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a b s t r a c t 

Inventory control for spare parts is essential for many organizations due to the trade-off between pre- 

venting high holding cost and stockouts. The lead time demand distribution plays a central role in in- 

ventory control. The estimation of this distribution is problematic as the spare part demand is often 

intermittent, and as a consequence often only a limited number of non-zero data points are available in 

practice. The well-known empirical method uses historical demand data to construct the lead time de- 

mand distribution. Although it performs reasonably well when service requirements are relatively low, it 

has difficulties in achieving high target service levels. In this paper, we improve the empirical method 

by applying extreme value theory to model the tail of the lead time demand distribution. To make the 

most out of a limited number of demand observations, we establish that extreme value theory can be 

applied to lead time demand periods computed over overlapping intervals. We consider two service lev- 

els: the expected waiting time and cycle service level. Our experiments show that our method improves 

the inventory performance compared to the empirical method and is competitive with the WSS method, 

Croston’s method and SBA for a range of demand distributions. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The supply of aftermarket parts is an important source of profit

or companies that sell durable equipment, see Gallagher, Mitchke,

nd Rogers (2005) . Findings from Deloitte’s Global Service and

arts Management Benchmark Survey show that in 2006 the ser-

ice business accounted for an average of nearly 26% of revenues

cross the industries, see Koudal (2006) . After-sales networks op-

rate in an unpredictable marketplace because demands for re-

airs crop up intermittently, see Kennedy, Patterson, and Freden-

all (2002) , Cohen, Agrawal, and Agrawal (2006) , Syntetos, Babai,

nd Altay (2012) . 

An essential element in spare parts inventory control is the

orecasting of the lead time demand, as the lead time is the

eriod in which a stockout may occur when demand is larger

han foreseen. Differences in the monetary values of the stock-

oldings between lead time demand forecasting methods can be
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ubstantial; Eaves and Kingsman (2004) report a case in which the

se of an inferior forecasting method leads to an additional invest-

ent of 13.6% of the total value of the inventory. Unfortunately,

stimating the lead time demand distribution is especially difficult

or slow-moving spare part types as typically only limited positive

emand data points are available in practice. 

The demand distribution may be estimated either parametri-

ally or nonparametrically. Parametric methods have the advan-

age of being relatively simple while still showing decent em-

irical performance ( Syntetos, Babai, & Gardner, 2015 ). However,

s parametric estimators are derived from assumptions, they may

urn out to be severely biased in case these assumptions do not

old. Therefore, nonparametric estimators are preferred, as the tra-

itional parametric estimators have problems dealing with inter-

ittent demand and particular patterns. Popular nonparametric

pproaches are the bootstrap method, see Willemain, Smart, and

chwarz (2004) , which we refer to as the WSS method in this pa-

er, and the empirical method, see Porras and Dekker (2008) and

an Wingerden, Basten, Dekker, and Rustenburg (2014) . Nonpara-

etric estimators only provide relevant information for demand

evels in the scope of the historical demand data of say N posi-

ive data points, and basically break down in case of extrapolation

eyond this scope. In particular, the largest data point would be
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expected to lie at the N/ (N + 1) th percentile, and thus achieving

service levels beyond this percentile may prove difficult using em-

pirical methods. Thus, we resort to semi-parametric estimators in

the tail for high service levels. 

In this paper, we propose the empirical-EVT method, which ap-

plies extreme value theory (EVT, see Coles (2001) , Beirlant, Goege-

beur, Segers, and Teugels (2004) , Reiss and Thomas (2007) ) to the

tail part of the distribution and handles the remainder of the dis-

tribution (the non-tail part, say) via the empirical method. The

empirical distribution is used as starting point to ensure that the

structure of the non-extreme part of the data is preserved. Appli-

cation of EVT allows us to closely approximate the tail of a dis-

tribution using one single parameter, the extreme value index, see

de Haan and Ferreira (2006) . Only the largest historical demands

are used to estimate the extreme value index, the other histori-

cal demands are input to the empirical method. The new method

inherits the advantage of non-parametric approaches without los-

ing the ability to achieve high service levels. As EVT allows depen-

dence (more precisely, β-mixing dependence) between successive

lead time demands, we establish that the empirical-EVT method

may be applied to lead time demands computed over overlapping

time periods. With this result, our method makes the most out of

a limited demand history. 

A simulation study is conducted to assess the performance of

the empirical-EVT where we estimate the lead time demand dis-

tributions based on samples from a known distribution. Instead of

one period forecasting error measures such as mean squared error,

we employ service levels to evaluate performance, as advocated in

Syntetos and Boylan (2006) and Teunter and Duncan (2009) . 

The experiments show that the new method improves the in-

ventory performance under the expected waiting time and cycle

service level for a range of demand generating processes and ser-

vice targets, when compared with the empirical method. Moreover,

the new method is competitive with methods such as WSS, Cros-

ton’s method (1972), and the Syntetos-Boylan approximation (SBA)

(2005), in the sense that it sometimes outperforms these methods,

and sometimes is outperformed by these methods, depending on

the demand data and other parameters. 

We use in our empirical study the automotive dataset described

by Syntetos and Boylan (2005) and the aircraft aircraft component

repair dataset by Romeijnders, Teunter, and van Jaarsveld (2012) .

Both Croston’s method and WSS perform well in the automotive

dataset, followed by empirical-EVT. The limited training data leads

to the unsatisfactory performance of empirical-EVT since it is dif-

ficult to estimate the tail of lead time demand distribution based

on 13 periods observations. However, Empirical-EVT method per-

forms best in the aircraft component repair dataset where demand

is available in 84 periods. 

The paper is organized as follows. Section 2 gives an overview

of the relevant literature. Section 3 briefly describes EVT theory

and how to use it in our study. In Section 4 a simulation study

and an empirical study give insights into the differences between

the empirical-EVT method, the empirical method, WSS, Croston’s

method and SBA. The last section presents the final conclusions. 

2. Literature 

In Section 2.1 , we review forecasting methods for slow-moving

items. In Section 2.2 , we review extreme value theory. 

2.1. Intermittent demand forecasting 

Demand forecasting is a key issue in the field of spare parts

management. For an overview on spare parts demand forecasting

research, we refer to Boylan and Syntetos (2010) . 
Traditional forecasting methods such as simple moving average

SMA) and simple exponential smoothing (SES) fail to perform well

or intermittent demand, see Syntetos and Boylan (2005) . Cros-

on’s method (CR, see Croston (1972) ) isolates periods with posi-

ive demands, is “robustly superior” to SES, see Willemain, Smart,

hockor, and DeSautels (1994) , and is biased, see Syntetos and Boy-

an (2001) . The Syntetos-Boylan approximation (SBA, see Syntetos

 Boylan (2005) ), the Syntetos method (SY, see Syntetos (2001) )

nd the Teunter-Syntetos-Babai method (TSB, see Teunter, Synte-

os, & Babai (2011) ) are bias-corrected modifications of the CR

ethod. According to Syntetos and Boylan (2006) , the SBA method

utperforms the SMA, SES and CR methods. Teunter and Sani

2009) prefers the SY over the SB method, as the latter actually

vercompensates the bias. Evidence in Babai, Syntetos, and Teunter

2014) suggests that TSB does not outperform CR, SBA and SY un-

ess the degree of intermittence is low and demand is decreasing.

or other modified CR methods, see Johnston and Boylan (1996) ,

nyder (2002) , Shale, Boylan, and Johnston (2006) . The variance of

ES, CR, SY and SBA intermittent demand estimates are discussed

n Syntetos and Boylan (2010) . Though these methods have been

idely used, they have the disadvantage of assuming a particular

arametric structure of the demand distributions. 

Bootstrapping is a non-parametric resampling technique, which

uilds the lead time demand distribution by repeated sampling

rom observations. The WSS modified bootstrapping method, see

illemain et al. (2004) , resamples from past data using a Markov

hain approach to switch between no demand and demand peri-

ds. Teunter and Duncan (2009) finds that bootstrapping performs

qually well as the CR and SBA method, but is more difficult to

mplement. Syntetos et al. (2015) concludes that the WSS modi-

ed bootstrapping method does have advantages over the SES, CR

nd SBA methods, but questions whether WSS is worth the added

omplexity. 

The empirical method, proposed in Porras and Dekker (2008) ,

s a far less complex non-parametric method which uses the em-

irical cumulative distribution function to estimate the lead time

emand distribution for fixed lead times. The empirical method

as slightly extended in van Wingerden et al. (2014) so as to

over variable lead times as well. As the empirical cumulative

istribution function only provides information for demand lev-

ls in the scope of the historical demand data, the empirical

ethod basically breaks down for high service levels. Syntetos

t al. (2015) mentions poor performance of the empirical method. 

Other forecasting methods supplement historical demand data

ith additional information. The use of installed base informa-

ion is discussed in Jalil, Zuidwijk, Fleischmann, van Nunen and

o (2011) and Dekker, Pinçe, Zuidwijk, and Jalil (2013) . Informa-

ion on component repairs is first considered in Romeijnders et al.

2012) . Topan et al. (2016) assesses the value of the imperfect de-

and information and proposes a lost-sales inventory model with

 general representation of demand information to find the order-

ng policy minimizing total inventory holding, shortage and order-

ng cost under imperfect information. 

.2. Extreme value theory 

Extreme value theory is a branch of statistics modeling the tail

ehavior of a distribution. The most prominent application is the

stimation of an unknown upper quantile value corresponding to

 small given exceedance probability. However, EVT also covers

he estimation of an unknown exceedance probability. The deter-

ination of a safe height for the North Sea dikes in the Nether-

ands acted as an important driver behind the development of

VT, see de Haan (1990) . Nowadays, EVT is widely used in finan-

ial risk management to estimate downward risk measures such as

alue at risk and expected shortfall. To our knowledge, the only
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A

revious application of EVT to inventory problems is in Kogan and

ind (2011) , where the design of an inventory for critical equip-

ent is considered. As critical equipment is characterized by in-

nitely large underage costs, they require that no stockout occurs

n the coming years with high probability. Based on this require-

ent, they develop rules for determining inventory based on EVT,

omogeneous Poisson processes, and Chebyshev’s inequality. 

. Theory 

.1. Extreme value theory 

Loosely speaking, EVT theory is built upon the idea that the

ail behavior of many uncertain quantities that are encountered in

ractice can be modeled using the Generalized Pareto Distribution

GPD). We explain EVT in more detail in Sections 3.1.1 and 3.1.2,

.1.3 . 

.1.1. Tail approximation 

Let X be a random variable with cumulative distribution func-

ion F (x ) = P { X ≤ x } , and let x ∗ = sup { x : F (x ) < 1 } denote the

ndpoint of the support of F . Note that x ∗ may be either finite or

nfinite. 

Throughout this paper, we shall assume the existence of a pos-

tive function f such that 

lim ↑ x ∗
1 − F ( τ + x f (τ ) ) 

1 − F ( τ ) 
= ( 1 + γ x ) 

−1 /γ (1) 

or all x for which 1 + γ x > 0 , see condition 4 of Theorem 1.1.6 at

. 10 in de Haan and Ferreira (2006) . The assumption allows the

pproximation of the tail of the distribution of X for a sufficiently

arge threshold τ , 

 − F ( x ) ≈ ( 1 − F ( τ ) ) 

{ 

1 − H γ

(
x − τ

f (τ ) 

)} 

(2) 

or all x > τ , see p. 67 in de Haan and Ferreira (2006) . Here H γ

enotes the cumulative distribution function of the GPD: 

 γ ( x ) = 

{
1 − ( 1 + γ x ) 

−1 /γ for γ � = 0 , 

1 − e −x for γ = 0 . 
(3) 

he parameter γ of the GPD plays a central role in EVT, and hence

s referred to as the extreme value index; it acts as a shape pa-

ameter of the GPD approximating the tail of the distribution. The

upport of the GPD is [0, ∞ ) if γ is non-negative, and [0 , −1 /γ ] if

is negative. For any distribution such that (1) holds, we say that

he distribution belongs to the domain of attraction of H γ ( x ). 

Assumption (1) is not restrictive because it only pertains to the

ail behavior of the distribution. In that sense, it is very much

eaker than (for example) stating that demand follows a negative

inomial distribution, or a normal distribution, or any other spe-

ific distribution, precisely because such an assumption specifies

he entire distribution. 

Assumption (1) is satisfied by a very wide range of continuous

istributions ( Balkema & de Haan, 1974; Pickands, 1975 ). This re-

ects that tail behavior of many distributions allow approximate

odeling by means of the GPD: this explains why the GDP occurs

n the assumption. This generality is in fact one of the strongest

oints of EVT, and the main reason why it has been applied

o a very wide range of problems: extreme sea-levels (for dike

eight determination), insurance losses, market risk, environmen-

al loads on structures, etc. Moreover, according to Shimura (2012) ,

any discrete distributions can be regarded as a discretization

f a continuous distribution satisfying (1) , and hence satisfy (1)

hemselves. 
An interesting approach to test the applicability of EVT for a

pecific real-life scenario in which the demand distribution is un-

nown, would be a goodness-of-fit test. Unfortunately, goodness-

f-fit in EVT is not yet fully developed, see Section 2.3 in

eirlant, Caeiro, and Gomes (2012) . An Anderson-Darling type test

f (1) based on the tail empirical process is proposed in Drees,

e Haan, and Li (2006) . Several tests of (1) for γ > 0 are found

n Koning and Peng (2008) . 

.1.2. The basic model 

The basic model on which EVT in its original form rests, as-

umes that X 1 , X 2 , . . . , X n is a random sample of size n drawn

rom the distribution given by F ; in other words, the observations

 1 , X 2 . . . , X n are independent copies of the random variable X . Let

 (1) ≤ X (2) ≤, . . . ≤ X (n ) be the ordered sample. Choose 0 ≤ k < n ,

nd use X (n −k ) as an empirical threshold. That is, replace τ by

 (n −k ) . To allow the derivation of asymptotic results for n tending

o infinity, we assume that the choice k depends on n , and satisfies

 → ∞ and k / n → 0 as n → ∞ . That is, as n grows large, k grows

arge but nevertheless vanishes relative to n . 

Since 1 − F (X (n −k ) ) ≈ k/n, we obtain, see Equation (3.1.4) in

e Haan and Ferreira (2006 , p. 68), 

 − F ( x ) ≈ k 

n 

{
1 − H γ

(
x − X (n −k ) 

α

)}
(4) 

or all x > X (n −k ) , with α = f (X (n −k ) ) . In particular, this approxima-

ion continues to hold even beyond the sample maximum X ( n ) . 

In recent EVT literature α = f (X (n −k ) ) is usually replaced by

= a (k/n ) . We also do this in our study. The functions f and a

re related through the equation f (x ) = a (1 / (1 − F (x ))) , see The-

rem 1.1.6 at p. 11 in de Haan and Ferreira (2006) ; note that

 / (1 − F (X (n −k ) )) ≈ n/k . As the parameters γ and α appearing

n (4) are unknown, we simply replace them by estimators. We

se the moment estimators proposed in Dekkers, Einmahl, and

e Haan (1989) . Summarize the k largest order statistics via the

rst two “moments” M 

(1) 
n and M 

(2) 
n defined by 

 

( j) 
n := 

1 

k 

k −1 ∑ 

i =0 

(
log X (n −i ) − log X (n −k ) 

) j 
(5) 

or j = 1 , 2 . Then, the moment estimators of the extreme value in-

ex γ and the scale α are given by 

ˆ := M 

(1) 
n + 1 − 1 

2 

(
1 −

(
M 

(1) 
n 

)2 (
M 

(2) 
n 

)−1 
)−1 

, (6) 

ˆ := 

1 
2 

X (n −k ) M 

(1) 
n 

(
1 −

(
M 

(1) 
n 

)2 (
M 

(2) 
n 

)−1 
)−1 

. (7) 

Until now, we have only assumed that the number k = k (n ) of

sed largest order statistics satisfies k → ∞ and k / n → 0 as n →
 . In practice, the choice of k is made by trading off bias and vari-

nce. For small k , only a limited amount of the information con-

ained in the data is used, and hence the variance of the moment

stimator is relatively large. Although selecting a larger value of k

ill reduce this variance, it is typical that the bias of the moment

stimator will increase at the same time as the relevance of (1) di-

inishes. (See de Haan and Ferreira (2006) .) 

Three different ways of choosing k have appeared in literature:

oment estimator plot ( Hill, 1975 ), bootstrap method ( Danielsson,

e Haan, Peng, & de Vries, 2001 ); ( Draisma, de Haan, Peng, &

ereira, 1999 ) and unbiased moment estimator plot (HaanMer-

adierZhou2014). For the purpose of applying EVT to inventory

ontrol, we use an automated method for threshold selection, see

ppendix D in the supplementary material. 
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3.1.3. Relaxing the independence assumption 

The basic model assumed in the previous paragraph required

that X 1 , X 2 , . . . is a sequence of independent and identically dis-

tributed (i.i.d.) random variables. In practice, the independence

assumption may turn out to be too restrictive. As we intend to

apply EVT to the lead time demands directly, the independence

assumption also becomes an issue in our approach to LTD esti-

mation. We may view lead time demands as “moving sums” of

demands in subsequent time intervals (for instance, days, weeks,

months or year). Let D j denote the demand in time interval j . If

the window size L is fixed, then we may express the demands

over window size as 

X 

[ L ] 
i 

= 

i + L −1 ∑ 

j= i 
D j , for i = 1 , 2 , . . . . (8)

Besides constant L , multiple levels of aggregation are also applica-

ble to our forecasting method. Various aggregation window sizes

may lead to different inventory performance, see Rostami-Tabar,

Babai, Syntetos, and Ducq (2013) , Rostami-Tabar, Babai, Syntetos,

and Ducq (2014) , Petropoulos and Kourentzes (2015) . For a dis-

cussion of the optimal choice of aggregation window size, see

Nikolopoulos, Syntetos, Boylan, Petropoulos, and Assimakopoulos

(2011) . For the present paper, we choose to restrict the window

size to the leadtime L . We believe combining the empirical or

empirical-evt approach approach with a temporal aggregation ap-

proach may be an interesting topic for further research. Whenever

allowed, we shall drop the superscript [ L ], and use the short hand

notation X i rather than the full one X 
[ L ] 
i 

. 

Typically, the demands D 1 , D 2 , . . . are assumed to be i.i.d.,

see Croston (1972) for instance. The consecutive lead time de-

mands X 1 , X 2 , . . . become dependent. In fact, X 1 /L, X 2 /L, . . . is a

moving average process of order L , that is, an ARMA(0, L ) pro-

cess. To avoid this dependence, one has resorted to consider-

ing “non-overlapping” lead time demands, X 1 , X L +1 , X 2 L +1 , . . . say,

see Nikolopoulos et al. (2011) . (In the context of time series

analysis, the construction of non-overlapping lead time demands

X 1 , X L +1 , X 2 L +1 , . . . is referred to as “temporal aggregation”.) 

Fortunately, the independence assumption has been relaxed in

EVT, see Resnick and Starica (1998) , Drees (2003) , Rootzén (2009) .

In essence, we should require that the sequence X 1 , X 2 , . . . is β-

mixing instead. The β-mixing dependence condition (also known

as absolute regularity or weak Bernoulli condition) was proposed

in Volkonski ̆ı and Rozanov (1959) , and is thoroughly discussed in

Bradley (2005) . Loosely speaking, β-mixing precludes long range

dependence. Many random sequences in practice – among which

Harris chains, ARMA, ARCH and GARCH processes – are β-mixing,

see Athreya and Pantula (1986) , Mokkadem (1988) , Carrasco and

Chen (2002) , Fryzlewicz and Rao (2011) . Since consecutive lead

time demands X 1 , X 2 , . . . constructed from i.i.d. demands via (8) be-

have as an ARMA(0, L ) process up rescaled by a fixed factor L , it

follows that these lead time demands are indeed β-mixing (the

rescaling does not affect the dependence structure). 

In addition, we may relax the independence between the de-

mands, as long as we end up with β-mixing lead time demands.

For example, one may show that the moving sum of an ARMA pro-

cess is also an ARMA process, see Granger and Morris (1976) ; thus,

if the demands are not independent but form an ARMA process

instead, the lead time demands are still β-mixing. Recall that an

ARMA process is stationary. 

Autocorrelated demands have been found in intermittent indus-

trial datasets, see Willemain et al. (1994) . The simulation exper-

iment in Altay, Litteral, and Rudisill (2012) shows that the fore-

cast accuracy and stock control performance of the SES and SBA

methods are vulnerable to autocorrelated demands. The theoreti-

cal work on relaxing the independence assumption in EVT suggests
hat EVT-based methods are to some extent robust with respect

o stationary autocorrelated demands. As EVT-based methods im-

licitly assume that the extreme value index stays constant over

ime, we do not expect EVT-based methods to work well for non-

tationary demand. 

After using ad-hoc arguments to conclude that the assumption

f stochastic independence of lead time demands “looks highly

lausible as a first approximation”, results in Kogan and Rind

2011) are derived under the basic EVT model. The validity of these

d-hoc arguments is difficult to assess. Our discussion above shows

hat it possible to avoid ad-hoc arguments by using a comprehen-

ive and rigorous theoretical argument. In fact, we believe that re-

axing the independence assumption is essential for any applica-

ion of EVT to inventory control. 

.2. How to apply EVT based on the empirical LTD forecasting 

ethod 

In this subsection we detail the application of the empirical-EVT

ethod using three different service levels: expected waiting time

 WT , fill rate β and cycle service level CSL. These three service

evels have in common that a larger base stock level yields a better

ervice level (a smaller expected waiting time, a larger fill rate or a

arger cycle service level). Thus, E WT , β and CSL are in fact mono-

onic functions E WT (S) , β( S ) and CSL( S ) of the base stock level S . 

Our aim is to determine the smallest base stock level S min such

hat the corresponding performance is at least as good as some

iven critical service level. However, we are unable to achieve this

im since the exact relation between base stock level and service

evel is unknown. The best we can do is to estimate this relation

sing historical demand data. As a consequence, we arrive at an

stimated smallest base stock level ˆ S min rather than S min itself. 

The empirical-EVT method deals with two regions: the non-tail

nd the tail regions, separated by an unknown threshold τ which

s estimated by the empirical threshold X (n −k ) . We handle the non-

ail region non-parametrically using the empirical method, and the

ail region semi-parametrically by EVT. The computation of ˆ S min in-

olves the following steps. 

Step 1: obtain the LTD sample Obtain a sample X 1 , X 2 , . . . , X n 

of lead time demands. Typically, these lead time demands

are obtained by summing demands over given time periods,

as in (8) ; let D̄ = n −1 
∑ n 

i =1 D i denote the mean demand dur-

ing the data collection period. 

However, we do leave open the possibility that the sample

X 1 , X 2 , . . . , X n was obtained by some other data generating

process (DGP), as long as EVT is still applicable; that is, the

DGP should yield lead time demands which are β-mixing.

(See Bradley (2005) for β-mixing). 

Step 2: construct the ordered sample Sort the sample

X 1 , X 2 , . . . , X n in ascending order. This yields the ordered

sample X (1) ≤ X (2) ≤ X (3) ≤ ��� ≤ X ( n ) . We shall refer to X ( i ) 

as the i th order statistic. Remark that the information con-

tained in the ordered sample is sufficient to construct the

empirical distribution function 

ˆ F n (x ) appearing in paragraph

4.1.2 of Porras and Dekker (2008) , because we may write 

ˆ F n (x ) = 

n ∑ 

i =1 

1 { X i ≤x } = 

n ∑ 

i =1 

1 { X ( i ) ≤x } for all x ∈ R , (9)

Moreover, as the empirical distribution function is a step

function which jumps at the order statistics, we may recon-

struct the ordered sample from the empirical distribution

function. Thus, the ordered sample X (1) ≤ X (2) ≤ X (3) ≤ ���
≤ X ( n ) carries exactly the same information as the empirical

distribution function 

ˆ F n (x ) . 
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Table 1 

Historical demands of 60 periods. 

Period n Demand 

period 1–10 0 0 0 0 0 0 6 0 0 0 

period 10–20 0 0 0 0 0 0 0 0 0 0 

period 21–30 0 0 0 0 0 0 1 0 0 0 

period 31–40 0 10 0 0 0 0 4 0 0 0 

period 41–50 6 0 0 0 0 0 0 3 0 0 

period 51–60 0 0 0 0 0 0 0 0 0 0 

Table 2 

Computation of EDF ˆ F n . 

LTD Frequency Proportion ˆ F n 

0 32 32/56 32/56 

1 5 5/56 37/56 

4 4 4/56 41/56 

6 9 9/56 50/56 

10 6 6/56 1 
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Step 3: select the empirical threshold X (n −k ) Choose k as de-

scribed in paragraph 3.1.2 . 

Step 4: estimate the parameters of GPD function Use the mo-

ment estimators ˆ γ and ˆ α defined by (6) and (7) to estimate

the extreme value index γ and the scale α = f (τ ) . 

Step 5: estimate the relation between S and service level This

step depends on the service level used. 

1. Expected waiting time If ˆ γ < 1 , estimate the expected

waiting time E WT (S) by means of the estimator ̂ E WT (S)

defined by 

̂ E WT ( S ) = 

1 

D̄ 

{ 

n 

−1 
n −k ∑ 

i =1 

(
X (i ) − S 

)+ + 

k 

n 

ˆ μtail ( S ) 

} 

(10) 

with 

ˆ μtail ( S ) = 

(
X (n −k ) − S 

)+ + 

ˆ �
(
S ∨ X (n −k ) 

)
− ˆ �

(
X (n −k ) −

ˆ α

ˆ γ

)
1 { ̂ γ < 0 } (11) 

and 

ˆ �( x ) := 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ˆ α

1 − ˆ γ

{
1 + ˆ γ

(
x − X (n −k ) 

ˆ α

)}1 − 1 
ˆ γ

if ˆ γ � = 0 , 

ˆ α exp 

(−x + X (n −k ) 

ˆ α

)
if ˆ γ = 0 , 

. 

(12) 

For the derivation of this estimator, see Appendix B in the

supplementary material. 

Set the estimated expected waiting time to infinite if

ˆ γ ≥ 1 . In this case, the waiting time distribution is

classified as extremely heavy-tailed. 

Although the expected waiting time E WT is a widely used

service level, it has the problematic feature of becom-

ing infinite if γ ≥ 1, or becoming extremely high for γ
slightly lower than 1. This feature, which is a consequence

of the fact that mathematical expectation does not exist

for heavy tailed distribution, is inherited by its estimator:
̂ E WT is infinite if ˆ γ ≥ 1 , or extremely high for ˆ γ slightly

lower than 1, see Appendix A. 

In short, the expected waiting time does not combine

well with heavy tailed waiting time distributions. 

2. Fill rate The fill rate β( S ) is closely related to the expected

waiting time. Recall that, according to (8) , we may view

X i as just short hand notation for X 
[ L ] 
i 

. Let E WT [ L ] (S) be

the expected waiting time for X 

[ L ] , and let E WT [ L −1] (S)

be the expected waiting time for X [ L −1] . Then, β(S) =
1 − D̄ 

−1 { E WT [ L ] (S) − E WT [ L −1] (S) } . 
Now suppose that in Step 1 we have not only col-

lected X 
[ L ] 
1 

, X 
[ L ] 
2 

, . . . , X 
[ L ] 
n but X 

[ L −1] 
1 

, X 
[ L −1] 
2 

, . . . , X 
[ L −1] 
n as

well. Note that if the demands are non-negative ran-

dom variables, then X 
[ L ] 
i 

is stochastically larger than

X 
[ L −1] 
i 

for every i . Let ̂ E WT 
[ L ] 

(S) be the expected waiting

time for X 

[ L ] , and let ̂ E WT 
[ L −1] 

(S) be the expected wait-

ing time for X [ L −1] . Then, ˆ β = 

ˆ β(S) = 1 − D̄ 

−1 { ̂  E WT 
[ L ] 

(S) −
̂ E WT 

[ L −1] 
(S) } is an estimator of β( S ). 

The fill rate suffers from the same problems as the ex-

pected waiting time for large values of ̂ γ . Moreover,

it also does not combine well with heavy tailed wait-

ing time distributions. Although X 
[ L ] 
i 

is stochastically

larger than X 
[ L −1] 
i 

for every i , this does not imply that

X 
[ L ] 
i 

− X 
[ L ] 

(n −k ) 
is stochastically larger than X 

[ L −1] 
i 

− X 
[ L −1] 

(n −k ) 
for
every i since there is no obvious relation between X 
[ L ] 

(n −k ) 

and X 
[ L −1] 

(n −k ) 
. As a consequence, even though 

̂ E WT 
[ L ] 

(S) and

̂ E WT 
[ L −1] 

(S) decrease with increasing base stock level S ,

̂ E WT 
[ L ] 

(S) − ̂ E WT 
[ L −1] 

(S) and 

ˆ β(S) fail to change mono-

tonically with the increasing S, which contradicts com-

mon sense. 

3. Cycle service level The cycle service level CSL( S ) := P ( X ≤ S )

is a service level which, in contrast to the expected wait-

ing time and fill rate, is able to accommodate heavy tailed

distributions. It is estimated by means of ̂ CSL (S) defined

by 

̂ CSL = 

⎧ ⎨ ⎩ 

1 
n 

∑ n 
i =1 1 { X i ≤S} if S ≤ τ , 

1 − k 
n 

{ 

1 − H ˆ γ

(
S−X (n −k ) 

ˆ α

)} 

if S < τ , 
(13) 

For the derivation of this estimator, see Appendix C in the

supplementary material. 

• Step 6: estimate the smallest base stock level Let E WT obj , βobj 

and CSL obj denote the target waiting time, the target fill rate

and the target cycle service level, respectively. Now set the

estimator S min equal to the smallest S satisfying one of the

following service level requirements: ̂ E WT (S) ≤ E WT obj ; or

ˆ β(S) ≥ βobj ; or ̂ CSL (S) ≥ CSL obj . 

ased on the discussion under Step 5 above, we recommend to use

VT with the CSL rather than E WT and/or fill rate. 

.3. Example - applying EVT to the empirical LTD forecasting method 

Two examples under expected waiting time and cycle service

evel are provided in this subsection. Example 1 shows that we can

ecrease the expected waiting time by applying extreme value the-

ry. However, when the extreme value index γ is relatively large,

he expected waiting time service level breaks down, due to the fat

ail of the lead time demand distribution. The cycle service level

oes not suffer from this problem. This is illustrated in Example 2.

xample 1 

Table 1 shows demand samples during 60 months. We set the

xpected waiting time target E WT ob j equal to 0.03. 

Next we tally the LTD sample and compute ˆ F n according to

9) , see Table 2 . According to (6) , we construct estimators ̂ γk us-

ng Table 2 , see Fig. 1 , for k = 6 , . . . , 24 . ̂ γ does not exist for
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Fig. 1. Select threshold from moment estimator plot. 

Table 3 

Results of example 1. 

Service level S EVT S emp 

EWT 16 10 

CSL 14 10 

Table 4 

Historical demands of 60 periods. 

Period n Demand 

period 1–10 0 0 0 0 0 0 0 0 5 0 

period 10–20 0 0 0 0 19 0 0 0 0 0 

period 21–30 0 0 0 0 0 0 0 0 0 0 

period 31–40 0 0 0 5 0 0 0 0 0 0 

period 41–50 0 0 0 0 0 0 0 0 0 0 

period 51–60 0 0 0 0 0 0 0 1 0 5 

Table 5 

Results of example 2. 

Service level S EVT S emp 

EWT 43,213 19 

CSL 34 19 
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k = 1 , . . . , 5 since the denominator in (6) equals to zero. We do

not consider k > 24 in order to keep at least one positive obser-

vation in the non-tail part. The figure shows that the value of γ̂
is relatively stable when 8 ≤ k ≤ 14, and we select the threshold

position k equal to 10. Once the threshold is determined, we can

obtain the estimates ̂ γ = 0 . 056 and 

̂ α = 2 . 299 . Now (10) allows us

to calculate ̂ E WT (S) for any given S , which in turn enables us to

determine S EWT 
EVT 

= S min , where S min is the smallest S which satis-

fies ̂ E WT (S) ≤ E WT obj . Finally, this yields S EWT 
EVT 

= 16 . 

The procedure above could be followed for other service lev-

els as well. For instance, we obtain S CSL 
EVT 

= 14 under cycle ser-

vice level CSL obj = 0 . 99 , see (13) . For reference, we remark that in

this example the empirical method proposed in Porras and Dekker

(2008) yields S EWT 
emp = 10 , S CSL 

emp = 10 , see Table 3 for the results. 

Example 2 

This example produces an illustration to the remark in Step 5

in Section 3.2 that the expected waiting time does not combine

well with heavy tailed distributions. Table 4 shows another de-

mand sample during 60 months. We use the same target and lead

time as in Example 1. Following the same procedure we obtain the

results in Table 5 . 

Theoretically, the tail becomes fatter when the extreme value

index γ is closer to 1. As the extreme value index estimate 0.67

is already rather large, S EWT 
EVT 

becomes enormous. As long as ̂ γ is

moderate, the expected waiting time produces reasonable results.

However, if the estimated extreme value index is rather large (we

have observed 

̂ γ > 0 . 5 ), then the expected waiting time yields

unrealistically high base stock levels. To avoid such extremely high

base stock levels, it is better to use the EVT method with the cycle
ervice level. Alternatively, we may impose an upper bound on

 

EWT 
EVT 

to avoid the extreme cases. One could also opt to limit the

arameter space of ̂ γ , but the upper limit needs to depend on ˆ α,

hich would make such an approach cumbersome. 

. Experiments 

In this section, we perform experiments comparing the relative

erformance of the empirical-EVT method and several alternative

ethods. Section 4.1 discusses experiments where demand is gen-

rated using Monte Carlo simulation, and Section 4.2 discusses ex-

eriments based on real demand data. 

.1. Simulation 

.1.1. Setup 

We apply a base stock policy with periodic review and full

ackordering. In the simulation, demand for each time period for

oth the training set and test set is generated according to a prob-

bility distribution that will be specified in Section 4.1.2 . The test

et is independent of the training set. Lead time demands for the

raining set are constructed according to (8) . Given a target ser-

ice level, the training set is used to estimate the base stock level

 min using various methods: empirical-EVT, the empirical method,

SS ( Willemain & Smart, 2001; Willemain et al., 2004 ), Croston

 Croston, 1972 ) and SBA ( Syntetos & Boylan, 2005 ). We choose

moothing constant α = 0 . 2 for Croston’s method and SBA. We fur-

her use the test set to obtain the estimated service level ̂ EWT 
∗

nd 

̂ CSL 
∗

under such base stock level S min . Here ∗ denotes that the

stimator is obtained from the training set. 

Thus, the setting of our experiment conforms to the setting

aced by companies in real life: forecasts and inventory levels must

e set based on some past period (our training period), while the

esulting base-stock levels are applied for some future period (our

est period), and the quantity of interest is the performance of the

ase-stock level in this future period. We will vary the length of

he training set, because the amount of data present may affect

erformance in practice. The length of the test set is fixed to 10 0 0

eriods, and the simulation is replicated for 50 0 0 times for each

arameter setting. We report the average performance over the

est set for all replications. 

We have three designs in our simulation experiments. 

· Design A : In order to explore the influence of training set

length n on the performance of the methods for setting

base-stock levels, we set L = 5 , fix the target service level

E WT ob j = 0 . 03 or CSL ob j = 0 . 97 and increase n from 60 to

500 time periods. This includes periods with both positive

demand and zero demand and corresponds to 12–100 pos-

itive demand observations, since we will have positive de-

mand in roughly 1 in 5 periods, see Section 4.1.2 . Results are

given in Figs. 2 , 5 and 7 . 

· Design B : We consider a training set length n = 60 , L = 5

and different target service levels (CSL obj varies from 0.85 to

0.99, E WT ob j from 0.01 to 0.15) to explore the impact of tar-

get service level on performance, see Figs. 3 , 6 and 8 . 

· Design C : We vary the lead time L from 2 to 6 given target

service level E WT ob j = 0 . 03 or CSL ob j = 0 . 97 and training set

length n = 60 to explore the influence of the lead time on

the performance of the various methods, see Fig. 4 . 

In Example 2 in Section 3.3 , we have seen that the estimated

xpected waiting time may become extremely high for larger es-

imated extreme value indexes ̂ γ . To avoid this issue, we set an

pper limit where S EVT = 1 . 5 · S emp . We also use S emp as a lower

imit on S evt . Note that very large S evt does not occur when using

he cycle service level (see Step 5 in Section 3.2 ). 
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Fig. 2. Simulation results of achieved CSL under fixed target 0.97 and different number of observations (including positive and zero demand). Only CM demand is considered. 

The underlying positive demand distribution is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 

Fig. 3. Simulation results of achieved CSL under fixed training set length 60 (including positive and zero demand) and different targets. Only CM demand is considered. The 

underlying positive demand distribution is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 

Fig. 4. Simulation results of achieved CSL under fixed training set length 80 (including positive and zero demand), fixed target 0.97 and different lead time. Only CM demand 

is considered. The underlying positive demand distribution is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 
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Fig. 5. Simulation results of achieved E WT under fixed target 0.03 and different number of observations (including positive and zero demand). Only CM demand is consid- 

ered. The underlying positive demand distribution is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 
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4.1.2. Demand process 

In our simulations, i.i.d intermittent demand is generated

as follows. First, we consider demand generated for corrective

maintenance (CM). In each time period, a positive CM demand

is generated with probability p nonzero = 0 . 2 and zero demand

with probability p zero = 1 − p nonzero = 0 . 8 . Next we choose one

of the following distributions to represent the positive integer

CM demand: (I). Geometric based compound Poisson distribution

with p = 0 . 5 and λ = 2 . 5 ; (II). Truncated normal distribution with

u = 5 , σ 2 = 3 , where we set negative values to zero. See Lengu,

Syntetos, and Babai (2014) for a detailed discussion on compound

Poisson distributions and their fit to spare parts demand. It is

well-known that the truncated normal distribution satisfies (1) .

Note that Shimura (2012 , p. 304 example 1) establishes applica-

bility of EVT for the geometric distribution. Moreover, as the tail

behavior of the compound Poisson distribution is related with the

right tail of the compounding distribution ( Willmot, 1990 , p. 147),

this also establishes applicability of EVT for compound Poisson

demand with a geometric compounding distribution. 

We also consider cases in which this CM is augmented with

demand stemming from preventive maintenance (PM). PM in gen-

eral may have a relatively large value. Positive integer PM demand

is generated once every 12 time periods and has truncated nor-

mal distribution with u = 12 , σ 2 = 2 . In simulations, we thus either

consider CM demand only, or we consider CM and PM together by

using positive PM demand to replace the corresponding CM de-

mand in the same period. 

4.1.3. Results 

We compare the accuracy of the various methods by evaluat-

ing the differences between the targets and the achieved service

levels. We discuss underperformance (real performance does not

reach target performance) as well as overperformance (real perfor-

mance exceeds the target). 

Figs. 2–6 focus on situations with CM demand only. The

empirical-EVT consistently outperforms the empirical method.

Both the empirical-EVT and the WSS method achieve real cycle

service level that is quite close to the target. Here, WSS is closer

to the target for relatively short training set length (60–80 peri-

ods - 12–16 positive demand observations), while empirical-EVT

is closer to the target for more periods ( > 20 observations). This
ould give the WSS an edge in practice because the number of

emand observations is typically limited there. Overperformance

f WSS is observed when the positive demand is normally dis-

ributed, see Figs. 2 and 3 . The empirical method, Croston’s method

nd SBA have difficulties in reaching the target. The achieved cycle

ervice level of each approach increases as the training set length

ncreases. Fig. 4 shows that the empirical method and empirical-

VT are the most sensitive to the lead time, while the WSS method

eems very robust to changes in the lead time. 

Figs. 5 and 6 show the performance of each approach under the

xpected waiting time target. The performance of each approach

mproves with the increase of training set length. Empirical-EVT

utperforms the empirical method, Croston’s method and SBA.

SS however performs better than empirical-EVT. It has very good

erformance for compound Poisson demand, but it again overper-

orms when demand is normally distributed. 

We will see in Section 4.2 that Croston’s method and SBA attain

 much higher performance for empirical datasets when compared

o their results in Figs. 2–6 for CM only demand. A partial explana-

ion may be given by sudden large demands in the empirical data,

hich may result from planned/preventive maintenance (PM) ac-

ions. The limited information on the empirical data can neither

onfirm nor rule out the role of PM in the large demands. To test

he effect of sudden large demands in a more controlled environ-

ent, we report on simulation experiments in which CM demand

s augmented with PM demand, as discussed in Section 4.1.2 . 

The results are shown in Figs. 7 and 8 . For each demand dis-

ribution in which PM demand is considered alongside CM we

nd that Croston’s method and SBA attain a much higher CSL

han in the CM only case. Additionally, SBA reduces the overstock-

ng by Croston’s method. Moreover, the cycle service level of the

mpirical-EVT is quite close to the target, and the most accurate

f all methods for higher targets. The empirical method achieves

 lower cycle service level while Croston’s method, SBA and WSS

esult in overperformance. When the target is relatively low, over-

erformance happens under all approaches except for the empiri-

al method. 

From Fig. 7 we observe that SBA and Croston have a CSL that

s too high, whereas our empirical-EVT method has a CSL that is

elow the target. An interesting idea then is to combine SBA and

mpirical-EVT by taking the simple average of the base-stock lev-

ls that result from the two methods. Admittedly, averaging the
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Fig. 6. Simulation results of achieved E WT under fixed training set length 60 (including positive and zero demand) and different targets. Only CM demand is considered. 

The underlying positive demand distribution is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 

Fig. 7. Simulation results of achieved CSL under fixed target 0.99 and different number of observations (including positive and zero demand). Both CM demand and PM 

demand are considered. The underlying distribution of positive CM demand is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simu- 

lations. 

Fig. 8. Simulation results of achieved CSL under fixed training set length 60 (including positive and zero demand) and different tar gets. Both CM demand and PM demand 

are considered. The underlying distribution of positive CM demand is compound Poisson (left)/folded normal (right). Each result shows the average of 50 0 0 simulations. 
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Fig. 9. Empirical results of achieved CSL (left graph) and E WT (right graph) for the automotive case. 

Fig. 10. Empirical results of achieved CSL (left graph) and E WT (right graph) for the aircraft component repair case. 
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methods like this is a bit ad hoc, and it may be difficult in practice

to identify which combinations work well. For the case at hand,

the resulting achieved CSL of this combined method is also tabu-

lated in Fig. 7 , and it performs very well, especially for the com-

pound Poisson demand. 

4.2. Empirical study 

4.2.1. Setup and parameters 

To demonstrate empirical results of the proposed approach, we

conduct a study based on real data. We use the automotive dataset

described by Syntetos and Boylan (2005) from an automotive in-

dustry and data on component repairs from Romeijnders et al.

(2012) . The automotive industry dataset records intermittent de-

mand of 30 0 0 Stock Keeping Units (SKUs) over 23 time periods.

The training set includes demand in the first 13 time periods and

the last 10 time periods are classified as the test set. 

The aircraft component repair database used in Romeijnders

et al. (2012) gives spare parts usage in component repairs. We ig-

nore the component level data and focus only on the parts used

in all component repairs together. The database tracks the demand

history of 16,903 types of spare parts over 122 months. We set the
rst 84 months as the training period for each item and test the

esulting base-stock levels in the last 38 periods. The dataset con-

ains many very slow moving items that might not be stocked in

 real life setting. Therefore, we will consider only the parts which

ere used in at least 14 months in the 7 years of our training pe-

iod, corresponding to at least 2 usages annually. Parts with less

sage may not be stocked at all, and therefore the performance for

hese parts is less relevant. This results in 2549 parts that will be

sed in further analysis. 

Except for using a different demand model, the setup of our

xperiments is in line with the approach in Section 4.1 . That is,

e use the data in the training set to estimate the required base-

tock level to achieve a certain service, and then use the test set for

etermining the real service level associated with that base-stock

evel. This approach is applied to individual each SKU or spare part

nd we obtain the average service level over 30 0 0 SKUs or 2549

pare parts. We consider a constant L = 3 for the automotive in-

ustry data and L = 5 for the component repair data. 

.2.2. Results 

Figs. 9 and 10 show the empirical result of each forecasting

ethod for the automotive case and the aircraft component case
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espectively. In the automotive case, Croston’s method, SBA and

SS perform well. WSS results in an overperformance in case of

ow target CSL or high target E WT . SBA has a lower achieved

SL (or higher achieved E WT ) than Croston’s method since it uses

he smoothing constant to adjust the estimator of mean demand.

he empirical-EVT performs slightly worse than SBA. The empiri-

al method has difficulties in reaching the target, when compared

o the other approaches. In the aircraft component repair case, the

mpirical-EVT method performs the best for the E WT , while it is

he joint winner for the CSL target. In general, all methods have

ifficulties in achieving the target. Croston’s method is competitive

hen CSL is considered, followed by SBA, the empirical method

nd WSS. 

.3. Analysis and discussion 

Comparing Figs. 7 and 8 with Figs. 2 and 3 , we found the

erformance of empirical-EVT is more stable than WSS, Croston’s

ethod and SBA in different situations. E.g., with the introduction

f PM demand, the underperformance turns into overperformance

or Croston’s method and SBA. WSS as well leads to severe over-

erformance in the simulation in which PM demand is considered

s well as CM demand. We provide two partial explanations. In

eneral, PM demand has larger values than CM demand. WSS may

elect these large values repeatedly to forecast for each period and

um them up to estimate the lead time demand. The repeated se-

ection gives rise to overestimations and hence overperformance.

esides, as the jittering process in WSS approach provides more

ariation around larger numbers than around smaller ones, PM re-

ults in large generated demands. As a result, the jittering process

xacerbates the overperformance. 

Overperformance of WSS is also observed in the situation of

onsidering only CM demand and folded normal distributed pos-

tive demand. It results from the fact that positive demand val-

es in this situation are relatively stable and the jittering process,

n this case, loses its advantage by increasing the estimated base

tock level S min unnecessarily. That the overperformance in case of

ompound Poisson distributed positive demand is much less than

he overperformance for folded normal supports this explanation:

he compound Poisson has double the standard deviation of the

olded normal distribution for our parameters. 

Lead time does not have much effect on the performance of

roston’s method, SBA and WSS. The accuracy of the empirical-

VT and the empirical method decreases with lead time. These lat-

er methods obtain lead time demand history through summing up

he values within time windows of lead time length. Thus, larger

ead times lead to more samples with the same value as a large

roportion of the demand series is zero. This results in less varia-

ion in the sample used as input for the empirical method and the

mpirical-EVT method. Thus larger lead time lead to the decrease

n inventory performance of empirical-EVT, when keeping the de-

and history fixed. 

The performance of WSS is highly related to the dataset. It has

verperformance in case of automotive industry and underperfor-

ance in the aircraft component repair case. Performance of the

mpirical-EVT is influenced by the limitation of lead time demand.

s the training set from the automotive industry gives demand

n 13 time periods and provides only 11 lead time demand un-

er the empirical-EVT approach, too few lead time demand above

he threshold is available to estimate the tail. The less accurate es-

imation of the lead time demand tail limits the performance of

he empirical-EVT approach. Data from the aircraft component re-

air case allow us to approximate the tail based on history in 84

eriods. 

In summary, based on Figs. 2, 5 and 7 , empirical-EVT gives rea-

onably accurate estimates when the training set includes more
han 16–24 positive demands (in our simulation, this corresponds

o a training period longer than 80–120 periods). It has better

ccuracy than the benchmarks for such cases. For shorter de-

and histories, empirical-EVT has much lower accuracy in abso-

ute terms. Its accuracy may still be better than some benchmarks,

ut this depends on the precise setting. 

. Conclusions 

LTD forecasting is essential to spare parts inventory control but

ifficult as the demand has the feature of irregularity and lumpi-

ess. Non-parametric approaches, like the empirical method, are

uitable for spare parts since they can represent the erratic and

umpy demand behavior. A limited number of observations pre-

ents the empirical method from achieving high performance. 

We propose a semi-parametric LTD forecasting method for

pare parts. It is applicable for forecasting the lead time demand

nd determining the inventory control parameters of spare parts.

he empirical-EVT method is a combination of non-parametric em-

irical method and EVT extrapolation. It samples LTD from actual

ata and uses EVT to model the distribution above a high thresh-

ld so that it can predict possible extreme values. The new method

an represent the demand behavior as well as achieve high target

ervice levels. 

We build models for different service levels and analyse their

pplications. Simulation shows that the empirical-EVT method has

 relative good performance and avoids overperformance which

egularly happens under WSS, Croston’s method and SBA. Still, the

mpirical-EVT has performance issues with limited demand his-

ories, and may be outperformed by WSS, and even by simpler

ethods such as Croston’s and SBA. The empirical study based

n datasets from two companies demonstrates that accuracy of

SS highly depends on the dataset. Moreover, the test shows that

he empirical-EVT struggles to perform well when demand his-

ory consists of only very few periods. In contrast, performance of

mpirical-EVT is better in cases where only relatively few demand

oints are available, but over many periods, as shown for our sec-

nd empirical test. In those cases, the method is rather competi-

ive. This should be taken into account when considering to apply

he method in practice. 

Our theoretical treatise indicates that the empirical-EVT method

as a problem in estimating the fill rate. The fill rate fails to change

onotonously with the increase of base stock level when apply-

ng EVT independently for the LTD with lead time L and the LTD

ith lead time L − 1 . Another issue arises for the expected waiting

ime, which can only be estimated when the extreme value index

s not bigger than or close to 1. This problem is solved by con-

idering the cycle service level instead of expected waiting time.

he empirical-EVT method in combination with the cycle service

evel works well. However, the issues related to applying EVT with

xpected waiting time of fillrate may be a limiting factor when ap-

lying it. 

Future research should focus on three related problems. Firstly,

e observed that the empirical-EVT method might overestimate

he base stock level in the case of large training set length, and

t could be interesting to further investigate this convergence is-

ue. A second issue is finding ways to apply EVT to estimate the

ll rate, in order to avoid the lack of monotonicity identified in

ection 3.2 . Lastly, it could be interesting to apply EVT to other

orecasting methods. E.g., in WSS it could be used to replace the

ittering process in order to general lead time demand which has

ot been observed in the history. It is not immediately clear how

o use the EVT approach with parametric methods such as Cros-

on’s method or SBA, and this too is an interesting subject for fur-

her research. 
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