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Abstract

Background Decision-analytic cost-effectiveness (CE)

models combine many different parameters like transition

probabilities, event probabilities, utilities and costs, which

are often obtained after meta-analysis. The method of

meta-analysis may affect the CE estimate.

Aim Our aim was to perform a simulation study that

compares the performance of different methods of meta-

analysis, especially with respect to model-based health

economic (HE) outcomes.

Methods A reference patient population of 50,000 was sim-

ulated from which sets of samples were drawn. Each sample

drawn represented a clinical trial comparing two fictitious

interventions. In several scenarios, the heterogeneity between

these trials was varied, by drawing one or more of the trials from

predefined subpopulations. Parameter estimates from these

trials were combined using frequentist fixed (FFE) and random

effects (FRE), and Bayesian fixed (BFE) and random effects

(BRE) meta-analysis. The pooled parameter estimates were

entered into a probabilistic cost-effectiveness Markov model.

The four methods of meta-analysis resulted in different

parameter estimates and HE outcomes, which were compared

with the true values in the reference population. Performance

statistics were: (1) the percentage of repetitions that the confi-

dence interval of the probabilistic sensitivity analysis covers the

true value (coverage), (2) the difference between the estimated

and true value (bias), (3) the mean absolute value of the bias

(MAD) and (4) the percentage of repetitions that result in a

statistically significant difference between the two interven-

tions (statistical power). As the differences between methods

could be due to chance, we repeated every step of the analysis

1,000 times to study whether differences were systematic.

Results FFE, FRE and BFE lead to different parameter

estimates, but, when entered into the model, they do not lead

to large differences in the point estimates of the HE out-

comes, even in scenarios where we built in heterogeneity.

Random effects methods do not necessarily reduce bias

when heterogeneity is added to the trials, and may even

increase bias in certain situations. BRE tends to overesti-

mate uncertainty reflected in the CE acceptability curve.

Conclusion FFE, FRE and BFE lead to comparable HE

outcomes. BRE tends to overestimate uncertainty. Based on

this study, we recommend FRE as the preferred method of

meta-analysis.

Key Points for Decision Makers

1. To aid decision making, available evidence is often

structured in a probabilistic decision-analytic model.

Meta-analysis combines all available evidence in a

wide range of model parameters.

2. A Bayesian random effects approach of meta-anal-

ysis is not recommended when only a few sources of

evidence are available, as it may overestimate

uncertainty and yield a larger probability that a new

treatment is rejected or that more research is asked

for, where it might not be necessary.

3. With only a few differences between the other three

methods we compared, we recommend a frequentist

random effects approach as the preferred method of

meta-analysis.
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1 Introduction

In 2006, the Netherlands implemented a policy of condi-

tional, temporary reimbursement of potentially innovative,

but expensive hospital drugs [1]. Additional hospital

funding is provided on the condition that outcomes

research is performed to show further evidence of the value

of the new drugs. The final reimbursement decision is made

based on all evidence available, after 4 years. A systematic

approach to aid decision making is called comprehensive

decision modelling, in which available evidence is struc-

tured in a probabilistic decision-analytic model [2, 3].

Meta-analysis is one step in this process, and is used to

combine all available evidence in model parameters. A

wide range of model parameters need to be estimated, from

transition probabilities to costs and utility values [4].

Many different methods of meta-analysis exist, and

many authors have compared them (e.g. [5–8]). They have

shown that the choice of method can considerably affect

parameter estimates. These comparisons concentrated on

the impact of the method of meta-analysis on the estimate

of a single treatment effect, for example a risk ratio (RR).

However, in the probabilistic models used in economic

evaluations we need to estimate many different parameters,

including the baseline value of each model parameter in the

comparator group. Altogether, the method of meta-analysis

to obtain these parameters may considerably affect the final

cost-effectiveness (CE) estimates.

Our group has previously investigated the effect of

four different methods of meta-analysis on model-based

CE estimates [9]. Although we found considerable dif-

ferences, there was no way of knowing which of the

methods was best, because we had no ‘truth’ to which we

could compare our results. That is, we only had data from

different samples of the total patient population, not of

the population itself. To overcome this problem we per-

formed a simulation study, in which we created a refer-

ence population, which reflected the value that should be

obtained by the different methods. We then proceeded by

drawing sets of samples from this population, mimicking

sets of clinical trials, and combined these trial estimates.

Each method of meta-analysis generated a separate set of

pooled parameters. We filled a health economic (HE)

model with these different sets of parameters and inves-

tigated whether there were systematic differences between

the meta-analysis methods by comparing the outcomes of

the sets of samples with the outcomes of the reference

population. We were especially interested in the impact

on the differences in costs and quality-adjusted life years

(QALYs), the incremental CE ratio and the CE accept-

ability curve.

The available methods of meta-analysis can be divided

into two groups, namely direct and indirect methods.

Direct methods of meta-analysis combine evidence from

trials that compare the two interventions of interest

directly. In the absence of head-to-head studies, or with

the availability of both direct and indirect evidence,

indirect methods of meta-analysis come into play.

Methods of indirect meta-analysis are compared in a

separate manuscript (under preparation) by the same

authors. We therefore focus here on direct meta-analysis

methods.

2 Methods

2.1 Simulation Study

The simulation comprised several steps, shown in Fig. 1.

In step 1 (Create reference population), we simulated a

reference patient population (n = 50,000), including

individual patient-level disease progression using one of

two fictitious treatments. The mean values of the param-

eters and HE outcomes, as calculated from the entire

population, are reference values to which we compared

the estimates of the meta-analyses. In other words, they

represented the ‘truth’ and are referred to as reference

parameters and reference outcomes. Parameters included

transition probabilities, probabilities to experience an

event, maintenance costs, utilities and costs and utility-

decrements due to an event. HE outcomes included the

total number of QALYs, life years (LY) and events,

intervention and maintenance costs, and the incremental

CE ratio (ICER).

In step 2 (Trial selection), we sampled trials from the

reference population, comparing the two treatments. For

each of the trials we calculated the parameters that are

needed as input for the HE model, called trial parameters.

In step 3 (Meta-analysis), we pooled the trial parameters

using several methods of meta-analysis. These methods

are explained in detail in Sect. 2.3. The combined esti-

mates are called model parameters. For each model

parameter, both mean and appropriate dispersion measures

were calculated. We used a disease progression model in

step 4 (CE modeling), filled first with a set of model

parameters obtained by the first method of meta-analysis.

A probabilistic sensitivity analysis (PSA; 1,100 iterations)

was run and the HE outcomes, called model outcomes,

were collected. This process was repeated with model

parameters obtained from each of the methods of meta-

analysis.

Differences in model outcomes could be due to chance,

i.e. the particular set of trials that was drawn. In order to

study whether there was a systematic difference between

the methods of meta-analysis, we repeated steps 2 to 4 in

step 5 (Repeat), further referred to as 1,000 repetitions.
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2.2 Disease and Model Structure

The modelled disease was a progressive, chronic disease

(Fig. 2), with events during which symptoms worsen con-

siderably. The disease was simulated using a Markov

model with four stages: moderate, severe, and very severe

disease, and death.

For each patient in the reference population, we simu-

lated their disease progression. We did this by first defining

the reference disease progression (RDP), which can be

thought of as the disease progression of an untreated, base-

case patient. It consists of a set of distributions for each

reference parameter (Table 1). Next, these distributions

were modified based on individual patient characteristics—

gender, age, developed/developing country, body-mass

index (BMI) and smoking status and interventions. These

characteristics made it possible for us to add heterogeneity

to trials in relevant scenarios, by sampling from sub-pop-

ulations. In this manner we have simulated a heterogeneous

population of individual patients.

How patient characteristics and interventions influenced

the RDP is stated in an online appendix (see electronic

supplementary material). In short, male patients have a

higher probability to move to a worse disease stage than

female patients. Older patients have a higher probability to

move to a worse disease stage than younger patients; they

have higher costs and a wider spread in quality-of-life

weights. Patients from developing countries have lower

maintenance costs than patients from developed countries.

Patients with a higher BMI have a higher probability to

move to a worse disease stage than patients with lower

BMI; they also have a higher probability of an event,

1 CE = Cost-effectiveness 

1: Create reference population

Reference parameters, references outcomes 

1a: Disease structure 1c: Interventions 1b: 50,000 Patients with 

characteristics at T=0. 

Disease history for every intervention 

2: Trial selection 

Outcome: 

Trial parameters 

3: Meta-analysis

Outcome: 

Model parameters 

4: CE modeling1

Outcome: 

Model outcomes 

5: Repeat 1,000 times

Fig. 1 Design of the simulation

study

Stage 4 
(death) 

Stage 1 
(Mod) 

Events 

Stage 2 
(Sev) 

Events 

Stage 3 
(Very sev) 

Events 

Fig. 2 Markov model of the

chronic disease
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higher maintenance costs and lower quality of life. Patients

who smoke have a higher probability to move to a worse

disease stage and a higher probability of an event, than

patients who do not smoke.

Interventions influence the RDP in the same manner as

patient characteristics do. For each patient in the reference

population, we simulated their disease progression twice:

once receiving Usual Care and once receiving the New

Intervention. Usual Care is a drug that decreases the

probability of disease progression compared with the RDP,

at €60 per monthly cycle. New Intervention, the focus of

the HE analysis, decreases the probability of disease pro-

gression, more so than Usual Care, plus it increases the

probability of moving to a better disease stage and

decreases the probability of an event. The costs were set at

€350 per monthly cycle. In the HE model, probabilities for

the New Intervention are modeled as a RR, with the esti-

mated probabilities for the Usual Care as a baseline.

Changes to reference parameters were additive across

patient characteristics and interventions. For example, a

female patient aged 35–64 years who used the New Inter-

vention had a monthly probability to die in the very

severe disease stage of 10 % (the probability within the

RDP) – 2 % (modification for gender) ? 4 % (modifica-

tion for age) - 3 % (modification for New Intervention)

= 9 %.

Table 2 shows the reference outcomes when applying

the two interventions to the entire patient population. They

represent the ‘truth’ with which the outcomes of the meta-

analyses were compared.

The structure of the HE model mirrors the disease pro-

gression in the reference population; in other words, there

was no structural uncertainty. The time horizon of the HE

model was 1 year and the cycle length 1 month. We

assumed that data in the trials were collected each month

during 1 year. We have not applied discounting. Simula-

tion and modelling were performed using SAS 9.2 and

WinBUGS 1.4.3.

2.3 Scenarios

The number and size of the trials sampled in step 2: Trial

selection was varied in scenarios, as well as the amount of

heterogeneity between trials. Heterogeneity in the meta-

analysis literature is any kind of variability between dif-

ferent studies [10]. Trial heterogeneity is different from

patient heterogeneity, which is the difference between

patients that can be adequately explained by patient char-

acteristics. Table 3 shows the different scenarios that were

investigated. The last column of Table 3 described the

impact of the non-randomly drawn trials on the trial

parameters. We will focus mainly on the three scenarios in

shaded rows, namely 1, 4 and 7. The other scenarios will be

discussed in the discussion section of this paper.

2.4 Methods of Meta-Analysis

In our study, we compared four widely used methods of

meta-analysis: frequentist fixed effects (FFE), frequentist

random effects (FRE), Bayesian fixed effects (BFE) and

Bayesian random effects (BRE). The FFE and FRE were

based on the Inverse Variance method, which can be used

for meta-analysis of both continuous and dichotomous data

[11]. The pooled effect estimate for the FFE is calculated

as a weighted average of the individual study estimates,

using the inverse of the squared standard error (SE) of the

effect estimates as weights. Thus, studies with a smaller

SE, typically larger studies, are given more weight than

studies with a larger SE. For the FRE, we used the Der-

Simonian–Laird method [11]. It was developed for situa-

tions where there is heterogeneity between study results,

caused, for example, by differences in patient population or

study design. It incorporates an estimate of the between-

study heterogeneity into the weights. It is assumed that all

studies are samples drawn from a pool of all possible

studies, i.e. the population [10]. The goal is to estimate the

mean of this population. The true parameter value may be

study specific and can vary across studies.

Both the FFE and FRE assume that the weights are

known. With little or no heterogeneity among the studies,

the FFE and FRE will give identical results [10]. With

heterogeneity present, confidence intervals will be wider for

the FRE and claims of statistical significance will be more

conservative. The point estimate of the parameter might

also be different. We report the I2-statistic as a measure of

Table 1 Characteristics of the simulated patient population

Size simulated

cohort

50,000

Starting disease

stage

5/8 in moderate, 2/8 in severe and 1/8 in very

severe

Gender 50 % male, 50 % female

Age in years 18–34; 35–64; 65?

Determined by a random draw from a uniform

distribution from 18 to 75

Developed/

developing

country

50 % from developed countries, 50 %

developing countries

Body Mass Index

(BMI)

\25 kg/m2 (average or low); 25–30 kg/m2

(high); [30 kg/m2 (obese)

Determined by a random draw from a normal

distribution with mean 23 and standard

deviation of 4

Smoking status 30 % smokers, 70 % non-smokers
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heterogeneity [12], which can be interpreted as the pro-

portion of the total variation in the pooled estimates that is

due to heterogeneity between studies. When the amount of

between-trial heterogeneity increases compared with the

within-trial variance, then the I2 also increases. Higgins and

Green [8] provide a rough guide to the interpretation of I2.

Above 30 % ‘‘may represent moderate heterogeneity’’;

above 50 % ‘‘may represent substantial heterogeneity’’.

The BFE method requires the data from the different

trials, the definition of a prior for the parameter to be

synthesized and a likelihood linking both [9, 13]. We used

a binomial likelihood function to model the total number of

transitions, with a flat beta prior; and a normal likelihood

function for all other parameters, with a flat normal prior

centered on 0 and a precision of 1.0E-6. When specifying

the BRE method, prior distributions need also be defined

Table 2 Reference outcomes,

per patient per 12 cycles/

months - Mean (standard

deviation)

LY life year, QALY quality-

adjusted LY, ICER incremental

cost-effectiveness ratio

Variables Usual care New intervention Difference

QALYs 0.485 (0.232) 0.540 (0.231) 0.054

LYs 0.740 (0.328) 0.786 (0.313) 0.046

Intervention costs (€) 533 (236.24) 3,300 (1,310) 2,770

Maintenance costs (€) 3,260 (2,080) 3,070 (1,810) -180

Event costs (€) 2,330 (2,610) 1,260 (1,780) -1,070

Total costs (€) 6,120 (4,340) 7,630 (3,830) 1,520

Number of cycles in:

Moderate disease 5.171 (3.750) 6.209 (3.965) 1.038

Severe disease 2.477 (2.512) 2.313 (2.507) -0.164

Very severe disease 1.238 (1.850) 0.911 (1.554) -0.327

Death 3.114 (3.937) 2.567 (3.751) -0.547

Number of events 1.160 (1.259) 0.630 (0.856) -0.530

Proportion surviving (%) 49.9 58.3 8.4

ICER, total costs per QALY (€) 28,020

Table 3 Overview of different scenarios in the simulation studya

Scenario Number 

of trials 

Number of patients per 

intervention arm 

Added heterogeneity with effect on disease progression 

1 5 All trials 500 -

2 5 Trial 1 and 2: 500, trial 3: 100, 

trial 4: 250, trial 5: 1,000 

-

3  10 All trials 250 - 

4 5 All trials 500 Trial 5 has relatively old patients, more smokers and more obese patients, which leads to more 

rapid disease deterioration, higher probability of events, higher maintenance costs, lower quality of 

life. 

5 5 All trials 500 Trial 2 has relatively young patients, which leads to slower disease deterioration 

Trial 4 has only patients from developing countries, which leads to lower maintenance costs 

Trial 5: the same as in scenario 4 

6 5 Trials have different sample 

sizes, the same as in scenario 

2

The same as in scenario 5 

7 5 Trials have different sample Trials 2, 4 and 5 have relatively old patients, more smokers and more obese patients, which leads 

sizes, the same as in scenario 

2

to more rapid disease deterioration, higher probability of events, higher maintenance costs, lower 

quality of life. 

a The four scenarios that are not in shaded rows are only discussed in the discussion section
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for the between-trial heterogeneity [9, 13, 14]. We used the

inverse of a squared uniform distribution from 0 to 10.

Other likelihoods and priors were as in the BFE. Before

simulation started, we tested several priors and could find

no meaningful differences.

Conceptually, confidence intervals in frequentist statis-

tics and credibility intervals in Bayesian statistics have

very different interpretations (see for example [15, 16]).

However, for convenience and legibility, we abbreviate

both as CI. For each pooled parameter estimate, we report

the mean and the 95 % CI.

We performed meta-analysis on all baseline values

(transition probabilities, utilities, etc.) using information

from the Usual Care intervention arms. In addition, we

performed meta-analysis on all effect measures (RR), using

data on the difference between the New Intervention and

Usual Care. Interested readers may request code on both

the simulation study and the methods of meta-analysis

from the corresponding author.

2.5 Comparing Performance

When judging the performance of the methods of meta-

analysis, we assumed that a researcher doing a meta-

analysis aims to estimate the CE of the New Intervention

compared with Usual Care in the entire patient population,

not a specific subgroup. We further assumed that a

researcher is unaware of the fact that heterogeneity, when

present, was caused by sampling from subgroups (i.e. they

do not know we deliberately built in heterogeneity). To the

researcher, the heterogeneity might either be caused by

random sampling or unobserved differences between the

trials in terms of patient characteristics, setting or other

elements that could affect the parameter estimates. These

assumptions are made because, if these differences in

design are known to the researcher, either the trials would

not be synthesized at all, or a way has to be found to

control for these differences. Hence, these assumptions

made it possible to judge the performance of the different

methods of meta-analysis by comparing model parameters

and outcomes with the reference values.

The statistical performance of the different methods was

judged by calculating the coverage, bias, mean absolute

deviation (MAD) and statistical power. Coverage is the

percentage of all repetitions that the simulated CI covered

the ‘truth’. Since the coverage is based on 95 % CIs, we

expect that, if all trials are drawn randomly, the coverage

should on average be close to 95 % [5]. The observed

coverage was compared to this benchmark. Assuming that

we have an unbiased point estimate, if the coverage is

below 95 %, the model does not take into account all

uncertainty. If the coverage is above 95 %, it has accounted

for too much uncertainty. In this study, if the coverage was

smaller than 90 %, we say the method underestimated

uncertainty; if the coverage was higher than 98 % the

method overestimated uncertainty. Bias is expressed as the

difference between the point estimate in the simulated data

set and the true population value, averaged over all repe-

titions. The MAD is the average, over all repetitions, of the

absolute value of the bias. The MAD indicates how far the

estimated value was from the ‘truth’, regardless of whether

it was too high or too low. For HE outcomes, we also

calculated statistical power, expressed as the percentage of

all repetitions where the simulated result yields a statisti-

cally significant difference between treatments.

3 Results

3.1 Model Parameters for One Set of Trials

Figure 3 compares the methods for scenarios 1, 4 and 7,

using only the first repetition. From bottom to top, we

compare the different meta-analysis models for the seven

scenarios. Each dot represents the point estimate for the

model parameter, in this case the transition probability

from severe to very severe disease, and the bars the esti-

mated CIs. At the bottom of the graph the ‘true’ reference

parameter value, as found in the population, is pictured,

with which each of the estimates needs to be compared.

The results are illustrative for the other parameters. When

five equally sized, large trials are randomly drawn from the

same population (scenario 1), all methods lead to similar

point estimates of the model parameters, but the BRE

model has a much wider CI and a higher coverage. The

difference in point-estimate between FFE and BFE is due

to the different distributional assumptions: BFE assumes a

binomial model, whereas FFE (implicitly) assumes a nor-

mal distribution.

In scenario 4 we added heterogeneity by drawing one of

the trials from a less healthy population. The point esti-

mates from the random effects (RE) models are further

from the reference parameter. RE models assign a rela-

tively greater weight to trials which outcomes differ from

the rest. Due to the wider CIs, RE models are more likely

to include the reference parameter value, but tend to

overestimate uncertainty.

Varying trial sizes, with three trials from the same sub-

group (scenario 7) leads to results comparable to scenario 4,

where only one of the trials was drawn from this subgroup.

3.2 Model Parameters for 1,000 Repetitions

To investigate whether the results from the previous par-

agraph are due to chance, or if there are systematic dif-

ferences, Table 4 presents a summary of the performance
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indicators over 1,000 repetitions. It reports the number of

model parameters out of 33 for which the performance

indicators are below or above certain threshold values. First

we look at the I2, averaged over 1,000 repetitions. For

many parameters and scenarios, the mean of the I2 statistic

does not exceed 30 %, indicating no heterogeneity, even in

scenarios where heterogeneity is built in. Some parameters

show substantial heterogeneity, even if all trials are ran-

domly drawn from the same population. The number of

parameters with a mean I2 below 30 % decreases when the

amount of heterogeneity increases and the number of

parameters with a mean I2 above 50 % increases slightly.

When equally sized trials are randomly drawn from the

same underlying population (scenario 1), the number of

parameters with mean coverage below 90 % or above 98 %

is comparable for FFE, FRE and BFE. BRE, on the other

hand, shows no underestimation of uncertainty in any of the

parameters, and an overestimation in 26 of the 33 parameters.

FFE and BFE have a tendency to underestimate uncertainty

when heterogeneity is added (scenarios 4 and 7), as is illus-

trated by the increasing number of parameters with a cover-

age lower than 90 %. It should be noted that an increase in

bias and MAD also contributes to a lower coverage. In sce-

nario 7, even the FRE model underestimates uncertainty for

several parameters and the number of parameters where the

uncertainty is overestimated decreases. BRE never underes-

timates uncertainty, and overestimates uncertainty for nearly

all of the parameters in all scenarios. In fact, the coverage is

100 % in a large number of cases (not shown).

There are only small differences between methods in

bias, with more bias in the scenarios with more added

heterogeneity. There are, however, differences between the

methods with respect to the MAD. The number of

parameters where the MAD is larger than 5 % is smaller

for the FFE and FRE, than for the BFE and BRE methods,

regardless of heterogeneity. The BRE method generally

yields point-estimates that are further away from the true

population value than the other methods. Using RE models

in scenarios with heterogeneity does not necessarily reduce

bias. They may even increase bias, especially when the

trials that differ from the others all differ in the same

direction (scenario 7).

3.3 Health-Economic Outcomes for 1,000 Repetitions

Differences in model parameters may also lead to differ-

ences in HE outcomes. In Table 5, we show the mean HE

outcomes over 1,000 repetitions, for both interventions and

the difference between them. In scenario 1, all HE out-

comes are very close to the true population value. In sce-

nario 7, we can see that the point-estimates are further from

the truth than is the case in the other two scenarios, for all

methods of meta-analysis. On average, the number of

QALYs estimated in each of the treatment arms is around

5 % below the true population value, and so is the differ-

ence in QALYs. In scenario 7, the fixed effects (FE) CIs

(not shown) are comparable to those in scenario 1, but the

RE CIs are much wider, especially for the BRE method.

Reference 
parameter, 

"Truth"

Scenario 1:
5 random trials, 

500 pts

Scenario 4:
5 trials, 500 pts,       
1 heterog trial 

(health)

Scenario 7:
5 trials, differing 

trial sizes,
3 heterog trials

7% 9% 11% 13% 15%

Bayesian
Random
Effects

Bayesian
Fixed
Effects

Frequentist
Random
Effects

Frequentist
Fixed
Effects

'Truth'

Fig. 3 Meta-analysis on the

transition from the severe to

very severe disease stage, for

three of the seven scenarios, for

the Usual Care arm, for one

repetition. pts number of

patients per trial, equal in each

arm, heterog added

heterogeneity by sampling from

subpopulations
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Table 6 shows the coverage, bias and MAD for the dif-

ference between the two intervention groups. In general, we

see that the coverage is larger in the RE methods, due to

wider CIs which take heterogeneity into account. In addi-

tion, the Bayesian methods have higher coverage than the

frequentist methods. Bias is generally low when no hetero-

geneity is included (scenario 1) and increases when it is

(scenarios 4 and 7). The largest bias and MAD is found in the

BRE method, for all outcomes in all scenarios. For the other

three methods, bias and MAD are comparable. Despite the

higher bias and MAD, the coverage of the BRE is still larger.

For the number of QALYs, events and total costs, sta-

tistical power (online appendix) is 100 % for all scenarios

of FFE, FRE and BFE. It is slightly lower for the LYs for

FFE, FRE and BFE, with a minimum of 96.7 %. For the

BRE method, the statistical power for LYs ranges from

17.5 % (scenario 6) to 100 % (scenario 3). It is generally

lower when there are more trials drawn from a subgroup of

patients and when there is a difference in sample size

between the trials.

Figure 4 shows the CE acceptability curves (CEAC) for

scenario 7. The four graphs represent the four methods of

meta-analysis. In each graph, we show the CEAC for ten

repetitions, the median, 2.5th and 97.5th percentile over

1,000 repetitions. It is clear that even in this scenario with a

lot of heterogeneity, the graphs are very similar for FFE,

FRE and BFE. At a ceiling ratio of € 30,000 per QALY,

which is very close to the true population ICER of € 28,020

(dashed vertical line), the median probability of New

Intervention being cost effective is between 60–70 %, for

these three methods. At a ceiling ratio of € 21,000, the

median probability for all three methods is below 20 % and

the 97.5th percentile is below 30 %. At € 39,000, the

median probability is above 95 % and the 2.5th percentile

is above 65 %, again for all three methods. Therefore, no

great difference in policy decision would arise from using

these three different methods of meta-analysis.

However, using BRE, the outcome would be different.

Even at a ceiling ratio of € 48,000, the 97.5th percentile is

below 60 %, and the median probability is below 90 %.

Using BRE, a policy maker would be much less certain of

the cost-effectiveness of the new intervention.

4 Discussion

In this study, we compared four methods of meta-analysis.

Using a simulation study we could compare the HE out-

comes to a gold standard and judge their statistical per-

formance. In order to do this, we made a few crucial

Table 4 Summary of the result

of meta-analysis on all

parameters of the health-

economic model. Means over

1,000 repetitions

BFE Bayesian fixed effects

method, BRE Bayesian random

effects method, FFE frequentist

fixed effects method, FRE

frequentist random effects

method, MAD mean absolute

deviation

Total number of parameters for which: Scenario 1 Scenario 4 Scenario 7

Total number of parameters 33 33 33

Parameters influenced by added heterogeneity 0 24 24

Mean I2 \ 30 %: heterogeneity might not be important 27 27 22

Mean I2 [ 50 %: substantial heterogeneity 4 6 6

Mean coverage \ 90 % (underestimation of uncertainty)

FFE 6 9 23

FRE 6 0 21

BFE 6 9 23

BRE 0 0 0

Mean coverage [ 98 % (overestimation of uncertainty)

FFE 11 7 3

FRE 12 13 4

BFE 12 10 4

BRE 26 32 24

Mean bias [ 2 %

FFE 0 12 19

FRE 0 13 19

BFE 0 12 20

BRE 0 13 21

Mean MAD [ 5 %

FFE 0 3 16

FRE 0 5 16

BFE 3 6 17

BRE 5 9 17
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Table 5 Health economic outcomes for three of the seven scenarios, both intervention arms and the difference. Means and range from the 2.5th

and 97.5th percentiles over 1,000 repetitions

Scenario Scenario 1

Five randomly drawn, equally

sized trials

Scenario 4

Five equally sized trials; one trial drawn

from a less healthy population

Scenario 7

Five equally sized trials; three trials drawn

from a less healthy population

Intervention arm New Int Usual Diff New Int Usual Diff New Int Usual Diff

Number of QALYs

Truth 0.540 0.485 0.054 0.540 0.485 0.054 0.540 0.485 0.054

FFE 0.542 0.488 0.054 0.533 0.480 0.053 0.515 0.464 0.051

FRE 0.541 0.487 0.054 0.532 0.479 0.053 0.514 0.463 0.051

BFE 0.541 0.486 0.054 0.531 0.478 0.053 0.513 0.461 0.052

BRE 0.540 0.487 0.054 0.531 0.478 0.052 0.513 0.462 0.051

Number of LYs

Truth 0.786 0.740 0.046 0.786 0.740 0.046 0.786 0.740 0.046

FFE 0.789 0.744 0.045 0.781 0.738 0.044 0.767 0.723 0.043

FRE 0.788 0.744 0.045 0.780 0.736 0.044 0.766 0.723 0.044

BFE 0.787 0.742 0.045 0.779 0.735 0.044 0.764 0.720 0.044

BRE 0.787 0.743 0.045 0.779 0.735 0.043 0.764 0.721 0.042

Total costs (€)

Truth 7,633 6,116 1,517 7,633 6,116 1,517 7,633 6,116 1,517

FFE 7,657 6,140 1,517 7,652 6,158 1,494 7,643 6,167 1,476

FRE 7,653 6,137 1,515 7,644 6,152 1,492 7,639 6,164 1,475

BFE 7,639 6,126 1,513 7,627 6,136 1,490 7,615 6,139 1,476

BRE 7,650 6,129 1,522 7,635 6,145 1,490 7,627 6,157 1,470

BFE Bayesian fixed effects method, BRE Bayesian random effects method, Diff difference between two intervention arms, FFE frequentist fixed

effects method, FRE frequentist random effects method, LY life years, New Int new intervention, QALYs quality-adjusted LY, Usual usual care

Table 6 Health economic outcomes for three of the seven scenarios. Means of coverage, bias and mean absolute deviance (MAD) of the

difference between two interventions, over 1,000 repetitions

Scenario Scenario 1

Five randomly drawn, equally sized

trials

Scenario 4

Five equally sized trials; one trial drawn

from a less healthy population

Scenario 7

Five equally sized trials; three trials drawn

from a less healthy population

Coverage (%) Bias (%) MAD (%) Coverage (%) Bias (%) MAD (%) Coverage (%) Bias (%) MAD (%)

Number of QALYs

FFE 98.1 -0.2 8.3 97.4 -2.4 8.5 96.0 -5.1 9.5

FRE 98.8 -0.1 8.3 99.5 -2.2 8.5 99.3 -5.0 9.7

BFE 98.3 0.2 8.7 98.6 -2.1 8.8 97.9 -5.0 9.4

BRE 100.0 -1.0 9.6 100.0 -3.3 10.7 100.0 -6.6 13.4

Number of LYs

FFE 98.2 -1.6 13.9 97.1 -3.8 14.2 97.5 -4.6 15.0

FRE 99.3 -1.4 14.0 99.1 -3.4 14.3 98.9 -4.4 15.5

BFE 98.6 -0.9 14.5 98.4 -3.1 14.8 99.2 -4.1 15.0

BRE 100.0 -2.3 16.1 100.0 -4.9 17.5 100.0 -6.9 20.8

Total costs

FFE 98.5 0.0 5.1 98.2 -1.5 5.5 97.1 -2.7 5.9

FRE 99.3 -0.1 5.2 99.5 -1.7 5.6 99.4 -2.8 6.1

BFE 98.5 -0.3 5.3 98.5 -1.8 5.7 98.4 -3.2 6.1

BRE 100.0 0.3 6.4 100.0 -1.8 6.8 100.0 -3.1 8.1

BFE Bayesian fixed effects method, BRE Bayesian random effects method, FFE frequentist fixed effects method, FRE frequentist random effects

method, LY life years, QALYs quality-adjusted LY
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assumptions. First, we assumed that the researcher wants to

estimate the parameter values of the entire population, not

a subpopulation. This allows us to compare the results to

the outcomes for the entire population. We also assumed

the researcher was unaware of the fact that any heteroge-

neity was caused by sampling from subgroups. A

researcher might not have combined the trials at all, had

they been aware of the differences, by seeing the patient

characteristics or trial protocols. A researcher might also

have tried to compensate using regression methods, which

were not the focus of the paper, nor would they be feasible

with only five to ten trials.

With almost no heterogeneity, we found that the results

of the FFE, FRE and BFE methods were comparable. With

heterogeneity added to the trials, we saw differences on a

parameter level, but these did not translate into important

differences in HE outcomes. That could be because the HE

model combines all parameter estimates and their uncer-

tainties into one estimate of QALYs and total costs. All

these uncertainties together may hide the (subtle)

differences we have seen between the methods. In addition,

we did not take structural uncertainty into account, which

may exceed any parameter uncertainty.

Using any of these three methods would not lead to

differences in policy decisions. Using BRE would, as it has

a tendency to overestimate uncertainty and yield a larger

probability that a new treatment is rejected or that more

research is asked for where it might not be necessary.

Partly, this is due to the number of trials included in the

meta-analysis. Generally speaking, sophisticated methods,

such as RE, require more data than simple methods,

because of the increased number of parameters. This is

particularly important for BRE, as it estimates between-

study heterogeneity and also takes the uncertainty around

this estimate into account. This can be estimated more

precisely from ten trials than from five. In scenario 3,

where we have the same amount of patients in ten trials

instead of five, we have seen that the CI around the BRE is

still larger than those of the other three methods, but the

difference is much smaller. We also saw that the coverage

Frequentist fixed effects                                                              Frequentist random effects 

Bayesian fixed effects                                                                 Bayesian random effects 
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Fig. 4 Cost-effectiveness acceptability curves (CEACs) for the four

models in the heterogeneous scenario 7. Graphs depicts median, 2.5th

and 97.5th percentile CEACs over 1,000 repetitions, as well as the

CEACs for the first 10 repetitions; vertical, dashed line is the ‘true’

population incremental cost-effectiveness ratio (ICER)
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for the BRE is much closer to 95 % and that uncertainty is

overestimated in fewer parameters.

We speculate that with more than ten trials the differ-

ences might be even less pronounced and the BRE method

will yield almost the same results as the other three

methods, although the amount of uncertainty will always

exceed that of the other methods. We did not test this

assumption as this situation is unlikely within the scope of

the expensive drug programme. In addition, time and

budget constraints did not permit the calculation time

needed for a simulation of this many trials, especially in a

number of different scenarios.

Based on this, we recommend not using the BRE when

only few sources of evidence are available. Unfortunately,

this is more the rule than the exception, especially in the

expensive drugs programme which was the reason to initiate

this study. With only a few differences between the other

three methods, we would personally favor FRE, as it auto-

matically reduces to FFE in the absence of heterogeneity, is

easy to implement and is more easily understood by physi-

cians and policy makers who will be using the results.

By calculating outcomes for a number of scenarios, we

have covered many of the different situations that are likely

to arise in meta-analysis. We have drawn a few larger

trials, but more smaller trials, and trials with differences in

trial sizes. We have drawn trials randomly from the same

population, one trial from a subgroup of patients, several

trials from different subgroups and several trials from the

same subgroup. Because of this, we feel that the results of

our study are generalizable to other studies that use meta-

analysis to obtain pooled estimates of parameters to fill a

HE model.

We have made sure that the difference between the two

interventions is large. When two interventions are much

closer to each other, it unlikely this will change our con-

clusions regarding the methods of meta-analysis. The same

is true for a longer time horizon, or including discounting.

Despite our feelings that the results are generalizable to

other situations, there are several limitations to our study.

The first limitation is that we have assumed that all data

comes from the same set of trials. In practice, the data for

transition probabilities will likely come from different

sources than, for example, the RR for those transition

probabilities or the utilities. The exact source of the evi-

dence will not have an impact on the performance of the

methods of meta-analysis. Therefore, we decided not to

explore this extra complexity in this paper.

Another limitation is the choice of prior for the Bayesian

models. The use and choice of priors is an important sub-

ject when discussing the Bayesian methodology. Any

Bayesian calculation can be affected by the type of priors

used. In the case of meta-analysis, a small number of

studies is extra vulnerable to the type of prior [8, 17]. As

we did not assume the researcher to have prior information,

we also used so called vague, or flat priors. Even though

they are supposed to be ‘uninformative’, they may influ-

ence the outcomes, especially the posterior scale parame-

ters [17]. We tested several different specifications of the

priors but did not find any differences in outcomes, likely

from the relative simplicity of the models used. However,

researchers using the BFE or BRE should keep these

restrictions in mind and different priors may lead to dif-

ferent results.

Our results are not generalizable to network meta-

analysis and should only be used in the case of a pair-wise

comparison of two interventions. In the case that more than

two comparators are available, other methods of meta-

analysis are available, which make use of all the available

evidence [18–21].

We have seen that both the RE methods and the

appropriate measure for heterogeneity, I2, have a tendency

to detect heterogeneity, when trials have differences in

number of patients, even with a large number of total

patients, randomly drawn from the same underlying pop-

ulation. This is a very common occurrence in meta-analysis

and may lead to too conservative CIs as none of the

methods can make the distinction between sampling error

and heterogeneity. Trials can therefore be considered het-

erogeneous, not only when one or more trials are drawn

from a (different) subgroup of patients, but also when all

trials are randomly drawn from the same population, but

with differences in trial sizes. At the same time, with het-

erogeneity built in, many of the parameters show no

important degree of heterogeneity. From this we can see

that the I2 might be an imperfect measure for heterogene-

ity, at least with a relatively low number of trials.

In our simulation study, we have made sure that the

reference parameters are not close to their natural limits;

for example, probabilities or costs close to 0. In cases when

the reference parameters are closer to these limits, we

expect that the Bayesian methods will have model

parameters that are closer to the true population value than

the frequentist methods. First of all, frequentist methods

usually need a correction term (continuity correction) if

one of the trial parameters is 0, because it will not be

possible to calculate the necessary standard errors other-

wise. Bayesian methods do not. In addition, Bayesian

methods may use a bounded likelihood function, while

frequentist methods always implicitly use a normal distri-

bution. This might be a valid reason to prefer Bayesian

methods over frequentist methods.

The transition probabilities and probabilities to experi-

ence an event in the New Intervention arm were calculated

using the model parameter in the Usual Care arm, and the

corresponding RR. Results using the risk difference were

similar and therefore not shown.
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In many HE models, many input parameters need to be

estimated. When more than one input parameter is esti-

mated from the same set of sources, we recommend het-

erogeneity is not checked for each parameter separately,

but rather for the set of trials. If statistics indicate trials are

homogeneous for one parameter, but heterogeneous for

another, it is recommended that all parameters are calcu-

lated using the same type of model. The model type

selection should be based on trial heterogeneity rather than

parameter heterogeneity.

5 Conclusion

In conclusion, the FFE, FRE and BFE meta-analysis

methods led to comparable HE outcomes, even in scenarios

where we built in heterogeneity. The differences that we

see between the methods point towards a broader CI

(which is translated in a higher coverage), a higher MAD

and a lower statistical power for Bayesian methods com-

pared with frequentist methods, and for RE methods

compared with FE methods. RE methods do not necessarily

reduce bias when heterogeneity is added to the trials, and

may even increase bias in certain situations. BRE tends to

overestimate uncertainty reflected in the shape of the

CEAC. Based on this study, we recommend the FRE

method as the preferred method of meta-analysis.
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