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V accination is an effective way to prevent an epidemic. It results in immunity for the vaccinated individuals, but it
also reduces the infection pressure for unvaccinated people. Thus people may actually escape infection without being

vaccinated: the so-called “herd effect.” We analytically study the relation between the herd effect and the vaccination frac-
tion for the seminal SIR compartmental model, which consists of a set of differential equations describing the time course
of an epidemic. We prove that the herd effect is in general convex-concave in the vaccination fraction and give precise
conditions on the epidemic for the convex part to arise. We derive the significant consequences of these structural insights
for allocating a limited vaccine stockpile to multiple non-interacting populations. We identify for each population a
unique vaccination fraction that is most efficient per dose of vaccine: our dose-optimal coverage. We characterize the solu-
tion of the vaccine allocation problem and we show the crucial importance of the dose-optimal coverage. A single dose of
vaccine may be a drop in the ocean, but multiple doses together can save a population. To benefit from this, policy
makers should select a subset of populations to which the vaccines are allocated. Focusing on a limited number of popula-
tions can make a significant difference, whereas allocating equally to all populations would be substantially less effective.
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1. Introduction

Infectious diseases have heavily influenced the course
of history, and in recent years we have seen new
emerging epidemics due to the SARS coronavirus in
2003, the novel influenza A H1N1 virus in 2009, the
MERS-coronavirus in 2013, and the Ebola virus in
2014. A large outbreak brings about deaths, health
losses and economic losses. Research on preventing
an epidemic or mitigating its consequences is thus of
high priority. Vaccination is one of the most effective
ways to control the spread of a sudden epidemic.
However, the vaccine stockpile is hardly ever suffi-
cient to vaccinate the entire population (e.g., for
influenza: Berkman 2009, Centers for Disease Control
and Prevention 2016, Monto 2006, Roos 2009).

In this study, we investigate vaccine allocation
problems. Specifically, we consider a sudden out-
break in a population consisting of subgroups that
differ geographically, and we investigate the alloca-
tion of a vaccine stockpile that is insufficient to vacci-
nate the entire population. Two examples of such
problems are the allocation of vaccines in case of a
sudden outbreak (e.g., pandemic influenza, Ebola or
an unknown disease) or in response to a bioterror
attack.
To illustrate the problem that is studied in this

study, we examine a policy maker who is confronted
with a sudden outbreak of pandemic influenza. For
such a sudden outbreak, vaccination is one of the
most effective ways to control the spread. However,
the available vaccine stockpile is insufficient to
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vaccinate the entire population and the development
of additional vaccines may take months (Centers for
Disease Control and Prevention 2016). Thus, the pol-
icy maker must solve an allocation problem: How
should the doses of vaccine be allocated? During the
2009 H1N1 pandemic the US Centers for Disease Con-
trol and Prevention (CDC) used a pro rata allocation
(Centers for Disease Control and Prevention 2009a) in
which vaccines were allocated among states relative
to their population size. However, the spread of the
outbreak differed substantially per state, which moti-
vates the study of alternative allocations of vaccines
over multiple regions, also referred to as “popula-
tions” (see also Teytelman and Larson 2013).
A reasonable objective for vaccine allocation is maxi-

mizing the number of people that escape infection.
This objective may be achieved by evaluating the even-
tual outcome of alternative allocation methods by pro-
jecting the course of the epidemic numerically (e.g.,
Keeling and Shattock 2012, Yuan et al. 2015), simula-
tion (e.g., Cooper et al. 2006, Ferguson et al. 2005) or
by telescoping-to-the-future (Teytelman and Larson
2013). Such approaches may use detailed models and
thus yield sophisticated allocations, but they do not
give a high-level explanation of why certain allocations
yield a higher health benefit. This is especially prob-
lematic because the resulting allocations are often
inequitable and behave counterintuitively, as illus-
trated in Table 1. For example, Population 1 has prior-
ity over Population 2 when 2000 doses are available,
but this priority switches at 8000 doses and again at
20,000 doses. Similar outcomes have been observed in
various models (Keeling and Shattock 2012, Klepac
et al. 2011, Rowthorn et al. 2009, Yuan et al. 2015), but
remain poorly understood.
We apply analytical methods to study vaccine allo-

cation for a seminal class of epidemic models: The
compartmental models introduced by Kermack and
McKendrick (1927). These models divide the popula-
tion into different compartments that represent all

people that are in the same disease state. We initially
focus on the classical SIR model, which consists of
three compartments that respectively contain suscep-
tible (S), infected (I), and removed (R) individuals.
People can be in the removed compartment because
of recovery and immunity, successful vaccination or
death. Health benefits in this model are defined in
terms of the total number of people that escape infec-
tion. Vaccination affects health benefit in two ways:
directly for people that are vaccinated, and indirectly
for people that are not vaccinated by reducing their
disease exposure throughout the epidemic.
Our analytical approach yields several new struc-

tural results and general insights that cannot be
derived via numerical or simulation methods. We
first investigate the total health benefit for a popula-
tion as a function of the vaccination fraction that is
used. This function has long resisted analysis because
it cannot be characterized explicitly. We derive an
implicit relation that extends the final size equation
(Diekmann et al. 2012) and that forms the basis of our
subsequent analysis. We contribute to the extant liter-
ature by proving that the health benefits are in general
convex-concave and increasing-decreasing in the vac-
cination fraction, and that the convex part arises only
in populations where the disease has made limited
progression yet. The insight that the health benefit
has a convex-concave response to the vaccination
fraction has crucial consequences for allocation. We
provide an intuitive explanation for convexity-
concavity to arise that is based on the effect that vacci-
nation has on the peak of the proportion of infected.
Our second contribution consists of exploring in

detail the important implications of these results for
policy makers, which we summarize as follows. A
single dose of vaccination may be like a drop in the
ocean, but multiple doses together can have a sub-
stantial effect. To conceptualize this idea, we define
our dose-optimal vaccination fraction, a unique fraction
that maximizes the health benefits per dose of vaccine
in a population. Health benefits per dose of vaccine
decrease when moving away from this fraction in
either direction. This leads to a crucial implication for
policy makers: in order to effectively use the limited
vaccine stockpile available after an outbreak, they
should focus exclusively on a few populations where
dose-optimal coverage is (closely) attainable.
Selecting the populations which should receive

focus is a challenging combinatorial problem, and our
third contribution is exploring this problem for multi-
ple non- and interacting populations. We establish
links to resource allocation literature (A�grali and
Geunes 2009, Ginsberg 1974). For the non-interacting
case, we characterize the form of the optimal solution.
This leads to an explanation of the switching behavior
of Table 1. For cases with interaction, we illustrate

Table 1 The Optimal Vaccine Allocation over Three Non-Interacting
Populations (rounded to the nearest hundred)

Vaccine stockpile Population 1 Population 2 Population 3

2000 2000 0 0
5000 4200 800 0
8000 0 8000 0
10,000 1900 8100 0
15,000 0 0 15,000
20,000 3600 0 16,400
25,000 0 8200 16,800
30,000 4100 8500 17,400

Notes: The sizes of population 1, 2 and 3 are respectively 10,000,
20,000, and 40,000, and the fractions of people initially infected are
0.015, 0.012, and 0.010. (Section 3 contains a detailed description of the
model and section 5 gives the parameters used for this table).
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how to apply the insights gained from the non-inter-
acting case.
We note that our dose-optimal fraction is conceptu-

ally different from the critical vaccination coverage
advocated in extant literature (e.g., Keeling and Shat-
tock 2012, Plans-Rubi�o 2012). The critical vaccination
coverage aims at avoiding an increase in infected
individuals and is suitable to determine vaccination
fractions when sufficient vaccines are available in a
pre-pandemic situation. It has also been advocated
for vaccine allocation under the assumption of scarce
vaccines. However, we show that our dose-optimal
fraction is the right concept for allocating vaccines in
this latter case, and that it gives superior results com-
pared to critical coverage.
Our first steps yielding high-level analytical

insights into vaccine allocation may aid policy-makers
in grasping the sometimes puzzling outcomes of vac-
cine allocation models, which may support their
adoption in practice. With our insights, we also con-
tribute to the ethical debate on vaccine allocation in
which policy makers have to make complex trade-offs
between equity and efficiency.
The remainder of the study is organized as follows.

Section 2 presents an extensive literature review to
position our work. In section 3, the vaccine allocation
problem is formulated. The objective of maximizing
the number of people that escape infection is further
analyzed in section 4 and the dose-optimal vaccina-
tion fraction for a population is presented. Based on
this analysis, the structure of the solution to the vac-
cine allocation problem is presented in section 5. Sec-
tion 6 discusses the generality of the results and the
effect of the assumptions. We conclude in section 7.

2. Literature

There are many different ways to model the spread of
an epidemic in a population. These range from deter-
ministic models with differential equations based on
Kermack and McKendrick (1927), stochastic Markov
formulations (e.g., Lefevre 1979) and simulation mod-
els (e.g., Ferguson et al. 2005). An excellent overview
of mathematical methods to analyze epidemic models
is given by Diekmann et al. (2012).
These models are often used to describe the evolu-

tion of an epidemic in multiple populations that differ
geographically (e.g., Arino and Van den Driessche
2003, Sattenspiel and Dietz 1995). Others distinguish
between age groups (e.g., Goldstein et al. 2009, Med-
lock et al. 2009, Mylius et al. 2008) or between people
heavily contributing to the transmission of the disease
and those who are very vulnerable (e.g., Goldstein
et al. 2012). Another approach is to focus on house-
holds and see them as minor sub-populations (e.g.,
Ball and Lyne 2002, Becker and Starczak 1997, Keeling

and Ross 2015). In this paper, we study non-interact-
ing and interacting populations. In particular we
focus on geographically distant populations (cf.,
Mamani et al. 2013, Sun et al. 2009).
Vaccination is one of the interventions often stud-

ied and included in epidemiological models. Some
studies consider vaccination in a completely suscepti-
ble population (e.g., Keeling and Shattock 2012, Yuan
et al. 2015). Others compare optimal vaccination
strategies on different points in time and show how
the optimal allocation depends on the moment of vac-
cination (Matrajt and Longini Jr 2010, Matrajt et al.
2013, Medlock et al. 2009, Mylius et al. 2008). Vacci-
nation during an epidemic is especially realistic in the
context of a sudden outbreak, of pandemic influenza
for example, as a vaccine needs to be developed and
produced in that case (cf. Bowman et al. 2011).
There are different approaches to evaluating the

effects of interventions such as vaccination. One set of
approaches focuses on the costs and uses cost-effec-
tiveness analysis or cost minimization. Many papers
use such approaches. We discuss a few of them with a
topic or approach that is similar to ours. Hethcote and
Waltman (1973) look for the least cost vaccination pro-
gram that can prevent an epidemic. Brandeau et al.
(2003) use an analytical approach to study the alloca-
tion of a limited budget on programs that affect the
transmission rate. Boulier et al. (2007) analyze the
externalities of vaccination in the SIR model and their
effects on the decision problem for individuals who
have to pay for their vaccination. Simons et al. (2011)
develop a tool based on the SIR model to derive the
cost-effectiveness of vaccination strategies for
measles. These papers have in common that they
explicitly take into account the costs of certain inter-
ventions and compare these costs to the gain in
health.
Next to more cost-oriented approaches, a vast

group of papers focusses on epidemic characteristics,
while taking into account costs only implicitly or not
at all. These epidemic characteristics are measures to
quantify the severity of an outbreak. The final size, also
referred to as the infection attack rate, is broadly used
(e.g., Arino et al. 2006, Keeling and Shattock 2012,
Matrajt and Longini Jr 2010). It measures the total
number of people infected during an epidemic. An
implicit analytical expression for the final size can be
derived from the Kermack and McKendrick model
(cf. Diekmann et al. 2012). This final size equation may
be shown to hold for a broad range of model specifi-
cations (Keeling and Shattock 2012, Ma and Earn
2006). Our objective also corresponds to minimizing
the final size: an extension of the final size equa-
tion serves as the starting point of our analysis. In
contrast, Cairns (1989) and Goldstein et al. (2009)
investigate how to minimize another epidemic

Duijzer, van Jaarsveld, Wallinga, and Dekker: Dose-Optimal Vaccine Allocation
Production and Operations Management 27(1), pp. 143–159, © 2017 Production and Operations Management Society 145



characteristic: the basic reproduction ratio R0 (cf.
Wallinga et al. 2010). R0 is defined as the number of
new infections caused by a single infectious individ-
ual in a completely susceptible population. In the ini-
tial phase of an epidemic there are very few infected
individuals, so the population is almost completely
susceptible. R0 is therefore related to the exponential
initial growth rate of an epidemic (cf. Wallinga and
Lipsitch 2007). Other studies analyze vaccine alloca-
tions that result in the threshold R0 = 1 (e.g., Becker
and Starczak 1997, Tanner et al. 2008). Duijzer et al.
(2016) consider vaccination before an outbreak in an
age structured population and minimize the required
vaccine stockpile to achieve R0 = 1. R0 is a myopic cri-
terion, because it corresponds to the initial growth
rate, whereas the more traditional final size criterion
considers the entire time course of the epidemic.
While the former criterion leads to a much more
tractable model, the latter approach may be more
appropriate in many cases.
Many researchers have identified the optimal

intervention strategy by determining the eventual
outcome of alternatives using simulation models
(e.g. Cooper et al. 2006, Ferguson et al. 2005, Ger-
mann et al. 2006, Halloran et al. 2008, Tuite et al.
2010, Uribe-S�anchez et al. 2011) or numerical evalua-
tion (e.g. Keeling and Shattock 2012, Mylius et al.
2008, Yuan et al. 2015). Teytelman and Larson (2013)
develop heuristic algorithms to solve the vaccine
allocation problem. They show that these heuristic
algorithms outperform a pro rata strategy by taking
into account regional differences in the flu wave that
can be the result of differences in school holidays
and school openings. They use a dynamic approach
in which vaccination decisions are updated over
time to incorporate incoming information about the
epidemic. To the best of our knowledge, we are the
first to use an analytical approach to provide struc-
tural insights explaining why certain interventions
are eventually most effective. Our main technical
contribution is providing a detailed mathematical
analysis of the final size in the seminal SIR model.
We show the convex-concave structure and prove
that there is a unique vaccination fraction that yields
the highest health benefits per dose of vaccine in a
population: the dose-optimal vaccination fraction. The
term dose-optimal is also used by Ball and Lyne
(2002) for a vaccine allocation that minimizes R0

under different model specifications. In general, dose-
optimality refers to the most efficient use of available
doses of vaccine.
A result on convexity of the final size is found by

Wu et al. (2007) for the significantly simplified case of
vaccination in a completely susceptible population
and for a limited range of vaccination fractions. We
study the general model that holds for vaccination at

any possible time during or before the outbreak and
for all possible vaccination fractions. This general set-
ting leads to the discovery of the dose-optimal vaccina-
tion fraction, which plays a crucial role in the optimal
allocation. Simulation models and numerical analysis
are incapable of deriving insightful structural results.
Our analytical approach is therefore essential to
derive and formally proof the convex-concave struc-
ture and the dose-optimal vaccination fraction. The
structural insights that we obtain may help practition-
ers to better understand the sometimes counterintu-
itive outcomes of a broad range of models.
By taking advantage of the results we obtain for the

final size of the epidemic, we analyze the vaccine allo-
cation problem and establish a link to resource alloca-
tion literature. This literature investigates for example
the allocation of resources among several production
plants of a firm (Ginsberg 1974) or the allocation of a
limited budget over multiple investments (A�grali and
Geunes 2009). Both Ginsberg (1974) and A�grali and
Geunes (2009) study a knapsack problem with S-
shaped return functions and the latter paper proves it
to be NP-hard. Srivastava and Bullo (2014) derive a
constant factor approximation algorithm with polyno-
mial running time for the same problem. Our results
in section 4 establish the applicability of this algo-
rithm for our vaccine allocation problem, but we do
not explore this further because the main purpose of
this study is developing high-level insights into the
problem.
Our research is in line with the growing interest for

decision problems related to the vaccine supply chain
in the Operations Management community. Duijzer
et al. (2017b) characterize the following four compo-
nents of the vaccine supply chain: composition (e.g.,
Cho 2010, €Ozaltin et al. 2011), production (e.g, Adida
et al. 2013, Mamani et al. 2013), allocation (e.g., Sun
et al. 2009) and distribution (e.g., McCoy and Johnson
2014). The current study contributes to the literature
on allocation.

3. Vaccine Allocation

Vaccinating in multiple populations brings about the
question of allocation: How should the available
doses of vaccine be divided over the populations?
This study models the spread of an epidemic using
the seminal deterministic SIR model, which is
explained in section 3.1. In section 3.2, we explain the
effect of vaccination on the time course of an epi-
demic. The vaccine allocation problem is formulated
in section 3.3.

3.1. The SIR Model
The SIRmodel is a classic model in epidemiology pro-
posed by Kermack and McKendrick (1927). Let J
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denote the set of populations. Every population is
divided into three compartments for which the time
course is tracked (cf. Hethcote 2000). Let sj(t), ij(t), and
rj(t) be the fractions of the population respectively
susceptible, infected and removed in population j at
time t. In this study, we consider the removed com-
partment consisting of recovered individuals, deaths
can be taken into account straightforwardly. By inter-
pretation it must hold that sj(t) + ij(t) + rj(t) = 1 for all
t ≥ 0 and all j 2 J. The SIR model is described by the
following system of differential equations, with the
transmission rate and the rate of recovery in popula-
tion j denoted by bj and cj, respectively.

dsj
dt

¼ �bjsjij

dij
dt

¼ bjsjij � cjij

drj
dt

¼ cjij

ð1Þ

We assume that boundary conditions sjð0Þ ¼ s
j
0,

ijð0Þ ¼ i
j
0, and rjð0Þ ¼ r

j
0 are given, with i

j
0 [ 0 and

s
j
0 þ i

j
0 þ r

j
0 ¼ 1. (The limit i

j
0 # 0 is discussed in

section 4.3.)
Figure 1 illustrates the time course of an epidemic

that evolves according to the differential equations of
the SIR model. (Figure 1 and 2 are computed with the
Runge–Kutta method (Greenbaum and Chartier
2012)). Two observations should be made from this
figure: (i) the epidemic eventually dies out and (ii) not
all susceptible individuals become infected. As the
fraction of susceptible individuals decreases over
time, it becomes less and less likely for an infected
individual to come into contact with such a suscepti-
ble individual. This eventually leads to a decrease in
the fraction of infected individuals. Specifically, we
see that ij(t) increases for sjðtÞ [ cj

bj
and decreases for

sjðtÞ\ cj
bj
. Accordingly, we refer to populations being

pre-peak in the first case and post-peak in the second
case. Let s0 be the time at which sjðs0Þ ¼ cj

bj
, that is, at s0

the peak in infectious is reached.

3.2. Vaccination
Vaccination reduces the fraction of susceptible indi-
viduals, in order to avoid or reduce an increase in the
fraction of infected individuals. To formally define
vaccination, we introduce the following notation. Let
s denote the time at which a fraction fj of population j
is vaccinated, with 0 ≤ fj ≤ sj(s). Just prior to vaccina-
tion the system is in state (sj(s), ij(s)). Assume that the
used vaccine is completely effective after a single dose
and that vaccination takes no time, meaning that vac-
cination results in complete immunity immediately.
Assume also that it is possible to identify the suscepti-
ble people. We refer to section 6 for a discussion of
these assumptions. Under our assumptions vaccina-
tion causes a shift at time s from state (sj(s), ij(s)) to
state (sj(s) � fj, ij(s)). This implies that rj(s) shifts to
rj(s) + fj. Figure 2 illustrates the changes at time s.
To evaluate different vaccine allocations we base

ourselves on the state of the system when t ? ∞.
This state is also referred to as disease-free equilib-
rium, because limt!1 ijðtÞ ¼ 0. We define Gj(fj) as the
final fraction of people susceptible in population j
after vaccinating a fraction fj of the susceptible people
at time s. More precisely, for fj 2 ½0; sjðsÞ�

GjðfjÞ ¼ lim
t!1

sjðtÞ; ð2Þ

with sj(t) evolving according to Equations (1) for
t > s. The final fraction of people susceptible is clo-
sely related to the following concepts that we define
here explicitly for future use:

Herd immunity: the protection of susceptible
individuals against infection because they are
surrounded by a sufficient number of immune
individuals. The immunity from the latter
group may result either from vaccination or
from recovery from infection (cf. Fine 1993).

Herd effect: the proportion of all people that is
spared from infection because of herd
immunity, that is, the proportion of all
people that is still susceptible when the
epidemic has died out.

Thus Gj(fj) measures the herd effect in population j.
Section 4 studies Gj(fj) in more detail using an alterna-
tive formulation of the function (see Appendix S1).

3.3. The Vaccine Allocation Problem
We are interested in allocating a limited amount of
vaccines V in order to maximize health benefit,

Figure 1 Illustration of the Deterministic SIR Model for Population j
with Parameters cj = 1.5, bj = 3, i0 = 10�6
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defined as the total number of people that escape
infection:

max
X
j2J

NjGjðfjÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{herd effect

þ
X
j2J

Njfj

zfflfflfflffl}|fflfflfflffl{direct effect

s.t.
X
j2J

Njfj �V

0� fj � sjðsÞ 8j 2 J

ð3Þ

Here, Nj denotes the size of population j. The objec-
tive function reflects that there are two ways to
escape infection: either you are vaccinated (direct
effect) or you escape infection without being vacci-
nated (indirect effect). Note that the fraction of peo-
ple escaping infection without being vaccinated in
population j is precisely the final fraction of suscep-
tible people, that is, the herd effect Gj(fj) introduced
in section 3.2.
We discuss two equivalent formulations of the

above allocation problem, using different objective
functions in order to demonstrate the relation of our
work to epidemiological literature. Firstly, in
Theorem D1 we prove that it is optimal to always use
the complete vaccine stockpile, that is, constraintP

j2J Njfj � V will always be met with equality. This
implies that the objective could be changed from max-
imizing the total effect of vaccination to maximizing
only the herd effect. Secondly, maximizing the total
effect of vaccination is equivalent to minimizing the
final size of the epidemic, that is, the total number of

people that get infected. The final size of the epidemic
may be expressed as Zj(fj) = sj(0) + ij(0) � fj � Gj(fj)
and Problem (3) is thus formally equivalent to a mini-
mization problem involving this final size (e.g., Keel-
ing and Shattock 2012, Wu et al. 2007). The relation
between Zj(fj), fj, and Gj(fj) is illustrated in Figure 3.
Note that the fraction Gj(fj) may in fact increase for
smaller values of fj.

4. Analysis of the Herd Effect

In order to study the allocation problem (3), section
4.1 analyzes and interprets the structure of the herd
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Figure 2 Illustration of the Deterministic SIR Model for Population j with Parameters cj = 1.5, bj = 3, i0 = 10�6

Notes: Dashed lines represent the time course without vaccination. The solid lines represent the time course when either a fraction fj = 0.1 (left panel) or
fj = 0.4 (right panel) is vaccinated at time s when sj(s) = 0.95.
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effect G(f) (we drop the subscript j for convenience).
Based on this analysis we present our dose-optimal
vaccination fraction for a population in section 4.2
and compare this fraction to the so-called critical vac-
cination fraction from literature in section 4.3. We
extend our analysis to more general compartmental
models in section 4.4. A minor detail is sorted out in
section 4.5: we formally confirm that it is optimal to
vaccinate as early as possible.
Figure 4 summarizes the main findings of this sec-

tion and illustrates the structure of G(f). In sections 4.1
and 4.2 these results are derived formally.

4.1. Analysis of the Structure of the Herd Effect
In this and the next section, we present the main tech-
nical contribution of this study: a structural analysis

of the herd effect G(f). Let r :¼ b
c. The overall struc-

ture of G(f) is established in the following theorems:

THEOREM 1. There is a unique vaccination fraction
f� ¼ maxðsðsÞ � 1

r ; 0Þ that maximizes the herd effect:
the herd effect G(f) is increasing in f for all f < f�,
maximized for f = f� and decreasing for f > f�.

THEOREM 2. There exists a unique vaccination fraction
�f with 0 � �f � f� such that G(f) is strictly convex
(G00(f) > 0) for all f\�f and strictly concave (G00(f) < 0)
for all f [ �f .

We first briefly discuss how these results are
derived. The proofs for these results and the support-
ing lemmas can be found in Appendix S2. We had to

overcome a number of significant challenges, particu-
larly because no explicit formulation of the herd effect
G(f) exists.We develop an implicit relation characteriz-
ing G(f), and our proof departs from that relation. We
note that despite almost 90 years of research on the
SIRmodel, the convex-concave shape and its repercus-
sions for vaccine allocation have not been considered.
We next discuss the intuition behind these theo-

rems, and the consequences that these results have
for practice. The peak in the infections, illustrated
in Figure 2, plays a critical role in determining the
herd effect. At this peak, the proportion of suscep-
tibles is equal to c/b = 1/r and so infections
decrease for s(t) < 1/r. Note that vaccinating with
the fraction f� = s(s) � 1/r exactly results a propor-
tion of susceptibles equal to 1/r directly after vac-
cination, which leads to the following definition
(cf., Keeling and Shattock 2012, Plans-Rubi�o 2012):

Critical vaccination coverage: the smallest vaccina-
tion fraction that results in a decrease of infec-
tions directly after vaccination, denoted by f� as
in Theorem 1.

Vaccination beyond f� thus protects individuals that
would not be likely to contract the disease anyhow
and expanding coverage beyond f� actually reduces
the herd effect.
The primary effect of vaccination is that it reduces

the number of people to be infected until the peak of
infected is reached at s(t) = 1/r. The convex-concave
structure results because this primary effect interacts
with a secondary effect: f affects the specific time at
which the peak occurs. This secondary effect is non-
monotonic, because it consists of two competing
phenomena: (i) Vaccination lowers s(s), thus reduc-
ing the further reduction in susceptibles needed until
s(t) reaches 1/r and (ii) Vaccination reduces the rate
of initial exponential growth of infected people, thus
inhibiting the speed of reduction of s(t). For small f
the second effect dominates, resulting in a delayed
peak as can be seen in Figure 2. For larger vaccina-
tion fractions, when s(s) comes close to 1/r, the first
effect dominates rendering the peak to be advanced.
A delayed peak is beneficial, since more time allows
for more recoveries and consequently results in
fewer infections at the peak. Small vaccination frac-
tions benefit from the delayed peak, in addition to
the primary effect, which results in the convex and
increasing herd effect. For larger vaccination frac-
tions the secondary benefit is reversed, which
explains the concave increase.
The structure of the herd effect has some inter-

esting practical consequences. Consider for example
a policy maker that faces a pandemic influenza
outbreak where the vaccine stockpile should be
allocated over multiple populations with a

Figure 4 Illustration of the Structure of G(f), Which is Proven in Sec-
tion 4: Theorems 1 and 2 Establish the Increasing–Decreasing
and Convex–Concave Structure of G(f), Which is Illustrated in
This Figure Using the Parameters (s0, i0) = (0.99, 0.01),
r = 3 and s = 0 [Color figure can be viewed at wileyonline-
library.com]

Notes: Dashed lines represent the important vaccination fractions �f (left), f �

(right) and our dose-optimal vaccination fraction ~f (middle). The latter fol-
lows from Corollary 1. The straight dotted line illustrates that ~f is the only
non-zero vaccination fraction for which the tangent line contains the point
(0, G(0)).
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comparable pre-peak state. It is better to concen-
trate on one or few of these populations instead of
allocating equally over all. By restricting attention
to a few populations both the primary effect and
the secondary effect can be fully exploited for a
few populations resulting in a higher overall herd
effect. Our results thus yield understanding why
equitable allocations are often not efficient. This
increased understanding is a contribution to the
ethical debate on vaccine allocation.
Note that Theorem 2 does not rule out that �f ¼ 0, in

which case there is no convex part of G(f). Similarly, by
Theorem 1 we may have f� = 0, in which case G(f) is
never increasing. The following theorem investigates
these issues. It features the constant C that is defined
as C = 2/r + W[�r exp {�r(s0 + i0) + log (s0)}]/r,
where W[�] is the Lambert W function and C > 1/r (cf.
Appendix S5).

THEOREM 3. For the structure of G(f) we can
distinguish three cases based on s(s), the proportion of
susceptibles at the moment of vaccination s:

(i) C < s(s) < 1: We have f� [ �f [ 0. Thus G(f) is
increasing and convex between 0 and �f , increasing
and concave between �f and f�, and decreasing and
concave above f�.

(ii) 1/r < s(s) ≤ C: We have f� > 0 and �f ¼ 0. Thus
G(f) is increasing and concave between 0 and f�,
and decreasing and concave above f�.

(iii) 0 ≤ s(s) < 1/r: We have �f ¼ f� ¼ 0. Thus G(f) is
decreasing and concave everywhere.

Figure 4 graphically illustrates the herd effect G(f)
with parameters for which C = 0.7092. Since we use
s(s) = s0 = 0.99, the figure shows the most general
shape (i). Theorem 3 follows from the intuitive discus-
sion earlier in this section. For s(s) high enough (more
precisely higher than C) the peak in infections can be
delayed with small vaccination fractions, resulting in
the convex increase in the herd effect. When s(s) is
below C the peak can not be delayed through vaccina-
tion and the herd effect has no convex part. If
s(s) < 1/r, the population is already in a post-peak
state with infections declining. This implies that the
risk of getting infected for the people who are still
susceptible is relatively low. In that case f� = 0 and
vaccination reduces the herd effect, because you vac-
cinate people that were unlikely to get infected in the
first place.
Thus, policy makers that face an outbreak of pan-

demic influenza for example, should resist the pres-
sure to vaccinate in areas with many infected people.
Indeed, when infections are close to the peak, the
effect of vaccination is lower. Vaccinating in post-
peak areas is even less effective, because the people

that you vaccinate were not likely to become infected
anyhow (cf., Teytelman and Larson 2013). Thus, it is
best to vaccinate in pre-peak areas where s(s) >> 1/r.
But to achieve most in such populations, concentra-
tion of effort is needed. In sections 4.2 and 5.1 we will
discuss this in more detail.

4.2. The Dose-Optimal Vaccination Fraction
In this section, we present a third important vaccina-
tion fraction, next to the vaccination fractions f� and �f
defined in Theorems 1 and 2. To explore the impact of
vaccination we should take into account that suscepti-
ble people will escape infection even without vaccina-
tion. Accordingly, we define:

Additional herd effect: the herd effect achieved
through vaccination minus the herd effect that
would already be present without vaccination;
denoted by G(f) � G(0).

We introduce the function D(f) to measure the aver-
age additional herd effect per dose of vaccine:

DðfÞ ¼ 1

f
½GðfÞ � Gð0Þ� ð4Þ

Note that D(f) can also be interpreted as the average
slope of the herd effect G(f) on the interval [0, f]. We
derive following result:

COROLLARY 1. The function D(f) as defined by Equation
(4) is maximized by the unique vaccination fraction ~f for

which G0ð~fÞ ¼ Dð~fÞ. The function D(f) is increasing for

f\~f and decreasing for f [ ~f .

We have thus determined three important vaccina-
tion fractions of which the relation is presented in the
following lemma:

Figure 5 Illustration of the Dose-Optimal Vaccination Fraction ~f Using
the Parameters (s0, i0) = (0.99, 0.01), r = 3, and s = 0
[Color figure can be viewed at wileyonlinelibrary.com]

Notes: The slope of the straight line represent the value of D(f ) for ~f .
Observe that any other line starting at G(0) and intersecting with G(f)
would be less steep and not tangent to G(f ).
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LEMMA 1. Consider the following three vaccination frac-
tions: f� as defined in Theorem 1, �f as defined in
Theorem 2 and ~f as defined in Corollary 1. The following
relation holds: �f � ~f � f�:

Corollary 1 and Lemma 1 are illustrated in Figure 5.
Observe that at ~f the line connecting G(0) and Gð~fÞ is
also the tangent line at Gð~fÞ. Because of the convex-
concave structure of the herd effect G(f) there is only a
single vaccination fraction ~f for which this holds, and
this fraction must lie between �f and f�. The interpreta-
tion of Corollary 1 is that ~f gives the highest addi-
tional herd effect per dose of vaccine, which leads to
the following definition:

Dose-optimal vaccination fraction: the vaccination
fraction that maximizes the average additional
herd effect per dose of vaccine in a population,
denoted by ~f .

A discussion of the implications of Corollary 1, and a
comparison of the dose-optimal ~f with the critical vac-
cination coverage f� are provided in the next section.

4.3. Dose-Optimal and Critical Vaccination
Coverage
Our dose-optimal vaccination fraction ~f and the vacci-
nation fraction f� represent two different concepts in
vaccine allocation. We compare the dose-optimal vac-
cination fraction ~f with the critical vaccination cover-
age f� and illustrate these fractions for different values
of r in Table 2. The table shows that ~f and f� are indeed
quite different. For r growing large, both ~f and f� con-
verge to s(s) (cf., Lemma B4 in Appendix S2.3), but this
limit is not very interesting because r is between 2 and
20 for most diseases. For example, r � 3 for influenza,
r � 3.5–6 for smallpox, r � 6–7 for rubella and
r � 16–18 for measles (Keeling and Rohani 2008).
As discussed in section 4.2 the vaccination fraction

~f results in the most efficient allocation per dose of
vaccine in a population. The vaccination fraction f� on
the other hand is attractive from another perspective
and has been advocated in literature (e.g., Keeling
and Shattock 2012, Plans-Rubi�o 2012). It does not only
maximize the herd effect, but also directly results in a
decrease in infected individuals at time s.
Corollary 1 and Lemma 1 clearly show that ~f makes

more efficient use of vaccines then f�. This can be

intuitively understood as follows. Note that f� [ ~f .
Our intuitive interpretation of Theorem 2 reveals that
while vaccination initially delays the timing of the
peak of infected, vaccinating with higher vaccination
fractions will actually render the peak to be advanced.
As a consequence, vaccines issued to expand coverage
from ~f to f� in a population are used inefficiently. We
give an example using the settings of Table 2 and
r = 3. In that case, the vaccines between 0 and ~f result
in an average herd effect of 0.31 per dose, whereas this
average is only 0.17 per dose for the vaccines between
~f and f�. Hence, vaccinating beyond ~f to achieve f� is
costly, and not a good use of a limited vaccine stock-
pile.
In literature optimal vaccination has often been

explained in terms of avoiding the further increase in
infected individuals, which relates to vaccinating with
f� (cf., Keeling and Shattock 2012, Wu et al. 2007,
Yuan et al. 2015). Avoiding an increase of infected
people is suitable when there are initially no infected
individuals, that is, for “pre-pandemic vaccination”
(the limit i0 ↓ 0). However, allocating a limited vac-
cine stockpile typically goes hand in hand with a sud-
den outbreak: the limited stockpile arises because not
enough time is available to produce more. This argu-
ably renders pre-pandemic vaccination unrealistic in
combination with allocating a limited vaccine stock-
pile. In the case of influenza, this implies that the
assumption of a limited stockpile is more realistic for
pandemic influenza than for seasonal influenza.
Extant literature has focused mainly on the less real-
istic case of a limited stockpile and pre-pandemic
vaccination, for which f� and ~f coincide numerically
as we show in Appendix S2.3, and has thus
missed the conceptual distinction between critical
and dose-optimal vaccination. In general the con-
cepts of dose-optimal vaccine allocation and avoid-
ing an increase in infections are substantially
different. The explanation of literature is therefore
not generalizable.

4.4. The SEIR Model and Other Extensions
An important extension of the standard SIR compart-
mental model is the SInR model with n different con-
secutive infectious stages. This extension allows to
include a latent period or multiple levels of infectiv-
ity. Let bk and ck denote respectively the transmission

Table 2 Illustration of the Three Important Vaccination Fractions �f , ~f , and f � for Increasing r

r 2 3 5 10 15 20 25 30 50 100

�f 0.3376 0.5411 0.7086 0.8398 0.8857 0.9094 0.9240 0.9340 0.9546 0.9712
~f 0.4134 0.6193 0.7746 0.8855 0.9211 0.9386 0.9490 0.9560 0.9697 0.9799
f � 0.4900 0.6567 0.7900 0.8900 0.9233 0.9400 0.9500 0.9567 0.9700 0.9800

Note: To calculate the numbers an initial state (s0, i0) = (0.99, 0.01) and s(s) = 0.99 is used.
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rate and recovery rate in infectious stage k. A special
case of the SInR model for which n = 2 is the SEIR
model. Compared to the SIR model the SEIR model
has an additional compartment E containing the indi-
viduals that are exposed and hence infected, but not
yet infectious. We derive our results for the general
SInR model, in which there are arbitrary many addi-
tional compartments:

LEMMA 2. The results of Theorem 1, Theorem 2,
Theorem 3 and Corollary 1 also apply to the SInR model

with r ¼ Pn
k¼1

bk
ck
. In particular, for each SInR model with

given initial conditions there exist vaccination fractions �f ,
~f and f� that together characterize the convex–concave and
increasing–decreasing shape of the herd effect.

Theorem 1, Theorem 2, Theorem 3 and Corollary 1
form the basis for the analysis of the vaccine alloca-
tion problem in section 5. By Corollary 2 the results
derived in section 5 are valid for the more general
SInR model. The interested reader is referred to
Appendix S3, where we formally analyze the SInR
model.

4.5. The Optimal Timing of Vaccination
We sort out a minor detail by formally proving that
vaccination should ideally be carried out as soon as
possible. Thereto we determine the time s at which
the total effect of vaccination, that is, G(f, s(s)) + f, is
maximized. Assume that we have a fixed vaccine
stockpile, V, such that a fraction of the population
can be vaccinated is restricted by V

N, where N is the
population size. If s(s) ≤ V/N, all susceptible people
can be vaccinated and the objective function for
f = s(s) reduces to s(s), because limf↑s(s)G(f) = 0 by
Theorem B1. If s(s) > V/N, all available doses of
vaccine are used and f ¼ V

N. In Lemma B.6 we
derive that the herd effect G(f, s(s)) is increasing in
s(s) in that case. Therefore, to maximize the number
of people that escape infection one should vaccinate
as soon as possible in an ideal world. A policy
maker that has to allocate a limited vaccine stockpile
over a number of populations that face an outbreak
of pandemic influenza should therefore concentrate
on the population in which the outbreak has least
progressed.

5. Analysis of the Vaccine Allocation
Problem

In this section, we analyze the vaccine allocation prob-
lem (3), using the characterization of the objective
function in Theorems 1, 2, and 3. These theorems
establish that our vaccine allocation problem is a
combinatorial optimization problem that is likely

difficult to solve to optimality (cf., Srivastava and
Bullo 2014). However, in this section we show that
there is an interesting structure in the optimal solu-
tion. Section 5.1 presents this central insight. Sec-
tion 5.2 considers an interesting special case to gain
more understanding of the structure of the solution.
Section 5.3 translates the results gained in sections 5.1
and 5.2 into insights and simple guidelines for arriv-
ing at an efficient allocation. In section 5.4, we illus-
trate how the insights from the non-interactive case
can be applied to geographically distant populations
that interact with each other.

5.1. The Optimal Allocation
We characterize the optimal allocation, which is the
solution to Problem (3). We will make a few non-
restrictive assumptions to allow us to focus on the
most interesting cases. Firstly, we assume that
V < V�, where V� ¼ P

j2J Njf
�
j , reflecting our focus on

severe shortages of vaccines. As argued in section 4.3,
this is a realistic assumption in case of a sudden out-
break such as pandemic influenza. Indeed, with
V ≥ V� all locations can reach critical vaccination cov-
erage f�j , stopping any further increase of infections.
Moreover, we observed in section 4.1 that post-peak
populations (with sj(s) < 1/rj) should not receive vac-
cination until all pre-peak populations receive at least
f�j . Thus, here we assume that all populations are pre-
peak (sj(s) > 1/rj). We refer to Appendix S4 for a
description of the optimal allocation in case these
assumptions are relaxed.
We will show that every optimal solution to prob-

lem (3) is linked to a certain marginal efficiency x:

Marginal efficiency: the increase in herd effect if
one additional dose of vaccine would be allo-
cated to a population, calculated as the deriva-
tive of Gj(fj) with respect to fj.

Populations j 2 J are vaccinated with marginal effi-
ciency x if G0

jðfjÞ ¼ x. In the optimal solution, by
KKT conditions every population that is partially vac-
cinated must be vaccinated with marginal efficiency
x. However, potentially two vaccination fractions fj
may satisfy G0

jðfjÞ ¼ x:

Regular fraction: the vaccination fraction fj that results
in a marginal efficiency x and lies in the domain
where the herd effect is concave, that is, fj [ �f j.

Exceptional fraction: the vaccination fraction fj that
results in a marginal efficiency x and lies in the
domain where the herd effect is convex, that is,
fj \�f j.

In the optimal solution, there are three possible
vaccination fractions for every population j 2 J: (i)
the regular fraction, (ii) the exceptional fraction or
(iii) fj = 0 and population j is not vaccinated at all.
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Figure 6 illustrates these three possibilities for pop-
ulation j.

THEOREM 4. (CENTRAL INSIGHT). Every optimal solution
to Equation (3) can be characterized as follows:

(i) A subset of populations J0 ⊆ J is vaccinated with the
regular fraction that corresponds to marginal
efficiency x.

(ii) Possibly another population k is also vaccinated
with marginal efficiency x, but with the exceptional
fraction for which fk \ �fk.

(iii) The remaining populations are not vaccinated at all.

Determining x for a specific problem is difficult,
which relates back to the combinatorial nature of
Problem 3. Still, a key insight can be derived from
Theorem 4: A policy maker should focus on a sub-
set of populations when allocating vaccines and
leave other populations unvaccinated. By doing so
the benefits of the herd effect are best exploited,
because only a concentrated effort can fully harness
both the primary and the secondary effects of vacci-
nation. The structure of the optimal allocation thus
clearly brings about complex decisions for policy
makers, who also have to take equity considerations
into account. Our results show that mathematically
optimal allocations are inherently inequitable due to
the nonlinear dynamics of epidemics. Hence, policy
makers are to some extend forced to choose
between equity and efficiency. For a further discus-
sions of the ethical dimension of vaccine allocation
we refer to section 7.

5.2. The Special Case: Identical Parameters
We illustrate the intuition behind the central insight
for an interesting special case: the case of populations
having identical disease parameters. This special case
implies identical functions Gj(fj) := G(fj) for all j 2 J
(rj := r, sj0 :¼ s0, i

j
0 :¼ i0 for all j 2 J). In that case the

regular fraction fj for a certain marginal efficiency x is

the same for all populations j. This implies that the
allocation described in (i) of Theorem 4 is a pro rata
allocation over the subset J0, with pro rata as usual
denoting an allocation in which the doses of vaccine
are distributed equally with respect to population
size, such that the vaccination fraction is the same
in all selected populations. For this special case the
optimal allocation may be characterized in more
detail.
Based on the results derived in section 4, we con-

clude that our optimization problem is a knapsack
problem with convex-concave return functions. Gins-
berg (1974) study an investment problem over multi-
ple factories with convex-concave production
functions. Mathematically, this problem is equivalent
to our vaccine allocation problem for the special case
Gj(0) = 0 and Nj = N for all j 2 J. Intuitively, this spe-
cial case corresponds to a situation with a shifted herd
effect and all sub-populations having the same size.
We build upon the results of Ginsberg (1974) to char-
acterize the optimal vaccine allocation in the follow-
ing theorem.

THEOREM 5. Consider a set of populations J with ∀j:
Gj(f) = G(f) and a total available amount of resources
equal to V. Let |J| = n and order the populations such
that N1 ≤ ⋯ ≤ Nn. The optimal allocation for particular
cases is as follows:

(a) if V\~fN1, then allocate only to the smallest
population. Set f1 = V/N1 and fj = 0 for
j = 2, . . ., n.

(b) if V ¼ P
j2K ~fNj for a subset K ⊆ J, then set

fj ¼ ~f for j 2 K and fj = 0 for j 62 K.
(c) if V [

P
j2J ~fNj, then allocate pro rata over all

the populations: fj ¼ VP
j2J Nj

for all j 2 J.

The proof of this theorem can be found in
Appendix S4. Theorem 5 shows that in order to make
the best possible use of the herd effect, decision mak-
ers should try to vaccinate close to ~f in (a subset of)
the populations. They should allocate all vaccines to
the smallest population if the vaccination fraction ~f
cannot be attained in any of the populations (case (a)).
For very large vaccine stockpiles, policy makers do
best in selecting the pro rata allocation over all popu-
lations (case (c)). Note that Theorem 5 only specifies
the allocation in specific cases of vaccine stockpiles,
but can be extended to any available amount of vac-
cines. However, the description of the optimal alloca-
tion for a general vaccine stockpile is quite technical
and less insightful and is therefore omitted. In gen-
eral, the optimal allocation changes continuously for
small changes in V. For larger changes discontinuities
may arise when jumping from one subset K to the
other in item (b) of Theorem 5.

Figure 6 Illustration of the Structure of the Optimal Allocation, Using
the Parameters (s0, i0) = (0.99, 0.01), r = 3, and s = 0
[Color figure can be viewed at wileyonlinelibrary.com]
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5.3. Discussion of the General Case—The
Switching Behavior
The vaccine allocation problem that we study is NP-
hard, but we have derived an interesting structure in
Theorem 4 and section 5.2. In this section we translate
this structure to insights and a simple guideline for
arriving at an efficient allocation.
Recall that in the special case discussed in section

5.2 a decision maker should look for a subset of popu-
lations such that it is feasible to vaccinate these popu-
lations close to the fraction ~f that yield the highest
additional herd effect per allocated dose. In the gen-
eral case the parameters may differ per population,
causing the functions Gj(�) to be different for different
populations j. This implies that there is no longer a
single value for ~f , but an ~fj for every population j 2 J.
The additional herd effect per dose of vaccine in pop-
ulation j is the highest at ~fj and decreases as the vacci-
nation fraction moves away from ~fj in either direction.
This has the following implications for the optimal
allocation: a decision maker should select a subset of
populations and divide the vaccines over them such
that these populations are vaccinated with a fraction
close to their dose-optimal fractions ~fj. The marginal
efficiency x of Theorem 4 determines how close the
vaccination fraction exactly is to the dose-optimal
fraction. In any case, Theorem 4 guarantees that the
vaccination fraction lies in the interval ½�fj; f�j � for the
populations in the selected subset, except for at most
one population which can be vaccinated with a frac-
tion below �fj.
The recommendation given by Wu et al. (2007),

Keeling and Shattock (2012), Yuan et al. (2015) to
maximize the herd effect in some populations by set-
ting fj ¼ f�j is thus incorrect in typical practical set-
tings of a limited vaccine stockpile, e.g., during an
outbreak of pandemic influenza. A decision maker
should vaccinate close to ~fj to use the vaccines effi-
ciently in every population; any additional vaccina-
tions used to reach critical coverage f� in j are
ineffective as discussed in section 4.3.
Using the above characterization of the optimal

allocation we can also explain the switching behavior.
The smallest populations are prioritized for small vac-
cine stockpiles, as the number of doses of vaccine
required to reach ~fj is smaller in those populations.
When the stockpile size increases, we can vaccinate
close to the dose-optimal vaccination fraction in larger
populations and hence priority shifts to these popula-
tions. Numerical analysis of the optimal vaccine allo-
cation (e.g., by Keeling and Shattock 2012) shows
switch points where a small increase in vaccine stock-
pile results in a completely different allocation. Our
analysis explains these switch points: they are related
to a change in the subset of populations to approach
the dose-optimal vaccination fraction.

The structure of the optimal allocation is
illustrated in Figure 7, where we use the example
from the introduction with three populations of
size N1 = 10,000, N2 = 20,000 and N3 = 40,000
respectively. The following parameters are used:
s = 0, rj = 2 for j = 1,2,3 and initial states ðs10; i10Þ ¼
ð0:985; 0:015Þ; ðs20; i20Þ ¼ ð0:988; 0:012Þ and ðs30; i30Þ ¼
ð0:990; 0:010Þ. In Figure 7 we indeed observe that
the vaccinated populations receive a number of
allocated vaccines that is close to ~Vj.
To relate Figure 7 to the description of the optimal

allocation in Theorem 4, we explain the optimal allo-
cation for two vaccine stockpile sizes: V = 5000 and
V = 10,000. For V = 5000, the optimal strategy is
roughly to allocate 4200 vaccines to population 1 and
the remaining 800 to population 2. We thus see all
three vaccination possibilities of Theorem 4 present: (i)
population 1 gets the regular fraction, (ii) population 2
the exceptional fraction and (iii) population 3 is not
vaccinated at all. For V = 10,000, we see the roles of
population 1 and 2 reversed with population 1 getting
1900 vaccines and population 2 receiving the remain-
ing 8100. We can calculate that ~V1 ¼ ~f1N1 ¼ 3963,

Figure 7 The Graphs Present the Optimal Vaccine Allocation (the solid
lines) over Three Populations for Different Sizes of Vaccine
Stockpile [Color figure can be viewed at wileyonline-
library.com]

Notes: The dashed and dotted lines indicate the important vaccination
fractions: the dashed line in the middle equals ~Vj ¼ ~fjNj , the upper dot-
ted line equals V �

j ¼ f �j Nj and the lower dotted line equals �Vj ¼ �fj Nj .
The circles indicate the values from Table 1.
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~V2 ¼ ~f2N2 ¼ 8173 and ~V3 ¼ ~f3N3 ¼ 16,702. The two
examples for V, as well as the optimal allocations in
Table 1 and Figure 7, illustrate that vaccines in the
optimal allocation are allocated such that the vaccina-
tion fractions in the vaccinated populations are always
close to the dose-optimal fraction and that at most one
population has a substantial lower vaccination
fraction.
We use our explanation of the optimal allocation in

terms of the dose-optimal vaccination fraction to derive
a guideline for the vaccine allocation problem (3). This
simple heuristic does not find the optimal solution, but
it does capture an important structure of the optimal
solution: as many populations as possible are vacci-
nated with their dose-optimal vaccination fraction ~fj.

1. We order populations based on the benefits
per dose of vaccine such that D1ð~f1Þ � � � �
� Dnð~fnÞ, where the function D(f) is defined in
Equation (4).

2. Following the order of step 1, we vaccinate as
many populations as possible with their dose-
optimal vaccination fraction until the vaccine
stockpile is insufficient to reach dose-optimal
coverage for the next population (case 1) or
until dose-optimal coverage is reached for all
populations (case 2).

3. We allocate the remaining vaccines. In case 1,
these vaccines are allocated to the unvaccinated
population in which these vaccines are most
beneficial (i.e., the population for which allocat-
ing the remaining vaccines would result in the
highest Dj(fj)). In case 2, we allocate the remain-
ing vaccines pro rata over all populations.

We evaluate the performance of the heuristic as
well as the gains of using the optimal allocation and
compare to the equitable allocation in Table 3. We
note that only a stockpile size of 30,000 is sufficient to
achieve dose-optimal coverage in all three popula-
tions. Since the direct effect of vaccination is not
affected by the allocation, we focus only on the herd
effect. In particular, we look at the additional herd
effect which leaves out the herd effect that is already
achieved without any vaccination:

additional herd effect ¼
X
j2J

NjðGjðfjÞ � Gjð0ÞÞ ð5Þ

The table shows that the optimal allocation is signif-
icantly more effective in harnessing the herd effect
than the pro rata allocation. We also observe that
the allocation heuristic performs close to optimal. It
captures the same structure as the optimal solution,
which results in a good performance.
To investigate the impact of heterogeneous r we

have performed an additional experiment in which

the disease parameters of the populations change to
r1 = 1.5, r2 = 2, r3 = 2.5. The relative improvement of
the optimal allocation over the pro rata allocation
increases from 0–21% to 5–72% in that case. We have
also investigated an algorithm based on minimizing
R0. However, the performance of this algorithm was
poor and the corresponding results are therefore not
reported.

5.4. Interaction
Our model can be applied to geographically distant
populations, and one might wonder how our insights
are affected when these populations exhibit some
interaction in the form of mutual infections. From a
theoretical perspective, our results continue to hold
for sufficiently weak interactions, while they are
invalidated by sufficiently strong interactions. Indeed,
for strong interaction sub-populations start to behave
like a single large population, implying that pro rata
allocation should perform well.
We determine at what level of interaction our

results start to deteriorate by comparing the results
derived for the non-interacting case with the structure
of the optimal allocation for various levels of interac-
tion. The SIR model with interaction is given by the
following differential equations (Diekmann et al.
2012):

dsj
dt

¼ �
X
k2J

bjksjik

dij
dt

¼
X
k2J

bjksjik � cjij

drj
dt

¼ cjij

ð6Þ

We consider an example with three populations
with the population sizes and initial states being the
same as in the non-interacting example presented in

Table 3 The Additional Herd Effect (5) for Three Different Allocation
Strategies for Various Vaccine Stockpiles

Vaccine
stockpile

Equitable
allocation

Heuristic
allocation

Optimal
allocation

Relative improvement
optimal over equitable
allocation (%)

2000 671 762 762 +13.56
5000 1742 2037 2037 +16.93
8000 2893 3235 3511 +21.36

10,000 3707 4274 4274 +15.30
15,000 5912 6265 6702 +13.36
20,000 8350 8842 8910 +6.71
25,000 10,930 11,032 11,170 +2.20
30,000 13,255 13,226 13,264 +0.07

Notes: The equitable allocation allocates pro rata over all populations, the
heuristic allocation is determined via the heuristic described in section
5.3 and the optimal allocation is specified in Table 1 and Figure 7. The
population sizes are: N1 = 10,000, N2 = 20,000 and N3 = 40,000.
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section 5.3. We use the following parameters: cj = 1
and bjj = b = 2 for all j 2 J. The interaction is deter-

mined as follows: bjk ¼ cb NkP
m 6¼j

Nm
for j, k 2 J and

j 6¼ k, such that ∑k 6¼jbjk = cb for all j 2 J, with c being
the interaction factor: interaction between popula-
tions is a factor 1/c weaker than interaction within
populations.
The vaccination fractions �fj, ~fj and f�j are computed

by numerical evaluation of Equation (6) fixing fk = 0
for k 6¼ j. Perhaps surprisingly, we still observe the
convex–concave relation between the herd effect and
the used vaccination fraction in that population.
Numerical experiments in which we determine the
optimal allocation via enumeration show that the
insights for the non-interacting case carry over. Up to
an interaction factor of 0.02 the switching pattern is
still clearly visible up to vaccine stockpiles of around
30% of the total population size. For a factor 0.05
switching priorities occur only for relatively small
stockpiles and for a factor 0.1 the optimal allocation
does no longer display any switching behaviour. Yet
for all compared levels of interaction (0.01, 0.02, 0.05,
and 0.1) the optimal allocation of small vaccine stock-
piles remains unequitable, prioritizing initially only
one population. Numerical results also show that
ignoring interaction performs close to optimal and
even outperforms the equitable allocation. We refer to
Appendix S6 for a graphical illustration of the numer-
ical experiments mentioned in this section.
We assume that the interaction factor c is relatively

small, which conforms to Wu et al. (2007) who note
that individuals spend on average more than 97% of
their time in their home regions. Also Sun et al. (2009)
and Mamani et al. (2013) derive their results for suffi-
ciently small between-country transmission rates. In
the latter paper this is specified as the assumption that
bijbjk � 0. Our results indicate that vaccine allocation
can benefit from increasing returns to scale also in
case of larger interaction between populations. Hence,
our structural results that characterize the optimal
allocation apply for typical interacting models.

6. Discussion of Assumptions

We briefly discuss the effect of modeling assump-
tions, extensions and the generality of the results. Our
results continue to hold when several assumptions
are relaxed as will be discussed here. We assume that
the vaccine is completely effective and results in
immunity directly. The effectiveness of a vaccine can
be incorporated with an efficacy parameter that
rescales the vaccination fraction (cf. Hill and Longini
Jr 2003, Mylius et al. 2008). A delay in immunity can
be approximated by using a slightly lower value for
s(s) than at the vaccination moment. We also assume

that it is possible to identify susceptible individuals. If
this is not the case, some of the vaccines would be
administered to infected or immune people. Under
the condition that the vaccines are only effective for
susceptible people, this implies that the proportion of
people effectively vaccinated equals fs(s). That is, we
can simply rescale a parameter to account for situa-
tions where susceptible people cannot be identified.
All these small adjustments in the parameters do not
change the structure of the herd effect and the optimal
vaccine allocation. Thus the structure described in the
theorems and lemmas continues to hold. Finally, we
assume that a single dose of vaccine is sufficient to
achieve immunity. Our results cannot be directly
applied to the situation where multiple doses of vac-
cine are given to an individual, particularly because
there often needs to be a minimum time in between
administering consecutive doses. As the epidemic
continues to spread in the meantime, this brings extra
complexity to the problem (cf., Duijzer et al. 2017a).
The results in this study are established under the

assumption that vaccination is the only intervention
used. However, in practice vaccination is often com-
bined with hygiene measures and treatment or isola-
tion of infected patients. These other interventions
change the course of the epidemic by influencing for
example the transmission rate or the recovery rate.
Further research is needed to investigate how the
results derived in this study carry over when multiple
interventions are combined.
This study uses an analytical approach to deter-

mine the essential problem characteristics that govern
the structure of the solution. This implies that the
structure of the solution can be generalized to prob-
lems with the same characteristics. Note that the
deterministic model considered in this study can be
seen as the fluid approximation of a stochastic model.
Unpublished numerical results by the authors indi-
cate that the convex-concave pattern in the herd effect
also holds for this stochastic SIR model. This is an
indication that the insights of this study carry over,
although proving convexity is even more difficult for
the stochastic model. For populations with interaction
we numerically illustrate in section 5.4 and
Appendix S6 that the insights gained from the non-
interacting case can still be applied, which is in line
with the findings of Wu et al. (2007).

7. Conclusions

In this study, we analyze the optimal allocation of a
vaccine stockpile in order to maximize the health ben-
efit, where we define health benefit as the total num-
ber of people that escape infection. We find that
vaccination can have a secondary effect in addition to
the primary one, which causes a second dose of
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vaccine to have a bigger effect than the first. Based on
this result we show that there is a unique vaccination
fraction that results in the highest health benefit per
dose of vaccine in a population and introduce the
term dose-optimal for this fraction.
We discuss the qualitative difference between dose-

optimal and critical vaccination coverage, where the
latter aims at maximizing health benefits. We show
that policy makers should stop vaccinating before the
health benefits are maximized in order to achieve the
most efficient allocation. The final doses needed to
maximize health benefits in a population yield more
in another population.
We characterize the solution of the vaccine allo-

cation problem and we show the crucial impor-
tance of the dose-optimal vaccination fraction. A
single dose of vaccine may be a drop in the ocean,
but multiple doses together can save a population.
When vaccines are scarce, vaccine effort should be
concentrated on a few populations to benefit from
a high vaccine coverage. Policy makers should
therefore select a subset of populations to which
the vaccines are allocated. By focusing on a limited
number of populations, the available vaccine stock-
pile is used more efficiently than by allocating pro
rata over all populations.
In the distribution of vaccines many logistical

aspects play a role, ranging from transporting the vac-
cines from a central warehouse to health facilities, to
setting up points of dispensing where people can be
vaccinated. Allocating vaccines only to certain popu-
lations, might be easier from an logistical viewpoint
than allocating to all populations. On the other hand,
if vaccines are stockpiled locally, redistributing vacci-
nes might lead to coordination problems (cf., Mamani
et al. 2013). Further research could study the logistical
consequences of vaccine allocation.
Vaccine allocation has an ethical dimension, unlike

many other resource allocation problems where
equity does not play a role. In this study, we distin-
guish between groups of people based on geography.
Others use age groups or risk groups (e.g., Goldstein
et al. 2009, 2012, Medlock et al. 2009, Mylius et al.
2008). Although prioritizing based on geography
might seem unfair, geography might play a role in
outbreaks of influenza, measles or in bioterror attacks.
In the past, there have been outbreaks with large
regional differences such as the 2009 H1N1 pandemic
(Centers for Disease Control and Prevention 2009b).
In situations with a large asymmetry between the
regions, a geographic assymetric approach is perhaps
more easily accepted. However, our results also show
that sometimes asymmetric choices should be made
in symmetric cases (e.g., two regions with the same
parameters and disease progression). In those situa-
tions, our optimal allocation is less politically viable,

and new ideas are needed to reconcile equity and effi-
ciency in such cases.
Thus, the policy that we describe as optimal need

not be the best policy if we also take equity considera-
tions into account. The CDC for example uses ethical
guidelines in decision making on influenza pan-
demics (Kinlaw and Levine 2007). These ethical
guidelines are the result of an ethical debate on find-
ing good vaccine allocations. The results derived in
this study can be a valuable contribution to this ethi-
cal debate. Our optimal allocations can be used as a
benchmark to determine the effects on the final size of
an epidemic if a suboptimal policy is selected moti-
vated by fairness. Next to that, policy makers can use
strategies in which they balance between efficiency
and equity. For example, they can reserve part of the
vaccine stockpile for pro rata allocation and allocate
the remaining vaccines optimally (cf., Kaplan and
Merson 2002, Wu et al. 2007). Another possibility is to
add equity constraints that either set minimum levels
for vaccination in each region or restrict the relative
difference between populations (Teytelman and Lar-
son 2013). Our relatively simple model, and the ana-
lytical results we obtained for it, could be a valuable
starting point to test ideas on balancing equity, politi-
cal viability, and effectiveness of vaccine allocations.
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