, we discuss

two possible explanations. First, the local stiffness of the

basal septum could be lower than that of other parts of

the septum, and similar to healthy tissue. Yet, this is less



Fig. 7. Magnified zoomed-in view of anatomic M-mode tracings along the interventricular septum, at 250 Hz, over 5 cm,
just after the start of the echocardiogram P wave and before the onset of the next QRS complex. The annulus is marked
with a red arrow. (a) HCM patient with a linear MSPa velocity slope. The downward tissue shift as seen propagating
along the M-mode line also follows a straight line (dotted line). (b) HCM patient exhibiting non-constant velocity of the
MSPa. The first tissue downward motion has an initial milder slope, followed by a very steep one along the M-mode

line. HCM = hypertrophic cardiomyopathy; MSPa = myocardial stretch post-atrial contraction.
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likely in HCM, where muscle stiffening is expected to be

diffuse. Second, if the tissue is indeed reaching a maxi-

mum distension during the atrial kick, then it would still

be in an elastic state at the onset of the atrial kick, with

its associated baseline stiffness values. Table 1 outlines

a non-significant difference in the linearized propagation

velocity of MSPa in the entire HCM group compared

with healthy volunteers. On the other hand, if the HCM

group is split on the presence of the non-

constant propagation velocity, the difference between

the two HCM subgroups is significant (2.6 § 0.8 m/s vs.

1.4 § 0.4 m/s, p < 0.0001), as is that between the non-

constant propagation and the healthy volunteer group

(2.6 § 0.8 m/s vs. 1. 6 § 0.3 m/s, p < 0.0001) . We also

noted that HCM patients had a significantly lower a0
velocity in pulsed TDI, as well as a lower a0 acceleration
slope. This finding could be interpreted as a lower and

slower traction on the basal septum, potentially resulting

in a slower basal stretch through viscous effects. This

slower basal stretch remains directly visible in grayscale

motion (Supplementary Video S4).

As for the possible transversal component, we

expected this to be visible in the parasternal window in

TDI (particle vibration in line with the Doppler), as

already found for naturally occurring shear waves
(Strachinaru et al. 2017). But in our patients, no wave-

like pattern could be seen in parasternal TDI after atrial

contraction. From this observation we conclude that the

dominant motion is a longitudinal stretch along the sep-

tal wall.

In 2-D imaging, the longitudinal stretch (MSPa) is

shortly followed by an outward displacement of the

whole LV wall, explained by the pressure rise in the ven-

tricle after atrial contraction, which is called the volume

stretch (atrial “volume kick”) and visualized by velocity

vector imaging (Supplementary Videos S2 and S3).As it

occurs later in time, that phenomenon is separate from

the MSPa, which we consider in this study, and therefore

out of the scope of the present study.

Limitations

High-frame-rate imaging represents a compromise

between spatial and temporal resolution. The error in

velocity estimation for very fast phenomena is larger

with higher propagation velocity, lower frame rate and

shorter traveling distance. A wave traveling at 2 m/s

needs 25 ms to travel over a 5-cm length. At 5 m/s this

time is reduced to 10 ms, and at 10 m/s, to 5 ms. At a

frame rate of 540 Hz, the time resolution is a little less

than 2 ms, which is sufficient to detect the general
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behavior of the MSPa in normal individuals, but the

error may be significant for velocities >10 m/s (see error

analysis in Strachinaru et al. 2017, Appendix 1). Higher

frame rates and averaging over multiple measurements

would increase the accuracy of the propagation velocity

measurements, which may be needed for actual clinical

application.

The significance of our findings is limited by the

number of patients. However, the non-constant propaga-

tion velocity was present in about half the patients even

in this small group of HCM patients. Age matching was

initially proposed for checking group variances, but was

no longer considered, given the absence of statistically

significant difference for the linearized MSPa between

the study groups, despite their heterogeneity.

Tissue Doppler imaging velocities are known to be

subject to angle dependency and cannot differentiate

local deformation from global displacement (Dandel

et al. 2009). Angle dependency was a minor issue in the

TDI signal of the IVS in apical view because the motion

was parallel to the ultrasound beam (Fig. 2). The absence

of differentiation between local and global displacement

was overcome by also studying tissue motion over the

anatomic M-mode and by 2-D image analysis. Those

measurements confirmed the findings from the TDI anal-

ysis.

As in previous studies, tracking of the MSPa was

performed manually, which may increase the variability

in velocity estimation, but to reduce this variability we

traced a straight reference line between the entry and

exit points of the MSPa into the M-mode map in all

patients and adjusted it by frame-to-frame analysis as

described under Methods. This line acted also as

reference for the possible deviation of the MSPa from

linearity.

Clinical implications and future directions

Analyzing the MSPa provides deeper insight into

the diastolic function of the LV, as our findings suggest

that the LV wall of HCM patients in diastole rapidly

reaches a point where further longitudinal straining is

constricted by the stiffer collagen network.

Because the MSPa does not exhibit the typical

properties of an oscillatory shear wave, direct calculation

of elasticity stiffness from its propagation velocity

should be done with caution. Most likely, the propaga-

tion of the isovelocity front depends on the stress�strain

relationship of the tissue, the actual strain during the

atrial contraction, additional stresses caused by the LV

loading conditions, and wall thickness, structure and

geometry (Holzapfel and Ogden 2009; Villari et al.

1993; Voigt et al. 2002; Weber 1989). Therefore, calcu-

lating stiffness values from TDI measurements assuming

a linear propagation velocity, as has been done in earlier
studies, may be an oversimplification and may miss clin-

ically relevant deviations from this assumption. How-

ever, the presence of a non-linear MSPa seems to

indicate more advanced disease in HCM, with a signifi-

cantly thicker septum and presumably more fibrosis.

Further research may be directed to using this as a quali-

tative sign of disease severity without the need to

directly compute stiffness values.
CONCLUSIONS

The onset of the left ventricular end-diastolic myo-

cardial stretch after atrial contraction exhibits a constant

and quantifiable propagation velocity in normal individ-

uals, but a non-constant velocity in about half of the

HCM patients in the study. This deviation of the TDI

velocity pattern can be explained by a non-linear relation

between strain and stress and the inhomogeneous struc-

ture of the LV wall, even more apparent in thickened

hypertrophic myocardium. This would imply clinical rel-

evance, but actual quantification of tissue elasticity

should be performed with care.
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